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Abstract
Introduction:

Backboard liftingisademanding aspect of paramedicwork that resultsin higherlow back
moments and sagittal trunk angles compared to other paramedictasks. Movementstrategyina
backboard lift affects resultant biomechanical exposure atthe low back sothere is a need toidentify
differencesin movement strategies thatyield lower relative biomechanical exposure.

Pattern recognition methods can be used to objectively identify features of movement related
to biomechanical exposure. In particular, principal component analysis (PCA) is a pattern recognition
technique that canidentify whole body features of movement that explain variance in a data set. This
approach is conceptually compatible with Optimal Feedback Control theory (OFC), which providesa
theoretical motor control framework in which to contextualize the pattern recognition analysis.

Research Questions:

1) How do features of movement differ between high and low relative biomechanical exposure lifts, and
as a function of relative demandin backboard lifting?

2) How do features of movement differ between high and low relative biomechanical exposurelifters,
and across relative demand in backboard lifting?

Methods:

Twenty-eight participants performed 10backboard lifting trials within each of a light, medium
and heavy relative demand condition. Relative demands were scaled to participants’ one-repetition max
backboard lift. Full body kinematics and ground reaction forces were collected for backboard lifting
trials. Awhole-body kinematicmodel was created in Visual3D to calculate low back moments and
sagittal anglesfordichotomizinglifts and lifters aslow vs. high relative biomechanical exposure, and to
provide positional data. PCA was applied on positional data as a pattern recognition technique. For
retained principal movements (PM), PMscores were calculated as dependent variables. Six PMs were
retained foranalysis.

A two-way ANOVA withindependent factors of relative biomechanical exposure and relative
demand was used to test for differencesin PMscores for retained PMs across all lifts for research
guestion 1. A two-way mixed ANOVAwith abetween factor of relative biomechanical exposureand a
withinfactor of relative demand was used to test for differences in mean of PM scoresin lifters to
answerresearch question 2.

Results:

Movement strategies associated with high and low relative biomechanical exposure lifts:
Significant main effects of relative biomechanical exposure were detected in 5of the 6 PMs. PMs were
interpreted to deduce that low exposure lifts positioned the body closerto the load, used adistal to
proximal strategy and maintained an upright trunk. Significant main effects of relativedemand were



seenin4 of the 6 PMs. Heavy relative demand lifts were interpreted to have the body furtherfrom the
load, use a distal to proximal strategy, use a more stoop-like strategy and had differences in timing of
the lift.

Movement strategies associated with high and low relative biomechanical exposure lifters: High
exposure lifters positioned the body further from the load than low exposure lifters. Significant main
effects of relative demand were seenin PMs 2 and 5 within lifters, which are interpreted to have a distal
to proximal, and more stoop-like strategy in the heavy relative demand lifts.

Discussion:

The application of a patternrecognition techniqueidentified differences in movement strategies
betweenthose who experienced relatively less and greater biomechanical exposure. Pattern
recognition alsorevealed how relative demand influenced movement strategies during backboard
lifting. Based on effect sizes, the horizontal distance of the body to the load was the most important
determinant of relative low back exposure. The influence of relative demand revealed that a distal-to-
proximal strategy was more likely when lifting a heavierrelative demand, afindingthatis consistent
with past literature.

The strong relationship of horizontal distance to the load as identified viathe pattern
recognition approach suggests that some lifters consider biomechanical exposure in their OFC control
law by positioning themselves closerto the load. With no significantinteraction effects, assessment of
backboard lifting can be conducted by evaluating alifters proximity to the backboard priorto lifting
without considering relative demand.
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1.0 Introduction
1.1 The issue

The movement strategy used in a physical exertion can modulate the biomechanical exposure at
the low back (Kingmaetal., 2004). Biomechanical exposures that are influenced by movement strategy,
includinglow back angles (Marras etal., 1993), moments (Marras et al., 1993; Norman etal., 1998) and
jointreactionforces (Gallagher & Marras, 2012; Waters et al., 1993), have been associated with risk of
musculoskeletal disorders (MSD). The movement strategy used can also influence the tissue tolerance,
and thusindirectly effect risk of MSD (McGill, 2015; Gunningetal., 2001). Acknowledgingthat
movement strategy influences biomechanical exposure (McGill, 2015; Marras, 2008) it is useful to
identify the relationship between movement strategy and biomechanical consequences when
attemptingto attenuate risks in ergonomics approaches (McGill, 2009). To effectively develop and
implement ergonomics approaches based on movement strategy we need to objectively understand

how movement strategy relates to biomechanical exposures of interest.

To pursue evaluating and modifying movement strategy as an ergonomicapproach a firststepis
to objectively identify what features of movement strategy are associated with unfavorable
biomechanical exposure outcomes. Use of pattern recognition, such as methodology employed to
differentiate between elite and novice athletes based on movement strategy (Ross etal., 2018), is a
promising framework to identify features of movement associated with biomechanical exposures. Inthe
context of lifting there is evidence that movement strategy influences biomechanical exposures,
measured by reaction forces at the low back (Straker, 2003), but this relationship is not well understood.
Areview byvanDieénetal.(1999) determined thatthe position of the body relative to the load was the
biggest determinant of the resultant biomechanical exposure at the low back opposed to the movement
strategy used. However, this review defined movement strategy a priorias participants were

constrainedto eithersquatorstoop inlifting as defined by discrete measures. This methodology may



not be sensitive enough to capture the subtleties of movement features that could be related to
biomechanical exposure when lifters are not constrained to either squat or stoop. Use of pattern
recognition method that considers time varying whole body movement patterns would overcome the
noted limitation of the van Dieén (1999) review to provide amore robustinvestigationinto how

movement strategy influences resultant biomechanical exposures in lifting.

With a goal of objectively assessing movement strategy based on biomechanical exposure itis
importantto consider underlying theories of motor control which will influence the volitional control of
movement. Thisis argued by Gregor (2008) who states that biomechanics research should considerthe
underlying neural control in addition to quantifying the consequences of movement (i.e. kinematics and
kinetics). We may be able toidentify features of movement thatare related to biomechanical exposure,
but thisinformation cannot be effectively used toinform screening if the control of features of

movementonapersonlevel are not understood. To frame this study within a motor control theoretical

framework Optimal Feedback Control theory (OFC) can be used to understand the control of movement.

OFCisa prevailing motor control theory that attempts to explain the volitional control of
movement strategy to achieve atask goal while consideringinherent variabilityin movement. OFC
suggeststhatour body develops aninitial optimal feedback control law to govern our movement
strategy as a planto achieve a task objective (Todorov, 2004). The control law is executed with aclosed -
loop optimization process where only variability that affects the task objective is controlled (Todorov,
2003). The closed-loop feedbackisinformed by comparing sensory feedback with the initial motor
commandto determine if intervention is necessary to maintain task completion. With the abundant
degrees of freedominthe body, amotortask objective can be achieved usinganinfinite number of
movement strategy combinations due to the flexibility allowed in movement variability while not
compromisingthe task objective (Scott, 2004). It is possible that some individuals may consider

controlling features of movement related to biomechanical exposurein their control law while others do

2



not. To accurately assess movement strategy, we must understand the underlying control of features of

movementrelated to biomechanical exposure.

OFC outlines how volitional movementis executed via the control law, but the definition of the
control law can be influenced by external constraints. The grand unified theory of sport’s performance
(Glazier, 2017) demonstrates how constraints influence the formation of coordinative structures. This
theoryisbased on Newell’s constraints model (Newell, 1986) where task, organism and environment
constraints were theorized to influence coordination and control. For this thesis, the grand unified
theory of sport’s performance has been modified toinclude OFC (Figure 1). Inthisamended model,
external constraints influence the definition of the control law, which then informs movement strategy
consistent with OFC. With a practical goal of assessing movement strategy to infer biomechanical

exposures potential confounding effects of constraints on control law formation should be considered.

i Coordination
Optimal Feedback . . Control Performance
Control Law Patterns Patterns

A ~

~

\ 5

Organism
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Efferent Copy ™ = ol

Optimal State Sensory
| et
Estimator Feedback

Figure 1: Role of external constraints on the definition of the control law. Adapted from the Grand

Unified Theory of Sports Performance (Glazier, 2017) to include OFC closed-loop feedback (Scott, 2004).



1.2 Project Rationale

Thisthesis explores the utility of pattern recognition to identify movement strategies associated
with relatively higher orlower biomechanical exposure during the performance of a backboard lift.
Backboard liftingis an essential task of paramedicwork (Coffeyetal., 2016) which consists of liftinga
board with handlesin close proximity to the ground toload a patientonto a stretcher (Figure 2).
Backboard liftingis similarin nature to scoop stretcher lifting which e xposes paramedics to the greatest
normalized low back angles (Figure 3) and moments (Figure 4) compared to other paramedictasks
(Armstrong & Fischer, 2018). This supports that backboard lifting is particularly problematicas
paramedics experience the highest prevalence of MSDs by sector (Maguire et al., 2005; Maguire et al.,
2014) which are in part attributed to high physical demands of the job (Lavenderetal., 2000; Cooper &
Ghassemieh, 2007). Engineeringinterventions have already been successful in reducing MSD incidence
inthissector, such as redesign of stretchers forexample (Armstrongetal., 2017; Fredericks etal., 2009;
Studneketal., 2012), but backboard lifting cannot be replaced by similarengineeringinterventions.
Coachingindividualstoimprove theirself-selected movement strategy is a plausible intervention to
reduce MSD risk. Paramedics that do more work with theirlowerbody duringlifting exertions, such as
the backboard lift, typically experience lower biomechanical exposures, quantified as peak low back
moments and trunk flexion angles (Makhoul etal., 2017). As backboard liftingimposes high

biomechanical exposures which have the potential to be reduced viamovement strategy interventionit

isan appropriate mediumto be exploredin this thesis.



Figure 2: Executingascoop stretcherlift, which poses asimilar biomechanical demand to backboard

lifting.



70

60

Ul
o

B,C B,C

I

Scoop (head) Scoop (foot) Raise (head) Load (foot) Raise (foot) Lower (head) Lower (foot)
Task

iy
o

w
o

Peak Sagittal Trunk Angle (°)

)
o

Figure 3: Peak L4/L5 angle experienced by paramedics when performing stretcher and scoop stretcher
related lifts (Armstrongetal., 2018). Lettersindicate significant differences, where ‘A’ is different from

‘B’



400

350

300

N
9]
o

Peak L4/L5 Moment (Nm)
e o
o o

10

o

5

o

Scoop (head) Scoop (foot) Raise (foot) Raise (head) Load (foot) Lower (head) Lower (foot)
Task

o
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Principal component analysis (PCA) can be applied as a pattern recognition approach to
objectively identify features of movement that explain the most variance in movement strategy during
backboard lifting. More specifically, use of a PCA approach with whole body motion as the inputallows
for the identification of principal movements (PMs) in lifting. This method has been used to describe
human gait (Troje, 2002; Maurer et al., 2012), and in sport applications (Federolfetal., 2014; Federolf et
al., 2013; Gloersenetal., 2017; Young & Reinkensmeyer, 2014; Ross etal., 2018). The PCAapproach is

beneficial asit can objectively extract redundantinformationin large data sets (Daffertshoferetal.,



2004). This PCA approach also considers the variability of movement, which has adeterministicoriginin

the OFC framework and is not necessarily noise in the system (Stergiou & Decker, 2012).

With a goal of applying findings from this study to assessment, the potential interaction
between biomechanical exposure and load on movement strategy should be considered. The load on
the board represents achange in task constraint, which can affect the definition of the control law. Past
work has demonstrated that the relative demand (load scaled toa person’s capacity) is a determinate of
lifting behaviour (Albert et al., 2008; Plamondon etal., 2017). The effect of relative demand on
movementstrategyisincluded asanindependentvariable in this thesis asin application of these
findings thereis aneedtoknow how relative demand could confound movement strategy observed.
The consideration of relative demand as a constraint that may influence control law formation within
the overarching motor control framework is picturedin Figure 5. This figure demonstrates how the
control law will be inferred in this study by assessing arelationship between indepe ndent (high vs. low

biomechanical exposure lifter and relative demand) and dependent (features of movement) variables.
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Figure 5: Adapted version of Glazier’s (2017) Grand Unified Theory of Sports Performance where the
independent (red) and dependent (blue) measures of this study are identified. Solid green lines
represent the relationships tested between independent variablesand mean movement strategy, and

dashed greenlinesrepresenthow the relationship is used to infer Optimal Feedback Control Law.

Practically, this thesis aims to identify how features of movement differ as both a function of
relative biomechanical exposureandrelative demandin backboard lifting. Investigating the relationship
between features of movementinaliftand the resultant exposures allows us to identify features that
could be trained to reduce exposure. By extending the analysis to exploreif differencesin mean
movement strategy can be identified between high and low exposure liftersin some features of
movement, results can inform the assessment of backboard lifting technique. Consideration of mean
strategyisimportantas human movementisinherently variable (Latash, 2012) and so eventhough
some features may be associated with biomechanical exposuresin agivenlift, these features may not

be consistently controlled between high and low exposurelifters to allow for assessment of strategy.



The effect of relative demandis alsoincluded in these analyses as it could influence both movement

strategyina givenlift,and mean movementstrategy.

The primary research question of this study asks; in a healthy population with varied levels of
lifting experience how does movement strategy differ between high and low relative biomechanical
exposure lifts and across light, medium and heavy relative demand conditions when performing
backboard lifting? Second, how does average movement strategy differ betwee n high and low relative
biomechanical exposure lifters and across light, medium and heavy relative demand conditionsin
backboard lifting? By answering research question one we canidentify what features of movement are
associated with biomechanical exposures in backboard lifting which could inform training approaches.
By considering average movement strategy within a motor control framework in research question two,
we can understand what features of movement associated with resultant biomechanical exposures at

the low back consistently differ between high and low exposure lifters toinform assessment of

backboard lifting strategy.

2.0 Literature Review
2.1 Determinants of Movement Strategy
2.1.1 Theoretical Basis

Assessing movement competency presents a promising option to identify those at greater risk of
MSDs, but variability in working strategy should be considered in this approach. Human movementis
inherently variable because of the motorabundancy in our bodies having more degrees of freedom then
isneededto achieve task performance (Latash, 2012). With this motorabundancy, we see variability in
movementfromtrial to trial ina work context which in bending exertions had small effects on spinal
compression variability but large effects on lateral and anteroposterior shear force variability (Mirka &

Marras, 1993). Both compression and shearforce on the low back have been correlated to risk of MSDs
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(Gallagher & Marras, 2012; Waterset al., 1993), therefore the variabilityin movementinfluencing these

variables hasinjury riskimplications.

Historically, the variability in movement has been attributed to noise in the system (Bernstein et
al., 1996) butit was foundthat evenin highly skilled tasks, such as javelin throwing movement strategy
inelite athletes, thatthey were not capable of producinginvariant movement across trials (Bauer &
Schollhorn, 1997). Findings from this study developed the ideathat there isnosuch thingas a

‘representativetrial’ because of this variability in movement across trials. This was described by

Bernstein (1967) as repetition without repetition.

The inherentvariability thatis present in movement likely exists because the abundancy of our
jointsallows it. Outcome consistency does not require movement consistency because we have multiple
optionstoachieve agiventask (Bartlettetal., 2007). The use of movementvariability to maintain task

performance in experts has been documented but the mechanism of control is not well understood.

OFCisa motor control theory that explains the hierarchal control of movement, including the
role of variability to maintain performance (Todorov, 2004). OFC proposes thatwhen completinga
motor task only deviations thatinterfere with the task goal are maintained while variability in task
irrelevant aspects of movement are left free (Todorov & Jordan, 2002). Thistheory argues against the
historical notion that we have pre-programmed motor patterns thatindicate aspecifictrajectory of
movement. This previously described process of motor control can be described as an open-loop
conceptwhereas OFC control postulatesthatinstead we use aclosed-feedback loop where visualand
proprioceptive sensory inputs provide afferentinformation to our motor system, which allow the body
to adapt to environmental factors by taking advantage of movement variability to maintain task
performance. Thisfeedback loop allows foradaptable control so that as task demands change the motor

control system can adapt to maintain task goals.

11



To illustrate thistheory of OFC Figure 6 has been adapted from Scott (2004) to display the
closed loop process of controlling volitional movement. Foragiven task, the central nervous system
(CNS) will select an optimal feedback control law, which is aselection of parameters to control to
achieve the motorgoal in a task (Scott, 2004). In movement execution, noiseinthe system may
influence successful completion of the motor task. This theory suggests that our system allows for online
adaptive movement control usinginformation about the initial optimal feedback control law and
afferentinformation on motor performance. This afferentinformationis continually updated to
maintain performance throughout the task. If noise in the system does not compromise the task goal
thenthe CNS will notintervene to correctthis taskirrelevantvariability. However, the CNS willintervene
if noise inthe system will compromise the completion of the task goal. This control of the task relevant

variability but not task irrelevant variability is known as the minimum intervention principle (Todorov &

Jordan, 2003).
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Figure 6: Closed loop model of optimal feedback control adapted from Scott (2004).

To achieve this online adaptive movement control there is aneed foran optimal state estimate,

whichisrelated tothe motor peripheryinthe task (Scott, 2004). Based on some metric of performance
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the neural system synthesizes afferent sensory information and a copy of the efferent signalto provide
online feedback totune movementto achieve the task objective. In the presence of noise, this online
feedback comestogetheratthe optimal state estimatorto adapt movement strategy to maintain
completion of the task goal. To adapt movement behaviour the feedback loop adjusts gains on neural
commandsto tune movementto achieve task goals (Latash etal., 2005). This resultsinan updated

optimal feedback control law whichis geared to betterachieve the goals of the task.

To betterunderstand OFC, we can thinkaboutit ina contextual example. Inareachingtask if
thereis no perturbationtothe arm thenthe CNSwill notintervene as nothingis affecting the ability to
achieve the task goal. However, noise that disrupts trajectory of movement largely enough to
compromise goal completion will attemptto be corrected within task performanceviaclose loop
feedback. This dispels the historical notion that the body does not recall rigid motor commands and
instead uses flexible reconfiguration (Diedrichsen et al., 2010). Deviations relevant to the external task
goal are corrected but taskirrelevant movement (not relating to goal completion) is not compensated
and so it can accumulate across repetitions (Diedrichsen et al., 2010). This allows forvariance in strategy

inthe taskirrelevantaspects of motion (Bernstein etal., 1996).

Thereis growing support of the OFCtheory has come from experimental studies thathave
investigated simple motortasks (Scott etal., 2015; Valero-cuevas etal., 2009) and sport applications
(Morrison etal., 2016). However, movement strategy in occupational tasks, such as lifting, have not
beeninvestigated within the constructs of these theories. If movement strategy is controlledin lifting as

itisinsimple motortasksthere may be an allowance of taskirrelevant variability if the load beinglifted

arrivesat itsdesired end point.
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2.1.2 Implications of Optimal Feedback Controltheory in Occupational Lifting

The existence of OFC has implications when considering movement from a biomechanical
standpoint. While biomechanics literature does agood job of describing how parameters such as spine
compression are associated with different types of movement, itis often difficult toinfer why such
movement had occurredinthe first place. It has been suggested that biomechanics research shiftits
focus from descriptive research towards the inclusion of theory-driven research by designing studies
that considerboth the consequence (biomechanics) and neural control of movement (Gregor, 2008). To
better understand the question of ‘why’ in movementthere isaneedto considerthe function of the
neuromuscular system (Davids & Glazier, 2010). This presents an opportunity to considerthe objectives

of this study within the context of OFC.

In our primary research objective, the aimistoidentify differencesin movement strategy
between highand low relative biomechanical exposure lifts. These differences could be attributed to
differencesin how some lifters parameterize an optimal feedback control law, withinthe OFC
framework. For example, some lifters may consider “minimizing biomechanical demand on the body” as
an aspectof their optimal feedback control law. In thisregard, a lifteraiming to minimize biomechanical
demand may be more sensitive to sensory feedback aboutthe momentat the low back. While itis
extremely difficult to conclusively identify an optimal feedback control law from a given task
performance, we use OFCas a framework toinferthat some lifters might consider MSD risk
(biomechanical demand viasensory information about low back moments as an example) within an
optimal performance, where others might not. Forexample, during abackboard lifting task moving the
stretcherfromits starting location to the end destination is likely animportant outcome. If atany point
alifter’'s sensory feedback suggests that the load is nolonger moving towards its destination, the CNSis
likely tointervene and re-optimize the movement to ensure the load continues towards its destination.

However, there is a possibility thatacross individuals there may be other objectives (or constraints) that
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contribute to an individual’s optimal feedback control law such as lifting ‘safely’. A ‘safe’ lift may be
defined as minimizing perceivable biomechanical exposures. Although there is a correlation of low back
compressiontoinjuryriskitisunlikely thatindividuals perceive lowback compression when lifting
(Chaffin & Page, 1994; Thompson & Chaffin, 1993). However, biomechanically relevant exposures such
as low back moments could serve as an alternate perceivable variable. Studies challenging participants
to choose psychophysically acceptable loads provides evidence suggesting that low back moments were
perceived by the lifters (Fischer & Dickerson, 2014; Jorgensen etal., 1999; Kuijeretal., 2012). With this
afferentinformation from low back moments, individuals could have an optimal feedback control law
inclusive of sensory feedback related to this biomechanically relevant exposure when controlling
movementstrategy. Itislikely that some lifters will control movement strategy to minimize low back
exposures, while others will not consider biomechanicsin the approach to maintain the task goal of

executingthe lift.

2.1.3 External Factors influencing the Control Law

When thinking about lifting within an OFC framework, as noted early, each lifter will selectan
optimal feedback control law that they believe will be best to control the movement strategy to meet
the task goal. As a reminder, we hypothesize that some may choose an optimal feedback control law
that considers low back relative biomechanical exposures at heavy relative demand, where others may
not. However, itis well established that external constraints caninfluence movement strategy usedin
lifting. One example of thisis that the relative demand of a lift affects lifting patterns (Albert et al., 2008;
Plamondonetal., 2017; Sadleretal., 2011; Sheppard etal., 2016), where lifters change theirstrategy as
the relative demand is decreased. Explained from an OFC perspective, achange in movementatlower

relative demands could suggest an accompanying change in the overarching optimal feedback control
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law. To visualize how external constraints influence the formation of the control law Figure 1 has been
adapted from Glazier(2017) which shows that changesin task, environmentand organism constraints
(taken from Newell’s (1986) constraints model) influence how the control law is defined within the OFC
closed feedback loop. Considering relative demand as an external constraint infl uencing movement
strategyinlifting, as the relative demand changes the task constraintis modified. Liftinga lowerrelative
demand would alsoimpose lower biomechanical consequences onthe low back (Plamondon etal.,
2012), and so itis possible that minimizing biomechanical exposures onthe low back may be less
important to consider within the optimal feedback control law at this relative demand. Additionally, at
lighterloads, lifters may have more movement options available to preserve the task goal. Conversely,
duringa heavierlift, the inertia of the load is much higher, likely restricting the number of movement
optionsavailabletoa lifterin ordertoleverage theirstrength to overcome the inertia of the load
(Makhoul etal., 2017). Giventhe availability of more options, and lower relative biomechanical
exposures duringlighter lifting task, itis possible that at lower relative demands thereis littleinfluence
on the development of the control law, whereas ata heavy relative demand the internal definition of
the control law is likely influenced. By investigating changes in movement strategy across relative
demand conditions it probesthe hypothesis that external task constraints influence the internal

formation of a control law.

2.1.4 Biomechanical Consequences of Movement Strategy in Lifting

Within the OFCframework taskirrelevantvariability, by default, does not affect the task
outcome, but may affect biomechanical exposures. If the overarching optimal feedback control law does
not consider biomechanical consequences when choosing how to control movement strategy to

preserve the task goal, itis likely that aspects of task irrelevant variability may inadvertently expose the
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moverto higherbiomechanical risk. Itisdocumented that across repeated lifting exertions there is trial
to trial variability (Granataetal., 1999; Gagnon et al., 2002; van Dieénetal., 2001) butthe implication of
thisvariability on biomechanical exposuresis notwell understood. A potential positiveisthat trial-to-
trial variability can distribute demands across tissues so that the cumulative load on any single tissue is
not enoughto exceed the tissue tolerance. This form of variability is argued to be beneficial asworking
with strategy that utilizes more variabilityhas been shown to reduce fatigue in workers (Srinivasan &
Mathiassen, 2012). With the intrinsicvariability in movement there may be benefits to the workerin

avoidingfatigue andinjury.

Furtherevidence of the importance of movement variability is its relation to the development of
pain. Itistheorized that the loss of variability is believed to increase the probability of developing MSDs
inwork (Mathiassen, 2006). In the literature, long-term pain conditions have been associated with less
motor variability forthe knee joint, (Georgoulis et al., 2006; Heiderscheitetal., 2002; Hamill etal., 1999;
Sondergaard etal., 2010) low back (van den Hoorn et al., 2012) and shoulder (Fallaetal., 2008).
Although correlations between pain and low movement variability have been observed, thereisno
causative link between low movement variability and pain or injury that has been established in the
literature. Even without such a link, the association of low movement variability and painisa concept

that should be considered when evaluating factors which could precipitaterisk of MSDs.

In the OFC framework, taskirrelevant variability is not controlled in the closed feedback loop.
From an ergonomicslens, in arepetitive task which allows for variability without compromising task
performance having highertaskirrelevant variability may be a protective effect (Srinivasan &
Mathiassen, 2012). There is a possibility that having variability in redundant degrees of freedom may be
considered withinthe optimalfeedback control law to influence workers to exhibit higher variability. To
date thereis no evidence to suggest that the optimal feedback control law governs movement to

maximize variability as suggested. However, exploring whether the optimal feedback control law
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considers factors related toinjury risk could aid in understanding deterministic origins of movement

variability and its relationship to MSD risk.

Although variability offers benefitsinreducinginjury riskin some regard there mayalsobe a
need to control variability in certain scenarios such as when lifting a high external load. Motor
abundance allow us many options to move the load but from an injury risk perspective there are some
strategiesthat are more beneficial to use toreduce the loadingon any one tissue. Considering
backboard lifting, restriction of variability to use a movement strategy which minimizes biomechanical
exposure tothe bodyisrecommended due to the nature of the task. Overthe course of a work shift
paramedics only perform 2-3 backboard lifts, albeit with heavy loads. The low number of repetitions
does not make usingvariable strategy abeneficial injury prevention strategy. The high external load
gives a greaterrisk of an acute injury mechanism whereasingle large force exposure exceeds tissue
tolerance (McGill, 2015). For this reason, movement strategy that minimizes biomechanical exposure

should be used on every backboard lift repetition.

Consideringthe demands of the backboard lifting taskin awork shiftthere is a tangible
opportunity torecommend idealstrategies to use. By identifying aspects of movement strategy that
differ between high and low relative biomechanical exposure lifters we can coach movement strategy to
minimize the biomechanical demandin any given repetition without trying to systematically induce

variability into strategy which may be more difficult.

2.1.5 Modifiers of Movement Strategy in Lifting

The role of OFCin controlling human movement has been discussed but contextualizing
previous experimental findings while considering OFC may explain the basis of movement variability and

differencesin movementstrategy across differentlifting conditions. Toaddress our primary objective of
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identifying what aspects movement strategy differ between high and low relative biomechanical
exposure liftswe must understand how changingtask constraints, as conceptualized by Glazier (2017),
influences variability and movement strategy in lifting. This will allow us to develop methodology that
minimizes confounding factors to bestaddress the research question of interest. For this investigation
thereislimited research on how variability in lifting changes but there are numerous studies exploring
changesinlifting strategy based on altering constraints such as experience, load, sex and relative

demand.

Variability hasafunctional role in motor development (Bartlett et al., 2007). As expertise is built
the level and type of variability exhibited in movement changes in task execution. For this reason, itis
expected thatacross different levels of expertise there will be changesin variable movement strategy
exhibitedinlifting. One may hypothesize that with experience that individuals will take advantage of
theirbodies abundant degrees of freedom to minimize variables that are associated with risk of MSD
development. This hypothesis has support when considering posture, where experts tended to have less
low back flexion and more knee flexion in lifting (Plamondon et al., 2014; Plamondon etal., 2012).
However, in astudy which looked at variability in low back loading evidence does not support the
hypothesis where experts exhibited greater mean sagittal and axial low back momentsas well as greater
mean low back loads (medial-lateral (M-L) shear, anteroposterior (A-P) shearand compression)
compared to inexperienced lifters (Granata et al., 1999). Although these measures were significantly
greaterinthe experienced population the variability in these values varied more trial -to-trial compared
to theinexperienced group. To explain these findings the authors discussed the relationship between
spinal load and tissue tolerance. Although absolute loads were higherin the experienced group the co-
activation of flexor and extensors in the trunk was also higher which had been previously suggested to
be associated with highertrunk stability (Cholewickietal., 1999) whichis suggested to reduce risk of

MSDs (Cholewicki & McGill, 1996). This co-activation as a protective effect may be a result of
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experienced lifters updating their optimal feedback control law to better consider trunk stability. With
experience, lifters may begin to identify aspects of movement strategy that are related toinjury risk and
control themviathe closed feedbackloop. In this study it was also stated that the experienced group
likely had higher capacity, which would allow them with more flexibility in their selection of lifting
strategy. Similarresultswerefoundinalaterstudylooking again atthe effect of experience onlifting
strategy. Experienced workers had higher peak kinematics and kinetics in lifting but had greater dynamic
balance measured by peak horizontal momenta, angular momentaand largest Lyapunov exponent (Lee
& Nussbaum, 2014). Findings from these studies demonstrate that expertisedoes playarolein
influencing movement strategy in lifting. Theseresults support the hypothesis that the sensorimotor
systemin experienced lifters seems to control variables that are related to injury risk, which supports

that mitigating MSDinjury risk can be considered within the optimal feedback control law.

Although informative, the results of these studies are limited by the low loads used in their
liftingtrials and the fact that capacity in lifting was not controlled for. In lifting, movement strategy is
informed by many environmentalfactorsincluding expertise and load. In the previous paragraph, which
reviews the effect of experience, confounders of load and relative demand are not controlled forinall
studies. Tounderstand the role of all factors on lifting strategy the effect of load and relative demand
will be discussed in the following paragraphs to better contextualize what factors determine movement

strategy inlifting.

Lifting has beeninvestigated under differentloads to determine the effect of load on movement
strategy. It hasbeen found that as load increase interjoint coordination is more sequential starting with
distal movement (Davis & Troup, 1965; Scholz, 1993a, 1993b; Scholz & McMillan, 1995; Burgess-Limerick
et al., 1995). To interpretthese findingsin an OFC frameworkitis possible thatanincrease inload
resultedin lifters refining their optimal feedback control law dictating movement strategy. The distal to

proximal strategy may be adopted as an injury prevention measure to avoid large magnitudes of lumbar

20



acceleration when the acceleration of the load is greatest (Davis & Troup., 1965). It islikely that low
back moments are high at this time pointas peak joint moments were reported to occurat 25% of
extension duration (De Looze etal., 1993). Delayed extension of the low back will protect the low back
fromthe peak momentdemands and instead can shift moment contributions across otherjoints of the
lowerextremity. Atlowerloads, there may be lessimportance on protecting the low back from peak
moments as the absolute moment magnitudeislowerwhich could resultin more variable movement
strategy. Ina heavyload condition, the movement strategy may be controlled toincorporate this

temporal delay as a protective effect resultingin less variability in strategy.

Sex effects have been proposed as amechanism that influences movement strategy in lif ting.
Women have been documented adoptinga more legdriven strategy whereas men tend to lift more with
theirback (Li & Zhang, 2009; Marras et al., 2003). In one of these studies, women had significantly lower
compressive loading compared to men and these differences between groups became greater as
external loadincreased (Marras et al., 2003). Although differencesin sexes were observedinthese
studies this was attributed to differencesin strength between the two groups. In a later study, females
were once again shown to have lower low back loading when liftingthe same weightas malesanda
more sequential distal to proximal lifting pattern (Plamondon et al., 2014). Another study which looked
at liftingin a paramedicpopulation found that females generated more work with the lower bodyin
liftingand had more neutral low back angles (Makhoul etal., 2017). This was attributed to females
adopting a strategy that minimized effort while trying to maintain safety by controlling their low back
angle. These studies provide evidence of differences in movement strategy between sexes butin all
studiesthe load lifted was absolute regardless of participant characteristics. If strength was controlled

for (i.e., the relative demand of the load) would the same results of been found?

To understand whether participant capacity modulates the effect of absolute load on movement

strategy the effect of relative demand on movement strategy should be investigated. By normalizing an
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external load to some measure of physical capacity the observed affects represent strategy ata demand
which can be compared across participants. Thisapproachis arguedto have betterexternal validity
comparedto liftingan absolute load (Plamondon et al., 2017). When comparing lifting strategy across
individuals who were tested forlegand back strength those who had greater back strength adopteda
more back like lift and vice versa (Li & Zhang, 2009). This providesan argumentthatlifting movement

strategy islikely influenced by relative demand in some manner.

To furthersupportthe importance of relative demand previous work has demonstrated thatitis
more important than sex when identifying determinants of movement strategy in lifting. A study which
investigated lifting strategy while controlling for relative demand found that there were no significant
sex effects on postural index, joint range of motion and relative phase anglesinlifting (Albertetal.,
2008). These findings were echoed in alater study where PCA was used to examine variability in
kinematicvariables between sexes ata low relative demand normalized to maximum back extensor
strength (Sadleretal., 2011). The purpose of these two studies was notto investigate changesin lifting
strategy at differentrelative demands but ratherto control for relative demands to assess sex
differencesin movement. In a separate study, an effect of sex on movementstrategyin lifting was found
ina repetitive palletizing task where females adopted a more distal to proximal strategy under what was
considered the same relative demands (Plamondon etal., 2017). A limitation in this study was that the
method tofindrelative demand was to assume a constant strength capacity within each sex butto
assume thatfemales had 2/3 the strength capacity that males did. This would offera crude estimate of
strength capacities of participants, but this approach did not give concrete evidence of what relative
demand the participants are working at. Although the selection of 2/3 as a relative demand was
supported, (Mital etal., 1997) across a population the strength capacity of people willvary based on a
number of factors including anthropometrics, training level, age, etc. (Fusteretal., 1998). Without

controllingforany of these factorsit is difficult to know how accurate and controlled the representation
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of relative demand is. Togetherthesestudies highlight the importance of controlling relative demand

when assessingmovementin strategy.

The previously discussed studies support that relative demand may be animportant
determinant of changes of movement strategy inlifting but only one relative demand was investigated
inall studies reported thusfar. The use of one relative demand condition limits the ability to make
conclusions about how movement strategy changes as a function of relative demand. A study that
investigated differencesin lifting movement strategy between sexes at different relative demands found
that there was no significant effect of sex on retained principal components (PCs) butthere was a
significant effect of relative demand on five PCs of the lower extremity (Sheppard et al., 2016). These
findings supportthat movement strategy was different across relative demands conditionsin lifting.
Although asignificant effect of relativedemand was found on PCs, alimitation was that the relative
demand was normalized to maximum back extensor strength of participants. Although this givesa
measure of relative demand, using this methodology capacity of lower extremity is not considered
which may compromise the internalvalidity of the calculation of relative demand. Toincrease internal
validity of the relative demand calculation loads should be normalized to a value that considers total
capacity which can contribute to a lift opposed to capacity of a single joint. Inthe Sheppardetal. (2016)
study three relative demand conditions of 10%, 20% and 30% of maximum extensor strength were used.
Findings fromthis study were able to identify differences in strategy between these conditions for some
PCsbut it is not known how movement strategy will change at higherrelative demands. Although this
was outside of the scope of the Sheppard etal. (2016) study it can be exploredinfuture directions,
which thisthesis addresses by considering the effect of greater percentages of relative demand on

movement strategy.

From these findings, it seems that a major contributorto movement strategyinaliftisrelative

demands as relative demand effects washes out the effect of sex on strategy. With the noted

23



importance of relative demand itis important to control for itto address our research objectives of
identifying differences in PMs between high and low relative biomechanical exposure lifts and lifters.

With limitations to previous research there is also opportunity to explore how relative demand affects

PMs in both high and low relative biomechanical exposure lifters asis proposedinresearch question 2.

2.2 Pattern Recognition to Quantify Movement Strategy

Whole body movement strategy is a key outcome of interest when considering movement from
performance andrisk perspectives. Classicapproachestothisissue use discrete measures within the lift
cycle such as means or peaks that occur at key time points. However, these variables need to be
selected a priori(Lees, 2002) and there is an aspect of researcher subjectivity in deciding what aspects
of the data are importantand which are not. With a discrete measures approach there are also
limitations associated with only analyzing movement strategy at certain time points, which ignores the
time-series of movements overthe duration of the action, which could containimportantinformation.
Because of these inherent limitations in the use of discrete parameters typicallyrepresentingindividual
time points, this approach may not be useful to analyze movement strategy in backboard lifting,

particularly withinan OFCtheoretical orientation.

An example of discrete measures not being the mostinsightful measure when analyzing similar
data was seeninthe secondaryanalysis performed on data published by Makhoul (2017). Work from
Makhoul found that doing more work with the lower body lead to lower biomechanical exposures at the
low back. With the concept of ‘doingwork’ beingan abstract coaching cue we investigated whether
there was a relationship between timing of power generation and biomechanical exposures as we
believed timing would be more clearto coach. Specifically, we investigated whethertiming between

peak knee and low back powerhad any relation to peak low back momentand peak trunk flexion angle.
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There were norelationships found between the difference in peak power timing tothe measures of low
back moments and trunk flexion angles (Armstrong & Fischer, 2017). When consideringthe power
profiles there wasrarely aclear peakin power profile magnitude which could be afactorin why no
relationship was seen between difference in timing and variables associated with low back MSD risk.
Considering sample data of eight participants, four with the lowest and four with highest peak trunk
flexion anglesinscoop stretcher lifting, there is variability in both knee and low back power profiles
(Figure 7). When considering these power profiles by looking at a discrete time point, in this case peak
power, most of the waveformisignored. This highlights the need for a statistical analysis technique that

objectively considers the entirety of the lift opposed to using discrete measures at specificjoints.
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Figure 7: Average knee and low back power profiles normalized to percent of lift for participants with

the four lowest (P1-P4) and four highest (P5-P8) peak low back flexion angles.

To quantify movement strategy, itisimportant to consider whole body motion. Movement
strategyin lifting has been quantified inanumber of ways including use of aliftindex based on body

configuration atlift onset (Burgess-Limerick & Abernethy, 1997), analyzing lowerbody jointangles
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(Gagnon & Smyth, 1992; Hwang et al., 2009; Sadleretal., 2011; Zhang et al., 2000), and usingrelative
phase angles to quantify coordination (Albert etal., 2008; Burgess-Limerick etal., 1993; Burgess-
Limerick etal., 1995; Lindbeck & Kjellberg, 2001; Plamondon etal., 2017; Scholz, 1993; Seay et al.,
2016). While there are pros and cons to using any of these methodological approachesacommon
drawback to these approachesis that they quantify movement of the lower extremities and trunk while
ignoringthe upperbody. It has been shown thatin a repetitive lifting task that participants changed
shoulderand elbow posture to bring the load closerto the body (Fischeretal., 2015). This control of the

upperextremity supports the need to considerthe upperbodyinthisanalysisasitcan contribute to

movingthe external load and modulating biomechanical exposures.

Using OFC as a model to explain movementin alifting task there is flexibility in control of the
abundantdegrees of freedomto achieve the task objective of moving the backboard toits lifted height.
The upperextremity can contribute tothe abundant degre es of freedom that can play a role in moving
the backboard. Althoughitis likely that the lift will be driven by movement of the lower body, to
guantify lifting movement strategy in its entirety the consideration of the upperbody is needed within

the OFC framework because of the degrees of freedom it contributes.

For thisthesis, amethod that objectively quantifies whole body dynamics of movementis
needed to analyze movement strategy in lifting within the OFCframework. Pattern recognition

techniques presentas an optionto meetthese methodological needs.

2.3 Principal Component Analysis for Pattern Recognition

A patternrecognition method which can considerthe entire waveform and is capable of
reducing a multidimensional data set to analyze modes of variability in human motion is Principal

Component Analysis (PCA) (Lynn & Noffal, 2012; Daffertshoferetal., 2004). PCA considers an entire
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waveformandisan unbiased method to extract features of the data set that explainthe greatest
proportion of variance. In a data set with n dimensions there will be n principal components. However,
the first PC will explain the greatest amount of variance in the datasetand each subsequent PCwill
explainalower proportion of variance, where the first few PCs can often capture much of the variability
presentinthe data. With each PC, there isan associated PCscore for each trial that corresponds to how
close the trial isto the mean of that PC. APC score with a larger magnitude represents agreater

discrepancy fromthe meanforthat group (Deluzio etal., 2007).

PCAis a patternrecognition technique thatis beginningto gain traction in the biomechanics
literature. The goal of this analysisis a mode reduction method that can detect variant propertiesin
biomechanical data (Daffertshoferetal., 2004). The technique has upside as it accounts for variability in
a data set, which is an assetin biomechanics research because, as noted before, human movementis
inherently variable. A second positive aspect of thistechnique isthatit considers the entire waveform of
data as opposed to discrete data points. Averages, maximums and minimums of kinematicand kinetic
data can be useful inanswering some research questions but may miss crucial information by neglecting
orreducing aspects of the waveform (Khalaf etal., 1999; Wrigley etal., 2005). Inthe biomechanics
literature PCA has been applied as a waveform analysis technique to examine variability in lifting, (Khalaf
et al.,1999; Sadleretal., 2011; Sadleretal., 2013; Wrigley etal., 2005; Wrigley et al., 2006), gait
(Deluzio & Astephen, 2014; Dona et al., 2009; Mezghani etal., 2010; Reid etal., 2010; Deluzioetal.,

1997), golfing (Lynn & Noffal, 2012) and jump rope (Bruce et al., 2016).

For this thesis the goal was to quantify movement strategy where movement strategy is defined
based on whole body motion. Previously mentioned research examines aspects of human motion via
analysis of joint specifickinematicand kineticwaveforms, but to best answerthe research questions
posedinthisthesis we need a patternrecognition approach that considers whole body motion. One

such technique to consider whole body motionis to quantify principal movements viaa PCA modelling
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approach where kinematic marker datais used as an input (Federolf, 2016). This approach was originally
developed by Troje (2002) where the datareduction technique was used to quantify differencesin
walking between males and females. This technique has been applied to quantify movement strategyin
standing (Federolf etal., 2013), alpine skiing (Federolf etal., 2014) , human gait (Maurer etal., 2012),
diving (Young & Reinkensmeyer, 2014), a fitness assessment battery (Ross et al., 2018) and cross country

skiing (Gloersen etal., 2017).

Using PCA to capture PMs has benefits of capturingwholebody motion butis also beneficial as
it can be contextualized within the OFCframework. Previously, PCA has been used to quantify variability
injointanglesina reachingtaskto determine whethervariability was task relevant or not (Todorov &
Jordan, 2002). PCA was successful inidentifying redundancy in the task execution, which supports that
PCAis conceptually compatible with the theoretical framework of OFC. By breaking moveme nt strategy
downinto PMs, we can identify aspects of movement that explain variance in the dataset. By testing for
differencesin PMs between groups, we can beginto understand what components of movement
strategy are considered task relevant for low relative biomechanical exposure lifters and controlled in
the OFC framework. In this thesis, OFCis used as a theoretical framework to hypothesize why
movements might differ between groups and across conditions. This proposed PCA approach allows us
to testwhetherlow relative biomechanical exposure lifters control aspects of movement strategy

differently than high relative biomechanical exposure lifters by comparing mean PMscores.

With whole body PCA driven pattern recognition approaches a common limitationis that many
of the analyses have conducted separate PCA analysis on each participant. This method mayresultin
the principal components explaining different aspects of variance in each participant. Applying this
approach with all participants’ datain a single PCA model can allow for comparison between
participants as with the use of a componentreconstruction we can recreate PMs. Gloersen et al., (2017)

used this approach to compare differencesin alpine skiing movement strategy between athletes with
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two levels of proficiency. Intheiranalysis they were ableto identify differences in movement strategy
between the twolevels of proficiency as experts activated hip flexors in phase with release of potential
energy from the ski poles and controlled their skis to betteralign theirskisinthe forward directionin
the gliding phase. The authorsrecognized that the differences do notimply acausal relationship
between PMs and performance but with the visualization of PMs coaches can train skiers to mimic
movement strategy of experts toimprove performance. Using this approach in an occupational context,
we may be able to identify differencesin movement strategy between lifts with and without low back
sparing strategies. No previous literature has quantified differences in whole body motion during
occupational lifting between high and low biomechanical exposurelifters using this PCA approach. This
thesis will allowforidentification of differencesin PMs between the two groups as Gloersen et al. (2017)
have done forcross country skiers. With the ability to visualize differences in movement strategy this

will provide direction to inform training strategies to improve lifting mechanics in the workplace.

Usingthis PCA pattern recognition approach, we willbe able toidentify PMs within a population
for a backboard lifting task. An added benefit to thisapproachisthat in addition to identifying
differencesin movementstrategy between high and low relative biomechanical exposure individuals we
are able toreconstruct motion using PMs and theirrespective PMscore (Troje, 2002). The outputs of
the reconstruction will produce athree-dimensional representation of the body foreach group based on
differencesin PMs that explain most of the variance in the data set. With this visualization, we can
display how movement strategy differs as afunction of biomechanical consequencestoaidinthe

practical objective of assessing movement strategy.

Considering past use of PCAin biomechanics research, itsrole has been to identify differencesin
kinematics between groups. Forinterpretation of PCA analysis PMs can be classified onthe aspect of
variability they represent as magnitude, difference ora phase shift operator, whichis consistent with

descriptions from Wrigley et al. (2005). Magnitude operators look atamplitude of the waveform, phase
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shift operatoris a temporal shift of the average waveform and adifference operator quantifies where
the waveform crosses. Interpretation of PMs as one of the three listed operators will allowus to

understand how differences in PMs influence movement strategy.
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3.0 Research Questions and Hypotheses
Research Question 1: How does movement strategy differ between high and low relative biomechanical

exposure lifts and across light, medium and heavy relative demand conditions when performing

backboard lifting?

Itis hypothesized that differencesin PMscores will be observedin some PMs between high and

low relative biomechanical exposurelifts and across relative de mand conditions.

Thisresearch question aimsto objectively identify how features of movement differbetween
high and low exposure lifts. Relative demand is considered as a second independent variable as it has
been noted as a determinant of lifting strategy in past literature (Albert et al., 2008; Plamondonetal.,
2017). Resultsto this research question can be used to develop traininginterventions that stress

features of movementassociated with lower biomechanical exposures.

Research Question 2: How does average movement strategy differ between high and low relative
biomechanical exposure lifters and across light, medium and heavy relative demand conditionsin

backboard lifting?

It is hypothesized that there will be significant differences of mean PM scores between high and
low relative biomechanical exposurelifters at heavy relative demands in PMs where significant main
effects of relative biomechanical exposure were seeninresearch question 1. Across PMs, it is
hypothesized that there willbe main effects of relative demand on PMscores consistent with findings
fromresearch question 1. In PMs where there are interaction effects between relative biomechanical
exposure and relativedemand itis hypothesized that there willno differences of PMscore s between
relative biomechanical exposure groups at the medium and light relative demand conditions as revealed

by post hoc testing. No differences are hypothesized between high and low exposure lifters atthe light
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and mediumrelative demandsis because the greaterabundance of available strategies at lower relative
demands will allow participants to consider optimizing otherfactors, much as minimizing energy

expenditure, instead of optimizing resultant relative biomechanical exposure.

Thisresearch question extends on research question 1 by determining whether features of
movementidentified to be related to biomechanical exposure are consistently controlled to identify
lifters by theirresultant exposure within a motor control framework. By comparing the mean movement
strategy in the context of Glazier’s (2017) motor control model it accounts for the inherent variability in
movement because of the motorabundancy our bodies have to achieve task performance (Latash,
2012). By considering mean movement strategy, it will inform what features of movement related to
relative biomechanical exposure (identified in research question 1) are consistently controlled toinform
movement strategy assessment. While many features of movement may be identified as associated with
resultant biomechanical exposure in research question 1, only factors which are consistently controlled
as probedinresearch question 2can be usedto inform assessment of strategy. Once again, relative
demandis considered as a potential confounding factor where there may be aninteraction between
relative biomechanical exposure and relative demand on mean movement strategy between high and
low exposure lifters. A potential interaction of relative biomechanical exposureand relative demand

would have implications forassessing backboard movement strategy in practice.
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4.0 Methods
4.1 Study Design

In this cross-sectional within-subjects study design, participants came to the Occupational
Biomechanics and Ergonomics lab (OBEL) at the University of Waterloo where kinematicand kineticdata
were collected while participants performed backboard lifting actions. Using the kinematicand kinetic
data liftsand lifters were stratified into high and low relative biomechanical exposure groups. These
data were used toidentify PMs. Differences in PMscores were compared between high and low relative
biomechanical exposure lifts and lifters to reveal how movement strategies differed between the two
groups. Lastly, the research design allowed us to explore if these movement strategy differences were

consistentacross light, medium and heavy relative demands.

In research question 1, the independent measures included relative biomechanical exposure status and
relative demand condition. Relative biomechanical exposure status was determined as high orlow for
each lift, based on an aggregate measure including peak low back angle, peak low back momentand
moment at peak low back angle. PMscores for retained PMs were included as dependentvariables. To
address the second research the independent variables were once again relative biomechanical
exposure status and relative demand condition. However, for the purpose of research question 2,

relative biomechanical exposure status was based on a lifter’s combined biomechanical exposure across

all 10 heavy relative demand lifts. PMscoresin retained PMs remained as the dependent variables.

4.2 Participants

Twenty-eight participants were recruited to participate in this research study (Table 1). Lifting
experience was considered during enrolment to ensure that the participant pool represented a range of

expertiseincluding less experienced lifters and those more proficientin backboard lifting (e.g.,
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paramedic’sintrainingoractive duty paramedics). It wasimportanttoinclude arange of expertisein
backboard lifting so that the participant pool reflected arange of movementstrategies that could be
usedinbackboard lifting. To maintain externalvalidity of findings a portion of the population was
recruited from the paramedicsector so that movement strategy used onthe job is consideredinthe
analysis. To maximize internal validity all participants were injury free in the previous yearto be eligible

to participate in the study as injury could affect movement strategy used.

Table 1: Participant Demographics.

Participant Group Sex Age (years) Height (m) Weight (kg)
ParamedicExperience 79,58 25.1+3.4 1.71£0.10 82.1+15.1
No Experience 79,94 23.2+2.2 1.74 £ 0.12 75.5+17.0

All 149,14 3 24.0+2.8 1.73+0.11 78.3+16.3

Priorto study commencement, the study protocol was approved by both a University of
Waterloo Research Ethics Committee (ORE#22811) and a Conestoga College Research Ethics Board (REB

#247). All participants provided informed consent priorto participationinthe study.

4.3 Instrumentation
4.3.1 Motion Capture

A 12-camera Viconsystem (6Verov2.2, 6 Vantage V5, Vicon Motion Capture, CA, USA) was used
to capture 3D motion data. Motion data were sampled at 100 Hz using Vicon Nexus (Version 2.0, Vicon,

Oxford, UK) software. Anillustration of reflective markerplacementisseenin Figure 8.
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Figure 8: Placement of reflective Vicon markers for motion capture collection.

4.3.2 Force Plates

Ground reaction forces and moments were collected using two force plates (Bertec Corporation,

Columbus, OH, USA) synchronized with VICON Nexus 2.0software ata sample rate of 1000 Hz.

4.4 Protocol

Experimental protocol forthe study was broken up into two sessions; aone-repetition

maximum (1RM) testing session and a backboard lifting session (Figure 9) which took place on separate

36



days. In the 1RM session participants began with a walkthrough of the methods and signing consent to
participate. Afterthe consent process was completed their IRM backboard lift was determined through
a sub-maximal estimate (LeSueretal., 1997). Although the sub-maximal estimate equation is validated
for use onthe squat, deadliftand bench press, the backboard lift was evaluated as if it was a resistance

training exercise.

In each participant’s second session, they arrived at the lab and were prepared with reflective
markers for motion capture. When all markers were affixed, staticand dynamiccalibration trials were
collected priorto beginninglifting exertions. They then performed 10 single lifting trials of the
backboard in each of three differentload conditions corresponding to 25%, 50% and 75% of their IRM

backboard lift. The order of presentation of liftingloads was randomized.

Session 1:

Participant Consent Scoop Stretcher
and Walkthrough 1RM Testing
10 minutes 15 minutes

Session 2:

Marker Placement

and Calibration *
30 Minutes

30 Lifting Trials
70 Minutes

Figure 9: Protocol overviewwith estimated associated timing forsessions 1and 2.
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4.4.1 Session 1 — 1RM testing

In session one participants tested their backboard lift IRM. The calculated backboard 1IRM was

used to scale the loads on the backboard in the second session.

Priorto the sub-maximal testingall participants were lead through awarm up. This warm-up
primarily targeted the lower body as the focus of the 1RM testing was a lifting exertion. Warm-up
consisted of large steps and twistingtothe lead leg, body weight squats, body weight lunges, sagittal
plane hip swings and frontal plane hip swings. The 1RM testing protocol was consistent with the Center
for Community, Clinical and Applied Research Excellence standard operating procedure on 1IRM testing
(Appendix A) which refers to Baechle & Earle (2000) and Heyward (2014). In this protocol, participants
performedafirstset of 10 repetitions with an approximated load ranging between 40-60% of their 1IRM.
A three minute rest wasthentaken priorto a second warm-up set of 3-5 repetitions with approximately
60-80% of a participants anticipated 1RM. A five minute rest break was taken priorto the third setin
which the number of repetitions performed and mass of the load were used to estimate participants’
1RM. Based on feedback fromthe participant inset 2 the researcherselected aload corresponding to
~90% of a participants’ 1IRM for the third testing set. Participants performed the maximum number of
repetitions possibleinthe third set priorto endingthe setdue to self-reported fatigue. A research
assistant could also terminate this testing setif the participant changed their movement strategy mid
set. Changing of movement strategy served as a safety criterion where researchers interpreted a change
instrategy as an inability to control the load. Participants were encouraged to self-select their
movement strategy and were made aware that changesin strategy mid-set would resultin termination

of the set.
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Using the mass of the load and the number of repetitions performed equation 1 was used to
estimate a participant’s true 1RM (Wathan, 1994). This equation showed the best predictive value when

evaluated against other 1RM predictiontools (LeSueretal., 1997).

(Repweight (kg))

Equation 1: 1RM =100 * (488+538+¢(-0075:(# of reps)),

4.4.2 Session 2 — Backboard Lifting
4.4.2.1 Participant preparation and calibration

Session 2 began with participants arriving at the OBEL lab where they were prepped for motion
capture collection. Markers were placed on the following landmarks bilaterally for calibration: 1%
metatarsal head, 5" metatarsal head, calcaneous tuberosity, medial and lateral malleoli, medial and
lateral femoral condyles, greater trochanters, lateral iliac crests, anterior superioriliacspines, posterior
superioriliacspines, acromia, sternum, xyphoid process, C7, T8, medial and lateral epicondyles, ulnar
and radial styloid, 2" metacarpal head and 5" metacarpal head. Rigid bodies with four reflective
markers were attached on each segment of interest (bilateral shanks, thighs, upperarm, forearm, hand,
pelvisand thorax). Rigid bodies remained on the participant during active lifting trials and calibration

markers were removed. To limitthe movement of rigid clusters they were fastened to the participant

with Velcro straps.

A staticcalibration trial was collected with the participantin a ‘motorbike’ pose which is the

recommended postureas writtenin the Vicon Nexus 2.0user manual (Figure 10).
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Figure 10: Representation of participantin the motorbike pose from Visual3D from the frontal (left) and

sagittal (right) plane.

Dynamicmovement calibration trials were also collected where the participant moved all joints
through the range of motionthat will be usedinlifting trials. Vicon recommends using full range of
motion calibrations as they resultinthe bestlabeling of markers collected in experimental trials. The
data pointsinthis dynamiccalibration trial were manually labelled and then used to create a model

template, which was applied to lifting trials to label markers.

4.4.2.2 Lifting Trials

Participants completed 10lifting repetitions in each of the three relative demand conditions:

low, medium and high. These repetitions were completed with the relative demand on the backboard
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being 25%, 50% and 75% of their 1IRM backboard lift within +2 kg. Barbell plates were used toload the
backboard. Because the exertionisatwo-person lift, atrained lift partnerlifted the opposite side of the
board. The participant was responsible for countingand cueing on each lift inan effort to minimize the
influencethe effect of the lifting partner minimally on a participant’s movement strategy. The use of a

lifting partner was necessary to increase external validity where a backboard liftis routinely completed

as a partnered lift.

The relative demand inthe lifting trials was randomized in order to minimize fatigue, learning
effects and complacency ata given load. These factors could affect a participant’s movement strategy,
which would reduce the internal validity of the study design. Randomization also increased external
validity, asany given lifting trial willbe more representative of the single repetition lifts paramedics

performonthe job.

To minimize fatigue in this study mandatory 1-minute breaks were taken afterevery lifting trial
and a 3-minute break was mandated after every 5repetitions. Inasimilar repetitive lifting based
protocol Sheppard etal. (2016) used these resttimesto preventfatigue. In addition to the mandatory
rest periods, participants were allowed to take as much time as they needed to recover between lifting
trials so that they were not experiencing subjective fatigue before the nexttrial. Asample lifting

protocolis picturedin Figure 11.

1 min rest 1 min rest 1 min rest 1 min rest 3 min rest 1 min rest
Lift 1: Lift 2: Lift 3: Lift 4: Lift 5: Lift 6: Lift 29: Lift 30:
1 S ] e 1t Y
Light Heavy Medium Medium Light Medium Heavy Light

Figure 11: Sample randomized liftingtrial order with resttimes.
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4.5 Data Processing

Figure 12 illustrates the general flow of datatreatmentand analysis. Methods are describedin

greater detail in the following sections.

Data Collected Data Treatment  Kinematic Model Outputs

Label and

Motion Capture |mmepfll

- 100Hz Filter

Position Data
for PCA

Visual 3D

Model

Filter
Ground Reaction / \

Force - 1000Hz

Low Back Moment

and Angle

Figure 12: General flow of data collection, treatment and analysis.

4.5.1 Data Treatment

Kinematicdata were examined in Nexus 2.0software for missing or unlabeled data points. Any
instances of missing markers were filled using gap filling functions builtinto Nexus 2.0. Forgaps less
than 200 ms in duration, a cubic spline was used to fill missing data points. If marker data were missing
for more than 200 ms either patternfill orrigid body fill was used. Thisis consistent with recommended
gap filling techniques outlined by Howarth and Callaghan (2010). The rigid body fill technique was
preferred overthe patternfill asit usesthe position of three other cluster markers to infer position of
the missing data. The patternfill uses position data of one other markerto interpolate position of the
missing marker. Patternfill was only used whenthere were not 3 available markers onthe rigid body

clusterat the time pointwhich the gap needsto befilled.
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4.5.2 Data Analysis

Marker trajectories and ground reaction forces were imported into Visual3D (C-Motion Inc.,
Germantown, USA) software foranalysis. Prior to data analysis kinematicand force data were dual pass
filtered in Visual3D through alow pass second order Butterworth filter with an effective cut off
frequency of 6 Hz (Winter, 2009). To filter atan effective cut off frequency of 6 Hz an initial filter cut off

was setat 7.5 Hz for the first pass through the filter as on each pass the effective cut off frequency

decreases.

Afterfiltering, awhole body kinematic modelwas created consisting of pelvis and thorax
segmentsinaddition to bilateralfoot, shank, thigh, upperarm, forearm, and hand segments. Markers
placed mediallyand laterally on their proximal and distal endpoints defined footand shank segments.
The anatomical markers on the iliaccrests, acromia, suprasternal notch, xyphoid process, C7and T8,
definedthe thorax segment. The thigh was defined by the medial and lateral markers atthe knee joint
as well asan estimate of hip joint centre as calculated in equation 2 based on Bell etal., (1989) and
(1990). A Coda pelvis was used defined by the rightand left ASISand PSIS as well as the hip joint centres.
Markers placed medially and laterally ontheir proximal and distal endpoints defined the hands and
forearms. The upperarm was defined distally by markers on the medial and lateral epicondyles and
proximally as the glenohumeral joint centre which was approximated at 60mm from the acromionin the

negative direction of the local Y axis of the thorax (Nussbaum & Zhang, 2000).

Equation 2: Hip Joint Centre = (£0.36 x ASIS _Distance,—0.19 = ASIS _Distance +

(0.5RPV_Depth — Target_Radius_ASIS),—0.3 = ASIS_Distance)
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A liftingtrial was defined as the initial motion to approach the load through until lift completion.
Visual3D was used to create events to detectthe liftinitiation and completion time points. Only motion
and force data within the initiation to completion range were considered in analysis. Time of
approachingthe load was defined as the local maximum of hand positionin the vertical priorto descent.
Lift completion was defined as the time point at local maximum of hand position in the vertical axis after

the hand segmentreached aglobal minimumin the vertical.

To calculate joint kinematics for the low back ISB recommendations were followed to define
segment coordinate systems (Wu et al., 2002; 2005). Jointangles were calculated as the distal segment
relative tothe proximal segment using an order of Eulerrotations of Z-Y-X or flexion/extension,

abduction/adduction and axial rotation sequence.

Positional datarequired for the PCA analysis was calculated based on the Visual3D kinematic
model. Thisincluded joint centres bilaterally for the wrist, elbow, shoulder, ankle, knee and hip; and
centres of gravity for the trunk, head, pelvisand feet, such that each pose is represented by 17 data

points.

A bottom-upinverse dynamics approach was used to calculate joint moments about the thorax
relative to the pelvis (herein referred to as low back) in Visual3D using kinematic and ground reaction
force data. Ground reaction force data from each respective force plate was applied to the centre of
pressure foreach foot segment, respectively. Visual3D defaults for segment anthropometrics and

inertial properties were used for kineticcalculations based on Hanavan’s (1964) equations to estimate

inertial properties of segments.

Low back momentand sagittal anglesforall given lifting trials were exported to Matlab
(MathWorks, Boston, MA) where peak values foreach variable were identified and extracted. Low back

moment was also extracted at peak sagittal low back angle. For both the peak momentand momentat
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peak low back angle, values were divided by the sum of the participant’s mass and the mass of the load
inthat trial. This resulted in normalized moments that differed as a function of movement strategy not

mass.

4.5.3 Dichotomizing into High vs. Low Biomechanical Exposure Lifts and Lifters
Using low back anglesand normalized moments lifts and lifters were identified as high or low

relative biomechanical exposure. The flow of datato group lifts and lifters as either high orlow relative

biomechanical exposure are pictured in Figure 13and 14 respectively.
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Moment at Peak

Peak Low Back Peak Low Back

Low Back

Angle Moment
Angle
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pant’s mass and pant’s mass and

mass of load mass of load

v v
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Calculate z-score

Sum z-scores to

get aggregate
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Dichotomize lifts

Half with higher Half with lower

Z-score. Z-score:
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Figure 13: Classifyinglifts as high orlow relative biomechanical exposure where peak sagittal low back
angle, peaklow back momentand low back moment at peak sagittal low back angleina lift were inputs.
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Figure 14: Classifyinglifters as high or low relative biomechanical exposure where peak sagittal low back
angle, peaklow back momentand low back momentat peak sagittal low back angle in heavy lifts were

inputs.
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To define high and low relative biomechanical exposure lifts peak sagittal low back angle, peak
normalized momentand normalized moment at peak sagittal low back angle, were used to calculate an
aggregate measure of biomechanical demand where these variables are associated with lowback injury
risk (Marras, 1993). There is also evidence that suggests angles and moments can be perceived by
participants (Fischer & Dickerson, 2014; Jorgensen et al., 1999; Kuijeretal., 2012), and therefore could
provide sensory information withinthe OFC framework. The z-score was calculated foreach variable in
each trial relative to data of all lifting trials from all participants. This expressed each value relative to
the mean of all data where a positive z-scoreimposes higher relative biomechanical exposure (higher
moment or sagittal angle magnitude) and a negative z-score imposes lower relative biomechanical

exposure.

From this analysis, each trial was defined by three corresponding z-scores, one foreach variable

of interest. To getan aggregate measure of relative biomechanical exposure of aliftthe three z-scores

were summed for each trial with a lowersum havinglower relative biomechanical exposure.

Using the summed z-scores lifts were dichotomized as either high orlow relative biomechanical
exposures based onthe median of summed z-scores. Scores above the median were high relative
biomechanical exposure and scores below the median were low relative biomechanical exposure.

Grouping(‘high’ or ‘low’) based on relative biomechanical exposurewas the independent variable.

To define high vs. low relative biomechanical exposure lifters decisions were made based on
resultant relative biomechanical exposures in heavy lifting. The normalized biomechanical variables of
interest were once again expressed as z-scores only considering heavy lifting trialsin the data set.
Expressing the biomechanical measures atthe heavy relative demand as z-scores without considering
measures at the light and medium demands provides a measure of exposure in the relative demand

condition that poses the highest MSDrisk due to higherassociated absolute biomechanical exposures.
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Once again, the z-scores were summed for each trial to give an aggregate measure of relative
biomechanical exposure, and then these aggregate measures were averaged within each participant.
The high exposure lifters were participants with amean aggregate z-score greaterthan one and low
exposure lifters werethose with amean aggregate z-score less than one (Figure 15). Ascalar of one
away fromthe mean was setas a cut off to define lifters as high or low exposure. Since this cut off is
based on z-scores, conceptually, the cut offs represent one standard deviation above or below the

mean. Thisresultedin 8 high exposure lifters and 10 low exposure lifters.

Low Exposure Lifter High Exposure Lifter

5 4 -3 -2 - 0 1 2 3 4 5

Summed Z-Score

Figure 15: Mean aggregate z-scores to calculate biomechanical exposure where mean scores greater

than 1 define ahigh exposure lifterand mean scoresless than -1 define alow exposurelifter.

4.6 Statistical Analysis
4.6.1 Principal Component Analysis for Pattern Recognition

All lift cycles were time normalized to 101 pointsin Matlab. To control foranthropometric
differencesall raw coordinate data forthe 17 anatomical inputs were divided by the participant’s height
to normalize position data (Rossetal., 2018). At each time point posture was represented by avector m
where the three-dimensional coordinates of the 17 anatomical inputs defined an m = 51 dimensional
posture vector. Fora giventrial movement was represented by avector p which includes the postural

vector (m) at each time pointresultingin p= 5151 foreach trial as there are 101 time points. Vectorn
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represented the number of lifting trials and with 28 participants performing 10 lifting trials in each
relative demand condition n=840. Due to two participants dropping out mid-way through the second
data collection and asmall number of lifting trials being removed due to errorsin the data a total of 804

lifting trials were used foranalysis (n =804). The data set forthe study was then represented as a matrix

). This

X . . . . X
of (——) where nisthe number of row vectors which are all collapsed into one matrix (————
nxp 804 x 5151

matrix was then transformed into a covariance matrix (m) which can be usedtofind PMs (Wrigley et

al., 2006). The covariance matrix is used opposed to the correlation matrix as the correlation matrixis

bettersuited for datasetswhere variables are measured in different units (Jackson, 2001). The

. . . . U .
covariance matrix was orthonormalized to get the eigenvector matrix (m). The eigenvectors represent

the PMs in the data set. These PMs describe the datain a new coordinate space, which are oriented to
objectively explain variability in the dataset. PMs are all orthogonal toone anotherand each
subsequent PCexplains less variability in the data set. With the covariance and eigenvector matrix the
eigenvalues, which are ascaling factor to the eigenvectors, were calculated. The eigenvectors foreach
PM were scaled to the amount of variance explained by a PM to give a loading vector. The loading
vectorexplains whereinthe time domainvariance is explainedinagiven PM, where alarger magnitude
indicates more variance explained at that time point. Using the eigenvectors and eigenvalues a PMscore
was calculated foreach trial in each PM. The PM score is a measure of how far the mode of variability in

the trial deviates from the mean of that mode of variability ina PM (Wrigley et al., 2006).

A single PCA model was used whichincludes all lifting trials. This allowed for comparisons of
PMs between high and low relative biomechanical exposure lifts across relative demands (research
question 1), and to compare mean PM scores between high and low exposure lifters across relative

demands (research question 2).
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To determine whethertoretaina PM a parallel analysis technique was used. Parallel analysis
retains PMs which explain more variability than what would be explained by chance alone (Wrigley et
al., 2005). Parallel analysisis reported as the most accurate method of retaining P Ms (Hayton etal.,
2004) and so was preferred overalternatives such as the trace criterion which retain PMs until a specific
amount of variability is captured (Jackson, 1991; Deluzio & Astephen, 2007; Sadleretal., 2011; Reid et
al., 2010). Power equations developed by Fischeretal. (2014) were used to provide an estimate of what
percentage of variation arandom data set will explain for different PMs. If the variance explained inthe

experimental datasetata given PM was largerthan the percentage calculated inthe power equation,

thenthat PM was retained.

4.6.2 Statistical tests for hypothesis testing

To testthe hypothesis forresearch question 1a two-way ANOVA (a =0.05) with factors of
relative biomechanical exposure (2levels: ‘high’ and ‘low’) and relative demand (3 levels: 25%, 50%,
75%) was run to test fordifferences between PMscores. Where significant main effects of relative
demand or interaction effects were observed post hoctesting was conducted where p-values were

corrected using a Bonferroni adjustment.

For research question 2, a two-way mixed ANOVA (a =0.05) with a between factor of relative
biomechanical exposure lifter (high vs. low) and a within factor of relative demand was used to test for
differencesin mean PMscores for each retained PM. Where significant main effects of relative demand
orinteraction effects were observed post hoctesting was conducted where p-values were corrected

using a Bonferroni adjustment.

Priorto all statistical tests, the normality of the datawere assessed using the Shapiro-Wilks test

of normality. Fortwo-way mixed ANOVAs Mauchly’s test of sphericity was used to assess the
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assumption of sphericity of data. SPSS version 22 (SPSS Inc., Chicago, IL, USA) was used for all hypothesis

testing.

4.6.3 Interpreting Differences in Principal Movements

Where a significant difference in PMscores emerged in any statistical tests, a follow-up analysis
was conducted toidentify the operator (magnitude, phase shift or difference) of the PM. To classify the
operator of each PM single component reconstruction was used (Brandon et al., 2013). For single
componentreconstruction the 5" and 95" percentilereconstructed waveforms are cal culated using
equations3and 4 (reproduced from Brandon et al. (2013)) withina PM and then compared to
determine operator. The X,and X, representthe reconstructed upper (95" percentile) and lower (5%
percentile) waveforms, x representsthe meantemporal waveform, u.isthe loading vectorforthe PM
of interestand zy; and z; are the scalar PM scores forthe PM of interest. These upperand lower
percentile waveforms were plotted forvisual examination to determine the operator of the PMof
interest. Adifferencein magnitudes between the two single PMreconstructions represents a magnitude
operator, an intersection of the upperand lowerreconstructions was a difference operator, and a
difference intiming between upperand lowerreconstructions was a phase shift operator. Example of
magnitude, phase shift and difference operators as defined by Brandon etal., (2013) are illustratedin

Figure 16.

Equation3: X;= x+ Ug=* Zg

Equation4: Xy= x+ Ugp* Zgs
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Figure 16: Conceptual examples of single component PC reconstruction of a 95" percentile (blue) and 5"
percentile (red-dashed) waveform plotted with the average (black) waveform. These plots demonstrate
a magnitude operator (left), difference operator (middle) and phase shift operator (right) foraretained

PC. Figure adapted from Brandon et al., 2013.

To aid inthe interpretation of each PMthe shape of the loading vector was also consideredin
additiontosingle component reconstruction. Although single component reconstruction provides a
visual reconstruction of the 5™ and 95™" percentile movementinaparticularPM (Brandonetal., 2013)
there isstill subjectivityinthe interpretationin how the movement strategy differs. To add objectivityto
this process we can considerthe shape of the loading vector, which highlights how much variance is
explained by the PM at each pointintime alongthe waveform. As the magnitude of the loading vector
moves away from 0 a greater portion of variance is explained. The shape of the loading vectoralso
relates tothe mode of variance explained where if the waveform does not cross 0 it suggests a
magnitude operator whileawaveformthat does cross zerois more likely a difference or phase shift
operator. For the PCAmethodology there isaloading vector magnitude foreach anatomical input, in

each axis, ateach time point. Todisplay the meanloading vectorthe loading vector magnitude foreach
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time pointisaveragedtodisplay acurve with 101 points onthe x-axis (timedomain)and an averaged

magnitude on the y-axis.

Use of the average loading vector provides context on where in the time domain greater
variance is explained but does not provide information on which anatomical inputs contribute most to
loading vector. To gain insightinto which anatomical inputs contribute most to the variance explained
the loading vectors for each anatomical input were plotted individually. To do this the loading vector
correspondingtothex, y, and z trajectory components of each marker were averaged across all time
pointsandthenthe resultantaveraged anatomical landmark loading vectors are plotted on the same
figure. Thisallows foracomparison of variance explained across the anatomical inputs to guide where

to focusinterpretation locally. This plotting approach also retains informationin the time domain.

4.6.4 Visualizing Principal Movements
To visually display how movement strategy differs between high and low relative biomechanical

exposure and as a function of relative single component reconstructions of PMs where significant

differences exist were summed to give an aggregate reconstruction (Equation 5).

Equation5: 1 = pu + Y(LVpyy * @)

whereristhe reconstructed data, i is the mean movementacross all lifting trials, LV is the loading
vectorof aretained PMand a isa integertoscale the contribution of the loading vector. Only loading
vectors of PMs where significant differences were observed inindependent variables wereincluded in
the reconstruction. The a was scaled as the mean plus a standard deviation for each conditionin each
PMwhere significant differences were observed. In the relative demand reconstruction, the ainthe
medium condition was scaled to the mean PM score without adding a standard deviation measure.
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Separate aggregate reconstructions were done to visualize differences both as afunction of relative
biomechanical exposure and of relative demand. Aggregate reconstructions were not used foranalysis

but provide avisual representation of movementto supportapplications of experimentalfindingsin a

practical context.
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5.0 Results
5.1 Defining High vs. Low Relative Biomechanical Exposure Lifts and Lifters

High and low exposure lifts were defined based on the aggregate z-score of alift relative to the
median aggregate z-score. A comparison of descriptive statistics between high and low exposure lifts
revealed descriptively higher peak low back angle, peak low back momentand low back moment at

peaklow back angle in high exposure lifts (Table 2).

Table 2: Descriptive statistics of low back biomechanical exposure measuresin high vs. low relative

biomechanical exposure lifts across relative demand conditions. Independent t-tests were used to
determine whethervariables significantly differed between lift groups.

Biomechanical Exposure Low Exposure Lift High Exposure Lift t-test results
Measure (Mean + Standard (Mean + Standard
Deviation) Deviation)
Peak Low Back Angle (°) 34.62 £9.30 44.40 £8.52 t(802) =-14.13,
p < 0.001
Peak Low Back Moment 0.041 £0.013 0.086 +£0.050 t(802) =-17.43,
(Nm / body mass kg / p <0.001
load kg)
Low Back Moment at 0.020 +£0.009 0.053 £0.032 t(802) =-19.29,
Peak Low Back Angle p <0.001
(Nm /body mass kg /
load kg)

High and low exposure lifters were defined based on a mean of aggregate z-scores calculated in
the heavy lift condition (Table 3). High exposure lifters had descriptively higher peak low back angle,
peaklow back momentandlow back momentat peaklow back angle comparedto the low exposure

lifters (Table 4).
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Table 3: Demographics of high and low exposure lifters.

Participant Group Paramedic Sex Age (years) Height(m) | Weight(kg)
Experience

High Exposure (n= 8) 2 yes,6no 69,28 242 +4.4 1.69 +0.14 65.4 + 14.5

Low Exposure (n =10) 4 yes,6no 49,63 241+25 1.77 £0.09 87.2+11.7

Table 4: Descriptive statistics of low back biomechanical exposure measuresin high vs. low relative

biomechanical exposure liftersin the heavy relative demand condition. Independent t-tests were used
to determine whethervariables significantly differed between lifter groups.

Biomechanical Exposure Low Exposure Lifter High Exposure Lifter t-test results
Measure (Mean + Standard (Mean + Standard
Deviation) Deviation)
Peak Low Back Angle (°) 32.29 +9.69 46.37 £11.12 t(594) =-16.52,
p <0.001
Peak Low Back Moment 0.032 £0.011 0.059 +0.026 t(594) =-12.01,
(Nm /body mass kg / p <0.001
load kg)
Low Back Moment at 0.014 +0.005 0.033 £0.017 t(594) =-13.14,
Peak Low Back Angle p <0.001
(Nm /body mass kg /
load kg)

5.2 Retaining and Interpreting PMs for Analysis

The parallel analysis retained 6 PMs (Table 5). The retained PMs explained 87.7% of the overall

variance in the motion data.
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Table 5: Variance explained compared to variance explained by chance where bolded PMs were
retained foranalysis. Variance explained by chance was calculated using methods reported by Fischer et
al.(2014).

Principal Movement Variance Explained Variance Explained by Chance
PM1 46.8% 1.5%
PM2 15.8% 1.7%
PM3 9.9% 1.8%
PM4 7.0% 1.9%
PM5 5.8% 1.9%
PM6 2.5% 2.0%
PM7 1.4% 1.9%
PM8 1.0% 1.8%

PM1 wasinterpreted as a magnitude operator explaining differences inthe AP positioning of the
body relative tothe load. The 5™ percentilereconstruction is closertothe loadinthe AP direction while
the 95t percentile reconstructionis furtheraway (Figure 17a). There are no discernable differencesin
the medio-lateral (ML) direction between reconstructions (Figure 17b). The supplementary loading
vector plots (Figure 17¢c, marker specific; Figure 17d, average) reinforce that this PMis a magnitude
operatoras the variance explained across both markersis consistent overtime and does not cross 0.

This PM will herein be referred to as explaining AP body position.
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Figure 17: Single component reconstruction of PM1from the sagittal (A) and frontal B) views. The black
tracing is the reconstruction of the 5" percentile PMscore and the red tracingis the reconstruction of
the 95t percentile PMscore. Both anatomical input specific (C) and averaged (D) loading vectors show
where variance is explainedinthe PM.
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PM2 was interpreted asa magnitude operatorexplaining differencesin lift sequencing. The 5
percentile reconstruction uses adistal to proximal strategy while 95® percentile moves about all joints in
phase (Figure 18a,b). Additionally, the 5" percentile reconstruction has more uprighttrunk and a squat-
like movement strategy whereas 95" percentile reconstruction uses more hip and low back driven
movement. The average loading vector (Figure 18d) supports that the general mode of variance
explainedin PM2is a magnitude operator whilein the markerspecificloading vector (Figure 18c) the
variance explained forthe head seemsto be a difference operator. This PMwill herein be referred to as

explaining body sequencing.
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Figure 18: Single component reconstruction of PM2 from the sagittal (A) and frontal B) views. The black
tracing is the reconstruction of the 5" percentile PMscore and the red tracingis the reconstruction of
the 95" percentile PMscore. Both anatomical input specific(C) and averaged (D) loading vectors show
where variance is explainedinthe PM.
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PM3 wasinterpreted as a magnitude operator explaining differencesin ML body position and
sagittal trunk angle. The 5™ percentile reconstruction has a more flexed trunk whilethe 95% percentile
reconstruction maintains amore uprighttrunk (Figure 19a). There is an offsetin the ML direction
between 5™ and 95" percentile reconstructions (Figure 19b). The supplementary loading vector plots
(Figure 19¢, marker specific; Figure 19d, average) reinforce that this PMis a magnitude operatoras the
variance explained across the average loading vectoris consistent overtime and does not cross 0. This

PM will herein be referred to as explaining MLbody position/ trunk angle.
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Figure 19: Single component reconstruction of PM3 from the sagittal (A) and frontal B) views. The black
tracing is the reconstruction of the 5" percentile PMscore and the red tracingis the reconstruction of
the 95" percentile PMscore. Both anatomical input specific(C) and averaged (D) loading vectors show
where variance is explained in the PM.
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PM4 was interpreted as a phase shift operator explaining differences in lift timing. The 5t
percentile approaches the load and initiates the lift laterthan the 95 percentile reconstruction (Figure
20a,b). The supplementary loading vector plots (Figure 20c, marker specific; Figure 20d, average)
reinforce that thisPMis a phase shift operator as the variance explained across the average loading
vectorloosely resembles the shape of asine wave and crosses 0. This PM was described as a phase shift
operatoropposedto a difference operator as the movement strategy used is consistent across the 5
and 95" percentile reconstructions, which would not hold true fora difference operator. This PMwill

herein be referredto as explaining lift timing.
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Figure 20: Single componentreconstruction of PM4from the sagittal (A) and frontal B) views. The black
tracing is the reconstruction of the 5" percentile PMscore and the red tracingis the reconstruction of
the 95 percentile PMscore. Both anatomical input specific(C) and averaged (D) loading vectors show
where variance is explained inthe PM.
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PM5 wasinterpreted as a magnitude operator explaining differencesin how squat or stoop-like
a liftwas. The 5 percentile reconstruction stoop strategy, characterized by less knee flexion and greater
hip and trunk flexion (Figure 21a). Alternatively, the 95" percentile reconstruction uses asquat strategy
with greaterknee flexion and less hip and trunk flexion. Although the average loading vectorsuggestsa
phase shift or difference operator because of the waveform crossing 0 (Figure 21d), the marker specific
loading vector demonstrates that variance explained across markers individually is a magnitude

operatoras 0 is not crossed (Figure 21c). This PM will herein be referred to as explaining squat vs. stoop.
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Figure 21: Single component reconstruction of PM5 from the sagittal (A) and frontal B) views. The black
tracing is the reconstruction of the 5" percentile PMscore and the red tracingis the reconstruction of

the 95" percentile PMscore. Both anatomical input specific(C) and averaged (D) loading vectors show
where variance is explainedinthe PM.
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PM6 was interpreted as a magnitude operatorexplaining differencesin stance width. The 5t
percentile reconstruction had a widerstance width allowing the hands to stay close to the body at lift
initiation (Figure 22a,b). As with PM5, the average loading vector suggests a phase shift or difference
operator because of the waveform crossing 0 (Figure 22d), but the marker specificloading vector
demonstrates that variance explained across markersindividually isamagnitude operatorasQis

generally notcrossed (Figure 22c). This PM will herein be referred to as explaining stance width.
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Figure 22: Single component reconstruction of PM6 from the sagittal (A) and frontal B) views. The black
tracing is the reconstruction of the 5" percentile PMscore and the red tracingis the reconstruction of
the 95" percentile PMscore. Both anatomical input specific(C) and averaged (D) loading vectors show
where variance is explainedinthe PM.
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5.3 Comparing Movement Strategy across Lifts

PM scores for PMs 1-6 violated the assumption of normality (p <0.001 on Shapiro-Wilks test of
normality). However, when conducting tests of normality there is arisk of type 1 error when large
sample sizes are used (Field, 2013). For this reason, Q-Q plots representing the spread of datarelative to
the normal distribution were used to confirm findings of the Shapiro-Wilks test. Across all PMs there
was a strong visual agreement of PMscores to a normal distribution of equal mean and standard

deviation (AppendixB). With the strong visual agreement of experimental datato a normal distribution

normality was assumed allowing for the use of parametricstatistical tests.

A main effect of relative biomechanical exposure group was detected in five of six retained PMs
(1-3, 5, 6) (Table 6). A main effect of relativedemand was also detected in four of six retained PMs (1, 2,
4, and 5). No significantinteraction effects were observed. Differencesin PMscores between relative

biomechanical exposure classification and relative demand are picturedin Figure 23.
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Table 6: Summary of two-way ANOVA results comparing PMscores between high and low exposure lifts

and across light, medium and heavy relative demands. Only significant post hocresults are included.

PM Biomechanical Exposure Relative Demand Interaction Post
FL797) | »p 7 | F2797)] p 7 |F2797 ] p | m | Hoc
PM1 89.44 | >0.001 | 0.101 9.28 >0.001 | 0.023 0.28 0.755 | 0.001
AP Body Position
PM2 14.80 | >0.001 | 0.018 3.11 0.045 | 0.008 2.97 0.052 | 0.007 | H<L
Lift Sequencing
PM3 18.60 | >0.001 | 0.023 1.06 0.347 | 0.003 1.65 0.191 | 0.004
ML Body Position/
Trunk Angle
PM4 0.75 0.384 | 0.001 3.79 0.023 | 0.009 0.99 0.370 [ 0.002 [ H<M
Lift Timing
PM5 8.13 0.004 | 0.010 | 12.33 | >0.001 | 0.030 1.77 0.170 | 0.004 | H, M <
Squatvs. Stoop L
PM6 39.77 | >0.001 | 0.049 2.94 0.053 | 0.007 0.10 0.900 | 0.000
Stance Width

where significant effects are bolded; L= light, M= medium, and H = Heavy.
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Figure 23: Mean PM scores for high and low exposure lifts across light, medium and heavy relative
demands. Significant main effects of exposure are indicated by a bracket and significant main effects of

relative demand are indicated with an asterisk (*).

Using results from statistical testing an aggregate reconstruction was used to visualize

differencesin movement strategy as afunction of relative biomechanical exposure (Figure 24). The
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scalar used inreconstruction was the mean PM score of a biomechanical exposure condition one
standard deviation. Only PMs where significant main effects of relative biomechanical exposure were
observedwereincluded in reconstruction. Reconstruction revealed that low exposure lifts minimize the
horizontal distance of their body to the load, maintain amore upright trunk and initiated movement

with the lowerbody opposed to usinglow back extension.

Figure 24: Aggregate reconstruction toillustratethe net differencesin movement strategy asa function

of relative biomechanical exposure from the sagittal (top) and frontal (bottom) planes. Black tracing

represents alow exposure liftand red represents a high exposurelift.

From results of statistical testing an aggregate reconstruction was also completed to reconstruct

differencesin strategy as a function of relative demand (Figure 25). In this reconstruction, the scalarfor
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the lightand heavy lifts was set tothe mean PM score for that condition + one standard deviation. The
medium condition scalar was set tothe mean medium PMscore. This reconstruction revealsthatinthe
light condition the horizontal distance to the loadis lower, the liftisinitiated earlierinthe light
conditionand movementis synchronous across all joints at liftinitiation. Conversely, atthe heavy
relative demand the horizontal distance of the body to the load is greater, liftinitiation occurs later

temporally and adistal to proximal strategy was used where movement about joints of the lower body

preceded extension about the low back.

Figure 25: Aggregate reconstruction visualizing differencesin movement strategy as a function of
relative demand from the sagittal (top) and frontal (bottom) planes. Purple represents alight relative

demand, greenisa mediumrelative demand and blue is a heavy relative demand.
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5.4 Comparing Movement Strategy across Lifters

Testing fordifferencesin mean PMscores between high and low exposure lifters across relative
demandsforPMs 1-6 there were no violations of the assumption of normality (p >0.05 in Shapiro-Wilks
test of normality). No violations of normality allowed for the use of parametrictests. Across all data,

there were also noviolations in the assumption of sphericity (p >0.05 in Mauchly’s test of sphericity).

The use of two-way mixed ANOVAs to address research question 2 revealed asignificant main
effect of relative biomechanical exposure for PM1and significant main effects of relative demand for
PMs 2 and 5 (Table 7). In PM1 low exposure lifters had lower mean PMscores, and for both PMs 2 and 5

heavy conditions had lower mean PMscores (Figure 26).

Table 7: Summary of two-way mixed ANOVA results comparing mean PMscores between high and low
exposure lifters and across light, medium and heavy relative demands. Only significant post hocresults
are included.

PM Biomechanical Exposure Relative Demand Interaction PostHoc
F(1,16) | p n* | F(232) | p n> | F(232)| »p n?
PM1 13.89 | 0.002 | 0.465 | 0.37 0.692 | 0.023 0.96 | 0.390 | 0.057
AP Body Position
PM2 1.56 0.229 | 0.089 | 15.27 | >0.001 | 0.488 1.47 | 0.244 | 0.084 | H,M< L
Lift Sequencing
PM3 0.96 0.341 | 0.057 | 0.30 0.741 | 0.019 1.52 | 0.234 | 0.087
ML Body Position/
Trunk Angle
PM4 0.597 | 0.451 | 0.036 | 2.92 0.068 | 0.155 0.09 | 0.906 | 0.006
Lift Timing
PM5 0.46 0.505 | 0.028 | 21.16 | >0.001 | 0.569 | 0.78 | 0.463 | 0.047 | H,M<L
Squatvs. Stoop
PM6 1.70 0.210 | 0.097 | 0.46 0.631 | 0.028 1.22 | 0.308 | 0.071
Stance Width

where significant effects are bolded; L= light, M= medium, and H = Heavy
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Figure 26: Mean PM scores for high and low exposure lifters across light, medium and heavy relative
demands. Significant main effects of exposure are indicated by a bracket and significant main effects of

relative demand are indicated with an asterisk (*).
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6.0 Discussion

The application of a pattern recognition techniqueto quantify movement strategy during
backboard lifting identified differences in movement strategies between high and low exposure lifts and
lifters. The horizontal distance to the load, using a distal to proximal strategy, maintainingan upright
trunk, having greater movementaboutthe knees and keeping the hands close to the body were
features of movementrelated to lower relative biomechanical exposure. However, when averaging
features of movement within lifters, the only feature that could distinguish between high and low
exposure lifters was horizontal distance of the body to the load. Inlifts, the relative demand significantly
influenced the horizontal distance to the load, sequencing of lift execution, timing of the liftin atrial,
and whetheralift was more squat- or stoop-like. Afteraveraging features of movement within lifters,
sequencing of the liftand whetheralift was more squat- or stoop-like werethe only features that
differed asafunction of relative demand. Across both lifts and lifters, there were no significant

interaction effects between relative biomechanical exposure and relative demand.

6.1 Lift Movement Strategy as a Function of Biomechanical Exposure and Relative Demand

Supporting the first hypothesis, the application of PCA as a patternrecognition technique
identified differences in movement strategies between high and low relative biomechanical exposure
lifts. Low exposure lifts used amovement strategy that minimized the horizontal distance of the load to
the body and initiated the lift with the lower body, compared to greater horizontal distance to the load
and low back extension used in high exposure lifts. The horizontal distance of the body to the load was
influenced directly by the AP body position and awider stance width allowing the hands to be closerto
the body at liftinitiation. Areduction in horizontal distance to the load reduces the momentarmfrom

the load to the low back and therefore lower resultant low back moments (Jorgensen et al., 1999). The
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use of a distal to proximal lifting strategy in alow exposure lift is consistent with lower biomechanical
exposures experienced when a greater percentage of work is done with the lowerbody (Makhoul etal.,
2017). By initiatingthe lift with the lower extremities, the lower body would perform a greater portion
of the work where extension of the low back would only contribute inthe latter portions of th e lift. This
will avoid the low back performing work at 25% of the extension duration where the acceleration of the
external loadis greatest (De Looze et al., 1993). The more squat-like strategy in low exposurelifts
continuesto supportthe importance of performing more work with the lower body to reduce low back
exposure. Although there is no conclusive difference between squat and stoop strategy on low back
exposure (van Dieén, 1999; Straker, 2003), the use of a squat strategy with a larger stance width
allowingthe load to be close to the body reduced biomechanical exposure consistent with findings from

the van Dieén (1999) review.

Differences in movement strategy between low and high exposure lifts echoed previous
research where relative biomechanical exposureis predominantly determined by horizontal distance of
the body to the load. Thisis highlighted by only AP body position having greater than a medium effect
size (where n?=0.06 is a medium effectand n?=0.14 is a large effect), while all othersignificant main
effects of relative biomechanical exposure had a small effect (where n2=0.01 isa small effect). This
findingis consistent with areview by van Dieén etal. (1999) which showed that proximity to the load,
not movement strategy used inlifting, was the greatest determinant of biomechanical exposure. The
agreement of findings from the patternrecognition approach to past literature supports the validity of
the employed methodology to identify features of movement related to biomechanical exposure.
However, use of the pattern recognition technique was able to discern the same conclusions when
consideringthe entirety of the lift opposed torelying on discrete variables selected a priori. The pattern
recognition method was also able to reveal the association of movement strategy more efficiently. By

consideringwhole body motioninthis study it was able to discern similarresults to the van Dieénetal.
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(1999) review thatrelied onanumber of studies examining changes in kinematics at specified local
areas of interest to gleaminsightinto whole body motion. The approach of considering whole body
motion eliminates the need to explore kinematics atindividual joints and then inferring how the
differences atindividual joints contributes to differencesin whole body strategy while potentially
missinginteractions of movements across joints. The accuracy and efficiency of the employed pattern
recognition approach supportits utility to identify features of movement associated with biomechanical

exposures.

The hypothesisthat the pattern recognition method would be able to detect differencesin
movement strategy as a function of relative demand was supported. In AP body position, heavy relative
demand lifts had a body position further from the load while light lifts had the lifter closerto the load.
For body sequencing, heavy relative demand lifts used a distal to proximal movement strategy
compared to a synchronous strategy usedinlightlifting. Thisis consistent with past work, which showed
as loadincreases participants tend to liftin amore distal to proximal manner (Davis & Troup, 1965;
Scholz, 1993a, 1993b; Scholz & McMillan, 1995; Burgess-Limerick etal., 1995). The use of distal to
proximal strategy has been theorized to be a protective measureto avoid low back extension when the
acceleration of the load is greatest (Davis & Troup, 1965) which occurs at about 25% of the extension
duration (De Looze etal., 1993). Lifttiming describesaphase shift where inthe medium demand
condition the approach to the liftandinitiation of the lift was earlierin the time domain than what was
observedinlightand heavy relative demand lifts. In the squat vs. stoop feature of movement, heavy
relative demand lifts used amore stoop-like lifting strategy, whilelight relative demand lifts used a more

squat-like strategy.

Identifying differencesin body positioning and timing as a result of the relative demand of the
load are novel findings detected by the application of a patternrecognitiontechnique. It was observed

that in heavy relative demand lifts there was agreaterhorizontal distance of the body to the load, which
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seems counterintuitiveas lifting at the heavy relative demand imposes the highest absolute exposure on
the low back. However, because thereis no interaction effects between relative demand and
biomechanical exposure there is no evidence to support that effect of relative demand on the formation
of the control law is related to minimizing biomechanical exposure. Understanding why participants
were furtherfromthe load inthe heavy relative demand condition remains a consideration moving
forward. The differencesin timing of the lifts as afunction of relative demand may be in part due to
normalizing lifting trials to percentages distorting the time domain. In general, light relativedemand
lifting trials were performed in less time than heavy relative demand lifting trials as participants spent
more time inthe set up at heavy relative demand, and more time undertension lifting the load. By
normalizing trial length to a percentage the relativetimingin each trial is slightly distorted which could
have led to the observed main effect of relative demand in PM4. For all 4 PMs where significant main
effects of relative demand were seen, the associated effe ct sizes were smallso even though features of

movement differed statistically, these differences may not have clinical implications.

6.2 Lifter Movement Strategy as a Function of Biomechanical Exposure and Relative Demand

The AP body position relative tothe load was the only movement feature that was different
between low and high relative exposurelifters. This supports the second hypothesis by demonstrating
that patternrecognition could detect differences between high and low exposure lifters. However, itis
interesting that the results of the lift and lifteranalysis are not consistent. With only AP body position
differing between high and low exposure liftersitis suggestedin the theoretical framework that low
exposure lifters minimize exposure by prioritizing close proximity of the body tothe load in their control
law. Although there were otherfeatures of movement related to biomechanical exposure in research

guestionl,itisnot supportedthatthese features of movementare consistently controlled viathe
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control lawin low exposure lifters. The preferential control of AP body positionislikely becausethis
feature of movementhasthe greatest effect on the resultant biomechanical exposure as demonstrated
by the greatest effectsize in research question 1. Although otherfeatures of movementare related to
biomechanical exposure theirassociated effectis likely not substantial enough to warrant consideration

inthe definition of the control law.

An alternative explanation forthe inconsistenciesin liftand lifter analysis are a potential
interplay between features of movementrelated to biomechanical exposure. Although body
sequencing, MLbody position/ trunk angle, squat vs. stoop and stance width are related to
biomechanical exposure, these associations are weak as measured by effect sizes inresearch question 1.
Itis possible that since these features of movementare notdirectly considered in the control law that
across lifts, alow exposure lifter will have favorable control in some of these features of movement,
while having unfavorable control in others. Across multiple repetitions, the PMs controlled favorably can
vary, as they are not directly controlled. This resulted in the no statistically significant differencesin

control of these PMs between high and low exposure lifters contrary to the a priori hypotheses.

Pattern recognition identified that some lifters consistently positioned closer to the load where
othersdid not. It is curious that some individuals may position differently than others, but we believe
this can be explained by OFC. Itislikely that the differencesin position to the load between high and low
exposure liftersisinformed by differences in the control law between groups where in the Glazier model
(2017) these control law differences are driven by differences in the organism constraint. Although, itis
likely that some internal difference in participants drove the differences in strategy viathe organism
constraint, this cannot be attributed to paramedicexperience as 6 of the 10 low exposure lifters did not
have paramedicexperience. Therefore, itis likely that there is some otherinternal difference between

lifters that was not quantified in this study thatinformed the definition of the control law.
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In this experiment, the relative demand condition was included as a variation on the constraints
of the lifting task. Conceptually, achange intask constraints should elicitachange in movement
behavior. Using patternrecognition, we did identifytwo specificfeatures of movementthat had
changesin mean movement based on the relative demand; the synchronicity of the liftand use of a
squatyvs. stoop strategy. With the change in a constraintresultingin achange in observed movement
strategy, it can be inferred within the Glazier (2017) framework that the constraintinformed the
definition of amodified control law (Figure 5). Inthe case of relative demand, the change in constraint
may have resultedinacontrol law prioritizing energy efficiency in the heavy relative demand condition.
When fatigue isinduced in repetitivelifting, lifters tend to use a strategy with greatertrunk flexion (i.e.
more stoop-like) (Bonato et al., 2003; Mehta et al., 2014). This change in strategy is likely an effort to
minimize fatigue as stoop strategy has a lowerassociated metabolicdemand compared to a squat
strategy (Straker, 2003). In the manipulation of the relative demand as a constraint, itis likely that lifters

informtheir control law to minimize fatigue under heavier relative demands.

The lack of interaction effects between relative biomechanical exposureand relative demand
may be a product of the nature of the backboard lifting task. In practice, paramedics are exposed to
backboard lifting with low frequency in ashift (Coffey etal., 2016). To mimicthe low frequency of lifting
experiencedinthe work place, each lifting trial was performed independently with rest time provided
before the following trial. This allows participants to plan a movement strategy priortoa lift and control
aspects of movementthatthey deemto be important where theirinternal definition of importance is an
example of an organism constraint. Conversely, the hypothesized interaction effects may have been
observedinrepetitivelifting. When exposed to agreater volume of lifts the lifter may define a control
law that aims to balance acute and cumulative biomechanical exposure. In this scenario, low exposure
lifters would have atighter control of features of movement related to biomechanical exposure at the

highrelative demand where the absolute biomechanical exposures, and risk of MSD through an acute
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mechanism, are greater. By tightly controlling the strategy at the heavy relative demand the
biomechanical exposure to the body can be reduced to maintain a margin of safety. Conversely, at the
lightrelative demand low exposure lifters may allow for greater variability in repetitivelifting as a
protective measure toreduce MSD risk through a cumulative loading mechanism (Srinivasan &
Mathiassen, 2012). By maintaining variability at the light relative demand the lifter would differentially
load tissuestodecrease the likelihood of asingle tissue failing. With the non-repetitive nature of
backboard lifting low exposure lifters are more inclined to tightly control features of movementinall
exertionstoreduce the absolute imposed biomechanical exposure. This tight control reduces the risk of
MSD from an acute mechanism, which isamore likely injury pathway than a cumulative loading

mechanism due to the low frequency and high loads imposed in backboard lifting.

6.3 Implications for Assessing and Teaching Movement Strategy in Backboard Lifting

The use of pattern recognition to detect differences in movement strategy between high and
low exposure lifts and across relative demand conditions can inform assessment of backboard lifting.
From this study the criteria of interest to determine whetheraliftis biomechanically favorableis the
proximity of the body tothe load. The horizontal distance to the load was the only feature of movement
which demonstrated significant differences as a function of relative biomechanical exposure between
high and low exposure lifters, and thereforeis the only factorthat has rationale to assess. Practically,
assessment of movement strategy in backboard lifting can be conducted at any relative demand as
there was no interaction between relative biomechanical exposure and relative demand on movement

strategy.

In additiontoinformingthe assessment of movement strategy, results from this study can

influence how to teach backboard lifting to minimize relative biomechanical exposures. In particular, it
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seemsthatto informtraining direction thatthe mostimportant takeaway is that regardless of strategy
used lifters should try to minimize the horizontal distance of theirbody to the load. By focusingon the
set up of the body priorto completing the lift to minimize the horizontal distance there may better
efficacy of a training approach opposed tofocusingon movement strategy in the liftitself which has
beenshownto be ineffective (Martimo etal., 2008). As backboard liftingisinfrequent, but with high
loads, there may be utility in using the results from this study toinformideal movement strategy inthe
liftitself eventhough effect sizes were small and past lift training interventions have been unsuccessful.
The high absolute biomechanical exposurein asingle backboard lift suggests lifters are likely ata higher
risk of injury through an acute mechanism compared to a cumulative mechanism (McGill, 2015).
Therefore, to minimize the absolute exposure in any given lift asecondary focus can be placed on using
a distal to proximal strategy, maintaining an upright trunk, using asquat-like strategy and usingawide
stance to keep hands close tothe body. To aidin training these features of movement to furtherreduce

relative biomechanical exposure aggregate reconstruction animations (still frames fromthese

animations were used to create Figures 24 and 25) can be used as a tangible teachingtool.

6.4 Critiquing the Methodological Framework

The pattern recognition methodology used was appropriate for this study asit is conceptually
compatible with OFC, itrequires no a priori hypotheses and whole body motionis considered. The
previous use of PCA to quantify aspects of variability support thatitis conceptually consistent with the
OFC theoretical framework, which defines variability as eithertask relevantorirrelevant based on the
control law (Todorov & Jordan, 2002). Theoretically, amode of variance explainedinaPM is an aspect
of variability that can either be task relevant orirrelevant. The identification of PMs as features of

movementis done objectively based on variance explained, which eliminates the need forapriori
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hypotheses on what aspects of movementto consider, therefore reducing subjectivity in analysis (Lees,
2002). The used patternrecognition methodology has a third noted strength that it considers whole
body movementin analysis. Previous application of PCA to analyze movement strategy in lifting has
considered joint anglewaveforms (Khalaf etal., 1999; Sadleretal., 2011; Sadleretal., 2013; Wrigley et
al., 2005; Wrigley etal., 2006) while not considering the entire kinetic chain of movement. Although the
body has an abundance of DOF that can form infinite combinations of movementto reach an end
trajectory, thereisstill arelationship between movements of different degrees of freedom as all joints
are connectedin some way through the kineticchain. By inputting whole body motioninto the PCA
analysis, the changesinstrategy about the kineticchain are considered, whichis astrength of the

approach.

The methodology used wasin large part chosen because of the high degree of objectivity, but
thereisstill a reliance on subjectivity for retainingand interpreting PMs. In an effortto be as objective
as possible parallel analysis was used to retain PMs that explained more variability than what would be
explained by chance (Wrigley etal., 2005), whichisreported asthe most accurate method of retaining
PMs (Hayton et al., 2004). Although this may miss some higher PMs that could identify differencesin
strategy between high and low exposure lifters across relative demands, the objectivity of the parallel
analysis supports this methodological decision. Ininterpreting PMs, single component reconstruction
was usedto allow forclear identification of the mode of variability explained by aPM (Brandon etal.,
2013). Single component reconstruction was originally developed to be used on waveform datawhere
the operatorcan be clearlyidentified by comparing reconstructions of the 5" and 95 percentile PM
scores. However, reconstructing whole body movement using this approach still resultsinareliance on
subjective interpretation of the modes of variance being explained. To aid in the interpretation the
loading vector was expressed as an average in the time domain for both the mean movementand

individual markers was used to directinterpretation of the single component reconstructions.
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In the research design, care was taken to control external constraints that could affect the
formation of a participant’s control law. Newell’s constraints model (1986) identified organism, task and
environmental constraints that could affect coordination patterns where Glazier (2017) theorizes thisis
accomplished by changingaperson’s control law as a function of the constraints present. Itis argued
that the experimental protocolwas conducted to minimize the effect of constraints actingas
confoundingvariables. The environmental constraint was controlled for strongly as there were no
differencesinthe location of data collection, lab set up or instruction within the protocol across
participants. The task constraint was controlled for except for modifying the relative demand of the
backboard as thiswas an independent variable. Most organism constraints were purposefully not
controlledinthis study to accomplish the research objectives. This research probed the hypothesis that
some lifters would consider biomechanical exposure in their control law while others would not, where
the choice to consider biomechanical exposure was informed by the organism constraint. Fatigue isan
organism constraint that could have influenced movement strategy as localized musclefatigue hasled
to changesinlifting technique in cycliclifting (Bonato etal., 2003). Mandatory resttimes were
implementedinthe study to minimize the effect of fatigue on influencing movement strategy. Changes

in subjective measures of fatigue are documented in Appendix C.

6.5 Limitations

The use of pattern recognition yielded objective differences in movement strategy between high
and low relative biomechanical exposures and across relative demands, but the approachis not without
limitation. The first being that the PCA approach only considers asubset of the data that explainsa
portion of variance in the overall dataset. In this study, parallel analysis was used to only retain PMs

that explain more variance than what would be explained by chance resultingin the six PMs explaining
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87.7% of variance inthe data set. Thisisless variance explained than other cut offs that have been used
inthe literature such asa 90% trace criterion (Jackson, 1991; Deluzio & Astephen, 2007; Sadleretal.,
2011; Reid etal., 2010) which would retainahighernumber of PMs. Although the process to retain PMs
was objective, there is achance that aspects of variability that clearly differentiate lifts by relative
biomechanical exposure orrelative demand that explain less variance inthe dataset were overlooked.
Secondly, there is difficulty setting criterion for what is high vs. low relative biomechanical exposure. For
this analysis, the median valuewas set as a threshold for this differentiation, but there isno evidence to
supportthat this cut off value is causatively linked to higherincidence of MSD development. However,
with a correlation of higherlow back angle and moment exposure resultingin higherrisks of MSDs
(Marras, 1993) this criteriais suitable asa measure of exposure as it differentiates between the higher
and lower exposurelifts. Third, use of this PCA approach distorts the time domain as trial time was
normalized to a percentage. Therefore, itis difficult forthe PCA model to identify differencesin timing
of lifts between relative biomechanical exposure group and across relative demand. Finally, the high
number of lifting trialsinputinto the PCA model increases the likelihood of type | error. To reduce the

risk of this error effect sizesin addition to statistical testing results were considered in interpretation.

6.6 Future Directions

Results of this study support the opportunity to apply pattern recognition to identify high and
low exposure liftersin practice. Particularly,asimilar methodology could be applied to assess movement
competency in backboard lifting when administering a physical employment standard for the parame dic
sector (Fischeretal., 2017). When assessing movement competency in pre-hire screensthereisa
currentreliance on evaluation through observation (Sinden et al., 2017) leading to a subjective analysis

of technique orrisk. The reliance on subjective analysis brings the validity and reliability of this mode of
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assessmentinto question (Pransky & Dempsey, 2004). By employing a pattern recognition methodology,
the assessment of movement competency can be objective to overcome the limitations associated with
evaluation through observation. These proposed methods can be paired with artificial intelligence
approaches, such as use of a lineardiscriminant function (Ross et al., 2018), to classify lifts based on the
features of movementsidentified via pattern recognition. Advances in marker-less motion capture, such
as convolutional pose machines (Wei etal., 2016), provide opportunity to capture robust kinematicdata

outside the lab to make pattern recognition based methodologypractical in application.

A second future direction opportunity is to understand mechanisms influencing movement
strategy within the Glazier (2017) theoretical framework. The results to this study demonstrate that
changesin constraints resultedin differencesin control patterns. It was inferred that the changesin
control patterns were a product of the constraints informing the definition of the control law as defined
in OFC (Scott, 2004). However, in this study none of the control law, coordination patterns or sensory
feedback were measured to confirm that differences in control patterns weretruly caused by changesin
the control law. Future research should be aimed at further probing this theoretical framework to
understand the causative mechanisms of how changesin external task constraints influence the

formation of a control law and the resultant downstream movement strategy.

As the employed PCA method continues to be develop there is opportunity to develop best
practices. In particular, best practices are needed to objectify the interpretation PMs. In this study the
average and marker specificloading vectors were used to gaininsightinto the operator of variance
explained as well aswhere locallyand in the normalized time domain variance was being explained.
Althoughthe use of loading vectorsin conjunction with single component reconstruction provided some
supportinginformation to guide interpretation this process continued to rely on subjectivity.

Standardizing of interpretation methods could aid in interpretation of PMs in future work.
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A second opportunity to develop the PCA methodisto explore best practicesfor data
normalization and expression. Forthis study, all datawere normalized to height so that differencesin
anthropometrics would not be explainedina PM. However, by normalizing to height the contribution of
anthropometrics tovariance in the data setisignored. The position datainputinthis study was
referencedto aglobal coordinate system opposed to alocal system as has been done in previous work
(Ross etal., 2018). Thisdecision was made as the position of the origin and the load remained consistent
across lifting trials and participants, so capturing the positioninthe global system (aswasdonein PM1 —
AP body position) wasimportant. However, if similar methods were to be applied to tasks that are more
dynamicthe position of the bodyin the global system may be subjectto noise and best practice may be
to expressdataina local coordinate system. A comparison of PCA outputs following different
normalization methods and when expressing datain eitheraglobal orlocal coordinate system should be

exploredto determine best practices.

Finally, the number of anatomical inputs to considerin analysis should be considered moving
forward. In this study, each segment of the body contributed an anatomical input except for the feet,
which contributed two. This was done by takingthe COG of segmentsinthe axial skeleton and the
proximal end point of segmentsin the appendicular skeleton. The COG of the feet were alsoincluded to
give a representation of the orientation of the foot segmentsin 3D space. Using this approach, the
relative contribution of the segmentsin the PCA model was nearly equally weighted. Future work should
explore whetherthe addition or subtraction of otheranatomical inputsinfluences the results of the PCA

analysis.
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7.0 Conclusion

Patternrecognition was applied to successfully identify features of movementin backboard
lifting related to the resultant relative biomechanical exposure at the low back and the relative demand
of the load. It was found that differencesin horizontal position of the body to the load wasindicative of
whether lifters experienced high or low resultant relative biomechanical exposures. Additionally, this
study identified differences in mean movement strategy in features of movement explaining variance in

sequencing of liftingand using asquat vs. stoop strategy as a function of relative demand.

Practically, the results to this study demonstrate the utility of pattern recognitionto assess
movement strategy in backboard lifting where to minimize the biomechanical exposures the horizontal
distance fromthe body to the load should be minimized. Assessment of backboard lifting strategy can
be conducted at any relative demand, as the effects of biomechanical exposure and relative demand on
movement strategy in backboard lifting do notinteract. Furthermore, results from this study can be
used to develop training approaches to minimize biomechanical exposure by using movement strategy
where the bodyis closerto the load, using a distal to proximal strategy, maintaining an upright trunk

and usinga squat-like strategy.

The noted success of pattern recognition methods to identify differencesin features of
movement as both a function of resultant biomechanical exposure and relative demand support the
utility of this approach moving forward. By combining pattern recognition with artificial intelligence
techniquesthereisapotential toidentify differencesin high and low exposure strategy in practice

withinthe paramedicsector, butalsoin otheroccupations with where workers are at high risk of MSDs.
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Appendix A: Standard Operating Procedure on 1RM Testing

Department of KINESIOLOGY

STANDARD OPERATING PROCEDURE

A Standard Operating Procedure (SOP) is to be created to direct and guide researchers when performing
study protocols, especially those that have the potential to cause harm (or increase risk) to a study
participant such as those outlined as a controlled act in the Regulated Health Professions Act of Ontario
(RHPA).

SOPs are to follow the Deming Cycle, a cycle that identifies "Plan-Do-Check-Act." A SOP is created to:
e outline the procedures that must be executed to effectively follow the study protocol and outline
the resources/equipment needed (i.e., PLAN),
e provide detailed instructions for research staff of the steps that must be implemented and the
training that must be completed (i.e., DO),
e clearly document the study protocol (i.e., CHECK), and
e aid with continuous improvement (i.e., ACT)

All SOPs are to be maintained and controlled by the Principal Investigator/Faculty Supervisor. The
Principal Investigator/Faculty Supervisor is responsible for the current and approved versions.

SOPs are reviewed by the Office of Research Ethics reviewers and/or Research Ethics Committee members
in conjunction with their review of the procedures section in the Form 101 or Form 104 (modification
request).

Submit only new SOP’s or those which have not been previously approved in conjunction with a prior
application. In the procedures section of the 101 form or 104 form state the SOP name, date, and the
previously approved ORE number, if applicable.

Title of SOP: Protocols for Muscular Strength and Endurance Assessment

SOP created on: [October/29/2015] and Ethics Clearance Received on:

Revised on: [February/13/2018] and Ethics Clearance Received on:

SOP created by: [Caryl Russell, Director of Programs, Madeleine Noble, Senior Lab
Demonstrator, Dept. of Kinesiology]
SOP revised by: [Julia Fraser, Research and Operations Manager, Dept. of Kinesiology]

Signature:

Date:

O I acknowledge that as the principal investigator/faculty supervisorIam responsible for
updating this SOP and notifying the ORE through a modification form (Form 104) if any of the
procedures as outlined above change or require revision.
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http://www.e-laws.gov.on.ca/html/statutes/english/elaws_statutes_91r18_e.htm

A. PURPOSE AND BACKGROUND

This SOP describes the protocols and safety for muscular strength and endurance
assessments including 1 repetition max (1RM), predicted 1RM and stand load testing.

B. PROCEDURES
Are there any controlled act(s) to be performed: []Yes X No
If you checked yes, list the controlled act(s) below:
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Appendix B: Tests of Normality for PM scores

Normal Q-QPlots are pictured for PMs 1-6 (Figures 1-6respectively)to give avisual
representation of the spread of data ina PM relative toanormal distribution with the same mean and
standard deviation. The visual agreement of PMscores to the Q-Q plot support that the data is normally
distributed even though significant effects were seenin the Shapiro-Wilks test of normality forall PMs.
Additionally, PMscores are z-scores of the deviation of atrial from the mean PM and therefore are

normally distributed by definition.

Normal Q-Q Plot of PC1

Expected Normal

Observed Value

Figure 1: PM scoresin PM1 (grey circles) plotted against anormal distribution with the same mean and

standard deviation (solid black line).
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Normal Q-Q Plot of PC2

Expected Normal

-2 0 2 4

Observed Value

Figure 2: PM scoresin PM2 (grey circles) plotted againsta normal distribution with the same meanand

standard deviation (solid black line).
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Normal Q-Q Plot of PC3

Expected Normal

-3 -2 -1 0 1 2 3

Observed Value

Figure 3: PM scoresin PM3 (grey circles) plotted againsta normal distribution with the same meanand

standard deviation (solid black line).
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Normal Q-Q Plot of PC4

Expected Normal

-3 -2 -1 0 1 2 3

Observed Value

Figure 4: PM scoresin PM4 (grey circles) plotted against anormal distribution with the same mean and

standard deviation (solid black line).
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Normal Q-Q Plot of PC5

Expected Normal

-2 -1 0

Observed Value

Figure5: PM scoresin PM5 (grey circles) plotted againstanormal distribution with the same meanand

standard deviation (solid black line).
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Normal Q-Q Plot of PC6

Expected Normal

-1.5 -1.0 -05 00 05 10 15

Observed Value

Figure 6: PM scoresin PM6 (grey circles) plotted againstanormal distribution with the same meanand

standard deviation (solid blackline).
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Appendix C: Changesin subjective fatigue measures overthe experimental protocol

To measure fatigue across the study protocol participants rating of perceived exertion (RPE) was
collected using a Borg rating of perceived exertion scale (Borg, 1998). As the load did not changein
relative demand conditions no changesin RPEwould be expected if fatigue was not occurring. To track
the changesin fatigue three repeated measures ANOVAs were run (one for each relative demand
condition) to assess the change of perceived exertion over the lifting protocol (Figures 1-3). There was
no significantchange in RPEfor light trials (F(1,25) = 1.14, p = 0.295), but there were significant
increasesin RPEin the medium (F(1,25) = 12.54, p = 0.002) and heavy (F(1,25) = 23.73, p <0.001)
relative demand conditions.
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Figure 1: Mean Borg’s RPE across light relative demand lifts.
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Figure 3: Mean Borg’s RPE across heavy relative demand lifts.

Althoughthere were significant main effects of Borg’s RPEin both the mediumand heavy
conditionsthe absolute meanincrease in RPEfromtrial 1to 10 wasonly 1.54 and 1.57 in the medium
and heavy relative demand conditions respectively. Even though the increase in RPE was statistically
significantitis notbelieved thatthis would resultin appreciable changesin movement strategy due to
fatigue because of the minimal descriptiveincreases in mean Borg’s RPE values.
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