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Abstract

The recent push towards lightweight, efficient, and innovative structural designs has brought
forth a range of vibration control issues related to implementation, effectiveness, and control
system design that are not fully addressed by existing strategies. In many cases, these structures
are capable of withstanding day-to-day loads and only experience excessive vibrations during
predictable peak-loading events such as large crowds or wind storms. At the same time, the
use of lightweight material coupled with innovative construction methods has given rise to
temporary structures which are designed to facilitate rapid implementation and intended for
short-term applications. Both scenarios point towards a vibration control system that is suitable
for immediate, short-term applications which motivates the concept of deployable autonomous
control systems (DACSs).

The deployability aspect implies the control system is capable of being readily implemented
on a range of structures with only minor customization to the structure or device while the
autonomy aspect refers to the ability of the system to react to changes in the dynamic response
and effectively control different structural modes of vibration. A prototype device, consisting
of an electromagnetic mass damper (EMD) mounted on an unmanned ground vehicle (UGV)
equipped with vision sensors and on-board computational hardware, is developed to study the
vibration control performance and demonstrate the advantages of the DACS concept. Both
numerical and experimental modelling techniques are used to identify system models for each
component of the prototype device. Given the system models, the dynamic interaction between
the device and underlying structure is derived theoretically and validated experimentally.

The use of an EMD and UGV introduce a number of practical challenges associated with
controller design. These challenges arise due to the presence of physical operating constraints
as well as uncertainty in the controller model. Three different candidate controllers, based on
linear-quadratic Gaussian (LQG), model-predictive control (MPC), and robust H∞ control theory,
are formulated for the prototype device and comparatively assessed with respect to their ability
to address these challenges. The MPC framework provides a systematic approach to incorporate
physical operating constraints directly in the control formulation while robust synthesis of an H∞
controller is well suited for addressing uncertainty in both the controller and structure models.

A key property of the prototype device is the ability to reposition itself at different locations
on the structure. To study the impact of this mobility on the overall control performance, a
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simultaneous localization and mapping (SLAM) solution is implemented for bridge structures.
The SLAM solution generates a map of the structure that can later be used for autonomous
navigation of the prototype device. In achieving autonomous mobility, the location of the control
force can be added as an additional parameter in the controller formulation.

The overall performance of the prototype device is evaluated through a combination of
numerical simulations and experimental studies. Real-time hybrid simulation (RTHS) is used
extensively to study the dynamic interaction effects and evaluate the control performance of the
prototype device on various structures. A full-scale modular aluminum pedestrian bridge is used
to demonstrate autonomous navigation and assess the advantages of a mobile control device. The
results from each study point towards DACSs as being a favourable alternative to existing control
systems for immediate, short-term vibration control applications.
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Chapter 1

Introduction

Over the past decade, a number of seemingly independent factors have synergized to produce the
current momentum towards lightweight, efficient, and aesthetically pleasing structures. These
factors include recent advances in lightweight materials, recognition for potential cost savings, in-
novations in construction techniques, and societal pressures regardingmodern built environments.
A well-known consequence of this shift is an increase in the complexity associated with structural
design. In general, structures are designed based on a strength criterion intended to address the
safety of the structure under extreme loads as well as a serviceability criterion focusing on the
comfort of humans during everyday use. Unlike the design of traditional rigid structures which
is generally governed by the strength criterion, the design of many lightweight, flexible structures
is dictated by the dynamic behaviour and serviceability criterion. The reduced self-weight and
increased flexibility - due to the use of lightweight materials and slender designs - reduces the
inherent system level damping and decreases natural frequencies resulting in structures that are
prone to excessive vibrations. Common approaches to reduce vibrations involve increasing the
stiffness of the structure or enhancing the vibrational dissipation capacity. Increasing stiffness
can be achieved through the use of additional or larger structural elements, however this directly
opposes the direction of current design trends. Alternatively, auxiliary damping devices can be
utilized to dissipate energy and thus increase the overall damping of the structure [1].

Existing auxiliary damping devices can be broadly categorized as passive, active, or semi-
active systems [2]. Passive control devices impart control forces that are developed in response
to the motion of the structure. A truly passive system does not require any external power
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and cannot add energy to the system thereby ensuring bounded-input, bounded-output (BIBO)
stability [3]. However, since energy dissipation is only achieved by responding to the motion
of the structure, the effectiveness of passive devices is limited to a narrow frequency range of
vibration [4]. Active control devices utilize an external power source to control actuators that
apply forces to the structure according to a feedback and/or feed-forward control algorithm [3].
Relative to passive devices, active systems offer enhanced effectiveness and the ability to select a
broader control objective; however, these systems are generally more expensive and less reliable
[3, 5]. Semi-active devices are often described as passive systemswith controllable properties. By
using small amounts of external power, semi-active control devices can adjust certain properties
allowing them to achieve higher control efficiency relative to similar passive devices [2]. Since
external power is only used to tune the damper properties, no mechanical energy is added to
the system thereby maintaining high reliability and guaranteeing stability [3]. In general, the
performance of any auxiliary control device depends on a number of factors including loading
conditions, structural properties, and control system design [4].

Structural control is a relatively mature field of research with a vast range of control devices
and controller formulations covered in the literature [2, 3, 6, 7]. Nevertheless, the current trend
towards lightweight, flexible structures has raised several new issues related to implementation,
effectiveness, and control system design not fully addressed by existing strategies. In many cases,
lightweight structures are capable of withstanding day-to-day loads and only experience excessive
vibrations during predictable peak-loading events such as large crowds or wind storms. Designing
such structures to sustain extreme loading events without the use of auxiliary vibration control
greatly diminishes the design efficiency. Furthermore, although the use of existing vibration
control devices may facilitate more economical designs, these devices are likely to suffer from
under-utilization, particularly if the devices are only triggered by the specific design level event.
On the other hand, the use of lightweightmaterials coupledwith recent innovations in construction
methods has given rise to temporary structures, such as modular aluminum pedestrian bridges,
which are specifically designed to facilitate rapid implementation and are intended for short-term
applications. In this case, the need for vibration mitigation depends on the end-use of the structure
and as such, existing permanent vibration mitigation measures may be considered uneconomical
or impractical. These scenarios highlight two new vibration control problems fueled by the
recent push towards lightweight, flexible structures. In both cases, the underlying structure would
benefit greatly from a vibration control system suitable for immediate, short-term applications.
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1.1 Motivation

The suitability of existing structural control strategies for immediate, short-term applications
is hindered by the time and effort associated with the design process, the need for a fixed,
rigid connection, and the nature of the devices to be permanently integrated with the structure.
For example, the construction of a pre-designed modular structure requiring auxiliary damping
given the particular usage would be delayed by the time required to design a suitable control
device. Furthermore, given existing control devices rely on a rigid connection to impart control
forces, the pre-designed structure will likely need to be modified to accommodate the device
which is uneconomical for short-term applications. These limitations motivate the concept of
deployability. A deployable control system is one which is readily available to be implemented
on a range of structures with relatively minor customization such as tuning and sizing of the
device. Achieving deployability nearly eliminates design time, reduces costs, and facilitates rapid
construction of temporary structures.

The high dynamic sensitivity of lightweight structures requires special attention in control sys-
tem design as minor changes in loading conditions or structural properties could have significant
impacts on the dynamic response [8]. The ideal control strategy will have sufficient robustness
and adaptability to respond to these changes accordingly. Despite considerable efforts to increase
the adaptability of control devices, the common limitation across all existing applications stems
from the fact that the device is fixed in position on the structure and thus has restricted control-
lability on certain structural properties. The need for adaptability and the desire to have a single
device control different structural properties (i.e., modes of vibration) motivates the concept of
autonomy. An autonomous control system is one which has the capacity to suppress a relatively
wide bandwidth of vibrations and the mobility to change positions on the structure based on the
dynamic response.

In summary, the vibration mitigation challenges brought forward by flexible or temporary
structuresmotivate the novel concept of deployable autonomous control systems (DACSs). Recent
advances in emerging fields such as robotics and technology present a unique opportunity to
develop this concept and advance the state-of-the-art of structural control.
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1.2 Research aims

Given the aforementioned background andmotivation, the overarching research aims of this thesis
are summarized as follows:

• Establish the notion of DACSs as a favourable alternative to existing control devices when
targeting immediate, short-term vibration control applications.

• Address the theoretical and practical challenges associatedwithDACSs including controller
formulation in the presence of physical constraints and/or model uncertainty, accurate
representation of dynamic interaction effects, and achieving autonomous navigation on
unknown structures.

• Demonstrate, through the use of a prototype system, the advantages of deployability and
mobility when controlling various structural properties on a range of full-scale structures.

1.3 Overall methodology

The overall methodology for achieving these objectives is summarized in the following five-step
procedure:

1. Identify the physical requirements for achieving deployability and autonomy in vibration
control systems.

2. Develop a small-scale prototype DACS for experimental testing and validation.

3. Investigate various controller formulations to address the unique challenges brought on by
the DACS concept.

4. Implement a suitable autonomous navigation algorithm for the prototype device to assess
the impact of mobility on control systems.

5. Conduct experimental testing to investigate the overall control performance of DACSs and
validate the controller formulations.
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By establishing definitions for deployability and autonomy in the context of vibration control
systems, the central components required for any DACS can be identified. Equipped with this
information, a prototype device is developed by integrating a number of off-the-shelf components
to minimize customization. The prototype DACS plays a central role in this thesis and is used to
investigate controller formulations, study dynamic interaction effects, demonstrate autonomous
navigation, and ultimately evaluate the advantages of deployability and autonomy in control
devices. Based on a survey of existing controller formulations, three candidate controllers are
formulated to address the challenges associated with DACS. The suitability and limitations of
each control method are assessed through theoretical and experimental studies. Given this set of
controllers, the impact of autonomy is then assessed by augmenting the control design to account
for device mobility. A combination of full-scale experiments and hybrid testing is conducted
to reveal the overall control performance of the prototype device. Finally, the results from this
testing are used to make inferences regarding the advantages and suitability of the DACS concept.

1.4 Thesis organization

This thesis contains eight chapters and is organized as follows:

• Chapter 1 provides a brief introduction and motivation for the DACS concept along with
a summary of the research aims and methodology followed in this thesis.

• A detailed literature survey on the state-of-the-art of structural control, specifically related
to active vibration control systems is presented inChapter 2. The various classes of existing
vibration control devices are reviewed first, followed by commonly used feedback control
methods for active systems. The use of robotic systems in civil engineering applications is
also reviewed in this chapter with particular emphasis on vibration control applications. The
chapter concludes by highlighting specific gap areas in the existing literature to underscore
the importance of the proposed research objectives.

• Chapter 3 provides definitions for deployability and autonomy and details the develop-
ment of the prototype DACS. Potential applications and possible implementations for the
prototype are discussed to further motivate the DACS concept.
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• The methodology used to characterize the dynamics of the prototype DACS is presented
in Chapter 4. The system models – needed for controller design – are identified through
experimental testing and analytical derivation. An experimental study is conducted to
evaluate the accuracy of the identified models.

• Chapter 5 provides an overview of the general control strategy. After establishing a model
for the dynamic coupling between the structure and prototype control device, the theoretical
formulation of three different feedback control algorithms is presented along with specific
implementation details and limitations.

• In order to study mobility in vibration control systems, Chapter 6 presents an augmented
control strategy to include device positioning as well as the theoretical formulation for
achieving autonomous navigation. The proposed method for autonomous navigation on
unknown structures is demonstrated on a full-scale pedestrian bridge.

• Chapter 7 details the numerical simulations and experimental testing conducted to evaluate
the overall control performance of the prototype device and compare the effectiveness of
the various control formulations.

• Finally, the main conclusions from this research are discussed in Chapter 8. The main
contributions of this thesis are summarized and several recommendations are provided to
extend the present work.
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Chapter 2

Background

This chapter provides relevant background information on vibration control and robotic systems to
position the research objectives in the context of existing practices and the current state-of-the-art.
First, an overview of the current state-of-the-art of structural control is presented. This review is
divided into two parts such that the different types of control devices are presented first followed
by a discussion on the various control methodologies that have been successfully implemented
in structural control applications. Next, the control-structure interaction (CSI) phenomenon
is described and the various modelling approaches that have been developed to address these
interaction effects are discussed. Finally, a summary of the current implementations of robotic
systems for civil engineering applications is provided. This discussion places emphasis on
vibration control devices that have utilized robotics and is extended to provide relevant background
information on autonomous navigation in unknown environments.

2.1 State-of-the-art of structural control

Nearly three decades ago, the concept of structural control became widely accepted as a promis-
ing technology in the design of new structures and retrofitting of existing structures subjected to
earthquakes and/or wind loads [3, 9]. Since then, wide-spread efforts have been undertaken to
develop the structural control concept into a workable technology [2]. The roots of structural
control originated in aerospace related problems involving flexible space structures. Once es-
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tablished, the technology transitioned quickly to issues related to civil infrastructure such as the
protection of buildings and bridges against extreme loads and ensuring human comfort [3]. The
rapid progress of structural control for civil infrastructure was driven by simultaneous research
in multiple fields including development of control strategies [5, 10–12], advancing technology
for control devices [3, 13], techniques for structural system modelling, and experimental testing
methods [14, 15]. Despite the successful implementation of various control devices and adoption
of numerous control methodologies, the control of civil engineering structures is still an open
and active field to theoretical research and practical application.

Since the initial conceptual study byYao [16] in 1972, researchers have collectively formulated
a wide range of control strategies and amassed a vast collection of devices. These efforts have
resulted in the successful implementation of numerous types of control devices to address the
design needs of both buildings and bridges. The current research in structural control is largely
focused on leveraging recent technological advancements to enhance control strategies and to
develop new control devices [17, 18]. As civil infrastructure continues to evolve, the vibration
control problem must be revisited to ensure that both current and future needs and issues are
addressed.

The past and present research on structural control can be sorted into four categories: passive
control, where energy is dissipated by responding to the motion of the structure, active control,
in which external energy is applied to the structure, semi-active control where low levels of
energy are used to improve the overall energy dissipation, and hybrid control which combines
the properties of two or more categories. The advantages, limitations, and current-state of each
category are discussed next.

2.1.1 Passive control systems

Passive systems are characterized by their capability to enhance energy dissipation in the absence
of an external energy source. The two general approaches used in passive devices for dissipating
vibrational energy are based on the conversion of kinetic energy to heat and transfer of energy
amongst other vibrational modes. Devices that involve frictional sliding, yielding of metals, or
deformation of viscoelastic materials fall under the energy conversion approach while the method
of moving fluid through orifices or the use of additional oscillating devices are categorized as
energy transfer approaches. The tuned-mass damper (TMD) is the most commonly used passive
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device [3]. This oscillatory system dissipates energy by producing a relative motion within the
control device with respect to the structure motion and as such does not impact the overall system
stability. In its simplest form, a TMD is an auxiliary mass connected to the structure via tuned
stiffness and damping elements. The damper is generally tuned to be out of phase with a particular
structural frequency such that energy in the given mode of vibration is transferred to the motion of
the oscillating mass [1]. TMDs are commonly tuned to the structure’s dominant modal frequency
to protect the structure from resonance. While energy is reduced at the tuned frequency, the
response may increase at other frequencies, effectively turning a single lightly-damped mode into
two coupled and highly damped modes [1]. A limitation shared by all TMD systems is the lack
of robustness to detuning [4, 19]. As a result, the effectiveness of TMDs at reducing vibrations
diminishes rapidly outside of a narrow frequency band centered on the frequency in which the
device is tuned. Even small deviations from the optimal tuning frequency can deteriorate the
performance significantly and thus there is considerable importance associated with the initial
design.

Despite this limitation, passive TMD systems are still widely used largely because they are
relatively inexpensive systems that perform well when property tuned [17]. Furthermore, the
absence of an external power source means there are no additional operating costs and minimal
maintenance requirements once the system is installed. The use of TMD systems is particularly
useful in structures such as tall buildings or suspension bridges, where resonant conditions
coincide with external excitation frequencies. Presently, TMDs have been implemented on a
number of well-known structures. For example, the John Hancock tower in Boston employs
translational TMDs on the fifty-eighth floor to suppress wind-induced sway and torsion [1].
Similarly, Taipai 101 – a 101-storey tower in Taiwan – reduces vibrations using a 5000 tonne
pendulum TMD suspended in the center of the building [20]. Furthermore, landmark bridges
such as theMillennium bridge in London [21] and the Akashi Kaikyo bridge in Japan [22] employ
multiple TMDs to suppress traffic and wind-induced vibrations.

Other passive control systems that have been implemented for vibration control of civil
infrastructure include tuned liquid dampers which absorb energy through viscous actions of the
fluid andwave breaking [23], viscoelastic dampers that dissipate energy through shear deformation
[24], and viscous fluid dampers which consist of a piston immersed in a viscoelastic fluid [25].
Metallic yield dampers and friction dampers have also been implemented for seismic protection
purposes [3].
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2.1.2 Active control systems

Active control systems are characterized by the use of an external power source to control one
of more actuators that apply forces to the structure in a prescribed manner [3]. A typical active
control system consists of three main components: (i) a monitoring system to measure the global
structural response and/or external excitation; (ii) a control algorithm to process the measured
information and determine the control force; and (iii) an actuation device to apply the control
force to the structure. The working principle of active control systems is that given measurements
of the structural response, the control algorithm will determine the optimal control signal to
attenuate the vibration. Based on this control signal, control actuators placed in pre-determined
locations on the structure generate a secondary vibrational response which in effect reduces the
overall structural response [26]. Unlike passive systems which only generate forces in response
to the structure’s motion, active systems are capable of exerting forces that can be used to both
add and dissipate energy in the structure. As such, system stability is an important consideration
in controller design.

Active devices have demonstrated superior control performance compared to passive systems.
This is largely due to their capacity to effectively suppress a wide frequency range and also control
the transient vibration response [4]. Nevertheless, in order to achieve this increased performance,
more complex control strategies involving sensors and controller hardware must be designed.
In all active devices, a trade-off exists between the level of control performance and system
stability. This trade-off addresses the fact that incorrectly modelled dynamics or changes to the
structural properties may lead to an unstable condition whereby unbounded energy is specified
by the controller [27]. In some cases, the effectiveness of active systems is further limited by the
energy available to develop the magnitude of forces required to control civil infrastructure. The
dependence on external power also draws criticism regarding reliability. During a power outage,
which commonly occurs during seismic events, active devices are rendered useless.

Active mass dampers (AMDs) and active tendons are examples of active devices that have
been used for vibration control of civil infrastructure. These devices have been developed with
many different actuators including hydraulic or pneumatic pistons, electromagnetic motors, and
ball-screw drives [3]. The first full-scale application of active control was in 1989 and involved
two AMDs to reduce wind induced transition and torsion of the Kyobashi Seiwa building in
Tokyo, Japan [28]. More recently, the use linear and torsional servo motors in AMDs has been
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given particular attention due to their fast response and effectiveness in seismic applications
[29, 30]. Nevertheless, aside from a small number of AMD applications, the implementation
of purely active systems has been limited due to the increased complexity and large costs. For
example permanent installations require a continuous power supply and routine maintenance to
ensure proper operation. In light of these limitations, much of the effort on active control shifted
to hybrid mass dampers (HMDs) which incorporate an active device with a passive TMD to
increase the overall reliability and efficiency of the controlled structure [2]. Although the use of
relatively small active components may reduce the costs and overall complexity, some large-scale
HMDs still suffer from the drawbacks associated with active devices. Further details on HMDs
are provided later in the discussion on hybrid control systems. It is worth noting that the major
drawbacks of active control systems, namely cost, and complexity are much less significant in
short-term control applications.

2.1.3 Semi-active control systems

Semi-active control systems combine the best features of both passive and active control devices
to yield an attractive alternative to fully passive or fully active systems. By definition, semi-
active control devices cannot inject mechanical energy into the structure but do make use of
external power to tune various properties of the device in an effort to increase performance [9].
In many cases the external power requirements for semi-active systems can be achieved using
batteries making these devices more reliable than active systems. Furthermore since energy is not
injected directly into the system, semi-active devices do not have the potential for destabilizing the
structure from an unbounded control perspective. The working principle of semi-active control
devices is to dissipate energy in a similar fashion to passive devices yet maintain the ability to
adapt or modify certain properties to improve performance. The reliability and effectiveness
offered by the passive component coupled with adaptability facilitated by an active component
was the main motivation driving the development of semi-active devices.

The adaptable properties allow semi-active systems to perform significantly better than passive
devices and create the potential to reduce a wide frequency bandwidth of structural responses
[4, 9, 13]. In some cases the performance of semi-active devices approaches that of fully active
systems with considerably less energy requirements. Examples of semi-active devices that have
been developed for vibration control of civil infrastructure include: variable-orifice fluid dampers

11



[3], variable-stiffness devices [3], semi-active TMDs [2], electrorheological (ER) dampers [31],
and magnetorheological (MR) dampers [32].

2.1.4 Hybrid control systems

Hybrid control strategies are motivated by the potential to increase the overall reliability and
efficiency of the controlled structure by combining passive and active devices [3, 33, 34]. Since
multiple control devices are operating simultaneously towards a common goal, hybrid control
systems alleviate a number of the limitations that arise when each system acts independently.
For example, in the event of power failure, vibration control will still be provided by the passive
component. A key advantage of hybrid systems is that a portion of the vibrational energy is
transferred to the passive device which reduces the power requirement for the active component.
The trade-off with hybrid control systems comes in the form of controller complexity. Although
higher levels of performance are achievable, the required control system design is often more
complicated. The vast majority of full-scale implementations involving some form of active
control have been hybrid control systems, and more specifically, HMDs [2]. The HMD consists
of a TMD and an active control actuator. The premise of this design is to use forces from the
control actuator to increase the efficiency of the HMD and improve its robustness to changes in
the dynamic characteristics of the structure. Since the natural motion of the TMD is the primary
source of energy dissipation, the energy and forces required to operate an HMD are considerably
less than those associated with a fully active system of comparable performance [3]

A well-known example of a HMD is the active-passive composite tuned mass damper referred
to as DUOX [35]. The DUOX system was developed at Kajima Corporation in Tokyo, Japan and
consists of an AMD mounted on a TMD [35]. In this configuration, the active system is intended
to improve the sluggish response time and reduce the braking time of the passive system.

2.2 Structural control algorithms

While a number of researchers focused on the development of various control devices, consid-
erable attention was also given to the formulation of various control algorithms which play a
central role in active, semi-active, and hybrid systems. Some of this work involved the direct
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Figure 2.1: Overview of the active structural control problem

application of established control theory from other engineering disciplines while other works
proposed new algorithms designed specifically for vibration control of civil infrastructure [6].
In general, structural control algorithms use measurements of the structure’s response and/or
knowledge of the excitation to determine the input for the control device. Figure 2.1 provides a
schematic of the general active control problem for civil infrastructure. Both control paradigms,
referred to as feed-forward control and feedback control, are shown in the schematic; however,
the implementation of either loop depends on the ability to measure the external excitation and
structural response respectively. In most cases, the external excitation is unknown and thus only
the feedback loop is present. Nevertheless, a common exception is the case of seismic protection
where the ground acceleration can also be measured. The suitability of a given control algorithm
depends on many factors including the type of structure, presence of uncertainty in the controlled
system models, and availability and accuracy of sensor measurements. In an effort to address
these factors, many different control algorithms have been developed, each with their respective
advantages and limitations. Despite the wide range of algorithms, most controllers are derived
based on one of three control approaches: optimal control, predictive control, and robust control.
The premise of each control approach and their respective applications in civil infrastructure is
presented next.
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2.2.1 Optimal control

Generally speaking, the term optimal control can apply to any stabilizing controller that is optimal
based on some arbitrary criterion; however, in the context of structural control, optimal control
usually refers to controllers that minimize a quadratic performance index (i.e., objective function).
In most cases, the objective function is designed to maximize performance with consideration
for the required control effort. The most fundamental and widely used optimal controller is
the linear-quadratic regulator (LQR) [36]. When implementing an LQR controller for structural
control applications, the system states and control input are used as parameters in the performance
index which takes the following form:

J =
∫ ∞

0

(
zT (t)Wz z(t) + uT (t)Wuu(t)

)
dt (2.1)

The matrices Wz and Wu represent penalty weights on the state vector z and control input u
respectively. The weighting matrices are tuned to obtain the desired control performance under
the condition that Wz is positive semi-definite and Wu is positive definite. An objective function
of this form is minimized using state-feedback control. As such, the optimal control input is a
linear function of the state vector defined by the gain matrix K c as:

ū(t) = K c z (2.2)

A limitation of LQR optimal control is the requirement that all states are available to determine
the control input. In structural control applications this is often impractical given the required
number of sensors and difficulty in measuring displacements and/or velocities. In most cases, the
states of the structure can be estimated indirectly from a subset of acceleration measurements by
implementing a Kalman filter [37]. The addition of a Kalman filter to an LQR control algorithm
leads to the linear-quadratic Gaussian (LQG) optimal controller. The principle of separation of
estimation and control (i.e., separation principle) plays a key role in LQG optimal control by
guaranteeing that these two systems, namely the Kalman filter (i.e., linear quadratic estimator)
and LQR controller can be designed independently and combined [36]. In LQG control, the
estimated states ẑ are treated as the actual states for the minimization resulting in optimal control
inputs given by:

ū(t) = K c ẑ(t). (2.3)

An important distinction between LQR and LQG is the assumption of additive Gaussian
white noise disturbance in the LQG controller formulation that can be scaled to represent external
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forces. In practical applications the frequency content of the excitation is generally unknown
a priori; however, in the event a structure is subjected to narrow-band excitation, a band-pass
filter can be incorporated into the structure model to improve the overall performance. This
process is analogous to the implementation of Kanai-Tajimi filters which are used to account
for the frequency content of seismic excitation [38]. The main criticism of the LQG optimal
control algorithm is the challenge associated with tuning the objective function to achieve the
designed performance. Although the framework is set up to balance the trade-off between
control performance and robust stability, identifying appropriate weighting matrices is complex
and often performed using a trial-and-error approach. Furthermore, in addition to maximizing
control performance, consideration must be given to ensure the control device operates within
its physical limitations. These operating constraints are not formally addressed in the optimal
control algorithm and thus must be accounted for indirectly by tuning the weighting matrices
accordingly. Despite these short-comings, the simplicity of the formulation and high performance
when properly tuned has motivated the use of LQG controllers in several active and semi-active
structural control applications [6, 39].

2.2.2 Predictive control

The concept of predictive control, introduced in the mid 1970’s, gained considerable popularity
through various applications in the processing industry before being applied to civil engineering
applications in 1987 [40, 41]. The premise of predictive control is to apply the appropriate control
action such that the predicted output of the system approaches a pre-determined desired response.
When a model of the system dynamics is used explicitly to predict the future behaviour of the
system, the method is referred to as model predictive control (MPC) [40]. Given a model of the
system, a sequence of optimal control inputs is determined by solving a constrained finite-horizon
optimization problem where the finite horizon is equal to the length of the predicted response.
Although the solution to the optimization problem yields a sequence of control inputs, a receding
horizon approach is generally adopted in which only the first control action is applied to the system
and the optimization is repeated in the subsequent time step after incorporating newmeasurement
information. Given the optimization is based on the predicted response, the prediction model and
state estimator, used to forecast the future behaviour of the system, are central to the effectiveness
of the MPC scheme. Furthermore, a key feature of MPC is that the prediction for the instant
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k + 1, necessary to establish the control action u(k + 1), is made based solely on the measured
response and control input at the previous time instant k. In structural control applications,
the optimization problem is typically characterized by a quadratic performance index subject to
constraints [42]. As such, MPC is often viewed as an extension to the LQG control problem [43].
In fact, the use of a linear objective function in the absence of constraints reduces the solution of
the MPC problem to an LQG controller. Nevertheless, the ability to formally address operating
constraints directly in the controller formulation is a distinct advantage of MPC.

Several studies have investigated the performance of variousMPC configurations for structural
control applications. For example, Mei et al. [44] combined feed-forward and feedback compo-
nents to improve performance under earthquake excitation and later demonstrated an application
of MPC with acceleration feedback on a scaled 2-storey model [45, 46]. More recently Johnson
et al. [47] studied the performance and robustness of hybrid MPC for controllable dampers in
building models. Nevertheless, the heavy computational requirements is a significant drawback
which has limited the application of MPC to relatively small systems with slow dynamics. The
computational demands have recently garnered attention from various researchers aiming to
implement MPC on large-scale structures. Yang et al. [48] proposed a direct output feedback
method based on the modified predictive controller by Chung [49] which reduces online compu-
tation by deriving linear relationships between control actions and predictive output signals. The
trade-off in this case is the inability to handle operating constraints since the linear relationships
are determined a priori. Other studies have proposed alternative formulations to the quadratic
programming problem however these have yet to be verified experimentally [50, 51]. Despite
these efforts, the practical challenges of implementing MPC for structural control applications
have yet to be fully resolved with only a few cases demonstrating experimental validation [45, 52].
Furthermore, nearly all applications of MPC for structural control have, at most, incorporated
constant hard constraints on controlled variables and the use of soft constraints on system states
or outputs has yet to be explored.

2.2.3 Robust control

In all practical applications, there is some level of uncertainty associated with the mathematical
model of the controlled plant and the exogenous inputs to which it is subjected. This is certainly
true for civil infrastructure which is oftenmodelled based on a number of simplifying assumptions
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and has dynamic properties that may change over time due to aging or variation in operating
conditions. As such, the premise of robust control is to address the issues of performance and
stability in the presence of uncertainty through controller design. The uncertainty is generally
expressed as bounds on the variation in frequency response or as parametric variations of the plant
model. A system is robustly stable if the closed-loop system is stable for any plant model that
lies within the specified uncertainty set. Similarly, the controller is said have robust performance
if the closed-loop system satisfies a given performance criterion for any and all plant models in
the uncertain set [53]. Most implementations of robust control for structural applications are
based on H∞ control theory. The basic principle of the H∞ design method is to find a control law
such that the infinity norm of the transfer function from exogenous inputs to regulated outputs is
below a prescribed value. As such, any uncertainty in the plant model can be addressed directly
in the controller formulation. Since the H∞ design method is based in the frequency domain,
frequency-dependent weighting functions are added to the plant model to achieve the desired
performance [27]. For example, applying weighting functions on the structure’s response and
control input make it possible to control a specific frequency range and balance the trade-off
between control performance and robust stability. Nevertheless, the frequency domain modelling
increases the complexity of achieving time domain specifications such as saturation constraints
and still requires tuning through trial-and-error to ensure the control devices operates within the
specified physical constraints.

H∞ controllers have been applied to several active structural control applications dating back
to 1990 [54]. Some of the earliest applications of H∞ control theory involved large structures
subjected to earthquakes [55–57] and wind-excited buildings [58, 59]. More recently, researchers
have attempted to overcome some of the challenges associated with frequency domain modelling.
For example Li and Adeli [60] has proposed a new H∞ algorithm using linear matrix inequalities
such that the uncertainties of structural parameters can be considered in the time domain opposed
to the frequency domain. Meanwhile, Zhou et al. [61] studied the combination of H∞ control
theory with MPC to incorporate physical operating constraints in the optimization.

2.2.4 Alternative control methods

Several other control algorithms have been implemented for various structural control applica-
tions. In most cases, these algorithms are extensions of the optimal or robust control framework
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and target specific aspects of the control problem. A few of the more popular methods in-
clude clipped control, bang-bang control, sliding mode control, state-dependent Riccati equation
(SDRE) control, as well as fuzzy logic control and neural network control. A brief summary of
each method is provided next.

Sliding mode control: Sliding mode control (SMC) is a form of robust control where the
controller is designed to drive the system response on to a sliding surface. The sliding surface
is obtained by minimizing a performance function and defined such the response is stable on the
surface. The studies by Singh et al. [62] andAdhikari andYamaguchi [63] were key in introducing
SMC to structural control applications. Recent research efforts aim to enhance performance and
robustness through various modifications [64, 65].

Clipped-optimal control: Initially proposed by Dyke et al. [32] for use with the MR damper,
the clipped-optimal control approach involves designing a linear optimal controller that calculates
the desired control force based on the measured force applied to the structure in addition to the
measured structural responses. This approach has been shown to be effective for semi-active
systems, particularly MR dampers where the force generated in the damper is dependent on the
responses of the structural system [66].

Bang-bang control: The premise of bang-bang control is abruptly switching the device
states between two extreme cases (i.e., off and on) to achieve a specified control objective. The
advantage of a bang-bang algorithm is that maximum control efforts can be exploited since the
control force always takes its maximum values. However, there are practical limitations when it
comes to structural control since many existing devices, specifically servo-hydraulic actuators,
can’t follow this high-speed switching. Nevertheless, ER and MR dampers are well suited for
bang-bang control applications due to their fast response times [67, 68].

State-dependent Riccati Equation methods: SDRE techniques are general controller design
methods that provide a systematic and effective means for designing non-linear controllers [69].
In general, the SDRE method involves solving the traditional LQR control problem at each time
iteration (i.e., in real-time) such that the weighting matrices, prescribed in the LQR objective
function, can be updated to more heavily penalize state variables as they approach predefined
limits. This approach ultimately results in state-dependent gain matrices, or in other words,
non-linear control strategies [70]. The main limitation of the SDRE approach is the inability to
directly incorporate constraints on the control input [69]; however, this method has been adopted
to address the issue of actuator saturation [70, 71].
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Neural networks and fuzzy logic: In recent years, considerable efforts have been dedicated to
developing non-model based techniques for structural control applications. Both neural networks
and fuzzy logic facilitate model-free algorithms that can handle non-linearity, accommodate a
high degree of parallel implementation and tolerate uncertainty in the system [72]. The main
advantage of neural network controllers is their ability to learn on-line. Although most existing
studies in structural control using neural networks require computationally intensive off-line
training, this leads to online adaptability which can handle system uncertainties or respond to
actuator failures. Fuzzy control theory has the advantage of rather simple computations for the
controller that can be easily implemented into a fuzzy chip [6]. The distinguishing feature of
fuzzy logic control is the ability to use terms that are easily understood. The review studies by
Venanzi [72] and Datta [6] summarize the past and current applications of neural networks and
fuzzy logic to structural control problems.

2.3 Control-structure interaction

The use of active devices leads to the potential for undesirable dynamic interaction between
the control system and underlying structure, known as control-structure interaction (CSI). If left
unaccounted for, this interaction can severely limit the performance and robustness of control
systems [73]. This section provides a brief overview of the CSI problem and discusses the various
research efforts focused on addressing these effects.

2.3.1 Overview of control-structure interaction

To demonstrate the role of this interaction in control system design, consider the schematic block
diagram of a general active control problem in Figure 2.2. When mechanical actuators are used,
dynamic coupling exists between the actuator and structure as signified by the dotted line. The
presence of this coupling indicates that is it not possible to separate the dynamics of the actuator
and structure and model them as two independent systems connected in series [73]. The simple
case of a linear system controlled by a single actuator with command input u and output force
f is shown in Figure 2.3. Following Dyke et al. [73], the dynamic coupling is modelled as
feedback from the structure output to actuator input and is assumed to have associated dynamics
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represented by Hi. Given models for the actuator and structure, denoted Ga and Gs respectively,
the overall transfer function from the control input u to the system response ys is given by:

Gyu =
GsGa

(1 + GsGaHi) (2.4)

Similarly, the transfer function from the control input u to the generated force f is given by:

G f u =
Ga

(1 + GsGaHi) (2.5)

By representing the dynamic systems as polynomial fractions, Equations 2.4 and 2.5 become

Gyu =
nsnadi

(dsdadi + nsnani) (2.6)

G f u =
dsnadi

(dsdadi + nsnani) (2.7)

whereGs =
ns
ds
, Ga =

na
da
, and Hi =

ni
di
. Unless pole-zero cancellation occurs – which is considered

to be unlikely – the transfer functions Gyu and G f u have the same poles and the poles of the
structure are zeros of the transfer function G f u. As such, the magnitude and phase characteristics
of G f u vary depending on the structure thereby coupling the two systems. Moreover, the presence
of the structure’s poles as zeros in G f u indicate a limited ability to apply forces at the structure’s
natural frequencies [73]. This ability is greatly limited in lightly damped structures and removed
in undamped systems.

2.3.2 Addressing interaction effects

Prior to 1995, the effects of CSI in structural control applications were not well understood and
often misrepresented in literature as a time delay associated with the generation of control forces.
The effects became clear in the seminal paper by Dyke et al. [73] which presented the general
framework for studying CSI and proposed a model, specifically for hydraulic actuators, to account
for these effects. Building on this work, Battaini et al. [74] demonstrated the use of bench-scale
models to study control implications including control-structure interaction and actuator/sensor
dynamics. This allows important aspects of full-scale structural control implementations to be
studied using scaled models and aided in the understanding of interaction effects. Much of the
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subsequent research efforts have focused on accounting for the interaction effects for various
active control devices. For example, the role of CSI was studied for torsional servo motors [75]
and experimentally investigated to validate proposed models for an electromagnetic mass damper
system [76]. More recently, CSI effects have been considered in practical applications such as
implementing active control in large-scale wind turbines [77] and the control of micro-vibrations
using a giant magnetostrictive actuator [78].

Inherent to the DACS concept is an aspect of mobility which presents a unique challenge in
addressing CSI effects. The typical coupling between the structure and actuator is impacted by
additional dynamics that are present in order to facilitate mobility and thus warrants a separate
investigation.

2.4 Robotics in civil engineering

Over the past two decades, the use of robotic systems and technologies for civil engineering
applications has experienced considerable growth. This progress – motivated by the recent
advances and increasing affordability of technological systems – has led to significant advances
in construction methods and structural health monitoring techniques. Although the most notable
advances have been relatively recent, research efforts on the use of robotics for automation of
construction, maintenance, and inspection of civil infrastructure dates back to the early 1980’s
[79]. For the specific case of mobile robotics applied to civil engineering applications, most
of the research is related to automated bridge inspection and health monitoring techniques. For
example, a mobile robot equipped with a camera was used to collect high-resolution images of a
concrete box-girder structure facilitating a visual assessment of the structure without entering the
confined space [80]. A mobile robotic platform was also developed for non-destructive bridge
deck inspection and evaluation [81]. In this application, the robotic system was used to transport
sensing equipment and featured the ability to autonomously traverse a rectangular bridge area.
Recently, a ground vehicle with a variety of sensor modalities was developed for generating high
quality 3-dimensional point cloud maps to facilitate automated defect detection [82]. In addition
to ground-based vehicles, many researchers have investigated the use of aerial vehicles for image
collection to enhance traditional inspection practices [83–85]. Despite these wide-spread efforts,
the use of mobile robotic systems has yet to be demonstrated in structural control applications.
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2.4.1 Autonomous navigation of unknown structures

Nearly all demonstrated applications of mobile robotics in civil engineering require human inter-
vention to navigate the robot. These applications include the remote control of drones for bridge
inspection or steering of ground robots for box girder inspections. While this approach may
be deemed suitable for structural inspections, it is not practical for structural control purposes.
Eliminating the dependence on human intervention requires implementing autonomous naviga-
tion. This requires two of the most central tasks in mobile robotics: localization, the process of
estimating the robots position as it navigates through a known environment, and mapping, the
process of constructing a map of the environment based on estimated locations of features [86].
When faced with an unknown environment (i.e., the first time deployed on a structure), the two
processes must be completed concurrently. That is, the robot must build a map of the environment
while using the same map to localize itself [87, 88]. This problem – referred to as simultaneous
localization and mapping (SLAM) – has been formulated and solved in many different forms
in the literature dating back to the early 1990s [89]. Although considerable advancements have
been made in the past decade to improve SLAM solutions, a 2008 survey by Aulinas et al. [90]
summarizes the most common approaches that are still used today. Despite drawing considerable
attention from a wide range of disciplines, the application of SLAM to map existing structures is
still an open problem and is associated with unique challenges not directly addressed by existing
implementations. These challenges stem from the sparsity and repeated nature of structural ele-
ments coupled with restricted navigation that limits the ability to observe features from different
viewpoints.

2.5 Gap areas in current state-of-the-art

Structural vibration control is a well-established field dating back to the early 1970’s and as
structures evolved considerably over the past four decades, so too have the vibration control
devices that support them. The resulting literature is therefore dense with an array of devices and
various control methodologies that have been largely effective at serving their intended purpose.
Despite these efforts, the current state-of-the-art is lacking a solution for immediate, short-term
vibration control applications. Scenarios requiring short-term vibration control, such as structures
subjected to predictable peak loading events or temporary structures, are becoming increasingly
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common with the growing use of lightweight materials and continual push towards more efficient
designs. A summary of the gap areas needing to be addressed and therebymotivating this research
follows.

1. Deployability: Existing passive, active, and semi-active control devices are designed as
permanent components of the structure and rely on a fixed, rigid connection through
which forces are transferred. In addition to a lengthy design process - often involving
detailed finite-element modelling - existing devices require considerable time and effort for
installation. Although some devices are becoming standardized and requiring only slight
modifications or tuning for different applications, a system suitable for rapid implementation
on a range of structures is not available in the literature.

2. Mobility: A key aspect influencing the effectiveness of vibration control devices is their
relative position on the structure. Existing devices are fixed in a predetermined location to
achieve a specific control objective. In cases where a single device is insufficient to achieve
the desired performance, multiple fixed devices are used. For example, the use of multiple
TMDs is common in vibration control of bridges. A control device capable of changing
position on the structure has yet to be studied. Nevertheless, this aspect is required in
order to allow a single device to effectively control different structural properties. This
is particularly important in controlling lightweight structures where the dominant mode
of vibration can change depending on the applied loading. Furthermore, having a mobile
control device adds an additional variable, namely the device location, to the controller
formulation which could improve overall performance.

3. Controller Design: The literature exhaustively covers a wide range of controller formu-
lations for active and semi-active devices. However, the novel concepts of deployability
and mobility presented in this research create new control challenges yet to be addressed in
other applications. The central challenges involve additional system dynamics and physical
operating constraints inherent to the mobile platform. Although control-structure inter-
action has been studied in great detail for various active control devices, it has yet to be
addressed when an additional layer exists between the actuator and structure. Further-
more, the literature largely focuses on actuator stroke constraints and does not cover other
constraints present in deployable systems.
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4. Adaptability: A considerable amount of research has focused on making control devices
adaptable. These efforts were inspired by the desire to improve performance and enhance
robustness to changes in the structural properties or expected loading. Nevertheless, the
extent of adaptability in existing devices is limited by the fact they are fixed in location and
intended to control a particular structure. The degree of adaptability increases considerably
with a mobile control device, the extent to which has yet to be uncovered in the literature.

2.6 Specific research objectives

Based on the identified limitations in the state-of-the-art, the specific objectives of this research
are as follows:

1. Formally define the notion of DACSs and identify the specific components required to
achieve deployability and autonomy in control systems.

2. Develop a prototype DACS suitable for immediate, short-term vibration control of a range
of structures.

3. Identify the role of control-structure interaction in DACSs and account for these effects
within the control formulation.

4. Implement and evaluate various control formulations using the prototype DACS to address
challenges of uncertainty in system modelling and physical operating constraints.

5. Address the challenges associated with mobile vibration control systems and demonstrate
autonomous navigation of pedestrian bridges using the prototype DACS.

6. Experimentally demonstrate the feasibility and control performance of the prototype DACS
for controlling full-scale structures.
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Chapter 3

Deployability and autonomy in vibration
control systems

This section formalizes the terms deployability and autonomy inDACSs andmotivates the concept
through specific applications and implementations. Details pertaining to the development of a
prototype DACS are presented along with comprehensive descriptions of the various components.

3.1 Requirements for deployability and autonomy

Deployability means that the control system is capable of being readily implemented on a range
of structures with only minor customization to the structure or device. This aspect is needed
to circumvent the large amounts of time and effort consumed during the design and installation
phases of typical devices that inhibit an immediate vibration control solution. In addition to
needing a wide control bandwidth in order to be effective on a range of structures, a deployable
system requires a simple, standardmethod for imparting control forces on the structure. Autonomy
refers to the ability of the system to react to changes in the dynamic response and effectively
control different structural modes of vibration. These properties are important when the intended
use or expected response of the structure changes and the control objective needs to be revised. An
autonomous control device must have an element of mobility allowing the location of the control
force to change as well as sufficient on-board computational hardware to monitor the structural
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Figure 3.1: Overview of properties and requirements for deployability and autonomy

response, execute control algorithms, and communicate with various hardware components.
Given these descriptions, a structured list of the properties and requirements for each aspect of
DACSs is presented in Figure 3.1. Based on the requirements in Figure 3.1, the two central
challenges associated with developing a DACS are as follows:

1. Designing and implementing a standardized method to impart forces on a generic structure
while permitting mobility of the device.

2. Designing and implementing a controller formulation that accounts for additional system
dynamics and interaction effects caused by making the system deployable and mobile.
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3.2 Potential applications and possible implementations

DACSs embody features that are advantageous in a number of vibration control applications,
particularly those where immediate, short-term vibration suppression is needed. For example,
the MakeABridge system by Maadi Group Inc. [91] is a weld-free pedestrian bridge design that
is comprised of aluminum structural elements connected at prefabricated joints. Figures 3.2a and
3.2b show examples of the MakeABridge system implemented for military applications and set
up for experimental testing at the University of Waterloo respectively. The modular design allows
for bridges of various lengths to be built rapidly with minimal design effort and thus yields a cost-
effective solution that is suitable for both permanent and temporary applications [91]. Although
the use of aluminum provides many benefits in terms of construction and implementation, the
associated reduction in self-weight increases the dynamic sensitivity of the bridge structure which
in some cases leads to excessive vibrations that exceed specified serviceability limits [92]. The
need for auxiliary damping depends primarily on the length of the bridge and applied loading. For
example, a bridge installed to provide remote access for one or two pedestrians will experience
drastically different pedestrian loads compared to a bridge deployed for a marathon event or
military training. A DACS tailored to this class of pedestrian bridges would allow the modular
design to remain lightweight, efficient, and be deployed over longer spans by adding the necessary
damping on an as-needed or case-by-case basis.

Stadium seating, aluminumbleachers, and concert hall floors are other examples of lightweight
or flexible systems that are known to experience issues related to human-induced vibrations
[94, 95]. In most cases, the structures only experience excessive vibrations during scheduled
events and thus permanent control devices would be under-utilized. Moreover, different events or
occupancies may lead to different control requirements that can’t be achieved with a permanent
device fixed in location. Given the short-term and predictable nature of the vibration control needs,
applications such as these would benefit considerably from DACSs. The deployability aspect of a
DACS makes it easy to implement the control device during large events and subsequently store
it or have it deployed elsewhere while the stadium or concert hall are unoccupied. Furthermore,
the concept of DACSs can be leveraged in the design of new structures. In cases where the design
is governed by the serviceability criteria, the designer could assume a DACS will be deployed to
suppress vibrations under peak loading conditions provided the loading is predictable and well
understood. This would relax the design requirements and lead to more efficient designs.
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(a) Military application
(Photo Source: Maadi Group Inc. [93])

(b) Experimental testing setup

Figure 3.2: Examples of the MakeABridge system

A DACSs can take on many different configurations provided the requirements in Figure 3.1
are achieved. For bridge applications, the system could take the form of a rail-mounted system on
the underside of the bridge deck or utilize a mobile platform positioned on a catwalk or sidewalk.
Figure 3.3 shows two possible configurations for DACSs on pedestrian bridges. For stadiums or
concert hall floor applications, either similar rail mounted systems could be used or a cable-based
system could be designed to provide mobility in two directions.

3.3 Development of prototype device

A prototype device is developed to study the feasibility of the DACS concept and demonstrate
the advantages of deployability and autonomy in vibration control systems. The prototype
system is needed to address a number of practical implementation challenges and experimentally
validate controller formulations. Given the requirements for deployability and autonomy, the
prototype device consists of three main components: a mobile platform, an actuator, and on-
board computation hardware.
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(a) Rail-mounted system (b) Mobile platform based system

Figure 3.3: Possible DACS configurations for pedestrian bridges

The need for a wide control bandwidth within a relatively small footprint coupled with the
desire to eliminate mechanical moving parts such as gears motivates the use of an electromagnetic
mass damper (EMD) as the actuation device. EMDs utilize the driving technology of linear
electric motors to transform supplied electric energy into kinetic energy of the moving mass.
As such, nearly any linear motor can be adopted for use as an EMD. A customized unmanned
ground vehicle (UGV) equipped with vision sensors is used as the mobile platform. UGVs
offer the greatest amount of versatility in terms of mobility and provide a large flat surface for
mounting the EMD. The use of a UGV also facilitates rapid deployment on a range of structures
by transferring inertial control forces through static friction of the pneumatic tires and thus
eliminating the need for a rigid connection. Computational hardware is required to complete all
monitoring and processing tasks, as well as the execution of control algorithms for the EMD and
navigation procedures for the UGV. The prototype DACS employs a National Instruments (NI)
compact real-time input-output (cRIO) controller that resides on-board theUGV. The cRIO line of
controllers are compact devices with real-time processing capabilities and a field programmable
gate array (FPGA) facilitating high-speed, deterministic, and secure data transfer between the
sensors and components.

The overall prototype DACS is presented in Figure 3.4. When selecting the various compo-
nents, special attention is given to the availability of the product and extent of modification needed
for integration. This is done to achieve a system that can be easily reproduced and provide an
off-the-shelf solution for vibration control. It should be noted the relatively small-scale prototype
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Figure 3.4: Overall DACS prototype for lightweight structures

is designed to target lightweight structures with an approximate mass of 2000 kg and that the
prototype is considered to be fully scalable for use with larger structures. Specific properties of
the UGV, EMD, and cRIO selected for the prototype DACS are described below.

3.3.1 Mobile platform

Amodified Husky A200 UGV built by Clearpath Robotics in Kitchener, Ontario is utilized as the
mobile platform [96]. Figure 3.5a shows a 3D rendering of the rugged, yet compact skid-steered
vehicle which has a low profile and has been customized to achieve a peak linear velocity of 1.0
m/s. The large 300 mm lug tread tires provide sufficient static friction in the lateral direction to
prevent sliding and generate control action. Experimental testing on the UGV reported control
forces up to 400 N prior to the onset of tire slippage [97]. As a skid-steered vehicle, there
are no axles to connect the left and right wheels. Instead, the front and back wheels on each
side are connected and driven independently of the other side. Skid-steered systems are known
for providing greater traction and do not require a steering mechanism which is beneficial for
transferring control forces. The UGV has a self-weight of 50 kg and features an additional payload
capacity of 75 kg which is sufficient for the EMD, sensors, and computational hardware. The
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(a) Husky A200 UGV by Clearpath Robotics (b) T3D I-force linear motor (EMD)

(c) Microsoft Kinect vision sensor (d) NI cRIO 9035 controller
Image source: Test Dynamics [98]

Figure 3.5: Main components of the DACS prototype

vehicle design also includes an internal compartment, ideal for housing computational equipment.

Regarding mobility, this UGV is equipped with high-resolution quadrature encoders (200,000
pulse/m) and can be controlled usingmultiple parameters including direct voltage, wheel speed, or
kinematic velocity. The vehicle also provides ready integration with the open-source robot oper-
ating system (ROS) which enables the use of several sensor types and position-control algorithms.
Autonomous navigation in unknown environments is facilitated by forward and rear-facing Mi-
crosoft Kinect sensors mounted on the UGV bumper bars. These sensors, shown in Figure 3.5c,
can detect known features on the structure and provide the associated range and bearing measure-
ment information needed for mapping and localization. The Kinect consists of several sensors
including a red-green-blue (RGB) sensor to provide colour images of the environment and a 3D
depth sensor with infrared transmitter to detect the depths of the corresponding objects in the
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RGB image. Since the RGB and depth sensors are not located at the same position, calibration is
required to remove distortions and align the images [99]. Open Natural Interaction (OpenNI) – an
open-source framework in ROS to interact with digital devices – includes an automated calibra-
tion procedure. This method, based on viewing a checker-board pattern in various orientations,
is used to calibrate both Kinect sensors. Although Microsoft has not released official hardware
specifications for the sensor, the PrimeSense micro-controller used to process the image reports
a operating range of 0.8 m – 3.5 m with a field of view of 58° horizontal, 45° vertical, and 70°
diagonal. The spatial resolution and depth resolution at a distance of 2 m from the sensor are 3
mm and 10 mm, respectively.

It should be emphasized that a wide range of sensor modalities can be used to facilitate
autonomous navigation on unknown structures and the use of Kinect sensors for the prototype
system is motivated primarily due to their cost-effectiveness and suitability for indoor use which
is where the development and testing takes place. Kinect sensors do not perform well in outdoor
lighting conditions and should be replaced with a more suitable vision sensor for practical
applications. Moreover, additional sensors such as a global positioning system (GPS), inertial
measurement unit (IMU), and/or light detection and ranging (lidar) can also be incorporated to
improve autonomous navigation in practical applications.

3.3.2 Actuator

A Parker Automation T3D I-force ironless linear motor positioner powered by a Gemini Gv6K
servo drive is utilized as the EMD. The linear motor positioner consists of a carriage attached to
a current-carrying coil which moves through a magnetic field created by a series of permanent
magnets. The carriage is fitted with a mounting plate for adding auxiliary mass up to a maximum
payload of 54 kg. Inertial control forces up to 410 N are generated by moving the carriage which
can reach speeds up to 7 m/s. The position of the carriage along the 150 mm stroke is measured
using a linear magnetic encoder with 0.005 mm resolution. For use with the prototype DACS,
a series of steel plates, totaling 33.6 kg, are mounted on the carriage as auxiliary mass and the
effective stroke length is defined as ±65 mm for increased safety. Saturation blocks are designed
for the position commands in order to ensure the device operates within the physical limitations.
Figure 3.5b shows a rendering of the linear motor with auxiliary mass.

Existing control applications utilizing EMDs rely on electro-mechanical models to predict
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the force-voltage relationship [100, 101]. In this way, the desired force command signal is
converted directly to a voltage signal which is applied to the motor. However, the T3D linear
motor positioner and servo drive are configured to operate under position-feedback. As such, a
digital quadrature encoder signal is issued to the servo drive and the computed error between the
commanded andmeasured position is used within a feedback loop to determine the voltage signal.
This feedback configuration offers improved motion profile tracking and direct control over end-
of-stroke limits as well as higher noise robustness with the use of digital command signals.
However, the challenge associated with position feedback for this application is developing the
necessary relationship between the desired force and controller input. Details pertaining to the
identification of such models are presented in the next chapter.

3.3.3 Computational hardware

The prototype DACS employs a NI cRIO controller (model 9035) that resides on-board the
UGV. The cRIO, shown in Figure 3.5d has a 1.33 GHz dual-core processor and FPGA for high-
speed, deterministic, and secure data transfer. Programming for the device is achieved using NI
Laboratory Virtual Instrument Engineering Workbench (LabVIEW) software, a graphical user
interface to configure the FPGA and real-time control loops. Up to eight individual NI modules
can be added to the cRIO chassis to facilitate data acquisition and communicate with external
hardware. For practical implementations, only two modules are needed to aquire acceleration
measurements and communicate with the EMD servo drive; however, for experimental testing
and development, additional modules are used to acquire various signals and interface with a
dynamic shake table. Table 3.1 provides a complete list of the modules used in this research. In
addition to the cRIO, a ROS-enabled laptop is deployed with the system to control the position
of the UGV and process Kinect sensor information. A transmission control protocol (TCP) data
link is used to establish communication between the cRIO and laptop. This link is responsible
for sending and receiving the desired and predicted UGV position and ensuring actuation is not
being applied while the UGV is in motion.
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Table 3.1: National Instruments C-series modules used with the cRIO 9035

Module Function Purpose
NI 9234 Vibration Input Acquire acceleration measurements from sensors
NI 9237 Strain/Bridge Input Acquire control force signal from load cells
NI 9239 Voltage Input Acquire shake table displacement signal from LVDT
NI 9263 Voltage Output Send displacement command signal to shake table
NI 9401 Digital I/O Communicate with the Gv6K servo drive
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Chapter 4

System modelling

This chapter presents the general approach to systemmodelling for the prototypeDACS and details
the various requirements for two different control system design approaches. The experimental
and theoretical studies involved in characterizing the dynamics of the UGV and EMD components
are also discussed.

4.1 Overview of the system model

Given the physical components used in the prototype device, various system models can be
developed to characterize the system behaviour. Specifically for controller design, the model of
interest is one in which the relationship between the EMD position command (i.e., input) and
the UGV tire force (i.e., output) is characterized. To simplify system modelling, the UGV and
EMD components are treated separately and connected in series. This approach allows for one
of the components to be interchanged or modified without having to remodel the entire system.
When treated as two separate systems, the EMD inertial force becomes the link between the two
components. Figure 4.1 provides a schematic block diagram describing the components included
in the prototype system model.

Assuming the UGV dynamics can be captured by an nth order proper transfer function1

1A transfer function is said to be proper if the order of the numerator is less than or equal to the order of the
denominator.
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denoted HFtFe , the relationship between the EMD inertial force and UGV tire force can be
expressed in the Laplace domain as:

Ft(s) = HFtFe(s)Fe(s) (4.1)

where Fe and Ft denote the EMD inertial force and UGV tire force respectively and the UGV
transfer function model with arbitrary coefficients is given by:

HFtFe(s) =
bmsm + · · · + b2s2 + b1s + b0

sn + an−1sn−1 + · · · + a2s2 + a1s + a0
(4.2)

Similarly, assuming the EMD dynamics can be represented by a pth order proper transfer function
denoted HFePc , the relationship between the EMD command position and EMD inertial force is
given by:

Fe(s) = HFePc (s)Pc(s) (4.3)

where Pc denotes the EMD position command and the EMD transfer function model takes the
following form:

HFePc (s) =
dqsq + · · · + d2s2 + d1s + d0

sp + cp−1sp−1 + · · · + c2s2 + c1s + c0
(4.4)

Combining Equations 4.1 and 4.3 is equivalent to connecting the two components in series and
thus yields the the overall relationship between the position command and tire force:

Ft(s) = HFtFe(s)HFePc (s)Pc(s) (4.5)

4.2 Control system modelling

Nearly all practical implementations of active structural control are closed-loop systems utilizing
force-feedback; however, since the prototype device is both deployable and mobile, establishing a
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connection that can be used to measure interfacial forces is impractical. Given this constraint, two
different control system modelling approaches – referred to as inverse compensation modelling
(ICM) and integrated systems modelling (ISM) – are considered in this thesis. Conceptual block
diagrams for each approach are provided in Figure 4.2. These approaches are briefly discussed
next since the each approach imposes specific constraints and requirements on the EMD and
UGV dynamic models.

4.2.1 Inverse compensation modelling

The premise of the ICM approach is to maintain the general controller formulation for active
control of structures and compensate for the additional dynamics using an inverse model of
the prototype DACS. As shown in Figure 4.2a, the controller design is based solely on the
structure model without consideration for the dynamics associated with the prototype device. As
such, the use of a DACS will not impose any restrictions on the selection of control algorithms
nor increase the complexity. Given the controlled plant contains only the structure model, the
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resulting controller output is the desired control force. To achieve this force in the UGV tires,
the appropriate input to the control device (i.e., EMD position command) must be determined.
As shown in Figure 4.2a, the control input can be computed using a compensation block that
contains the inverse DACS model to account for the addition system dynamics. Mathematically,
the compensation block is represented by:

Pc(s) =
{{

HFtFe(s)
}−1{HFePc (s)

}−1
}
Ft(s) (4.6)

By relying on the inverse of the prototype model to account for the additional dynamics, the ICM
approach minimizes the controller model order and does not impact the level of complexity (i.e.,
model order and complexity depend solely on the structure model). Nevertheless, the immediate
consequence of this approach is the added requirement that both the UGV and the EMD models
are invertible. Furthermore, since the prototype model is isolated from the structure model,
additional modelling will be required to account for the interaction effects between the DACS
and structure.

4.2.2 Integrated systems modelling

The ISM approach accounts for the additional DACS dynamics by integrating the prototypemodel
and structure model into a single plant. Figure 4.2b shows the general concept of the ISM ap-
proach. By combining both systems into a single plant, a controller formulation can be developed
to directly compute the EMD position command. This eliminates the need for a separate compen-
sation block and provides a framework for addressing interaction effects internally. However, the
trade-off in this approach is the increase in controller model order due to additional states from
the control device. This may complicate or limit the use of particular control algorithms and thus
preference should be given for DACS models of lower orders. Nevertheless, by augmenting the
system with the UGV and EMD model, there is no longer a need to compute the corresponding
inverse models. As a result, strictly proper transfer functions2 are valid for this approach.

2A transfer function is said to be strictly proper when the order of the numerator is less than the order of the
denominator.

39



4.3 Characterization of UGV dynamics

Accurate characterization of the UGV dynamics is critical for effective control since all inertial
forces generated by the EMD are filtered through the vehicle before being applied to the structure.
Furthermore, the UGV dynamics will also be excited by the structural response which directly
impacts the effective control force and reinforces the need for a reliable model in order to account
for these effects. Modelling the UGV dynamics is achieved using two approaches. The first
approach, referred to as parametric modelling, assumes a standard analytical form for the model
and subsequently tunes the model by estimating the corresponding parameters. The second
approach involves fitting a polynomial transfer function model to experimental input-output data.
Experimental curve fitting increases flexibility by removing constraints on the model order and
treating each coefficient as an independent variable. Nevertheless, this flexibility may result in
transfer function models that are not minimum phase3 which may lead to challenges with model
inversion for the ICM approach. In the context of transferring forces, the UGV is an inherently
non-linear system due to the presence of pneumatic tires. However, as will be later verified
experimentally, linear models are adequate to approximate the dynamics over the frequency range
of interest (i.e., 0 – 5 Hz). Furthermore, the implications of using a linear system to approximate
the inherently non-linear dynamics are studied through robust controller formulations where
approximation errors are treated as model uncertainty.

4.3.1 Parametric modelling

In parametric modelling, the form of the model is predetermined based on knowledge of the
system and the number of parameters that are either known a priori or can be estimated to fit
the model. The simplest parametric model for the UGV is that of a single degree-of-freedom
(SDOF) system. In this case, the entire system is represented by only three parameters, namely
mass, damping, and stiffness. The well-known force transmissibility function for a generic SDOF
oscillator determines the fraction of applied force that is transferred to the base. In terms of the
UGV, this is equivalent to the relationship between the EMD inertial force and UGV tire force.

3A system is said to be minimum-phase if the system and its inverse are causal and stable.
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Table 4.1: Estimated UGV model parameters for different impulse magnitudes

Impulse Force Frequency Damping Ratio Mass Damping Stiffness
(N) (Hz) (%) (kg) (Ns/m) (N/m)
100 6.49 6.83 50 278 83,163
200 6.39 8.39 50 337 80,705
300 6.24 9.12 50 357 76,918

Thus, a parametric model for the UGV dynamics, denoted GFtFe , is given by:

GFtFe(s) =
cus + ku

mus2 + cus + ku
(4.7)

where mu, cu, and ku represent the mass, damping, and stiffness parameters of the UGV respec-
tively. Although the UGV mass can be reasonably estimated (i.e., 50 kg for the prototype), the
stiffness and damping parameters must be identified experimentally. Given the inherent non-
linearity stemming from the pneumatic tires, the resulting stiffness and damping properties are
expected to be amplitude dependent. Thus, to estimate these parameters various magnitudes of
impulsive forces are applied to the top of the UGV while the resulting tire force is measured in
four shear-type load cells. A total of five trials are conducted for each of the impulse magnitudes
which are set at 100 N, 200 N, and 300 N. Natural frequencies and damping ratios are estimated
from each measured free vibration response and averaged across the given impulse magnitude.
The averaged frequencies and damping ratios are subsequently used to compute the correspond-
ing stiffness and damping parameters. Table 4.1 summarizes the parameter estimation results for
each of the impulse force magnitudes.

Figure 4.3 compares the transfer function models for each case. Although the models vary
significantly as they approach the natural frequency, they all lie within ± 5 % of one another over
the frequency bandwidth of interest (i.e., 0 to 5 Hz). Opting to use the parameters from the 200
N force trial, the parametric UGV model, is given by:

GFtFe =
337s + 80, 705

50s2 + 337s + 80, 705
(4.8)
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Figure 4.3: Comparison of parametric UGV models

4.3.2 Experimental identification

The main advantage of experimental modelling is the flexibility in model form that allows
irregularities such as stiffness eccentricities or complex damping to be intrinsically accounted for.
The experimental test setup consists of positioning the UGV atop four shear-type load cells and
applying a constant amplitude sine-sweep of inertial forces encompassing the anticipated spectral
control bandwidth of 0 to 5 Hz. The input-output data used for estimation are the applied force at
the top of the UGV and measured tire force respectively, which is consistent with the parametric
model. To investigate the amplitude dependence, a total of six trials are conducted with increasing
inertial force amplitudes up to 150 N. Cyclical inertial forces greater than 150 N are amplified
to tire forces greater than 400 N which cause the UGV to slip. Frequency response functions
(FRFs) are computed for each trial and presented in Figure 4.4. The non-linearity is evident in the
magnitude plot, particularly at frequencies greater than 3 Hz where there is significant variation
in the force amplification factor for different magnitudes of excitation. This result is expected and
consistent with the findings from the parametric identification approach.

Second order transfer function models are fit to each experimental FRF through curve fitting.
Second order models sufficiently captured the magnitude and phase properties and achieve higher
fit percentages compared to first and third order models; however, none of the obtained models
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Figure 4.4: Bode plot of experimental FRFs for UGV modelling

are minimum phase and thus the inverse needed for the ICM approach is unstable. To overcome
this, each model is decomposed into a minimum-phase portion4 and an all-pass filter. The inverse
model can then be derived through manipulation (i.e., adding appropriate filters to ensure the
transfer function is proper) of the minimum-phase portion. Details on this decomposition are
provided in Appendix C. The estimated model corresponding to an input amplitude of 75 N is
selected as it falls close to the middle of the range and will minimize errors over the full frequency
range of operation. The minimum-phase portion of this model is given by:

Hmin
FtFe
(s) = 15.04s + 1428

s2 + 6.592s + 1358
(4.9)

Important phase information contained in the all-pass filter is lost after separation. However,
incorporating a first-order lead-lag compensator, with a cut-off frequency ten times greater than
the range of interest (i.e., 50 Hz), can correct the phase errors considerably with negligible impact
on the magnitude. The lead-lag compensator, designed based on the phase difference between
the estimated model and minimum-phase portion is given by:

HLL(s) = 1.04
0.02s + 1

(4.10)

4The minimum phase portion is defined as having all poles and zeros contained in the left-half plane but is not
necessarily a minimum phase system, as the inverse is not necessarily causal.
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Combining the lead-lag compensator with the minimum phase portion yields the experimentally
identified model for the UGV dynamics:

HFtFe(s) =
15.64s + 1485

0.02s3 + 1.132s2 + 33.75s + 1358
(4.11)

For consistency, this model will be used for both the ICM and ISM approaches. It should be noted
that for the ICM approach, the direct inverse of HFtFe results in an improper transfer function5 In
this case, a second order low-pass filter is appended to the inverse model to make it rational. By
setting the filter cut off to 50 Hz, there is negligible impact on the magnitude and only a small
phase shift over the frequency range of interest. Nevertheless, for the ISM approach no inversion
is necessary as the plant model is augmented with the UGV model during controller formulation.

4.3.3 Comparing UGV models

Figure 4.5 compares the identified parametric and experimental UGV models given in Equations
4.8 and 4.11 respectively with the experimental FRFs which are represented by a shaded region
encompassing the full range of the models. In terms of magnitude, the models are largely
consistent for frequencies up to 2.5 Hz. As the frequencies increase, the parametric model tends
towards the lower limit of the experimental range while the experimental model tracks closer to
mid-range as designed. Despite both falling within the range of experimental FRFs, the error
in magnitude between the two modelling approaches increases from less than 8 % at 3 Hz to
nearly 20 % at 5 Hz. By comparing the phase properties, it is clear the parametric model is
less accurate in capturing the true damping behaviour compared to the experimental model after
adding a lead-lag compensator. Quantitatively, the difference between the two models equates
to 14 ms of delay at 3 Hz increasing to 17 ms of delay at 5 Hz. The phase properties of the
parametric model could be improved by adjusting the damping parameter; however this will also
impact the magnitude. In any case, the implications of fitting linear transfer function models
to the non-linear range of FRFs will be studied experimentally. Moreover, the magnitude of
variation between the estimated model and range of responses will be modelled as uncertainty in
a robust controller formulation.

5A transfer function is said to be improper when the order of the numerator is greater than that of the denominator.
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Figure 4.5: Comparison of experimental and parametric UGV transfer function models

4.4 Characterization of EMD dynamics

In general, EMDs can be controlled using force or position feedback. Although it is generally
difficult to measure the inertial force directly, relationships based on direct-current (DC) motor
principles can be used to relate the motor force to applied voltage. A major drawback with force
control of linear motors is the inability to directly account for stroke limitations. Unlike rotary
motors, linear motors are vulnerable to interference with end of stroke limits during low frequency
or large amplitude motion. Specifically for DACSs, EMDs operating in force control will also
suffer from unwanted interaction with the UGV dynamics. Since the generated force is inertial
based, that is, relative to an inertial reference frame, any relative motion of the UGV will directly
impact the effective force. An alternative to force feedback is position control. Position control
addresses the stroke limitations by directly monitoring the position of the carriage and applying
saturation when needed. Furthermore, position commands are relative to the base of the EMD
meaning the UGV response need not be considered within the EMD control algorithm. It is worth
noting however that the response of the UGV acts as a disturbance and may impact the position
tracking performance. The drawback of position control is the rather complex relationship
between command position and inertial force which is influenced by the closed-loop dynamics
of the servo controller including all feedback gains and motor parameters. For the prototype
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system, position feedback control is implemented for the EMD and as such, a model relating
the command position to the inertial force is required. This model can be derived analytically
by modelling the closed-loop dynamics or identified experimentally by curve fitting input-output
data. Both of these modelling approaches are discussed next.

4.4.1 Closed-loop system modelling

The Gemini GV6K servo controller by Parker Automation uses a combination of three types of
control loops, namely position, velocity, and current, to achieve the desired performance. Figure
4.6 shows a schematic of a general servo control system. The inner-most loop is the current
control which regulates the power supplied by the drive. In most cases, the current loop is set
automatically by the manufacturer to achieve maximum performance. In this case, the bandwidth
of the current loop (800 Hz) is much higher than the other control loops and can be approximated
as a linear transfer function over the low frequency range of motion. The velocity control loop
consists of a proportional-integral (PI) controller that enables the system to respond rapidly to
changing commands and resist high-frequency disturbances. However, the velocity loop alone
cannot ensure the motor holds position over long periods of time and since position control is
desired, the controller is augmented to include a position loop. The position loop includes a
proportional controller and is configured in a cascaded structure with the velocity loop, yielding
what is commonly known as a proportional-integral-velocity (PIV) controller [102]. The PIV
control topology, shown in Figure 4.7, requires only three tuning parameters: proportional and
integral gains for the velocity loop denoted KPV and KIV respectively, and a proportional gain
for the position loop denoted KPP. Any position error detected in the position loop is scaled by
the proportional gain to generate a velocity command. This velocity command is passed into the
PI velocity loop along with an estimate of the motor velocity to determine the required force, or
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current, to correct the position error.

For modelling purposes, the current loop can represented by a linear transfer function Gs on
the servo drive and approximated as unity (i.e., Gs(s) = 1). The motor force constant, denoted
K f , represents the force generated per unit of current. Since the force constant depends on the
combined motor and load properties and cannot be determined exactly, the term K̃ f is used to
denote an estimate. A distinct advantage of linear motors is the ability to directly connect the load
to the motor without the use of mechanical components that may introduce backlash or elasticity.
This also facilitates reasonable estimates of the force constant and allows the motor and load to be
modelled as a lumped inertial mass mm with equivalent viscous damping cm. A schematic of the
servo drive, and linear motor model is included in Figure 4.7 Assuming K̃ f = K f , the closed-loop
transfer function between EMD force and command position, denoted GFePc is given by:

GFePc (s) = −
(KIV KPPmm)s2 + (KIV KPPcm)s

mms3 + (KPV + cm)s2 + KIV s + KIV KPP
(4.12)

Applying the PIV tuning gains andmotor parameters summarized in Table 4.2 yields the following
analytical EMD model:

GFePc (s) = −
9.451 × 105s2 + 2.813 × 102s

33.6s3 + 3.230 × 103s2 + 3.044 × 105s + 2.813 × 107 (4.13)
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Table 4.2: Motor parameters and PIV tuning gains for EMD

Property Value
Total mass mm 33.6 kg
Equivalent damping cm 0.01 Ns/m
Proportional position gain KPP 92.4 1/s
Proportional velocity gain KPV 3,230 Ns/m
Integral velocity gain KIV 304,420 N/m

4.4.2 Experimental identification

An experimental model of the EMD can be identified through polynomial curve fitting to input-
output data where the input and output are the command position andmeasured force respectively.
Experimental identification is more direct than system modelling and accounts for closed-loop
dynamics; however, is sensitive to any re-tuning or changes in the EMD auxiliary mass. The test
setup involves mounting the EMD directly on a shear-type load cell and exciting the system using
six sine-sweep position time-histories encompassing frequencies from 0.5 Hz to 5.0 Hz. The
amplitude of each position time-history is scaled to achieve constant accelerations (ranging from
1.5 m/s2 to 9.0 m/s2) across the span of frequencies. FRFs between the command position and
inertial force are computed for each trial and plotted in Figure 4.8. The relatively tight banding of
experimental FRFs indicates consistent and approximately linear performance over the range of
desired accelerations. Although analytical modelling suggests a third-order relationship, second-
order models achieve higher fit percentages to the experimental data. Averaging over the six trials
yields the following experimental model, denoted HFePc , for the EMD dynamics:

HFePc (s) =
116.2s2 − 55.07s + 58.36

s2 + 78.15s + 3459
(4.14)

Although this best fit model is proper, it is not minimum-phase and thus does not yield a stable
inverse model for the ICM approach. For inversion, the estimated transfer function is decomposed
into a minimum-phase portion in series with an all-pass filter. This decomposition facilitates
stable inversion of the minimum phase portion which can be used as an approximation of the
system inverse. The minimum-phase portion of the EMD model is given by:

Hmin
FePc
(s) = −116.2s2 + 55.07s + 58.36

s2 + 78.15s + 3459
(4.15)
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Figure 4.8: Bode plot of experimental FRFs for EMD modelling

Although the magnitude is preserved in the minimum-phase portion, phase information is lost
in the all-pass filter. Nevertheless, the phase error decreases rapidly with increasing frequencies
from approximately 24 ms at 1 Hz to less than 1 ms at 5 Hz. As a result, the minimum phase
portion is an acceptable approximation of the EMD dynamics.

4.4.3 Comparing EMD models

The analytically derived and experimentally identified EMD models are compared with the
experimental FRFs in Figure 4.9. The magnitudes of both models are consistent with the tight
range of experimental FRFs. The slight difference between the models is attributed to estimation
errors in the inertial and motor force constants. The phase properties of the experimental model
are more consistent with the experimental FRFs. This small discrepancy of approximately 15
ms at 5 Hz is explained by the unity gain assumption for the servo drive which neglects control
delay. Unlike the analytical derivation, any control delay is captured in the input-output data
and thus included in the experimental model. As evidenced by the FRFs, the EMD device is
capable of providing actuation between 1-5 Hz, which covers many lightweight structural control
applications.
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Figure 4.9: Comparison of experimental and analytical EMD transfer function models

4.5 Evaluation of DACS models

Experimental testing is conducted to assess the performance of the identified EMD and UGV
models. The purpose of this testing is to identify the extent, in terms of both magnitude and
frequency of the control force, for which the identified linear models are a valid representation of
the prototype DACS. Table 4.3 describes the composition of the six prototype models considered
in this study. The system models are comprised of the analytically derived and experimentally
identified EMD models denoted GFePc and Hmin

FePc
respectively as well as the parametric, and two

experimentally identified UGV models (i.e., the minimum phase portion and the minimum phase
portion with a lead-lag filter) denoted GFtFe , Hmin

FtFe
, and HFtFe respectively.

The experimental test setup consists of the prototype DACS positioned atop four shear-type
load cells with accelerometers mounted on the UGV body and auxiliary EMD mass to measure
the UGV motion and compute inertial forces respectively. Figure 4.10 provides an overview of
the experimental setup. Each model listed in Table 4.3 is inverted and discretized before being
implemented on the cRIO. The inverse models are used to determine the EMD position command
corresponding to a desired UGV tire force. The performance of each model is then assessed by
comparing the desired force history with the measured UGV tire forces. To evaluate the models
across the intended frequency range of operation, a constant amplitude sine-sweep from 0 Hz to
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Table 4.3: Transfer function models for the prototype DACS

Name Transfer Function Model
DACS-1 H(1)DACS = Hmin

FePc
GFtFe

DACS-2 H(2)DACS = Hmin
FePc

Hmin
FtFe

DACS-3 H(3)DACS = Hmin
FePc

HFtFe

DACS-4 H(4)DACS = GFePcGFtFe

DACS-5 H(5)DACS = GFePc Hmin
FtFe

DACS-6 H(6)DACS = GFePc HFtFe

5 Hz is used. The test is repeated at six different force levels, ranging from 50 N to 300 N, to
cover the full range of the device.

Phase-amplitude error indices (PAEI) comparing the desired and measured control forces are
computed for each trial. PAEI utilize closed-form equations to decouple phase and amplitude
errors and were developed specifically to measure error propagation in experimental testing [103].
The root mean square (RMS) values of the error indices are reported for each trial as well as for
frequency subsets (i.e., 0 to 3 Hz and 0 to 4 Hz) of each trial to observe the error with respect to
frequency range. Figure 4.11 compares the amplitude and phase errors across the six prototype
models for each desired force level. Irrespective of the force level, the phase and amplitude
error decreases when the frequency bandwidth is reduced. This confirms the expected non-
linear amplification caused by the UGV dynamics at higher frequencies. Comparing the results
from DACS-1 through DACS-3 with DACS-4 through DACS-6 respectively indicates a slight
improvement in performance from the experimental EMD model compared to the analytically
derivedmodel. This improvement is attributed to the phase performance of the experimental EMD
model as the difference inmagnitude performance is considered negligible. Comparing the results
fromDACS-1 throughDACS-3 provides ameans to evaluate the performance of the UGVmodels.
Although the parametricUGVmodel performs exceptionallywell at low force levels, the overshoot
in the measured force increases exponentially as the force level increases. This result is consistent
with the magnitude curve in Figure 4.5 which shows the analytical model coinciding with the
lower limit of the band of experimental FRFs. The improved performance after incorporating the
lead-lag compensator (i.e., DACS-3) is evident in the phase error. DACS-3 yields consistently
better phase results compared to theminimum-phase portion of the experimental model on its own
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(a) Overall setup (b) Sensor locations

Figure 4.10: Experimental setup for evaluation of DACS models

(i.e., DACS-2). Furthermore, in terms of magnitude, DACS-3 outperforms DACS-2 over the full
frequency range up to a force level of 200 N after which DACS-2 yields lower errors. However,
the differences between the two models are reduced significantly when considering a narrower
frequency bandwidth. Based on the experimental results, DACS-3, the model comprised of the
experimental EMD model and experimental UGV model with lead-lag filter yields the highest
overall performance. The use of this model suggests errors will be contained to approximately 5
% RMS provided control forces are less than 250 N with frequency content less than 4 Hz.
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(a) RMSE of amplitude and phase for force level of 50 N
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(b) RMSE of amplitude and phase for force level of 100 N
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(c) RMSE of amplitude and phase for force level of 150 N
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(d) RMSE of amplitude and phase for force level of 200 N
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(e) RMSE of amplitude and phase for force level of 250 N
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(f) RMSE of amplitude and phase for force level of 300 N

Figure 4.11: Comparison of PAEI for each DACS model at varying force levels
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Chapter 5

Controller formulation

Practical applications of active structural control have been largely successful using traditional
control algorithms based on optimal control theory (i.e., linear-quadratic or H2 methods) or robust
control techniques (i.e., H∞ theory) [2, 6, 7]; however, the concept of DACSs introduces a number
of unique challenges yet to be addressed by existing implementations. These challenges stem
from the presence of additional interaction effects between the structure and control device, the
increase in model uncertainty due to complex or non-linear dynamics, and the restrictions due to
multiple operating constraints such as EMD stroke limitations and maximum UGV tire forces.
The goal of this chapter is to address these challenges through the formulation of various control
algorithms for the prototype device. An overview of the general control strategy is presented
first, followed by an investigation into the effects of the dynamic interaction between the DACS
and underlying structure. Subsequently, three different control algorithms, namely LQG, MPC,
and H∞, are formulated with consideration for the interaction effects, operating constraints, and
model uncertainty. Each controller is designed to target a specific challenge of the prototype
device, As such, the presented formulations can be adopted for other DACS designs that may only
suffer from a subset of the challenges. Designing a single control formulation that addresses all
concerns simultaneously is discussed as an item for future work.
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Figure 5.1: General active structural control problem with prototype DACS

5.1 General control strategy

The general active control problem for a structure controlled using the prototype device is
described in Figure 5.1. The controller uses measurements of the external excitation w through
a feed-forward link and/or measurements of the structural response ys through a feedback link to
compute the control input pc for the device. With the exception of ground excitation, which could
be measured using an accelerometer, structural disturbances such as wind or pedestrian loads
are generally difficult to measure. Therefore, the controllers discussed herein will rely solely on
the feedback link to compute the control input. For the prototype device, the overall controller
determines position commands which are sent to the EMD to generate inertial forces. The inertial
forces are then transferred through the UGV and applied to the structure through the tires. The
two different approaches for control system modelling – namely ICM and ISM and described in
Figure 4.2 – can be used to design the algorithm for the controller block in Figure 5.1. The primary
difference between the two approaches is the plant model in which the controller design is based
on. In the ICM approach, the plant only contains the structure model. Thus the control algorithm
computes the desired control force and an inverse compensation block is needed to determine
the EMD position command. Alternatively, following the ISM approach involves integrating
the DACS model with the structure model to form the plant. In this case, the control algorithm
solves for the optimal EMD position command directly using the augmented plant model. The
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dotted line in Figure 5.1 represents the dynamic coupling between the structure and the DACS.
The presence of this link, which symbolizes the effect of the structure’s motion on the DACS,
indicates that it is not possible to treat the DACS and structure as two independent dynamical
systems connected in series. Instead, these effects, must be characterized and accounted for in
the controller formulation to ensure the desired control force is applied to the structure. Prior to
formulating control algorithms for the prototype device, a method to account for the interaction
effects is proposed and experimentally validated.

5.2 Control-structure interaction

In typical applications of active structural control, dynamic coupling – widely known as CSI
– exists between the actuator and the structure. The role of CSI has been investigated for
a range of control devices including hydraulic actuators [73], electric screw drives [75], and
force-controlled EMDs [76]. For the prototype DACS, the role of CSI is complicated due to
the presence of UGV dynamics and configuration of the EMD to operate in position control.
As such, the existing framework which shows the presence of a natural velocity feedback loop
for hydraulic actuators and force-controlled EMDs is not directly applicable and a separate
investigation is required. To illustrate the dynamic coupling between the prototype device and
underlying structure, consider the block diagram description in Figure 5.2 where GY sFa is the
transfer function model of the structure describing the relationship between the applied forces Fa

and the structural response Y s, W represents the vector of external disturbance, and Pc denotes
the EMD position command. It should be noted that both the analytical and experimental models
for the UGV and EMD components can be used in the diagram and the analytical models are
selected simply for illustration purposes. The dynamic coupling is modelled as feedback from the
structure’s response to the control input and is assumed to have dynamics modelled by the transfer
function HI . Considering this coupling, the overall transfer function from the EMD command
position to the structural response is given by:

GY sPc =
GY sFtGFtFeGFePc

1 + GY sFtGFtFeGFePc HI
(5.1)
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Figure 5.2: General block diagram description of CSI for DACS

Similarly, the transfer function from the EMD command position to the UGV tire force is given
by:

GFtPc =
GFtFeGFePc

1 + GY sFtGFtFeGFePc HI
(5.2)

From Equation 5.2 it becomes clear that the relationship between the EMD position command and
the UGV tire force is not simply the combination of the EMD and UGV dynamics. Instead, this
relationship is influenced by the dynamics of the structure and feedback interaction in addition
to the modelled DACS dynamics. As a result, given a desired control force, the required EMD
position command cannot be determined via the inverse UGV and EMDmodels. This also implies
that the ICM approach as previously described is not capable of accounting for the interaction
effects.

Two key aspects of the prototype device, specifically the ability to model each component
individually and the use of position control for the EMD, influence the approach taken to char-
acterize the interaction dynamics. Separating the two components, namely the EMD and UGV,
allows the corresponding interaction effects to be studied independently. First consider the in-
teraction dynamics between the structure and the UGV. By itself, the UGV is simply a passive
system with an estimated dynamic model and thus the interaction between the UGV and structure
can be derived analytically. If the parametric UGV model is used, this derivation is relatively
straight-forward as the UGV can be integrated with the structure model analytically by adding
an additional degree-of-freedom (DOF) with known mass, stiffness, and damping parameters.
Alternatively, if the experimental transfer function is used, the interaction dynamics will require
further experimental identification since an analytical expression to integrate the two models is
difficult to derive. Next, consider the interaction effects impacting the EMD. In general, motion
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Figure 5.3: Block diagram description of CSI for prototype device

from both the structure and UGV contribute to the overall base motion of the EMD which in-turn
impacts the force in the motor. However, given the EMD is configured to operate in position
control, the control inputs and resulting inertial forces are measured relative to the base of EMD,
not the ground reference frame. As a result, the impact of the dynamic coupling is directly related
to the position tracking performance of the EMD when subjected to external disturbances. For
example, if a high level of position-tracking is achieved under the expected level of disturbance,
the dynamics of the structure and feedback interaction have negligible impact on the EMDmodel.
Assuming the position tracking performance of the EMD is maintained under base excitation,
the EMD can be isolated from the feedback interaction. This assumption is reflected in Figure
5.3 which models the feedback interaction between the structure’s response and UGV dynam-
ics. Prior to deriving the interaction dynamics between the UGV and underlying structure, this
assumption is validated through an experimental study.

5.2.1 Position tracking performance

The ability to neglect the effects of feedback interaction on the EMD relies on the assumption that
the disturbance rejection properties of the servo controller are sufficient to achieve a high level of
position tracking under base motion. In other words, the servo drive is capable of maintaining the
desired position of the mass relative to the EMD base despite external inertial forces generated by
the structure’s motion and resulting UGV response. The validity of this assumption depends to
some extent on the tuning and control authority of the position feedback controller but to a larger
extent on the capacity of the linear motor and magnitude of external disturbances. Consider the
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extreme cases: slow base excitation (i.e., low frequency, small amplitude) and fast base excitation
(i.e., high frequency, large amplitude). Slow base excitation will generate minimal inertial forces
on the auxiliary mass and is unlikely to disrupt position tracking. On the other hand, fast base
excitation could generate inertial forces too large and/or too rapid for the feedback algorithm to
keep up. Thus, the EMD is expected to maintain a high level of position tracking up to a certain
level of base excitation after which the tracking deteriorates and the system eventually becomes
unstable. The assumption of negligible interaction effects on the EMD implies the position
tracking begins to deteriorate under disturbances of greater magnitude and higher frequency than
what can be anticipated for prototype system.

To assess the position tracking performance of the EMD under base excitation, the EMD is
mounted directly on a shear-type load cell positioned atop a hydraulic shake table. The shake
table provides harmonic base excitation across a range of frequencies and amplitudes. A total
of 18 trials are conducted with the harmonic base excitation ranging in frequency from 1 to 5
Hz and in amplitude from 2.5 to 25 mm to yield a spectrum of peak base accelerations from
0.2 to 4.9 m/s2. For each trial, the EMD is programmed to track a 60-second linearly-varying
sine-sweep position time-history encompassing frequencies up to 5 Hz. To establish a baseline for
comparison, the position tracking performance is first assessed under no base excitation. Figure
5.4a compares the position command against the measured position which is obtained using a
built-in linear magnetic encoder. Under no base excitation the servo controller accurately follows
the desired position trajectory with a measured control delay of 17 ms. When subjected to base
excitation, small disruptions in the position tracking first appear when the peak base acceleration
exceeds 1.75 m/s2; however, these disruptions only occur when the EMD is moving at frequencies
beyond 4 Hz. As the peak base acceleration increases beyond 1.75 m/s2, the tracking continues
to gradually deteriorate and become evident at lower EMD frequencies. Figure 5.4b shows
the position tracking performance under 3 Hz harmonic base motion with an amplitude of 10
mm yielding a peak acceleration of 3.6 m/s2. At this level of disturbance the position tracking
begins to oscillate as the servo drive struggles to achieve the forces required to track the desired
trajectory. The final trial, reaching a peak base acceleration of 4.9 m/s2, could not be completed
due to controller instability. Under this magnitude of disturbance, the EMD controller is unable
to follow the position trajectory beyond 2 Hz. The root mean squared error (RMSE) between
the commanded and measured positions is computed for each trial. The RMSE is computed
after removing the baseline control delay of 17 ms from the measured signals. To illustrate the
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(b) Base excitation with peak acceleration of 3.6 m/s2

Figure 5.4: Position tracking performance of EMD under varying levels of base excitation

error over different control frequencies, the RMSE is calculated for different windows of the
sine-sweep data. Figure 5.5 compares the RMSE at different levels of base excitation for different
ranges of EMD frequencies. For all control frequencies, the error increases when subjected to
larger base excitation; however, the impact of the disturbance is more prominent at higher control
frequencies.

Overall, the position tracking behaviour is consistent with expectations. The EMD accurately
tracks positions under base excitation up to approximately 1.75 m/s2 where performance first
shows signs of disruptions at higher EMD frequencies. Performance continues to decrease until
eventually becoming unstable. At the onset of the disruptions in position tracking, the EMD is
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Figure 5.5: RMSE of position tracking for varying control frequencies

generating inertial forces of approximately 225 N at 4 Hz. This magnitude of force falls well
outside the control bandwidth of the prototype system, as an EMD force of only 180 N at the
same frequency is amplified beyond the peak UGV tire force of 400 N. Given this result, it is
reasonable to assume that the servo controller is fast enough to track positions under disturbances
from the structure’s motion and corresponding UGV response and thus, the interaction effect on
the EMD performance is negligible. It is worth emphasizing here that the disturbance rejection
property is a key advantage of employing position control for the EMD. Since the position is
always tracked relative to the base of the device, the generated inertial force that is applied to the
UGV can be uncoupled from the UGV motion. Had the EMD been configured in force control,
this separation would not be possible.

5.2.2 Characterizing interaction dynamics

The process for characterizing the feedback interaction dynamics depends on the method used to
model the UGV. Given a parametric model of the UGV, the interaction effects can be derived
analytically. Conversely, the use of an arbitrary curve-fitted model for the UGV will require
further experimental testing and additional curve fitting to estimate the interaction dynamics.
First assume the parametric model given in Equation 4.8 is used to represent the UGV dynamics.
Given the feedback interaction configuration in Figure 5.3, an expression relating the structural
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Figure 5.6: General MDOF system with DACS at ith DOF

response Y s to the EMD inertial force Fe and the external disturbances W can be expressed as:(
1 + GY sFaGFtFeHIEET

)
Y s(s) =

(
GY sFa

)
W (s) + (

GY sFaGFtFeE
)

Fe(s) (5.3)

Assuming the structuremodel is amulti-degree-of-freedom (MDOF) requires the use of a location
vectorE to apply theUGV tire force at the appropriateDOF and ensure compatible dimensionality.
The location vector indicates the location of the DACS and is expanded to a matrix for the case
when multiple DACSs are used. After a series of simplifications, Equation 5.3 can be rewritten
as: (

1
GY sFaGFtFe

+ HIEET
)
Y s(s) =

(
1

GFtFe

)
W (s) + EFe(s) (5.4)

Since the parametric model of the UGV is being utilized, the block diagram in Figure
5.3 is equivalent to a MDOF dynamic system with SDOF systems connected at each location
of a DACS. Consider the scenario where a single DACS is deployed on the ith DOF (i.e.,
E = [0 . . . 0 1 0 . . . 0]) as shown in Figure 5.6. External excitation is applied to the structural
DOFs while the EMD inertial force is applied to the SDOF system representing the UGV. The
dynamics of the combined system are defined by the following equations of motion:

M Üxs(t) + C Ûxs(t) +Kxs(t) = E
{
cu

(
Ûxu(t) − ET Ûxs(t)

)
+ ku

(
xu(t) − ET xs(t)

)}
+ w(t) (5.5a)

mu Üxu(t) + cu

(
Ûxu(t) − ET Ûxs(t)

)
+ ku

(
xu(t) − ET xs(t)

)
= fe(t) (5.5b)

where M, C, and K denote the structure’s mass, damping, and stiffness matrices respectively
and xs represents the vector of structural displacements. The UGV mass, damping, and stiffness
parameters are denoted by mu, cu, and ku respectively while xu represents the UGV displacement.
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The location vector E is used here to extract the structural displacement at the ith DOF and apply
the UGV control force at the appropriate location. Expressing Equations 5.5a and 5.5b in the
Laplace domain yields:(

Ms2 + Cs +K
cus + ku

+ EET
)
X s(s) =

(
1

cus + ku

)
W (s) + EXu(s) (5.6a)

(
mus2 + cus + ku

)
EXu(s) − (cus + ku)EETX s(s) = EFe(s) (5.6b)

Combining Equations 5.6a and 5.6b with a series of manipulations can eliminate the UGV
displacement term and yield the following expression for the the structural displacement response
in terms of the external excitation and EMD inertial force:{(

Ms2 + Cs +K
) (

mus2 + cus + ku

cus + ku

)
+ mus2EET

}
X s(s) =

(
mus2 + cus + ku

cus + ku

)
W (s) + EFe(s)

(5.7)
Notice this expression has the same form as Equation 5.4 which was derived from the block
diagram description with unknown interaction dynamics. Given the following transfer function
models for the structure and the UGV:

GX sFa =
1

Ms2 + Cs +K (5.8)

GFtFe =
cus + ku

mus2 + cus + ku
(5.9)

the appropriate substitutions can be made in Equation 5.7 to yield:(
1

GX sFaGFtFe

+ mus2EET
)
X s(s) =

(
1

GFtFe

)
W (s) + EFe(s) (5.10)

Finally, equating Equation 5.10 with Equation 5.4 gives:(
mus2EET

)
X s(s) =

(
HIEET

)
Y s(s) (5.11)

Therefore, given the structure’s displacement response (i.e., Y s = X s) the interaction dynamics
are defined by:

HI = mus2 (5.12)

Furthermore, given the structure’s acceleration response, the second derivative term is removed
and the feedback interaction dynamics are simply modelled using the UGV mass. Notice the
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presence of the location vector applied to the structural response which indicates that only the
response at the location of the DACS is needed for feedback.

The elegance of this solution is achieved based on the assumption that the UGV behaves as a
SDOF system and thus can be integrated analytically with the structure model. Alternatively, if
the arbitrary curve-fit UGV model is used, such analytical expressions are not as straight-forward
to derive. In this case, full-scale experimental testing is required to fit a transfer function model to
the overall block diagram (i.e., between the EMD inertial force and the structural response). The
overall transfer function, denoted HY sFe , can then be used to solve for the interaction dynamics
given the structure model and UGV model. More specifically, if the curve-fit UGV model given
in Equation 4.11 is utilized, Equation 5.4 can be rearranged to solve for the interaction dynamics
as follows:

EET HI =
EFe(s)
Y s(s) −

1
GY sFaHFtFe

(5.13)

where EFe(s)
Y s(s) = HX sFe is the experimentally identified transfer function model and the external

excitation is neglected (i.e.,W = 0).

Both approaches for identifying the interaction dynamics require a certain level of approxima-
tion. For the case of the parametric UGV model, the approximation is governed by the accuracy
of the UGV model itself. As shown in Figure 4.5, the parametric model does not capture the
phase performance as well as the experimentally identified model and tracks the lower bound of
the magnitude range. By comparison, the use of the experimental or curve-fit UGVmodel creates
the potential for estimation errors through full-scale experimental testing, formulating a transfer
function model for the structure, and curve-fitting the overall transfer function. These errors
are added to the uncertainty present in the experimental UGV model itself. The simplicity and
conciseness of the parametric modelling solution has a number of advantages over an arbitrary
transfer function model. For example, the simple UGV mass feedback dynamics can be directly
incorporated in the controller model without increasing the model-order however a curve-fit
transfer function will require appending additional states to the system model and increase the
overall complexity. Furthermore, it should be noted that the use of the parametric UGV model
to analytically derive the feedback dynamics does not preclude the use of the curve-fit model
in controller design. As such, the analytical estimation of the interaction dynamics is used for
controller design.

The idea behind the ICM approach to controller modelling is to utilize inverse EMD and
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UGV models to compensate for the dynamics of the DACS. However, as shown, the dynamic
coupling between the structure and the UGV prevent the separation of the structure and UGV as
independent systems connected in series. Therefore, the ICM approach is modified to incorporate
the parametric UGVmodel with the structure model in the plant. The resulting control algorithm
will compute the desired inertial force applied to the UGV and the inverse EMD model will
still be used to determine the required position command. Since the ISM approach to controller
modelling already integrates the structure and the DACSmodels in the plant, nomodelling change
is required.

5.3 Linear-quadratic optimal control

In civil engineering applications, there exists a trade-off between control performance and robust
stability. In general, higher control authority tends to improve control performance, but uncer-
tainties in the systemmodel could severely degrade performance and even cause instabilities if the
control authority is too high [104]. Linear quadratic controllers utilize quadratic cost functions to
balance control performance with control effort and provide an effective solution for addressing
this trade-off [105]. The LQR design method yields optimal linear state feedback gains to control
systems under perfect information (i.e., full state information is known). To address the case
with partial state information, which is commonly the case in structural control, the separation
principle (i.e., the principle of separation of estimation and control) is applied to first estimate the
states using an optimal estimator and subsequently treat the estimates as true states in a controller
that is optimal for the system under perfect information. The separation principle significantly
simplifies the controller design by guaranteeing that the two systems, namely the optimal estima-
tor and optimal controller, can be designed independently and combined. The combination of a
Kalman filter and LQR yields the LQG controller which is widely used for control of stochastic
linear systems disturbed by additive Gaussian noise with incomplete state information.
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5.3.1 LQG formulation

Consider the continuous-time, time-invariant, linear dynamic system

Ûz(t) = Az(t) + Bu(t) + ω(t) (5.14a)
y(t) = Cz(t) + Du(t) + ν(t) (5.14b)

where z represents the vector of state variables, u is the vector of control inputs, and y is the
vector of measured outputs. Additive white Gaussian process noise and measurement noise are
represented by ω and ν respectively. Given this system, the objective is to find the control input
u(t) as a linear function of past outputs and/or control inputs such that the following quadratic
cost function is minimized:

J =
∫ ∞

0

(
zT (t)Wz z(t) + uT (t)Wuu(t)

)
dt (5.15)

where Wz ≥ 0 and Wu > 0 are weighting matrices penalizing non-zero states and the level
of control input respectively. The cost function is minimized by linear state-feedback of the
following form:

u(t) = K c z (5.16)

where the controller gain matrix K c is given by:

K c = −1
2

Wu
−1BTHK (5.17)

and HK satisfies the following algebraic Riccati equation:

ATHK +HKA −HKBWu
−1BTHK +Wz = 0 (5.18)

In LQG control, the measured outputs y may not provide full state information. In this case,
a Kalman filter is used to generate an estimate the state vector, denoted ẑ, given the measured
outputs. Details pertaining to the Kalman filter formulation are omitted here but can be found in
Appendix B.

5.3.2 Implementing LQG for DACSs

An LQG controller can be implemented for DACSs under both the ICM and ISM approaches. In
the ISM approach, the LQG controller is formulated for an integrated plant model containing both
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the structure and the DACS and as such computes the optimal EMD position command directly.
Alternatively, the ICM approach formulates a controller based on an combined structure and UGV
model while the EMD model is isolated. In this case, the controller computes the optimal EMD
inertial force and the inverse EMD model is required to determine the corresponding position
command. The general implementation procedure for an LQG controller is unchanged by the
control system modelling approaches. The only differences between the two approaches is the
order of the plant model and size of the weighting matrices. As such, the different formulations
for the plant model are presented individually before proceeding with the LQG algorithm.

Plant model for ICM approach: Consider the equations of motion for a general n-DOF
system with UGV dynamics added at the ith DOF as shown in Figure 5.6:

M Üxs(t) + C Ûxs(t) +Kxs(t) = E
(
cu Ûxur (t) + kuxur (t)

)
+ w(t) (5.19a)

mu

(
Üxur (t) + ET Üxs(t)

)
+ cu Ûxur (t) + kuxur (t) = fe(t) (5.19b)

The structure mass, damping and stiffness matrices are represented by M, C, and K respectively,
xs is the vector of structural displacements, E is a location vector indicating the location of the
prototype system, and the vector w models external disturbances. The UGV is modelled with
mass, damping, and stiffness parameters of mu, cu, and ku respectively while xur represents the
UGV displacement relative to the ith structural DOF and the inertial force generated by the EMD
is denoted fe. Writing Equations 5.19a and 5.19b in state-space form requires an expanded state
vector that includes the UGV relative displacement and velocity in addition to the displacement
and velocity of the structure. Thus the state vector is given by:

z =
[
xs xur Ûxs Ûxur

]T
(5.20)

The resulting state and output equations, assuming acceleration measurements of the structure,
are given by:

Ûz(t) = Az(t) + B fe(t) + ω(t) (5.21a)
ys(t) = Cz(t) + D fe(t) + ν(t) (5.21b)

where ω and ν represent the process noise including external disturbances and measurement
noises respectively, and the corresponding state, input, output, and feed-through matrices are
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given by:

A =



0n,n 0n,1 In,n 0n,1

01,n 0 01,n 1
−M−1K M−1Eku −M−1C M−1Ecu

ETM−1K −
(

ku
mu
+ ETM−1Eku

)
ETM−1C −

(
cu
mu
+ ETM−1Ecu

)


, B =



0n,1

0
0n,1(

1
mu

)


,

C =
[
−M−1K M−1Eku −M−1C M−1Ecu

]
, D =

[
0n,1

]

Plant model for ISM approach: By contrast, in the ISM approach the transfer function
models for both the UGV and EMD are interconnected with the structure model and feedback
interaction dynamics are addressed according to the block diagram in Figure 5.3. The overall
transfer function model from the EMD position command to the structural response is given by:

GY sPc =
GFtFeGFePc

1 + GFtFeGY sFaHI
(5.22)

Expressing this transfer function model in state-space form yields the same state and output
equations as the ICM approach (see Equations 5.21a and 5.21b); however the state vector in this
case contains structure, UGV, and EMD states and the state, input, output, and feed-through
matrices are defined in the transformation from the transfer function model to state-space.

Regardless of the modelling approach, the cost function is written in terms of the state vector
and EMD inertial force which serves as the control input to the system:

J =
∫ ∞

0

(
zT (t)Wz z(t) + feT (t)Wu fe(t)

)
dt (5.23)

As such, minimizing the cost function yields the optimal EMD inertial force given by:

f̄e(t) = K c ẑ (5.24)

where K c is computed using Equation 5.17 and ẑ is the estimated state vector.

Determination of the controller gain K c depends on prescribed weighting matrices Wz and
Wu. These weighting matrices are tuned to achieve the desired trade-off between performance
and controller effort. In both modelling approaches, the state vector contains the structural states
as well as states for the UGV (and EMD in the ISM approach). Thus, the matrixWz is designed as
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Figure 5.7: LQG controller implementation based on the ICM approach
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Figure 5.8: LQG controller implementation based on the ISM approach

a diagonal matrix with entries designed to only penalize non-zero structural states. Furthermore,
for a single device, the matrix Wu becomes a scalar and is tuned to penalize the level of control.
In the ICM approach, after determining the desired inertial force, the inverse EMD model is used
to compensate for the EMD dynamics and thereby compute the corresponding position command.
By comparison, the ISM approach yields the EMD position commands directly and thus removes
the need for a compensation block. Figures 5.7 and 5.8 provides the overall block diagram
descriptions of the LQG controller formulated under the ICM and ISM approaches respectively.
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5.3.3 Limitations of LQG controller

The main limitations associated with the LQG formulation for the prototype DACS are: the
need for a priori tuning of the weighting matrices, the inability to explicitly account for physical
operating constraints, and difficulties in addressing model uncertainty. To achieve the desired
control objectives, the weighting matrices are generally tuned through a process of trial-and-
error. This method of tuning requires knowledge of the expected disturbances in addition to the
structural model and must be completed before the control device is deployed. Furthermore,
without a systematic approach to account for operating constraints such as the EMD stroke limit
and peakUGV tire force, theweightingmatricesmust be designed to ensure the position command
and resulting control force remain the physical limitations of the prototype device. This leads to
a conservative controller design that inevitably under-utilizes the capacity of the device during
day-to-day operations. In some applications a saturation function is used to clip the command
signal at a prescribed limit; however for the prototype system, saturating the position command
may result in abrupt changes in acceleration that generate unwanted inertial forces. Furthermore,
saturation can only be applied to command signals and thus does not address the UGV tire force
limitations. Lastly, the LQG formulation does not provide robustness to the uncertainty in the
UGV or EMD models and does not address the potential for errors in the structure model.

5.4 Model predictive control

In general, MPC represents a collection of controllers that rely explicitly on the use of a model
to predict the future behaviour of the system [43]. In MPC, an optimal sequence of control
actions is solved for over a finite horizon by minimizing a cost function subject to prescribed
constraints. When formulated using a quadratic cost function for a linear plant model without
constraints, the MPC formulation reduces to an LQG control problem [106]. Therefore, many
of the benefits associated with LQG control, specifically the ability to tune the trade-off between
control performance and control effort, are also present inMPC formulations. Furthermore, MPC
offers two key advantages over linear quadratic control; namely amethod to systematically address
physical operating constraints and the ability to model time-varying constraints and weighting
matrices in the cost function. Unlike LQG control where the optimal state feedback gains are
determined a priori and held constant, MPC algorithms solve a constrained optimization problem
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at every time iteration to determine new feedback gains for the subsequent time step. A direct
consequence of this approach is the ability to incorporate constraints on the control input or system
states and vary the weighting matrices according to a prescribed algorithm. These properties are
particularly attractive for the prototype DACS which has multiple operating constraints and could
be tuned in real-time to maximize device utilization.

5.4.1 MPC formulation

MPC schemes determine a sequence of optimal control inputs by solving a constrained, finite-
horizon optimization problem. In most cases, a receding horizon is used where only the first
control action from the sequence is applied to the system and the optimization is repeated in
the subsequent time step after incorporating current measurement information. Central to the
performance of any MPC implementation are the prediction model and state estimator, which are
used to forecast the future behaviour of the system. Figure 5.9 provides a schematic of the general
MPC formulation. At the current time step k, the state estimator predicts the current system
states for the prediction model which are then used to propagate the system forward (i.e., estimate
future system states) over the prediction horizon of length hp. Given the future state estimates,
the optimization problem becomes one of identifying the sequence of optimal control inputs over
a prescribed control horizon of length hm such that a specified cost function is minimized. As
shown in Figure 5.9, the control and prediction horizons need not be of equal length. In fact, a
common technique known as move blocking can reduce the size of the optimization problem by
holding the control input constant for the hp−hm steps beyond the control horizon.

The constrained optimization problem has two main components: a cost function to be
minimized and a set of operating constraints bounding the optimization. The cost function can
be constructed to penalize the error between predicted and targeted outputs, the error between a
particular state and its desired set-point, the magnitude or rate of change of the control input, or
any combination thereof. For structural control applications, a quadratic cost function penalizing
non-zero system states and the level of control input is commonly used such that weighting
matrices can be tuned to achieve a desired control objective. As such, the cost function is given
by:

J(k) =
hp−1∑
j=0

z(k + j)TWz z(k + j)+
hm−1∑
j=0

u(k + j)TWuu(k + j)+ z(k + hp)TW∞z(k + hp) (5.25)
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Figure 5.9: Schematic of general MPC scheme

where Wz and Wu are weighting matrices penalizing the non-zero system states and the control
input respectively and W∞ is the terminal state weighting matrix. The variables hp and hm

represent the lengths of the prediction and control horizons respectively.

Given the cost function, constraints acting on the controlled inputs, system states, or system
outputs can be modelled mathematically and included in the optimization problem to ensure the
behaviour of the system operates within a desired range. These constraints can be modelled as
either hard or soft constraints depending on the implication of violation. Hard constraints are
inviolate and generally only applied to controlled variables where command saturation can be
used. Applying hard constraints on system states or outputs may lead to infeasible solutions if
the threshold is exceeded at some point over the prediction horizon. Soft constraints offer more
flexibility by prescribing a threshold and penalty function that only applies when the threshold
is exceeded. In this way, soft constraints permit violation under the condition that the amount
the threshold is exceeded is heavily penalized in the objective function to bring the system back
to the desired range. Soft constraints can also be modelled with a maximum violation which in
effect superimposes a hard limit on the amount the threshold can be exceeded.

The quadratic cost function, together with any modelled constraints, form a constrained
quadratic programming optimization problem that must be solved at each time step to determine
the optimal state feedback gains. There are a number of methods and solvers available to solve
such problem; however consideration must be given to the computation time required for each
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solution in order to implement MPC schemes in real-time control applications.

5.4.2 Implementing MPC for prototype device

There are three key challenges related to the implementation of an MPC scheme for the prototype
DACS: modelling physical operating constraints, incorporating adaptability through time-varying
weightingmatrices, and computational efficiency for real-time execution. Each of these challenges
are addressed next.

Modelling constraints: The physical operating constraints for the prototype device include
the EMD stroke length, which is limited to ±75 mm, and the peak force in the UGV tires, which is
limited to ±400 N. Both constraints are of high importance as violating the EMD stroke limitation
will cause the auxiliary mass to collide with the end-of-stroke limits and damage the EMD while
exceeding the UGV tire force limitation will cause the tires to slip and destabilize the control
system. Implementing the MPC scheme using the ISM approach provides direct computation of
the desired EMD position command. Thus, the stroke limitation can be modelled directly using
a hard constraint on the control input. Given a control horizon of length hm, the EMD stroke
constraint is modelled as:

− 75 mm ≤ pc(k + j) ≤ 75 mm , j = 0, 1, 2, . . . , hm − 1 (5.26)

By virtue of the hard constraint, any desired position commands that exceed ±75 mm will be
saturated to prevent end-of-stroke collisions. An important consideration for this constraint is that
abrupt changes in acceleration caused by position saturation will introduce unwanted impulsive
forces into the system which may affect the control performance. An alternative solution involves
replacing the hard constraint with a soft constraint such that the position commands are penalized
as they approach the limit thereby greatly reducing the likelihood of saturation. For example, the
soft constraint can be designed with a threshold of ±65 mm and maximum violation of ±10 mm
such that any position commands beyond 65 mm will be penalized in the cost function. The use
of a quadratic penalty function will ensure the penalty is increased for larger violations while the
maximum violation of 10 mm effectively imposes a hard constraint at ±75 mm.

Modelling the UGV force constraint is less direct since the interface force in the tires is not a
controlled variable, system state, nor measured output. Thus, in order to model a constraint on
the UGV tire force, the force must first be appended as an additional system output and estimated
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from the system states. Furthermore, the ±400 N capacity must be modelled as a soft-constraint
to avoid infeasible solutions during the optimization process. Soft constraints are defined by
a threshold, maximum allowable violation, and penalty function. For the UGV tire force, the
threshold is set to a safe value such that the sum of the threshold and maximum violation does
not exceed the physical ±400 N limit. Consider a threshold of 300 N with a maximum violation
of 100 N. Provided the tire force is below ±300 N, the soft constraint has no impact on the cost
function; however, if the estimated tire force exceeds the threshold, a quadratic penalty is applied
to the magnitude of exceedance. Note that with a maximum violation of 100 N, the maximum
permissible tire force is capped at 400 N as required. The soft constraint for the UGV tire force
is given by:

0 ≤ f̌t ≤ 100 N , f̌t(k) =
{
| ft | − 300 N if | ft | ≥ 300 N

0 otherwise
(5.27)

where f̌t denotes the absolute magnitude of the UGV tire force beyond the specified 300 N
threshold. Combining these constraints with the quadratic cost function in Equation 5.25 yields
the following MPC formulation:

J(k) =
hp−1∑
j=0

z(k + j)T +Wz z(k + j) +
hm−1∑
j=0

pc(k + j)TWupc(k + j)
︸                                                                          ︷︷                                                                          ︸

stage cost

. . .

+ z(k + hp)TW∞z(k + hp)︸                         ︷︷                         ︸
terminal cost

+

hp−1∑
j=0

f̌t(k + j)TW f f̌t(k + j)
︸                             ︷︷                             ︸

cost for violating soft constraint

such that − 75 mm ≤ pc(k + j) ≤ 75 mm for j = 0, 1, 2, . . . , hm − 1
0 ≤ f̌t(k + j) ≤ 100 N for j = 0, 1, 2, . . . , hp − 1

(5.28)

where W f penalizes violation of the UGV tire force soft constraint.

Time-varying cost function: A distinct advantage of MPC over LQG control is the ability
to incorporate time-varying weighting functions and constraint equations. This adaptability – a
direct result of solving the optimization problem at each iteration – is well suited for the prototype
DACS where online tuning can maximize device utilization by adjusting to the current conditions
for the particular structure. To demonstrate this capability, a utilization-based algorithm is used to
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Figure 5.10: Utilization thresholds for EMD stroke

adjust the penalty on the control input. In general, if low utilization is detected, the weighting on
the control input will be reduced to improve performance; meanwhile, detecting high utilization
will trigger an increase in the penalty weighting to ensure the operating constraints are not
violated. The sequence of optimal EMD position commands is used to compute two separate
metrics that make inference on the device utilization. The first metric quantifies the extent to
which the full stroke capacity of the device is utilized, while the second metric monitors extended
periods of low stroke to suggest low utilization. It should be noted that this is a simple method
to quantify utilization and other data such as the estimated force or an energy variable could
also be used to enhance the metrics. Each metric has a prescribed threshold that together divide
the EMD stroke into three ranges: high utilization when exceeding the upper threshold λh, low
utilization when below the lower threshold λl , and desired utilization when operating between
the thresholds. Figure 5.10 overlays the thresholds on a schematic of the EMD stroke. The
regions are designed to prevent under-utilization with consideration for the risk of exceeding the
allowable EMD stroke. The first metric θh is used to monitor high utilization and is calculated
at each time step by summing over the control horizon an exponentially weighted score for each
position command greater than the upper threshold. Specifically, this metric is computed as:

θh(k) =
hm∑
j=1

εh( j) , εh( j) =
{
exp [αh (|pc( j)| − λh)] if |pc( j)| − λh ≥ 0

0 otherwise
(5.29)

where hm represents the number of steps in the control horizon and αh is a tunable rate parameter.
If the device is considered to be in the high utilization zone (i.e., θh > 0), the magnitude of Wu is
increased as a function of the metric θh. The second metric, denoted θl , runs in tandem with the
high utilization metric to detect periods of low utilization. This metric is configured differently
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to account for the fact that oscillating position commands passing through the low utilization
zone do not necessarily indicate low utilization. In this case, the metric is computed based on the
maximum absolute EMD position command over the control horizon. If the maximum absolute
position command falls within the low utilization range, the difference between the maximum
command and the lower threshold is exponentially weighted to yield the metric:

θl =

{
exp [αl (λl −max {|pc( j)|})] if λl −max {|pc( j)|} ≥ 0 for j = 0, 1, . . . , hm

0 otherwise
(5.30)

where αl is a tunable rate parameter. If the device is considered under-utilized (i.e., θl > 0), the
magnitude of Wu is reduced as a function of the metric θl . Furthermore, to avoid over-tuning
by changing the penalty too frequently, the algorithm includes provisions to require persistent
high or low utilization before triggering an update in the weighting matrix. For the prototype
system, the low utilization metric must be greater than zero for ten consecutive iterations before
triggering a decrease in the control input penalty.

Computational efficiency: A well-known drawback of MPC is the heavy computational
demands associated with solving the constrained optimization problem at every time step. This
requirement has limited the application of MPC to relatively slow processes or small systems
[40]. To be a feasible control solution for deployable systems, the algorithm must be capable of
executing in real-time. Furthermore, the controller must also be self-contained and executable on
an on-board controller such as the cRIO used in the prototype. To achieve this, the MPC scheme
is formulated using an open source toolkit for automatic control and dynamic optimization
(ACADO) [107]. The ACADO toolkit is a software environment with a collection of algorithms
for various control and optimization applications. The toolkit, provides general frameworks for a
wide range of direct optimal control algorithms and features a number of efficiently implemented
Runge-Kutta and backward differential formula integrators for fast simulation of differential
and algebraic equations. MPC is one of four problem classes supported by the toolkit. This
class, which can also be used for online state estimation, has been designed to repeatedly solve
parameterized optimization problems such as the one described in Equation 5.28. Figure 5.11
provides an flow-chart highlighting the end-to-end process from formulation to implementation
of the MPC algorithm with the ACADO toolkit.

A convenient feature of the ACADO toolkit is a MATLAB interface which allows problems
formulated in MATLAB to communicate with the ACADO code base. Furthermore, the toolkit

77



Input differential equations
of controlled plant

Define optimal control problem
(i.e., objective function

and constraints)

Select methods used
in code generation

• Integrator → 4th-order Runge Kutta method

• Discretization → multiple-shooting technique

• Real-time iteration → Gauss-Newton method

• QP solver (optimization) → qpOASES

Generate C-code for each
algorithmic component

Write wrapper function to call
real-time iteration method and
return optimal control input

Build shared library object
and implement on cRIO

A
C
A
D
O

fo
r
M
a
tl
a
b
In
te
rf
a
ce

A
C
A
D
O

C
o
d
e
G
en

er
a
ti
o
n

Im
p
le
m
en

ta
ti
o
n

Figure 5.11: Overview of the process for implementing MPC using the ACADO toolkit

also includes a built-in code generation tool which can be used to export stand-alone, highly
efficient, optimized code suitable for deploying on the cRIO. The exported code achieves its
performance by implementing the Gauss-Newton Hessian approximation within its real-time
iteration scheme and applying shooting techniques for the discretization of the continuous time
differential equation of the plant [108]. These techniques yield a large, yet sparse quadratic
problem, that is first condensed and then solved using qpOASES, a dense linear algebra quadratic
programming solver employing the active set method [109]. The code generation tool generates
a MATLAB executable as well as a main C++ file supported by a library of C-code to solve the
optimization problem. The toolkit has the capability to parameterize variables such as constraints
and objective function weights and thus supports the use of the utilization-based algorithm that
redefines the weighting matrix for the control input based on the described metrics. It should
be noted that only weighting matrices or constraint variables can be modelled as time-varying
parameter inputs while the system model, prediction horizon, and solution method remain fixed
after generating the code.
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5.4.3 Limitations of MPC controller

The heavy computational demand is the main factor restricting the use of MPC. Although there
are a variety of methods to reduce computations, such as shortening the prediction and control
horizons, increasing the time step, or applying model reduction techniques, each method is
generally associated with a trade-off in performance. Moreover, despite a combination of these
efforts, large models may still experience computational delays beyond the largest possible time
step for practical implementations. The prototype DACS not only augments the plant model,
but also introduces hard and soft constraints that increase the complexity of the problem. Using
the ACADO code generation tool described above, the prototype can be integrated with small
structure models on the order 3 to 5 DOF and implemented in real-time on the cRIO. Larger
structure models or the use of any additional constraints may require special consideration to
run in real-time. A second limitation of the above MPC formulation is difficulty in addressing
potential uncertainty in both the structure or controller models. Since the controller is designed
based on the nominal DACSmodel and structure model, the presence of model errors may reduce
performance or even lead to instabilities if the variance between the true and believed models is
significant.

5.5 H∞ robust control

The application of robust control theory is motivated by the ability to directly address plant
uncertainties in the controller formulation. The robustness of a control system refers to the
stability of the closed-loop system under both structured and unstructured perturbations [110].
For the prototype system, the linear UGV and EMD models contain some degree of uncertainty
due to non-linear effects, modelling assumptions, and/or experimental curve fitting. For the UGV
model, the uncertainty is frequency dependent due to the fact an inherently non-linear system
is approximated using a linear model. Unlike the LQG and MPC formulations which design
a controller based solely on the nominal system models, robust controller design requires the
control requirements to be simultaneously satisfied over the entire class of systems. H∞ control
theory provides a convenient framework for robust controller design. The premise of H∞ control
is to design a controller such that the infinity norm of the transfer function from exogenous
inputs (i.e., external forces) to regulated outputs (i.e., collection of states and control inputs) is
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minimized. The H∞ norm of a closed loop system can be viewed as the upper limit of the ratio
from the RMS of the output to the RMS of the input and thus gives a measure of the worst case
response over the entire class of system models and input disturbances. The ability to directly
model uncertainty is significant in DACS applications. In addition to the inherent uncertainty
contained in the DACS models, the model of the structure in which it is being deployed to control
is generally not known precisely and derived based on estimated parameters. As such, achieving
a controller that is also robust to uncertain structure models is beneficial.

5.5.1 H∞ formulation

The formulation for an H∞ controller is best described using a generalized plant model. Consider
the following state-space equations for a generalized plant Pg:

Pg :



Ûxg = Axg + B1ωg + B2ug

zg = C1xg + D11ωg + D12ug

yg = C2xg + D21ωg + D22ug

(5.31)

whereωg and ug denote the exogenous and control input vectors respectively and Pg can be more
compactly written as:

Pg(s) =


A B1 B2

C1 D11 D12

C2 D21 D22


(5.32)

Two output equations are used in this model to distinguish between the measured outputs, denoted
yg, which are treated as inputs to the controller and the regulated outputs, denoted zg. Figure
5.12 contains the block diagram description of the generalized plant Pg controlled by a feedback
controller Kg. The transfer function between the exogenous inputs and regulated outputs, referred
to as the closed-loop performance channel, is given by:

zg = F`(Pg,Kg)ωg (5.33)

where F` denotes the lower linear fractional transformation and is defined as:

Fl : Gzgωg(Pg,Kg) = Pg,11 + Pg,12Kg(I + Pg,22Kg)−1Pg,21 (5.34)
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Figure 5.12: Generalized plant model for H∞ controller formulation

Details pertaining to linear fractional transformations are provided in Appendix C. The control
objective is thus to design a feedback controller Kg such that Fl is minimized. In H∞ control, the
controller is found by minimizing the infinity norm of the performance channel. Mathematically,
this can be expressed as:

minimize
Gzgωg(Pg,Kg)


∞ (5.35)

subject to the condition that the controller Kg stabilizes the plant Pg internally. Basic H∞
algorithms solve a suboptimal version of the controller design problem [111]. The suboptimal
version involves designing a controller such thatGzgωg(Pg,Kg)


∞ < γg (5.36)

for a given value of γg > 0. The motivation for designing suboptimal controllers stems from the
fact the optimal closed loop transfer matrix Gzgωg can be shown to have a constant largest singular
value over the complete frequency range. Thus the optimal controller is not strictly proper and
the optimal frequency response to the cost output does not roll off at high frequencies [53, 111].
Furthermore, in cases where there is more than one control variable or more than one sensor
variable, the optimal H∞ controller is generally not unique. Suboptimal design methods use a
binary search to determine the level of optimality (i.e., measured by the parameter γg). Once the
value of γg has converged within a specified tolerance, the H∞ controller is designed using Youla
parameterization or Riccati-based approaches [111].

The generalized plant Pg in Figure 5.12 may contain frequency domain descriptions of
filters and weighting functions to achieve the desired control performance. Mixed-sensitivity
H∞ controllers provide a closed loop response according to design specifications such as model
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Figure 5.13: Generalized plant model with prototype device for H∞ controller design

uncertainty, frequency-dependent disturbance attenuation, and control bandwidth. For example,
weights can be added to the elements of zg to fix the frequency range over which an element is
minimized.

5.5.2 Implementing robust control for prototype device

Implementing an H∞ controller for the prototype DACS requires modelling the entire closed loop
system as a generalized plant and therefore the ISM approach must be followed. Figure 5.13
contains the block diagram description of the generalized plant model for the prototype device
controlling an arbitrary structure. The feedback interaction dynamics are contained in the CSI
block while the prototype DACS is represented by the EMD and UGV blocks. For simplicity, the
output from the structure model is assumed to be the state vector containing nodal displacements
and velocities. In practical applications where nodal accelerations are measured, a Kalman filter
can be included to estimate the state vector which is then treated as the true state vector for
implementation purposes. The exogenous input ωg contains the vector of external disturbances
ω and vector of measurement noise ν. This input signal is partitioned accordingly and passed
through separate sensitivity weighting filters, denoted Sω and Sν respectively, to shape and scale
the signals. The regulated output, denoted zg contains the weighted structural states and weighted
control input. The states are weighted by the sensitivity function Sys while the control input is
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weighted by the sensitivity function Spc to achieve the desired control performance. The two
key implementation challenges include accurately modelling the uncertainty associated with the
EMD and UGV system models and designing the sensitivity functions to achieve the desired
control performance.

Modelling DACS uncertainty: The uncertainty associated with the UGV and EMD models
was discussed in Chapter 4 and is illustrated in Figure 4.5 and Figure 4.9 respectively. As
shown, the estimated system models lie within their respective ranges of experimental FRFs
and were designed to minimize the impact of modelling errors. In the context of uncertain
dynamical systems, these best-fit approximations are referred to as nominal models while the
range of experimental FRFs represent the expected level of uncertainty. In order to take such
uncertainty into account, uncertain system models – containing a nominal model and a set of
models that is guaranteed to contain the system uncertainty – must be derived. There are two
common modelling approaches for incorporating uncertainty: additive uncertainty modelling
and multiplicative uncertainty modelling. For a given nominal model Hj,i, the multiplicative
uncertainty approach models the uncertain system H̃j,i as:

H̃j,i = Hj,i(1 + Sj,i∆) (5.37)

where Sj,i is a frequency-dependent weighting function and ∆ is an uncertain, stable, linear time
invariant (LTI) system model. In this case, the weighting function describes the percentage of
variation between the nominal model and worst-case models and thus is particularly useful when
the gain is uncertain. On the other hand, additive uncertainty describes the absolute magnitude of
variation between the nominal model and worst-case model. Additive uncertainty is commonly
used when a bounded neighbourhood on the nominal model is known. Mathematically, additive
uncertainty models are of the form:

H̃j,i = Hj,i + Sj,i∆ (5.38)

Although both methods are valid alternatives for modelling the uncertainty associated with
the DACS components, multiplicative uncertainty modelling is better suited for capturing the
frequency-dependent gain uncertainty and will be discussed next. It should be noted that although
multiple UGV and EMD system models were found by applying both experimental and analytical
methods, only the experimentally identified models are considered for H∞ controller design. This
is merely done to simplify the explanation as the use of analytically derived models would follow
an analogous procedure.
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Figure 5.14: Bode plot of uncertain UGV model with experimental FRFs

Consider the nominal UGV model relative to the range of experimental FRFs. At low
frequencies, below 2 Hz, the variation in the FRFs is relatively small (i.e., approximately ± 0.5
%) suggesting a low amount of uncertainty. However, beyond 2 Hz, the non-linear effects of the
pneumatic UGV tires lead to considerable variation in the magnitude and phase of the estimated
models constituting higher levels of uncertainty. For example, the range of experimental FRFs
extend approximately ± 6 % and ± 35 % from the nominal model at 3 Hz and 5 Hz respectively.
The weighting function for multiplicative uncertainty is designed based on the percentage of
variation from the nominal model across the frequency range of interest and is expressed as:

SFtFe =
2s + 1.386

s + 69.3
(5.39)

Using this weighting function in Equation 5.37 yields the uncertain UGV model. Figure 5.14
plots 20 realizations from the uncertain UGV model, as well as the nominal model and range of
experimental FRFs illustrated by a shaded region. As shown in Figure 5.14, a number of realiza-
tions from the uncertain UGVmodel fall beyond the range of the experimental transfer functions.
This is achieved using a conservative weighting function to account for any measurement errors
and/or time delays associated with the experimental testing. More importantly, since the range of
experimental transfer function models are guaranteed to fall within the class of systems defined by
the uncertain UGV model, the effects of non-linearity will be addressed within the H∞ controller
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Figure 5.15: Bode plot of uncertain EMD model with experimental FRFs

formulation.

Quantifying the uncertainty associatedwith the nominal EMDmodel follows the sameprocess.
The percentage of variation from between the nominal model and experimental FRFs is identified
across the range of frequencies and used to model the uncertainty weighting function. The
weighting model for EMD uncertainty is given by:

SFePc =
1.5s + 15.67

s + 391.6
(5.40)

Applying multiplicative uncertainty according to Equation 5.37 yields the uncertain EMDmodel.
Figure 5.15 compares 20 realizations of the uncertain EMD model with the nominal model
and range of experimental transfer function models. As intended, the uncertain EMD model
includes all experimentally identified transfer function models and thus addresses the uncertainty
associated with the nominal EMD model.

Tuning weighted sensitivity functions: In H∞ control, the various sensitivity functions need
to be tuned in order to achieve the desired control performance. The sensitivity functions
perform frequency shaping and magnitude scaling on their respective signals to formulate the
desired optimization problem. For structural control applications, the sensitivity function for
the structural output (i.e., structural states) is generally designed as either a band-pass filter
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or low-pass filter to target a narrow frequency bandwidth or multiple low-frequency modes
respectively. In either case, frequency content outside the filter cut-offs is suppressed by the
filter allowing the optimization to focus on a specific mode or modes. The DACS prototype,
has an operating control bandwidth of 0 - 5 Hz. To optimize based on this range, a high-pass
filter with a frequency cut-off of 5 Hz is used as the sensitivity function for the control input. In
effect, this function penalizes high frequency content by reducing the relative weight on control
frequencies within the operating bandwidth. In addition to frequency shaping, the relative gains
associated with the output sensitivity and control sensitivity can be tuned to balance the trade-off
between performance and control effort. On the other hand, the input sensitivity function and
noise sensitivity function are used to shape and scale the external excitation and additive noise
respectively. The design of these functions is based on the expected or worst-case excitation and
types of sensors used for measurement. For example, narrow-band excitation can be considered
by using a band-pass filter for the input sensitivity. Similarly, the expected level of sensor noise
can be designed by appropriately scaling the magnitude of a constant gain transfer function.

5.5.3 Limitations of H∞ robust controller

The main limitation of the H∞ formulation is the inability to directly model the DACS operating
constraints. As a result, the weighting sensitivities must be carefully designed to ensure the phys-
ical limitations are not exceeded under extreme conditions. Furthermore, since the formulation is
based in the frequency domain, time domain specifications such as the EMD stroke limitations or
maximumUGV tire forces are challenging to achieve. This limitation has been addressed through
various means in the literature [112–114]. Although these methods show promising results, they
are outside the scope of this thesis and the concept of constrained H∞ is considered a potential
direction for future work. The H∞ formulation described above yields unstructured controllers
which are generally of high order. This may lead to implementation issues and/or a large control
effort requirement. One approach to overcome this is to employ model-reduction techniques.
Alternatively a structured approach can be used in which the controller is parameterized and the
H∞ norm is minimized by optimizing the parameters.
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Chapter 6

Achieving mobility

Regardless of the controller formulation, all structural control devices have an upper limit on
control performance imposed by their position on the structure. The position of a control device
is an important consideration in structural control since the controllability of a given mode of
vibration depends on the relative magnitude of the mode shape at the location of the control
force. To achieve the greatest control effect for a particular mode, the control device is positioned
at or near the peak of the corresponding mode shape. The trade-off here is a considerable
reduction in the control effect on other modes with may in fact reduce to no control effect if the
location coincides with the node of a mode shape. For simple geometries where the response is
dominated by a single mode of vibration, identifying the optimal position for the control device
is straight-forward. However, determining the optimal control location for larger and mode
complex structures is much less direct. This problem is particularly challenging for lightweight
flexible structures such as aluminum pedestrian bridges where individuals or large groups of
pedestrians could excite entirely different modes [92]. A common approach used in practice is
to employ multiple control devices where each device is intended to suppress a different mode of
vibration. Although this method is a valid long-term solution for permanent structures, the use
of several fixed devices is largely redundant and impractical for applications with an immediate
and temporary need for vibration mitigation. In such cases, this problem could be resolved by
repositioning one or two devices to the appropriate locations as needed. This motivates the
concept of mobility which is one of the key aspects of the DACS concept.

A mobile control system is characterized by the ability to autonomously position itself at
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a desired location on a structure. This capability allows a single device to effectively control
different modes of vibration by repositioning to appropriate locations. Moreover, this adapt-
ability adds further capability to the overall controller which can be expanded to determine the
optimal location for the control devices in addition to the control forces. For the prototype
device, mobility is facilitated by the UGV and on-board vision sensors. Therefore, achieving
autonomous positioning requires two of the most central tasks in autonomous robotics: local-
ization and mapping. Localization describes the process of estimating the UGVs position as it
navigates through a known environment while mapping involves the construction of a map of
the environment based on estimated locations of features [86]. When navigating an unknown
environment, the autonomous system must build a map of the environment while concurrently
using the same map to localize itself [88]. This is a fundamental problem in mobile robotics
and addressed using SLAM, and acronym for simultaneous localization and mapping [87]. This
chapter summarizes the advantages of incorporating mobility in the DACS concept, discusses
the corresponding impact on the overall control algorithm, and presents the implemented SLAM
solution for autonomous navigation on unknown structures.

6.1 Advantages of mobility

Mobility is a key component in the DACS concept and eliminates the need to deploy several fixed
devices by simply repositioning one or two mobile devices as required. The main advantages of
mobility in the context of the vibration control are summarized as follows:

1. Ability to control different modes of vibration: Mobility allows repositioning of the pro-
totype to effectively control different modes of vibration. This is particularly advantageous
for lightweight flexible structures where the applied loading dictates the dominant mode.

2. Potential to control multiple modes simultaneously: By navigating to a position between
mode-shape peaks the control device can influence the response of multiple modes simul-
taneously. In fact, mobility generates an additional control variable – namely the control
device’s position on the structure – which can be optimized to improve the overall control
performance.
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3. Facilitates deployability and simplifies implementation: A mobile control system with
autonomous navigation can be deployed from a convenient location on the structure. This
eliminates the need for manual installation at the final device location and could potentially
speed up implementation and/or reduce disruption to service.

In addition to the aforementioned benefits from a vibration control perspective, a mobile
control system can also be leveraged for system identification purposes. Having a control system
readily available for immediate implementation is the main motivation for the DACS concept;
however, in order to achieve this, an accurate structure model must be known a priori. In many
cases, if a model of the structure does exist, it only approximates the physical system. Although
the use of an approximated model may cause a reduction in control effectiveness, the efforts
required to refine the model (i.e., through large-order finite element modelling or experimental
system identification) can be both time consuming and expensive. An advantage of having a
mobile control device deployed on the structure is the potential for rapid system identification by
providing forced excitation at different locations. The collected input-output data could be used
to update prior models or initiate new models. This added benefit reduces the dependence on an
a priori model and raises the potential to use DACSs on unknown structures. Nevertheless, the
use of the prototype device for system identification purposes is beyond the scope of this thesis
and is addressed as an item for future study.

6.2 Augmenting the control algorithm

The primary function of existing structural control algorithms is to determine the optimal input
to the control device. The models used in designing these algorithms reflect the position of the
control device on the underlying structure which is a key constraint in the optimization. The
concept of DACSs has introduced the idea of mobile control systems in which the position of
the device can change in real time. As such, instead of treating the device location as a fixed
parameter (i.e., constraint) in the plant model, the location can be modeled as an additional input
variable in the optimization. In other words, the structural control algorithm can be augmented
to determine the optimal location of the control force in addition to the control input, given the
optimized location.
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The ability to change the location of the control force on a given structure provides adaptability
to respond to changes in the structure’s properties or external loading patterns and thus offers
potential to achieve improved control performance. The immediate trade-off with these benefits
is a considerable increase in controller complexity. Part of this complexity stems from practical
issues such as the time required to reposition the device and uncertain future behaviour. For
example, the cost of repositioning must be weighed against the control benefit in the new location
to justify the move. This is particularly relevant if the vibration control component is inactive
while repositioning in which case frequent repositioning will greatly limit vibration control
efforts. Although mobile control systems and thus optimizing the control location in real time is
being presented for the first time, the problem of determining the optimal control location for a
given structure has been studied by a number of researchers [115–117]. In these studies, the focus
is on solving for the single best location for controlling the structure under all possible scenarios.
The general limitation with these solutions is that they don’t account for mobility which provides
a means to change the position in response to the current scenario. Nevertheless, the existing
literature on this topic provides a starting point for addressing the augmented control problem for
DACS.

Developing a complete, fully augmented control algorithm for the prototype DACS is beyond
the scope of this thesis and reserved as a direction for future work. However, for demonstration
purposes and to study the impact of mobility on vibration control performance, a relatively
simple augmented control framework is employed. In general, the control framework contains
three components: sensing, position control, and vibration control. The sensing component
involves continuous monitoring of the applied loading and/or dynamic response to inform the
positioning and vibration control components. The positioning control component is divided
into two main tasks; first, determine the optimal control position and second, navigate to that
location. In this thesis, simple algorithms that predict the dominant mode of vibration are used to
determine the optimal position from a set of predefined locations. Since the position is optimized
amongst a constrained set of locations, multiple controllers are designed a priori based on the
possible positions. As such, the vibration control component, involves pulling the appropriate
feedback gains or control algorithm and determining the optimal control input. In should be noted
that while navigating to the desired position, the vibration control component is paused. Specific
details on the implemented augmented control frameworks are provided later in the descriptions
of the experimental studies investigating the impact of mobility.
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Figure 6.1: Sketch of the general SLAM problem

6.3 Simultaneous localization and mapping (SLAM)

In general, the SLAM problem is one of determining the position of the robot while concurrently
building a map of the environment given control inputs and observations. This problem is
sketched pictorially in Figure 6.1. The SLAM problem has been formulated and solved in many
different forms [90]. In some cases, the solution method is selected based on the robotic system
and available sensors however in most applications the type of environment in which the robot
operates dictates the SLAM solution. One of the most widely used solution methods, given its
suitability to a variety of environments, utilizes an extended Kalman filter (EKF) and is referred
to as EKF-SLAM [89]. In EKF-SLAM, the standard two-step prediction-correction update
procedure associated with the EKF is used to estimate the mobile robot’s pose and coordinates
of all known features in the environment. Prior to introducing the EKF-SLAM formulation, the
probabilistic framework upon which the solution method rests, is discussed.
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6.3.1 Probabilistic framework for SLAM

The probabilistic representation is one of several unique mathematical frameworks that have been
used to model the SLAM problem. Although other representations have resulted in alternative
solutions to the SLAM problem, there is no evidence that these alternatives outperform the
probabilistic approach in practical scenarios [118]. As such, the probabilistic approach has
become the most widely used and is considered standard [88]. The underlying assumption of
the probabilistic framework is that the system state can be represented by a probability density
function (PDF) at every time iteration k. The system state is composed of the vector of robot
pose states (i.e., global coordinates and heading) denoted xr and the vector of states for each
feature in the map (i.e., global coordinates) denoted xm. Given all observations and control inputs
up to time k, this probability distribution represents the joint posterior PDF of the system state
and is defined as p (xk |y0:k, u0:k, x0) where x, y and u denote the system state vector, vector of
observations, and vector of control inputs respectively [118]. When posed in this manner, the
solution to the SLAM problem becomes one of solving for this posterior distribution (i.e., belief
for the system state) at each time step.

TheBayes filter is themost general ofmany algorithms for calculating the posterior distribution
in a probabilistic framework [86]. The Bayes filter operates recursively such that the believed
state is first predicted based on information contained in past control inputs and observations and
subsequently corrected using current observations. Mathematically, this sequential prediction-
correction estimation scheme is defined by the following prediction and measurement update
equations [88]:

Prediction update:

p (xk |y0:k−1, u0:k, x0) =
∫

p
(
xr

k |xr
k−1, uk

) × p (xk−1 |y0:k−1, u0:k−1, x0) dxr
k−1 (6.1a)

Measurement update:

p (xk |y0:k, u0:k, x0) = p (yk |xk) p (xk |y0:k−1, u0:k, x0)
p (yk |y0:k−1, u0:k) (6.1b)

where the terms p
(
xr

k |xr
k−1, uk

)
and p (yk |xk) are referred to as themotionmodel and observation

model respectively. The motion model describes the probability distribution on state transitions
while the observation model describes the probability of making an observation given a believed
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state. A key simplifying assumption is that the robot follows a Markov process where the current
robot pose depends only on the preceding pose and applied control action (i.e., the state transition
of the robot is independent of the feature observations) [88].

The full SLAM solution is only required when neither the robot states nor map states are
known. If a map of the environment is known, the problem reduces to one of localizing the robot
within the map. As such, the known map states denoted x̄m are used within the estimation of
the robot states and the goal becomes solving for the probability distribution p

(
xr

k |y0:k, u0:k, x̄
m)
.

On the contrary, if the robot state can be assumed to be known given reliable and accurate pose
measurements from multiple sensors such as GPS units and IMU sensors, the problem reduces
to one of constructing a map based on the observation data. Here the problem is reformulated
such that the goal is to find the probability distribution p

(
xm

k |y0:k, u0:k, x̄
r
k

)
where x̄r represents

the known robot pose states [88].

6.3.2 EKF-SLAM formulation

The EKF is one particular implementation of the generic Bayes filter algorithm that can be used to
solve the probabilistic SLAM problem. In EKF-SLAM, the posterior PDF (i.e., believed system
state) is assumed to be a multivariate, Gaussian, normal distribution and thus can be characterized
by a mean x̂k |k and covariance Pk |k . The probability distributions for the motion model and the
observation model in Equations 6.1a and 6.1b respectively can be rewritten using nonlinear state
space equations with added Gaussian noise as:

p
(
xr

k |xr
k−1, uk

) ⇔ xk = g(xk−1, uk) + ωk (6.2a)

p (yk |xk) ⇔ yk = h (xk) + νk (6.2b)

where ω and ν represent the process noise and measurement noise vectors with covariances
denoted by Rk and Qk respectively [88]. However, the use of the nonlinear functions g(·)
and h(·) violate the Gaussian properties of the posterior probability distribution and thus linear
approximations are required. Using a first-order Taylor expansion, the non-linear motion model
and observation models are approximated as:

g(xk−1, uk) ≈ g(x̂k−1|k−1, uk) +Gk(xk−1 − x̂k−1|k−1) (6.3a)

h(xk) ≈ h(x̂k |k−1) +Hk(xk − x̂k |k−1) (6.3b)
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where x̂k−1|k−1 and x̂k |k−1 denote the mean of the belief distribution at k − 1 and mean of the
prior belief distribution at k respectively. The term Gk = g′

(
x̂k−1|k−1, uk

)
is the Jacobian of

g(·) evaluated at the estimate x̂k−1|k−1 while Hk = h′
(
x̂k |k−1

)
is the Jacobian of h(·) evaluated

at the estimate x̂k |k−1 [86]. Linearizing the motion model and observation model implies the
EKF-SLAM algorithm only approximates the Gaussian belief distribution. Nevertheless, since a
Gaussian distribution can be characterized by a mean and covariance, the goal of the EKF is to
efficiently estimate the mean and covariance opposed to computing the exact posterior.

The EKF-SLAM solution incorporates the two-step prediction-correction scheme. In the
prediction update, the belief distribution for the robot pose states is updated given known control
input. Since the belief is assumed to be Gaussian, this is accomplished by updating the mean
and covariance of the distribution. In general, the features in the environment are assumed to
be static. As a result, the vector of map states is not included in the prediction update and only
the robot states and corresponding entries in the covariance matrix are updated. The prediction
update equations are given by:

x̂r
k |k−1 = g

(
x̂r

k−1|k−1, uk

)
(6.4a)

Prr
k |k−1 = GkPrr

k−1|k−1GT
k + Rk (6.4b)

In the correction update, measurements to features are used to improve estimates of both the
robot states and map states. The degree to which the measurements are incorporated in the
new state estimate is determined by the Kalman gain Ks. The observation model is used to
compute the difference between the actual and expected measurements. This error, calculated as
yk − h

(
x̂k |k−1

)
is multiplied by the Kalman gain to correct the state estimates. The equations for

the correction update are given by:

x̂k |k = x̂k |k−1 +Ks,k
(
yk − h

(
x̂k |k−1

) )
(6.4c)

Pk |k =
(
I −Ks,kHk

)
Pk |k−1 (6.4d)

where the Kalman gain is given by:

Ks,k = Pk |k−1HT
k

(
HkPk |k−1HT

k +Qk

)−1
(6.4e)
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6.3.3 EKF-based localization

Once a sufficient map has been established using EKF-SLAM, the autonomous navigation prob-
lem reduces to localization. As shown in the probabilistic framework, the localization problem
involves using a known map to estimate the robot pose states. Mathematically, this requires
solving for the posterior probability distribution: p

(
xr

k |y0:k, u0:k, x̄
m)
. To leverage the efforts

towards implementing EKF-SLAM, an EKF-based localization algorithm is utilized on the pro-
totype device. The prediction-correction updates provided for EKF-SLAM can be adopted for
EKF-localization by reducing the state vector to the robot pose states and replacing the believed
map states with the known feature locations. Incorporating these changes allows the same two-
step prediction-correction scheme to be used to first predict the robot pose state and subsequently
correct the estimate based on observations.

6.4 Implementing EKF-SLAM on the prototype device

One of the main advantages of a DACS is the ability to be deployed on a range of structures.
Therefore, the implemented SLAMalgorithm should be suitable for a variety of mapping environ-
ments and shouldn’t rely on any structure-specific conditions. The EKF-SLAM solution defines
a map based on a collection of uniquely identifiable features and thus is suitable for a range of
unknown environments. Nevertheless, a number of challenges arise when implementing EKF-
SLAM on civil infrastructure. These challenges stem from difficulties associated with identifying
unique features as well as restricted exploration due to confined spaces. In order to implement
the EKF-SLAM and EKF-based localization schemes, a motion model and a measurement model
must be developed for the prototype device. The derivations for the motion and measurement
models are presented next followed by a discussion on the methods used to overcome the key
implementation challenges.

6.4.1 Motion model

The motion model is central to the prediction update and responsible for propagating the robot
pose states given a control action. The motion model for the prototype DACS is derived from
the kinematic model for a skid-steered UGV. Kinematic modelling of skid-steer vehicles has
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Figure 6.2: Coordinate systems for UGV motion model

been studied to varying degrees in the literature and has yielded a range of modelling approaches
[119–121]. Nevertheless, the most commonly used kinematic model for the UGV is given by:


Ûxr
g

Ûyr
g

Ûψr
g


=


cosψr

g xICR sinψr
g

sinψr
g −xICR cosψr

g

0 1


[
νx

ωg

]
(6.5)

where xr
g, yr

g, and ψr
g denote the global coordinates and heading for the robot’s pose. The linear

and angular input velocity commands are represented by νx and ωg respectively and xICR is the
projection of the instantaneous center of rotation (ICR) on the local x-axis. Figure 6.2 illustrates
the local and global frames of reference and projection of the ICR. The ICR is the point about
which the vehicle rotates at any given instant and thus, the projection of this point on the local
x-axis describes the relationship between the angular velocity and the y-component of the local
frame velocity. As such, the y-component of the local frame velocity, denoted νy, is computed
using:

νy = −ωgxICR (6.6)

For skid-steered vehicles such as the UGV used in the prototype, the location of the ICR and
magnitude of the corresponding projection on the local x-axis depends on the ratio of forward to
angular velocities. By assuming the ratio between the forward and angular velocities is constant,
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the projection of this point on the local x-axis (i.e., xICR) is also assumed to be constant which
considerably simplifies the motion model. For cases where the UGV travels predominantly in
a straight line with minimal steering (i.e., pedestrian bridge applications), this assumption was
shown to have negligible impact on the estimated robot pose. Based on the kinematic model in
Equation 6.5, the non-linear motion model in discrete-time with a time step of dt is given by:

g(x̂r
k−1|k−1, uk) =


xr
g,k−1 + (νx,k cosψr

g,k−1 + ωg,k xICR sinψr
g,k−1)dt

yr
g,k−1 + (νx,k sinψr

g,k−1 − ωg,k xICR cosψr
g,k−1)dt

ψr
g,k−1 + ωg,k dt


(6.7)

Taking the partial derivative of Equation 6.7with respect to the robot pose yields the corresponding
Jacobian matrix:

Gk =



1 0
(
−νx,k sinψr

g,k−1 + ωg,k xICR cosψr
g,k−1

)
dt

0 1
(
νx,k cosψr

g,k−1 + ωg,k xICR sinψr
g,k−1

)
dt

0 0 1


(6.8)

6.4.2 Measurement model

Dead reckoning methods, which rely solely on local measurements such as wheel encoders
and IMUs suffer from drift due to the accumulation of erroneous signals. As such, in EKF-
SLAM, absolute measurements to identified features are incorporated to correct this drift. The
measurement model is used to calculate the expectedmeasurement for a given feature based on the
believed robot pose. This expected measurement is then compared with the actual measurement
to correct the beliefs. The main challenge associated with incorporating observations involves
synchronization of the measurements with the UGV states. In some cases, measurements from
vision sensors experience time delay associated with processing the image and therefore may be
used to correct the current state of the UGV which had been updated since the instant the images
were recorded. For the prototype DACS, encoder data from the UGV andmeasurements to known
features in the map from the Kinect sensors are used in the correction update. Although encoder
information for skid-steered UGVs is fraught with errors caused by wheel slippage, given the
vehicle travel is predominantly in a straight line the encoder measurements in the longitudinal
(local x-coordinate) direction are onlymarginally biased by the slippage. The same does not apply
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to the lateral (local y-coordinate) or UGV heading as thus only the longitudinal encoder position
data is used in the update. Furthermore, to prevent the accumulation of error over large travel
distances, the incremental encoder measurements are used opposed to the absolute data which
is tracked by the UGV. In this way, instances of wheel slippage only affect the current update
and are removed from memory for future updates. The measurement model for the incremental
change in the local x-coordinate is given by:

henc

(
x̂r

k−1|k−1, x̂
r
k |k−1

)
=

xr
g,k − xr

g,k−1

cosψr
g,k−1

(6.9)

The forward and rear-facing Kinect sensors are used to detect known features in the environ-
ment and provide range and bearing measurements relative to the sensor’s local reference frame.
Experimental testing with the Kinect sensor revealed that relatively small features (approximately
0.2 m by 0.2 m in dimension) can be accurately detected up to 4 m away from the sensor; however,
it was shown that measurement error began increasing beyond 3 m. Similarly, features can be
detected across the full field of view of the sensor although image distortion near the edges of the
field of view cause increases in measurement error. In an effort to reduce measurement error, raw
measurements greater than 3 m or less than 0.5 m are rejected from the update. Figure 6.3 depicts
a sketch of the measurement model for the Kinect sensors. Mathematically, the model contains
range and bearing measurements to a unique point feature with believed coordinates

(
xi
g, y

i
g

)
and

is expressed as:

hi
knct(x̂k |k−1) =


√(
δi

x,k
)2
+

(
δi
y,k

)2

arctan
(
δiy,k

δix,k

)
− ψr

g,k


=

[
γi

r,k

γi
b,k

]
(6.10)

where the global distance components are computed using:

δi
x = xi

g,k − xr
g,k (6.11a)

δi
y = yi

g,k − yr
g,k (6.11b)

Since each measurement depends on a single feature, measurement updates can be performed
independently (i.e., one feature at a time.) Linearizing the above measurement model with respect
to the UGV states and ith feature states leads to the corresponding Jacobian matrix:

Hi
knct,k =


−δixk
γir ,k

−δiyk
γir ,k

0 0 . . . 0 δixk
γir ,k

δiyk

γir ,k
0 . . . 0

δiyk

(γir ,k)2
−δixk
(γir ,k)2 −1 0 . . . 0 −δiyk

(γir ,k)2
δixk

(γir ,k)2 0 . . . 0


(6.12)
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Figure 6.3: Schematic of measurement model for Kinect sensor

6.4.3 Implementation challenges

Although the field of autonomous robotics has experienced considerable growth over recent
years, the specific application of SLAM to civil engineering structures for the purpose of vibra-
tion control is novel and is associated with unique challenges that must be addressed for successful
implementation. For example, many lightweight pedestrian bridges are modular in nature and
contain several repeated elements. Although this has a number of advantages from a structural
design perspective, from a mapping and localization point-of-view the repeated structural ele-
ments produce identical features within the environment. Furthermore, exploration of bridge
structures is generally confined to a straight line which limits the ability to observe features from
different viewpoints and may lead to convergence issues in the map. Thus, the overarching goal
is to develop a SLAM solution suitable for mapping a range of structures with sparse or repeated
features in confined spaces. The three key challenges pertaining to the implementation of an
EKF-SLAM solution for existing structures and specifically pedestrian bridges are: ensuring
accurate feature extraction and data association, maximizing exploration in constrained environ-
ments, and achieving loop closure. In addressing these challenges, the SLAM solution method
should be suitable for use on a range of structures. As such, the EKF-SLAM algorithm shouldn’t
rely on structure-specific properties or characteristics to achieve accurate results.
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Feature extraction and data association: Feature extraction is the process of identifying
distinguishable features in the environment that can be used to develop the overall map. The type
of features that are extracted and corresponding map that is produced depends on both the type
of sensors being used and the nature of the surrounding environment. Data association involves
finding correspondences between the features that already exist in the global map and those that
are currently visible to the UGV. When features are not simple points it is possible for them to
appear different from different view-points, which is a fundamental problem in data association.
The sparsity of physical elements and repetitive nature within modular structures compounds the
existing challenges in feature extraction and data association. If the SLAM solution relies solely
on the structure itself for mapping and ignores the surrounding environment which may not re-
main constant, features may only be derived from structural elements or permanent attachments.
Using a feature extraction method designed to map individual structural elements, will be highly
susceptible to false correspondences in data association. On the other hand, if all of the elements
on one side of the bridge are grouped as a single line feature, the algorithm will lack measurement
data to correct the longitudinal position of the UGV. To overcome these limitations and develop
a feature extraction scheme that is suitable for a range of structures, individual tags containing
unique augmented reality (AR) codes are placed on the structure. This standardizes the features,
facilitates efficient data association, and significantly reduces the likelihood of false correspon-
dences. The Kinect sensors mounted on the DACS can detect the AR codes using the RGB image
and provide relative location information by incorporating depth information from the infrared
transmitter. Figure 6.4 illustrates one possible setup where the AR codes are positioned on both
sides of the bridge at each panel point. In EKF-SLAM, the number of states to be estimated is
proportional to the number of features in the estimated map plus the robot pose states. As such,
a trade-off exists between the number of tags added to the bridge and computational complexity.
For example, if not enough tags are used there may not be sufficient measurement information
for convergence; however, if too many tags are used, the processing time of each measurement
may lead to time delays in the algorithm.

Exploration scheme: In any SLAM implementation, an exploration scheme is required to
navigate the robot through the unknown environment and ensure the entire area is explored. For
pedestrian bridge applications, a straight-forward exploration scheme that tracks the center-line
of the bridge is considered to be the most effective. In this case, the UGV is commanded with
a constant forward velocity and a proportional-derivative (PD)-controller is used to command
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Figure 6.4: Use of AR tags to standardize features

angular velocity to correct the heading of the vehicle such that it tracks the desired trajectory.
Given AR tags on both sides of the bridge, the desired trajectory is defined by the midpoint
between two tags directly across from each other. As such, the desired trajectory is extended as
additional features are detected. This process continues until the UGV reaches the opposite end
of the bridge and no new features are identified. An advantage of this exploration method is that
the placement of AR tags dictates the desired trajectory and therefore can be applied to a wide
range of structures as well as confine the exploration to a portion of the structure.

Loop-closure: Loop closure is central to the convergence of the SLAM problem and is
achieved when a feature is re-observed after significant travel. In EKF-SLAM, state uncertainty
continues to grow until loop closure is achieved [86, 88]. Upon achieving loop closure, the
estimates of all states improve based on the correlation information that is stored in the covariance
matrix. Achieving full loop-closure on a pedestrian bridge with a forward facing sensor requires
travel to the far end of the bridge and a return trip back to the starting point. Not only does
this process require a large amount of time, it also results in a significant travel distance before
achieving loop closure during which large amounts of uncertainty may accumulate. The loop-
closure problemmotivates the use the second, rear-facing Kinect sensor. When traveling forward,
features are first extracted and initialized based on measurements from the forward-facing Kinect
sensor. After continuing in the same direction, the same feature is re-observed, this time from
the rear-facing sensor. As a result, a partial loop-closure is achieved for the features that have
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been seen up to that point. Continuing in this fashion results in a series of incremental partial
loop-closures that progressively improve the state estimates. It should be noted that the features
or in this case AR tags must be visible from both directions. As such, double-sided AR tags are
used for the prototype system.

6.5 Experimental validation

This section covers the experimental study that is carried out to verify the functionality of the
EKF-SLAM solution for mapping existing structures. The physical structure considered in this
study is a modular aluminum pedestrian bridge with a span of 16.76 m, width of 1.22 m and
constructed in 1.52 m modules. Double-sided features (i.e., AR codes) are placed on both sides
of the bridge deck and evenly spaced at 1.52 m along the length to coincide with the panel points.

6.5.1 Implementation

The described EKF-SLAM solution is implemented in MATLAB using the Robotics Systems
Toolbox. A TCP link is used to establish communication between the EKF-SLAM algorithm
and the on-board ROS-enabled laptop. All measurement information from the UGV and sensors
is sent to the algorithm while the computed velocity input commands are returned to the ROS
platform for execution. Synchronization of the measurements is achieved by predicting the future
position and timing the collection of measurements to align with that particular instance. To
start, the DACS is placed at one end of the bridge and programmed to travel with a constant
forward velocity until the last feature is detected. The simple steering controller injected angular
velocity to correct the UGV heading such that the robot tracks the center-line of the map as it is
being created. The response from the steering controller is intentionally slow to minimize wheel
slippage and associated errors in the prediction model. The noise models for the prediction and
measurement updates are quantified experimentally prior to implementation by comparing the
estimated pose and sensor measurements with known values.
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Figure 6.5: Map of pedestrian bridge using EKF-SLAM

Table 6.1: Summary of RMSE for estimated feature locations using EKF-SLAM

Direction RMSE (m)
Overall map First 20 features

Global X-coordinate 0.024 0.0063
Global Y-coordinate 0.043 0.0081

6.5.2 Mapping results

Figure 6.5 compares the constructed map of the bridge with the actual AR tag locations and
includes samples from the estimated DACS trajectory. Overall, the estimated feature states
correspond well to the actual tag locations. However, as shown in Figure 6.5, the accuracy of the
map tends to degrade towards the end of the bridge. This error is due to the fact the exploration
concluded at the 15 m mark and the incremental loop closure scheme has not corrected the final
feature estimates. Table 6.1 summarizes the RMSE between the actual map and the estimated
feature states in terms of the global X and Y coordinates. The RMSE for the entire map is
compared with the RMSE for the first 20 features (i.e., excluding the last two rows of features).
The resulting covariancematrix reveals the considerably lower variance in the global X-coordinate
of a given feature estimate compared to the global Y-coordinate. This difference can be attributed
to measurement error in the sensor and the fact the exploration followed a nearly straight line
down the center of the bridge. A consequence of this trajectory and positioning of the AR tags
is that most measurements are taken at relatively small angles. As such, small errors in the
heading estimate will have a much larger impact on the local y-component compared to the local
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x-component. Although there is increased uncertainty associated with the global Y-coordinates
of the features, the resulting map is considered sufficient for use in localization.
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Chapter 7

Performance evaluation of the prototype
DACS

This chapter presents the experimental program used to investigate the overall performance and
control effectiveness of the prototype DACS. An overview of the general experimental setup and
testing methodology is provided first followed by three separate studies designed to evaluate the
formulated LQG,MPC, and H∞ controllers. Finally, the advantages ofmobility when suppressing
the vibrations of lightweight structures are assessed on a full-scale pedestrian bridge.

7.1 General experimental setup

Although numerical simulation is a powerful tool to assess a wide range of device characteristics
in an efficient manner, physical testing is necessary to accurately capture the true dynamics of the
system and properly assess the effects of modelling simplifications. Furthermore, physical testing
must be done in full-scale to produce true interaction effects between the structure and device
and assess the actual device capacity and mobility. Nevertheless, full-scale experimental testing
is cost-prohibitive and fraught with challenges including exciting the structure in a controlled
manner, test reproducibility, and space requirements. Therefore, the experimental program for
this research leverages real-time hybrid simulation (RTHS) on a hydraulic shake table to achieve
full-scale interaction effects without physically testing a full-scale structure.
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7.1.1 Methodology

Hybrid simulation is an experimental testing method where the reality of physical testing is
combined with the power of numerical simulation techniques. This method of testing allows the
test system to be divided into two substructures such that the well understood components are
separated from those for which a reliable analytical model is not available. The well understood
components aremodelled numerically inwhat is referred to as the analytical substructurewhile the
remaining components make up the experimental substructure which is tested physically in a lab
[122]. The experimental substructure often contains load-rate-dependent characteristics, in which
case the experimentsmust be conducted in real-time in order to capture the realistic performance of
the system [123–125]. Implementing RTHS requires robust and efficient computational resources
as well as a platform for fast and well-synchronized data communication [125]. Nevertheless, by
simulating in real-time, the dynamic response of complex systems such as structures controlled by
passive, active, or semi-active control devices can be studied without having to physically excite
a full-scale structure under laboratory conditions [126, 127]. RTHS is an ideal testing method for
the prototype DACS as it enables efficient and accurate assessment of the control performance
on full-scale structures under different controller formulations. This method also allows the
performance of the device to be evaluated across a range of structures by simply modifying the
analytical substructure accordingly.

7.1.2 Mechanical setup

The mechanical aspect of the test setup for RTHS consists of a Shore Western shake table and
four shear-type load cells as shown in Figure 7.1. The 1.5 m2 shake table is driven by a hydraulic
fatigue-rated actuator with a stroke length of ±150 mm. A hydraulic service manifold (HSM)
rated at 450 L/min regulates the oil pressure at 20 MPa and can generate a maximum force of
67 kN. A built-in linear variable differential transformer (LVDT) and integrated dynamic load
cell provide displacement and force feedback respectively from the actuator. An accelerometer
mounted on the table is also used to obtain direct acceleration measurements. The four shear-type
load cells all have maximum lateral load capacities of 17 kN and are positioned below each UGV
tire tomeasure the interface forces between the UGV and shake table. The load cell measurements
are passed through a low-pass digital filter to reduce system noise and prevent high-frequency
content from the hydraulic system from entering the numerical simulation. The shake table is
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Figure 7.1: Mechanical setup for RTHS

equipped with a Shore Western integrated controller that is capable of applying predefined as
well as externally generated (i.e., via analog input) displacement commands. For RTHS, the
desired position command is calibrated to a voltage signal and passed to the integrated controller
operating in displacement control.

7.1.3 RTHS platform

The key hardware component for the RTHS experimental platform is a NI cRIO-9035 consisting
of an embedded real-time controller and an FPGA. The controller features a 1.33 GHz dual-
core processor running NI Linux Real-Time, which combines the performance of a real-time
operating system with the openness of Linux. An FPGA is an integrated circuit chip consisting
of programmable logic blocks, configurable interconnections, and input/output nodes. The
programmed logic in an FPGA is compiled into physical hardware facilitating true parallel
execution with high reliability [128].

Figure 7.2 presents a schematic of the RTHS architecture which is made up of two nested
operational loops. The outer loop, referred to as the real-time loop, is responsible for the real-
time simulation of the analytical substructure, determination of the DACS control input, and
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Figure 7.2: Schematic of RTHS platform

any input/output file manipulations being carried out on the real-time controller. The inner
loop, running on the FPGA, executes all tasks related to data acquisition from the sensors (i.e.,
measured restoring force, measured shake table displacement and acceleration, and measured
EMD position) and application of any control signals to the experimental substructure (i.e., shake
table displacement and EMD position). The NI C-series modules, listed in Table 3.1, facilitate
the acquisition and transfer of signals between the FPGA and experimental substructure. As
shown in Figure 7.2, the inner loop and outer loop exchange data through direct memory access
(DMA). Since the inner loop runs as compiled FPGA code, the execution rate is typically faster
than the outer loop running on the real-time controller. Therefore, the DMA link between the
two loops executes at the rate of the outer loop. A loop rate of 1 kHz is used in the real-time loop
for all simulations unless noted otherwise.

Within a given iteration, simulation of the analytical substructure yields the displacement of
the experimental substructure which is issued to the Shore-Western controller and realized on the
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shake table. During the same step, the active control algorithm estimates the current states of the
system and computes the control input for the DACS. The control input (i.e., position command)
is passed to the inner loop where it is converted to a digital quadrature encoder signal and applied
to the Gemini servo drive to control the EMD. The restoring force measured at the interface
between the UGV tires and shake table is acquired by the load cells and passed to the outer loop
to be incorporated in the next iteration of the simulation.

The LabVIEW Real-Time module and LabVIEW FPGA module extend the NI LabVIEW
graphical programming environment and are used to program the real-time controller and FPGA
respectively. The user interface consists of a host virtual instrument (VI), an FPGA VI, and
several sub-VIs coordinated through a LabVIEW program. The term VI is used to refer to an
independent LabVIEW program or subroutine. The host VI is designed as a state machine that
features initialization and start-up routines and provides a structure for fixed-period iterations.
As such, the outer loop tasks are programmed on the host VI which runs on the real-time
controller. Given the configurable input/output and parallel execution of the FPGA, the inner
loop is programmed in the FPGA VI. This facilitates signal routing between the cRIO and
experimental substructure (i.e., shake table, EMD, and sensors)1

7.1.4 Real-time hybrid simulator

The most central task within the outer loop is the simulation of the analytical substructure.
This involves solving the second-order dynamic equation of motion for the test system. The
inputs to the system include the external forces on the analytical substructure and restoring forces
measured from the experimental substructure while the outputs of interest are the displacement
of the experimental substructure and simulated acceleration measurements for state estimation.
Unlike conventional hybrid simulation where the time to complete each step is arbitrary, RTHS
is performed in real-time and thus the solution method should not only be robust and accurate
but also computationally efficient to maintain synchronization with the control system [129].
A wide range of both implicit and explicit numerical integration methods have been developed
for RTHS. Although many implicit methods such as the Hilber-Hughes-Taylor-alpha (HHT-α)
method [130] have the benefit of being unconditionally stable, the iterative calculations within
each step require significant computational effort which may lead to time delays. On the contrary,

1The VIs used for most RTHS studies were developed collaboratively by the author andMr. Ali Ashasi-Sorkhabi.
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explicit methods, such as the central difference method [122], explicit Newmark method [131], or
state space formulations [132, 133] are much more efficient computationally; however, typically
have a restriction on the step size for numerical stability. In this thesis, the discrete state-
space formulation presented in Liu et al. [132] is implemented for simulating the system. This
formulation has been validated experimentally using similar hardware and can leverage the
previously developed state-space models used for controller design.

Consider the following equation of motion for a general MDOF system:

M Üxs(t) + C Ûxs(t) + Ra(t) + ERe(t) = w(t) (7.1)

where M and C are the mass and damping matrices of the analytical substructure respectively,
xs is the vector or nodal displacements and w is the vector of external forces. The terms Ra and
Re denote the restoring force vector computed in the analytical substructure and restoring force
measured in the experimental substructure respectively. Note the use of a location vector E to
apply the experimental restoring force at the corresponding DOF. In cases where the analytical
substructure is assumed to be linear elastic, the analytical restoring force vector is equal to Kxs

where K is the stiffness matrix of the analytical substructure. On the other hand, the restoring
force from the experimental substructure is measured directly by the load cells and treated as an
external input to the analytical substructure.

Rewriting the equation of motion in state-space form yields:

Ûz(t) = Az(t) + Bw(t) − BERe(t) (7.2a)
ys(t) = Cz(t) + Dw(t) − DERe(t) (7.2b)

where the state vector z = [xs Ûxs]T contains the displacements and velocities of the analytical
substructure. In RTHS, the outputs of interest are the structural displacements, particularly the
displacement at the interface with the experimental substructure. Furthermore, to objectively
evaluate the state-estimators used in controller design, the simulated structural accelerations are
needed. Therefore, the state, input, and output matrices are given by:

A =
[

0 I
−M−1K −M−1C

]
, B =

[
0

M−1

]
, C =

[
I 0

−M−1K −M−1C

]
, D =

[
0

M−1

]

where I denotes the identity matrix. For implementation purposes, the continuous-time state-
space formulation is discretized using the zero-order-hold discretization method. Denoting the
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discrete time step as T and setting t0 = kT , t = (k + 1)T yields the following discrete state-space
formulation (DSSF) [132]:

z [(k + 1)T] = Ad z [kT] + Bdw [kT] − BdERe [kT] (7.3a)
ys [(k + 1)T] = Cd z [kT] + Ddw [kT] − DdERe [kT] (7.3b)

where Ad , Bd , Cd , and Dd are the discrete system matrices computed using a discretization
time-step of T . A discrete time step of 1 ms is used to coincide with the 1 kHz loop rate of the
real-time loop.

7.1.5 Substructuring techniques

Substructuring is the process of decomposing the overall system into two subsystems such that
the well understood components are separated from those for which a reliable analytical model
is not available. This facilitates accurate assessment of the control performance of the prototype
device on full-scale structures by physically testing the prototype on a dynamic shake table (i.e.,
experimental substructure) and modelling the underlying structure numerically in a computer
(i.e., analytical substructure). To account for the interaction effects between the structure and
DACS, the dynamic shake table must realize the displacement of the simulated structure at the
location of the prototype in real time. In this way, themeasured interface force can be applied back
to the numerical model at the same location to close the loop. Having the prototype separated
from the numerical model facilitates efficient investigations into various controller formulations
and control performance on different structures.

Previous studies employing RTHS to evaluate structural control systems simulate numerical
substructures in the physical domain and thus are limited to spatially fixed loads [126, 134].
In other words, both the external loads applied to the structure and the experimental restoring
forces are confined to locations corresponding to modelled DOFs. While suitable for evaluating
rigidly connected control devices, the existing substructuring frameworks are unable to asses the
mobility aspect introduced through the concept of DACSs which allows to device position itself at
any location on the structure. To overcome this limitation, as well as address the case of spatially
varying external loads (i.e., moving pedestrians loads), Ashasi-Sorkhabi et al. [135] developed a
numerical substructuring approach based onmodal decomposition principles. The premise of this
formulation is that by decomposing the structure into separate vibrational modes, the influence of
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spatially varying forces can be computed using the corresponding mode shapes. In this approach,
RTHS is carried out for each mode separately and superposition techniques are used to recreate
the physical response. Although based in the modal domain, the same DSSF approach presented
above (see Equations 7.3a and 7.3b) is used by expressing each mode as a individual state space
model. Thus, the only difference is the discrete system matrices Ad,i, Bd,i, Cd,i, and Dd,i are
defined in the modal domain for each mode i considered in the simulation. Further details on this
numerical substructure modelling approach in the modal domain are provided in Appendix B.

It should be noted that in typical RTHS applications, the experimental substructure consists
of a passive system [134, 136, 137]. Thus, the generated interface forces are a direct result of
the physical displacement and cannot be controlled externally. However, in the case of an active
control system such as the prototype device, the desired interface force is determined according
to a predefined control algorithm. As such, comparing the desired interface force to the actual
measured force is indicative of the modelling accuracy (i.e., DACSmodels and interaction effects)
and overall control system performance.

7.2 LQG control performance

The performance of the LQG control formulation for the prototype DACS is experimentally
evaluated through RTHS. The purpose of this study is two-fold: the first goal is to validate the
LQG control formulation for the prototype DACS using the ICM approach while the second goal
is to comparatively assess the overall control performance relative to alternative devices. To
fulfill the latter, an equivalent TMD device is designed to establish a baseline for comparison. In
this case, the term equivalent implies that the TMD is designed with a mass equal to the moving
mass of the prototype DACS. The control performance of each device is assessed on an SDOF
system. A description of the SDOF system and TMD design is provided next followed by the
testing procedure and discussion of results.

7.2.1 System description

Consider an SDOF systemwith mass, damping, and stiffness of 2000 kg, 300 Ns/m and 120 kN/m
respectively, yielding a natural frequency of 1.2 Hz and a damping ratio of 1.0 %. The linear
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system is assumed to be time-independent and excited by harmonic excitation coinciding with
the natural frequency to cause resonance. The properties of the SDOF system are selected such
that the system is representative of the first lateral mode of an arbitrary lightweight footbridge.
For comparison, two different modular aluminum footbridges spanning 12.2 m and 22.9 m were
reported to have masses of 982 kg and 1735 kg respectively. Experimental testing of these
footbridges identified fundamental lateral frequencies of 2.3 Hz and 1.0 Hz respectively and
damping ratios of 1.0 % and 0.8 % respectively [92].

The LQG formulation presented earlier is adopted to implement an LQG controller. The
weighting matrices Wz and Wu are tuned a priori based on trial and error simulations to ensure
the desired control forces are within the capacity of the EMD. The ICM approach is used such
that the LQG controller outputs the desired EMD inertial force and the corresponding position
command is determined using the inverse EMDmodel. It is worth noting that the LQG controller
design can be improved by taking into account the narrow-band excitation. This is accomplished
by incorporating a band-pass filter into the structuremodel in the sameway inwhichKanai–Tajimi
filters are used to account for the frequency content of seismic excitation [38]. However, in
practical applications the frequency content of the excitation is generally unknown a priori,
which supports the Gaussian white noise assumption used in the LQG controller formulation.
The equivalent TMD device used for performance comparison is designed with a 2 % mass ratio
such that the TMD mass is approximately equal to the auxiliary mass of the EMD. Following the
standard design procedure for passive damping devices in Connor [1], the resulting TMD mass,
damping, and stiffness properties are 40 kg, 53 Ns/m and 2.27 kN/m respectively.

7.2.2 Test procedure

The performance of the prototype device is evaluated using the previously described RTHS
methodology. This involves isolating the prototype DACS as the experimental substructure and
positioning it atop four shear-type load cells on the ShoreWestern shake table. The SDOF system
is modelled numerically as the analytical substructure in LabVIEW and deployed on the cRIO.
Figure 7.3 shows the RTHS substructuring and experimental setup. Since the ICM approach is
used, the analytical UGV model is incorporated with the SDOF system to form the controlled
plant. The LQG controller in this approach outputs the desired EMD inertial force and the inverse
EMD model is utilized to compute the desired EMD position command. The augmented plant
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(a) Substructuring approach (b) Experimental substructure

Figure 7.3: RTHS substructuring and experimental setup for evaluation of LQG controller

is also used to build a Kalman filter for state estimation. In the RTHS setup, the Kalman filter
uses simulated acceleration measurements to estimate the states of the augmented plant needed
for state feedback control. The control effectiveness of the prototype DACS is compared against
the uncontrolled case and performance of the equivalent TMD device. Both the uncontrolled
response and response under passive control are determined through numerical simulation in
MATLAB using the same harmonic excitation.

7.2.3 Results

Figure 7.4 compares the uncontrolled displacement response with the controlled responses us-
ing the passive TMD and prototype DACS. As shown, the prototype DACS outperformes the
equivalent TMD system, reducing the TMD steady-state response by approximately 45 %. To
achieve the same level of performance as the prototype DACS for the given structure, the TMD
mass would need to be increased to a 10 % mass ratio or 200 kg. Passive devices of this size are
not practical for lightweight structures. The control effectiveness of the prototype DACS largely
depends on the LQG controller design which balances the trade-off between control performance
and robust stability. In this study, the controller design is relatively conservative and only gener-
ates control forces of approximately ± 100 N as shown in Figure 7.5. Reducing the weighting
matrix Wu will increase the control effort and further reduce the response. This result confirms
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Figure 7.4: Uncontrolled and controlled displacement responses of the SDOF system
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that the prototype device deployed for a short-term application has ample capacity to outperform
a passive TMD of similar mass. Furthermore, the prototype device can effectively suppress low-
frequency vibrations on structures with masses of approximately 2000 kg. For larger structures,
the prototype can be modified or multiple units can be deployed in order to achieve similar levels
of performance.

To illustrate the accuracy of the system modelling and controller formulation, Figure 7.6
compares the desired EMD control force with the actual EMD inertial force computed from the
measured relative acceleration. The strong correlation verifies the accuracy of the EMD model
for computing the position commands and further validates the disturbance rejection properties
of the position feedback controller. In turn, the CSI modelling approach based on the disturbance
rejection assumption is confirmed. However, the accuracy of the UGV model and associated
effects of model uncertainty may still influence the overall performance.

7.3 MPC performance

Both numerical simulations and experimental studies are conducted to investigate the perfor-
mance of the MPC formulation for the prototype device. The main objectives of the numerical
simulations are to compare the overall performance of the MPC scheme with LQG control meth-
ods and demonstrate the ability of the adaptive cost function (i.e., online tuning) to maximize
utilization of the device. Although numerical simulations have the advantage of efficiently com-
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paring a number of different controller designs, there is no guarantee these control algorithms can
be implemented in real-time. Thus, an experimental study is designed to demonstrate the ability
of the formulated MPC algorithm to execute in real-time. To this end, RTHS is used to examine
the control performance of the prototype device on a full-scale aluminum pedestrian bridge. If
the MPC algorithm can execute in real-time on the cRIO while simultaneously simulating the nu-
merical substructure, it can be guaranteed to run in real-time under practical applications, where
the additional burden of numerical sub-structure computations are not present. The systems used
in the numerical and experimental studies are described next followed by the testing procedure
and discussion of results.

7.3.1 System description

Numerical study:

For the numerical simulations, an SDOF system is used as the structure to be controlled (i.e.,
representative of a single mode of vibration). The SDOF system is designed with mass, damping,
and stiffness properties of 2000 kg, 345 Nm/s, and 150 kN/m respectively, yielding a natural
frequency of 1.4 Hz and a 1 % damping ratio. A model predictive controller is designed for the
combined SDOF structure and prototype control system according to the ISM approach, with
the interaction effects modelled using acceleration feedback. The MPC objective function is
designed to penalize non-zero displacement and velocity of the structure as well as the magnitude
of the control input. The EMD stroke and peak tire force constraints described in Equations 5.26
and 5.27 are applied as bounds to the optimization problem.

Many factors influence MPC effectiveness including the penalty weighting matrices, the
prediction horizon, and the number of prediction points. The weighting matrices penalizing the
states are set to Wz =W∞ = 1.0 × 106 × I2 for all cases, while the weighting matrix penalizing
control effort Wu varies depending on the desired level of control authority or is tuned online
using the proposed utilization algorithm. The prediction horizon and the number of prediction
points are tuned to balance the trade-off between performance and computational demand. Longer
prediction horizons with more prediction points yield improved control performance at the cost of
increased computational time. Constrained by the condition that the controller must run in real-
time, a prediction horizon of hp = 0.8 s with 40 prediction points is used. It should be noted that
this length of prediction horizon is possible due to the relatively small model size and may not be
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realizable with larger systems. To study the effects of incorporating operating constraints directly
in the control formulation, the MPC controller is compared against a traditional LQG controller.
The objective function for the LQG controller takes the same form as the MPC objective function
with the only difference being the minimization in LQG is performed over an infinite horizon and
as such the terminal weighting matrix isn’t used. To conduct a valid comparison free from tuning
bias, both controllers are designed with the same weighting matrices Wz and Wu.

Experimental study:

The experimental test structure is a full-scalemodular aluminumpedestrian bridge spanning 16.76
m. The lightweight bridge has a width of 1.22 m and is constructed in 1.52 m modules. Figure
3.2b shows the physical bridge which was previously used to demonstrate map building through
EKF-SLAM. A numerical model of the pedestrian bridge makes up the analytical substructure.
The bridge is modelled as a simply-supported, linear Bernoulli beam with a length of 16.76
m, mass of 1800 kg, and elastic modulus and moment of inertia of 69 GPa and 50 ×106 mm4

respectively. Damping ratios of 1 % and 2 % are approximated for the first two modes. The
continuous beam model is discretized into four beam elements resulting in 10 translational and
rotational DOF at the 5 nodes. To reduce themodel order for more efficient controller formulation,
the system equivalent reduction expansion procedure (SEREP) is employed to condense themodel
to three translational DOFs [138]. SEREP preserves the natural frequencies of the full model
through the condensation which are computed as 1.0 Hz, 4.0 Hz, and 9.2 Hz for the first three
modes respectively. The mass, damping, and stiffness matrices for the numerical bridge model
denoted M, C, and K are given by:

M =

437.7 12.0 −5.2
12.0 432.6 12.0
−5.2 12.0 437.7


[kg] , C =


755.5 −711.8 307.8
−711.8 1063.3 −711.8
307.8 −711.8 755.5


[Nm/s] ,

K =


4.91 −4.82 2.07
−4.82 7.00 −4.82
2.09 −4.82 4.91


× 105 [N/m]

(7.4)

With the structure modelled numerically, the prototype control system is isolated as the
experimental substructure. The prototype is tested physically on the dynamic shake table such
that the simulated bridge displacements are realized beneath the UGV tires. Since the shake
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table reproduces the structural response at the location of the control system in real-time, the true
interaction effects are physically realized. The prototype DACS is assumed to be positioned at
mid-span coinciding with the second DOF. In this case, the MPC objective function is designed
to minimize the displacement and velocity at each DOF while balancing the trade-off with control
effort. For experimental validation, the objective function weighting matrices are set to constant
values of Wz = W∞ = 1.0 × 106 × I6 and Wu = 1.0. The EMD stroke and UGV tire force
constraints are included in the formulation to bound the minimization which uses 40 prediction
points over a 0.8 second horizon. It should be noted however that in experimental testing, the
EMD stroke constraint is reduced to ±65 mm for safety purposes.

7.3.2 Test procedure

Numerical study:

All numerical simulations are implemented in the MATLAB R2015b computing environment
and simulated using a time step of 1 ms. The SDOF system is excited using a constant amplitude
chirp signal that forces the system to pass through resonance. The 60-second chirp signal has an
amplitude of 275 N with frequencies increasing linearly from 1 Hz to 1.4 Hz over 30 seconds
and decreasing to 1 Hz at the end of the signal. Five different controllers are implemented to
assess the performance of theMPC and LQG algorithms under varying levels of control authority.
Table 7.1 summarizes the controller properties and penalty weights of the controllers. The low
authority controllers have been tuned such that the physical operating constraints are not violated
with LQG control under the specified harmonic excitation. The high authority controllers employ
a reduced control penalty in order to maximize performance. However, the increased control
effort will lead to constraint violations if not properly accounted for.

Experimental study:

In addition to numerical simulations, a number of RTHS experiments are conducted to verify the
control performance of the prototype device under the proposed MPC algorithm and demonstrate
physical implementation of MPC for full-scale structural control applications. TheMDOF bridge
model is subjected to band-limited Gaussian excitation at each DOF and controlled by the DACS
prototype positioned at mid-span. The numerical bridge is simulated under three different control
scenarios: uncontrolled, theoretical, and experimental. The uncontrolled scenario involves
straight simulation of the structure (i.e., Re = 0) in order to determine a baseline for comparison.
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Table 7.1: Properties of MPC and LQG controllers

Controller Design Penalty on States Penalty on Control
Name Method Wz Wu

MPC-1 Low Authority MPC 1 × 106 × I2 10
LQG-1 Low Authority LQG 1 × 106 × I2 10
MPC-2 High Authority MPC 1 × 106 × I2 1
LQG-2 High Authority LQG 1 × 106 × I2 1
aMPC Adaptive MPC 1 × 106 × I2 varies

The theoretical control scenario is used to study the accuracy of the DACS models and verify the
approach used to account for CSI. In the theoretical control scenario, the experimental restoring
force is simulated using the analytical models of the EMD and UGV. The third control scenario,
referred to as experimental, involves the full RTHS setup as described where the experimental
restoring force is measured from the load cells.

Running in series with the hybrid simulator is the MPC formulation to determine the optimal
position command for the EMD. In order to run in real-time, the C++ code generated using the
ACADO toolkit is compiled into a shared library object which includes a wrapper function to be
called at each time step. The wrapper function returns the optimal position command given the
current state estimate and assigned values for any parameterized constraints or penalty weights.
The shared library object is deployed on the cRIO and embedded in the real-time LabVIEW VI.
Figure 7.7 depicts a schematic of the RTHS implementation and interface between the analytical
and experimental substructures.

7.3.3 Results

Numerical study:

Figure 7.8a compares the uncontrolled displacement response of the SDOF structure with the
controlled responses from the low authority MPC and LQG controllers as well as the adaptive
model predictive control (aMPC) controller. TheMPC-1 andLQG-1 controllers show comparable
results with only slight improvement in performance from LQG-1 due to the restrictions on the
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Figure 7.7: Schematic of RTHS implementation for full-scale pedestrian bridge

prediction horizon in MPC-1. Since the controllers have been tuned to avoid the EMD stroke
and tire force constraints, the optimal EMD commands computed from LQG-1 and MPC-1 are
consistent and achieve a peak reduction of approximately 28 % in the displacement response.
This result verifies that real-time MPC formulations can achieve similar performance to LQG
controllers in the absence of constraints. The adaptive MPC controller is initialized with the same
penalty of Wu = 10 on control effort. The algorithm detects low utilization at the beginning of
the simulation with position commands confined to ±7 mm and gradually decreases the penalty
weight on the control effort to increase the forces. The effect of decreasing the penalty is shown
in Figure 7.8b which compares the EMD position commands for each controller. As shown, the
aMPC controller generates much larger position commands relative to the LQG-1 and MPC-1
controllers thereby achieving a peak reduction of 46 % in the displacement response while still
operating within the physical limitations. This result highlights the ability of an MPC controller
to adapt in real-time to improve performance.

The performance of the high-authority LQG andMPC controllers are compared to the uncon-
trolled response in Figure 7.9a. The high authority LQG-2 controller appears to have superior
performance relative to the corresponding MPC-2 controller; however, the LQG-2 controller has
violated the EMD stroke constraint with position commands as large as 85 mm and therefore
this level of performance is not physically possible with the prototype DACS. The importance
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Figure 7.8: Comparison of low-authority LQG and MPC controllers
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of constraint modelling for the prototype system is evident when comparing the optimal EMD
position commands which are plotted in Figure 7.9b. The formalized method for addressing
physical operating constraints allows the MPC-2 controller to yield similar position commands to
the LQG-2 controller up to the prescribed threshold of ±65 mm. Beyond this point, the MPC-2
controller saturates the position command to avoid end-of-stroke collisions. Despite violating
the EMD stroke constraint, neither controller generates tire forces in excess of 400 N. However,
in the event the forces exceeded 300 N, the soft-constraint in the MPC-2 controller would be
triggered to prevent tire slippage. Similar to the low-authority case, the aMPC controller detected
under-utilization at the onset of the simulation and further decreased the control penalty. How-
ever, as the structural displacements increased, the EMD entered the high-utilization zone which
led to an increase in the control penalty to avoid saturation. Although saturating the position
command prevents collisions with the end-of-stroke limits, the sudden change in velocity can
cause large instantaneous changes in acceleration which generate impulse-like forces. The effect
of saturation is shown in Figure 7.9c where the estimated tire force under MPC-2 control sees
large spikes coinciding with the saturation of the position command. In physical systems, these
forces can cause slipping in the UGV tires and lead to undesirable control performance. The
utilization-based algorithm for adaptiveMPC is shown to avoid saturation by appropriately tuning
the penalty on control input. The overall performance of the aMPC controller is slightly reduced
relative to the MPC-2 controller however the negative effects of saturation are avoided.

Experimental study:

The RTHS experiments were successfully completed in real-time without computational delays.
Figure 7.10 compares the displacement responses of the first and second nodes (i.e., quarter-span
and mid-span) under the three different control scenarios. Both the theoretical scenario and
experimental scenario demonstrate effective control performance by reducing the uncontrolled
displacements by approximately 56%and 62% respectively at all DOFs in terms of theRMSvalue
of the response. This validates the MPC controller design and successfully demonstrates real-
time implementation. The experimental scenario yields slightly smaller displacements relative
to the theoretical scenario suggesting the physical system generates slightly larger forces than
estimated. This can be attributed to uncertainty in the prototype models or the accuracy of
the shake-table in realizing the simulated displacements. Nevertheless, the consistently similar
responses between the theoretical and experimental scenarios not only validates the modelling of
the prototype components but also verifies the assumptions regarding the interaction effects.

123



0 10 20 30 40 50
Time (s)

-60

-40

-20

0

20

40

60

D
is
p
la
ce
m
en
t
(m

m
)

Uncontrolled LQG-2 MPC-2 aMPC

30 31 32 33 34

-40

-20

0

20

40

(a) Displacement response of SDOF system

0 10 20 30 40 50
Time (s)

-50

0

50

C
om

m
an

d
(u
)

LQG-2 MPC-2 aMPC

30 31 32 33 34

-50

0

50

(b) EMD position commands

0 10 20 30 40 50
Time (s)

-400

-200

0

200

400

T
ir
e
F
or
ce

(N
)

LQG-2 MPC-2 aMPC

30 31 32 33 34

-300

-200

-100

0

100

200

300

(c) Estimated UGV tire forces

Figure 7.9: Comparison of high-authority LQG and MPC controllers
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Figure 7.10: RTHS displacement responses with MPC controller
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It should be noted that physical control delays could also contribute to differences in the theo-
retical and experimental responses. Control delays could arise in the actuation of the shake table
or tracking of the EMD position. To study these delays, Figure 7.11 compares the commanded
and measured table displacements as well as commanded and measured EMD positions. A total
delay of 16 ms is computed for the tracking of the shake table which is measured using the built-in
LVDT and acquired through the FPGA. Similarly a delay of 17 ms is computed for the position
tracking of the EMD which is consistent with previous studies on the prototype. These delays
are expected to have negligible impact on the experimental results. The error in tracking of both
signals over the first 5 seconds is attributed to a ramp function that scales all commanded output
signals to avoid sharp initial motion.

7.4 H∞ control performance

The performance of the robust H∞ control formulation for the prototype DACS is evaluated
through numerical simulations. The overarching objective of the study is to demonstrate the
importance of addressing model uncertainty directly in the controller formulation. This is
achieved by comparing the performance of a robust H∞ controller with that of an H∞ controller
designed based on nominal system models. Robust performance is also studied in the context
of uncertain structure models where the stiffness and damping parameters of a MDOF structure
model are not known precisely but rather defined by a range of possible values. A description
of the controlled system used in this study is provided next followed by the H∞ controller design
procedure and discussion of results.

7.4.1 System description

The structure model considered in the numerical simulations consists of a three-DOF simply-
supported beammodel. Figure 7.12 displays a schematic of the structuremodelwhich is defined by
mass, damping, and stiffness parameters denoted ms, cs, and ks respectively. The mass parameter
is assumed to be known and equal to 750 kg however the damping and stiffness parameters are
uncertain and estimated as 50 Ns/m and 75 kN/m respectively. The uncertainty associated with
the damping and stiffness parameters is defined by ±20 % and ±10 % respectively. Table 7.2
summarizes the nominal values and uncertainty associated with the physical parameters.
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Figure 7.11: EMD and shake-table tracking during RTHS with MPC controller

Figure 7.12: MDOF structure model with uncertain parameters
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Table 7.2: Properties of uncertain MDOF structure model

Property Parameter Nominal value Uncertainty
Mass ms 750 kg -

Damping cs 50 Ns/m ±20% (±10 Ns/m)
Stiffness ks 75 kN/m ±10% (±7.5 kN/m)

The prototype DACS is deployed on the structure at quarter-span which corresponds to the
first DOF. The uncertain UGV and EMD system models, shown in Figure 5.14 and Figure
5.15 respectively, are used to address the uncertainty in the prototype device directly in the H∞
controller formulation.

7.4.2 Controller design

H∞ controller design requires modelling the closed-loop system as a generalized plant with
weighting sensitivities on the regulated output and exogenous input. The regulated output
contains the structural state vector (i.e., nodal displacements and velocities) weighted by the
sensitivity function Sys and control input vector weighted by the sensitivity function Spc . The
output weighting sensitivity Sys is designed using a second-order low-pass filter with a frequency
cut-off of 5 Hz and static gain parameter ρys . Thus, all modes below 5 Hz – coinciding with the
control bandwidth of the DACS prototype – will be considered in the optimization. Furthermore,
a high-pass filter with a cut-off frequency of 4 Hz and static gain of ρpc , is applied to the control
input such that frequencies outside the EMD control bandwidth will be penalized heavily in
the optimization. Balancing the trade-off between control performance and actuator effort is
achieved through tuning the gain parameters ρys and ρpc . Trial-and-error tuning is performed
based on the described structure model and expected disturbance to ensure the DACS prototype
operates within the physical constraints (i.e., EMD stroke limitations and maximum UGV tire
forces). On the other hand, the exogenous input contains the external excitation applied at each
DOF and disturbances (i.e., measurement noise) affecting the structure’s output vector. The
external excitation and measurement noise are weighted by the sensitivity functions Sω and Sν
respectively. For this study, the external forces applied to the structure are assumed to be band-
limited Gaussian excitation encompassing all three structural modes of vibration. As such, the
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Table 7.3: Weighting sensitivity functions in H∞ generalized plant model

Sensitivity Filter Cut-off Gain
Function Model Frequency Parameter

Input Sensitivity Sω 1st-order low-pass 10 Hz ρω = 1
Noise Sensitivity Sν static gain - ρν = 0.0005
Control Sensitivity Spc 1st-order high-pass 4 Hz ρpc = 1
Output Sensitivity Sys 2nd-order low-pass 5 Hz ρys = 150

input sensitivity function Sω is modelled as a low-pass filter with a cut-off of 10 Hz and gain of
ρω. The sensitivity function weighting the measurement noise is simply modelled as a static gain
denoted by ρν to represent the assumption of additive white-noise affecting the measurements.
Table 7.3 summarizes the details for each weighting sensitivity function in the generalized plant
model.

Three different H∞ controllers are synthesized from the same generalized plant model contain-
ing the prescribed weighting sensitivities functions. The first controller, denoted Knn is designed
without any consideration for uncertainty, that is, the controller is synthesized based on the nom-
inal structure model, and nominal DACS model. The second controller, denoted Knr , considers
the uncertainty associated with the DACS model however assumes the structure model is known.
Finally, the third controller, denoted Krr is designed to be robust to both structure uncertainty and
DACS uncertainty and therefore is synthesized based on the uncertain structure model, uncertain
UGV model, and uncertain EMD model. Table 7.4 summarizes the three H∞ controllers consid-
ered in this study. Each controller is synthesized using the Robust Control Toolbox in MATLAB
R2015b. The generalized plant model for the first controller does not contain any uncertainty and
as such is optimized directly using the standard two-Riccati equation method defined in Doyle
et al. [111]. On the other hand, the controllers Knr and Krr are designed using µ-synthesis such
that the singular value of the uncertain plant model, denoted by µ, is minimized. An automated
D-K iteration procedure that provides an approximation to µ-synthesis is used to synthesize Knr

and Krr . A brief overview of the D-K iteration procedure is provided in Appendix C and further
details on µ-synthesis and the D-K iteration procedure can be found in the literature [139–142].
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Table 7.4: Summary of H∞ controllers and design methods

Controller Structure DACS Design
Model Model Model Method

Knn nominal nominal Riccati Equations
Knr nominal uncertain D-K synthesis
Krr uncertain uncertain D-K synthesis

7.4.3 Results

The performance of the various H∞ controllers are studied through a series of numerical simu-
lations. In each case, the structure model is excited by band-limited (i.e., 0 to 10 Hz) Gaussian
excitation at each DOF and the prototype DACS is implemented at the first DOF. The aim of the
first simulation is to establish a baseline for control performance by ignoring uncertainty and thus
simulating the nominal structure model with the prototype device characterized by the nominal
DACSmodel. Figure 7.13 compares the uncontrolled displacement response at each DOF against
the controlled responses obtained using the nominal controller Knn and robust controller Knr . As
expected, the controller Knn designed based on the nominal structure and nominal DACS model
(i.e., equal to the simulated system) outperforms the robust controller Knr which is designed for
the entire range of uncertain DACS models. Nevertheless, both controllers perform well; Knn

reduces the RMS of the response by over 75 %while Knr achieves at least 70 % suppression in the
RMS value. In both cases the prototype DACS operates within the physical limitations although
the nominal controller output slightly larger control forces.

The importance of addressing the uncertainty associated with the DACS prototype is demon-
strated through the second simulation which investigates the performance of the same two H∞
controllers (i.e., Knn and Knr) for the case when the true dynamics of the prototype DACS are
unknown. To simulate the effects of uncertain DACS dynamics, 20 realizations of the uncertain
UGV and EMD models are extracted and simulated with the same nominal structure model.
The displacement responses controlled by the robust Knr controller are plotted for each DOF in
Figure 7.14. For comparison, the controlled response based on the nominal DACS model and
uncontrolled displacement response are also plotted for each DOF. Although the nominal Knn

controller achieves effective performance for realizations of the DACS model with small amounts
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Figure 7.13: Displacement responses under H∞ control without structure or DACS uncertainty
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Figure 7.14: Displacement responses under H∞ control with uncertain DACS dynamics

of uncertainty, most realizations cause the closed-loop system to become unstable. On the con-
trary, the robust controller, designed specifically to address this uncertainty, yielded consistent
performance for the range of DACS models. These results underscore the importance of address-
ing the uncertainty associated with the DACS prototype directly within the controller formulation.
This is particularly important at control frequencies greater than 3 Hz where the UGV transfer
function model varies considerably with different levels of control forces. The EMD position
commands and resulting UGV tire forces for each realization are shown in Figure 7.15. As shown,
the EMD operates within the physical stroke constraints of ± 75 mm and the UGV tire forces
do not exceed the 400 N threshold. Although this simulation demonstrates robustness against
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(b) UGV tire forces

Figure 7.15: Prototype input and output under H∞ control with uncertain DACS dynamics

uncertainty in the DACS model, in many practical applications the true structure dynamics vary
from those modelled for controller design which may reduce performance or lead to instabilities.
As such, the effects of uncertain structure models are investigated in the third simulation.

A total of 20 realizations of the uncertain structure model (refer to Table 7.2) are randomly
sampled and form the basis of the third simulation. Each realization is controlled using a
realization of the uncertain DACS model randomly sampled from the uncertain UGV and EMD
models. The two different H∞ controllers considered in this case are Knr and Krr . Both models
consider the uncertain DACS model in their formulation however only Krr addresses uncertainty
in the structure model. The controlled displacement responses from each controller are provided
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Figure 7.16: Displacement responses under H∞ control with uncertain structure dynamics

for each DOF in Figure 7.16. The range of uncontrolled structure responses is also plotted
to illustrate the extent of the structure uncertainty. Although both controllers maintain closed-
loop stability over the subset of realizations, the controller Krr , designed to be robust to both
structure and control device uncertainty, clearly outperforms the controller Knr which is robust
only to control device uncertainty. In addition to improved vibration suppression, the controller
addressing structure uncertainty achieves a tighter banding of responses demonstrating consistent
performance across the subset of realizations.

The results from these simulations verify the importance of addressing uncertainty associated
with the DACS prototype directly in the control formulation and hence emphasize the benefits of
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the H∞ control formulation. It has been shown that neglecting uncertainty in the structure model
and/or control device model results in degradation of the control performance at best and may
lead to instabilities.

7.5 Impact of mobility on control performance

In the experimental studies conducted thus far, the prototype DACS has remained stationary at
a single location on the given structure. As such, the numerical substructures for each case
were formulated in the physical domain with a constant interface between the experimental and
analytical substructures. The ability to reposition the active control force on a given structure is
a key advantage of the DACS concept. This mobility allows a single device to change the mode
in which it suppresses or control multiple modes simultaneously by navigating to the appropriate
location. To demonstrate the impact of mobility as well as validate the EKF-based localization
algorithm, two separate RTHS experimental programs are conducted based on the previously
mapped full-scale pedestrian bridge. The need for two separate RTHS studies arises due to the
fact that shake table testing does not permit physical mobility of the device and exciting the
full-scale bridge in a controlled manner is expensive (i.e., requires multiple large-scale actuators).
As such, the aim of the first study is to evaluate the localization performance of the prototype
device and assess timing aspects associated with repositioning between various locations while
the second study focuses on the verifying the overall control performance of the mobile device.

The fundamental differences between the two programs relate to the way the mobility of the
device is handled and how the CSI effects are realized. In the first study – referred to as RTHS
with physical mobility – the mobility of the device is physically tested by including the full-scale
pedestrian bridge in both the experimental and analytical substructures. More specifically, the
response of the bridge is determined through simulation in the numerical substructure while the
physical bridge also forms part of the experimental substructure in order to allow the device
to physically reposition itself. The limitation with this approach is that since the simulated
bridge displacements are not realized in the experimental substructure, the true interaction effects
cannot be studied. Nevertheless, this test methodology provides a means to accurately evaluate
the localization aspect and approximate the control performance. The second study – referred
to as RTHS with simulated mobility – forgoes physically localizing the robot by simulating the
device positioning in the numerical substructure. In this case, the impact of mobility can be
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evaluated with the prototype device on the shake table such that the simulated displacements
from the numerical substructure are realized and the true interaction effects are included in the
results. A brief summary of the full-scale pedestrian bridge used for testing is presented next
followed by the test procedures and results from each study.

7.5.1 System description and substructuring

The test structures considered in these studies are two different lengths of the full-scale modular
aluminum pedestrian bridge. For the first study, the bridge is constructed to span 16.76 m in order
to be consistent with the bridge used to demonstrate EKF-SLAM. The second study increases the
span to 22.9 m to leverage systemmodels previously developed byDey et al. [92]. The approaches
used for substructuring are different for the two experimental programs and are described next.

RTHSwith physical mobility: The experimental substructure in this case consists of the phys-
ical pedestrian bridge and prototype DACS. To facilitate localization, double-sided AR codes are
placed on both sides of the bridge deck and aligned with the panel points to recreate the previously
mapped environment. Thus, the EKF-based localization algorithm can be implemented with the
map created from EKF-SLAM. For autonomous navigation the simple steering controller that
was used for EKF-SLAM is expanded to include a simple proportional controller for the forward
velocity command. The proportional controller determines the command velocity based on the
distance away from the desired location with consideration for peak accelerations and maximum
speeds. To measure the generated control force, the original bridge decking is replaced with an
independent panel at mid-span and quarter-span of the bridge (i.e., coinciding with the first and
second DOF). Two shear-type load cells are installed to measure for force transferred to these
panels. Figure 7.17 shows the experimental substructure and independent panels. The purpose
of including the pedestrian bridge as part of the experimental substructure is strictly to facilitate
mobility. As a result, the bridge is also modelled analytically in the numerical substructure and
simulated to determine the response. A numerical model of this bridge had been developed for
RTHS testing of the MPC controllers and is used again here. The model – described by Equation
7.4 – is a three DOF lumped-mass system representing the lateral component of the bridge. In
theory, the mobility aspect allows the control device to apply control forces at any position on
the bridge; however, for experimental testing the control locations are constrained to the first
and second DOFs which represent quarter-span and mid-span respectively. In light of this, two
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(a) Overall setup (b) Prototype positioned at quarter-span

Figure 7.17: Experimental setup for modified RTHS of mobile control device

different LQG controllers are formulated based on the ICM approach to suppress the first and
second mode of vibration respectively. The result is two sets of feedback gains that can be used
interchangeably depending on the location of the device. Note that since the simulated responses
are not realized on the physical bridge, the interaction dynamics are neglected in this case.

RTHS with simulated mobility: Since the device mobility is simulated numerically, the
experimental substructure in this study consists only of the prototype device which is positioned
atop four shear-type load cells on the hydraulic shake table. To address the case of spatially varying
forces (i.e., moving pedestrian loads or mobile control forces), the numerical substructure is
formulated in the modal domain according to Ashasi-Sorkhabi et al. [135]. The numerical model
considers the first two lateral modes of vibration. Table 7.5 summarizes the modal characteristics
of the 22.9 m pedestrian bridge that were identified by Dey et al. [92] through experimental testing
and finite-element analysis. Further details on modelling the numerical substructure in the modal
domain are provided in Appendix B. To control each of the first two modes, two different LQG
controllers are formulated based on the ICM approach. The LQG controllers are designed in the
modal domain and tuned through trial-and-error to ensure the prototype device operates within
the prescribed limits.
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Table 7.5: Modal properties and mode shapes of numerical substructure

Modal mass Modal frequency Damping ratio Mode shape
Mode (kg) (Hz) (%) f (x)
1 867.5 1.29 3 sin

(
πx
L

)
2 694.0 2.37 1 sin

( 2πx
L

)

7.5.2 Test procedure

RTHSwith physical mobility: To demonstrate the ability of the prototype device to autonomously
position itself and control differentmodes of vibration, harmonic excitation is designed to resonate
the structure in the each of the first two modes independently. The excitation consists of three
60 s segments exciting the first mode, second mode, and first mode, respectively. Each segment
is separated by a 10 s transition phase resulting in an overall duration of 200 s. The positioning
algorithm for the DACS is designed to be consistent with the excitation such that the device will
navigate between mid-span and quarter-span to control the dominant mode. In this study, the
dominant mode of vibration is determined based on the location of the peak acceleration. This
crude approach is valid given the simple structure model and forced harmonic excitation. The
positioning algorithm is executed alongside the LQG control algorithm in the real-time loop on
the cRIO. When a change in the dominant mode is detected, a command is issued to pause the
EMD and initiate the localization algorithm to reposition the device. After reaching the desired
position a second command is issued to set the appropriate feedback gains and resume control. It
should be noted that the numerical substructure in this case contains two separate restoring force
inputs corresponding to the first and second DOFs.

RTHS with simulated mobility: To showcase the ability to handle spatially varying loads,
a Fourier series pedestrian load model is adopted to simulate the forces induced by walking
pedestrians. The model uses dynamic load factors of 0.1 and 0.05 for the first and second mode
respectively and assumes a pedestrian weight of 700 N and step frequency of 1.2 Hz. The
pedestrians are assumed to travel at a constant speed and enter the bridge as soon as the previous
pedestrian exits the bridge (i.e., only a single pedestrian is on the bridge at any given time). Further
details on the pedestrian load model are provided in Appendix B. The lateral response of the
bridge is computed by superimposing the first and second vibration modes which are simulated
independently. Although the numerical substructuring framework also permits spatially varying
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control forces (i.e., the device can be positioned at any location on the bridge), the positioning
algorithm for the DACS is simplified to choosing from a set of predefined locations. Since only
the first two modes are considered, the predefined control locations include quarter-span, mid-
span and three-quarter-span. A simple algorithm based on the location of the peak acceleration
is used to decide which mode to control and which position to control from. The simulation
consists of three operational stages: sensing, positioning, and control. At the onset of the test, the
sensing stage is active and the response of the bridge is continuously monitored to determine the
desired control location. Once the control location has been identified, the system transitions to
the positioning stage where the mobility of the device is simulated in the numerical substructure.
Arrival at the desired location triggers the control stage where the appropriate LQG gains are
used to determine the optimal control force.

7.5.3 Results

RTHS with physical mobility: The control performance and impact of mobility is shown in
Figure 7.18 which compares the uncontrolled and controlled responses at mid-span and quarter-
span. At the start of the experiment, the prototype device is positioned at an arbitrary location
between the two control locations and immediately instructed to navigate to mid-span. This
positioning required approximately 20 s and is reflected in the consistency between the controlled
and uncontrolled responses (i.e., no control effect) in Figure 7.18. After reaching mid-span, the
LQG controller is initiated and the resulting control forces effectively suppressed the displacement
response by over 70%. After the positioning algorithmdetermined the secondmode is dominating
the response, the DACS suspends control operations and begins navigating to quarter-span. Upon
arrival, vibration control resumes with new feedback gains leading to a 40 % reduction in peak
displacement at quarter-span. Finally, the third segment of excitation causes the device to return
to mid-span where it yields a similar control effect to that demonstrated during the first segment.
Table 7.6 compares the RMS value of the uncontrolled and controlled responses at mid-span and
quarter-span. The RMS value is computed for a 30 s window in each segment to separate the
control performance of the different modes. The effective control performance across all three
segments demonstrates the ability of the prototype device to control different modes of vibration
by repositioning itself on the structure and updating the control algorithm.

RTHS with simulated mobility: At the onset of the test, the sensing stage identified quarter-

139



0 20 40 60 80 100 120 140 160 180 200
Time (s)

-100

-50

0

50

100

D
is
p
la
ce
m
en
t
(m

m
)

Uncontrolled LQG-Controlled

35 36 37 38 39 40
-100

0

100

95 96 97 98 99 100
-100

0

100

175 176 177 178 179 180
-100

0

100

(a) Displacement responses at quarter-span

0 20 40 60 80 100 120 140 160 180 200
Time (s)

-100

-50

0

50

100

D
is
p
la
ce
m
en
t
(m

m
)

Uncontrolled LQG-Controlled

35 36 37 38 39 40
-100

0

100

95 96 97 98 99 100
-100

0

100

175 176 177 178 179 180
-100

0

100

(b) Displacement responses at mid-span

Figure 7.18: Uncontrolled and controlled displacement responses using a mobile DACS
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Table 7.6: Effectiveness of DACS under forced harmonic excitation

Quarter-span Response (m) Mid-span Response (m)
Segment Uncontrolled Controlled Reduction Uncontrolled Controlled Reduction

RMS RMS % RMS RMS %
1 0.0465 0.0148 68 0.0658 0.0209 68
2 0.0115 0.0069 40 0.0036 0.0011 69
3 0.0473 0.0162 66 0.0670 0.0229 66

span as the optimal control location. Since the device is assumed to start at end of the bridge,
the positioning stage involves simulating the navigation of the device to quarter-span. Upon
transitioning to the control stage, the LQG controller feedback gains corresponding to the second
mode are used in conjunction with a compensator block to determine the desired EMD position
commands which are applied to the prototype device. The control effect is shown in Figure
7.19 which compares the uncontrolled and controlled responses of the 22.9 m pedestrian bridge
subjected to a single moving pedestrian load. With the prototype device positioned at quarter-
span and designed specifically to suppress the second mode of vibration, response reduction is
expected at the quarter-span and three-quarter-span with minimal impact on the displacement at
mid-span. The RMS of the displacement response is reduced by approximately 30 % at quarter-
span and three-quarter-span while a slight increase in the response is observed at mid-span due
to modal-spillover.

The demonstrated control performance taking into account the CSI dynamics motivates the
use of mobile control devices capable of repositioning at desired locations on the structure.
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Figure 7.19: Control performance of prototype on pedestrian bridge under pedestrian loading
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Chapter 8

Conclusions

The concept of deployable, autonomous vibration control systems for civil infrastructure is
introduced for the first time and explored thoroughly in this dissertation. Given the requirements
for deployability and autonomy, a prototype device is constructed to study the effects of CSI
and evaluate various controller formulations in the presence of operating constraints and model
uncertainty. Both numerical simulations and full-scale experimental tests are conducted to
demonstrate the potential for DACSs in immediate, short-term control applications. This section
summarizes the significant contributions from this research, discusses the key conclusions, and
proposes several directions for future study.

8.1 Significant contributions

The research presented in this thesis has led to several notable contributionswhich are summarized
below. Several of these contributions have been disseminated in peer-reviewed journals or
conference proceedings already, with more forth-coming. A complete listing of the publications
that have resulted directly from this work is provided in Appendix A.

1. The novel concept of a DACS is established and assessed using a prototype device which
represents the first application of a robotic platform for structural control applications. De-
velopment of this prototype involved forming a framework for experimental and theoretical
system modelling of DACS components and quantifying the associated uncertainty.
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2. Themobility provided by the UGVmarks the first application of a mobile control system for
structural control applications. Achieving mobility required the implemented of a SLAM
solution suitable for navigating a range of bridges with sparse and/or repeated features.
The advantages and capabilities of a mobile control system were demonstrated through
full-scale experimental testing and the application of a novel RTHS algorithm.

3. The performance of any DACS relies on the ability to properly account for the dynamic
interaction between the structure and prototype control system. This thesis addresses
the CSI effects by adopting position feedback control for the actuator and incorporating
an acceleration feedback loop for the UGV dynamics. The validity of this methodology
requires accurate position tracking of the EMD under base excitation and assumes the
UGV can be modelled as a SDOF system. Both of these requirements were verified
experimentally.

4. The development of the prototype DACS introduced new physical operating constraints that
must be accounted for in the control formulation. Contained in this thesis is a novel adaptive
MPC control formulation that accounts for both hard and soft constraints on the position
command and UGV tire force respectively. A framework for implementing real-time MPC
on full-scale structures is also presented and demonstrated through experimental RTHS.

5. A robust controller was formulated based on H∞ theory where controller model errors –
introduced by approximated the UGV as a linear system – are treated as uncertainty in the
control formulation. The controller was also shown to be robust to errors in the plant model
which is advantageous for deploying the device on structures without high-fidelity models.

8.2 Conclusions

The comprehensive assessment of the prototype device has produced several key findings with
respect to the advantages, limitations, and potential impact of DACS. These observations are
summarized in several key conclusions:

1. The concept of DACSs was shown to be a favourable alternative to existing control devices
when targeting immediate, short-term, vibration control applications. The deployability
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aspect facilitates rapid implementation on a range of structures while the autonomy aspect
provides the required adaptability to control a wide bandwidth of vibrations and respond
to changes in the dynamic response. As demonstrated through the development of a small-
scale prototype device, the concepts of deployability and autonomy can be achieved by
integrating a mobile platform, actuation device, and computational hardware.

2. Experimental testing on the prototype device revealed that modest control forces can be
achieved without relying on a rigid or fixed connection to the underlying structure. This
finding proved to be central in achieving mobility which allows the device to readily
reposition itself on the structure. Furthermore, the implementation of an EKF-SLAM
algorithm demonstrated the capacity of such systems to navigate autonomously. This
ability provides the opportunity to augment the control algorithm to include the location of
the control force as an additional parameter in the optimization.

3. A framework for addressing the interaction effects between the prototype DACS and under-
lying structure was presented and validated experimentally. The use of a position-feedback
controller for the EMDwas shown to reject base disturbances and thus allow the separation
of the EMD dynamics from the overall device model. The resulting interaction dynamics,
derived analytically assuming a SDOF system model for the UGV, were shown to be an
acceleration feedback loop scaled by the mass of the prototype device. The accuracy of
the overall system model accounting for interaction effects was validated experimentally
through RTHS.

4. The use of a UGV as a mobile platform and EMD as an active control device introduced
new challenges for controller design including model uncertainty and physical operating
constraints. The key operating constraints were shown to be the stroke limitation of the
EMD and peak tire force in the UGV (i.e., to prevent slipping). Traditional linear quadratic
control methods such as LQG do not systematically address these constraints and were
designed by tuning the weighting matrices through trial and error to ensure the specified
limits are not exceeded. In general, this may lead to conservative controller designs.
An MPC algorithm was implemented for the prototype device and shown to effectively
address the physical operating constraints. A framework for real-time implementation was
provided and demonstrated through RTHS of a full-scale pedestrian bridge. In an effort to
address model uncertainty, a robust H∞ controller was designed for the prototype device. A
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numerical study demonstrated effective control performance and robustness to uncertainty
in both the DACS model and underlying structure model.

5. The impact of mobility on control performance was shown through a combination of
full-scale experimental testing and RTHS. The ability of the device to reposition itself at
prescribed locations on the structure was key in effectively suppressing different modes of
vibration using a single device.

8.3 Directions for future study

Throughout the course of this thesis work, many aspects and limitations with DACS were un-
covered. Possible directions for future work to bring this concept into a workable technology are
summarized below:

Robust controller formulation with constraints: The MPC formulation and H∞ robust
controller presented herein were shown to effectively address the presence of operating constraints
and model uncertainty respectively. A current limitation with the presented MPC algorithm is
the inability to address model uncertainty directly in the formulation and thus robustness can
only be measured after the controller has been designed. Furthermore, although the H∞ robust
control formulation handles uncertainty in both the controller model and plant model efficiently,
the frequency-dependent weighting functions do not permit direct modelling of time-domain
constraints such as EMD position or UGV tire force. In light of this, one immediate direction for
future work is to formulate and implement a robust, constrained controller such that both model
uncertainty and physical operating constraints are directly accounted for in the optimization.

Optimizing device location: A number of solutions have been presented in the literature for
determining the optimal location of fixed control devices for structural control. However, the
mobility aspect of DACSs adds an additional layer to this problem by providing the capability to
reposition over time. As such, the optimal location of the device can be time-varying and depend
on many factors including the external excitation, structural response, and control objective.
Although the traditional methods for determining the location of the control device (i.e., position
near the peaks of the desired mode shape to control) remain valid for DACSs, the ability to
augment the controller formulation to optimize the position of the device has the potential to
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improve overall performance. Developing control algorithms for the simultaneous positioning of
multiple devices in order to achieve a common objective is also a project worth undertaking.

Incorporating system identification: The mobility provided by the UGV combined with the
force generation of the EMD, presents an opportunity to collect input-output data for system
identification purposes. Incorporating system identification procedures into the overall system
reduces the accuracy requirement on a priori modelling and has the potential to facilitate the
deployment of a DACS on a completely unknown structure.

Nonlinear control: Inmodelling the prototype device, a linearmodel was used to approximate
the inherently non-linear UGV dynamics. Although the potential model-errors were addressed
through a robust controller formulation, there is merit in fitting non-linear models for the UGV
dynamics and implementing corresponding non-linear control algorithms. This will lead to a
better understanding of the performance limitations for the different modelling approaches and
overall device.

Enhancing prototype capabilities: The prototype device was developed using a number of
readily available components (i.e., UGV, EMD, and cRIO) with minimal customization. This
was intended to demonstrate the range of systems that can be integrated in order to achieve
deployability and autonomy. A potential area of future work involves customizing the device
for a particular implementation (i.e., pedestrian bridges). Customization could include adding
actuators to control the vertical component of pedestrian bridges, replacing the rubber tires with
solid wheels, or transitioning to a rail-mounted vehicle.
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Appendix B

RTHS with spatially varying forces

This appendix summarizes the numerical substructuring approach presented in Ashasi-Sorkhabi
et al. [135] to address spatially varying forces in RTHS. This framework was used to evaluate
the performance of the prototype DACS in controlling a full-scale pedestrian bridge subjected to
pedestrian loads.

B.1 Numerical substructuring framework

Consider a modular aluminum pedestrian bridge of length L which is to be modelled as the
numerical substructure for RTHS. To handle spatially varying loads, the bridge is modelled in the
modal domain such that each mode can be simulated separately. The bridge is assumed to remain
in the linear elastic range under external loading such that superposition techniques can be used
in the modal decomposition. The equation of motion for the nth mode of the bridge response is
given by:

mn Üyn(t) + cn Ûyn(t) + Ra,n(t) + Re,n(t) = fn(t) (B.1)

where yn, mn, and cn denote the modal displacement, mass, and damping of the nth node respec-
tively and fn represents the corresponding modal force. Ra,n and Re,n denote the modal restoring
forces captured from the analytical substructure and experimental substructure respectively. Given
the analytical substructure is assumed to remain linear elastic, the analytical restoring force is
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proportional to the modal stiffness and can be written as:

Ra,n(t) = knyn(t) (B.2)

where kn is the modal stiffness in the nth mode. The experimental restoring force corresponding
to the nth mode is determined from the physical restoring force (Re) measured in the experimental
substructure according to:

Re,n(t) =
∫ L

0
δ(x − xe)ϕn(x)Re(t)dt (B.3)

where ϕn denotes the nth mode shape, δ is the Dirac delta function, x is the location measured
along the length of the bridge, and xe represents the location of the interface between the analytical
and experimental substructures (i.e., location of the DACS on the bridge). Assuming the lateral
component of the bridge dynamics behaves as a simply supported beam, the mode shapes can be
idealized as:

ϕn(x) = sin
(nπx

L

)
(B.4)

Substituting Equations B.2, B.3, and B.4 into Equation B.1 yields the following equation of
motion for a given mode:

mn Üyn(t) + cn Ûyn(t) + knyn(t) + Re(t) sin
(nπxe

L

)
= fn(t) (B.5)

Expressing the modal equation of motion in state-space yields:

Ûzn(t) = Anzn(t) + Bn

[
fn(t) , Re sin

(nπxe

L

)]T
(B.6a)

yn(t) = Cnzn(t) + Dn

[
fn(t) , Re sin

(nπxe

L

)]T
(B.6b)

where the state vector Ûzn =
[
yn(t) Ûyn(t)

]T and the state, input, output, and feed-through matrices
are given by:

An =

[
0 1
−kn
mn

−cn
mn

]
, Bn =

[
0 0
1

mn

−1
mn

]
, Cn =

[
1 0

]
, Dn =

[
0
]

(B.7)

Notice the output of interest in this framework is the modal displacement such that the physical
displacement can be determined through superposition and applied to the experimental substruc-
ture.

166



The discrete state space formulation (DSSF) presented in Liu et al. [132] is adopted for
implementation purposes. Assuming an integration time step of T and setting t0 = kT , t =
(k + 1)T , the (DSSF) is given by:

Ûzn[(k + 1)T] = Ad,nzn[kT] + Bd,n
[

fn[kT] , Re,n[kT]]T (B.8a)

yn[kT] = Cd,nzn[kT] + Dd,n
[

fn[kt] , Re,n[kT]]T (B.8b)

where Ad,n, Bd,n, Cd,n, and Dd,n are the discrete system matrices for the nth mode.

The procedure is repeated for all vibrational modes considered during RTHS. Within each
iteration (i.e., time step), the computed modal state vectors are combined using the corresponding
mode shape functions to obtain the physical response along the bridge. The computed displace-
ment at the location of the control device can then be issued to the experimental substructure.

B.2 Pedestrian load modelling

Given the bridge is modelled in the modal domain, spatially varying loads such as walking
pedestrians can be included in the simulation. Consider the following Fourier series pedestrian
load model for simulating forces induced by walking pedestrians [143]:

F(t) = F0 +
n∑

i=1
wpαi sin (2πi fst + ψi) (B.9)

where wp and fs denote the pedestrian weight and step frequency respectively, αi and ψi are the
dynamic load factor and phase for the ith harmonic and F0 is the mean lateral force. Given the
load model, the nth modal force is given by:

fn(t) =
∫ L

0
δ (x − vt)ψn(x)F(t)dx (B.10)

where v denotes he pedestrian speed. If the pedestrian is assumed to move at a constant speed,
the term vt represents the pedestrian’s location on the bridge at any time t. Furthermore, given
the mode shapes in Equation B.4, the pedestrian load for the nth mode can be expressed as:

fn(t) = F(t) sin
(nπvt

L

)
(B.11)
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Appendix C

Relevant Formulations

C.1 State estimation using Kalman filtering

In many applications of state-feedback control, the states of the system are not readily available
and must be estimated. The Kalman filter, first published in Kalman [37], addresses the problem
of estimating the state vector zk given knowledge of the following linear discrete time process:

zk = Ak−1zk−1 + Bk−1uk−1 + ωk−1 (C.1)

and measurements of the system given by:

yk = Ck zk + Dkuk + νk (C.2)

The matrices Ak−1, Bk−1, Ck , and Dk contain the discrete time system equations and uk is the
input vector at the k th time step. The process noise ωk and measurement noise νk are assumed to
be zero mean, white, uncorrelated, and have known covariances of Qk and Rk respectively. The
Kalman filter uses a two-step prediction-correction scheme. As such, define the following two
estimates of the state vector zk :

ẑk |k−1 = E [zk |y1, y1, . . . , yk−1] (C.3a)
ẑk |k = E [zk |y1, y1, . . . , yk−1, yk] (C.3b)
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where ẑk |k−1 and ẑk |k are known as the a priori and a posteriori estimates respectively and the
corresponding a priori and a posteriori estimate errors are defined by:

εk |k−1 = zk − ẑk |k−1 (C.4a)
εk |k = zk − ẑk |k (C.4b)

It follows that the covariance of the estimation errors Pk |k−1 and Pk |k are given by:

Pk |k−1 = E
[ (
zk − ẑk |k−1

) (
zk − ẑk |k−1

)T
]

(C.5a)

Pk |k = E
[ (
zk − ẑk |k

) (
zk − ẑk |k

)T
]

(C.5b)

The a priori state estimate propagates with time according to:

ẑk |k−1 = Ak−1 ẑk−1|k−1 + Bk−1uk−1 (C.6)

which is referred to as the prediction update. By computing the a priori state estimation error
with the estimate ẑk |k−1, it follows that the expectation in Equation C.5a becomes:

Pk |k−1 = Ak−1Pk−1|k−1AT
k−1 +Qk−1 (C.7)

The a posteriori state estimate is determined based on a weighted residual – often referred to
as innovation – which is defined by the difference between the actual measurement yk and the
measurement predicted by the a priori state estimate.

ẑk |k = ẑk |k−1 +Kk
[
yk −

(
Ck ẑk |k−1 + Dkuk

) ]
(C.8)

where the weighting or gain matrix Kk is determined by minimizing the a posteriori error
covariance in Equation C.5b and thus computed as:

Kk = Pk |k−1CT
k

(
CkPk |k−1CT

k + Rk

)−1
(C.9)

Substituting this result into Equation C.5b leads to the a posteriori state estimate error covariance
given by:

Pk |k = (I −KkCk)Pk |k−1 (C.10)

The Kalman filter algorithm is summarized below:
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Initialization:

ẑ0|0 = E [z0] (C.11a)

P0|0 = E
[ (
z0 − ẑ0|0

) (
z0 − ẑ0|0

)T
]

(C.11b)

Prediction Step:

ẑk |k−1 = Ak−1 ẑk−1|k−1 + Bk−1uk−1 (C.12a)
Pk |k−1 = Ak−1Pk−1|k−1AT

k−1 +Qk−1 (C.12b)

Correction Step:

Kk = Pk |k−1CT
k

(
CkPk |k−1CT

k + Rk

)−1
(C.13a)

ẑk |k = ẑk |k−1 +Kk
[
yk −

(
Ck ẑk |k−1 + Dkuk

) ]
(C.13b)

Pk |k = (I −KkCk)Pk |k−1 (C.13c)
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C.2 Minimum-phase / all-pass filter decomposition

A linear, time-invariant system is said to be minimum-phase if the system and its inverse are
causal and stable. Thus, all poles and zeros of a minimum phase system are contained in the
closed left-half plane. Every causal stable system H(s)with no zeros on the origin can be factored
into a minimum-phase system in cascade with a causal stable all-pass system [144]:

H(s) = Hmin(s)Hap(s) (C.14)

where Hmin is minimum phase and Hap is a stable all-pass filter. This can be shown by induction.
Consider a single zero ζ on the right-half plane of H(s). Factoring out the unstable zero yields:

H(s) = H1(s) (1 − ζ s) (C.15)

The goal is to reflect the unstable zero onto the left-half plane. Thus, multiplying by

1 =
(1 + ζ s)
(1 + ζ s) (C.16)

gives

H(s) = H1(s) (1 + ζ s)︸           ︷︷           ︸
minimum phase

(1 − ζ s)
(1 + ζ s)︸    ︷︷    ︸
all-pass

(C.17)

Thus, H(s) has been decomposed into the product of a minimum-phase system and stable all-
pass filter. This procedure can be repeated for each unstable zero in H(s). In summary, when
decomposing a stable, causal system, the resulting minimum-phase system will contain all stable
poles and zeros of the original system (i.e., poles and zeros on the left-half plane) as well as the
conjugate of any zeros in the original system that lie in the right-half plane. The all-pass filter will
contain the original unstable zeros and poles at the location of each reflected zero. An important
property of this decomposition is that the amplitude response of H(s) is preserved entirely in
the minimum phase system; however, recovering the phase of H(s) requires the all-pass filter.
Nevertheless, this decomposition is commonly used to estimate a stable, and causal inverse of
H(s) where the inverse is approximated using the inverse of the minimum phase system.

The above induction applies directly when H(s) is a proper transfer function where the relative
degree between the order of the numerator polynomial and order of the denominator polynomial
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is zero (i.e., the number of zeros equals the number of poles). For the special case when H(s)
is strictly proper (i.e., the number of zeros is less than the number of poles), following the
same approach will yield a strictly-proper minimum-phase component that by definition is not a
minimum phase system since the inverse is an improper transfer function and thus non-causal.
Nevertheless, all poles and zeros of the minimum-phase component are stable (i.e., within the
left-half plane) and thus a stable and casual inverse can be obtained by adding a low-pass filter.
Consider the following illustrative example for a strictly-proper system H(s):
Given

H(s) = (s − 1)(s + 2)
(s + 3)(s + 4)(s + 5) (C.18)

factoring out the unstable zero at s = 1 gives:

H(s) = (s + 2)
(s + 3)(s + 4)(s + 5) (s − 1) (C.19)

and multiplying by 1 = (s+1)
(s+1) yields:

H(s) = (s + 1)(s + 2)
(s + 3)(s + 4)(s + 5)︸                    ︷︷                    ︸
minimum-phase component

(s − 1)
(s + 1)︸  ︷︷  ︸

all-pass filter

(C.20)

As shown, the minimum phase component of H(s) is a strictly-proper system which leads to a
non-causal inverse. To approximate H−1(s), a first-order low-pass filter with frequency cut-off
ωc is appended to the inverse of the minimum-phase component:

H−1(s) = (s + 3)(s + 4)(s + 5)
(s + 1)(s + 2)

ωc

(s + ωc) (C.21)
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C.3 Linear fractional transformations

A linear fractional transformation (LFT) is defined as a mapping F : C 7→ C of the form

F(s) = a + bs
c + ds

(C.22)

where a, b, c, and d ∈ C. LFTs of this form can be generalized for the matrix case [53]. Consider
the complex matrix M partitioned as:

M =
[
M11 M12

M21 M22

]
∈ C(p1+p2)×(q1+q2) (C.23)

and let ∆` ∈ Cq2×p2 and ∆u ∈ Cq1×p1 be two other complex matrices. The lower LFT with respect
to ∆` is defined as the map:

F`(M, •) : Cq2×p2 7→ Cp1×q1 (C.24)

with
F`(M,∆`) =M11 +M12∆` (I −M22∆`)−1 M21 (C.25)

Similarly, the upper LFT with respect to ∆u is defined as:

Fu(M, •) : Cq1×p1 7→ Cp2×q2 (C.26)

with
F`(M,∆`) =M22 +M21∆u (I −M11∆u)−1 M12 (C.27)

The lower and upper LFTs are represented graphically in Figure C.1. From the diagrams it
becomes clear that F`(M,∆`) and Fu(M,∆u) are transformations obtained from closing the lower
and upper loops of the matrix M respectively. As such, the lower LFT represents the following
set of equations: [

z1

y1

]
=

[
M11 M12

M21 M22

] [
ω1

u1

]
(C.28a)

u1 = ∆` y1 (C.28b)

while the upper LFT represents: [
y2

z2

]
=

[
M11 M12

M21 M22

] [
u2

ω2

]
(C.29a)

u2 = ∆uy2 (C.29b)

173



M

∆`

ω1 z1

y1u1

(a) lower LFT

M

∆u

ω2 z2

y2u2

(b) upper LFT

Figure C.1: Block diagram representations of matrix linear fractional transformations
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C.4 Robust controller synthesis using D-K iterations

Consider the generalized plant model in Figure C.2.

M

K

ω z

yu

Figure C.2: Generalized plant model for robust controller synthesis

Designing a controller K for either robust stability, robust performance, or both, leads to the
following µ-synthesis problem [53]:

min
K
‖F`(M,K)‖µ (C.30)

The D-K iteration method yields a reasonable estimate of µ by iteratively solving for K and D in
the following:

min
K

inf
D,D−1∈H∞

DF`(M,K)D−1 
∞ (C.31)

where D is a minimum phase scaling matrix. For a fixed scaling transfer matrix D, the expression

min
K

DF`(M,K)D−1 
∞ (C.32)

is a standard H∞ optimization problem. On the other hand, given a stabilizing controller K,

inf
D,D−1∈H∞

DF`(M,K)D−1 
∞ (C.33)

is a standard convex optimization problem and can be solved point-wise in the frequency domain
as

sup
ω

inf
Dω∈D

σ̄
[
DωF`(M,K)( jω)D−1

ω

]
(C.34)

D-K iterations involve sequentially solving this two-parameter minimization. More specifically,
each iteration involves minimizing over K with Dω fixed and subsequently minimizing point-wise
over Dω with K fixed. A summary of the key steps is provided below [53]:
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Overview of D-K iteration method:

1. Determine an initial estimate of the scaling matrix Dω point-wise across frequency.

2. Find scalar transfer functions di(s), d−1
i (s) ∈ RH∞ for i = 1, 2, . . . , (n − 1) where n is the

dimension of M. This can be achieved using interpolation theory or graphical matching.

3. Let
D(s) = diag (d1(s)I, . . . , dn−1(s)I, I)

Construct a state space model for the system:

M̂(s) =
[
D(s)

I

]
M(s)

[
D−1(s)

I

]

4. Solve an H∞-optimization problem to minimize
F`(M̂,K)


∞

over all stabilizing K’s. Note that a scaled version of M is used in this optimization and let
the minimizing controller be denoted by K̂.

5. Minimize over Dω point-wise across frequency:

σ̄
[
DωF`(M, K̂)( jω)D−1

ω

]

Note that this evaluation uses the minimizing K̂ from the previous step but that M is
unscaled. This minimization leads to a new scaling function denoted by D̂ω.

6. Compare D̂ω with the previous estimate Dω. If they are within a specified tolerance, the
iteration concludes, otherwise the initial estimate for Dω is set to D̂ω and the iteration
repeats from step 2.

For implementation purposes, the Robust Control toolbox in MATLAB includes the function
dksyn which automates the D-K iterations.
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