
Multi-Purpose Designs in
Lightweight Cryptography

by

Morgan He

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Applied Science
in

Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2019

c© Morgan He 2019

Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

The purpose of this thesis is to explore a number of techniques used in lightweight
cryptography design and their applications in the hardware designs of two lightweight
permutations called sLiSCP and sLiSCP-light. Most of current methods in lightweight
cryptography are optimized around one functionality and is only useful for applications
that require their specific design. We aimed to provide a design that can provide multiple
functionalities. In this thesis, we focus and show the hash function and authenticated
encryption of our design. We implemented two lightweight permutations designs of sLiSCP
and sLiSCP-light in VHDL. During the verification of sLiSCP cipher, we discovered ad-
ditional area that could be saved if we tweaked the design slightly. This would lead us
to consider the design of sLiSCP-light which helps dramatically reduce area. Results of
our designs of sLiSCP and sLiSCP-light satisfied the lightweight requirements, including
hardware area, power, and throughput, for applications such as passive RFID tags. Lastly,
we did tests on the randomness of Simeck and Simon Feistel structures. We wanted to ob-
serve the pseudorandom nature of structures similar to Simeck and Simon so we performed
exhaustive tests on small instances of these structures to trace any trends in their behav-
ior. We confirmed that Simon and Simeck were very consistent and provided acceptable
pseudorandom results. For larger sizes, we expect similar results from Simon and Simeck.

iii

Acknowledgements

I would like to thank Professor Guang Gong, who has supervised me for the past two
years during my Master’s program at the University of Waterloo. Her support, encour-
agement, and guidance throughout my academic career have been invaluable in my past
accomplishments and future goals. She had an endless amount of professional knowledge
that she would share with me, which was very inspiring. Her unwavering support in the
difficult problems during my projects pushed me through to finish during those times when
I thought I would give up. For all, that, I am truly grateful.

Also, I would like to thank Gangqiang Yang, who worked closely with me for the
hardware designs and implementations. My largest contributions to our lightweight project
was hardware based, and his guidance and knowledge was essential in the work that I did.

I would like to thank my team, who worked hard on the lightweight sLiSCP and sLiSCP-
light permutations, including Riham AlTawy, Raghvendra Rohit, Kalikinkar Mandal, as
well as Gangqiang Yang and Professor Guang Gong. Our team’s work is supported by the
Natural Sciences and Engineering Research Council of Canada (NSERC) and the National
Institute of Standards and Technology (NIST).

I would also like to thank my thesis readers, Professor Mark Aagaard and Professor
Cathy Gebotys, for taking the time to read through my thesis. I take their comments and
critique very seriously and think they are vital to the success of my work.

Lastly, I would like to thank all of the members of our Communication Security Lab
(COMSEC) at the University of Waterloo. Our weekly seminars have broadened my views
to different topics and opened my eyes to new ideas.

Thank you to all!

iv

Table of Contents

List of Tables viii

List of Figures ix

1 Introduction 1

2 Literature Survey and Preliminaries 4

2.1 Linear and Non-linear Feedback Shift Registers 4

2.2 Lightweight Primitives with LFSR Based Structures 5

2.3 Feistel Structures . 6

2.3.1 Data Encryption Standard (DES) 6

2.3.2 Simon and Speck . 7

2.4 Substitution and Permutation Networks (SPN) 7

2.5 Sponge Construction . 8

2.6 Lightweight Design for Cipher Systems . 9

2.7 Simeck . 11

3 sLiSCP: A Lightweight Cipher 13

3.1 sLiSCP . 13

3.2 Design Rationale . 15

3.3 Specification of sLiSCP . 16

v

3.3.1 Structure of sLiSCP . 16

3.3.2 Round Function . 17

3.3.3 LFSR Design . 18

3.4 Modes of Operation . 20

3.4.1 The sLiSCP Mode . 20

3.4.2 Authenticated Encryption . 22

3.4.3 Hash Computation . 27

3.5 Implementation Options . 29

3.5.1 Parallel . 29

3.5.2 ASIC Code Decisions . 29

3.6 Hardware Code Discussions . 32

3.6.1 Process 1 . 32

3.6.2 Process 2 . 32

3.6.3 Process 3 . 32

3.6.4 Process 4 . 33

3.6.5 Process 5 . 33

3.7 Results and Areas . 33

3.7.1 Hash Mode . 33

3.7.2 AE Mode . 34

3.8 Concluding Remarks . 34

4 sLiSCP-light: A Modified Approach 36

4.1 Tweak Approach . 37

4.1.1 Extra Hardware Overhead of the sLiSCP Design 37

4.1.2 Solution to Space Exploration . 37

4.2 Step Function of the Permutation . 38

4.2.1 SubstituteSubblocks (SSb) . 39

4.2.2 AddStepconstants (ASc) . 39

vi

4.2.3 MixSubblocks (MSb) . 40

4.2.4 sLiSCP-light Permutation Instances 40

4.3 Implementations and Benchmarking . 41

4.3.1 Description of the round-based implementation 42

4.3.2 How Light is sLiSCP-light? . 43

4.3.3 Half Serial . 44

4.3.4 Estimates for 1-bit Serialized Implementations 45

4.4 Summary . 46

5 Randomness Properties 48

5.1 Processing Methods . 48

5.1.1 Tests . 48

5.1.2 Acceptable Cycles . 49

5.2 Shift Values and Periods . 49

5.3 Conclusions . 52

6 Conclusions and Future Work 53

6.1 Conclusions . 53

6.2 Future Work . 54

Publications Related to Thesis 55

References 56

APPENDIX 62

vii

List of Tables

3.1 Recommended parameter set for sLiSCP-b/k when used in authenticated
encryption mode. 23

3.2 Security claims for sLiSCP operating in the sLiSCP AE mode where sLiSCP-
b/k denotes sLiSCP with state size b and key size k. 26

3.3 Recommended parameter set for sLiSCP-b when used in hashing mode and
the associated bit securities. 28

3.4 The number of discrete components in sLiSCP permutation 31

3.5 Parallel hardware implementation of sLiSCP modes and comparison with other

lightweight hash and AE primitives. Throughput is given for a frequency of 100

kHz. 35

4.1 Recommended parameter set for sLiSCP-light-192 and sLiSCP-light-256
permutations. 41

4.2 Breakdown of the number of discrete components in both instances of sLiSCP-
light, where XOR is 1-bit xor operation and MUX is 2-1 1-bit multiplexer. 41

4.3 Parallel hardware implementation of sLiSCP, sLiSCP-light and comparison with

other lightweight primitives. Throughput is given for a frequency of 100 kHz. . . 47

5.1 Randomness tests of the Simeck and Simon for larger values of m. 52

viii

List of Figures

2.1 LFSR and NLFSR structure . 5

2.2 Feistel Structure using different lengths . 6

2.3 Digital Encryption Standard (DES) structure 7

2.4 Advanced Encryption Standard (AES) structure 8

2.5 Sponge Construction Originally used in Keccak 9

2.6 Simeck round function where (a, b, c) = (5, 0, 1). 12

3.1 sLiSCP Round Function . 16

3.2 Type 2 Generalized Feistel Structure (GFS) 17

3.3 Degree 6 LFSR used to generate the Round Constants and Step Constants
for sLiSCP-192 . 18

3.4 Degree 7 LFSR used to generate the Round Constants and Step Constants
for sLiSCP-256 . 19

3.5 Unified round function which can be used in all stages of both keyed and
unkeyed modes. 21

3.6 Sponge Construction for sLiSCP . 23

3.7 Hash computation of the sLiSCP mode of operation. 27

3.8 Hardware architecture of the sLiSCP permutation 30

4.1 sLiSCP-light Step Function . 39

4.2 Parallel datapath of the sLiSCP-light permutation step function. 42

4.3 Breakdown of the area requirements of the two instances of sLiSCP-light
components. 43

ix

5.1 Simeck using shift values of (a, b, c) . 49

5.2 Randomness tests of the Simeck structure for m = 16, (a, b, c) = (5, 0, 1) . . 50

x

Chapter 1

Introduction

In the age of digital communications, many of our technologies rely on security. With
the increase in smaller and smaller devices, the security demands lightweight ciphers. In
other words, we need cryptographic functions that are able to be performed on resource
constrained devices.

Cryptography is the study of the methods in securing information. To keep the infor-
mation secret, encryption is the process used to convert comprehensible information (i.e.
plaintext) into incomprehensible information (i.e. ciphertext). Decryption is the process
used to recover the plaintext from the ciphertext. Encryption and decryption constitute a
pair of algorithms which is referred as a cipher. For example, Kasumi [1], also known as
A5/3, is a block cipher in which encryption and decryption operations are identical with
a reversal of the key schedule. It is used in the confidentiality and integrity algorithms for
the third generation mobile phone system. It operates on blocks of 64 bits and outputs
in block of 64 bits. As another example, WG [31] is a synchronous stream cipher that
has been designed to produce a keystream with guaranteed randomness properties such as
balance, long period, large and exact linear complexity, 3 level additive autocorrelation and
ideal 2 level multiplicative autocorrelation. Also, it is resistant to data tradeoff attacks,
algebraic attacks and correlation attacks.

In this thesis, we examine some existing lightweight designs for cryptoprimitives. Us-
ing this for background and comparison purposes, we present the sLiSCP/ sLiSCP-light
families of lightweight permutations and their hardware implementations, as well as inves-
tigate the randomness of Feistel structures, involving Simon and Simeck derived functions.
We were able to verify that our design satisfied NIST’s lightweight property requirements
with minimal hardware footprint as well as performed the necessary operations to ensure

1

the desired security levels. The most important requirement that we aim for, is the 2000
gate equivalent maximum, that can be devoted for low-cost RFID tags. While we try to
minimize the power consumption and maximize the throughput in all of our designs, our
main focus is on area. Each of our two designs were optimized on the commonly used
hardware technologies such as CMOS 135nm and CMOS 65nm. We also explore serialized
implementations and considered the throughput costs of such a method. Our results were
measured using in gate equivalents (GE), which is the approximate area needed for a two-
input drive-strength-one NAND gate. This is so that we can measure the complexity of
the circuit, and deduce the silicon area from the manufacturing specifications.

Contributions include the hardware design and optimization of two lightweight permu-
tation designs, sLiSCP and sLiSCP-light. Also included, are randomness tests on Simeck-
like ciphers. The contributions of the thesis are summarized as follows.

1. sLiSCP. We provide two efficient parallel hardware implementations for the sLiSCP
unified duplex sponge mode when using sLiSCP-192 (resp. sLiSCP-256) in CMOS
65 nm ASIC with area of 2289 (resp. 3039) GE and a throughput of 29.62 (resp.
44.44) kbps, and their areas in CMOS 130 nm are 2498 (resp. 3319) GE. The power
consumption is 4.62 (resp. 5.88) µW . We have estimated the areas for half-serial
and bit-serial implementation. Lastly, we made comparisons in hardware efficiency
with existing lightweight cryptographic designs.

2. sLiSCP-light. For sLiSCP-light-192, we have parallel implementation hardware
areas of 1820 (resp. 1892) GE in CMOS 65 nm (resp. 130 nm) ASIC. The areas
for sLiSCP-light-256 are 2397 and 2500 GE in CMOS 65 nm and 130 nm ASIC,
respectively. Overall, the unified duplex sponge mode of sLiSCP-light-192 which
provides (authenticated) encryption and hashing functionalities, satisfies the area
(1958 GE), power (3.97 µW), and throughput (44.4 kbps) requirements of passive
RFID tags. For sLiSCP-light-192, we estimated that serialized 1-bit implementation
would use 1572 (resp. 1669) GE and for sliscpl-256, it would use 2057 (resp. 2193)
GE.

3. Randomness test of Simeck-like structures. We test the properties of a shift
register, using a Simeck-like design. We look at the small instances of Simeck-like
structures and search for the number of states that are in cycles that are larger than
the square root of 2n where 2n is the number of the bits in the internal states. We
exhaustively search all shift parameters in our Simeck-like structure for smaller sizes.
For our larger state sizes, we focus on the shift values of Simeck and Simon.

2

The remaining chapters of this thesis are organized as follows.

Chapter 2 discusses some of the existing lightweight tools that have been proposed by
the cryptographic community. We look at the methods and purposes of the proposed tools
as well as their relevance in lightweight applications.

Chapter 3 discusses the preliminary mathematics and background that are used in our
new work. We explain LFSR states and hardware tools that are used in the following
chapters.

Chapter 4 presents our new family of lightweight permutations called sLiSCP. We ex-
plain the overall design, the goals, and the applications and focuses on the hardware details
and comparisons with other lightweight designs.

Chapter 5 shows a modified version of our work called sLiSCP-light. We explain the
purpose of this modification and how it affects the hardware footprint, some of the changes
in security level, and its hardware implementations for two instances (i.e. 192-bit internal
states and 256-bit internal states).

Chapter 6 analyzes the randomness properties in the modified Feistel structure. We
look at some of the examples from Simeck round functions and large versions created by
extending the design.

Chapter 7 concludes the thesis and presents some future topics to explore.

3

Chapter 2

Literature Survey and Preliminaries

Lightweight cryptographic security has become an increasing topic of concerns for secur-
ing the Internet-of-Things (IOT). In this chapter, we review some of the background of
lightweight cryptographic designs. We explore a survey of the existing designs used in
lightweight cryptographic primitives.

The chapter contents are organized as follows. In Section 2.1, we explain linear and
non-linear shift registers, which is an important tool that is used extensively in this thesis.
Section 2.2 explores lightweight ciphers that are based around LFSRs in their structure.
Section 2.3 looks at how the Feistel structure is used in certain lightweight primitives. We
explain its uses in DES as well as Simon and Speck. Section 2.4 explains the substitution
network is used in certain ciphers such as AES. In Section 2.5, we present the sponge
structure, and its uses in ciphers such as Keccak. In Section 2.6, we look over some
of the choices that were made when the existing lightweight permutations were designed.
Lastly, in Section 2.7, we go over Simeck, which is function of our choice in our lightweight
permutation.

2.1 Linear and Non-linear Feedback Shift Registers

We give a brief introduction about shift registers as an important tool for cryptographic
functions. They are comprised of a series of flip-flops, each output of which connects to
the input of the next, and all share the same clock. We use these shift registers to perform
functions on an initial state. Figure 2.1 shows these shift registers. In this thesis, we
use linear feedback shift registers (LFSR) and non-linear feedback shift registers (NLFSR).

4

LFSRs will have an input bits based on a linear function of its previous state, while NLFSRs
have input bits based on a non-linear function of its previous state. These are used for
their pseudorandom properties and have simple structures in implementation.

Figure 2.1: LFSR and NLFSR structure

2.2 Lightweight Primitives with LFSR Based Struc-

tures

Ciphers, including Grain [35], Trivium [24] and the lightweight parameters of WG [31] are
included in the category of primitives that are structurally based on LFSRs. These designs
use LFSRs to generate m-sequences and combine them using finite state machines over
non-linear feedback shift registers.

Trivium was created to be a synchronous stream cipher designed to generate up to 264

bits of key stream from an 80-bit secret key and an 80-bit initial value (IV). Its purpose was
to simplify a stream cipher without sacrificing speed or flexibility. Trivium was submitted
to the Profile II (hardware) of the eSTREAM competition [24] by its authors, Christophe
De Cannire and Bart Preneel, and was selected as part of the portfolio for low area hardware
ciphers (Profile 2) by the eSTREAM project.

Trivium generates up to 264 bits of output from an 80-bit key and an 80-bit IV. The
288-bit internal state consisted of three shift registers of different lengths. At each round,
one bit is shifted into the three shift registers using a non-linear combination of taps from
that and one other register.Thus, one bit of output is produced. To initialize the cipher,
the key and IV are written into two of the shift registers, with the remaining bits starting
in a fixed pattern; the cipher state is then updated 4× 288 = 1152 times, so that every bit
of the internal state depends on every bit of the key and of the IV in a complex nonlinear
way.

5

2.3 Feistel Structures

Originating from DES, these structures are a special type of nonlinear-feedback shift reg-
isters, called the Feistel structure. The basic structure involves a function performed on
one half of the block, and then combined with the second half. The result is shifted down
as in an NLFSR [29]. An example of these would be the ciphers DES [27], KATAN [26],
SIMON, SPECK [11], and SIMECK [50]. A defining characteristic of this type of structure
is that its encryption and decryption operations can be very similar or even identical. This
makes implementation very efficient.

Figure 2.2: Feistel Structure using different lengths

2.3.1 Data Encryption Standard (DES)

The most well known Feistel structure would probably be used as DES or Data Encryption
standard, with the structure shown in Figure 2.2-(a) [30] and detailed in Figure 2.3 [30].
IBM developed it in the 1970s and was based on the Feistel structure. The algorithm was
submitted to the National Bureau of Standards (NBS), which would become the National
Institute of Standards and Technology (NIST) in the future. After consultation with the
National Security Agency (NSA), the NBS selected a modified version, which became the

6

official Federal Information Processing Standard (FIPS) for the United States in 1977
[48]. FIPS’s overall structure used 16 identical stages of processing. The initial and final
permutation were inverses.

Figure 2.3: Digital Encryption Standard (DES) structure

2.3.2 Simon and Speck

The Simon block cipher is a balanced Feistel cipher with an n-bit word, and therefore
the block length is 2n with the structure shown in Figure 2.2-(a). The key length is
a multiple of n by 2, 3, or 4, which is the value m. A Simon cipher implementation is
denoted as Simon2n/nm. The block component of the cipher is uniform between the Simon
implementations; however, the key generation logic is dependent on the implementation of
2, 3 or 4 keys. This family of block ciphers was designed for lightweight purposes and has
a focus on hardware optimization.

Speck supports a variety of block and key sizes. A block is always two words, but the
words may be 16, 24, 32, 48 or 64 bits in size. The corresponding key is 2, 3 or 4 words. The
round function consists of two rotations, adding the right word to the left word, XORing
the key into the left word, then and XORing the left word to the right word. Speck was
designed to be optimized in software.

2.4 Substitution and Permutation Networks (SPN)

The algorithms that use a substitution network apply several alternating layers of substi-
tution boxes (S-boxes), the non-linear layer, followed by a linear layer which performs a

7

permutation, which shifts and mixes the output of the first layer. The advantages of this
structure are the parallelisms so that computation can be very fast and efficient.

Some ciphers which use substitution and permutation networks include AES [44],
Present [21], Piccolo [45], LED [34], EPCBC [51], KLEIN [32], PRINT [38], SKINNY
[12], GIFT[10].

The AES (Advanced Encryption Standard) cipher [44] is very commonly used, and
falls into this category. A block diagram of the round functions of AES are shown in
Figure 2.4 [30]. AES is based on a design principle of a substitution/permutation network,
a combination of both substitution and permutation, and is fast in both software and
hardware. Unlike DES, AES does not use a Feistel network. AES is a variant of Rijndael
[25], which has a fixed block size of 128 bits, and a key size of 128, 192, or 256 bits. By
contrast, the Rijndael specification is specified with block and key sizes that may be any
multiple of 32 bits, with a minimum of 128 and a maximum of 256 bits.

AES operates on a 4×4 column-major order matrix of bytes, termed the state, although
some versions of Rijndael have a larger block size and have additional columns in the state.
The AES calculations are done in a particular finite field.

Figure 2.4: Advanced Encryption Standard (AES) structure

2.5 Sponge Construction

The sponge construction class of algorithms takes an input bit stream of any length and
produces an output of any desired length. The defining characteristics of the sponge
structure uses a fixed function that is repeatedly performed on the state memory, as shown

8

in Figure 2.5 [16]. The inputs are XORed over multiple rounds in the absorbing phase,
while the output is calculated over multiple rounds in the squeezing phase.

Figure 2.5: Sponge Construction Originally used in Keccak

Keccak is the most well known of these structures. The process involves where data is
“absorbed” into the sponge, then the result is “squeezed” out. Message blocks are XORed
into a part of the state during the absorbing phase, which is then transformed as a whole
using a permutation function F . Then, output blocks are read from the same subset of the
state during the squeeze phase, alternated with the state transformation function F . The
size of the part of the state that is written and read is called the “rate” (denoted r), and
the size of the part that is untouched by input/output is called the “capacity” (denoted c).
The capacity determines the security of the scheme in bits. Thus, the maximum security
level would be half the capacity in bits.

2.6 Lightweight Design for Cipher Systems

Ever since the introduction of the Sponge-based permutation dependent functions and the
ability of such a construction to provide almost all of the major cryptographic functional-
ities, there has been a natural inclination towards designing cryptographic permutations.
Starting from the Keccak family of permutations [16], and later Ascon [28], Norx [8], Simpira
[47], and Gimli [13], all such proposals have the conventional aspect that designing a cryp-
tographic permutation is better than a specific cryptographic primitive. While Ascon and
Norx are used to instantiate a MonkeyDuplex sponge construction [17] that is optimized
for authenticated encryption (AE) only, other proposals such as Simpira and Gimli focus
mainly on the permutation design and only suggest section modes. What is clearly common
among most of the permutation designs is that they either have sufficiently large state sizes
(≥ 320 bits) which directly translate to large hardware areas, or are optimized for soft-
ware to make use of processor specific instructions (e.g., Gimli and Simpira). Lightweight
AE schemes Norx-8 and Norx-16 with internal state sizes of 128 and 256 bits have lower

9

bounded estimated areas of 1368 and 2880 GE, respectively. However, both these Norx

instances are specifically optimized for authenticated encryption that offer 80-bit and 96-
bit security, respectively, and their security and instantiation for unkeyed modes are not
investigated in the literature.

Because of NIST’s lightweight cryptography project [42] that recognizes the apparent
lack of cryptographic standards suitable for the whole spectrum of lightweight sections,
several proposals have emerged. However, all of such proposals offer a single cryptographic
functionality within the constrained hardware area (around 2000 GE [36]) dedicated for all
security purposes. Examples of these algorithms are either block ciphers such as Led [34],
Present [21], Simon and Speck [11], Simeck [50], Skinny [12], and Gift [10] or lightweight
hash functions such as Photon [33], Quark [7], and Spongent [22].

10

2.7 Simeck

The Feistel structure that is used in our sponge construction consists of four blocks that
will be introduced in the next two chapters. We opt to use the Simeck functions [50] as our
round function due to its lightweight properties in hardware and its ability to be serialized.
The state is split into two blocks. Several bitwise functions are performed on the first
block, and then XORed with the second block. The bitwise function includes left shifting
be 5 bits, XOR with the original, AND with a 1 bit left shifted version. The resulting
block replaces the second block, while the original values in the second block are shifted
into the first block. The full process and bitwise functions are shown in Figure 2.6. This
process is repeated a number of times, depending on the size of the state [50].

Before the main rounds, the block is divided into two 32-bit halves and processed
alternately; this crossing is known as the Feistel scheme. The Feistel structure ensures
that decryption and encryption are very similar processes-the only difference is that the
subkeys are applied in the reverse order when decrypting. The rest of the algorithm is
identical. This greatly simplifies implementation, particularly in hardware, as there is no
need for separate encryption and decryption algorithms.

The ⊕ symbol denotes the exclusive-OR (XOR) operation. The F-function scrambles
half a block together with some of the key. The output from the F-function is then combined
with the other half of the block, and the halves are swapped before the next round. After
the final round, the halves are swapped; this is a feature of the Feistel structure which
makes encryption and decryption similar processes.

11

Figure 2.6: Simeck round function where (a, b, c) = (5, 0, 1).

12

Chapter 3

sLiSCP: A Lightweight Cipher

In this chapter, we present the hardware implementation of sLiSCP which is a family of
lightweight cryptographic permutations with the sole aim to provide a realistic lightweight
cryptographic minimal design. Our design aims to provide multiple practical functionalities
that are useful in lightweight applications today.

This Chapter is organized as follows. In Section 3.1, we introduce our lightweight
permutation sLiSCP and give a brief overview. In Section 3.2, we explain the reasoning for
our design and the advantages that we have over existing lightweight designs. In Section
3.3 we explain the structure of our permutation and our choices for parameters. We go
in depth and explain our round function, type-2 Generalized Feistel Structure, modified
Simeck, and our LFSR choice for our round constant. Section 3.4 presents the modes
of operations for our permutation. We explain how sLiSCP is used in the unified duplex
sponge as well as the Hash and AE modes. In Section 3.5, we go through the hardware
implementation of this design and show our results. Section 3.6 goes through the hardware
design choices and each process. In Section 3.5, we show the implementation results of
sLiSCP. In addition, we discuss the hardware results of the Hash and AE modes.

3.1 sLiSCP

In SAC 2017, our group proposed the sLiSCP family of lightweight cryptographic per-
mutations [2] was proposed specifically to address the limited hardware area which is
dedicated for all security purposes in resource constrained devices. The name, sLiSCP,
(pronounced ess - lisp) was an acronym for Simeck-based-permutations for Lightweight

13

Sponge Cryptographic Primitives. We wanted to highlight the sponge structure and the
Simeck that was used in the design. We stressed that for such devices, it is desirable (if not
only realistic) that a cryptographic design should provide low overhead for multiple crypto-
graphic functionalities including (authenticated) encryption, hashing, and pseudorandom
bit generation.

Hence, sLiSCP is proposed to be used in the unified sLiSCP duplex sponge construction
to provide (authenticated) encryption and hashing functionalities. sLiSCP aims to provide
an efficient and secure design for a sponge-specific permutation taking into perspective the
relation between the state size and security parameters. sLiSCP offers two instances of the
permutation with block sizes 192 and 256 bits with fully parallelized hardware areas of
2153 and 2833 GE in CMOS 65 nm ASIC, and 2318 and 3040 GE in CMOS 130 nm ASIC,
respectively.

The sLiSCP family of permutations adopts two of the most efficient and extensively
analyzed cryptographic structures, namely a 4-subblock Type-2 Generalized Feistel Struc-
ture (GFS) [43, 23] (see Figure 2.2), and a round-reduced unkeyed version of the Simeck
encryption algorithm [50]. Specifically, the round function of Simeck is an independently
parametrized version of the Simon round function [11] and has set a new record in terms
of hardware efficiency and performance on almost all platforms. Moreover, Simeck, Simon
and Simon-like variants have been extensively cryptanalyzed by the public cryptographic
community [49, 39, 40, 41]. Simeck utilizes shift parameters that are more hardware effi-
cient than those of Simon, and also in terms of bit diffusion, Simeck is better than other
efficient shift parameters that are investigated in [39].

In this chapter, we present the design and the hardware optimization choices for our
resulting implementations [46]. We implement the two instances of sLiSCP in the duplex
unified sponge mode, and our parallel ASIC implementation results in CMOS 65nm show
that the areas of sLiSCP-192 and sLiSCP-256 are 2289 GEs and 3039 GEs with a through-
put of 29.62 and 44.44 kbps, respectively, and their areas in CMOS 130nm are 2498 GEs
(resp. 3319).

The hardware section of our sLiSCP design is implemented using Application Specific
Integrated Circuit (ASIC) implementations. We can benefit from the specific implementa-
tion of ASIC to reduce the area and power consumption as well as maximize the operating
frequency.

14

3.2 Design Rationale

Our main objective for a minimal design is to provide multiple cryptographic functional-
ities, such as hashing modes and authenticated encryption modes. Using sLiSCP in the
duplex sponge construction is an excellent choice as it offers a number of key features
that enable the design of multiple cryptographic functionalities using the same hardware
circuitry. In other words, both keyed primitives such as (authenticated) encryption and un-
keyed primitives such as hash function and pseudo random bit generator are easily realized
with minimum overhead. The sponge construction ensures provable security [15] when
the underlying permutation is indistinguishable from a random function. Accordingly,
the main challenge is to design a secure and hardware efficient permutation for resource
constrained applications.

For an unkeyed sponge-based primitive with state size b = r + c, where r and c denote
the rate and capacity, respectively, a bound of 2c/2 against generic attacks is proven [15],
which sets a lower bound on the state size of the permutation. If the permutation is used
to construct a hash function with output of size t, the permutation state size should be at
least (2t+ r) bits.

For lightweight applications, a hash digest of 160 bits restricts the state size b to a
minimum of 192 bits for a rate of 32 bits, which means that around 1000 GEs are reserved
only for the state. While a substitution permutation network (SPN) based design requires
a relatively small number of rounds to achieve the desired security, offers good throughput,
and is simpler to cryptanalyze, the hardware implementation cost becomes expensive for a
larger state size due to the large number of substitution boxes and their cost. To design a
lightweight permutation, we opted for a non-SPN based design consisting of Type-2 GFS
and a round-reduced Simeck-m (i.e. Simeck with m-bit state) as a round function, which
are based on the Feistel network. Our design choices are motivated by design goals in
security and hardware efficiency.

The sponge construction is well-investigated and has been cryptanalyzed and proven
secure for different keyed and unkeyed applications including the SHA-3 winner Keccak
[16]. Moreover, its security when instantiated with a specific permutation F relies on the
resistance of F against distinguishing attacks and accordingly, we focus our cryptanalysis
efforts to investigating sLiSCP against a wide variety of such attacks.

Both the implementations of Type-2 GFS and the Simeck-m round functions are ex-
tremely efficient in terms of the hardware footprint. To provide an average estimation on
the GE count, we assume an ASIC 65nm technology that requires 2.5 GE for an XOR,
2 GE for an AND. Given the latter estimates, a 4-subblock Type-2 GFS using Simeck-48

15

mixing requires around 2×48×2.5 = 240 GE and each Simeck-48 round function consumes
around 24 × (2.5 + 2 + 2.5) = 168 GE, which sums to around 576 GEs for the parallel
implementation of the permutation round function logic with a state size of 4× 48 = 192
bits.

3.3 Specification of sLiSCP

sLiSCP uses a sponge structure to absorb inputs to provide multiple cryptographic func-
tionalities. These include tools such as hash, encryption and authentication.

X0 X1 X2 X3

f f

RC2i

u
RC2i+1

u

⊕ ⊕

⊕ ⊕
SC2i SC2i+1

Figure 3.1: sLiSCP Round Function

3.3.1 Structure of sLiSCP

sLiSCP uses a Type 2 Generalized Feistel Structure (GFS), see Figure 3.2. This is similar
to the Feistel structure presented previously in Figure 2.2-(b). The state consists of 4
blocks of 48 bits or 64 bits, respectively for the sLiSCP192 and sLiSCP256 sizes and 2
instances. Each pair of blocks use one Simecku-m round. This Simeck round function is
slightly modified from the original Simeck family of ciphers. It is simplified and does not
use a round key. Instead we generate round constants to add during each inner round of
Simeck. This will be described in the next subsection. As shown in Figure 3.1, we use
two instances of the round function in the generalized Feistel structure.

The internal round function used in the Feistel structure is chosen to be a modified
Simeck function, due to its efficient implementation in hardware and its security. This
allows the satisfaction of the lightweight requirements.

16

Figure 3.2: Type 2 Generalized Feistel Structure (GFS)

3.3.2 Round Function

In this subsection, we formally describe our sLiSCP permutation, which has two instances.
The core algorithm of the sLiSCP permutation is built upon the Simeck cipher’s round
function and a 4-subblock Type-2 GFS construction. We present two lightweight instances
of the sLiSCP permutation.

We use Simecku-m as a round function in the sLiSCP permutation. Simecku-m is derived
from the Simeck cipher whose block length equal to m and round function is given by:

hi(x) = Ri(x0, x1) = (x1, f(x0, x1))

where f(x0, x1) = (x0 <<< 5)�(x0 <<< 0)+(x0 <<< 1)+x1+ki hi : Fm
2 → Fm

2 , <<< is
a left cyclic shift operator, x0 and x1 are m

2
-bit words and ki is a m

2
-bit round key added at

the i-th round. We modify the round function as follows. Instead of adding a round key in
hi, 0 ≤ i ≤ u−1, we add a round constant rci in hi where rci = (C||ti), C = 2

m
2 −2, ti ∈ F2.

This resulting round function is illustrated in Figure 2.6. This is the main Simeck function
that is used throughout this thesis.

Let t be the integer representation of the u-tuple (t0, t1, · · · , tu−1). Simecku-m is defined
as

Simecku-m(x) = hu−1 ◦ hu−2 ◦ · · · ◦ h0(x), x = x0‖x1,

17

s12j+2is12j+2i+2s12j+2i+4

s12j+2i+1s12j+2i+3s12j+2i+5

⊕⊕

RC12j+2i

RC12j+2i+1

s12j+2i+6

s12j+2i+7

⊕
⊕
⊕
⊕

s12j+2i+8

s12j+2i+9

s12j+2i+10

s12j+2i+11

Figure 3.3: Degree 6 LFSR used to generate the Round Constants and Step Constants for
sLiSCP-192

where the round constant rci is used in hi at the i-th round. The round constants are
generated using an LFSR described in Section 3.3.3. We refer to Simecku-m as hut . We use
the subscript t to uniquely instantiate hut as hut1 and hut2 , for t1 6= t2, which are parametrized
by different round constants, t1 and t2. We study the cryptographic properties of Simecku-
m and present the bounds against differential and linear cryptanalysis for sLiSCP based
on the minimum number of active S-boxes, see [3] for detailed cryptanalysis of the round
function.

3.3.3 LFSR Design

The LFSR used in our sLiSCP-192 design is used for its simplicity. Since our Simeck
function is used as a function for the GFS, the specific properties of the key generation
used in original Simeck is not needed. Instead we use a simple LFSR to generate the
constants that resemble the keys used in Simecku-m. Since our 4-block sLiSCP-192 round
function would use two instances of the Simeck round function, our LFSR needs to produce
two constants for each round function for each clock cycle. Then, we use a 6-stage LFSR.
Illustrated in Figure 3.3, the LFSR produces two states in one clock cycle.

This uses 6 stages of LFSR with two bits output used in the sLiSCP-192 round function.
The characteristic polynomial of the LFSR is represented as p(x) = x6 + x+ 1.

After the 6 rounds of the internal function, a 6-bit constant will be generated from
the same parallel LFSR as the round constants with four extra XORs. During this step

18

s16j+2is16j+2i+2s16j+2i+4

s16j+2i+1s16j+2i+3s16j+2i+5

⊕⊕

RC16j+2i

RC16j+2i+1

s16j+2i+8

s16j+2i+7

⊕
⊕
⊕
⊕

s16j+2i+9

s16j+2i+10

s16j+2i+11

s16j+2i+12

s16j+2i+6

⊕ s16j+2i+13

⊕ s16j+2i+14

⊕ s16j+2i+15

Figure 3.4: Degree 7 LFSR used to generate the Round Constants and Step Constants for
sLiSCP-256

the states for the LFSR are (s12j+10, s12j+11, s12j+12, s12j+13, s12j+14, s12j+15). We assign
(s12j+10, s12j+12, s12j+14) to SC2j and (s12j+11, s12j+13, s12j+15) to SC2j+1. For the other
three values of SC2j (s12j+16, s12j+18, s12j+20) and SC2j+1 (s12j+17, s12j+19, s12j+21), we use,

s12j+16 = s12j+10 ⊕ s12j+11

s12j+17 = s12j+11 ⊕ s12j+12

s12j+18 = s12j+12 ⊕ s12j+13

s12j+19 = s12j+13 ⊕ s12j+14

s12j+20 = s12j+14 ⊕ s12j+15

s12j+21 = s12j+15 ⊕ s12j+16.

Overall, our step constant would be generated as,

SC2j = s12j+10||s12j+12||s12j+14||s12j+16||s12j+18||s12j+20

SC2j+1 = s12j+11||s12j+13||s12j+15||s12j+17||s12j+19||s12j+21

For our larger sLiSCP-256 design, we use a similar LFSR design. However, this LFSR
is larger with 7 states. The characteristic polynomial of the LFSR is represented as p(x) =

19

x7+x+1, shown in Figure 3.4. Similar to the previous LFSR, we generate 2 round constants
each clock cycle and generate two step constants after 6 rounds. The step constants for
this LFSR would be,

SC2j = s16j+14||s16j+16||s16j+18||s16j+20||s16j+22||s16j+24||s16j+26||s16j+28

SC2j+1 = s16j+15||s16j+17||s16j+19||s16j+21||s16j+23||s16j+25||s16j+27||s16j+29

3.4 Modes of Operation

Because of the sponge design of sLiSCP, there are several modes that can be used. This
section will describe how the sLiSCP modes are used, including the hash and authenticated
encryption modes of sLiSCP.

3.4.1 The sLiSCP Mode

The utilized sponge mode modifies the keyed initialization and keyed finalization stages of
the Ascon [28] and NORX [8] modes which make key recovery hard even if the internal
state is recovered and also renders universal forgery with the knowledge of the internal
state unattainable. The adopted modification makes the initialization and finalization
stages more hardware efficient and adaptable to different primitive modes.

In particular, instead of initializing the state with the key, K, and then again XORing
it with the permutation output that requires an extra |K| XORs, we initialize the state
with the key and then again absorb the key in the rate part during the initialization and
finalization phases. We also use the domain separation technique as used in NORX because
it runs for all rounds of all stages, and thus reduces the chances of side channel analysis and
offers uniformity across different stages. The separation between the processing of different
types of inputs is important to distinguish between the roles of the processed data. To
this end, we only have one round function (See Fig. 3.5) that incorporates absorption,
squeezing, and domain separation, and according to the fed inputs, we decide which stage
and functionality to implement.

Initialization, absorbing, and squeezing.

Our sLiSCP permutation is based on Type-2 GFS where, apart of the permutation size,
each subblock is either 48 or 64 bits. Since we use it in sponge-based modes, we need to

20

Figure 3.5: Unified round function which can be used in all stages of both keyed and
unkeyed modes.

specify exactly from where the r-bit input is absorbed and the r-bit output is squeezed.
For sLiSCP permutations, we consider the b-bit state as a series of four m-bit subblocks,
X0, X1, X2, X3 (see Figure 3.2), where m is equal to 48 and 64 for sLiSCP-192 and sLiSCP-
256, respectively. We divide the state S of sLiSCP as bytes, S = (B0, B1, · · · , Bl−1) where
l = 24 and 32, for sLiSCP-192 and sLiSCP-256, respectively. Moreover, each subblock Xi

can be viewed as a series of j = m
8

bytes, Bij+0, Bij+1, · · · , Bij+(j−1) arranged from left
to right. In nonce-based keyed modes, initially, the state is loaded with the nonce and
key bytes, denoted by NBw, w = 0, 1, · · · , n, and KBz, z = 0, 1, · · · , k, respectively and
remaining bytes are set to zero. Also, when the hashing mode is employed, we load the
state by a 3-byte IV and the remaining bytes are set to zero. Specifically, the first two IV
bytes are assigned to the first two bytes of X0, and the remaining IV byte is loaded in the
first byte of X2. All initialization public variables either nonce or IV are ceiling divided
and loaded in the even indexed subblocks, X0 and X2, in an ascending byte order. The
key is loaded in the odd indexed subblocks, X1 and X3 in the same manner, and if the
key size is larger than half the state size, then remaining key bytes populate the remaining
bytes in X0 and X2 equally and in an ascending order. For example, for sLiSCP-192/80,
sLiSCP-192/112, and sLiSCP-256/128, the state is initialized as follows:

sLiSCP-192/80: B0 ← NB0, B1 ← NB1, B2 ← NB2, B3 ← NB3, B4 ← NB4, B12 ← NB5, B13 ← NB6,

B14 ← NB7, B15 ← NB8, B16 ← NB9, B6 ← KB0, B7 ← KB1, B8 ← KB2, B9 ← KB3,

B10 ← KB4, B18 ← KB5, B19 ← KB6, B20 ← KB7, B21 ← KB8, B22 ← KB9.

sLiSCP-192/112: B0 ← NB0, B1 ← NB1, B2 ← NB2, B3 ← NB3, B4 ← NB4, B12 ← NB5, B13 ← NB6,

B14 ← NB7, B15 ← NB8, B16 ← NB9, B6 ← KB0, B7 ← KB1, B8 ← KB2, B9 ← KB3,

B10 ← KB4, B11 ← KB5, B18 ← KB7, B19 ← KB8, B20 ← KB9, B21 ← KB10, B22 ← KB11,

B23 ← KB12, B5 ← KB6, B17 ← KB13

21

sLiSCP-256/128: B0 ← NB0, B1 ← NB1, B2 ← NB2, B3 ← NB3, B4 ← NB4, B5 ← NB5, B6 ← NB6, B7 ← NB7,

B16 ← NB8, B17 ← NB9, B18 ← NB10, B19 ← NB11, B20 ← NB12, B21 ← NB13, B22 ← NB14,

B23 ← NB15, B8 ← KB0, B9 ← KB1, B10 ← KB2, B11 ← KB3, B12 ← KB4, B13 ← KB5,

B14 ← KB6, B15 ← KB7, B24 ← KB8, B25 ← KB9, B26 ← KB10, B27 ← KB11, B28 ← KB12,

B29 ← KB13, B30 ← KB14, B31 ← KB15

In the sLiSCP modes, we use initialize(x) to denote the process of loading the state
with x in the positions described above. As for absorbing and squeezing, we want the
input bits to be processed by the Simecku-m box as soon as possible so we achieve better
diffusion. Accordingly, choosing the right place for absorbing data determines how fast it
is processed by the round function which is important since not all the subblocks in GFS
constructions receive the same amount of processing at first.

The same r/8 bytes are used for absorbing and squeezing and they are denoted by the
following state bytes:

sLiSCP-192: B6, B7, B18, B19

sLiSCP-256: B8, B9, B10, B11,

B24, B25, B26, B27.

In the AE mode, the tag is extracted from the same byte positions which are used in the
key initialization stage. Hence, the process of tag extraction from state S is denoted by
tagextract(S). We denote the rate and capacity parts of the state S by Sr and Sc, respec-
tively, thus S = (Sr, Sc). In what follows, we show how we use the unified round function
depicted in Figure 3.5 to implement several functionalities using sLiSCP permutation in
the sLiSCP mode.

3.4.2 Authenticated Encryption

An authenticated encryption algorithm takes as input a secret key K, a nonce N , a block
header A (a.k.a, associated data) and a message M and outputs a ciphertext C with
|C|= |M |, and an authentication tag T . Mathematically, an authenticated encryption AE
mode is defined as

AE : {0, 1}k × {0, 1}n × {0, 1}∗ × {0, 1}∗ → {0, 1}∗ × {0, 1}t

with
AE(K,N,A,M) = (C, T)

22

Figure 3.6: Sponge Construction for sLiSCP

where k is the bit length of K, n is the bit length of N .

We denote an instance of sLiSCP in a keyed mode by sLiSCP-b/k, where b and k denote
the state size and the key length, respectively. In such a mode, we limit the number of
processed bits per key to 2a, which is known as the data usage limit [14]. Specifically,
2a denotes the value that an implementation restricts the maximum message size (data
queries) that can be processed per a given key such that one can attain bit security equal
to 2k when c ≥ k + a + 1. Recommended parameters for sLiSCP when used in AE mode
are listed in Table 3.1.

Table 3.1: Recommended parameter set for sLiSCP-b/k when used in authenticated en-
cryption mode.

Algorithm Key Nonce Tag Block size r Capacity c Usage exponent a

sLiSCP-192/80 80 80 80 32 160 72

sLiSCP-192/112 112 80 112 32 160 40

sLiSCP-256/128 128 128 128 64 192 56

The depiction of the encryption and decryption processes using the sLiSCP sponge mode

23

is shown in Figure 3.6. We describe the padding rule and the algorithms of the AE below.

Padding: Padding is necessary when the length of the processed data is not a multiple
of the rate r value and also to act as a delimiter between data of unknown lengths. Since
the keys are of fixed length, we need to pad it by appending zeros only if its length is not a
multiple of r bits such that the padded K is divided into `K r-bit blocks K0‖K1‖· · · ‖K`K−1.
Afterward, the padding rule (10∗) denoting a single 1 followed by required 0’s is applied
to the message M such that its length after padding is a multiple of r. Then the resulting
padded message is divided into `M r-bit blocks M0‖M1‖· · · ‖M`M−1. A similar procedure
is carried out on the associated data A which results in `A r-bit blocks A0‖A1‖· · · ‖A`A−1.
In the case where no associated data is present, no processing is necessary. We summarize
the padding rules for key, message and associated data below.

padr(K) → K‖0r−(|K| mod r), if |K| mod r 6= 0

padr(M) →M‖1‖0r−1−(|M | mod r)

padr(A) →
{
A‖1‖0r−1−(|A| mod r) if |A| > 0

φ if |A| = 0

}

Initialization: The initial state S is loaded with the nonce N and key K as described
in Section 3.4.1. Each r-bit key block Ki is absorbed by XORing it to the Sr part of
the state and a one bit domain separator is XORed to the most significant bit in byte
B23 and B31 for sLiSCP-192 and sLiSCP-256 with the absorption of the last key block
K`K−1, respectively. Afterward, the sLiSCP permutation is applied to the whole state. The
initialization steps are described below.

S ← F (initialize(N,K))

S ← F ((Sr ⊕Ki), Sc), i = 0, · · · , `K − 2

S ← F ((Sr ⊕Ki), (Sc ⊕ 0c−1‖1)), i = `K − 1

Processing A: If there is associated data, each r-bit block Ai, i = 0, · · · , `A − 1 is
XORed to the first Sr part of the internal state S and one-bit domain separator is XORed
to the last byte of the states. Then, sLiSCP permutation is applied on the whole state.

S ← F ((Sr ⊕ Ai), (Sc ⊕ 0c−1‖1)), i = 0, · · · , `A − 2

S ← F ((Sr ⊕ Ai), (Sc ⊕ 0c−2‖2)), i = `A − 1

24

Encryption: Similar to the processing of A, however, with a different domain separa-
tor, each message r-bit block Mi, i = 0, · · · , `M − 1 is XORed to the Sr part of the internal
state S resulting in the corresponding ciphertext Ci which is then extracted from the Sr

part of the state. After the computation of each Ci, the whole internal state S is permuted
by F .

Ci ← Sr ⊕Mi,

S ← F (Ci, (Sc ⊕ 0c−2‖2)) if 0 ≤ i < `M − 2

S ← F (Ci, (Sc ⊕ 0c−3‖4)) if i = `M − 1

To keep a minimal overhead, the last ciphertext block C`M−1 is truncated so that
its length is equal to that of the last unpadded message block M`M−1 (i.e., C`M−1 =
bC`M−1c(|M | mod r)).

Decryption: Each ciphertext r-bit block Ci, i = 0, · · · , `M − 1 is XORed to the Sr

part of the internal state S to calculate the corresponding message block Mi, then the
same Ci replaces the r-bit block Sr in the internal state, then the whole internal state S is
transformed by the permutation F

Mi ← Sr ⊕ Ci

S ← F (Ci, (Sc ⊕ 0c−2‖2)), 0 ≤ i < `M − 2

The last message block M`M−1 is calculated by XORing the ciphertext block C`M−1 to the
truncated Sr part of the state, then replacing the Sr part by C`M−1‖(dSre(r−|M | mod r) ⊕
(1‖0(r−1−|M | mod r))).

M`M−1 ← bSrc(|M | mod r) ⊕ C`M−1

S ← F (C`M−1‖(dSre(r−|M | mod r) ⊕ (1‖0(r−1−|M | mod r))), (Sc ⊕ 0c−3‖4)).

Finalization: Finally, the `K key blocks are absorbed and the tag is extracted from
the chosen bytes of the state as described earlier.

S ← F ((Sr ⊕Ki), Sc), i = 0, · · · , `K − 1

T ← tagextract(S).

25

The decryption procedure returns the message blocks Mi ,i = 0, 2, · · · `M − 1, only if the
calculated tag value is equal to the received tag value. The AE mode assumes nonce
respecting adversary and we do not claim security in the event of nonce reuse, although,
the initialization and finalization stages combined by the number of rounds used in the
sLiSCP permutation tremendously reduces the effect of such attacks. We claim no security
for reduced-round versions of the sLiSCP permutation operating in the sLiSCP mode. In
summary, our security claims are given in Table 3.2 An authenticated encryption algorithm

Table 3.2: Security claims for sLiSCP operating in the sLiSCP AE mode where sLiSCP-b/k
denotes sLiSCP with state size b and key size k.

Security property sLiSCP-192/80 sLiSCP-192/112 sLiSCP-256/128

Data confidentiality 80 112 128

Data integrity 80 112 128

Associated data integrity 80 112 128

Nonce data integrity 80 112 128

can be easily used to provide either encryption or authentication only. More precisely, when
using sLiSCP for encryption only, we run the algorithm as usual and stop after the last
message block is encrypted and since we do not care about tag forgery, we can omit/ignore
the finalization stage and the tag extraction stage. We also set to zero all the domain
separation as we are only processing one domain of messages. For the MAC generation, we
can ignore the initialization phase and directly load both the key and nonce in the state
and start absorbing the message blocks directly after applying F once to the initialized
state. This design decision is attributed to the fact that during the MAC generation, there
is no leaked part of the state and the attacker has little control (only probabilistic) over
the state which makes state recovery attacks harder than that in the case of authenticated
encryption or encryption only. However, since we care about tag forgery, we need to
maintain a strong keyed finalization stage, also, in this mode, we may zero all domain
separator XORs because we are authenticating data apart of its role. Also, the adopted
initialization and finalization stages are not efficient throughput wise when the processed
message is short. However, in such a case, the ability of attacker to recover the internal
state is reduced too, so when processing short messages we can directly initialize the state
with the key and nonce, and skip the initialization phase.

26

3.4.3 Hash Computation

A hash function takes as input a message M , and a standard initialization vector IV , and
then returns a fixed size output H, called hash or message digest. Formally, the hash mode
is specified by

H : {0, 1}∗ × {0, 1}iv → {0, 1}h

with H = H(M, IV) where iv is the length of the IV and h is the length of the hash. The
depiction of the hashing process of the sLiSCP mode is shown in Fig. 3.7.

Figure 3.7: Hash computation of the sLiSCP mode of operation.

We adapt the sLiSCP mode such that it can be used to initially absorb the message
blocks and then squeeze hash blocks to output the desired hash value. This is an unkeyed
mode where we do not need an initialization or finalization stage. It has been shown [16]
that inverting the squeezing phase falls in the category of “multiblock constrained-input
constrained-output problem” which requires 2min(h,b)−r computations to recover the state
before the squeezing phase. Once such an internal state is recovered one can launch a
meet-in-the-middle attack with around 2c/2 computations to get a preimage of a given
hash of length h [16, 33]. The latter condition reduces the generic preimage attack on the
sponge-based hash functions from 2h to min(2min(h,b),max(2min(h,b)−r, 2c/2)) where such a
preimage security is usually dominated by 2min(h,b)−r and accordingly highly dependent on
the squeezed bit rate. In [33], Guo et al. suggested using a flexible squeezing bit rate r′ < r
that offers a trade-off between speeding up the hash computation and preimage security.
More precisely, a smaller r′ would make the time complexity of a preimage attack equal to
2h−r′ (assuming that the hash length is less than the state length) which is close to that of
the expected generic one 2h. On the other hand, if small inputs are hashed (e.g., electronic
product code (EPC) data, which is a 96-bit string), small squeezing bit rate may make the
computation too slow as one needs dh/r′e−1 calls to the underlying permutation. Another
solution to reach the expected generic preimage security is to run one more squeezing round

27

after one extracts the desired hash length h [33, 7], thus increasing the acquired output to
h+ r′ and in this case the complexity of the generic preimage attack is equal to :

min(2min(h+r′,b),max(2min(h,b−r′), 2c/2)) ≥ 2h when c+ r − r′ ≥ h.

We adopt a standard initialization vector that combines the parameters of a given
sLiSCP instance. In particular, we use the same format used by Guo et al. in PHOTON
such that for any instance the state is first initialized by IV = h/2‖r‖r′, where 8 bits are
used to encode each of the used h/2, r, and r′ sizes. The claimed security levels for the
recommended parameters for sLiSCP in the hashing mode are given in Table 3.3.

Table 3.3: Recommended parameter set for sLiSCP-b when used in hashing mode and the
associated bit securities.

Algorithm IV h r r′ c collision Sec. preimage Primage

sLiSCP-192 0x502020 160 32 32 160 80 80 128

sLiSCP-256 0x604040 192 64 64 192 96 96 128

sLiSCP-256 0x604020 192 64 32 192 96 96 160

Initialization and Message Padding The state is first initialized with the IV and
the padding rule (10∗) is applied to the input message M where a single 1 followed by
enough 0s is appended to it such that its length after padding is a multiple of r bits. Then
the resulted padded message is divided into `M r-bit blocks M0‖M1‖· · · ‖M`M−1. Accord-
ingly, the message padding procedure is given by: padr(M)→M‖1‖0r−1−(|M | modr)

Absorbing and Squeezing: Initially each message block is absorbed by XORing it
to the Sr part of the state, then sLiSCP permutation is applied afterward. After absorbing
all the message blocks, the h-bit output is extracted from the Sr part of the state r′ bits at
a time followed by the application of sLiSCP permutation until a total of dh/r′e extractions
are completed, then if the resulting extracted bits are more than the desired hash length,
truncation is performed. Note that if r′ < r, then its byte size is extracted from the same
subblocks used in squeezing, X1 and X3, such that the first and second halves of the r′

bytes are extracted from X1 and X3, respectively, in an ascending byte order.

Absorbing : S ← F (Sr ⊕Mi, Sc) for 0 ≤ i ≤ `M − 1

28

Squeezing : H1 ← S ′r
S ← F (S), 2 ≤ i ≤ j, for j = dh/r′e
Hi ← S ′r
H ← bH1‖H2‖· · · ‖Hjch

Reseedable Pseudo Random Bit Generator (PRBG). The hash construction
can be used as a reseedable pseudo random bit generator [19] where initially the state is
loaded by an all zero vector, and then, the initial seed is fed through a series of absorbing
rounds. After the last absorbed rate part of the seed, the output stream is squeezed in r
bits as needed. Also, because we are using a sponge duplex construction a new seed can be
fed to the state while squeezing output at the same time, thus allowing the construction
of a reseedable PRBG.

3.5 Implementation Options

In this section, we describe the hardware implementations of our lightweight sLiSCP design
using ASIC.

3.5.1 Parallel

For optimization purposes, parallelism is frequently used. These techniques are useful
to optimize the designs for achieving better results in terms of area, clock speed, and
throughput. First, the Register Transfer Level (RTL) code is written using VHDL. Then
the gate level netlist using logic synthesis tool is synthesized and verified. Finally, the area,
power consumption, and clock speed are generated after the physical implementation.

The LFSR is chosen for each size of the design. For the 192-bit state size for sLiSCP,
an LFSR of size 6 is used while an LFSR of size 7 is used for the 256-bit size of sLiSCP.
The LFSR is designed using parallelism of 2 so that the next 2 states can be generated in
1 clock cycle.

3.5.2 ASIC Code Decisions

We implement our sLiSCP permutation using the parallel hardware architecture as shown in
Figure 3.8. Each of the four m-bit subblocks of the registers are divided into two parts. In

29

X0 X1 X2 X3

X‘1 X‘3

MUX MUX MUX MUX

m
2

m
2

m
2

m
2

i i i i

Simeck-round Simeck-round
<<< 5

<<< 1 1(m/2)−1||ti

m
2

m
2

<<< 5

<<< 1 1(m/2)−1||t′i

m
2

m
2

m
2

m
2

m
2

m
2

1m/2 1m/2−8||SC2j 1m/2 1m/2−8||SC2j+1

Figure 3.8: Hardware architecture of the sLiSCP permutation

order to control the internal rounds and the steps, two counters (i and j) are adopted where
i (0 ≤ i ≤ u) controls the round function of Simeck and j (0 ≤ j ≤ s) controls the steps
of the permutation. The output of Simeck round function (dashed box) on registers X1

and X3 is feedback to the left half of the registers during each clock cycle when 0 ≤ i < u,
and at the same time the left half of the registers is shifted to the right half. The 1-bit
round constant RC12j+2i and RC12j+2i+1 are first padded with m/2− 1 bits ‘1’s and then
are added to the Simeck round function in each clock cycle and they are generated using
the parallel LFSR as described in Section 3.3.3. The two extra registers X ′1 and X ′3 are
used to store the initial values of registers X1 and X3 when i equals 0. At the last clock
cycle, i equals u, so the permutation step begins.

During this clock cycle, the output of the Simeck round function based on register
X1 is first XORed with the left half of register X0, and then is XORed with a constant
of m/2 bits ‘1’s. This new value is sent to the left half of the register X3. Due to two
different inputs for register X3, a m/2 bits multiplexer is needed. Meanwhile, the left half
of the register X1 is XORed with the right half of the register X0, and then is XORed
with m/2 − 6 bits ‘1’s padded with a 6-bit step constant SC2j. The generated new value
is shifted to the right half of the register X3. A multiplexer in this case is needed as well.

30

The similar case for the output of the Simeck round function based on register X3

XORed with register X2, where the new results are sent to the register X1. At the same
time, the values of registers X ′1 and X ′3 are shifted into the registers X0 and X2 respectively.
At the end of this clock cycle, all the registers are updated with a new value, and one step
of permutation is finished, the counter j is increased by 1, and the counter i returns to
0. After s steps, one permutation is finished. Table 3.4 shows the number of discrete
components in the sLiSCP permutation F , where XOR is 1-bit xor operation and MUX is
2 to 1 multiplexer.

Table 3.4: The number of discrete components in sLiSCP permutation

Permutation F Components Numbers

sLiSCP-192 sLiSCP-256

Step Function f

Registers 6× 48 6× 64

XOR 108 140

MUX 96 128

Simeck Round Function
AND 24 32

XOR 49 65

LFSR Constants
Registers 6 7

XOR 6 5

The authenticated encryption and hash modes of sLiSCP involve running the permu-
tation multiple times in the sponge structure where r-bit input is absorbed using r XORs
and r′-bit output is squeezed using r′ XORs. The input for the authenticated encryption
mode are key, nonce, associated data, and message, whereas there is only message for hash
mode. In addition, a three bit domain separator is taken in the authenticated encryption
mode, hence three more XORs are required.

We use the same ASIC design flow and metrics as described in Simeck [50]. Our
implementation results are based on STMicroelectronics CMOS 65nm CORE65LPLVT
library and the areas are obtained before the place and route phase in order to compare
fairly with other lightweight candidates. To keep the consistency with other sponge based
primitives, the throughput is computed at a frequency of 100 kHz using the following
formula: Throughput = r′

(u∗s) ∗ 100 kbps. Our results for the hash and authenticated
encryption modes of sLiSCP, using the same technology, are presented in Table 3.5 as well
as a comparison with other lightweight hash functions and AE algorithms. We carry two
implementations for the hash and AE modes in order to contrast the sLiSCP permutations
with other dedicated designs. However, if a unified mode is used for both functionalities,
then the consumed GE area will be dominated by that of the AE mode.

31

3.6 Hardware Code Discussions

Included in the Appendix A is the details of the hardware code for the cipher. Going
through it, we explain much of the optimization that is done so that we obtain our desired
hardware area.

3.6.1 Process 1

During the starting section we initialize the signal wires and registers that are used in our
round function. We use 8 blocks, rather than 4 because it is more convenient this way when
we separate and perform Simecku-m on the half blocks. We also use two temporary registers
that hold the values in our second and fourth registers. This is because our implementation
uses multiple clock cycles to perform the 6 rounds of Simeck. The multiple rounds allow
us to drastically reduce the area for the Simecku-m function but this also means that we
have to use several registers to hold our initial values of the registers. We also have several
counter registers that count the round that we are on. These are very small compared to
the large state registers that we are using and do not contribute much to our resulting
area.

3.6.2 Process 2

In the second process as shown in Appendix A, we go through the second part of the
process. We first initialize the values of the wires in the round function. We have a
separate round function that takes the values from two 48 bit blocks or four 24 bit blocks
and performs the Simecku-m function on them. It also takes in the input from our LFSR
so that we can both add the round constant and the step constant at the end of the 6
rounds.

3.6.3 Process 3

In the third process we perform the permutation at the end of the 6 rounds of Simeck.
We also use a counter to count out the 18 steps. This is done by using multiplexers to
determine where the output of of shift register is input.

32

3.6.4 Process 4

While in the design, we split the state into 4 blocks, in the code, we further separate the
state into 8 blocks. In the Simeck process, we feed the values of two of these blocks to
perform our modified Simeck function. At the same time, we insert the values into the the
other Simeck function.

In the hardware implementation of sLiSCP, we use 4 large registers to store the internal
state. As each clock cycle performs one iteration of Simecku-m, most of the state will
not change. Using multiplexers to control the shift of the large registers after the Simeck
function finishes, we then perform the shifts after 6 rounds.

We also show the code for our Simecku-m function. The Simecku-m function is relatively
simple, we separate the 48 bit block into two halves and perform two shifts on one half,
one by 6 bits and one by 1 bit. This leaves us with an unshifted, a 6 bit shifted and 1 bit
shifted sequence. We AND the 6 bit and unshifted sequence and then XOR it with the 1
bit shifted sequence. The result is then XOR with the right half of the register. We also
add the round constant in this step. This result is then shifted into the original registers
and we delete the original half block.

3.6.5 Process 5

In our implementation of the authentication and hash variations, we need to XOR the
original initialized values of the state with 32 bits. This is done with multiplexers and
XOR, which will add around 100 GE.

3.7 Results and Areas

After implementing our design and verifying the correctness of the hardware, we optimized
the code to produce our acceptable results.

3.7.1 Hash Mode

Our implementation in CMOS 65nm shows that the area for the hash mode of sLiSCP-192
(resp. sLiSCP-256) is 2192 (resp. 2872) GEs with a throughput of 29.62 (resp. 44.44 kbps
or 22.22 kbps depending on r′) kbps. When compared with other primitives with similar

33

internal states, the area of sLiSCP-192 is comparable with that of Photon-160/36/36 and
Spongent-160/160/16, only a few gates larger. However, the area of sLiSCP-192 is quite
smaller than that of D-Quark, Keccak-f [40,160], Keccak-f [72,128]. In terms of throughput,
sLiSCP-192 is better than Photon-160/36/36, D-Quark, and Spongent-160/160/16. The
area of sLiSCP-256 is only 86 GEs larger than that of Photon-224/32/32 and is smaller
than other primitives. The relevant throughput is only smaller than that of Spongent-
160/160/80 and S-Quark.

3.7.2 AE Mode

For the authenticated encryption mode, the area of sLiSCP-192 (resp. sLiSCP-256) is 2202
(resp. 2882) GEs with a throughput of 29.62 (resp. 44.44) kbps. sLiSCP-256 has a GE
area that is nearly equal to the estimated area of NORX-16. We note that serialized
implementations of sLiSCP modes result in more savings in GE area and thus enable its
adoption in highly constrained devices such as EPC tags. Overall, both the hash and
authenticated encryption modes of sLiSCP are competitive with others in terms of area
and throughput. As usual, in optimizing the critical path in ASIC implementation, the
critical path does not pass through too many of the XOR gates.

3.8 Concluding Remarks

In this chapter, we covered the design of sLiSCP and its uses. We presented the encryption,
decryption, hash and AE modes when they are used. We provide two efficient parallel hard-
ware implementations for the sLiSCP unified duplex sponge mode. The hardware results
of the design showed that it met the lightweight standards for cryptographic primitives.

34

Table 3.5: Parallel hardware implementation of sLiSCP modes and comparison with other
lightweight hash and AE primitives. Throughput is given for a frequency of 100 kHz.

Hash function Parameters Security(bits) Process Latency Area Throughput

r c r′ h Pre 2nd
Pre.

Coll. (nm) (Cycles) (GEs) (kbps)

sLiSCP-192 32 160 32 160 128 80 80 65 108 2192 29.62

Photon-160/36/36
[33]

36 160 36 160 124 80 80 180 180 2117 20.00

D-Quark [7] 16 160 16 176 160 80 80 180 88 2819 18.18

Spongent-160/160/16
[22]

16 160 16 160 144 80 80 130 90 2190 17.78

Keccak-f [40,160] [37] 40 160 40 200 160 160 80 130 18 4900 222.22

Keccak-f [72,128] [37] 72 128 72 200 128 128 64 130 18 4900 400.00

sLiSCP-256 64 192 64 192 128 96 96 65 144 2872 44.44

sLiSCP-256 64 192 32 192 160 96 96 65 144 2872 22.22

Photon-224/32/32
[33]

32 224 32 224 192 112 112 180 204 2786 15.69

Spongent-160/160/80
[22]

80 160 80 160 80 80 80 130 120 3139 66.67

Spongent-224/224/16
[22]

16 224 16 224 208 112 112 130 120 2903 13.33

Spongent-256/256/16
[22]

16 256 16 256 240 128 128 130 140 3281 11.43

S-Quark [7] 32 224 32 256 224 112 112 180 64 4640 50

AE algorithm t Con. Int.

sLiSCP-192/80 32 160 32 80 80 80 - 65 108 2202 29.62

sLiSCP-192/112 32 160 32 112 112 112 - 65 108 2202 29.62

sLiSCP-256/128 64 192 64 128 128 128 - 65 144 2882 44.44

Ketje-Jr [18] 16 184 16 96 96 96 - - - 4900 -

NORX-16 [9] 128 128 128 96 96 96 - - - 2880 -

r, c, r′, h and t denote the input bitrate, capacity, output bitrate, digest length and tag size, respectively.
Confidentiality of plaintext.
Integrity of plaintext, associated data and nonce.
Considering it uses Keccak-200 as its underlying permutation, its area is atleast 4900 GEs.

35

Chapter 4

sLiSCP-light: A Modified Approach

In this chapter, we revisit the design approach of the sLiSCP family of permutations with
the main aim of further reducing its hardware area. We examine the sLiSCP-light family
of permutations.

The sLiSCP-light family of permutations tweaks the original Type-2 GFS design of
sLiSCP. Our tweak gives up some of the desired features of the generic Feistel constructions
which we do not make use of when the permutation is used in a sponge construction. Our
adopted approach turns the Type-2 GFS into an elegant Partial SPN (PSPN) construction
where the substitution layer updates half the state only and the permutation layer mixes the
whole state resulting in a fully nonlinearly updated state after one step only (vs. half state
as in sLiSCP). Iterated version of round-reduced unkeyed version of the Simeck encryption
algorithm [50] are used as large Sboxes in the substitution layer. The round function of
Simeck is an independently parametrized hardware efficient version of the Simon round
function [11] and has set a new record in terms of hardware efficiency and performance in
various platforms. Additionally, Simeck and Simon-like functions have received extensive
attention from the cryptographic community in terms of their cryptanalysis [49, 39, 40, 41]
and so far remains sufficiently secure.

This Chapter is organized as follows. In Section 4.1, we explain one of the issues
that appeared during the design and implementation of sLiSCP. We explain, why it was
a problem, how we hoped to fix it, and how it led us to our new design, sLiSCP-light.
In Section 4.2, we show the step function of sLiSCP-light and how it differs from the
previous sLiSCP design. In Section 4.3, we explain the hardware implementation of this
design and show our results. We compare it to existing lightweight designs and also present
a few other implementation methods, such as the half serial method and the 1-bit serialized

36

method.

4.1 Tweak Approach

In this section, we first identify an important aspect in the sLiSCP design where an extra
hardware overhead is unjustified. Next, we explore and contrast new design options by
which we can avoid the identified overhead and finally detail the tweaking approach which
we have adopted in the new design of sLiSCP-light.

4.1.1 Extra Hardware Overhead of the sLiSCP Design

sLiSCP adopts a 4-subblock Type-2 GFS construction, which is like other generic Feistel
constructions offers the following features: 1) no constraints on the bijectivity of F ; and 2)
low overhead for the inverse round function implementation. In the parallel round-based
hardware implementation of sLiSCP, for a b-bit state, there are two registers of size b/4 bits
each that are used as temporary storage. This half state of temporary storage is required
because of the iterative nature of the two Simeck boxes. More precisely, the section of the
two Simeck boxes requires the use of two extra b/4-bit registers to perform iterated updates
on the input, and keep the intermediate and initial values of the registers at the same time.
Initial values of such two registers are required to update the state of the following step
through the linear cyclic shift permutation of Type-2 GFS. Since sLiSCP utilizes a u-round
iterated unkeyed Feistel-based Simeck-m, where m is the block size, round function as
the GFS F which is extremely hardware efficient (est. area of around 168 (resp.224) GE
for Simeck-48 (resp. Simeck-64) boxes), an addition of around 400 (resp. 500) GE for
temporary storage is not justified, especially for resource constrained devices.

4.1.2 Solution to Space Exploration

The new design of sLiSCP-light was triggered by the above observation and the need
for finding an answer to the following question: “how can we get rid of these two extra
registers?”. These two extra registers, which only function as temporary storage, use
up around 400 GE for the 192-bit size and 500 GE for the 256-bit size for sLiSCP. We
primarily wanted to keep the structure of the iterated Simeck-m box as the nonlinear
component because it is extremely efficient in hardware as a large Sbox that encompasses
both the nonlinear and linear/permutation mixing. Moreover, we can leverage the available

37

extensive cryptanalysis on Simeck and Simon-like functions to derive the cryptographic
properties of such a large Sbox. Accordingly, we found that the following two solutions
enable us to remedy the sLiSCP temporary storage problem.

- Unrolled implementation. For a u-round iterated Simeck-m box, a trivial solu-
tion would be to implement u sequential Simeck round function blocks so that no
intermediate storage is required. More precisely, the output of one Simeck round
is directly fed to the following one without storing it and by the end of the clock
cycle, both the output of the u-rounds and initial state values are available for linear
mixing and updating the state for the following step. However, we found out that
although each round of Simeck-m costs around 168 (resp. 224) GE for Simeck-48
(resp. Simeck-64), the total hardware area for implementing u blocks of each round
surpasses the hardware areas of the two registers which we are trying to save. Despite
the much higher throughput, this increase in hardware size is also great enough that
our design would no longer be considered lightweight. This method is not suitable
for our purposes.

- Tweaking the original design. To discard the two temporary registers, we elim-
inate the need for storing the initial values of the odd indexed subblocks. Since the
final values are the output of the u-round iterated Simeck-m box that is the only
nonlinear component in the step function of the permutation, we cannot remove it.
Accordingly,we opted for tweaking the original 4-subblock Type-2 GFS design so that
the initial values of the odd indexed subblocks are not used in updating the even in-
dexed subblocks in the next step. Our tweak is as follows. We use the nonlinearly
updated values, by the Simeck-box, to update the even indexed subblocks in the next
step. The new tweaked design can be interpreted as a Partial Substitution and Per-
mutation Network (PSPN), which can also be viewed as a mix between Skipjack Rule
A [20] and a Type-2 GFS function. In particular, we have a substitution layer that
operates only on odd indexed subblocks (starting from index 0) followed by a permu-
tation layer that mixes all the four subblocks resulting in a fully nonlinear-updated
state.

4.2 Step Function of the Permutation

An s-step sLiSCP-light permutation takes an input of b bits from Fb
2 and produces an

output of b bits after applying the step function s times sequentially where b = 4×m and m
is an even positive integer. We denote by sLiSCP-light-b a b-bit sLiSCP-light permutation.

38

The state of the permutation is divided into 4 m-bit subblocks (X i
0, X

i
1, X

i
2, X

i
3), where i

denotes the step number and 0 ≤ i ≤ s − 1. In each step, the state is updated by
a sequence of three transformations: SubstituteSubblocks (SSb), AddStepconstants

(ASc), and MixSubblocks (MSb), thus the step function is defined as

(X i+1
0 , X i+1

1 , X i+
2 , X i+1

3)← MSb ◦ ASc ◦ SSb(X i
0, X

i
1, X

i
2, X

i
3).

Our step function is shown in Figure 4.1.

X0 X1 X2 X3

f f

RC2i

u
RC2i+1

u

⊕ ⊕

⊕ ⊕
SC2i SC2i+1

Figure 4.1: sLiSCP-light Step Function

4.2.1 SubstituteSubblocks (SSb)

This is a partial substitution layer of the SPN structure where the nonlinear operation
is applied to the half of the state. It applies the u-round iterated unkeyed Simeck box
(Simecku-m or htu, as defined in Section 3.3.2) to the odd indexed subblocks only. The
SSb transformation is defined as

SSb(X i
0, X

i
1, X

i
2, X

i
3) = (X i

0, h
t
u(X i

1), X
i
2, h

t′

u(X i
3))

where htu is the Simeck box applied on m = b
4

bits and t is a u-bit constant.

4.2.2 AddStepconstants (ASc)

In this layer, the step constants SC2i and SC2i+1 are XORed with the two even indexed
subblocks X0 and X2, respectively, i = 0, 1, . . . s − 1. Each SCj is an m-bit constant of
the form 1m−6||02||scj (resp. 1m−8||scj) for Simecku-48 (resp. Simecku-64), where scj is 6
(resp. 8)-bit constant generated by an LFSR. The ASc transformation is given by

ASc(X i
0, h

t
u(X i

1), X
i
2, h

t′

u(X i
3)) = (X i

0 ⊕ SC2i, h
t
u(X i

1), X
i
2 ⊕ SC2i+1, h

t′

u(X i
3)).

39

4.2.3 MixSubblocks (MSb)

This layer applies the linear transformation that is used in the Type-2 GFS to the subblocks
of the state. More precisely, each even indexed subblock is replaced by the XOR of its
initial value with its neighboring odd indexed subblock. Then a subblock cyclic left shift
is applied. The MSb transformation is given by

(X i+1
0 , X i+1

1 , X i+1
2 , X i+1

3)← MSb(X i
0 ⊕ SC2i, h

t
u(X i

1), X
i
2 ⊕ SC2i+1, h

t′

u(X i
3)),

where

X i+1
0 = htu(X i

1), X i+1
1 = X i

2 ⊕ ht
′

u(X i
3)⊕ SC2i+1,

X i+1
2 = ht

′

u(X i
3), X i+1

3 = X i
0 ⊕ htu(X i

1)⊕ SC2i.

The output of MSb has more bit diffusion than that of the original Type-2 GFS and more
uniform degree distribution. In particular, after one step, all the components functions of
all the subblocks have a degree equal to that of the Simecku-m box. Whereas in the Type-2
GFS, after one step, two even indexed subblocks have degree equals one as they are directly
copied from the odd indexed subblocks. Moreover, if the output of the Simecku-m box has
x bit diffusion, then two subblocks have x bit diffusion and the other two subblocks have
(x + 1) bit diffusion. In the case of Type-2 GFS, two subblocks have one bit diffusion
and the remaining subblocks have (x + 1) bit diffusion. Accordingly, the sLiSCP-light
enhances the security of the whole permutation and hinders the extension of most of the
distinguishers to more than 8 steps (vs. 9 steps in sLiSCP).

4.2.4 sLiSCP-light Permutation Instances

sLiSCP-light offers two lightweight instances, named sLiSCP-light-192 and sLiSCP-light-
265, with state sizes 192 and 256 bits, respectively. Both instances adopt a PSPN step
function that is iterated for s = 12 times. Simecku-48 and Simecku-64 boxes, where
u = 6 and 8, are used as Sboxes in the SSb layer of sLiSCP-light-192 and sLiSCP-light-
256, respectively. We keep the number of rounds u equal to 6 (resp. 8) for Simecku-48
(resp. Simecku-64) because it has been shown our previous work [3] that these parameters
provide a good balance between the permutation throughput and differential and algebraic
properties. We refer to one PSPN (resp. Simeck box) iteration by one step (resp. one
round). Table 4.1 presents the recommended parameters for two lightweight instances of
the sLiSCP-light permutation.

40

Table 4.1: Recommended parameter set for sLiSCP-light-192 and sLiSCP-light-256 per-
mutations.

Permutation (b-bit) Sbox size m Rounds u Steps s Total # rounds (u · s)

sLiSCP-light-192 48 6 12 72

sLiSCP-light-256 64 8 12 96

4.3 Implementations and Benchmarking

In this section, we provide the details of our ASIC hardware and bitsliced software imple-
mentations of both instances of the sLiSCP-light permutation. Moreover, we implement
the hashing and authenticated encryption modes of sLiSCP-light in ASIC CMOS 65 nm
and 130 nm technologies and provide a comparison with existing proposals in Table 3.5.

sLiSCP-light is highly hardware optimized and has very efficient ASIC implementa-
tions particularly because of its partial layers. More precisely, the Simecku-m boxes, step
constant addition, and linear mixing are all applied on half of the state. Additionally, each
Simecku-m box is itself a very efficient unkeyed Feistel round function. The datapath of
the round-based ASIC parallel architecture implementation is depicted in Figure 4.2.

Table 4.2: Breakdown of the number of discrete components in both instances of sLiSCP-
light, where XOR is 1-bit xor operation and MUX is 2-1 1-bit multiplexer.

Permutation block Discrete component sLiSCP-light-192 sLiSCP-light-256

State
Registers 4× 48 4× 64

MUX 96 128

Simecku-m boxes
AND 2× 24 2× 32

XOR 2× 49 2× 65

Add step constants XOR 2× 6 2× 8

Mix Subblocks XOR 2× 48 2× 64

LFSR
Registers 6 7

XOR 6 9

Design flow and metrics. The Synopsys Design Compiler Version D-2010.03-SP4
is used to synthesize the RTL of the designs into netlist based on the STMicroelectronics

41

X0 X1 X2 X3

MUX MUX MUX MUX

m
2

m
2

m
2

m
2

i i i i

Simeck-round Simeck-round
<<< 5

<<< 1 1(m/2)−1||ti

m
2

m
2

<<< 5

<<< 1 1(m/2)−1||t′i

m
2

m
2

m
2

m
2

m
2

m
2

1m/2 1m/2−8||sc2j 1m/2 1m/2−8||sc2j+1

Figure 4.2: Parallel datapath of the sLiSCP-light permutation step function.

CMOS 65 nm CORE65LPLVT 1.20V and IBM CMOS 130 nm CMR8SF-LPVT Process
SAGE v2.0 standard cell libraries with both having a typical 1.2V voltage. Cadence SoC
Encounter v09.12-s159 1 is used to finalize the place and route phase in order to generate
the layout of the designs. We use Mentor Graphics ModelSim SE 10.1a to conduct func-
tional simulation of the designs and perform timing simulation by using the timing delay
information generated from SoC Encounter. We provide the areas and power consumption
of both sLiSCP-light instances after the logic synthesis.

We determine the power consumption based on the activity information generated from
the timing simulation with a frequency of 100 kHz, and a duration time of 0.1s using SoC
Encounter v09.12-s159 1. We specifically use 100 kHz clock frequency because it is widely
used for benchmarking purpose in resource constrained applications and 0.1s is long enough
to provide an accurate activity information for all the signals.

4.3.1 Description of the round-based implementation

Our round-based implementation executes one step of the permutation in u clock cycles,
where u = 6 or 8, and requires the components as given in Table 4.2. As depicted in
Figure 4.2, all four m-bit registers are divided into two parts to accommodate the Feistel
execution of the Simecku-m boxes. Two counters i and j of 3 and 4 bits, respectively are

42

sLiSCP-b (CMOS 65 nm) sLiSCP-light-b (CMOS 65 nm)

State registers

Temporary registers

LFSR

Simecku-m boxes

Step constant addition

MixSubblocks

35%

16%

5%

33%

4%

7%

40%

6%

40%

5%

9%

Figure 4.3: Breakdown of the area requirements of the two instances of sLiSCP-light
components.

utilized, where i (0 ≤ i ≤ u−1) controls the round function of Simeck and j (0 ≤ j ≤ s−1)
controls the permutation step function.

During each clock cycle when 0 ≤ i < u− 1, we first XOR the right half of registers X1

(resp. X3) with 1m/2−1||ti (resp. 1m/2−1||t′i) where ti, t
′
i are LFSR generated bits. Next,

the right half output of the Simeck round function (dashed box) on registers X1 and X3 is
fed back to the left half of the registers, and the left half of the registers is shifted to the
right half. When i equals u− 1, the left half of the register X3 is replaced by the XORed
value of the right half of register X1, left half of register X0 and 1m/2. At the same time,
the left half of the register X1 is XORed with the right half of the register X0, and then is
XORed with 1m/2−8||sc2j.

In particular, for sLiSCP-light-192, the (m/2 − 8) bits are first padded with two 0’s
followed by padding the 6-bit constant sc2j. As with sLiSCP, our step constants and round
constants are generated using LFSRs as shown in Figure 3.3 for sLiSCP-light-192 and
Figure 3.4 for sLiSCP-light-256. The generated new value is then shifted to the right half
of the register X3. The same process takes place between X2 and X3 to update the value
of X1. At the same time, the values of registers X1 and X3 are shifted into the registers X0

and X2 respectively. Multiplexers are used at the inputs of X1 and X3 to make a selection
between the output of the Simeck boxes when i = u−1 and the cyclically shifted registers.
Finally, a new permutation step begins where j is incremented by 1 and i is reset to 0.

4.3.2 How Light is sLiSCP-light?

sLiSCP-light is specifically optimized for resource constrained applications. Table 4.3
shows our smallest ASIC implementations of both sLiSCP-light instances in CMOS 65 nm

43

and 130 nm technologies as well as those of other existing permutations. sLiSCP-light
has the lowest area of 1820 (resp. 2397) GE for a 192- (resp. 256-) bit state in CMOS
65 nm. Although the state sizes of sLiSCP-light instances are close to the state size of
Keccak-f [200], the areas of both instances of sLiSCP-light are significantly lower than
that of Keccak-f [200] (est. 4540 GE). When compared with Norx-16 (est. area of 2496
GE), sLiSCP-light-256 has a slightly lower area in CMOS 65 nm and comparable area
in CMOS 130 nm. For larger state sizes, the areas of the 256-bit state sLiSCP-light in
CMOS 65 nm and 130 nm technologies are several magnitude smaller than that of Ascon
and Gimli, which are mainly optimized for software platforms and/or specific processors.

Regarding the throughput, both 192 and 256-bit instances of sLiSCP-light have a
throughput of 266.7 kbps, which is higher than that of Photon, Spongent, and Quark with
a state of 176 bits. When sLiSCP-light instances are compared with Gimli and Ascon,
the throughput of the sLiSCP-light instances is smaller as they have a larger number of
rounds compared to Gimli and Ascon. However, such permutations are not considered
suitable for lightweight applications due to their larger GE areas.

Application modes. We have also implemented the authenticated encryption and
hashing modes using both instances of sLiSCP-light. We provide our implementation re-
sults in CMOS 65 nm and 130 nm technologies, and contrast the areas and throughput
with other sponge-based primitives with similar or close state sizes and security parameters
in Table 3.5 in the Appendix. One can clearly see that both instances of sLiSCP-light
offer a competitive advantage over existing proposals in terms of both area and through-
put. Specifically, our smallest implementation of the unified duplex sponge mode using
sLiSCP-light-192 offers 80-bit and 112-bit security in the keyed modes depending on the
data usage exponent [14], and 160-bit digest in the hashing mode. On top of that, such
an implementation is realized with only 1958 GE and offers a throughput of 44.44 kbps
which makes it suitable for providing almost all cryptographic functionalities of the most
resource constrained devices such as passive RFID tags. When used in the sLiSCP duplex
mode, a simpler initialization phase is adopted to offer competitive throughputs for the
authenticated encryption of short messages.

4.3.3 Half Serial

After designing the sLiSCP-light cipher, we also looked into the possibility of a half parallel
implementation. This process would perform one instance of Simeck round function. After
the round function is finished, the hardware then proceeds to perform Simeck on the other
half. The idea of this design would be to reduce the logic of two instances of Simeck to only

44

one instance. This design was implemented on sLiSCP-light with size 192. The resulting
implementation had an area of 1899 GE, as opposed to the 1820 GE for our original
parallel implementation. This design is actually worse than the fully parallel design and
was because this hardware design would require extra multiplexers and area to choose
between the two halves to perform the Simeck round function. Due to the similarities
of the sLiSCP and sLiSCP-light this conclusion should hold true for both versions for all
sizes. Pursuing a half-serial implementation would not reduce our hardware area as we
hypothesized and would not be useful in our lightweight goals.

4.3.4 Estimates for 1-bit Serialized Implementations

Various serialization degrees has been demonstrated by the designers of the Simeck block
cipher [50]. Accordingly, using the same methods adopted in [50], in what follows, we
provide estimates for the areas of both sLiSCP-light instances when the Simecku-m boxes
are serialized by degree 1.

The parallel Simecku-m implementation utilizes m/2 ANDs and (2m+ 1) XORs which
can be serialized using 1 AND, 3 XORs and 4 2-1 MUXs. Two of the MUXs are used to
select the cyclic shift inputs, one is used to select the input of the registers, and another
MUX is used to XOR the round constant.

When sLiSCP-light-192 is implemented in CMOS 65 nm technology that costs 2.25
GE per XOR, 2 GE per MUX and 1.25 GE per AND, then the serialized implementation of
degree 1 of the Simecku-48 saves (24×1.25+49×2.25)−(1×1.25+3×2.25+4×2) = 124.25
GE. Since there are two Simeck Sboxes, this results in 248 GE savings for sLiSCP-light-192.
The respective saving for sLiSCP-light-256 is given by (32× 1.25 + 65× 2.25− (1× 1.25 +
3 × 2.25 + 4 × 2)) × 2 ≈ 340 GE. Thus, without considering other savings, the estimated
areas for the 1-bit serialized implementations of sLiSCP-light-192 and sLiSCP-light-256 in
CMOS 65nm ASIC can be obtained with at least 1572 and 2057 GE, respectively. Thus, the
estimated areas for the 1-bit serialized implementations of sLiSCP-light-192 and sLiSCP-
light-256 are 1572 and 2057 GE, respectively. For the CMOS 130 nm technology, the
number of discrete components that we can save are the same. This technology requires
2 GE per XOR, 2.25 GE per MUX and 1.25 GE per AND. For sLiSCP-light-192, the
serialized implementation saves around (24×1.25+49×2−(1×1.25+3×2+4×2.25))×2 =
223.5 GE. Similarly, we save around (32×1.25+65×2−(1×1.25+3×2+4×2.25))×2 ≈ 307.5
GE for sLiSCP-light-256. Hence, an estimated area for sLiSCP-light-192 (resp. sLiSCP-
light-256) can be at least achieved with 1669 (resp. 2193) GE in CMOS 130 nm ASIC.

It is also possible to serialize the entire step function. However, we need to include a

45

large number of multiplexers in the hardware design to perform Simeck on both X1 and X3

serially. This increase in GE is much larger than the area that is saved by performing one
Simeck round function instead of two. Therefore, although the design can be completely
serialized, it would not be worth it in terms of area and throughput.

4.4 Summary

sLiSCP-light fills the gap in the available cryptographic permutations with low GE area
and offering acceptable security parameters for both keyed and unkeyed modes of sponge
constructions. More precisely, the state size of the underlying permutation is bounded
below by the sponge security parameters (i.e., capacity and rate), especially in hashing
mode, a 160-bit digest with 32-bit hashing rate requires a permutations state of at least
192-bits. Both instances of the sLiSCP-light permutation are extremely hardware efficient
to the point (e.g., 2000 GE), where the 192-bit sLiSCP-light costs only 1820 (resp. 1892)
GE in CMOS 65 nm (resp. 130 nm) ASIC. Moreover, our smallest implementation of the
fully parallelized unified sLiSCP duplex sponge mode using sLiSCP-light-192 has a cost
of 1958 GE with a throughput of 44.44 kbps, and offers 80-bit and 112-bit security in the
keyed modes depending on the data usage, and 160-bit digest in the hashing mode.

46

Permutation State size Technology Area Cycles Throughput Power

(bits) (nm) (GE) (kbps) (µW)

sLiSCP

192
65 2153

108

177.77

4.62

130 2318 7.44

256
65 2833

144
5.88

130 3040 8.75

sLiSCP-light

192
65 1820

72

266.66

3.97

130 1892 5.05

256
65 2397

96
4.77

130 2500 7.27

Photon
196

180
1949 180 108.88 4.35

256 2637 204 125.49 6.5

Spongent
176

130
2110 90 195.55 4.47

240 2739 120 200.00 6.8

Quark
176

180
2739 88 200.00 4.76

256 4480 64 400.00 8.39

Keccak 200 130 4540 18 1111.11 27.6

Norx-16 256 - 2496 - - -

Ascon 320 90 7080 12 26.66 43

Gimli 384
28 8097

24
1600.00 -

180 5314 1600.00 -

Table 4.3: Parallel hardware implementation of sLiSCP, sLiSCP-light and comparison with other
lightweight primitives. Throughput is given for a frequency of 100 kHz.

47

Chapter 5

Randomness Properties

In this chapter we explore the randomness properties of Simecku-m in sLiSCP and similarly
structured designs using the Feistel structure. We look at how these could be possibly used
as a pseudorandom number generator. We discuss the randomness testing of random num-
ber and pseudorandom number generators that may be used for many purposes including
cryptographic, modeling and simulation applications.

5.1 Processing Methods

5.1.1 Tests

Our testing involved using small versions of Simeck-like functions with different shift values
(see Figure 5.1). We would have an internal state equal to the ones used in Simeck, and
sLiSCP. However, in our tests, we use smaller internal states to look more exhaustively.
This would not accurately represent the randomness properties of the larger states but we
may see some similarities and trends. In these tests, we omit the constant ki to look more
closely at how the shift values of (a, b, c) affect properties. We exhaustively test out each
possible starting state value and record the number of times Simeck is performed on the
state until it cycles and reaches its initial state. Since Simeck uses AND, XOR, and shift
operations only, the 0 state always outcomes to itself. The length of this cycle will always
be 1. However, we looked at the lengths of the other cycles and made some observations
on how long each of them were.

48

X1 X0

<<< a

<<< b

<<< c ki

m
2

m
2

Figure 5.1: Simeck using shift values of (a, b, c)

5.1.2 Acceptable Cycles

For our tests we look at each of the cycles in the Simeck states. Since we perform Simeck
on an initial state and repeat this process many times, eventually the internal state of
the cipher will cycle around and shift back into the initial state. This is because both
Simeck and Simon use a Nonlinear Feedback Shift Register (NLFSR) structure. Based on
these properties, we would like our cipher to have states where it takes a large amount of
repeated Simeck/Simon operations for it to cycle around and output the original state. We
define the acceptable size for this cycle to be the square root of 2m where m is the number
of bits in the state.

5.2 Shift Values and Periods

Based on our findings, we can see that the shift values used in Simeck and Simon seem
adequate for many of the purposes in randomness testing.

Using the Simeck shift values of (a, b, c) = (5, 0, 1) for m = 16 we provided detailed
results for one instance in Table 5.2 as an example. After finding the cycles, we recorded
the size of the cycles of each initial state. With a size of m = 16, an acceptable state would
be in a cycle of length greater than 28 = 256.

We look through our results to compare the ratio of states that are in a cyclic sequence

49

that has length greater than 2m/2 where m is the state size, which we previously noted
were states in acceptable cycles. After running exhaustive search on several values of m,
we obtain that the highest percentage of the acceptable states usually peaks at around
60-70%. We compared these to the shift values suggested by Simon and Simeck, they seem
to produce acceptable states at only around 5-15% lower than the maximum percentage
for different state sizes. For most of the shift values that did produce the maximum per-
centage was not consistent, in that for larger or smaller m values, their percentage dropped
dramatically. Although, the Simon and Simeck shift values did not always produce the
highest percentage of acceptable states, the consistency for them to provide high percent-
ages were the most useful conclusion in these tests. This suggests that the shift values for
Simon and Simeck should provide acceptable pseudorandom values for larger values of m.

1&2 1*2 1 2 \\
2&1 2&1 2 2 \\
3&26 3*26 3 78 \\
4&12 4&12 4 48 \\
6&21 6*21 6 126 \\
7&8 7&8 7 56 \\
8&4 8*4 8 32 \\
9&4 9&4 9 36 \\
12&2 12*2 12 24 \\
16&4 16&4 16 64 \\
18&20 18*20 18 360 \\
21&8 21*8 21 168 \\
22&8 22*8 22 176 \\
24&20 24*20 24 480 \\
27&12 27*12 27 324 \\
29&8 29*8 29 232 \\
31&8 31*8 31 248 \\
34&8 34*8 34 272 \\
36&16 36*16 36 576 \\
40&8 40*8 40 320 \\
41&8 41*8 41 328 \\
42&8 42*8 42 336 \\
45&8 45*8 45 360 \\
50&4 50*4 50 200 \\
55&8 55*8 55 440 \\
56&4 56*4 56 224 \\
60&8 60*8 60 480 \\
62&4 62*4 62 248 \\
66&4 66*4 66 264 \\
68&4 68*4 68 272 \\
74&4 74*4 74 296 \\
80&16 80*16 80 1280 \\
90&4 90*4 90 360 \\
98&8 98*8 98 784 \\
106&4 106*4 106 424 \\
112&8 112*8 112 896 \\
116&8 116*8 116 928 \\
118&12 118*12 118 1416 \\
132&4 132*4 132 528 \\
143&8 143*8 143 1144 \\
150&8 150*8 150 1200 \\
157&8 157*8 157 1256 \\
163&8 163*8 163 1304 \\
169&8 169*8 169 1352 \\
170&8 170*8 170 1360 \\
180&4 180*4 180 720 \\
189&8 189*8 189 1512 \\
190&4 190*4 190 760 \\
192&4 192*4 192 768 \\
204&8 204*8 204 1632 \\
205&8 205*8 205 1640 \\
216&4 216*4 216 864 \\
218&4 218*4 218 872 \\
220&4 220*4 220 880 \\
238&8 238*8 238 1904 \\
240&4 240*4 240 960 \\
250&4 250*4 250 1000 \\
264&8 264*8 264 2112 \\
266&4 266*4 266 1064 \\

Figure 5.2: Randomness tests of the Simeck structure for m = 16, (a, b, c) = (5, 0, 1)

50

Our code for the testing involves doing an exhaustive test of all of the starting states.
For each starting state, the program repeatedly performs Simeck until its original state
is reached. The program records the number of Simeck operations that were performed,
which would correspond to the size of the cycle. Since each of the intermediate states would
belong to this cycle, the program will ignore these states when testing initial values later.
The program continues to test other initial states until all 2m states have been recorded.
See Appendix B for exact testing procedure.

For our tests, we started with just a single Feistel structure, as in Figure 2.2-(a). Once
we tested the randomness features for Simeck for that, we increased the number of blocks
to cover the structures as in Figure 2.2-(b) and Figure 2.2-(c). The tests all proved that
the acceptable ranges were above 60% for the Simon and Simeck shift values.

51

It is important that we test the shift values of each design separately. We look at the
Simeck implementation first. We use the same round function and notation as Figure 2.6.
The (a, b, c) values are varied for each test while also considering the random constant that
is inserted after each round. For larger values of m, such as for m ≥ 8, we simply used
the shift (a, b, c) for Simeck and Simon, which were (5, 0, 1) and (8, 1, 2), respectively. We
display the results in Table 5.1.

Table 5.1: Randomness tests of the Simeck and Simon for larger values of m.

Shift Values (5, 0, 1) Shift Values (8, 1, 2)
Size m Acceptable States (%) Size m Acceptable States (%)
16 46.9 16 57.0
18 65.3 18 54.5
20 47.2 20 43.4

5.3 Conclusions

The main point of this chapter was to observe some of the properties of Simeck and Simon
in small sizes. In practical applications, the sizes would be much larger, but with these
small sizes, we are able to exhaustively search for every possible state. From there, we can
see some possible relations for the shift values when using the Feistel structure as in Simeck
and Simon. While some shift amounts provided the highest number of acceptable states
for one value of m, they were not always consistent when m was changed. On the other
hand, we observed that Simon and Simeck usually had a very high amount of acceptable
states. They were close to but not the highest. However, their consistency would be very
important for larger sizes.

52

Chapter 6

Conclusions and Future Work

In this thesis, we presented some previous lightweight designs, their uses, and their strengths.
sLiSCP and sLiSCP-light is discussed and their hardware specifics are presented. We
showed that both versions of sLiSCP and sLiSCP-light have very acceptable hardware
area while also performing multiple functionalities that should be required in future appli-
cations.

6.1 Conclusions

Both sLiSCP and sLiSCP-light have very promising hardware footprints for their uses.
The advantage of our designs compared to others with similar hardware footprints are
mainly that we provided multiple functionalities, such as hashing and authenticated en-
cryption. The compact nature of our design, which allows authenticated encryption modes
and hashing modes should be very useful in lightweight applications.

Our hardware area is acceptable with the 2000 GE requirement for lightweight de-
signs set by NIST and our power consumption is low as well. Our sLiSCP-light design
is an improvement over our sLiSCP design in hardware, and although the security fea-
tures are promising, our modified Feistel structure has not been studied to the degree of
the original Feistel structure. That would be the main difference between sLiSCP and
sLiSCP-light for practical purposes. Even with these differences, our permutations are
very hardware efficient, with sLiSCP-light-192 only costing 1820 GE with CMOS 65nm
technology. Our parallel implementation is also an indication that permutation can have
a reasonable throughput and does not sacrifice all of its speed for efficiency.

53

To summarize the thesis, the necessary optimization of the two permutation designs
for lightweight applications the instances of 192-bit and 256-bit sLiSCP and sLiSCP-light
were performed. The main factor, hardware area of 2289 GE for our sLiSCP-192 in CMOS
65 nm was comparable to the other lightweight ciphers developed. Our sLiSCP-light was
even more efficient, with sLiSCP-light-192 achieving an area of 1820 GE in CMOS 65 nm
technology.

6.2 Future Work

One of the major options for future work involves implementing the permutations com-
pletely in serial. This may reduce the area even further. In addition, since Simecku-m
is able to be serialized, there should be no hardware issues in this task. Due to these
findings, it would be a very useful project and would strengthen the uses for sLiSCP and
sLiSCP-light even further.

There is also much more future work to be done in the randomness properties of Feistel
Structure. Although some of it was explored in Chapter 6, a more in-depth study would
be very useful. Larger state values can be tested as well as many other shift values. We
also do not limit ourselves to the simple Feistel structure of Simeck/Simon and so we can
further look at Type-2 GFS structures as in sLiSCP.

54

Publications Related to Thesis

I am part of the design for the cipher systems sLiSCP and sLiSCP-light for hardware
implementations. Those full research results have been published in the following three
articles. For each of the three publications, I was the first author in the implementation
group of sLiSCP and sLiSCP-light(hardware and software).

1. R. Altawy, R. Rohit, M. He, K. Mandal, G. Yang and G. Gong. sLiSCP: Simeck-
based Permutations for Lightweight Sponge Cryptographic Primitives, Selected Areas
in Cryptography SAC 2017, August 16-18, 2017, Revised Selected Papers, pp.129-
150.

2. R. Altawy, R. Rohit, M. He, K. Mandal, G. Yang and G. Gong. Towards a Crypto-
graphic Minimal Design: The sLiSCP Family of Permutations, IEEE Transactions
on Computers, Vol. 67, Issue 9, pp. 1341 1358, 2018.

3. R. Altawy, R. Rohit, M. He, K. Mandal, G. Yang and G. Gong. sLiSCP-light:
Towards Lighter Sponge-specific Cryptographic Permutations, ACM Transactions
on Embedded Computing Systems, Vol. 17, Issue 4, Article No. 81, pp. 1 26, 2018.

55

References

[1] 3rd Generation Partnership Project. Specification of the 3GPP Confidentiality and
Integrity Algorithms - Document 2: KASUMI Specification (Release 6). Technical
Report 3GPP TS 35.202 V6.1.0 (2005-09), September 2005.

[2] Riham AlTawy, Raghvendra Rohit, Morgan He, Kalikinkar Mandal, Gangqiang Yang,
and Guang Gong. sLiSCP: Simeck-based permutations for lightweight sponge cryp-
tographic primitives. Cryptology ePrint Archive, Report 2017/747, 2017. https:

//eprint.iacr.org/2017/747.

[3] Riham AlTawy, Raghvendra Rohit, Morgan He, Kalikinkar Mandal, Gangqiang Yang,
and Guang Gong. sLiSCP: Simeck-based permutations for lightweight sponge crypto-
graphic primitives. In Selected Areas in Cryptography - SAC 2017 - 24th International
Conference, Ottawa, ON, Canada, August 16-18, 2017, Revised Selected Papers, pages
129–150, 2017.

[4] Riham AlTawy, Raghvendra Rohit, Morgan He, Kalikinkar Mandal, Gangqiang Yang,
and Guang Gong. sLiSCP: Simeck-based permutations for lightweight sponge crypto-
graphic primitives. In Selected Areas in Cryptography - SAC 2017 - 24th International
Conference, Ottawa, ON, Canada, August 16-18, 2017, Revised Selected Papers, pages
129–150, 2017.

[5] Riham Altawy, Raghvendra Rohit, Morgan He, Kalikinkar Mandal, Gangqiang Yang,
and Guang Gong. sLiSCP-light: Towards hardware optimized sponge-specific crypto-
graphic permutations. ACM Trans. Embed. Comput. Syst., 17(4):81:1–81:26, August
2018.

[6] Riham AlTawy, Raghvendra Rohit, Morgan He, Kalikinkar Mandal, Gangqiang Yang,
and Guang Gong. Towards a cryptographic minimal design: The sLiSCP family of
permutations. IEEE Transactions on Computers, 67(9):1341–1358, Sept 2018.

56

https://eprint.iacr.org/2017/747
https://eprint.iacr.org/2017/747

[7] Jean-Philippe Aumasson, Luca Henzen, Willi Meier, and Maŕıa Naya-Plasencia.
Quark: A lightweight hash. Journal of Cryptology, 26(2):313–339, Apr 2013.

[8] Jean-Philippe Aumasson, Philipp Jovanovic, and Samuel Neves. Norx: Parallel and
scalable AEAD. In 19th European Symposium on Research in Computer Security -
Volume 8713, ESORICS 2014, pages 19–36, New York, NY, USA, 2014. Springer-
Verlag New York, Inc.

[9] Jean-Philippe Aumasson, Philipp Jovanovic, and Samuel Neves. NORX8 and
NORX16: Authenticated encryption for low-end systems. IACR Cryptology ePrint
Archive, 2015:1154, 2015.

[10] Subhadeep Banik, Sumit Kumar Pandey, Thomas Peyrin, Yu F Sasaki, Siang Meng
Sim, and Yosuke Todo. Gift: A small present - towards reaching the limit of lightweight
encryption. In CHES, 2017.

[11] Ray Beaulieu, Douglas Shors, Jason Smith, Stefan Treatman-Clark, Bryan Weeks, and
Louis Wingers. The SIMON and SPECK lightweight block ciphers. In Proceedings of
the 52Nd Annual Design Automation Conference, DAC ’15, pages 175:1–175:6, New
York, NY, USA, 2015. ACM.

[12] Christof Beierle, Jérémy Jean, Stefan Kölbl, Gregor Leander, Amir Moradi, Thomas
Peyrin, Yu Sasaki, Pascal Sasdrich, and Siang Meng Sim. The skinny family of block
ciphers and its low-latency variant mantis. In Proceedings, Part II, of the 36th Annual
International Cryptology Conference on Advances in Cryptology — CRYPTO 2016 -
Volume 9815, pages 123–153, Berlin, Heidelberg, 2016. Springer-Verlag.

[13] Daniel J. Bernstein, Stefan Kölbl, Stefan Lucks, Pedro Maat Costa Massolino, Flo-
rian Mendel, Kashif Nawaz, Tobias Schneider, Peter Schwabe, Franois Xavier Stan-
daert, Yosuke Todo, and Benôıt Viguier. GIMLI: A cross-platform permutation. In
Cryptographic Hardware and Embedded Systems CHES 2017 - 19th International
Conference, Proceedings, volume 10529 LNCS of Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioin-
formatics), pages 299–320. Springer Verlag, 2017.

[14] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. On the security
of the keyed sponge construction. In Symmetric Key Encryption Workshop.

[15] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. On the indif-
ferentiability of the sponge construction. In EUROCRYPT, pages 181–197, 2008.

57

[16] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. Keccak speci-
fications. Submission to NIST (Round 2), 2009.

[17] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. Permutation-
based encryption, authentication and authenticated encryption. In DIAC, 2012.

[18] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. Caesar sub-
mission: Ketje v2. 2014.

[19] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. Sponge-based
pseudo-random number generators. In Proceedings of the 12th International Con-
ference on Cryptographic Hardware and Embedded Systems, CHES’10, pages 33–47,
Berlin, Heidelberg, 2010. Springer-Verlag.

[20] Céline Blondeau, Andrey Bogdanov, and Meiqin Wang. On the (in)equivalence of
impossible differential and zero-correlation distinguishers for Feistel- and skipjack-
type ciphers. In Ioana Boureanu, Philippe Owesarski, and Serge Vaudenay, editors,
Applied Cryptography and Network Security, pages 271–288, Cham, 2014. Springer
International Publishing.

[21] A. Bogdanov, L. R. Knudsen, G. Leander, C. Paar, A. Poschmann, M. J. B. Rob-
shaw, Y. Seurin, and C. Vikkelsoe. Present: An ultra-lightweight block cipher. In
Pascal Paillier and Ingrid Verbauwhede, editors, Cryptographic Hardware and Embed-
ded Systems - CHES 2007, pages 450–466, Berlin, Heidelberg, 2007. Springer Berlin
Heidelberg.

[22] Andrey Bogdanov, Miroslav Knežević, Gregor Leander, Deniz Toz, Kerem Varici, and
Ingrid Verbauwhede. Spongent: A lightweight hash function. In Proceedings of the
13th International Conference on Cryptographic Hardware and Embedded Systems,
CHES’11, pages 312–325, Berlin, Heidelberg, 2011. Springer-Verlag.

[23] Andrey Bogdanov and Kyoji Shibutani. Generalized Feistel networks revisited. Des.
Codes Cryptography, 66(1-3):75–97, January 2013.

[24] Christophe De Canniere and Bart Preneel. Trivium specifications. eSTREAM,
ECRYPT Stream Cipher Project, 2006.

[25] Joan Daemen and Vincent Rijmen. The Design of Rijndael. Springer-Verlag, Berlin,
Heidelberg, 2002.

58

[26] Christophe De Cannière, Orr Dunkelman, and Miroslav Knežević. KATAN and
KTANTAN — a family of small and efficient hardware-oriented block ciphers. In
Christophe Clavier and Kris Gaj, editors, Cryptographic Hardware and Embedded
Systems - CHES 2009, pages 272–288, Berlin, Heidelberg, 2009. Springer Berlin Hei-
delberg.

[27] W. Diffie and M. E. Hellman. Special feature exhaustive cryptanalysis of the nbs data
encryption standard. Computer, 10(6):74–84, June 1977.

[28] Christoph Dobraunig, Maria Eichlseder, Florian Mendel, and Martin Schläffer. Ascon
v1.2, submission to the CAESAR competition. 2016.

[29] Solomon Golomb. Shift Register Sequences. Aegean Park Press, Berlin, Heidelberg,
1982.

[30] Guang Gong. Lecture notes of ece 710 topic 21: Communication security, 2017.

[31] Guang Gong and A. M. Youssef. Cryptographic properties of the Welch-Gong transfor-
mation sequence generators. IEEE Transactions on Information Theory, 48(11):2837–
2846, Nov 2002.

[32] Zheng Gong, Svetla Nikova, and Yee Wei Law. Klein: A new family of lightweight
block ciphers. In Ari Juels and Christof Paar, editors, RFID. Security and Privacy,
pages 1–18, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

[33] Jian Guo, Thomas Peyrin, and Axel Poschmann. The photon family of lightweight
hash functions. In Phillip Rogaway, editor, Advances in Cryptology – CRYPTO 2011,
pages 222–239, Berlin, Heidelberg, 2011. Springer Berlin Heidelberg.

[34] Jian Guo, Thomas Peyrin, Axel Poschmann, and Matt Robshaw. The LED block
cipher. In Bart Preneel and Tsuyoshi Takagi, editors, Cryptographic Hardware and
Embedded Systems – CHES 2011, pages 326–341, Berlin, Heidelberg, 2011. Springer
Berlin Heidelberg.

[35] Martin Hell, Thomas Johansson, Alexander Maximov, and Willi Meier. The Grain
Family of Stream Ciphers, pages 179–190. Springer Berlin Heidelberg, Berlin, Heidel-
berg, 2008.

[36] Ari Juels and Stephen A. Weis. Authenticating pervasive devices with human pro-
tocols. In Victor Shoup, editor, Advances in Cryptology – CRYPTO 2005, pages
293–308, Berlin, Heidelberg, 2005. Springer Berlin Heidelberg.

59

[37] Elif Bilge Kavun and Tolga Yalcin. A lightweight implementation of keccak hash
function for radio-frequency identification applications. In Siddika Berna Ors Yalcin,
editor, Radio Frequency Identification: Security and Privacy Issues, pages 258–269,
Berlin, Heidelberg, 2010. Springer Berlin Heidelberg.

[38] Lars Knudsen, Gregor Leander, Axel Poschmann, and Matthew J. B. Robshaw. Print-
cipher: A block cipher for ic-printing. In Stefan Mangard and François-Xavier Stan-
daert, editors, Cryptographic Hardware and Embedded Systems, CHES 2010, pages
16–32, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg.

[39] Stefan Kölbl, Gregor Leander, and Tyge Tiessen. Observations on the simon block
cipher family. In Links Among Impossible Differential, Integral and Zero Correlation
Linear Cryptanalysis, volume 9215, pages 161–185. 08 2015.

[40] Kota Kondo, Yu Sasaki, and Tetsu Iwata. On the design rationale of Simon block
cipher: Integral attacks and impossible differential attacks against Simon variants. In
Applied Cryptography and Network Security - 14th International Conference, ACNS
2016, Guildford, UK, June 19-22, 2016. Proceedings, pages 518–536, 2016.

[41] Zhengbin Liu, Yongqiang Li, and Mingsheng Wang. Optimal differential trails in
simon-like ciphers. IACR Trans. Symmetric Cryptol., 2017(1):358–379, 2017.

[42] Kerry A. McKay, Lawrence E. Bassham, Meltem Sonmez Turan, and Nicky W. Mouha.
Report on lightweight cryptography (NISTIR8114).

[43] Kaisa Nyberg. Generalized Feistel networks. In Proceedings of the International
Conference on the Theory and Applications of Cryptology and Information Security:
Advances in Cryptology, ASIACRYPT ’96, pages 91–104, Berlin, Heidelberg, 1996.
Springer-Verlag.

[44] Information Technology Laboratory (National Institute of Standards and Technology).
Announcing the Advanced Encryption Standard (AES). Computer Security Division,
Information Technology Laboratory, National Institute of Standards and Technology
Gaithersburg, MD, 2001.

[45] Kyoji Shibutani, Takanori Isobe, Harunaga Hiwatari, Atsushi Mitsuda, Toru Akishita,
and Taizo Shirai. Piccolo: An ultra-lightweight blockcipher. In Bart Preneel and
Tsuyoshi Takagi, editors, Cryptographic Hardware and Embedded Systems – CHES
2011, pages 342–357, Berlin, Heidelberg, 2011. Springer Berlin Heidelberg.

60

[46] Tomoyasu Suzaki and Kazuhiko Minematsu. Improving the generalized Feistel. In
Seokhie Hong and Tetsu Iwata, editors, Fast Software Encryption, pages 19–39, Berlin,
Heidelberg, 2010. Springer Berlin Heidelberg.

[47] Ivan Tjuawinata, Tao Huang, and Hongjun Wu. Cryptanalysis of Simpira v2. In
Josef Pieprzyk and Suriadi Suriadi, editors, Information Security and Privacy, pages
384–401, Cham, 2017. Springer International Publishing.

[48] US Department of Commerce/National Bureau of Standards. FIPS 46, Data Encryp-
tion Standard. Technical report, 1977.

[49] Qingju Wang, Zhiqiang Liu, Kerem Varıcı, Yu Sasaki, Vincent Rijmen, and Yosuke
Todo. Cryptanalysis of reduced-round SIMON32 and SIMON48. In Willi Meier and
Debdeep Mukhopadhyay, editors, Progress in Cryptology – INDOCRYPT 2014, pages
143–160, Cham, 2014. Springer International Publishing.

[50] Gangqiang Yang, Bo Zhu, Valentin Suder, Mark D. Aagaard, and Guang Gong. The
Simeck family of lightweight block ciphers. In Tim Güneysu and Helena Handschuh,
editors, Cryptographic Hardware and Embedded Systems – CHES 2015, pages 307–329,
Berlin, Heidelberg, 2015. Springer Berlin Heidelberg.

[51] Huihui Yap, Khoongming Khoo, Axel Poschmann, and Matt Henricksen. Epcbc - a
block cipher suitable for electronic product code encryption. In Dongdai Lin, Gene
Tsudik, and Xiaoyun Wang, editors, Cryptology and Network Security, pages 76–97,
Berlin, Heidelberg, 2011. Springer Berlin Heidelberg.

61

Appendix A

sLiSCP Implementation

Process 1

l i b r a r y i e e e ;
use i e e e . s t d l o g i c 1 1 6 4 . a l l ;
use i e e e . numer ic std . a l l ;
use work . s imeck pkg . a l l ;

e n t i t y dp i s
port (
r e s e t ,
c l k : in s t d l o g i c ;
data b lock : in b lock e lem ;
cont i r ounds : in unsigned (reg rounds 1 downto 0) ;
c o n t s t e p s : in unsigned (r e g s t e p s 1 downto 0) ;
encoding message : out b lock e lem
) ;
end e n t i t y ;

a r c h i t e c t u r e main o f dp i s

s i g n a l message block : b lock e lem ;

s i g n a l comp18 : s t d l o g i c ;

s i g n a l round message o : word elem ;

62

s i g n a l round message i1 ,
round message i2 ,
round message i3 : word elem ;
s i g n a l round message oo : word elem ;
s i g n a l round message i i1 ,
round message i i 2 ,
r ound mes sage i i 3 : word elem ;

s i g n a l d message block0 ,
d message block1 ,
d message block2 ,
d message block3 ,
d message block4 ,
d message block5 ,
d message block6 ,
d message b lock7 : word elem ;

s i g n a l message block2 back ,
message block3 back ,
message block6 back ,
message block7 back : word elem ;

s i g n a l message b lock0 feedback ,
message b lock1 feedback ,
message b lock4 feedback ,
message b lock5 feedback : word elem ;

s i g n a l rc1 tmp , rc2 tmp : s t d l o g i c ;
s i g n a l RC1 ext tmp , RC2 ext tmp : s t d l o g i c v e c t o r (5 downto 0) ;
s i g n a l l f s r t m p : s t d l o g i c v e c t o r (5 downto 0) ;
s i g n a l l f s r t m p o u t : s t d l o g i c v e c t o r (5 downto 0) ;

Process 2

begin
wait u n t i l r i s i n g e d g e (c l k) ;
i f r e s e t = ’1 ’ then

63

l f s r t m p <= ”111111”;
e l s e
l f s r t m p <= l f s r t m p o u t ;
end i f ;
end proce s s ;

l f s r p a r a 2 1 : e n t i t y work . l f s r p a r a 2
port map
(l f s r i n => l f s r t m p
, l f s r o u t => l f s r t m p o u t
, rc1 => rc1 tmp
, rc2 => rc2 tmp
, RC1 ext => RC1 ext tmp
, RC2 ext => RC2 ext tmp
) ;

roundfun1 : e n t i t y work . roundfun
port map
(a i => round message i1
, b i => round message i2
, c i => round message i3
, d o => round message o
) ;

roundfun2 : e n t i t y work . roundfun
port map
(a i => round mes sage i i 1
, b i => round mes sage i i 2
, c i => round mes sage i i 3
, d o => round message oo
) ;

Process 3

comp18<= ’1 ’ when c o n t s t e p s < 18 e l s e ’ 0 ’ ;
round message i1 <= message block (2) ;
round message i2 <= message block (3) ;
round message i3 <= cont round (word sz 2 downto 0) & rc1 tmp ;

64

round mes sage i i 1 <= message block (6) ;
r ound mes sage i i 2 <= message block (7) ;
r ound mes sage i i 3 <= cont round (word sz 2 downto 0) & rc2 tmp ;

d message b lock0 <= message block2 back ;
d message b lock1 <= message block3 back ;

d message b lock2 <= round message o when cont i r ounds < 5 e l s e
message b lock4 feedback ;
d message b lock3 <= message block (2) when cont i r ounds < 5 e l s e
message b lock5 feedback ;

d message b lock4 <= message block6 back ;
d message b lock5 <= message block7 back ;

d message b lock6 <= round message oo when cont i r ounds < 5 e l s e
message b lock0 feedback ;
d message b lock7 <= message block (6) when cont i r ounds < 5 e l s e
message b lock1 feedback ;

message b lock4 feedback <= message block (4) xor round message oo
xor cont round (word sz 1 downto 0) ;
message b lock5 feedback <= message block (5) xor message block
(6) xor (cont round (word sz 9 downto 0)& ”00” & RC2 ext tmp) ;

message b lock0 feedback <= message block (0) xor round message o
xor cont round (word sz 1 downto 0) ;
message b lock1 feedback <= message block (1) xor message block
(2) xor (cont round (word sz 9 downto 0)& ”00” & RC1 ext tmp) ;

Process 4

proce s s
begin
wait u n t i l r i s i n g e d g e (c l k) ;
i f c ont i r ounds =0 then
message block2 back <= message block (2) ;

65

message block3 back <= message block (3) ;
message block6 back <= message block (6) ;
message block7 back <= message block (7) ;
end i f ;

end proce s s ;

p roc e s s
begin
wait u n t i l r i s i n g e d g e (c l k) ;
i f r e s e t = ’1 ’ then
message block <= data b lock ;
e l s e
i f c ont i r ounds = 5 and comp18= ’1 ’ then
message block (0) <= d message b lock0 ;
message block (1) <= d message b lock1 ;

message block (4) <= d message b lock4 ;
message block (5) <= d message b lock5 ;
end i f ;

i f comp18= ’1 ’ then
message block (2) <= d message b lock2 ;
message block (3) <= d message b lock3 ;

message block (6) <= d message b lock6 ;
message block (7) <= d message b lock7 ;
end i f ;
end i f ;

end proce s s ;

encoding message <= message block ;
end a r c h i t e c t u r e ;

Process 5

l i b r a r y i e e e ;

66

use i e e e . s t d l o g i c 1 1 6 4 . a l l ;
use work . s imeck pkg . a l l ;
use work . u t i l . a l l ;

e n t i t y roundfun i s
port (
a i ,
b i : in word elem ;
c i : in word elem ;
d o : out word elem
) ;
end e n t i t y ;

a r c h i t e c t u r e main o f roundfun i s

s i g n a l a1 , a2 : word elem ;

begin

a1 <= a i (word sz 6 downto 0) & a i (word sz 1 downto word sz 5) ;

a2 <= a i (word sz 2 downto 0) & a i (word sz 1) ;

d o <= (a i and a1) xor b i xor a2 xor c i ;

end a r c h i t e c t u r e ;

67

Appendix B

Simeck Randomness Cycles

per iod =0;
f o r (i n t i =0; i<count 2 ; i ++){

f o r (i n t j=i +1; j<count 1 ; j++){
i f (r e s u l t s [i]== r e s u l t s [j]&& r e s u l t s [i +1]== r e s u l t s [j +1]){
rep = 1 ;
per iod=j i ;
break ;
}
}
i f (rep==1){
break ;
}
}

68

