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Abstract 

Introduction: 

Backboard lifting is a demanding aspect of paramedic work that results in higher low back 

moments and sagittal trunk angles compared to other paramedic tasks. Movement strategy in a 

backboard lift affects resultant biomechanical exposure at the low back so there is a need to identify 

differences in movement strategies that yield lower relative biomechanical exposure.  

Pattern recognition methods can be used to objectively identify features of movement related 

to biomechanical exposure. In particular, principal component analysis (PCA) is a pattern recognition 

technique that can identify whole body features of movement that explain variance in a data set. This 

approach is conceptually compatible with Optimal Feedback Control theory (OFC), which provides a 

theoretical motor control framework in which to contextualize the pattern recognition analysis.  

 

Research Questions: 

1) How do features of movement differ between high and low relative biomechanical exposure lifts, and 

as a function of relative demand in backboard lifting? 

2) How do features of movement differ between high and low relative biomechanical exposure lifters, 

and across relative demand in backboard lifting? 

 

Methods: 

 Twenty-eight participants performed 10 backboard lifting trials within each of a light, medium 

and heavy relative demand condition. Relative demands were scaled to participants’ one-repetition max 

backboard lift. Full body kinematics and ground reaction forces were collected for backboard lifting 

trials. A whole-body kinematic model was created in Visual3D to calculate low back moments and 

sagittal angles for dichotomizing lifts and lifters as low vs. high relative biomechanical exposure, and to 

provide positional data. PCA was applied on positional data as a pattern recognition technique.  For 

retained principal movements (PM), PM scores were calculated as dependent variables. Six PMs were 

retained for analysis. 

 A two-way ANOVA with independent factors of relative biomechanical exposure and relative 

demand was used to test for differences in PM scores for retained PMs across all lifts for research 

question 1. A two-way mixed ANOVA with a between factor of relative biomechanical exposure and a 

within factor of relative demand was used to test for differences in mean of PM scores in lifters to 

answer research question 2. 

 

Results: 

Movement strategies associated with high and low relative biomechanical exposure lifts:  

Significant main effects of relative biomechanical exposure were detected in 5 of the 6 PMs. PMs were 

interpreted to deduce that low exposure lifts positioned the body closer to the load, used a distal to 

proximal strategy and maintained an upright trunk. Significant main effects of relative demand were 
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seen in 4 of the 6 PMs. Heavy relative demand lifts were interpreted to have the body further from the 

load, use a distal to proximal strategy, use a more stoop-like strategy and had differences in timing of 

the lift. 

Movement strategies associated with high and low relative biomechanical exposure lifters: High 

exposure lifters positioned the body further from the load than low exposure lifters. Significant main 

effects of relative demand were seen in PMs 2 and 5 within lifters, which are interpreted to have a distal 

to proximal, and more stoop-like strategy in the heavy relative demand lifts.  

 

Discussion: 

 The application of a pattern recognition technique identified differences in movement strategies 

between those who experienced relatively less and greater biomechanical exposure.  Pattern 

recognition also revealed how relative demand influenced movement strategies during backboard 

lifting. Based on effect sizes, the horizontal distance of the body to the load was the most important 

determinant of relative low back exposure. The influence of relative demand revealed that a distal-to-

proximal strategy was more likely when lifting a heavier relative demand, a finding that is consistent 

with past literature. 

 The strong relationship of horizontal distance to the load as identified via the pattern 

recognition approach suggests that some lifters consider biomechanical exposure in their OFC control 

law by positioning themselves closer to the load. With no significant interaction effects, assessment of 

backboard lifting can be conducted by evaluating a lifters proximity to the backboard prior to lifting 

without considering relative demand.  
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1.0 Introduction 

1.1 The issue 

 

 The movement strategy used in a physical exertion can modulate the biomechanical exposure at 

the low back (Kingma et al., 2004). Biomechanical exposures that are influenced by movement strategy, 

including low back angles (Marras et al., 1993), moments (Marras et al., 1993; Norman et al., 1998) and 

joint reaction forces (Gallagher & Marras, 2012; Waters et al., 1993), have been associated with risk of 

musculoskeletal disorders (MSD). The movement strategy used can also influence the tissue tolerance, 

and thus indirectly effect risk of MSD (McGill, 2015; Gunning et al., 2001). Acknowledging that 

movement strategy influences biomechanical exposure (McGill, 2015; Marras, 2008) it is useful to 

identify the relationship between movement strategy and biomechanical consequences when 

attempting to attenuate risks in ergonomics approaches (McGill, 2009). To effectively develop and 

implement ergonomics approaches based on movement strategy we need to objectively understand 

how movement strategy relates to biomechanical exposures of interest.  

 To pursue evaluating and modifying movement strategy as an ergonomic approach a fi rst step is 

to objectively identify what features of movement strategy are associated with unfavorable 

biomechanical exposure outcomes. Use of pattern recognition, such as methodology employed to 

differentiate between elite and novice athletes based on movement strategy (Ross et al., 2018), is a 

promising framework to identify features of movement associated with biomechanical exposures. In the 

context of lifting there is evidence that movement strategy influences biomechanical exposures, 

measured by reaction forces at the low back (Straker, 2003), but this relationship is not well understood. 

A review by van Dieёn et al. (1999) determined that the position of the body relative to the load was the 

biggest determinant of the resultant biomechanical exposure at the low back opposed to the movement 

strategy used. However, this review defined movement strategy a priori as participants were 

constrained to either squat or stoop in lifting as defined by discrete measures. This methodology may 
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not be sensitive enough to capture the subtleties of movement features that could be related to 

biomechanical exposure when lifters are not constrained to either squat or stoop. Use of pattern 

recognition method that considers time varying whole body movement patterns would overcome the 

noted limitation of the van Dieёn (1999) review to provide a more robust investigation into how 

movement strategy influences resultant biomechanical exposures in lifting.  

 With a goal of objectively assessing movement strategy based on biomechanical exposure it is 

important to consider underlying theories of motor control which will influence the volitional control of 

movement. This is argued by Gregor (2008) who states that biomechanics research should consider the 

underlying neural control in addition to quantifying the consequences of movement (i.e. kinematics and 

kinetics). We may be able to identify features of movement that are related to biomechanical exposure, 

but this information cannot be effectively used to inform screening if the control of features of 

movement on a person level are not understood. To frame this study within a motor control theoretical 

framework Optimal Feedback Control theory (OFC) can be used to understand the control of movement. 

OFC is a prevailing motor control theory that attempts to explain the volitional control of 

movement strategy to achieve a task goal while considering inherent variability in movement. OFC 

suggests that our body develops an initial optimal feedback control law to govern our movement 

strategy as a plan to achieve a task objective (Todorov, 2004). The control law is executed with a closed-

loop optimization process where only variability that affects the task objective is controlled (Todorov, 

2003). The closed-loop feedback is informed by comparing sensory feedback with the initial motor 

command to determine if intervention is necessary to maintain task completion. With the abundant 

degrees of freedom in the body, a motor task objective can be achieved using an infinite number of 

movement strategy combinations due to the flexibility allowed in movement variability while not 

compromising the task objective (Scott, 2004). It is possible that some individuals may consider 

controlling features of movement related to biomechanical exposure in their control law while others do 
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not. To accurately assess movement strategy, we must understand the underlying control of features of 

movement related to biomechanical exposure. 

 OFC outlines how volitional movement is executed via the control law, but the definition of the 

control law can be influenced by external constraints. The grand unified theory of sport’s performance 

(Glazier, 2017) demonstrates how constraints influence the formation of coordinative structures. This 

theory is based on Newell’s constraints model (Newell, 1986) where task, organism and environment 

constraints were theorized to influence coordination and control. For this thesis, the grand unified 

theory of sport’s performance has been modified to include OFC (Figure 1). In this amended model, 

external constraints influence the definition of the control law, which then informs movement strategy 

consistent with OFC. With a practical goal of assessing movement strategy to infer biomechanical 

exposures potential confounding effects of constraints on control law formation should be considered.   

 

 

Figure 1: Role of external constraints on the definition of the control law. Adapted from the Grand 

Unified Theory of Sports Performance (Glazier, 2017) to include OFC closed-loop feedback (Scott, 2004). 
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1.2 Project Rationale 

 

This thesis explores the utility of pattern recognition to identify movement strategies associated 

with relatively higher or lower biomechanical exposure during the performance of a backboard lift .  

Backboard lifting is an essential task of paramedic work (Coffey et al., 2016) which consists of lifting a 

board with handles in close proximity to the ground to load a patient onto a stretcher (Figure 2). 

Backboard lifting is similar in nature to scoop stretcher lifting which exposes paramedics to the greatest 

normalized low back angles (Figure 3) and moments (Figure 4) compared to other paramedic tasks 

(Armstrong & Fischer, 2018). This supports that backboard lifting is particularly problematic as 

paramedics experience the highest prevalence of MSDs by sector (Maguire et al., 2005; Maguire et al., 

2014) which are in part attributed to high physical demands of the job (Lavender et al., 2000; Cooper & 

Ghassemieh, 2007). Engineering interventions have already been successful in reducing MSD incidence 

in this sector, such as redesign of stretchers for example (Armstrong et al., 2017; Fredericks et al., 2009; 

Studnek et al., 2012), but backboard lifting cannot be replaced by similar engineering interventions. 

Coaching individuals to improve their self-selected movement strategy is a plausible intervention to 

reduce MSD risk. Paramedics that do more work with their lower body during lifting exertions, such as 

the backboard lift, typically experience lower biomechanical exposures, quantified as peak low back 

moments and trunk flexion angles (Makhoul et al., 2017). As backboard lifting imposes high 

biomechanical exposures which have the potential to be reduced via movement strategy  intervention it 

is an appropriate medium to be explored in this thesis. 
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Figure 2: Executing a scoop stretcher lift, which poses a similar biomechanical demand to backboard 

lifting. 
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Figure 3: Peak L4/L5 angle experienced by paramedics when performing stretcher and scoop stretcher 

related lifts (Armstrong et al., 2018). Letters indicate significant differences, where ‘A’ is different from 

‘B’.  
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Figure 4: Peak L4/L5 moment experienced by paramedics when performing stretcher and scoop 

stretcher related lifts (Armstrong et al., 2018). Letters indicate significant differences, where ‘A’ is 

different from ‘B’.  

 

 Principal component analysis (PCA) can be applied as a pattern recognition approach to 

objectively identify features of movement that explain the most variance in movement strategy during 

backboard lifting. More specifically, use of a PCA approach with whole body motion as the input allows 

for the identification of principal movements (PMs) in lifting. This method has been used to describe 

human gait (Troje, 2002; Maurer et al., 2012), and in sport applications (Federolf et al., 2014; Federolf et 

al., 2013; Gloersen et al., 2017; Young & Reinkensmeyer, 2014; Ross et al., 2018). The PCA approach is 

beneficial as it can objectively extract redundant information in large data sets (Daffertshofer et al., 
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2004). This PCA approach also considers the variability of movement, which has a deterministic origin in 

the OFC framework and is not necessarily noise in the system (Stergiou & Decker, 2012).  

 With a goal of applying findings from this study to assessment, the potential interaction 

between biomechanical exposure and load on movement strategy should be considered. The load on 

the board represents a change in task constraint, which can affect the definition of the control law. Past 

work has demonstrated that the relative demand (load scaled to a person’s capacity) is a determinate of 

lifting behaviour (Albert et al., 2008; Plamondon et al., 2017). The effect of relative demand on 

movement strategy is included as an independent variable in this thesis as in application of these 

findings there is a need to know how relative demand could confound movement strategy observed. 

The consideration of relative demand as a constraint that may influence control law formation within 

the overarching motor control framework is pictured in Figure 5. This figure demonstrates how the 

control law will be inferred in this study by assessing a relationship between indepe ndent (high vs. low 

biomechanical exposure lifter and relative demand) and dependent (features of movement) variables.  
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Figure 5: Adapted version of Glazier’s (2017) Grand Unified Theory of Sports Performance where the 

independent (red) and dependent (blue) measures of this study are identified. Solid green lines 

represent the relationships tested between independent variables and mean movement strategy, and 

dashed green lines represent how the relationship is used to infer Optimal Feedback Control Law. 

 

 Practically, this thesis aims to identify how features of movement differ as both a function of 

relative biomechanical exposure and relative demand in backboard lifting. Investigating the relationship 

between features of movement in a lift and the resultant exposures allows us to identify features that 

could be trained to reduce exposure. By extending the analysis to explore if differences in mean 

movement strategy can be identified between high and low exposure lifters in some features of 

movement, results can inform the assessment of backboard lifting technique. Consideration of mean 

strategy is important as human movement is inherently variable (Latash, 2012) and so even though 

some features may be associated with biomechanical exposures in a given lift, these features may not 

be consistently controlled between high and low exposure lifters to allow for assessment of strategy. 
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The effect of relative demand is also included in these analyses as it could influence both movement 

strategy in a given lift, and mean movement strategy.  

The primary research question of this study asks; in a healthy population with varied levels of 

lifting experience how does movement strategy differ between high and low relative biomechanical 

exposure lifts and across light, medium and heavy relative demand conditions when performing 

backboard lifting? Second, how does average movement strategy differ between high and low relative 

biomechanical exposure lifters and across light, medium and heavy relative demand conditions in 

backboard lifting? By answering research question one we can identify what features of movement are 

associated with biomechanical exposures in backboard lifting which could inform training approaches. 

By considering average movement strategy within a motor control framework in research question two, 

we can understand what features of movement associated with resultant biomechanical exposures at 

the low back consistently differ between high and low exposure lifters to inform assessment of 

backboard lifting strategy. 

 

2.0 Literature Review 

2.1 Determinants of Movement Strategy 

2.1.1 Theoretical Basis 

 

 Assessing movement competency presents a promising option to identify those at greater risk of 

MSDs, but variability in working strategy should be considered in this approach. Human movement is 

inherently variable because of the motor abundancy in our bodies having more degrees of freedom then 

is needed to achieve task performance (Latash, 2012). With this motor abundancy, we see variability in 

movement from trial to trial in a work context which in bending exertions had small effects on spinal 

compression variability but large effects on lateral and anteroposterior shear force variability (Mirka & 

Marras, 1993). Both compression and shear force on the low back have been correlated to risk of MSDs 
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(Gallagher & Marras, 2012; Waters et al., 1993), therefore the variability in movement influencing these 

variables has injury risk implications.  

Historically, the variability in movement has been attributed to noise in the system (Bernstein et 

al., 1996) but it was found that even in highly skilled tasks, such as javelin throwing movement strategy 

in elite athletes, that they were not capable of producing invariant movement across trials (Bauer & 

Schollhorn, 1997). Findings from this study developed the idea that there is no such thing as a 

‘representative trial’ because of this variability in movement across trials. This was described by 

Bernstein (1967) as repetition without repetition.   

 The inherent variability that is present in movement likely exists because the abundancy of our 

joints allows it. Outcome consistency does not require movement consistency because we have multiple 

options to achieve a given task (Bartlett et al., 2007). The use of movement variability to maintain task 

performance in experts has been documented but the mechanism of control is not well understood.  

 OFC is a motor control theory that explains the hierarchal control of movement, including the 

role of variability to maintain performance (Todorov, 2004). OFC proposes that when completing a 

motor task only deviations that interfere with the task goal are maintained while variability in task 

irrelevant aspects of movement are left free (Todorov & Jordan, 2002). This theory argues against the 

historical notion that we have pre-programmed motor patterns that indicate a specific trajectory of 

movement. This previously described process of motor control can be described as an open-loop 

concept whereas OFC control postulates that instead we use a closed-feedback loop where visual and 

proprioceptive sensory inputs provide afferent information to our motor system, which allow the body 

to adapt to environmental factors by taking advantage of movement variability to maintain task 

performance. This feedback loop allows for adaptable control so that as task demands change the motor 

control system can adapt to maintain task goals.  
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 To illustrate this theory of OFC Figure 6 has been adapted from Scott (2004) to display the 

closed loop process of controlling volitional movement. For a given task, the central nervous system 

(CNS) will select an optimal feedback control law, which is a selection of parameters to control to 

achieve the motor goal in a task (Scott, 2004). In movement execution, noise in the system may 

influence successful completion of the motor task. This theory suggests that our system allows for online 

adaptive movement control using information about the initial optimal feedback control law and 

afferent information on motor performance. This afferent information is continually updated to 

maintain performance throughout the task. If noise in the system does not compromise the task goal 

then the CNS will not intervene to correct this task irrelevant variability. However, the CNS will intervene 

if noise in the system will compromise the completion of the task goal. This control of the task relevant 

variability but not task irrelevant variability is known as the minimum intervention principle (Todorov & 

Jordan, 2003). 

 

Figure 6: Closed loop model of optimal feedback control  adapted from Scott (2004).  

To achieve this online adaptive movement control there is a need for an optimal state estimate, 

which is related to the motor periphery in the task (Scott, 2004). Based on some metric of performance 
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the neural system synthesizes afferent sensory information and a copy of the efferent signal to provide 

online feedback to tune movement to achieve the task objective. In the presence of noise, this online 

feedback comes together at the optimal state estimator to adapt movement strategy to maintain 

completion of the task goal. To adapt movement behaviour the feedback loop adjusts gains on neural 

commands to tune movement to achieve task goals (Latash et al., 2005). This results in an updated 

optimal feedback control law which is geared to better achieve the goals of the task.  

 To better understand OFC, we can think about it in a contextual example. In a reaching task if 

there is no perturbation to the arm then the CNS will not intervene as nothing is affecting the ability to 

achieve the task goal. However, noise that disrupts trajectory of movement largely enough to 

compromise goal completion will attempt to be corrected within task performance via close loop 

feedback. This dispels the historical notion that the body does not recall rigid motor commands and 

instead uses flexible reconfiguration (Diedrichsen et al., 2010). Deviations relevant to the external task 

goal are corrected but task irrelevant movement (not relating to goal completion) is not compensated 

and so it can accumulate across repetitions (Diedrichsen et al., 2010). This allows for variance in strategy 

in the task irrelevant aspects of motion (Bernstein et al., 1996).  

There is growing support of the OFC theory has come from experimental studies that have 

investigated simple motor tasks (Scott et al., 2015; Valero-cuevas et al., 2009) and sport applications 

(Morrison et al., 2016). However, movement strategy in occupational tasks, such as lifting, have not 

been investigated within the constructs of these theories. If movement strategy is controlled in lifting as 

it is in simple motor tasks there may be an allowance of task irrelevant variability if the load being lifted 

arrives at its desired end point.   
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2.1.2 Implications of Optimal Feedback Control theory in Occupational Lifting 

 

The existence of OFC has implications when considering movement from a biomechanical 

standpoint. While biomechanics literature does a good job of describing how parameters such as spine 

compression are associated with different types of movement, it is often difficult to infer why such 

movement had occurred in the first place. It has been suggested that biomechanics research shift its 

focus from descriptive research towards the inclusion of theory-driven research by designing studies 

that consider both the consequence (biomechanics) and neural control of movement (Gregor, 2008). To 

better understand the question of ‘why’ in movement there is a need to consider the function of the 

neuromuscular system (Davids & Glazier, 2010). This presents an opportunity to consider the objectives 

of this study within the context of OFC.    

 In our primary research objective, the aim is to identify differences in movement strategy 

between high and low relative biomechanical exposure lifts. These differences could be attributed to 

differences in how some lifters parameterize an optimal feedback control law, within the OFC 

framework. For example, some lifters may consider “minimizing biomechanical demand on the body” as 

an aspect of their optimal feedback control law. In this regard, a lifter aiming to minimize biomechanical 

demand may be more sensitive to sensory feedback about the moment at the low back. While it is 

extremely difficult to conclusively identify an optimal feedback control law from a given task 

performance, we use OFC as a framework to infer that some lifters might consider MSD risk 

(biomechanical demand via sensory information about low back moments as an example) within an 

optimal performance, where others might not. For example, during a backboard lifting task moving the 

stretcher from its starting location to the end destination is likely an important outcome.  If at any point 

a lifter’s sensory feedback suggests that the load is no longer moving towards its destination, the CNS is 

likely to intervene and re-optimize the movement to ensure the load continues towards its destination. 

However, there is a possibility that across individuals there may be other objectives (or constraints) that 
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contribute to an individual’s optimal feedback control law such as lifting ‘safely’. A ‘safe’ lift may be 

defined as minimizing perceivable biomechanical exposures. Although there is a correlation of low back 

compression to injury risk it is unlikely that individuals perceive low back compression when lifting 

(Chaffin & Page, 1994; Thompson & Chaffin, 1993). However, biomechanically relevant exposures such 

as low back moments could serve as an alternate perceivable variable. Studies challenging participants 

to choose psychophysically acceptable loads provides evidence suggesting that low back moments were 

perceived by the lifters (Fischer & Dickerson, 2014; Jorgensen et al., 1999; Kuijer et al., 2012). With this 

afferent information from low back moments, individuals could have an optimal feedback control law 

inclusive of sensory feedback related to this biomechanically relevant exposure when controlling 

movement strategy. It is likely that some lifters will control movement strategy to minimize low back 

exposures, while others will not consider biomechanics in the approach to maintain the task goal of 

executing the lift.   

 

2.1.3 External Factors influencing the Control Law 

 

 When thinking about lifting within an OFC framework, as noted early, each lifter will select an 

optimal feedback control law that they believe will be best to control the movement strategy to meet 

the task goal. As a reminder, we hypothesize that some may choose an optimal feedback control law 

that considers low back relative biomechanical exposures at heavy relative demand, where others may 

not. However, it is well established that external constraints can influence movement strategy used in 

lifting. One example of this is that the relative demand of a lift affects lifting patterns (Albert et al., 2008; 

Plamondon et al., 2017; Sadler et al., 2011; Sheppard et al., 2016), where lifters change their strategy as 

the relative demand is decreased. Explained from an OFC perspective, a change in movement at lower 

relative demands could suggest an accompanying change in the overarching optimal feedback control 
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law. To visualize how external constraints influence the formation of the control law Figure 1 has been 

adapted from Glazier (2017) which shows that changes in task, environment and organism constraints 

(taken from Newell’s (1986) constraints model) influence how the control law is defined within the OFC 

closed feedback loop. Considering relative demand as an external constraint infl uencing movement 

strategy in lifting, as the relative demand changes the task constraint is modified. Lifting a lower relative 

demand would also impose lower biomechanical consequences on the low back (Plamondon et al., 

2012), and so it is possible that minimizing biomechanical exposures on the low back may be less 

important to consider within the optimal feedback control law at this relative demand. Additionally, at 

lighter loads, lifters may have more movement options available to preserve the task goal. Conversely, 

during a heavier lift, the inertia of the load is much higher, likely restricting the number of movement 

options available to a lifter in order to leverage their strength to overcome the inertia of the load 

(Makhoul et al., 2017).  Given the availability of more options, and lower relative biomechanical 

exposures during lighter lifting task, it is possible that at lower relative demands there is little influence 

on the development of the control law, whereas at a heavy relative demand the internal definition of 

the control law is likely influenced. By investigating changes in movement strategy across relative 

demand conditions it probes the hypothesis that external task constraints influence the internal 

formation of a control law.  

 

2.1.4 Biomechanical Consequences of Movement Strategy in Lifting 

 

Within the OFC framework task irrelevant variability, by default, does not affect the task 

outcome, but may affect biomechanical exposures. If the overarching optimal feedback control law does 

not consider biomechanical consequences when choosing how to control movement strategy to 

preserve the task goal, it is likely that aspects of task irrelevant variability may inadvertently expose the 
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mover to higher biomechanical risk. It is documented that across repeated lifting exertions there is trial 

to trial variability (Granata et al., 1999; Gagnon et al., 2002; van Dieёn et al., 2001) but the implication of 

this variability on biomechanical exposures is not well understood.  A potential positive is that trial-to-

trial variability can distribute demands across tissues so that the cumulative load on any single tissue is 

not enough to exceed the tissue tolerance. This form of variability is argued to be beneficial as working 

with strategy that utilizes more variability has been shown to reduce fatigue in workers (Srinivasan & 

Mathiassen, 2012). With the intrinsic variability in movement there may be benefits to the worker in 

avoiding fatigue and injury.   

 Further evidence of the importance of movement variability is its relation to the development of 

pain. It is theorized that the loss of variability is believed to increase the probability of developing MSDs 

in work (Mathiassen, 2006). In the literature, long-term pain conditions have been associated with less 

motor variability for the knee joint, (Georgoulis et al., 2006; Heiderscheit et al., 2002; Hamill et al., 1999; 

Sondergaard et al., 2010) low back (van den Hoorn et al., 2012) and shoulder (Falla et al., 2008) . 

Although correlations between pain and low movement variability have been observed, there is no 

causative link between low movement variability and pain or injury that has been established in the 

literature. Even without such a link, the association of low movement variability and pain is a concept 

that should be considered when evaluating factors which could precipitate risk of MSDs.  

 In the OFC framework, task irrelevant variability is not controlled in the closed feedback loop. 

From an ergonomics lens, in a repetitive task which allows for variability without compromising task 

performance having higher task irrelevant variability may be a protective effect (Srinivasan & 

Mathiassen, 2012). There is a possibility that having variability in redundant degrees of freedom may be 

considered within the optimal feedback control law to influence workers to exhibit higher variability. To 

date there is no evidence to suggest that the optimal feedback control law governs movement to 

maximize variability as suggested. However, exploring whether the optimal feedback control law 
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considers factors related to injury risk could aid in understanding deterministic origins of movement 

variability and its relationship to MSD risk.   

 Although variability offers benefits in reducing injury risk in some regard there may also be a 

need to control variability in certain scenarios such as when lifting a high external load. Motor 

abundance allow us many options to move the load but from an injury risk perspective there are some 

strategies that are more beneficial to use to reduce the loading on any one tissue. Considering 

backboard lifting, restriction of variability to use a movement strategy which minimizes biomechanical 

exposure to the body is recommended due to the nature of the task. Over the course of a work shift 

paramedics only perform 2-3 backboard lifts, albeit with heavy loads. The low number of repetitions 

does not make using variable strategy a beneficial injury prevention strategy. The high external load 

gives a greater risk of an acute injury mechanism where a single large force exposure  exceeds tissue 

tolerance (McGill, 2015). For this reason, movement strategy that minimizes biomechanical exposure 

should be used on every backboard lift repetition.  

 Considering the demands of the backboard lifting task in a work shift there is a tangible 

opportunity to recommend ideal strategies to use. By identifying aspects of movement strategy that 

differ between high and low relative biomechanical exposure lifters we can coach movement strategy to 

minimize the biomechanical demand in any given repetition without trying to systematically induce 

variability into strategy which may be more difficult.  

 

2.1.5 Modifiers of Movement Strategy in Lifting 

 

 The role of OFC in controlling human movement has been discussed but contextualizing 

previous experimental findings while considering OFC may explain the basis of movement variability and 

differences in movement strategy across different lifting conditions. To address our primary objective of 
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identifying what aspects movement strategy differ between high and low relative biomechanical 

exposure lifts we must understand how changing task constraints, as conceptualized by Glazier (2017), 

influences variability and movement strategy in lifting. This will allow us to develop methodology that 

minimizes confounding factors to best address the research question of interest. For this investigation 

there is limited research on how variability in lifting changes but there are numerous studies exploring 

changes in lifting strategy based on altering constraints such as experience, load, sex and relative 

demand.  

 Variability has a functional role in motor development (Bartlett et al., 2007). As expertise is built 

the level and type of variability exhibited in movement changes in task execution. For this reason, it is 

expected that across different levels of expertise there will be changes in variable movement strategy 

exhibited in lifting. One may hypothesize that with experience that individuals will take advantage of 

their bodies abundant degrees of freedom to minimize variables that are associated with risk of MSD 

development. This hypothesis has support when considering posture, where experts tended to have less 

low back flexion and more knee flexion in lifting (Plamondon et al., 2014; Plamondon et al., 2012). 

However, in a study which looked at variability in low back loading evidence does not support the 

hypothesis where experts exhibited greater mean sagittal and axial low back moments as well as greater 

mean low back loads (medial-lateral (M-L) shear, anteroposterior (A-P) shear and compression) 

compared to inexperienced lifters (Granata et al., 1999). Although these measures were significantly 

greater in the experienced population the variability in these values varied more trial -to-trial compared 

to the inexperienced group. To explain these findings the authors discussed the relationship between 

spinal load and tissue tolerance. Although absolute loads were higher in the experienced group the co -

activation of flexor and extensors in the trunk was also higher which had been previously suggested to 

be associated with higher trunk stability (Cholewicki et al., 1999) which is suggested to reduce risk of 

MSDs (Cholewicki & McGill, 1996). This co-activation as a protective effect may be a result of 
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experienced lifters updating their optimal feedback control law to better consider trunk stability. With 

experience, lifters may begin to identify aspects of movement strategy that are related to injury risk and 

control them via the closed feedback loop. In this study i t was also stated that the experienced group 

likely had higher capacity, which would allow them with more flexibility in their selection of lifting 

strategy. Similar results were found in a later study looking again at the effect of experience on lifting 

strategy. Experienced workers had higher peak kinematics and kinetics in lifting but had greater dynamic 

balance measured by peak horizontal momenta, angular momenta and largest Lyapunov exponent (Lee 

& Nussbaum, 2014). Findings from these studies demonstrate that expertise does play a role in 

influencing movement strategy in lifting. These results support the hypothesis that the sensorimotor 

system in experienced lifters seems to control variables that are related to injury risk, which supports 

that mitigating MSD injury risk can be considered within the optimal feedback control law.   

Although informative, the results of these studies are limited by the low loads used in their 

lifting trials and the fact that capacity in lifting was not controlled for.  In lifting, movement strategy is 

informed by many environmental factors including expertise and load. In the previous paragraph, which 

reviews the effect of experience, confounders of load and relative demand are not controlled for in all 

studies. To understand the role of all factors on lifting strategy the effect of load and relative demand 

will be discussed in the following paragraphs to better contextualize what factors determine movement 

strategy in lifting.   

Lifting has been investigated under different loads to determine the effect of load on movement 

strategy. It has been found that as load increase interjoint coordination is more sequential starting with 

distal movement (Davis & Troup, 1965; Scholz, 1993a, 1993b; Scholz & McMillan, 1995; Burgess-Limerick 

et al., 1995). To interpret these findings in an OFC framework it is possible that an increase in load 

resulted in lifters refining their optimal feedback control law dictating movement strategy. The distal to 

proximal strategy may be adopted as an injury prevention measure to avoid large magnitudes of lumbar 
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acceleration when the acceleration of the load is greatest (Davis & Troup., 1965). It is likely that low 

back moments are high at this time point as peak joint moments were reported to occur at 25% of 

extension duration (De Looze et al., 1993). Delayed extension of the low back will protect the low back 

from the peak moment demands and instead can shift moment contributions across other joints of the 

lower extremity. At lower loads, there may be less importance on protecting the low back from peak 

moments as the absolute moment magnitude is lower which could result in more variable movement 

strategy. In a heavy load condition, the movement strategy may be controlled to incorporate this 

temporal delay as a protective effect resulting in less variability in strategy.      

 Sex effects have been proposed as a mechanism that influences movement strategy in lif ting. 

Women have been documented adopting a more leg driven strategy whereas men tend to lift more with 

their back (Li & Zhang, 2009; Marras et al., 2003). In one of these studies, women had significantly lower 

compressive loading compared to men and these differences between groups became greater as 

external load increased (Marras et al., 2003). Although differences in sexes were observed in these 

studies this was attributed to differences in strength between the two groups. In a later study, females 

were once again shown to have lower low back loading when lifting the same weight as males and a 

more sequential distal to proximal lifting pattern (Plamondon et al., 2014). Another study which looked 

at lifting in a paramedic population found that females generated more work with the lower body in 

lifting and had more neutral low back angles (Makhoul et al., 2017). This was attributed to females 

adopting a strategy that minimized effort while trying to maintain safety by controlling their low back 

angle. These studies provide evidence of differences in movement strategy between sexes but in all 

studies the load lifted was absolute regardless of participant characteristics. If strength was controlled 

for (i.e., the relative demand of the load) would the same results of been found?  

 To understand whether participant capacity modulates the effect of absolute load on movement 

strategy the effect of relative demand on movement strategy should be investigated. By normalizing an 
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external load to some measure of physical capacity the observed affects represent strategy at a demand 

which can be compared across participants. This approach is argued to have better external validity 

compared to lifting an absolute load (Plamondon et al., 2017). When comparing lifting strategy across 

individuals who were tested for leg and back strength those who had greater back strength adopted a 

more back like lift and vice versa (Li & Zhang, 2009). This provides an argument that lifting movement 

strategy is likely influenced by relative demand in some manner.  

To further support the importance of relative demand previous work has demonstrated that it is 

more important than sex when identifying determinants of movement strategy in lifting. A study which 

investigated lifting strategy while controlling for relative demand found that there were no significant 

sex effects on postural index, joint range of motion and relative phase angles in lifting (Albert et al., 

2008). These findings were echoed in a later study where PCA was used to examine variability in 

kinematic variables between sexes at a low relative demand normalized to maximum back extensor 

strength (Sadler et al., 2011).  The purpose of these two studies was not to investigate changes in lifting 

strategy at different relative demands but rather to control for relative demands to assess sex 

differences in movement. In a separate study, an effect of sex on movement strategy in lifting was found 

in a repetitive palletizing task where females adopted a more distal to proximal strategy under what was 

considered the same relative demands (Plamondon et al., 2017). A limitation in this study was that the 

method to find relative demand was to assume a constant strength capacity within each sex but to 

assume that females had 2/3 the strength capacity that males did. This would offer a crude estimate of 

strength capacities of participants, but this approach did not give concrete evidence of what relative 

demand the participants are working at. Although the selection of 2/3 as a relative demand was 

supported, (Mital et al., 1997) across a population the strength capacity of people will vary based on a 

number of factors including anthropometrics, training level, age, etc. (Fuster et al., 1998). Without 

controlling for any of these factors it is difficult to know how accurate and controlled the representation 
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of relative demand is. Together these studies highlight the importance of controlling relative demand 

when assessing movement in strategy.  

The previously discussed studies support that relative demand may be an important 

determinant of changes of movement strategy in lifting but only one relative demand was investigated 

in all studies reported thus far. The use of one relative demand condition limits the ability to make 

conclusions about how movement strategy changes as a function of relative demand. A study that 

investigated differences in lifting movement strategy between sexes at different relative demands found 

that there was no significant effect of sex on retained principal components (PCs) but there was a 

significant effect of relative demand on five PCs of the lower extremity (Sheppard et al., 2016). These 

findings support that movement strategy was different across relative demands conditions in lifting. 

Although a significant effect of relative demand was found on PCs, a limitation was that the relative 

demand was normalized to maximum back extensor strength of participants. Although this gives a 

measure of relative demand, using this methodology capacity of lower extremity is not considered 

which may compromise the internal validity of the calculation of relative demand. To increase internal 

validity of the relative demand calculation loads should be normalized to a value that considers total 

capacity which can contribute to a lift opposed to capacity of a single joint.  In the Sheppard et al. (2016) 

study three relative demand conditions of 10%, 20% and 30% of maximum extensor strength were used. 

Findings from this study were able to identify differences in strategy between these conditions for some 

PCs but it is not known how movement strategy will change at higher relative demands. Although this 

was outside of the scope of the Sheppard et al. (2016) study it can be explored in future directions, 

which this thesis addresses by considering the effect of greater percentages of relative demand on 

movement strategy.  

From these findings, it seems that a major contributor to movement strategy in a lift is relative 

demands as relative demand effects washes out the effect of sex on strategy. With the noted 



24 
 

importance of relative demand it is important to control for it to address our research objectives of 

identifying differences in PMs between high and low relative biomechanical exposure lifts and lifters. 

With limitations to previous research there is also opportunity to explore how relative demand affects 

PMs in both high and low relative biomechanical exposure lifters as is proposed in research question 2.   

 

2.2 Pattern Recognition to Quantify Movement Strategy 

 

 Whole body movement strategy is a key outcome of interest when considering movement from 

performance and risk perspectives. Classic approaches to this issue use discrete measures within the lift 

cycle such as means or peaks that occur at key time points. However, these variables need to be 

selected a priori (Lees, 2002) and there is an aspect of researcher subjectivity in deciding what aspects 

of the data are important and which are not. With a discrete measures approach there are also 

limitations associated with only analyzing movement strategy at certain time points, which ignores the 

time-series of movements over the duration of the action, which could contain important information. 

Because of these inherent limitations in the use of discrete parameters typically representing individual 

time points, this approach may not be useful to analyze movement strategy in backboard lifting, 

particularly within an OFC theoretical orientation.    

 An example of discrete measures not being the most insightful measure when analyzing similar 

data was seen in the secondary analysis performed on data published by Makhoul (2017). Work from 

Makhoul found that doing more work with the lower body lead to lower biomechanical exposures at the 

low back. With the concept of ‘doing work’ being an abstract coaching cue we investigated whether 

there was a relationship between timing of power generation and biomechanical exposures as  we 

believed timing would be more clear to coach. Specifically, we investigated whether timing between 

peak knee and low back power had any relation to peak low back moment and peak trunk flexion angle. 
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There were no relationships found between the difference in peak power timing to the measures of low 

back moments and trunk flexion angles (Armstrong & Fischer, 2017). When considering the power 

profiles there was rarely a clear peak in power profile magnitude which could be a factor in why no 

relationship was seen between difference in timing and variables associated with low back MSD risk. 

Considering sample data of eight participants, four with the lowest and four with highest peak trunk 

flexion angles in scoop stretcher lifting, there is variability in both knee and low back power profiles 

(Figure 7). When considering these power profiles by looking at a discrete time point, in this case peak 

power, most of the waveform is ignored.  This highlights the need for a statistical analysis technique that 

objectively considers the entirety of the lift opposed to using discrete measures at specific joints.  
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Figure 7: Average knee and low back power profiles normalized to percent of lift for participants with 

the four lowest (P1-P4) and four highest (P5-P8) peak low back flexion angles. 

 

To quantify movement strategy, it is important to consider whole body motion. Movement 

strategy in lifting has been quantified in a number of ways including use of a lift index based on body 

configuration at lift onset (Burgess-Limerick & Abernethy, 1997), analyzing lower body joint angles 
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(Gagnon & Smyth, 1992; Hwang et al., 2009; Sadler et al., 2011; Zhang et al., 2000), and using relative 

phase angles to quantify coordination (Albert et al., 2008; Burgess-Limerick et al., 1993; Burgess-

Limerick et al., 1995; Lindbeck & Kjellberg, 2001; Plamondon et al., 2017; Scholz, 1993; Seay et al., 

2016). While there are pros and cons to using any of these methodological approaches a common 

drawback to these approaches is that they quantify movement of the lower extremities and trunk while 

ignoring the upper body. It has been shown that in a repetitive lifting task that participants changed 

shoulder and elbow posture to bring the load closer to the body (Fischer et al., 2015). This control of the 

upper extremity supports the need to consider the upper body in this analysis as it can contribute to 

moving the external load and modulating biomechanical exposures.  

 Using OFC as a model to explain movement in a lifting task there is flexibility in control of the 

abundant degrees of freedom to achieve the task objective of moving the backboard to its lifted height. 

The upper extremity can contribute to the abundant degrees of freedom that can play a role in moving 

the backboard. Although it is likely that the lift will be driven by movement of the lower body, to 

quantify lifting movement strategy in its entirety the consideration of the upper body is needed within 

the OFC framework because of the degrees of freedom it contributes.  

 For this thesis, a method that objectively quantifies whole body dynamics of movement is 

needed to analyze movement strategy in lifting within the OFC framework. Pattern recognition 

techniques present as an option to meet these methodological needs.     

 

2.3 Principal Component Analysis for Pattern Recognition 

 

A pattern recognition method which can consider the entire waveform and is capable of 

reducing a multidimensional data set to analyze modes of variability in human motion is Principal 

Component Analysis (PCA) (Lynn & Noffal, 2012; Daffertshofer et al., 2004). PCA considers an entire 
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waveform and is an unbiased method to extract features of the data set that explain the greatest 

proportion of variance. In a data set with n dimensions there will be n principal components. However, 

the first PC will explain the greatest amount of variance in the data set and each subsequent PC will 

explain a lower proportion of variance, where the first few PCs can often capture much of the variability 

present in the data. With each PC, there is an associated PC score for each trial that corresponds to how 

close the trial is to the mean of that PC. A PC score with a larger magnitude represents a greater 

discrepancy from the mean for that group (Deluzio et al., 2007).     

PCA is a pattern recognition technique that is beginning to gain traction in the biomechanics 

literature. The goal of this analysis is a mode reduction method that can detect variant properties in 

biomechanical data (Daffertshofer et al., 2004). The technique has upside as it accounts for variability in 

a data set, which is an asset in biomechanics research because, as noted before, human movement is 

inherently variable. A second positive aspect of this technique is that it considers the entire waveform of 

data as opposed to discrete data points. Averages, maximums and minimums of kinematic and kinetic 

data can be useful in answering some research questions but may miss crucial information by neglecting 

or reducing aspects of the waveform (Khalaf et al., 1999; Wrigley et al., 2005). In the biomechanics 

literature PCA has been applied as a waveform analysis technique to examine variability in lifting, (Khalaf 

et al., 1999; Sadler et al., 2011; Sadler et al., 2013; Wrigley et al., 2005; Wrigley et al., 2006), gait 

(Deluzio & Astephen, 2014; Donà et al., 2009; Mezghani et al., 2010; Reid et al., 2010; Deluzio et al., 

1997), golfing (Lynn & Noffal, 2012) and jump rope (Bruce et al., 2016).   

 For this thesis the goal was to quantify movement strategy where movement strategy is defined 

based on whole body motion. Previously mentioned research examines aspects of human motion via 

analysis of joint specific kinematic and kinetic waveforms, but to best answer the research questions 

posed in this thesis we need a pattern recognition approach that considers whole body motion. One 

such technique to consider whole body motion is to quantify principal movements via a PCA modelling 
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approach where kinematic marker data is used as an input (Federolf, 2016). This approach was originally 

developed by Troje (2002) where the data reduction technique was used to quantify differences in 

walking between males and females. This technique has been applied to quantify movement strategy in 

standing (Federolf et al., 2013), alpine skiing (Federolf et al., 2014) , human gait (Maurer et al., 2012), 

diving (Young & Reinkensmeyer, 2014), a fitness assessment battery (Ross et al., 2018) and cross country 

skiing (Gloersen et al., 2017). 

 Using PCA to capture PMs has benefits of capturing whole body motion but is also beneficial as 

it can be contextualized within the OFC framework. Previously, PCA has been used to quantify variability 

in joint angles in a reaching task to determine whether variability was task relevant or not (Todorov & 

Jordan, 2002). PCA was successful in identifying redundancy in the task execution, which supports that 

PCA is conceptually compatible with the theoretical framework of OFC. By breaking moveme nt strategy 

down into PMs, we can identify aspects of movement that explain variance in the data set. By testing for 

differences in PMs between groups, we can begin to understand what components of movement 

strategy are considered task relevant for low relative biomechanical exposure lifters and controlled in 

the OFC framework. In this thesis, OFC is used as a theoretical framework to hypothesize why 

movements might differ between groups and across conditions. This proposed PCA approach allows us 

to test whether low relative biomechanical exposure lifters control aspects of movement strategy 

differently than high relative biomechanical exposure lifters by comparing mean PM scores.   

 With whole body PCA driven pattern recognition approaches a common limitation is that many 

of the analyses have conducted separate PCA analysis on each participant. This method may resu lt in 

the principal components explaining different aspects of variance in each participant. Applying this 

approach with all participants’ data in a single PCA model can allow for comparison between 

participants as with the use of a component reconstruction we can recreate PMs. Gloersen et al., (2017) 

used this approach to compare differences in alpine skiing movement strategy between athletes with 
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two levels of proficiency. In their analysis they were able to identify differences in movement strategy 

between the two levels of proficiency as experts activated hip flexors in phase with release of potential 

energy from the ski poles and controlled their skis to better align their skis in the forward direction in 

the gliding phase.  The authors recognized that the differences do not imply a causal relationship 

between PMs and performance but with the visualization of PMs coaches can train skiers to mimic 

movement strategy of experts to improve performance. Using this approach in an occupational context, 

we may be able to identify differences in movement strategy between lifts with and without low back 

sparing strategies. No previous literature has quantified differences in whole body motion during 

occupational lifting between high and low biomechanical exposure lifters using this PCA approach. This 

thesis will allow for identification of differences in PMs between the two groups as Gloersen et al. (2017) 

have done for cross country skiers. With the ability to visualize differences in movement strategy this 

will provide direction to inform training strategies to improve lifting mechanics in the workplace.  

Using this PCA pattern recognition approach, we will be able to identify PMs within a population 

for a backboard lifting task. An added benefit to this approach is that in addition to identifying 

differences in movement strategy between high and low relative biomechanical exposure individuals we 

are able to reconstruct motion using PMs and their respective PM score (Troje, 2002). The outputs of 

the reconstruction will produce a three-dimensional representation of the body for each group based on 

differences in PMs that explain most of the variance in the data set. With this visualization, we can 

display how movement strategy differs as a function of biomechanical consequences to aid in the 

practical objective of assessing movement strategy.   

Considering past use of PCA in biomechanics research, its role has been to identify differences in 

kinematics between groups. For interpretation of PCA analysis PMs can be classified on the aspect of 

variability they represent as magnitude, difference or a phase shift operator, which is consistent with 

descriptions from Wrigley et al. (2005). Magnitude operators look at amplitude of the waveform, phase 
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shift operator is a temporal shift of the average waveform and a difference operator quantifies where 

the waveform crosses. Interpretation of PMs as one of the three listed operators will allow us to 

understand how differences in PMs influence movement strategy.  
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3.0 Research Questions and Hypotheses 
 

Research Question 1: How does movement strategy differ between high and low relative biomechanical 

exposure lifts and across light, medium and heavy relative demand conditions when performing 

backboard lifting? 

It is hypothesized that differences in PM scores will be observed in some PMs between high and 

low relative biomechanical exposure lifts and across relative demand conditions.  

 This research question aims to objectively identify how features of movement differ between 

high and low exposure lifts. Relative demand is considered as a second independent variable as it has 

been noted as a determinant of lifting strategy in past literature (Albert et al., 2008; Plamondon et al., 

2017). Results to this research question can be used to develop training interventions that stress 

features of movement associated with lower biomechanical exposures.  

 

Research Question 2: How does average movement strategy differ between high and low relative 

biomechanical exposure lifters and across light, medium and heavy relative demand conditions in 

backboard lifting? 

It is hypothesized that there will be significant differences of mean PM scores between high and 

low relative biomechanical exposure lifters at heavy relative demands in PMs where significant main 

effects of relative biomechanical exposure were seen in research question 1. Across PMs, it is 

hypothesized that there will be main effects of relative demand on PM scores consistent with findings 

from research question 1. In PMs where there are interaction effects between relative biomechanical 

exposure and relative demand it is hypothesized that there will no differences of PM score s between 

relative biomechanical exposure groups at the medium and light relative demand conditions as revealed 

by post hoc testing. No differences are hypothesized between high and low exposure lifters at the light 
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and medium relative demands is because the greater abundance of available strategies at lower relative 

demands will allow participants to consider optimizing other factors, much as minimizing energy 

expenditure, instead of optimizing resultant relative biomechanical exposure.  

This research question extends on research question 1 by determining whether features of 

movement identified to be related to biomechanical exposure are consistently controlled to identify 

lifters by their resultant exposure within a motor control framework. By comparing the mean movement 

strategy in the context of Glazier’s (2017) motor control model it accounts for the inherent variability in 

movement because of the motor abundancy our bodies have to achieve task performance (Latash, 

2012). By considering mean movement strategy, it will inform what features of movement related to 

relative biomechanical exposure (identified in research question 1) are consistently controlled to inform 

movement strategy assessment. While many features of movement may be identified as associated with 

resultant biomechanical exposure in research question 1, only factors which are consistently controlled 

as probed in research question 2 can be used to inform assessment of strategy. Once again, relative 

demand is considered as a potential confounding factor where there may be an interaction between 

relative biomechanical exposure and relative demand on mean movement strategy between high and 

low exposure lifters. A potential interaction of relative biomechanical exposure and relative demand 

would have implications for assessing backboard movement strategy in practice.  
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4.0 Methods 

4.1 Study Design 

  

In this cross-sectional within-subjects study design, participants came to the Occupational 

Biomechanics and Ergonomics lab (OBEL) at the University of Waterloo where kinematic and kinetic data 

were collected while participants performed backboard lifting actions. Using the kinematic and kinetic 

data lifts and lifters were stratified into high and low relative biomechanical exposure groups. These 

data were used to identify PMs. Differences in PM scores were compared between high and low relative 

biomechanical exposure lifts and lifters to reveal how movement strategies differed between the two 

groups. Lastly, the research design allowed us to explore if these movement strategy differences were 

consistent across light, medium and heavy relative demands.  

In research question 1, the independent measures included relative biomechanical exposure status and 

relative demand condition. Relative biomechanical exposure status was determined as high or low for 

each lift, based on an aggregate measure including peak low back angle, peak low back moment and 

moment at peak low back angle. PM scores for retained PMs were included as dependent variables. To 

address the second research the independent variables were once again relative biomechanical 

exposure status and relative demand condition. However, for the purpose of research question 2, 

relative biomechanical exposure status was based on a lifter’s combined biomechanical exposure across 

all 10 heavy relative demand lifts. PM scores in retained PMs remained as the dependent variables.  

 

4.2 Participants 

 

Twenty-eight participants were recruited to participate in this research study (Table 1). Lifting 

experience was considered during enrolment to ensure that the participant pool represented a range of 

expertise including less experienced lifters and those more proficient in backboard lifting (e.g., 
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paramedic’s in training or active duty paramedics). It was important to include a range of expertise in 

backboard lifting so that the participant pool reflected a range of movement strategies that could be 

used in backboard lifting. To maintain external validity of findings a portion of the population was 

recruited from the paramedic sector so that movement strategy used on the job is considered in the 

analysis. To maximize internal validity all participants were injury free in the previous year to be eligible 

to participate in the study as injury could affect movement strategy used.  

 

Table 1: Participant Demographics. 

Participant Group Sex Age (years) Height (m) Weight (kg) 

Paramedic Experience 7 ♀, 5 ♂ 25.1 ± 3.4 1.71 ± 0.10 82.1 ± 15.1 

No Experience 7 ♀, 9 ♂ 23.2 ± 2.2 1.74 ± 0.12 75.5 ± 17.0 

All 14 ♀, 14 ♂ 24.0 ± 2.8 1.73 ± 0.11 78.3 ± 16.3 

 

Prior to study commencement, the study protocol was approved by both a University of 

Waterloo Research Ethics Committee (ORE #22811) and a Conestoga College Research Ethics Board (REB 

#247). All participants provided informed consent prior to participation in the study.   

 

4.3 Instrumentation 

4.3.1 Motion Capture 

 

 A 12-camera Vicon system (6 Vero v2.2, 6 Vantage V5, Vicon Motion Capture, CA, USA) was used 

to capture 3D motion data. Motion data were sampled at 100 Hz using Vicon Nexus (Version 2.0, Vicon, 

Oxford, UK) software. An illustration of reflective marker placement is seen in Figure 8. 
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Figure 8: Placement of reflective Vicon markers for motion capture collection.  

4.3.2 Force Plates 

 

 Ground reaction forces and moments were collected using two force plates (Bertec Corporation, 

Columbus, OH, USA) synchronized with VICON Nexus 2.0 software at a sample rate of 1000 Hz.  

 

4.4 Protocol  

 

Experimental protocol for the study was broken up into two sessions; a one-repetition 

maximum (1RM) testing session and a backboard lifting session (Figure 9) which took place on separate 
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days. In the 1RM session participants began with a walkthrough of the methods and signing consent to 

participate. After the consent process was completed their 1RM backboard lift was determined through 

a sub-maximal estimate (LeSuer et al., 1997). Although the sub-maximal estimate equation is validated 

for use on the squat, deadlift and bench press, the backboard lift was evaluated as if it was a resistance 

training exercise.  

In each participant’s second session, they arrived at the lab and were prepared with reflective 

markers for motion capture. When all markers were affixed, static and dynamic calibration trials were 

collected prior to beginning lifting exertions. They then performed 10 single lifting trials of the 

backboard in each of three different load conditions corresponding to 25%, 50% and 75% of their 1RM 

backboard lift. The order of presentation of lifting loads was randomized.  

 

 

Figure 9: Protocol overview with estimated associated timing for sessions 1 and 2. 
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4.4.1 Session 1 – 1RM testing 

 

 In session one participants tested their backboard lift 1RM. The calculated backboard 1RM was 

used to scale the loads on the backboard in the second session.  

 Prior to the sub-maximal testing all participants were lead through a warm up. This warm-up 

primarily targeted the lower body as the focus of the 1RM testing was a lifting exertion. Warm-up 

consisted of large steps and twisting to the lead leg, body weight squats, body weight lunges, sagittal 

plane hip swings and frontal plane hip swings. The 1RM testing protocol was consistent with the Center 

for Community, Clinical and Applied Research Excellence standard operating procedure on 1RM testing 

(Appendix A) which refers to Baechle & Earle (2000) and Heyward (2014). In this protocol, participants 

performed a first set of 10 repetitions with an approximated load ranging between 40-60% of their 1RM. 

A three minute rest was then taken prior to a second warm-up set of 3-5 repetitions with approximately 

60-80% of a participants anticipated 1RM. A five minute rest break was taken prior to the third set in 

which the number of repetitions performed and mass of the load were used to estimate participants’ 

1RM. Based on feedback from the participant in set 2 the researcher selected a load corresponding to 

~90% of a participants’ 1RM for the third testing set. Participants performed the maximum number of 

repetitions possible in the third set prior to ending the set due to self-reported fatigue. A research 

assistant could also terminate this testing set if the participant changed their movement strategy mid 

set. Changing of movement strategy served as a safety criterion where researchers interpreted a change 

in strategy as an inability to control the load. Participants were encouraged to self -select their 

movement strategy and were made aware that changes in strategy mid-set would result in termination 

of the set.   
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 Using the mass of the load and the number of repetitions performed equation 1 was used to 

estimate a participant’s true 1RM (Wathan, 1994). This equation showed the best predictive value when 

evaluated against other 1RM prediction tools (LeSuer et al., 1997).   

 

Equation 1:  𝟏𝑹𝑴 = 𝟏𝟎𝟎 ∗
(𝑹𝒆𝒑 𝒘𝒆𝒊𝒈𝒉𝒕 (𝒌𝒈))

(𝟒𝟖.𝟖+𝟓𝟑.𝟖∗𝒆(−𝟎.𝟎𝟕𝟓∗(# 𝒐𝒇 𝒓𝒆𝒑𝒔)))
 

  

4.4.2 Session 2 – Backboard Lifting 

4.4.2.1 Participant preparation and calibration 

 

 Session 2 began with participants arriving at the OBEL lab where they were prepped for motion 

capture collection. Markers were placed on the following landmarks bilaterally for calibration: 1st 

metatarsal head, 5th metatarsal head, calcaneous tuberosity, medial and lateral malleoli, medial and 

lateral femoral condyles, greater trochanters, lateral iliac crests, anterior superior iliac spines, posterior 

superior iliac spines, acromia, sternum, xyphoid process, C7, T8, medial and lateral epicondyles, ulnar 

and radial styloid, 2nd metacarpal head and 5th metacarpal head. Rigid bodies with four reflective 

markers were attached on each segment of interest (bilateral shanks, thighs, upper arm, forearm, hand, 

pelvis and thorax). Rigid bodies remained on the participant during active lifting trials and calibration 

markers were removed. To limit the movement of rigid clusters they were fastened to the participant 

with Velcro straps.  

 A static calibration trial was collected with the participant in a ‘motorbike’ pose which is the 

recommended posture as written in the Vicon Nexus 2.0 user manual (Figure 10).  
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Figure 10: Representation of participant in the motorbike pose from Visual3D from the frontal (left) and 

sagittal (right) plane. 

Dynamic movement calibration trials were also collected where the participant moved all joints 

through the range of motion that will be used in lifting trials. Vicon recommends using full range of 

motion calibrations as they result in the best labeling of markers collected in experimental trials. The 

data points in this dynamic calibration trial were manually labelled and then used to create a model 

template, which was applied to lifting trials to label markers.  

 

4.4.2.2 Lifting Trials 

 

 Participants completed 10 lifting repetitions in each of the three relative demand conditions: 

low, medium and high. These repetitions were completed with the relative demand on the backboard 
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being 25%, 50% and 75% of their 1RM backboard lift within ± 2 kg. Barbell plates were used to load the 

backboard. Because the exertion is a two-person lift, a trained lift partner lifted the opposite side of the 

board. The participant was responsible for counting and cueing on each lift in an effort to minimize the 

influence the effect of the lifting partner minimally on a participant’s movement strategy. The use of a 

lifting partner was necessary to increase external validity where a backboard lift is routinely completed 

as a partnered lift.   

The relative demand in the lifting trials was randomized in order to minimize fatigue, learning 

effects and complacency at a given load. These factors could affect a participant’s movement strategy, 

which would reduce the internal validity of the study design. Randomization also increased external 

validity, as any given lifting trial will be more representative of the single repetition lifts paramedics 

perform on the job.  

To minimize fatigue in this study mandatory 1-minute breaks were taken after every lifting trial 

and a 3-minute break was mandated after every 5 repetitions. In a similar repetitive lifting based 

protocol Sheppard et al. (2016) used these rest times to prevent fatigue. In addition to the mandatory 

rest periods, participants were allowed to take as much time as they needed to recover between lifting 

trials so that they were not experiencing subjective fatigue before the next trial. A sample lifting 

protocol is pictured in Figure 11.  

 

 

Figure 11: Sample randomized lifting trial order with rest times. 

 



42 
 

4.5 Data Processing 

 

 Figure 12 illustrates the general flow of data treatment and analysis. Methods are described in 

greater detail in the following sections.  

 

 

Figure 12: General flow of data collection, treatment and analysis. 

4.5.1 Data Treatment 

 

Kinematic data were examined in Nexus 2.0 software for missing or unlabeled data points. Any 

instances of missing markers were filled using gap filling functions built into Nexus 2.0. For gaps less 

than 200 ms in duration, a cubic spline was used to fill missing data points. If marker data were missing 

for more than 200 ms either pattern fill or rigid body fill was used. This is consistent with recommended 

gap filling techniques outlined by Howarth and Callaghan (2010). The rigid body fill technique was 

preferred over the pattern fill as it uses the position of three other cluster markers to infer position of 

the missing data. The pattern fill uses position data of one other marker to interpolate position of the 

missing marker. Pattern fill was only used when there were not 3 available markers on the rigid body 

cluster at the time point which the gap needs to be filled.   
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4.5.2 Data Analysis 

 

 Marker trajectories and ground reaction forces were imported into Visual3D (C-Motion Inc., 

Germantown, USA) software for analysis. Prior to data analysis kinematic and force data were dual pass 

filtered in Visual3D through a low pass second order Butterworth filter with an effective cut off 

frequency of 6 Hz (Winter, 2009). To filter at an effective cut off frequency of 6 Hz an initial filter cut off 

was set at 7.5 Hz for the first pass through the filter as on each pass the effective cut off frequency 

decreases.  

 After filtering, a whole body kinematic model was created consisting of pelvis and thorax 

segments in addition to bilateral foot, shank, thigh, upper arm, forearm, and hand segments. Markers 

placed medially and laterally on their proximal and distal endpoints defined foot and shank segments . 

The anatomical markers on the iliac crests, acromia, suprasternal notch, xyphoid process, C7 and T8, 

defined the thorax segment. The thigh was defined by the medial and lateral markers at the knee joint 

as well as an estimate of hip joint centre as calculated in equation 2 based on Bell et al., (1989) and 

(1990). A Coda pelvis was used defined by the right and left ASIS and PSIS as well as the hip joint centres. 

Markers placed medially and laterally on their proximal and distal endpoints defined the hands and 

forearms. The upper arm was defined distally by markers on the medial and lateral epicondyles and 

proximally as the glenohumeral joint centre which was approximated at 60mm from the acromion in the 

negative direction of the local Y axis of the thorax (Nussbaum & Zhang, 2000). 

 

Equation 2:  𝑯𝒊𝒑 𝑱𝒐𝒊𝒏𝒕 𝑪𝒆𝒏𝒕𝒓𝒆 = (±𝟎. 𝟑𝟔 ∗ 𝑨𝑺𝑰𝑺_𝑫𝒊𝒔𝒕𝒂𝒏𝒄𝒆,−𝟎. 𝟏𝟗 ∗ 𝑨𝑺𝑰𝑺_𝑫𝒊𝒔𝒕𝒂𝒏𝒄𝒆 +

(𝟎. 𝟓𝑹𝑷𝑽_𝑫𝒆𝒑𝒕𝒉 − 𝑻𝒂𝒓𝒈𝒆𝒕_𝑹𝒂𝒅𝒊𝒖𝒔_𝑨𝑺𝑰𝑺), −𝟎. 𝟑 ∗ 𝑨𝑺𝑰𝑺_𝑫𝒊𝒔𝒕𝒂𝒏𝒄𝒆) 
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 A lifting trial was defined as the initial motion to approach the load through until lift completion. 

Visual3D was used to create events to detect the lift initiation and completion time points. Only motion 

and force data within the initiation to completion range were considered in analysis. Time of 

approaching the load was defined as the local maximum of hand position in the vertical prior to descent. 

Lift completion was defined as the time point at local maximum of hand position in the vertical axis after 

the hand segment reached a global minimum in the vertical.  

To calculate joint kinematics for the low back ISB recommendations were followed to define 

segment coordinate systems (Wu et al., 2002; 2005). Joint angles were calculated as the distal segment 

relative to the proximal segment using an order of Euler rotations of Z-Y-X or flexion/extension, 

abduction/adduction and axial rotation sequence.   

 Positional data required for the PCA analysis was calculated based on the Visual3D kinematic 

model. This included joint centres bilaterally for the wrist, elbow, shoulder, ankle, knee and hip; and 

centres of gravity for the trunk, head, pelvis and feet, such that each pose is represented by 17 data 

points.  

 A bottom-up inverse dynamics approach was used to calculate joint moments about the thorax 

relative to the pelvis (herein referred to as low back) in Visual3D using kinematic and ground reaction 

force data. Ground reaction force data from each respective force plate was applied to the centre of 

pressure for each foot segment, respectively. Visual3D defaults for segment anthropometrics and 

inertial properties were used for kinetic calculations based on Hanavan’s (1964) equations to estimate 

inertial properties of segments.  

 Low back moment and sagittal angles for all given lifting trials were exported to Matlab 

(MathWorks, Boston, MA) where peak values for each variable were identified and extracted. Low back 

moment was also extracted at peak sagittal low back angle.  For both the peak moment and moment at 
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peak low back angle, values were divided by the sum of the participant’s mass and the mass of the load 

in that trial. This resulted in normalized moments that differed as a function of movement strategy not 

mass. 

  

4.5.3 Dichotomizing into High vs. Low Biomechanical Exposure Lifts and Lifters 

 

 Using low back angles and normalized moments lifts and lifters were identified as high or low 

relative biomechanical exposure. The flow of data to group lifts and lifters as either high or low relative 

biomechanical exposure are pictured in Figure 13 and 14 respectively.  
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Figure 13: Classifying lifts as high or low relative biomechanical exposure where peak sagittal low back 

angle, peak low back moment and low back moment at peak sagittal low back angle in a lift were inputs.  
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Figure 14: Classifying lifters as high or low relative biomechanical exposure where peak sagittal low back 

angle, peak low back moment and low back moment at peak sagittal low back angle in heavy lifts were 

inputs.  
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To define high and low relative biomechanical exposure lifts peak sagittal low back angle, peak 

normalized moment and normalized moment at peak sagittal low back angle, were used to calculate an 

aggregate measure of biomechanical demand where these variables are associated with low back injury 

risk (Marras, 1993). There is also evidence that suggests angles and moments can be perceived by 

participants (Fischer & Dickerson, 2014; Jorgensen et al., 1999; Kuijer et al., 2012), and therefore could 

provide sensory information within the OFC framework. The z-score was calculated for each variable in 

each trial relative to data of all lifting trials from all participants. This expressed each value relative to 

the mean of all data where a positive z-score imposes higher relative biomechanical exposure (higher 

moment or sagittal angle magnitude) and a negative z-score imposes lower relative biomechanical 

exposure.  

From this analysis, each trial was defined by three corresponding z-scores, one for each variable 

of interest. To get an aggregate measure of relative biomechanical exposure of a lift the three z-scores 

were summed for each trial with a lower sum having lower relative biomechanical exposure.  

Using the summed z-scores lifts were dichotomized as either high or low relative biomechanical 

exposures based on the median of summed z-scores. Scores above the median were high relative 

biomechanical exposure and scores below the median were low relative biomechanical exposure. 

Grouping (‘high’ or ‘low’) based on relative biomechanical exposure was the independent variable.  

To define high vs. low relative biomechanical exposure lifters decisions were made based on 

resultant relative biomechanical exposures in heavy lifting. The normalized biomechanical variables of 

interest were once again expressed as z-scores only considering heavy lifting trials in the data set. 

Expressing the biomechanical measures at the heavy relative demand as z-scores without considering 

measures at the light and medium demands provides a measure of exposure in the relative demand 

condition that poses the highest MSD risk due to higher associated absolute biomechanical exposures. 
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Once again, the z-scores were summed for each trial to give an aggregate measure of relative 

biomechanical exposure, and then these aggregate measures were averaged within each participant. 

The high exposure lifters were participants with a mean aggregate z-score greater than one and low 

exposure lifters were those with a mean aggregate z-score less than one (Figure 15). A scalar of one 

away from the mean was set as a cut off to define lifters as high or low exposure. Since this cut off is 

based on z-scores, conceptually, the cut offs represent one standard deviation above or below the 

mean. This resulted in 8 high exposure lifters and 10 low exposure lifters. 

 

 

Figure 15: Mean aggregate z-scores to calculate biomechanical exposure where mean scores greater 

than 1 define a high exposure lifter and mean scores less than -1 define a low exposure lifter. 

 

4.6 Statistical Analysis 

4.6.1 Principal Component Analysis for Pattern Recognition 

 

 All lift cycles were time normalized to 101 points in Matlab. To control for anthropometric 

differences all raw coordinate data for the 17 anatomical inputs were divided by the participant’s height 

to normalize position data (Ross et al., 2018). At each time point posture was represented by a vector m 

where the three-dimensional coordinates of the 17 anatomical inputs defined an m = 51 dimensional 

posture vector. For a given trial movement was represented by a vector p which includes the postural 

vector (m) at each time point resulting in p = 5151 for each trial as there are 101 time points. Vector n 

-5 -4 -3 -2 -1 0 1 2 3 4 5

Summed Z-Score

Low Exposure Lifter High Exposure Lifter
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represented the number of lifting trials and with 28 participants performing 10 lifting trials in each 

relative demand condition n = 840. Due to two participants dropping out mid-way through the second 

data collection and a small number of lifting trials being removed due to errors in the data a total of 804 

lifting trials were used for analysis (n = 804). The data set for the study was then represented as a matrix 

of (
𝑋

𝑛 𝑥 𝑝
) where n is the number of row vectors which are all collapsed into one matrix (

𝑋

804 𝑥 5151
). This 

matrix was then transformed into a covariance matrix (
𝑆

𝑝 𝑥 𝑝
) which can be used to find PMs (Wrigley et 

al., 2006). The covariance matrix is used opposed to the correlation matrix as the correlation matrix is 

better suited for data sets where variables are measured in different units (Jackson, 2001). The 

covariance matrix was orthonormalized to get the eigenvector matrix (
𝑈

𝑝 𝑥 𝑝
). The eigenvectors represent 

the PMs in the data set. These PMs describe the data in a new coordinate space, which are oriented to 

objectively explain variability in the data set. PMs are all orthogonal to one another and each 

subsequent PC explains less variability in the data set. With the covariance and eigenvector matrix the 

eigenvalues, which are a scaling factor to the eigenvectors, were calculated. The eigenvectors for each 

PM were scaled to the amount of variance explained by a PM to give a loading vector. The loading 

vector explains where in the time domain variance is explained in a given PM, where a larger magnitude 

indicates more variance explained at that time point. Using the eigenvectors and eigenvalues a PM score 

was calculated for each trial in each PM. The PM score is a measure of how far the mode of variability in 

the trial deviates from the mean of that mode of variability in a PM (Wrigley et al., 2006).  

 A single PCA model was used which includes all lifting trials. This allowed for comparisons of 

PMs between high and low relative biomechanical exposure lifts across relative demands (research 

question 1), and to compare mean PM scores between high and low exposure lifters across relative 

demands (research question 2).   
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 To determine whether to retain a PM a parallel analysis technique was used. Parallel analysis 

retains PMs which explain more variability than what would be explained by chance alone (Wrigley et 

al., 2005). Parallel analysis is reported as the most accurate method of retaining PMs (Hayton et al., 

2004) and so was preferred over alternatives such as the trace criterion which retain PMs until a specific 

amount of variability is captured (Jackson, 1991; Deluzio & Astephen, 2007; Sadler et al., 2011; Reid et 

al., 2010). Power equations developed by Fischer et al. (2014) were used to provide an estimate of what 

percentage of variation a random data set will explain for different PMs. If the variance explained in the 

experimental data set at a given PM was larger than the percentage calculated in the power equation, 

then that PM was retained.  

 

4.6.2 Statistical tests for hypothesis testing 

 

 To test the hypothesis for research question 1 a two-way ANOVA (α = 0.05) with factors of 

relative biomechanical exposure (2 levels: ‘high’ and ‘low’) and relative demand (3 levels: 25%, 50%, 

75%) was run to test for differences between PM scores. Where significant main effects of relative 

demand or interaction effects were observed post hoc testing was conducted where p-values were 

corrected using a Bonferroni adjustment. 

 For research question 2, a two-way mixed ANOVA (α = 0.05) with a between factor of relative 

biomechanical exposure lifter (high vs. low) and a within factor of relative demand was used to test for 

differences in mean PM scores for each retained PM. Where significant main effects of relative demand 

or interaction effects were observed post hoc testing was conducted where p-values were corrected 

using a Bonferroni adjustment. 

 Prior to all statistical tests, the normality of the data were assessed using the Shapiro-Wilks test 

of normality. For two-way mixed ANOVAs Mauchly’s test of sphericity was used to assess the 
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assumption of sphericity of data. SPSS version 22 (SPSS Inc., Chicago, IL, USA) was used for all hypothesis 

testing. 

 

4.6.3 Interpreting Differences in Principal Movements 

 

 Where a significant difference in PM scores emerged in any statistical tests, a follow-up analysis 

was conducted to identify the operator (magnitude, phase shift or difference) of the PM. To classify the 

operator of each PM single component reconstruction was used (Brandon et al., 2013). For single 

component reconstruction the 5th and 95th percentile reconstructed waveforms are calculated using 

equations 3 and 4 (reproduced from Brandon et al. (2013)) within a PM and then compared to 

determine operator. The 𝑥U and  𝑥L represent the reconstructed upper (95th percentile) and lower (5th 

percentile) waveforms,  𝑥  represents the mean temporal waveform, ur is the loading vector for the PM 

of interest and z95 and z5 are the scalar PM scores for the PM of interest. These upper and lower 

percentile waveforms were plotted for visual examination to determine the operator of the PM of 

interest. A difference in magnitudes between the two single PM reconstructions represents a magnitude 

operator, an intersection of the upper and lower reconstructions was a difference operator, and a 

difference in timing between upper and lower reconstructions was a phase shift operator. Example of 

magnitude, phase shift and difference operators as defined by Brandon et al., (2013) are illustrated in 

Figure 16.  

 

Equation 3: 𝒙𝑳̂ =  𝒙 +  𝑼𝑹 ∗ 𝒁𝟓 

Equation 4:  𝒙𝑼̂ =  𝒙 + 𝑼𝑹 ∗  𝒁𝟗𝟓 
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Figure 16: Conceptual examples of single component PC reconstruction of a 95th percentile (blue) and 5th 

percentile (red-dashed) waveform plotted with the average (black) waveform. These plots demonstrate 

a magnitude operator (left), difference operator (middle) and phase shift operator (right) for a retai ned 

PC. Figure adapted from Brandon et al., 2013.  

 

To aid in the interpretation of each PM the shape of the loading vector was also considered in 

addition to single component reconstruction. Although single component reconstruction provides a 

visual reconstruction of the 5th and 95th percentile movement in a particular PM (Brandon et al., 2013) 

there is still subjectivity in the interpretation in how the movement strategy differs. To add objectivity to 

this process we can consider the shape of the loading vector, which highlights how much variance is 

explained by the PM at each point in time along the waveform. As the magnitude of the loading vector 

moves away from 0 a greater portion of variance is explained. The shape of the loading vector also 

relates to the mode of variance explained where if the waveform does not cross 0 it suggests a 

magnitude operator while a waveform that does cross zero is more likely a difference or phase shift 

operator. For the PCA methodology there is a loading vector magnitude for each anatomical input, in 

each axis, at each time point. To display the mean loading vector the loading vector magnitude for each 
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time point is averaged to display a curve with 101 points on the x-axis (time domain) and an averaged 

magnitude on the y-axis.  

Use of the average loading vector provides context on where in the time domain greater 

variance is explained but does not provide information on which anatomical inputs contribute most to 

loading vector. To gain insight into which anatomical inputs contribute most to the variance  explained 

the loading vectors for each anatomical input were plotted individually. To do this the loading vector 

corresponding to the x, y, and z trajectory components of each marker were averaged across all time 

points and then the resultant averaged anatomical landmark loading vectors are plotted on the same 

figure. This allows for a comparison of variance explained across the anatomical inputs to guide where 

to focus interpretation locally. This plotting approach also retains information in the time domain. 

 

4.6.4 Visualizing Principal Movements 

 

 To visually display how movement strategy differs between high and low relative biomechanical 

exposure and as a function of relative single component reconstructions of PMs where significant 

differences exist were summed to give an aggregate reconstruction (Equation 5).  

 

Equation 5:  𝒓 =  𝝁 +  ∑(𝑳𝑽𝑷𝑴𝒙 ∗  𝜶) 

where r is the reconstructed data, 𝜇 is the mean movement across all lifting trials, LV is the loading 

vector of a retained PM and α is a integer to scale the contribution of the loading vector. Only loading 

vectors of PMs where significant differences were observed in independent variables were included in 

the reconstruction. The α was scaled as the mean plus a standard deviation for each condition in each 

PM where significant differences were observed. In the relative demand reconstruction, the α in the 

medium condition was scaled to the mean PM score without adding a standard deviation measure. 
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Separate aggregate reconstructions were done to visualize differences both as a function of relative 

biomechanical exposure and of relative demand. Aggregate reconstructions were not used for analysis 

but provide a visual representation of movement to support applications of experimental findings in  a 

practical context.  
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5.0 Results 

5.1 Defining High vs. Low Relative Biomechanical Exposure Lifts and Lifters 

 

 High and low exposure lifts were defined based on the aggregate z-score of a lift relative to the 

median aggregate z-score. A comparison of descriptive statistics between high and low exposure lifts 

revealed descriptively higher peak low back angle, peak low back moment and low back moment at 

peak low back angle in high exposure lifts (Table 2). 

 

Table 2: Descriptive statistics of low back biomechanical exposure measures in high vs. low relative 

biomechanical exposure lifts across relative demand conditions. Independent t-tests were used to 

determine whether variables significantly differed between lift groups. 

Biomechanical Exposure 

Measure 

Low Exposure Lift 

(Mean ± Standard 

Deviation) 

High Exposure Lift 

(Mean ± Standard 

Deviation) 

t-test results 

Peak Low Back Angle (o) 34.62 ± 9.30 44.40 ± 8.52 t(802) = -14.13,  

p < 0.001 

Peak Low Back Moment  

(Nm / body mass kg / 

load kg) 

0.041 ± 0.013 0.086 ± 0.050 t(802) = -17.43,  

p < 0.001 

Low Back Moment at 

Peak Low Back Angle 

(Nm / body mass kg / 

load kg) 

0.020 ± 0.009 0.053 ± 0.032 t(802) = -19.29,  

p < 0.001 

 

 High and low exposure lifters were defined based on a mean of aggregate z-scores calculated in 

the heavy lift condition (Table 3). High exposure lifters had descriptively higher peak low back angle, 

peak low back moment and low back moment at peak low back angle compared to the low exposure 

lifters (Table 4). 
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Table 3: Demographics of high and low exposure lifters. 

Participant Group Paramedic 

Experience 

Sex Age (years) Height (m) Weight (kg) 

High Exposure (n = 8) 2 yes, 6 no 6 ♀, 2 ♂ 24.2 ± 4.4 1.69 ± 0.14 65.4 ± 14.5 

Low Exposure (n = 10) 4 yes, 6 no 4 ♀, 6 ♂ 24.1 ± 2.5 1.77 ± 0.09 87.2 ± 11.7 

 

Table 4: Descriptive statistics of low back biomechanical exposure measures in high vs. low relative 

biomechanical exposure lifters in the heavy relative demand condition. Independent t-tests were used 

to determine whether variables significantly differed between lifter groups. 

Biomechanical Exposure 

Measure 

Low Exposure Lifter 

(Mean ± Standard 

Deviation) 

High Exposure Lifter 

(Mean ± Standard 

Deviation) 

t-test results 

Peak Low Back Angle (o) 32.29 ± 9.69 46.37 ± 11.12 t(594) = -16.52,  

p < 0.001 

Peak Low Back Moment  

(Nm / body mass kg / 

load kg) 

0.032 ± 0.011 0.059 ± 0.026 t(594) = -12.01,  

p < 0.001 

Low Back Moment at 

Peak Low Back Angle 

(Nm / body mass kg / 

load kg) 

0.014 ± 0.005 0.033 ± 0.017 t(594) = -13.14,  

p < 0.001 

 

5.2 Retaining and Interpreting PMs for Analysis 

 

 The parallel analysis retained 6 PMs (Table 5). The retained PMs explained 87.7% of the overall 

variance in the motion data. 
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Table 5: Variance explained compared to variance explained by chance where bolded PMs were 

retained for analysis. Variance explained by chance was calculated using methods reported by Fischer et 

al. (2014). 

Principal Movement Variance Explained Variance Explained by Chance 

PM1 46.8% 1.5% 

PM2 15.8% 1.7% 

PM3 9.9% 1.8% 

PM4 7.0% 1.9% 

PM5 5.8% 1.9% 

PM6 2.5% 2.0% 

PM7 1.4% 1.9% 

PM8 1.0% 1.8% 

 

PM1 was interpreted as a magnitude operator explaining differences in the AP positioning of the 

body relative to the load. The 5th percentile reconstruction is closer to the load in the AP direction while 

the 95th percentile reconstruction is further away (Figure 17a). There are no discernable differences in 

the medio-lateral (ML) direction between reconstructions (Figure 17b). The supplementary loading 

vector plots (Figure 17c, marker specific; Figure 17d, average) reinforce that this PM is a magnitude 

operator as the variance explained across both markers is consistent over time and does not cross 0. 

This PM will herein be referred to as explaining AP body position. 
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Figure 17: Single component reconstruction of PM1 from the sagittal (A) and frontal B) views. The black 

tracing is the reconstruction of the 5th percentile PM score and the red tracing is the reconstruction of 

the 95th percentile PM score. Both anatomical input specific (C) and averaged (D) loading vectors show 

where variance is explained in the PM. 
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PM2 was interpreted as a magnitude operator explaining differences in lift sequencing. The 5th 

percentile reconstruction uses a distal to proximal strategy while 95th percentile moves about all joints in 

phase (Figure 18a,b). Additionally, the 5th percentile reconstruction has more upright trunk and a squat-

like movement strategy whereas 95th percentile reconstruction uses more hip and low back driven 

movement. The average loading vector (Figure 18d) supports that the general mode of variance 

explained in PM2 is a magnitude operator while in the marker specific loading vector (Figure 18c) the 

variance explained for the head seems to be a difference operator. This PM will herein be referred to as 

explaining body sequencing. 
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Figure 18: Single component reconstruction of PM2 from the sagittal (A) and frontal B) views. The black 

tracing is the reconstruction of the 5th percentile PM score and the red tracing is the reconstruction of 

the 95th percentile PM score. Both anatomical input specific (C) and averaged (D) loading vectors show 

where variance is explained in the PM. 
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PM3 was interpreted as a magnitude operator explaining differences in ML body position and 

sagittal trunk angle. The 5th percentile reconstruction has a more flexed trunk while the 95th percentile 

reconstruction maintains a more upright trunk (Figure 19a). There is an offset in the ML direction 

between 5th and 95th percentile reconstructions (Figure 19b). The supplementary loading vector plots 

(Figure 19c, marker specific; Figure 19d, average) reinforce that this PM is a magnitude operator as the 

variance explained across the average loading vector is consistent over time and does not cross 0. This 

PM will herein be referred to as explaining ML body position/ trunk angle. 
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Figure 19: Single component reconstruction of PM3 from the sagittal (A) and frontal B) views. The black 

tracing is the reconstruction of the 5th percentile PM score and the red tracing is the reconstruction of 

the 95th percentile PM score. Both anatomical input specific (C) and averaged (D) loading vectors show 

where variance is explained in the PM. 
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PM4 was interpreted as a phase shift operator explaining differences in lift timing. The 5th 

percentile approaches the load and initiates the lift later than the 95th percentile reconstruction (Figure 

20a,b). The supplementary loading vector plots (Figure 20c, marker specific; Figure 20d, average) 

reinforce that this PM is a phase shift operator as the variance explained across the average loading 

vector loosely resembles the shape of a sine wave and crosses 0. This PM was described as a phase shift 

operator opposed to a difference operator as the movement strategy used is consistent across the 5 th 

and 95th percentile reconstructions, which would not hold true for a difference operator. This PM will 

herein be referred to as explaining lift timing. 
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Figure 20: Single component reconstruction of PM4 from the sagittal (A) and frontal B) views. The black 

tracing is the reconstruction of the 5th percentile PM score and the red tracing is the reconstruction of 

the 95th percentile PM score. Both anatomical input specific (C) and averaged (D) loading vectors show 

where variance is explained in the PM. 
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PM5 was interpreted as a magnitude operator explaining differences in how squat or stoop-like 

a lift was. The 5th percentile reconstruction stoop strategy, characterized by less knee flexion and greater 

hip and trunk flexion (Figure 21a). Alternatively, the 95th percentile reconstruction uses a squat strategy 

with greater knee flexion and less hip and trunk flexion. Although the average loading vector suggests a 

phase shift or difference operator because of the waveform crossing 0 (Figure 21d), the marker specific 

loading vector demonstrates that variance explained across markers individually is a magnitude 

operator as 0 is not crossed (Figure 21c). This PM will herein be referred to as explaining squat vs. stoop. 
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Figure 21: Single component reconstruction of PM5 from the sagittal (A) and frontal B) vi ews. The black 

tracing is the reconstruction of the 5th percentile PM score and the red tracing is the reconstruction of 

the 95th percentile PM score. Both anatomical input specific (C) and averaged (D) loading vectors show 

where variance is explained in the PM. 
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PM6 was interpreted as a magnitude operator explaining differences in stance width. The 5th 

percentile reconstruction had a wider stance width allowing the hands to stay close to the body at lift 

initiation (Figure 22a,b). As with PM5, the average loading vector suggests a phase shift or difference 

operator because of the waveform crossing 0 (Figure 22d), but the marker specific loading vector 

demonstrates that variance explained across markers individually is a magnitude operator as 0 is 

generally not crossed (Figure 22c). This PM will herein be referred to as explaining stance width. 
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Figure 22: Single component reconstruction of PM6 from the sagittal (A) and frontal B) views. The black 

tracing is the reconstruction of the 5th percentile PM score and the red tracing is the reconstruction of 

the 95th percentile PM score. Both anatomical input specific (C) and averaged (D) loading vectors show 

where variance is explained in the PM. 
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5.3 Comparing Movement Strategy across Lifts 

 

 PM scores for PMs 1-6 violated the assumption of normality (p < 0.001 on Shapiro-Wilks test of 

normality). However, when conducting tests of normality there is a risk of type 1 error when large 

sample sizes are used (Field, 2013). For this reason, Q-Q plots representing the spread of data relative to 

the normal distribution were used to confirm findings of the Shapiro-Wilks test. Across all PMs there 

was a strong visual agreement of PM scores to a normal distribution of equal mean and standard 

deviation (Appendix B). With the strong visual agreement of experimental data to a normal distribution 

normality was assumed allowing for the use of parametric statistical tests.  

 A main effect of relative biomechanical exposure group was detected in five of six retained PMs 

(1-3, 5, 6) (Table 6). A main effect of relative demand was also detected in four of six retained PMs (1, 2, 

4, and 5). No significant interaction effects were observed. Differences in PM scores between relative 

biomechanical exposure classification and relative demand are pictured in Figure 23.  
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Table 6: Summary of two-way ANOVA results comparing PM scores between high and low exposure lifts 

and across light, medium and heavy relative demands. Only significant post hoc results are included. 

PM Biomechanical Exposure Relative Demand Interaction Post 

Hoc 
F(1,797) p η2 F(2,797) p η2 F(2,797) p η2 

PM1 

AP Body Position 

89.44 >0.001 0.101 9.28 >0.001 0.023 0.28 0.755 0.001  

PM2 

Lift Sequencing 

14.80 >0.001 0.018 3.11 0.045 0.008 2.97 0.052 0.007 H < L 

PM3 

ML Body Position/ 

Trunk Angle 

18.60 >0.001 0.023 1.06 0.347 0.003 1.65 0.191 0.004  

PM4 

Lift Timing 

0.75 0.384 0.001 3.79 0.023 0.009 0.99 0.370 0.002 H < M 

PM5 

Squat vs. Stoop 

8.13 0.004 0.010 12.33 >0.001 0.030 1.77 0.170 0.004 H, M < 

L 

PM6 

Stance Width 

39.77 >0.001 0.049 2.94 0.053 0.007 0.10 0.900 0.000  

where significant effects are bolded; L = light, M = medium, and H = Heavy.   
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Figure 23: Mean PM scores for high and low exposure lifts across light, medium and heavy relative 

demands. Significant main effects of exposure are indicated by a bracket and significant main effects of 

relative demand are indicated with an asterisk (*).  

 

 Using results from statistical testing an aggregate reconstruction was used to visualize 

differences in movement strategy as a function of relative biomechanical exposure (Figure 24). The 
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scalar used in reconstruction was the mean PM score of a biomechanical exposure condition ± one 

standard deviation. Only PMs where significant main effects of relative biomechanical exposure were 

observed were included in reconstruction. Reconstruction revealed that low exposure lifts minimize the 

horizontal distance of their body to the load, maintain a more upright trunk and initiated movement 

with the lower body opposed to using low back extension.  

 

 

Figure 24: Aggregate reconstruction to illustrate the net differences in movement strategy as a function 

of relative biomechanical exposure from the sagittal (top) and frontal (bottom) planes. Black tracing 

represents a low exposure lift and red represents a high exposure lift.  

 

 From results of statistical testing an aggregate reconstruction was also completed to reconstruct 

differences in strategy as a function of relative demand (Figure 25). In this reconstruction, the scalar for 
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the light and heavy lifts was set to the mean PM score for that condition ± one standard deviation. The 

medium condition scalar was set to the mean medium PM score. This reconstruction reveals that in the 

light condition the horizontal distance to the load is lower, the lift is initiated earlier in the light 

condition and movement is synchronous across all joints at lift initiation. Conversely, at the heavy 

relative demand the horizontal distance of the body to the load is greater, lift initiation occurs later 

temporally and a distal to proximal strategy was used where movement about joints of the lower body 

preceded extension about the low back.  

 

 

Figure 25: Aggregate reconstruction visualizing differences in movement strategy as a function of 

relative demand from the sagittal (top) and frontal (bottom) planes. Purple represents a light relative 

demand, green is a medium relative demand and blue is a heavy relative demand.  
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5.4 Comparing Movement Strategy across Lifters 

 

 Testing for differences in mean PM scores between high and low exposure lifters across relative 

demands for PMs 1-6 there were no violations of the assumption of normality (p > 0.05 in Shapiro-Wilks 

test of normality). No violations of normality allowed for the use of parametric tests. Across all data, 

there were also no violations in the assumption of sphericity (p > 0.05 in Mauchly’s test of sphericity). 

 The use of two-way mixed ANOVAs to address research question 2 revealed a significant main 

effect of relative biomechanical exposure for PM1 and significant main effects of relative  demand for 

PMs 2 and 5 (Table 7). In PM1 low exposure lifters had lower mean PM scores, and for both PMs 2 and 5 

heavy conditions had lower mean PM scores (Figure 26). 

 

Table 7: Summary of two-way mixed ANOVA results comparing mean PM scores between high and low 

exposure lifters and across light, medium and heavy relative demands. Only significant post hoc results  

are included. 

PM Biomechanical Exposure Relative Demand Interaction Post Hoc 

F(1,16) p η2 F(2,32) p η2 F(2,32) p η2 

PM1 

AP Body Position 

13.89 0.002 0.465 0.37 0.692 0.023 0.96 0.390 0.057  

PM2 

Lift Sequencing 

1.56 0.229 0.089 15.27 >0.001 0.488 1.47 0.244 0.084 H, M < L 

PM3 

ML Body Position/ 

Trunk Angle 

0.96 0.341 0.057 0.30 0.741 0.019 1.52 0.234 0.087  

PM4 

Lift Timing 

0.597 0.451 0.036 2.92 0.068 0.155 0.09 0.906 0.006  

PM5 

Squat vs. Stoop 

0.46 0.505 0.028 21.16 >0.001 0.569 0.78 0.463 0.047 H, M < L 

PM6 

Stance Width 

1.70 0.210 0.097 0.46 0.631 0.028 1.22 0.308 0.071  

where significant effects are bolded; L = light, M = medium, and H = Heavy 
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Figure 26: Mean PM scores for high and low exposure lifters across light, medium and heavy relative 

demands. Significant main effects of exposure are indicated by a bracket and significant main effects of 

relative demand are indicated with an asterisk (*). 
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6.0 Discussion 
 

 The application of a pattern recognition technique to quantify movement strategy during 

backboard lifting identified differences in movement strategies between high and low exposure lifts and 

lifters. The horizontal distance to the load, using a distal to proximal strategy, maintaining an upright 

trunk, having greater movement about the knees and keeping the hands close to the body were 

features of movement related to lower relative biomechanical exposure. However, when averaging 

features of movement within lifters, the only feature that could distinguish between high and low 

exposure lifters was horizontal distance of the body to the load. In lifts, the relative demand significantly 

influenced the horizontal distance to the load, sequencing of lift execution, timing of the lift in a trial, 

and whether a lift was more squat- or stoop-like. After averaging features of movement within lifters, 

sequencing of the lift and whether a lift was more squat- or stoop-like were the only features that 

differed as a function of relative demand. Across both lifts and lifters, there were no significant 

interaction effects between relative biomechanical exposure and relative demand. 

 

6.1 Lift Movement Strategy as a Function of Biomechanical Exposure and Relative Demand  

 

 Supporting the first hypothesis, the application of PCA as a pattern recognition technique 

identified differences in movement strategies between high and low relative biomechanical exposure 

lifts. Low exposure lifts used a movement strategy that minimized the horizontal distance of the load to 

the body and initiated the lift with the lower body, compared to greater horizontal distance to the load 

and low back extension used in high exposure lifts. The horizontal distance of the body to the load was 

influenced directly by the AP body position and a wider stance width allowing the hands to be closer to 

the body at lift initiation. A reduction in horizontal distance to the load reduces the moment arm from 

the load to the low back and therefore lower resultant low back moments (Jorgensen et al., 1999). The 



78 
 

use of a distal to proximal lifting strategy in a low exposure lift is consistent with lower biomechanical 

exposures experienced when a greater percentage of work is done with the lower body (Makhoul et al., 

2017). By initiating the lift with the lower extremities, the lower body would perform a greater portion 

of the work where extension of the low back would only contribute in the latter portions of th e lift. This 

will avoid the low back performing work at 25% of the extension duration where the acceleration of the 

external load is greatest (De Looze et al., 1993). The more squat-like strategy in low exposure lifts 

continues to support the importance of performing more work with the lower body to reduce low back 

exposure. Although there is no conclusive difference between squat and stoop strategy on low back 

exposure (van Dieёn, 1999; Straker, 2003), the use of a squat strategy with a larger stance width 

allowing the load to be close to the body reduced biomechanical exposure consistent with findings from 

the van Dieёn (1999) review.  

Differences in movement strategy between low and high exposure lifts echoed previous 

research where relative biomechanical exposure is predominantly determined by horizontal distance of 

the body to the load. This is highlighted by only AP body position having greater than a medium effect 

size (where η2 = 0.06 is a medium effect and η2 = 0.14 is a large effect), while all other significant main 

effects of relative biomechanical exposure had a small effect (where η2 = 0.01 is a small effect). This 

finding is consistent with a review by van Dieёn et al. (1999) which showed that proximity to the load, 

not movement strategy used in lifting, was the greatest determinant of biomechanical exposure. The 

agreement of findings from the pattern recognition approach to past literature supports the validity of 

the employed methodology to identify features of movement related to biomechanical exposure. 

However, use of the pattern recognition technique was able to discern the same conclusions when 

considering the entirety of the lift opposed to relying on discrete variables selected a priori. The pattern 

recognition method was also able to reveal the association of movement strategy more efficiently. By 

considering whole body motion in this study it was able to discern similar results to the van Dieёn et al. 



79 
 

(1999) review that relied on a number of studies examining changes in kinematics at specified local 

areas of interest to gleam insight into whole body motion. The approach of considering whole body 

motion eliminates the need to explore kinematics at individual joints and then inferring how the 

differences at individual joints contributes to differences in whole body strategy while potentially 

missing interactions of movements across joints. The accuracy and efficiency of the employed pattern 

recognition approach support its utility to identify features of movement associated with biomechanical 

exposures. 

The hypothesis that the pattern recognition method would be  able to detect differences in 

movement strategy as a function of relative demand was supported. In AP body position, heavy relative 

demand lifts had a body position further from the load while light lifts had the lifter closer to the load. 

For body sequencing, heavy relative demand lifts used a distal to proximal movement strategy 

compared to a synchronous strategy used in light lifting. This is consistent with past work, which showed 

as load increases participants tend to lift in a more distal to proximal manner (Davis & Troup, 1965; 

Scholz, 1993a, 1993b; Scholz & McMillan, 1995; Burgess-Limerick et al., 1995). The use of distal to 

proximal strategy has been theorized to be a protective measure to avoid low back extension when the 

acceleration of the load is greatest (Davis & Troup, 1965) which occurs at about 25% of the extension 

duration (De Looze et al., 1993). Lift timing describes a phase shift where in the medium demand 

condition the approach to the lift and initiation of the lift was earlier in the time domain than what was 

observed in light and heavy relative demand lifts. In the squat vs. stoop feature of movement, heavy 

relative demand lifts used a more stoop-like lifting strategy, while light relative demand lifts used a more 

squat-like strategy.  

Identifying differences in body positioning and timing as a result of the relative demand of the 

load are novel findings detected by the application of a pattern recognition technique. It was observed 

that in heavy relative demand lifts there was a greater horizontal distance of the body to the load, which 
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seems counterintuitive as lifting at the heavy relative demand imposes the highest absolute exposure on 

the low back. However, because there is no interaction effects between relative demand and 

biomechanical exposure there is no evidence to support that effect of relative demand on the formation 

of the control law is related to minimizing biomechanical exposure. Understanding why participants 

were further from the load in the heavy relative demand condition remains a consideration moving 

forward. The differences in timing of the lifts as a function of relative demand may be in part due to 

normalizing lifting trials to percentages distorting the time domain. In general, light relative demand 

lifting trials were performed in less time than heavy relative demand lifting trials as participants spent 

more time in the set up at heavy relative demand, and more time under tension lifting the load. By 

normalizing trial length to a percentage the relative timing in each trial is slightly distorted which could 

have led to the observed main effect of relative demand in PM4. For all 4 PMs where significant main 

effects of relative demand were seen, the associated effect sizes were small so even though features of 

movement differed statistically, these differences may not have clinical implications.     

 

6.2 Lifter Movement Strategy as a Function of Biomechanical Exposure and Relative Demand 

 

 The AP body position relative to the load was the only movement feature that was different 

between low and high relative exposure lifters.  This supports the second hypothesis by demonstrating 

that pattern recognition could detect differences between high and low exposure lifters.  However, it is 

interesting that the results of the lift and lifter analysis are not consistent. With only AP body position 

differing between high and low exposure lifters it is suggested in the theoretical framework that low 

exposure lifters minimize exposure by prioritizing close proximity of the body to the load in their control 

law. Although there were other features of movement related to biomechanical exposure in research 

question 1, it is not supported that these features of movement are consistently  controlled via the 
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control law in low exposure lifters. The preferential control of AP body position is likely because this 

feature of movement has the greatest effect on the resultant biomechanical exposure as demonstrated 

by the greatest effect size in research question 1. Although other features of movement are related to 

biomechanical exposure their associated effect is likely not substantial enough to warrant consideration 

in the definition of the control law.  

 An alternative explanation for the inconsistencies in lift and lifter analysis are a potential 

interplay between features of movement related to biomechanical exposure. Although body 

sequencing, ML body position/ trunk angle, squat vs. stoop and stance width are related to 

biomechanical exposure, these associations are weak as measured by effect sizes in research question 1. 

It is possible that since these features of movement are not directly considered in the control law that 

across lifts, a low exposure lifter will have favorable control in some of these features of movement, 

while having unfavorable control in others. Across multiple repetitions, the PMs controlled favorably can 

vary, as they are not directly controlled. This resulted in the no statistically significant differences in 

control of these PMs between high and low exposure lifters contrary to the a priori hypotheses.   

 Pattern recognition identified that some lifters consistently positioned closer to the load where 

others did not. It is curious that some individuals may position differently than others, but we believe 

this can be explained by OFC. It is likely that the differences in position to the load between high and low 

exposure lifters is informed by differences in the control law between groups where in the Glazier model 

(2017) these control law differences are driven by differences in the organism constraint. Although, it is 

likely that some internal difference in participants drove the differences in strategy via the organism 

constraint, this cannot be attributed to paramedic experience as 6 of the 10 low exposure lifters did not 

have paramedic experience. Therefore, it is likely that there is some other internal difference between 

lifters that was not quantified in this study that informed the definition of the control  law.  
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 In this experiment, the relative demand condition was included as a variation on the constraints 

of the lifting task.  Conceptually, a change in task constraints should elicit a change in movement 

behavior.  Using pattern recognition, we did identify two specific features of movement that had 

changes in mean movement based on the relative demand; the synchronicity of the lift and use of a 

squat vs. stoop strategy. With the change in a constraint resulting in a change in observed movement 

strategy, it can be inferred within the Glazier (2017) framework that the constraint informed the 

definition of a modified control law (Figure 5). In the case of relative demand, the change in constraint 

may have resulted in a control law prioritizing energy efficiency in the heavy relative demand condition. 

When fatigue is induced in repetitive lifting, lifters tend to use a strategy with greater trunk flexion (i.e. 

more stoop-like) (Bonato et al., 2003; Mehta et al., 2014). This change in strategy is likely an effort to 

minimize fatigue as stoop strategy has a lower associated metabolic demand compared to a squat 

strategy (Straker, 2003). In the manipulation of the relative demand as a constraint, it is likely that lifters 

inform their control law to minimize fatigue under heavier relative demands.  

 The lack of interaction effects between relative biomechanical exposure and relative demand 

may be a product of the nature of the backboard lifting task. In practice, paramedics are exposed to 

backboard lifting with low frequency in a shift (Coffey et al., 2016). To mimic the low frequency of lifting 

experienced in the work place, each lifting trial was performed independently with rest time provided 

before the following trial. This allows participants to plan a movement strategy prior to a lift and control 

aspects of movement that they deem to be important where their internal definition of importance is an 

example of an organism constraint. Conversely, the hypothesized interaction effects may have been 

observed in repetitive lifting. When exposed to a greater volume of lifts the lifter may define a control 

law that aims to balance acute and cumulative biomechanical exposure. In this scenario, low exposure 

lifters would have a tighter control of features of movement related to biomechanical exposure at the 

high relative demand where the absolute biomechanical exposures, and risk of MSD through an acute 
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mechanism, are greater. By tightly controlling the strategy at the heavy relative demand the 

biomechanical exposure to the body can be reduced to maintain a margin of safety. Conversely, at the 

light relative demand low exposure lifters may allow for greater variability in repetitive lifting as a 

protective measure to reduce MSD risk through a cumulative loading mechanism (Srinivasan & 

Mathiassen, 2012). By maintaining variability at the light relative demand the lifter would differentially 

load tissues to decrease the likelihood of a single tissue failing.  With the non-repetitive nature of 

backboard lifting low exposure lifters are more inclined to tightly control features of movement in all 

exertions to reduce the absolute imposed biomechanical exposure. This tight control reduces the risk of 

MSD from an acute mechanism, which is a more likely injury pathway than a cumulative loading 

mechanism due to the low frequency and high loads imposed in backboard lifting.   

 

6.3 Implications for Assessing and Teaching Movement Strategy in Backboard Lifting 

 

The use of pattern recognition to detect differences in movement strategy between high and 

low exposure lifts and across relative demand conditions can inform assessment of backboard lifting. 

From this study the criteria of interest to determine whether a lift is biomechanically favorable is the  

proximity of the body to the load. The horizontal distance to the load was the only feature of movement 

which demonstrated significant differences as a function of relative biomechanical exposure between 

high and low exposure lifters, and therefore is the only factor that has rationale to assess. Practically, 

assessment of movement strategy in backboard lifting can be conducted at any relative demand as 

there was no interaction between relative biomechanical exposure and relative demand on movement 

strategy.  

In addition to informing the assessment of movement strategy, results from this study can 

influence how to teach backboard lifting to minimize relative biomechanical exposures. In particular, it 
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seems that to inform training direction that the most important takeaway is that regardless of strategy 

used lifters should try to minimize the horizontal distance of their body to the load. By focusing on the 

set up of the body prior to completing the lift to minimize the horizontal distance there may better 

efficacy of a training approach opposed to focusing on movement strategy in the lift itself which has 

been shown to be ineffective (Martimo et al., 2008). As backboard lifting is infrequent, but with high 

loads, there may be utility in using the results from this study to inform ideal movement strategy in the 

lift itself even though effect sizes were small and past lift training interventions have been unsuccessful. 

The high absolute biomechanical exposure in a single backboard lift suggests lifters are likely at a higher 

risk of injury through an acute mechanism compared to a cumulative mechanism (McGill, 2015). 

Therefore, to minimize the absolute exposure in any given lift a secondary focus can be placed on  using 

a distal to proximal strategy, maintaining an upright trunk, using a squat-like strategy and using a wide 

stance to keep hands close to the body. To aid in training these features of movement to further reduce 

relative biomechanical exposure aggregate reconstruction animations (still frames from these 

animations were used to create Figures 24 and 25) can be used as a tangible teaching tool.  

 

6.4 Critiquing the Methodological Framework 

  

The pattern recognition methodology used was appropriate for this study as it is conceptually 

compatible with OFC, it requires no a priori hypotheses and whole body motion is considered. The 

previous use of PCA to quantify aspects of variability support that it is conceptually consistent with the 

OFC theoretical framework, which defines variability as either task relevant or irrelevant based on the 

control law (Todorov & Jordan, 2002). Theoretically, a mode of variance explained in a PM is an aspect 

of variability that can either be task relevant or irrelevant. The identification of PMs as features of 

movement is done objectively based on variance explained, which eliminates the need for a priori 
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hypotheses on what aspects of movement to consider, therefore reducing subjectivity in analysis (Lees, 

2002). The used pattern recognition methodology has a third noted strength that it considers whole 

body movement in analysis. Previous application of PCA to analyze movement strategy in lifting has 

considered joint angle waveforms (Khalaf et al., 1999; Sadler et al., 2011; Sadler et al., 2013; Wrigley et 

al., 2005; Wrigley et al., 2006) while not considering the entire kinetic chain of movement. Although the 

body has an abundance of DOF that can form infinite combinations of movement to reach an end 

trajectory, there is still a relationship between movements of different degrees of freedom as all joints 

are connected in some way through the kinetic chain. By inputting whole body motion into the PCA 

analysis, the changes in strategy about the kinetic chain are considered, which is a strength of the 

approach.  

 The methodology used was in large part chosen because of the high degree of objectivity, but 

there is still a reliance on subjectivity for retaining and interpreting PMs. In an effort to be as objective 

as possible parallel analysis was used to retain PMs that explained more variability than what would be 

explained by chance (Wrigley et al., 2005), which is reported as the most accurate method of retaining 

PMs (Hayton et al., 2004). Although this may miss some higher PMs that could identify differences in 

strategy between high and low exposure lifters across relative demands, the objectivity of the parallel 

analysis supports this methodological decision. In interpreting PMs, single component reconstruction 

was used to allow for clear identification of the mode of variability explained by a PM (Brandon et al., 

2013). Single component reconstruction was originally developed to be used on waveform data where 

the operator can be clearly identified by comparing reconstructions of the 5th and 95th percentile PM 

scores. However, reconstructing whole body movement using this approach still results in a reliance on 

subjective interpretation of the modes of variance being explained. To aid in the interpretation the 

loading vector was expressed as an average in the time domain for both the mean movement and 

individual markers was used to direct interpretation of the single component reconstructions. 
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 In the research design, care was taken to control external constraints that could affect the 

formation of a participant’s control law. Newell’s constraints model (1986) identified organism, task and 

environmental constraints that could affect coordination patterns where Glazier (2017) theorizes this is 

accomplished by changing a person’s control law as a function of the constraints present. It is argued 

that the experimental protocol was conducted to minimize the effect of constraints acting as 

confounding variables. The environmental constraint was controlled for strongly as there were no 

differences in the location of data collection, lab set up or instruction within the protocol across 

participants. The task constraint was controlled for except for modifying the relative demand of the 

backboard as this was an independent variable. Most organism constraints were purposefully not 

controlled in this study to accomplish the research objectives. This research probed the hypothesis that 

some lifters would consider biomechanical exposure in their control law while others would not, where 

the choice to consider biomechanical exposure was informed by the organism constraint. Fatigue is an 

organism constraint that could have influenced movement strategy as localized muscle fatigue has led 

to changes in lifting technique in cyclic lifting (Bonato et al., 2003). Mandatory rest times were 

implemented in the study to minimize the effect of fatigue on influencing movement strategy. Changes 

in subjective measures of fatigue are documented in Appendix C.  

 

6.5 Limitations 

 

The use of pattern recognition yielded objective differences in movement strategy between high 

and low relative biomechanical exposures and across relative demands, but the approach is not without 

limitation. The first being that the PCA approach only considers a subset of the data that explains a 

portion of variance in the overall data set. In this study, parallel analysis was used to only retain PMs 

that explain more variance than what would be explained by chance resulting in the six PMs explaining 
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87.7% of variance in the data set. This is less variance explained than other cut offs that have been used 

in the literature such as a 90% trace criterion (Jackson, 1991; Deluzio & Astephen, 2007; Sadler et al., 

2011; Reid et al., 2010) which would retain a higher number of PMs. Although the process to retain PMs 

was objective, there is a chance that aspects of variability that clearly differentiate lifts by relative 

biomechanical exposure or relative demand that explain less variance in the data set were overlooked. 

Secondly, there is difficulty setting criterion for what is high vs. low relative biomechanical exposure. For 

this analysis, the median value was set as a threshold for this differentiation, but there is no evidence to 

support that this cut off value is causatively linked to higher incidence of MSD development. However, 

with a correlation of higher low back angle and moment exposure resulting in higher risks of MSDs 

(Marras, 1993) this criteria is suitable as a measure of exposure as it differentiates between the higher 

and lower exposure lifts. Third, use of this PCA approach distorts the time domain as trial time was 

normalized to a percentage. Therefore, it is difficult for the PCA model to identify differences in timing 

of lifts between relative biomechanical exposure group and across relative demand. Finally, the high 

number of lifting trials input into the PCA model increases the likelihood of type I error. To reduce the 

risk of this error effect sizes in addition to statistical testing results were considered in interpretation.  

 

6.6 Future Directions 

 

Results of this study support the opportunity to apply pattern recognition to identify high and 

low exposure lifters in practice. Particularly, a similar methodology could be applied to assess movement 

competency in backboard lifting when administering a physical employment standard for the parame dic 

sector (Fischer et al., 2017). When assessing movement competency in pre-hire screens there is a 

current reliance on evaluation through observation (Sinden et al., 2017) leading to a subjective analysis 

of technique or risk. The reliance on subjective analysis brings the validity and reliability of this mode of 
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assessment into question (Pransky & Dempsey, 2004). By employing a pattern recognition methodology, 

the assessment of movement competency can be objective to overcome the limitations associated with 

evaluation through observation. These proposed methods can be paired with artificial intelligence 

approaches, such as use of a linear discriminant function (Ross et al., 2018), to classify lifts based on the 

features of movements identified via pattern recognition. Advances in marker-less motion capture, such 

as convolutional pose machines (Wei et al., 2016), provide opportunity to capture robust kinematic data 

outside the lab to make pattern recognition based methodology practical in application.  

A second future direction opportunity is to understand mechanisms influencing movement 

strategy within the Glazier (2017) theoretical framework. The results to this study demonstrate that 

changes in constraints resulted in differences in control patterns. It was inferred that the changes in 

control patterns were a product of the constraints informing the definition of the control law as defined 

in OFC (Scott, 2004). However, in this study none of the control law, coordination patterns or sensory 

feedback were measured to confirm that differences in control patterns were truly caused by changes in 

the control law. Future research should be aimed at further probing this theoretical framework to 

understand the causative mechanisms of how changes in external task constraints influence the 

formation of a control law and the resultant downstream movement strategy.   

As the employed PCA method continues to be develop there is opportunity to develop best 

practices. In particular, best practices are needed to objectify the interpretation PMs. In this study the 

average and marker specific loading vectors were used to gain insight into the operator of variance 

explained as well as where locally and in the normalized time domain variance was being explained. 

Although the use of loading vectors in conjunction with single component reconstruction provided some 

supporting information to guide interpretation this process continued to rely on subjectivity. 

Standardizing of interpretation methods could aid in interpretation of PMs in future work.  
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A second opportunity to develop the PCA method is to explore best practices for data 

normalization and expression. For this study, all data were normalized to height so that differences in 

anthropometrics would not be explained in a PM. However, by normalizing to height the contribution of 

anthropometrics to variance in the data set is ignored. The position data input in this study was 

referenced to a global coordinate system opposed to a local system as has been done in previous work 

(Ross et al., 2018). This decision was made as the position of the origin and the load remained consistent 

across lifting trials and participants, so capturing the position in the global system (as was done in PM1 – 

AP body position) was important. However, if similar methods were to be applied to tasks that are more 

dynamic the position of the body in the global system may be subject to noise and best practice may be 

to express data in a local coordinate system. A comparison of PCA outputs following different 

normalization methods and when expressing data in either a global or local coordinate system should be 

explored to determine best practices.  

Finally, the number of anatomical inputs to consider in analysis should be considered moving 

forward. In this study, each segment of the body contributed an anatomical input except for the feet, 

which contributed two. This was done by taking the COG of segments in the axial skeleton and the 

proximal end point of segments in the appendicular skeleton. The COG of the feet were also included to 

give a representation of the orientation of the foot segments in 3D space.  Using this approach, the 

relative contribution of the segments in the PCA model was nearly equally weighted. Future work should 

explore whether the addition or subtraction of other anatomical inputs influences the results of the PCA 

analysis. 
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7.0 Conclusion 
 

 Pattern recognition was applied to successfully identify features of movement in backboard 

lifting related to the resultant relative biomechanical exposure at the low back and the relative demand 

of the load. It was found that differences in horizontal position of the body to the load was indicative of 

whether lifters experienced high or low resultant relative biomechanical exposures. Additionally, this 

study identified differences in mean movement strategy in features of movement explaining variance in 

sequencing of lifting and using a squat vs. stoop strategy as a function of relative demand. 

 Practically, the results to this study demonstrate the utility of pattern recognition to assess 

movement strategy in backboard lifting where to minimize the biomechanical exposures the horizontal 

distance from the body to the load should be minimized. Assessment of backboard lifting strategy can 

be conducted at any relative demand, as the effects of biomechanical exposure and relative demand on 

movement strategy in backboard lifting do not interact. Furthermore, results from this study can be 

used to develop training approaches to minimize biomechanical exposure by using movement strategy 

where the body is closer to the load, using a distal to proximal strategy, maintaining an upright trunk 

and using a squat-like strategy. 

 The noted success of pattern recognition methods to identify differences in features of 

movement as both a function of resultant biomechanical exposure and relative demand support the 

utility of this approach moving forward. By combining pattern recognition with artificial intelligence 

techniques there is a potential to identify differences in high and low exposure strategy in practice 

within the paramedic sector, but also in other occupations with where workers are at high risk of MSDs.  
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Appendix A: Standard Operating Procedure on 1RM Testing 
 

Department of KINESIOLOGY 

 

STANDARD OPERATING PROCEDURE 

 

A Standard Operating Procedure (SOP) is to be created to direct and guide researchers when performing 

study protocols, especially those that have the potential to cause harm (or increase risk) to a study 

participant such as those outlined as a controlled act in the Regulated Health Professions Act of Ontario 

(RHPA).  

 

SOPs are to follow the Deming Cycle, a cycle that identifies "Plan-Do-Check-Act." A SOP is created to:  

 outline the procedures that must be executed to effectively follow the study protocol and outline 

the resources/equipment needed (i.e., PLAN),  

 provide detailed instructions for research staff of the steps that must be implemented and the 

training that must be completed (i.e., DO), 

 clearly document the study protocol (i.e., CHECK), and 

 aid with continuous improvement (i.e., ACT) 

 

All SOPs are to be maintained and controlled by the Principal Investigator/Faculty Supervisor. The 

Principal Investigator/Faculty Supervisor is responsible for the current and approved versions.  

 

SOPs are reviewed by the Office of Research Ethics reviewers and/or Research E thics Committee members 

in conjunction with their review of the procedures section in the Form 101 or Form 104 (modification 

request).  

 

Submit only new SOP’s or those which have not been previously approved in conjunction with a prior 

application. In the procedures section of the 101 form or 104 form state the SOP name, date, and the 

previously approved ORE number, if applicable.  

 

Title of SOP:  Protocols for Muscular Strength and Endurance Assessment 

 

SOP created on: [October/29/2015] and Ethics Clearance Received on: _________________ 

 

Revised on: [February/13/2018] and Ethics Clearance Received on: _________________ 

 

SOP created by: [Caryl Russell, Director of Programs, Madeleine Noble, Senior Lab 

Demonstrator, Dept. of Kinesiology] 

SOP revised by: [Julia Fraser, Research and Operations Manager, Dept. of Kinesiology] 

 

Signature: 

Date:  

□ I acknowledge that as the principal investigator/faculty supervisor I am responsible for 

updating this SOP and notifying the ORE through a modification form (Form 104) if any of the 

procedures as outlined above change or require revision. 

 

http://www.e-laws.gov.on.ca/html/statutes/english/elaws_statutes_91r18_e.htm
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A. PURPOSE AND BACKGROUND 

 

This SOP describes the protocols and safety for muscular strength and endurance 

assessments including 1 repetition max (1RM), predicted 1RM and stand load testing. 

 

B. PROCEDURES  

Are there any controlled act(s) to be performed: □ Yes X No 

If you checked yes, list the controlled act(s) below: 
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Appendix B: Tests of Normality for PM scores 
 

 Normal Q-Q Plots are pictured for PMs 1-6 (Figures 1-6 respectively) to give a visual 

representation of the spread of data in a PM relative to a normal distribution with the same mean and 

standard deviation. The visual agreement of PM scores to the Q-Q plot support that the data is normally 

distributed even though significant effects were seen in the Shapiro-Wilks test of normality for all PMs. 

Additionally, PM scores are z-scores of the deviation of a trial from the mean PM and therefore are 

normally distributed by definition.  

 

 
Figure 1: PM scores in PM1 (grey circles) plotted against a normal distribution with the same mean and 

standard deviation (solid black line).  
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Figure 2: PM scores in PM2 (grey circles) plotted against a normal distribution with the same mean and 

standard deviation (solid black line).  

 

 
 
 
 



111 
 

 
Figure 3: PM scores in PM3 (grey circles) plotted against a normal distribution with the same mean and 

standard deviation (solid black line).  
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Figure 4: PM scores in PM4 (grey circles) plotted against a normal distribution with the same mean and 

standard deviation (solid black line).  
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Figure 5: PM scores in PM5 (grey circles) plotted against a normal distribution with the same mean and 

standard deviation (solid black line).  
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Figure 6: PM scores in PM6 (grey circles) plotted against a normal distribution with the same mean and 

standard deviation (solid black line).  
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Appendix C: Changes in subjective fatigue measures over the experimental protocol 
 

 To measure fatigue across the study protocol participants rating of perceived exertion (RPE) was 

collected using a Borg rating of perceived exertion scale (Borg, 1998). As the load did not change in 

relative demand conditions no changes in RPE would be expected if fatigue was not occurring. To track 

the changes in fatigue three repeated measures ANOVAs were run (one for each relative demand 

condition) to assess the change of perceived exertion over the lifting protocol (Figures 1-3). There was 

no significant change in RPE for light trials (F(1,25) = 1.14, p = 0.295), but there were significant 

increases in RPE in the medium (F(1,25) = 12.54, p = 0.002) and heavy (F(1,25) = 23.73, p < 0.001) 

relative demand conditions. 

 

 

Figure 1: Mean Borg’s RPE across light relative demand lifts.  
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Figure 2: Mean Borg’s RPE across medium relative demand lifts.  

 

 

Figure 3: Mean Borg’s RPE across heavy relative demand lifts.  

 

 Although there were significant main effects of Borg’s RPE in both the medium and heavy 

conditions the absolute mean increase in RPE from trial 1 to 10 was only 1.54 and 1.57 in the medium 

and heavy relative demand conditions respectively. Even though the increase in RPE was statistically 

significant it is not believed that this would result in appreciable changes in movement strategy due to 

fatigue because of the minimal descriptive increases in mean Borg’s RPE values.  
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