
Nonprehensile Manipulation via
Multisensory Learning from

Demonstration

by

Ku Jin Shin

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Applied Science
in

Mechanical and Mechantronics Engineering

Waterloo, Ontario, Canada, 2018

© Ku Jin Shin 2018

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Dexterous manipulation problem concerns control of a robot hand to manipulate an
object in a desired manner. While classical dexterous manipulation strategies are based
on stable grasping (or force closure), many human-like manipulation tasks do not main-
tain grasp stability, and often utilize the intrinsic dynamics of the object rather than the
closed form of kinematic relation between the object and the robotic fingers. Such manip-
ulation strategies are referred as nonprehensile or dynamic dexterous manipulation in the
literature.

Nonprehensile manipulation typically involves fast and agile movements such as throw-
ing and flipping. Due to the complexity of such motions (which may involve impulsive
dynamics) and uncertainties associated with them, it has been challenging to realize non-
prehensile manipulation tasks in a reliable way. In this paper, we propose a new control
strategy to realize practical nonprehensile manipulation tasks using a robot hand. The
main idea of our control strategy are two-folds. Firstly, we make explicit use of multiple
modalities of sensory data for the design of control law. Specifically, force data is employed
for feedforward control while the position data is used for feedback (i.e. reactive) control.
Secondly, control signals (both feedback and feedforward) are obtained by the multisensory
learning from demonstration (LfD) experiments which are designed and performed for spe-
cific nonprehensile manipulation tasks in concern. We utilize various LfD frameworks such
as Gaussian mixture model and Gaussian mixture regression (GMM/GMR) and hidden
Markov model and GMR (HMM/GMR) to reproduce generalized motion profiles from the
human expert’s demonstrations. The proposed control strategy has been verified by ex-
perimental results on dynamic spinning task using a sensory-rich two-finger robotic hand.
The control performance (i.e. the speed and accuracy of the spinning task) has also been
compared with that of the classical dexterous manipulation based on finger gating.

iii

Acknowledgements

I would like to thank my supervisor, Dr. Soo Jeon, for his guidance and support
throughout my school years. Without him, I wouldn’t have made a decision to come to
grad school. Thank you for trusting and providing with a great opportunity to develop
skills in robotics and control theory. This work would not have been possible without him.

I would also like to thank all my colleagues at Dr. Soo Jeon’s lab. The last two years
were more fun because of them.

Lastly, I would like to thank my family for their unlimited love and support.

iv

Dedication

I would like to dedicate my thesis to my beloved family.

v

Table of Contents

List of Tables ix

List of Figures x

1 Introduction 1

1.1 Motivation . 2

1.2 Related Works . 4

1.2.1 In-hand Manipulation . 4

1.2.2 Learning from Demonstration (LfD) 4

1.2.3 Perception Systems . 8

1.2.4 Reinforcement Learning in Dexterous Manipulation 8

1.3 Objective . 9

1.4 Experiment: Nonprehensile Spinning Task 10

1.4.1 Experimental Setup . 10

1.4.2 Nonprehensile Task: Nonprehensile Spinning 12

1.5 Organizations . 12

2 Mathematical Background 14

2.1 Notation . 14

2.2 GMM/GMR Framework . 15

2.2.1 Gaussian Mixture Model (GMM) 15

vi

2.2.2 Parameter Learning: Expectation-Maximization (EM) Algorithm . 16

2.2.3 Gaussian Mixture Regression (GMR) 17

2.2.4 Dynamic Time Warping (DTW) . 18

2.3 HMM/GMRa Framework . 19

2.3.1 Hidden Markov Model (HMM) . 19

2.3.2 Forward Variable . 19

2.3.3 Backward Variable . 20

2.3.4 Parameter Learning: Baum-Welch Algorithm 20

2.3.5 GMR for HMM . 21

2.4 Modeling of Robot Manipulators . 21

2.4.1 Forward Kinematics . 22

2.4.2 Inverse Kinematics . 22

2.4.3 Jacobian . 23

3 Motion Profile Learning from Demonstration 24

3.1 Demonstration Collection . 25

3.2 GMM/GMR . 27

3.2.1 Training with GMM . 27

3.2.2 Motion Profile Reproduction with GMR 28

3.3 HMM/GMRa . 29

3.3.1 Training with HMM . 29

3.3.2 Trajectory Reproduction with GMRa 29

3.4 Experimental Result . 30

3.4.1 Gaussian Number Selection . 30

3.4.2 GMM for Nonprehensile Spinning Task 31

3.4.3 HMM for Nonprehensile Spinning Task 34

3.4.4 Generalized Motion Profile for Nonprehensile Spinning Task 37

3.4.5 Discussion . 39

vii

4 Reproduction of Nonprehensile Spinning Task 40

4.1 Controller Design . 40

4.2 Experimental Result . 41

4.2.1 Valication of Feedback Controller for Position Tracking 41

4.2.2 Validation of Feedforward Controller for End-Effector Force 42

4.2.3 Evaluating Reproduced Generalized Motion Profiles 43

5 Dynamic Catching through Parameter Learning 47

5.1 Main Control Parameter . 47

5.2 Iterative Learning Control . 48

5.2.1 Experimental Result . 48

5.3 Complete Nonprehensile Spinning Task Experimental Result 50

6 Conclusion 54

6.1 Conclusion . 54

6.2 Recommendation . 55

References 56

viii

List of Tables

1.1 Hardware Specifications . 11

4.1 Performance of nonprehensile spinning task without catching 45

5.1 Performance of nonprehensile manipulation to generate the desired angle φd 53

5.2 Performance of finger gating to generate the desired angle φd 53

ix

List of Figures

1.1 Example of prehensile and nonprehensile manipulation tasks. 2

1.2 Learning by Demonstration pipeline. 5

1.3 3D schematic of the robot hand . 10

1.4 Overall configuration of experimental setup 11

1.5 Control procedure for nonprehensile spinning. 12

2.1 2 link manipulator schematic diagram . 22

3.1 Learning System flowchart . 25

3.2 Kinesthetic Teaching . 26

3.3 Schematic diagram of the robot system with data variables. 27

3.4 Number of Gaussian models vs modified BIC number 31

3.5 GMM . 32

3.6 GMM+DTW . 33

3.7 HMM for left finger . 35

3.8 HMM for right finger . 36

3.9 Reproduced generalized trajectories . 38

4.1 Controller for the nonprehensile manipulation 41

4.2 Position controller performance . 42

4.3 Stairway force step for feedforward controller verification 43

4.4 GMR trajectories for position variables. 44

x

4.5 GMR trajectories for tangential forces. 44

4.6 Spinning result . 46

5.1 Object angles after free spinning . 49

5.2 Iterative parameter learning for Ta . 50

5.3 Snapshots of the manipulation for φd = 180◦. 51

xi

Chapter 1

Introduction

Everyday tasks such as ball throwing, finger flickering and coin flipping with human hands
all require to adjust the object’s position or orientation by manipulating fingers in desired
manner. Producing such tasks with robots refers to dexterous manipulation problem in
robotics. Human-like dexterous manipulation of robotic hands has long been recognized as
a critical challenge to the next generation of robots [71, 28]. Much effort has been made to
realize some manipulations such as regrasping, in-grasp manipulation, finger gating, finger
pivoting/tracking, rolling and sliding [64]. Historically, grasp stability has usually been
considered as a basic requirement of dexterous manipulation with multifingered robotic
hands [15].

Instead of relying on grasp stability, an alternative approach is to manipulate objects
without maintaining a stable grasp; such manipulation is referred as nonprehensile (or
dynamic dexterous) manipulation [66]. Nonprehensile manipulation offers several potential
benefits over conventional approach such as increased dexterity and increased workspace
[62]. This enables robots to perform more human-like manipulations such as pushing,
throwing and flipping [78]. The key idea of nonprehensile manipulation is the utilization
of the intrinsic dynamics of the target object even when it is disengaged with the robotic
hand.

There have been some notable attempts to realize nonprehensile manipulation with
robotic hands [10, 36], most of which have relied on mathematical modeling of the hand and
the object as well as the dynamics between them. Despite some successes, the complexity
of dynamic models and uncertainties associated with them have been a major technical
hurdle to take the dexterous manipulation to the next level. Besides, the control design
can become a bit inefficient with such model-based approaches due to difficulty in handling

1

(a) Prehensile manipulation task: object rolling
[89]

(b) Nonprehensile Manipulation: ball throwing [61]

Figure 1.1: Example of prehensile and nonprehensile manipulation tasks.

variabilities arising from changing environment (e.g. variability in objects and/or task
goals).

1.1 Motivation

In order to perform human-like nonprehensile manipulation on robot hands, we have ini-
tially studied off from currently established methods including model-based method and
iterative learning method. Model-based manipulation method requires to find the mathe-
matical model of the robot, the object, and the interaction between them (i.e. friction and
contact model). This method is heavily studied over the past two decades and still remains
as a difficult problem to tackle [59, 92, 47]. Such modeling methods are well described in
the following textbooks [30, 68]. Even though the modeling of robots itself is precise and
well-established, modeling of the interaction between the object and robots still remain
as a big challenge because they heavily relay on the friction and contact states (material,
surface roughness, contact type, contact position, etc.). Also, the states of models have
various uncertainties often with a stochastic nature, which frequently limit our capabil-
ity to estimate them [91]. Through tactile and haptic sensors, these issues can somehow
be mitigated and thus significantly improving manipulation performances. Nevertheless,
success was limited to certain configurations.

Another popular method is to use iterative learning methods, in particular iterative
learning control (IRC) [16] and reinforcement learning (RL) [85]. These methods allow to

2

improve the control performance without understanding the precise model of the system.
Main idea of both methods is performing repetitive runs to improve the control strategy
through each iteration. The fundamental concept is adapted from how human learns to
perform a task much better after repetitively performing the same task. IRC develops
from a simple control law that calculates the new control input based on the current error
signal from the previous run. Hence, it requires the knowledge of the desired trajectory. In
contrast to IRC, RL does not require the desired trajectory. Instead, it requires to form a
reward (or cost) function to measure the performance of the current run. Defining a good
reward function is essential to allow RL to converge to its optimal control law. It seems
that both approaches work reasonably well for learning and performing the nonprehensile
manipulation tasks. However, both methods require hundreds of iterations which can easily
damage the physical robot. Furthermore, it is often very computationally heavy due to
the nature of the system (i.e. continuous system, many state variables).

Motivated by recent advances in machine learning techniques, this thesis presents a
new control strategy for the nonprehensile dexterous manipulation. More specifically, we
put forward two main ideas in this thesis to overcome the previously mentioned difficulties.
Firstly, we employ recent techniques of learning from demonstration (LfD) for dexterous
manipulation. To the best of authors’ knowledge, LfD has not yet been implemented for
the type of nonprehensile manipulation tasks that we consider in this paper. Secondly, in
doing so, we make the explicit use of multiple modalities of sensory data in formulating the
control law for the LfD. In fact, these two ideas parallel our own intuition of how human
dexterity develops [49, 52];

1. Human can easily learn new skills by observing demonstrations from an expert and
reproducing them.

2. Human dexterity is highly dependent on rich sensing (proprioceptive, vision, tactile,
etc.).

As one of the most active areas of research in robotics in these days, LfD has seen a
significant progress in recent years [17]. The LfD has also been called in the literature as
imitation learning (IL), programming by demonstration (PbD), or apprenticeship learning
(AL) [23]. The LfD is an autonomous learning strategy through which a human can
configure a robot to perform a complex task by providing a good set of demonstrations of
the desired task. This technique has been shown to hold a great potential for controlling
the robot hand without direct programming or configuring it; hence people who are not
expert at robot programming can easily configure the robot to perform desired behaviour
by simply demonstrating to it.

3

Thanks to rapid advances in sensing technologies, modern robotic systems are, more and
more, being equipped with various sensors such as motor encoders, strain gauges, tactile
sensors, high-speed vision camera or combination of these. The concept of sensory-rich
control (or motion control using multimodal sensory data) has been implemented in some
classical control applications [46, 63], but its practical use for dexterous manipulation is
yet to come. In the later section, we review the up-to-date work on in-hand manipulation,
LfD, and perception systems.

1.2 Related Works

1.2.1 In-hand Manipulation

In-hand manipulation has long been studied in literature, one of earlier works of which
includes the work by Salisbury [80]. A good review on the topic can be found in [71] and
[14]. Despite such a long history, the problem of manipulating position and orientation
of objects with human-like dexterity still remains as a big challenge [13, 68, 28]. The
representative types of dexterous manipulation tasks that have been achieved so far using
an anthropomorphic robot hand include: re-grasping/finger gating [84] and sliding/rolling
[64]. Re-grasping/finger gating involves the sequence of steps of grasping and releasing the
object. The main drawback of this manipulation is that the additional support plane is
required for holding the object when it is detached from the robot. Also, it takes more
time to manipulate the object due to the large number of sequences of actions required
to achieve the desired task. Sliding/rolling has been pursued as an alternative strategy
to perform in-hand manipulation. It may enable faster and more agile manipulations in
some cases by allowing the object to slide or roll against the fingers (often without grasp
stability) during the manipulation [29]. Many in-hand manipulation approaches pursue
the model-based planning perspective, i.e. the grasp planning and the motion planning.
Almost all the methods presume that the analytical descriptions of both hand and the
object are known, not to mention the force-closure condition [15]. In contrast, we attempt,
in this paper, to come up with a general control strategy that can achieve highly dexterous
manipulation tasks without precise description of the models of the hand and the object.

1.2.2 Learning from Demonstration (LfD)

Learning from Demonstration (LfD) gained attention in the field of manufacturing robotics
at the beginning of 1980s [17]. The first approach to this problem was simply recording the

4

demonstrated data through the joint encoder and torque sensors while a human demon-
strates through a teleoperation, and playing back to perform the same task on a robot
itself. After many work was done in the field of LfD, the following pipeline was established
to be a generalized scheme for the LfD [26].

Figure 1.2: Learning by Demonstration pipeline.

From human demonstrations using vision, data gloves, virtual reality, kinesthetic teach-
ing, and many more, the data is processed such that it can be generalized to find the
trajectory that is general and noise-free from the data through high-level task learning or
low-level skill learning. In other context, these are also referred as learning in symbolic
level and trajectory level, respectively. High-level (or symbolic level) learning allows robot
to learn hierarchy, rules and loops based on the pre-defined motion elements, which enables
robot to learn new skills based on the primitive skill sets that it knows. In contrast, the
low-level (or trajectory level) learning allows robot to learn the direct mapping from the
action desired to required input signal. Through this learning scheme, robot can learn
the generic representation of motion through encoding various sensor inputs. However,
reproducing such complex action is difficult.

Incorporating demonstration data from human experts into robot task control has been
extensively investigated in recent years. There exist many different approaches, but one
view is that they fall under one of two main approaches; reinforcement learning (RL)
method or LfD method. RL requires pre-defined reward or cost function information.
Coming up with well-defined function is crucial since this governs the performance of the
learning. LfD is a more common approach to allow robot to perform human task from
demonstration data. Many use the probabilistic approach that is encoding task variables
using probability density function (pdf) and reproducing through a regression technique.

Symbolic Learning (High-level Task Learning)

Many earlier work in LfD dealt with symbolic learning. The task at a symbolic level is
described by the sequential or hierarchical organization of a discrete set of primitives that

5

are pre-determined or extracted from pre-defined rules [23]. Examples of such works can
be found in [35, 70, 72, 37]. The basic structure of the symbolic learning approach is
outlined as follows: demonstration, task representation, task generation and execution.
From the expert’s demonstration through kinesthetic learning or teleoperation, the task
is segmented with known pre-defined actions and formed to a hierarchical tree. From the
tree, the generalized task sequence is achieved then the robot executes the task. To refine
the robot’s task, two main methods are used: providing more demonstration or expert’s
feedback. By combining multiple demonstration into a single hierarchical tree, the robot
can generalize the task more and is able to compensate any variability during the task
execution. From the expert’s feedback, robot can incorporate any constraints during the
task generalization/reproduction.

Although this symbolic learning process require iteration and multiple demonstrations
to teach a robot a desired task, the learning speed was much faster against brutal-force
trial-error approach. The main disadvantage of the above approach is that it largely rely
on the prior knowledge to pre-defined symbolic representations.

Trajectory Learning (Low-level Skill Learning)

Low-level learning refers to learning a specific task or action from demonstration data
acquired from various sensors. Terms such as motor skill learning and primitive action
learning are used interchangeably. All the learning methods can be viewed as a supervised
learning as the main goal is to find the mapping that will reproduce the desired motion
from the demonstration data (training set). Hence, some of the early works include the
use of Neural Network and Inductive Logic. However, finding a direct mapping from the
sensor inputs to the desired motor input failed to acquire the trajectory that is free from
any other source of errors or disturbances. These includes human demonstration error,
sensor noises, and environmental disturbances. Therefore, modern approaches focus more
on finding a generalized trajectory from multiple demonstrations. Modern approaches are
based on probabilistic modeling (such as Gaussian Mixture Regression (GMR) and Hidden
Markov Models (HMM)), Dynamic Movement Primitives (DMPs) or combination of them.

Probabilistic Approach Gaussian mixture model and Gaussian mixture regression
(GMM/GMR) technique is the most widely used probabilistic approach in the field [22].
There also exist some extensions of GMM/GMR such as task parameterized version of
GMM (TP-GMM) [20]. Most of the problems for LfD involves learning the position tra-
jectory of the robot to perform the desired task; however, some researchers expanded the

6

idea to force-based manipulation tasks [33, 60, 56, 76]. In this paper, we try to combine
the advantages of both the position-based and the force-based GMM/GMR.

HMM is another popular probabilistic tool in LfD framework. HMMs have been widely
used in recognizing human generated information data such as speech recognition [73],
harndwriting recognition [38], and sign language recognition [83]. Due to its capability
of capturing both spatial and temporal variations, many LfD frameworks were developed.
Encoding of the robot motion trajectory with HMM can be found in [40, 57, 88]. Many
researchers utilized HMM to perform LfD due to the fact that the human demonstration
is time-varying, not perfect, and sensory processes are noisy. Tso and Liu [88] utilized
HMM to select the best robot trajectory amongst a number of demonstration cycles of the
peg-in-the-hole assembly task. Yang et al. [90] used HMM to encode the trajectory that
human demonstrates on a teleoperation-controlled space robot. Human gesture was leaned
using HMM and newly created data was classified using the trained model for verification.
By using HMM, a Mimesis theory was developed for the primitive skill of imitative learning
on humaniod robot [44]. For reproducing the generalized motion, key point spline fitting,
Gaussian Mixture Regression, HMM trajectory were studied.

Dynamic Systems Models Another common approach of trajectory learning is to
apply the theory of dynamical systems. Various approaches are studied including sequenced
Linear Dynamical Systems (LDS) [34], Stable Estimator of Dynamical Systems (SEDS)
[50], Implicit Dynamical Systems [53] and Dynamic Movement Primitives (DMP) [43, 42].
Among these methods, DMP has proven to be very effective when the learning is done by
observing the expert’s demonstration. This method uses nonlinear differential equations to
form control policies in trajectory formation, which allows the learned dynamical system
to represent the whole flow field rather than a single trajectory. The main idea behind
the DMP is to use a set of first order systems and transform them into nonlinear dynamic
system by adding nonlinear forcing terms. As the first order system works as a spring-
damper system, the system guarantees convergence to a goal state. DMP has been used
in imitating reaching movements [43, 81], manipulation tasks [51], and obstacle avoiding
[42]. However, the DMP still has a few drawbacks: it is hard to fully control the generated
motion profile and it cannot impose constraints on the motion.

Extending the idea of DMP, reinforcement learning methods are used to optimize the
learned DMP trajectories. It utilizes Policy Improvement through Path Integration (PI2)
algorithm to track the immediate cost of the trajectory throughout the movement and
calculates the cost-to-go at each point to find the optimal trajectory of the given task [86].
This method has been efficiently applied to various areas including manipulation task [48]
and robot dog walking [86].

7

1.2.3 Perception Systems

Multisensory Integration in Dexterous Manipulation

Control laws for dexterous manipulation have largely relied on the precise knowledge of
the position of the manipulating fingers and/or the target object. Other types of sensory
data adopted in recent years include the tactile and vision [74, 93]. Closing a feedback
loop with such sensors may allow the control law to be able to adapt to unknown object
properties [9]. In particular, the tactile sensory information can play an important role
in the process of manipulation by detecting both the direction and the magnitude of the
contact force between the object and the robot fingers. Examples of the utility of tactile
information in in-hand manipulation tasks can be found in [89, 58, 65]. As is the case
for humans, the visual sense can form another important sensory feedback in dexterous
manipulation. Visual servoing, or vision-based robot control, is well-established in the
literature and can enable precise manipulation with both fully-actuated hands [4, 25] and
underactuated hands [24].

Perception Systems in LfD

Sensors play an essential role to observe the teacher’s demonstration in LfD framework.
Based on the method of skill transfer from human to robot, the right perception system is
used [5]. The most widely used hardware is based on vision system, which includes camera
and optical tracking systems [8]. This reflects how human eye sees the demonstration and
understands the task. However, such vision-based system has limitations due to the limited
resolution of the vision system and it is difficult to solve the correspondence problem of
mapping the task from human demonstration to robot. Proprioceptive sensors provide
information about internal state of the robot (e.g. motor encoders), and this is useful
for demonstration approaches such as kinesthetic teaching and teleoperated demonstration
[17]. For tasks that involves interaction with the surrounding utilizes force-based perception
(e.g. manipulation tasks). Through force/torque sensors, the robot can learn about the
reference force/torque profile and tactile data about its contact. This ensures robot not
only to understand the surroundings, but also to safely interact with the environment.

1.2.4 Reinforcement Learning in Dexterous Manipulation

As artificial intelligence is getting popular in recent research works, specific learning tech-
nique called reinforcement learning (RL) [85] is applied to solve various dexterous manipu-

8

lation tasks. RL problem is modeled using Markov decision process (MDP), which provides
generic mathematical model abstraction to a sequential decision making problem of known
states. The goal of RL is to find a control policy to maximize the user-defined reward
function through iterations. Various method of RL is applied to dexterous manipulation
tasks. These methods includes model-free deep RL [94], model-based deep RL [55, 39]
and behavioural cloning [67]. Many works were done in a simulation environment as they
are easy to setup and perform many iterations. However, these simulated model does not
reflect the real system, hence some works were also done to transfer the policy learned
from the simulated environment to actual experimental setups [79, 45]. Although many
works were done to enable dexterous manipulations through RL, the work on nonprehensile
manipulation is rare as most of the work was done for prehensile tasks.

1.3 Objective

In this work, we examine the performance of nonprehensile manipulation based on the
LfD approach using a custom-built robot hand. The robot hand is equipped with various
sensors including tactile (or finger tip force) and vision as well as position encoders. The
proposed LfD framework can be divided into three sub-tasks:

1. Motion profile learning

2. Task reproduction

3. Control parameter learning

During the motion profile learning, the expert’s demonstration data is collected using
the finger tip force sensor and the position encoder. Using two probabilistic modeling
techniques including Gaussian mixture model (GMM) and hidden Markov model (HMM),
demonstration data is generalized with multiple Gaussian distributions. Using the Gaus-
sian mixture regression (GMR), the position and the finger tip force data have been pro-
cessed to realize the generalized position and the force signals, which are then inserted to
the controller as reference signals. The task reproduction allows the robot to reproduce
the motion profile obtained from LfD framework. The generated desired position signal is
used for the feedback control while the desired contact force signal is injected as a feedfor-
ward command. After successfully performing the desired motion, any additional control
parameter will be learned through the control parameter learning process. The control
parameter can be optimized through iteration steps.

9

As an exemplary task, we realized a nonprehensile task of spinning and stopping a
circular disk with two fingers, the goal of which is to make the disk rotate as fast and
closely to the desired angle as possible. The detailed experimental setup and the task
description is described in the next section.

1.4 Experiment: Nonprehensile Spinning Task

1.4.1 Experimental Setup

The hardware platform for this research is the custom-built planar robot hand, which is
depicted in Figures 1.3 and 1.4. This robot has two fingers each of which has two degrees of
freedom (2 DOF) consisting of two joints and two links. In order to mimic the sensory-rich
behavior of human, the robot is equipped with multiple sensors; each joint is equipped
with the encoder, each arm is a force sensor (strain gauge) and the finger tip has a 3D
tactile sensor attached at the end-effector. The vision camera at the top of the system (see
Figure 1.4) captures the manipulation scene and measures the configuration of the object
in realtime. All the hardware is connected to LabVIEW Real-Time target (manufactured
by National Instruments Inc.) that is running at 1 kHz except for the vision loop which is
running at 12.5 Hz (Tv = 80 ms). The detailed hardware specification is shown in Table
1.1.

3 Axis

Force Sensor

Motor & Encoder

for Lower Link

Motor & Encoder

for Lower Link

Four-bar Linkage

Mechanism

Figure 1.3: 3D schematic of the robot hand

As shown in Figure 1.4, the object is mounted to a table bearing to reduce the friction
against the ground as much as possible. An image identifier tag is attached on top of
the object to allow vision camera to track the orientation of the object. The cylindrical

10

Table 1.1: Hardware Specifications

Component Manufacturer / Model Specification

Geared
Motor Set

Maxon Motor
(222053, 201937,

201937)

Max speed: 9270 rpm,
Rated torque: 11.6 mNm,

Gear ratio: 84:1,
Encoder resolution: 512 ppr

Strain Gauge
Strain Measurement

Device (S220)
Max load: 6 lbs

3 Axis
Force Sensor

OnRobot
(OMD-30-SE-100N)

Nominal capacity:
100 N (Fz compression),

±25 N (Fxy)

Vision Sensor Basler (cA2000-340km)
Resolution:

2048px×1088px

Camera

Object

Robot

Table

Bearing

Figure 1.4: Overall configuration of experimental setup

11

object is made of aluminum with its rotational inertia of around 0.057 kg ·m2. Using our
experimental setup, the maximum rotation to be achieved by a single step force closure
manipulation is ∼ ±25◦.

1.4.2 Nonprehensile Task: Nonprehensile Spinning

The nonprehensile task that we are considering in this thesis is nonprehensile spinning task.
Through a single stage force closure manipulation, where the robot is in contact with the
object all the time during the manipulation, the maximum rotation angle is ∼ ±25◦ in our
current experimental setup. Hence, in order to achieve object rotation greater than ±25◦,
the robot is required to re-grasp and perform the manipulation repeatedly until the desired
manipulation is reached. Through the proposed control system in Section 1.3, we would
learn to perform nonprehensile spinning task to achieve greater angle object rotation in
precise and faster manner. The nonprehensile manipulation for spinning proceeds in three
steps as shown in Figure 1.5; impulsive spinning, free rotation and catching. The spinning
move is the main task to generate the fast rotational motion in a nonprehensile way. Thus,
we utilizes the LfD framework to learn the impulsive spinning motion. The catching motion
completes the nonprehensile manipulation task, and it is critical to find the right time to
catch the object. We employ iterative learning method to find the proper time to re-grasp
the object to stop at a desired angle.

Figure 1.5: Control procedure for nonprehensile spinning.

1.5 Organizations

The rest of this thesis is organized as follows. In Chapter 2, mathematical background in
probabilistic LfD frameworks and robot kinematics is presented. Based on the available

12

LfD tools, we extend its application to nonprehensile motion profile learning with sensory-
rich robot in Chapter 3. Then, the reproduced generalized trajectory is then evaluated on
the real robot through combination of feedback and feedforward controller in Chapter 4.
Finally, learning unknown controller parameters are studied in Chapter 5 to complete the
nonprehensile manipulation system via multi-sensory learning from demonstration.

13

Chapter 2

Mathematical Background

In this section we overview the mathematical tools for learning from demonstration (LfD)
framework and robot manipulator model. Specifically, the most popular probabilistic mod-
eling tool of Gaussian Mixture Model (GMM) and Hidden Markov Model (HMM) is out-
lined. Gaussian mixture regression (GMR) technique is also reviewed as a popular method
to retrieve the generalized trajectory from the encoded model. Finally, modeling of the
2-link robot manipulator is discussed, which we utilize in controller design.

2.1 Notation

Let us first introduce some common notations used in later sections.

K : number of Gaussians in the model, indexed with k ∈ {1, . . . , K}
M : number of demonstrations, indexed with m ∈ {1, . . . ,M}
T : number of datapoints in a single motion profile, indexed with t ∈ {1, . . . , T}
N : M × T = total number of datapoints in entire demonstrated motion profile,

indexed with n ∈ {1, . . . , N}
D : number of state variables in a single datapoint

ξt ∈ RD : single datapoint with D state variables

ξ1:T : {ξ1, . . . , ξT} = single observed motion profile

ξ : {ξ1
1:T , . . . , ξ

M
1:T} = entire demonstration motion profile set

14

ΘGMM : Gaussian Mixture Model (GMM)

ΘHMM : Hidden Markov Model (HMM)

2.2 GMM/GMR Framework

2.2.1 Gaussian Mixture Model (GMM)

A Gaussian mixture model (GMM) is a probabilistic model that assumes that all of the
datapoints are generated from a mixture of a finite number of Gaussian distributions [23].
Such modeling technique is useful when trying to find a trend from multiple data sets.
This can be seen as a generalized version of the k-means clustering technique [41], but may
be considered more general in terms of flexibility in choosing the covariance between the
Gaussian distributions. Some widely used application of GMM includes speech recognition
[12] and multiple object tracking [31].

Model Definition

GMM can estimate the probability density distribution of the samples, where the estimated
model is the weighted sum of several Gaussian models. Denoting by K the number of
component Gaussian distributions, the probability that the D-dimensional t-th datapoint
ξt ∈ RD belongs to the GMM can be written as

p(ξt) =
K∑
k=1

p(k)p(ξt|k) (2.1)

where p(k) = wk ∈ [0, 1] is the mixing coefficients (or prior probability of the k-th Gaus-
sian), and p(ξt|k) is the conditional probability density function (pdf). More specifically,

p(ξt|k) = N (ξt|µk,Σk)

=
1√

(2π)D|Σk|
e−

1
2

(ξt−µk)ᵀΣ−1
k (ξt−µk) (2.2)

where µk ∈ RD and Σk ∈ RD×D denote the center and the covariance matrix for the k-th
Gaussian, respectively. Thus, the GMM can be characterized by the set of parameters
ΘGMM = {wk, µk,Σk}Kk=1. The prior probability wk acts as a weighting factor for each
Gaussian model and it must satisfy

∑K
k=1wk = 1.

15

2.2.2 Parameter Learning: Expectation-Maximization (EM) Al-
gorithm

These set of unknown parameters can be found using the standard expectation-maximization
(EM) algorithm, which is basically the maximum likelihood estimation (MLE) of the mix-
ture parameters that is performed iteratively [32].

Let us first define a posterior probability (called responsibility, γk(ξ)) for a given data-
point value ξ. Using the Baye’s rule,

γk(ξ) = p(k|ξ) =
p(k)p(ξ|k)

p(ξ)

=
wkN (ξ|µk,Σk)∑K
j=1wkN (ξ|µj,Σj)

(2.3)

As the name of the algorithm suggests, the EM algorithm iterates over two steps: E-step
and M-step. At each cyle, E-step evaluates the reponsibilities using the current parameter
values, and then M-step re-estimates the parameters by maximizing the joint distribution
of the data and the hidden variable. In other words, new data points are drawn from the
given GMM and the GMM parameters are newly calculated through MLE step. The initial
parameters are usually approximated using k-means clustering algorithm [41].

E-step:

∀k, n, calculate γk(ξn) with the current parameters.

M-step:

wnewk =

∑N
n=1 γk(ξn)

N
,

µnewk =

∑N
n=1 γk(ξn)ξn∑N
n=1 γk(ξn)

,

Σnew
k =

∑N
n=1 γk(ξn)(ξn − µnewk)(ξn − µnewk)ᵀ∑N

n=1 γk(ξn)

16

After calculating the new parameters, the log-likelihood value, L(ξ|ΘGMM), is calculated
to compare against the previous log-likelihood value, such that if the increase in the log-
likeliood is small, then the iteration stops.

L(ξ|ΘGMM) =
N∑
n=1

ln
{ K∑
k=1

wkN (ξn|µk,Σk)
}

(2.4)

Therefore, the criteria of stopping the iteration is represented as L
new

L < C where C is
the threshold.

2.2.3 Gaussian Mixture Regression (GMR)

From the learned GMM, we can reproduce a generalized trajectory through the Gaussian
mixture regression (GMR) process [23].

Let us assume that the t-th data point ξt consists of the input ξIt and the output ξOt ,
i.e. ξt = col

(
ξIt , ξ

O
t

)
. From Equations (2.1) and (2.2), the probability for ξt to belong to

the learned GMM is

p(ξt) =
K∑
k=1

πkN (ξt|µk,Σk)

where the mean vector µk and the covariance matrix Σk can be partitioned as

µk =

[
µIk

µOk

]
,Σk =

[
ΣIk ΣIOk

ΣOIk ΣOk

]
(2.5)

The superscripts I and O represent the input and the output variables, respectively. Then,
the GMR process involves the prediction of the distribution of the output data ξOt for the k-
th Gaussian when the input data ξI is given. Specifically, using the conditional probability
distribution, we have

p
(
ξOt |ξIt , k

)
= N

(
ξ̂k,t, Σ̂k,t

)
(2.6)

where ξ̂k,t and Σ̂k,t are the predicted mean and the predicted covariance of ξOt for the k-th
Gaussian given the input ξIt . Using the conditional probability, they are given by

ξ̂k,t = µOk + ΣIOk
(
ΣIk
)−1 (

ξIt − µIk
)
,

Σ̂k,t = ΣOk − ΣOIk
(
ΣIk
)−1

ΣIOk

17

Then, the complete GMM can be obtained by summing up Equation (2.6) over k as

p
(
ξOt |ξIt

)
=

K∑
k=1

hk,tN
(
ξ̂k,t, Σ̂k,t

)
(2.7)

where hk,t = p
(
k|ξIt

)
is the probability that the k-th Gaussian distribution is responsible

for ξIt ;

hk,t =
p(k)p

(
ξIt |k

)∑K
i=1 p(i)p (ξIt |i)

=
πkN

(
ξIt ;µIk ,Σ

I
k

)∑K
i=1 πiN (ξIt ;µIi ,Σ

I
i)

(2.8)

By using the linear transformation property of Gaussian distributions, the conditional

expectation p
(
ξOt |ξIt

)
can be approximated by a single Gaussian distribution N

(
ξ̂t, Σ̂t

)
where ξ̂t and Σ̂t are the weighted sums, respectively, of ξ̂k,j and Σ̂k through hk,j over k

[22]. In the end, the sequence of ξ̂t represents the desired trajectory from the GMR with
its uncertainty (or variability) encoded by Σ̂t for each data point j.

2.2.4 Dynamic Time Warping (DTW)

The GMM/GMR approach explained above is capable of capturing spatial variability.
However, it does not encapsulate well the temporal variation within the data set. The
dynamic time warping (DTW) algorithm is a method proposed to measure the similarity
between two temporal sequences and to align them in a more consistent way [27]. Pre-
processing datapoints with DTW is known to estimate the GMM parameters more precisely
so that more concrete GMR trajectory can be reproduced. Hence, the DTW is widely
applied in the fields where temporal sequences are used, such as video, audio, and graphics
data.

A basic idea of DTW is as follows [23]. Given two trajectories, ξ and ξ̄, of length T ,
consider the distance between two datapoints of temporal index k1 and k2, i.e. h(k1, k2) =
‖ξk1 − ξ̄k2‖. Then, the DTW determines the warping path, S = {sl}Ll=1 for L elements of
sl = {k1, k2} such that its cumulative distance γ(k1, k2) is successively minimized by the
induction process;

γ(k1, k2) = h(k1, k2)

+ min [γ(k1 − 1, k2 − 1), γ(k1 − 1, k2), γ(k1, k2 − 1)]

18

with the initial value γ(1, 1) = 0. As will be discussed later, time alignment through the
DTW step is particularly important in implementing GMR for nonprehensile manipulation
tasks because the contact force is often impactive (i.e. a large force is applied within a
short duration of time).

2.3 HMM/GMRa Framework

2.3.1 Hidden Markov Model (HMM)

The hidden Markov model (HMM) is another popular statistical model that describes the
evolution of observable events that depend on the internal factors, which are not directly
observable. Such modeling is widely used in the field of LfD as it is capable of modeling
both the spatial and the temporal variations in data [23]. One can simply think of it as
an extension of GMM with the transition characteristic between the Gaussian states.

Model Definition

An HMM with K number of states is characterized as ΘHMM = {{aij}Kj=1,Πi, µi,Σi}Ki=1

[73]:

• {ai,j}, the state transition probability, with 1 ≤ i, j ≤ K

• Πi, the initial state probability vector, with 1 ≤ i ≤ K

• µi,Σi, the distribution of the observations of each state is represented with multi-
variate Gaussian, which is shown with N (ξt|µi,Σi)

To put it simply, the HMM represents how the observation datapoints are mapped from
the hidden Gaussian states.

2.3.2 Forward Variable

Forward variable is the probability to be in state i at time step t and the partial observation
ξ1:t = {ξ1, ξ2, . . . , ξt}, and it is defined as

αHMM
t,i = p(st = i, ξ1:t) (2.9)

19

where st indicates the hidden state at time step t. This variable can be easily calculated
through induction.

αHMM
t,i =

(K∑
j=1

αHMM
t−1,j aij

)
N (ξt|µi,Σi) (2.10)

starting from:

αHMM
1,i = ΠiN (ξ1|µi,Σi) (2.11)

2.3.3 Backward Variable

In a similar manner, we can define the probability of the partial observation {ξt+1, . . . , ξT−1, ξT}
knowing that we are in state i at time step t. This is called the backward variable which
is defined as

βHMM
t,i = p(ξt+1:T |st = i) (2.12)

and it can also be calculated by induction:

βHMM
T,i = 1 (2.13)

βHMM
t,i =

K∑
j=1

aijN (ξt+1|µj,Σj)β
HMM
t+1,j (2.14)

2.3.4 Parameter Learning: Baum-Welch Algorithm

The parameter estimation of HMM can be done through a modified version of Expectation-
Maximization algorithm, or the Baum-Welch algorithm [11]. Similar to Section 2.2.2, the
algorithm iterates over two steps: E-step and M-step. At each cycle, E-step infers the
hidden states given the HMM parameters and the re-estimated the parameters given the
data in M-step.

The K hidden state HMM’s parameters (ΘHMM) can be estimated with the observation
information of length T , ξ1:T = {ξ1, . . . , ξT}. In order to simplify the calculation we define
the following variables:

γHMM
t,i = p(st = i|ξ1:T)

=
αHMM
t,i βHMM

t,i∑K
k=1 α

HMM
t,k βHMM

t,k

(2.15)

20

ζHMM
t,i,j = p(st = i, st+1 = j|ξ1:T)

=
αHMM
t,i aijN (ξt+1|µj,Σj)β

HMM
t+1,j∑K

k=1

∑K
l=1 α

HMM
t,k aklN (ξt+1|µl,Σl)βHMM

t+1,l

(2.16)

where α and β are the forward and backward variables described in previous sections. Using
Equations (2.15) and (2.16), the parameters of the HMM model ΘHMM = {{aij}Kj=1,Πi, µi,Σi}Ki=1

can be calculated iteratively. For the hidden state i (we will drop HMM superscript here),

Πnew
i = γ1,i (2.17)

anewij =

∑T−1
t=1 ζt,i,j∑T−1
t=1 γt,i

(2.18)

µnewi =

∑T
t=1 γt,iξt∑T
t=1 γt,i

(2.19)

Σnew
i =

∑T
t=1 γt,i(ξt − µnewi)(ξt − µnewi)ᵀ∑T

t=1 γt,i
(2.20)

2.3.5 GMR for HMM

From the definition of the HMM, applying classical GMR approach as mentioned before
is possible, yet the temporal information is not utilized in the classical GMR method. In
order to utilize the temporal information that we characterized in HMM, we use a modified
version of GMR called GMRa [21, 77]. The classical formulation is similar to Equation
(2.7). Instead of using the weighting factor h, we use α, the forward variable in HMM.
Hence the new equation becomes

p
(
ξOt |ξIt

)
=

K∑
k=1

αk,tN
(
ξ̂k,t, Σ̂k

)
(2.21)

2.4 Modeling of Robot Manipulators

In this section, we outline the mathematical model of general 2-link manipulator. The
schematic diagram can be found in Figure 2.1.

21

Figure 2.1: 2 link manipulator schematic diagram

2.4.1 Forward Kinematics

The end-effector position (x, y) relative to the global coordinate axis (X, Y) can be written
as

x = x0 + l1 cos(θ1) + l2 cos(θ1 + θ2)

y = y0 + l1 sin(θ1) + l2 sin(θ1 + θ2)
(2.22)

2.4.2 Inverse Kinematics

Unlike forward kinematics, the inverse kinematics problem may have multiple solutions, a
unique solution, or no solution in general. It can be easily solved in the planar two link
robot by utilizing the polar coordinates.

r =
√
x2 + y2

α = cos−1

(
l21 + 22 − r2

2l1l2

)
β = cos−1

(
r2 + l21 − l22

2l1r

)

θ1 = tan−1(
y

x
)± β

θ2 = π ± α

(2.23)

22

where the sign used to calculate θ1 and θ2 must be the same.

2.4.3 Jacobian

Jacobian describes the relationship between two different coordinate systems. The Jacobian
is given by a set of partial differential equations. From Equation (2.22),

J =
∂pe
∂θ

=


∂x

∂θ1

∂x

∂θ2

∂y

∂θ1

∂y

∂θ2

 =

−l1 sin(θ1)− l2 sin(θ1 + θ2) −l2 sin(θ1 + θ2)

l1 cos(θ1) + l2 cos(θ1 + θ2) l2 cos(θ1 + θ2)

 (2.24)

In this case, the Jacobian describes the relationship between the end-effector position
(which we will denote pe = [x, y]ᵀ) and the set of joint angles (which we will denote
θ = [θ1, θ2]ᵀ). Using Jacobian, the velocities of the end-effect are related to those of joint
angles by

ṗe = Jθ̇

In addition to velocity relationship, using the energy-force definition, the joint torque can
be related to the end-effector force through the same Jacobian.

Fe = Jᵀτ (2.25)

where Fe is the end-effector force.

23

Chapter 3

Motion Profile Learning from
Demonstration

In this chapter, we outline different methods to allow robot to learn nonprehensile manip-
ulation task from the expert’s demonstrations while utilizing robot’s rich sensing ability.
Demonstrations are provided to the robot through kinesthetic teaching and various sensors
record the demonstrated information. Then through probabilistic modeling described in
Section 2, these motion profiles are encoded to reproduce a generalized motion profile. The
overall flow of this learning system is shown in Figure 3.1. We perform three different LfD
approaches including GMM/GMR, GMM+DTW/GMR and HMM/GMRa. In the next
section we outline demonstration collection, various LfD framework implementations and
experimental results for nonprehensile spinning task described in Section 1.4.2.

24

Expert Human
Demonstration

Motion Profile Modeling Motion Profile Generation

Preprocessing
with DTW

��� ���

����	��

�	
	�����	�
�����
����
��	

Figure 3.1: Learning System flowchart

3.1 Demonstration Collection

Human expert’s demonstration data may be collected through different ways. Examples in-
clude visual motion tracking system [54], physically guided by humans through kinesthetic
teaching [77] or teleoperation by human through remote controller [69]. In this work, we
focus on kinesthetic teaching, in which a human teacher guides the robot in performing the
skill by physically holding it [3]. Kinesthetic teaching has been chosen for its advantage
over other demonstration techniques such as direct compensation of the kinematic con-
straints at the first hand, and no correspondence problem due to a direct relationship from
the demonstration to the sensor readings on the robot. Also, due to the limited degrees of
freedom of the robot (limited to planar motion), there was no external force (ie. gravity)
compensation required when performing the kinesthetic teaching. Figure 3.2 shows how
the kinesthetic teaching was performed by the expert for our research. As mentioned in
Section 1.4.2, the LfD framework is employed to allow robot to learn the joint angle and the
end-effector force motion profiles for the impulsive spinning motion. Hence, the expert’s
demonstration only focused on the impulsive spinning.

Total of M demonstrations are performed to the robot and the collection of datapoints
is represented with ξ = {ξm1:T}Mm=1 where ξm1:T = {ξm1 , ξm2 , . . . , ξmT } is the collection of data-

25

Figure 3.2: Kinesthetic Teaching

points in a single demonstration (m) and T represents the total number of datapoints in a
single demonstration. Each datapoint ξmt ∈ R8 is a vector constructed by collecting time
index, position and force profiles that are gathered from the robot’s equipped sensors.

ξmt = col
(
(ξi)

m
t , (ξθ)

m
t , (ξf)

m
t

)
where ξi ∈ R denotes a time index, ξθ ∈ R4 denotes a vector of joint angles and ξf ∈ R4

denotes a vector of end-effector forces. Figure 3.3 illustrates these data variables on the
schematic diagram. In the following sections, we show how we utilize collected demonstra-
tion information to learn the motion profile for nonprehensile manipulation task through
GMM/GMR and HMM/GMRa framework.

26

Figure 3.3: Schematic diagram of the robot system with data variables.

3.2 GMM/GMR

Among many approaches to solving LfD problem, GMM/GMR approach offers an advan-
tage of resulting smooth generalized trajectory and not requiring many training samples.
Another noticeable advantage of using probabilistic approach is that any outliers can be
removed from the demonstration [23].

3.2.1 Training with GMM

The recorded data from the demonstration is then modeled with a GMM. As mentioned
in Section 2.2.1, we select K number of Gaussians to represent the entire motion profile
parameterized by ΘGMM = {wk, µk,Σk}Kk=1. To learn the parameters, we follow the EM-
algorithm mentioned in Section 2.2.2 with concatenated demonstration dataset shown as
ξ = {ξm1:T}Mm=1.

Selecting Number of Gaussians

The choice of K, the number of Gaussians, is critical when finding a probabilistic model
of the given datapoints. Selecting small number of Gaussians results in a model that does
not represent the motion profile correctly, and a large number of Gaussians may cause
the model to over-fit the data, which may result in losing robustness in the generalized
motion profile. Popular methods of selecting a proper number of Gaussians include Akaike

27

information criterion (AIC) [2], Bayesian information criterion (BIC) [82] and the consistent
AIC (CAIC) [18]. These selection methods are described as the following equations.

AIC = −2 logL+ 2ν

BIC = −2 logL+ ν log(N)

CAIC = −2 logL+ ν (log(N) + 1)

(3.1)

where L is the log-likelihood of the model against the training set, ν is the free parameters
in the model selection and N is the total number of the training datapoint. From the
equations we can observe that all the expression on the right side have two terms, the
first term for measuring the goodness-of-fit and the second term for penalizing model
complexity. All the listed methods showed consistent performance over small number of
free parameters (ν), however as the model complexity grows the performance fails [18].
Hence, for our purpose we use a slightly modified version of BIC method by introducing a
scaling factor (λ) to the second term, which can be shown as:

BICλ = −2 logL+ λν log(N) (3.2)

where ν = (K(D2 − D)/2 + 2D + 1) − 1, which is the number of free parameters in the
selected number of Gaussian mixtures. The λ value was chosen to be 0.01 in our work.

Temporal Alignment via DTW

The time alignment of both position and force can play a crucial role when performing
nonprehensile manipulation. This is because the end-effector force must be applied to the
object at the right position of the robot fingers to maximize the effectiveness of the nonpre-
hensile manipulation. Hence, it is very important to align the demonstrated trajectories
in time through the DTW algorithm as shown in Section 2.2.4. Since a single DTW algo-
rithm cannot align more than two time series at the same time, we set a single reference
trajectory and perform DTW multiple times with the rest of the trajectories. We evaluate
the effectiveness of DTW by performing GMM/GMR with and without DTW on the same
demonstrated datapoints.

3.2.2 Motion Profile Reproduction with GMR

After the demonstration data are modeled, smooth motion and force profiles are found
using GMR. As explained in Section 2.2.3, given a joint probability distribution of training

28

data, p(ξi, ξθ, ξf), the GMR estimates the conditional probabilities for the position (p(ξθ|ξi))
and the force (p(ξf |ξi)). Then, taking the expectation of the conditional probability results
in smooth motion and force profiles along the time space.

3.3 HMM/GMRa

Another popular method of solving LfD system is modeling the demonstration data with
HMM. In this section we show how the same demonstrated datapoints can be modeled
without time index which results in a probabilistic model that compensated both temporal
and spatial variations. Then we show how HMM can also be used for reproducing the
generalized motion profile through modified version of GMR referred as GMRa.

3.3.1 Training with HMM

Similar to GMM we select K number of Gaussians to parameterize the motion profile
represented with ΘHMM = {{aij}Kj=1,Πi, µi,Σi}Ki=1 as described in Section 2.3.1. Since
HMM is capable of handling temporal variations, we do not need the time index term ξi
so our datapoint vector reduces to ξmt =

[
(ξθ)

m
t , (ξf)

m
t

]ᵀ
. When training for HMM, we’ve

divided the dataset into two, where one dataset corresponds to the left finger of the robot
(finger 1) and the other dataset is for the right finger of the robot (finger 2) as labeled on
Figure 3.3. This is based on our assumption that the correlation is small between the left
finger dataset and the right finger dataset.

In the absence of time index, we can use the position information as the input and
the force information as the output. Therefore, we end up with two HMM models ΘHMM

left

and ΘHMM
right which are trained with datasets ξmt,left and ξmt,right, respectively. For selecting

the number of Gaussians, we use the similar criterion mentioned in Section 3.2.1. For
calculating the likelihood, we sum up Equation (2.15) for all K Gaussian states.

3.3.2 Trajectory Reproduction with GMRa

The HMM has largely been used for recognizing the human demonstrated motion due to
its capability of handling temporal and spatial variation. There have also been many at-
tempts to reproduce trajectory from the HMM data. Specific examples include averaging
approach [23], keypoint encoding [7], and spline fitting approach [19]. In our work, we

29

simply extended the GMR for motion profile reproduction from HMM. With the trained
HMM, the generalized motion profile is generated using GMRa algorithm shown in Equa-
tion (2.21). From the pre-defined motion profile as input variables, the corresponding
end-effector forces are calculated.

3.4 Experimental Result

For nonprehensile spinning task mentioned in Section 1.4.2, we have collected total of 4
demonstration datasets (M = 4) with each having a trajectory length of T = 3000. Hence,
the total datapoints of N = M × T = 12000 are used for the training purpose. As we
control the robot position by position tracking, we use the encoder readings directly to
our position trajectory. However, the tactile sensor measures the contact forces at a fixed
coordinate on the sensor, which is different from the contact force measured at the contact
point. So, the original force readings are converted to normal and tangential components at
the contact point. We utilized the geometrical relationship to find the contact points, but
this may also be solved through vision camera. In learning the force profile, we only used
the tangential force. There are several reasons for this: the task is limited to only rotation,
hence the normal direction force does not play much role in spinning. Furthermore, since
the object center is fixed, the normal force does not reflect the actual object force.

3.4.1 Gaussian Number Selection

To select the proper number of Gaussians, we conducted EM-calculation on the same
demonstration dataset with varying the number of Gaussian models (K). We utilize the
modified BIC calculation as described in Equation (3.2) and the change of BIC number
respect to the varying number of Gaussians is shown in Figure 3.4. As we aim to select
the number of Gaussians that well represents the training data with the minimum number
of free parameters, we select K that corresponds to the lowest BIC number. Therefore,
we have selected K = 5 as the modified BIC number. This tells that 5 Gaussian models
are suitable to fit the given training data with a reasonable number of the free parameters.
The selected number of Gaussians is used throughout all the experiments.

30

1 2 3 4 5 6 7 8

-10

-8

-6

-4

-2

0

2

4

Figure 3.4: Number of Gaussian models vs modified BIC number

3.4.2 GMM for Nonprehensile Spinning Task

The following figures show how Gaussian mixture models are encoding the demonstrated
motion profiles. Figure 3.5 shows the result of GMM with the raw demonstrated input
and Figure 3.6 shows the result of GMM with the time-warped inputs (i.e. pre-processed
with DTW). The demonstrated motion profiles are represented with dashed lines and the
corresponding GMM is represented with the ellipses. By looking at both figures, one can
see that the selected number of Gaussians (K = 5) successfully encode all the trajectory
data. We can also see that pre-processing the data with DTW allows GMM to have smaller
variances when encoding the same motion profile.

31

Figure 3.5: GMM

32

Figure 3.6: GMM+DTW

33

3.4.3 HMM for Nonprehensile Spinning Task

As described in Section 3.3.1, two HMM models ΘHMM
left and ΘHMM

right were trained with given
demonstration data. Figures 3.7 and 3.8 show the HMM models for left and right finger,
respectively. For each figure, it shows the Gaussian states between the joint angles and end-
effector force on the left side of the figure. Instead of using the time index as we did in the
previous section with GMM, we represented the same motion profile only with joint angles
and the end-effector forces. Specifically, the joint angles are used as the input datapoints
and end-effector forces are treated as the output datapoints. Hence in the plots below, we
have joint angles as the x-axis and end-effector forces as the y-axis. Also, the right side
of Figures 3.7 and 3.8 shows the HMM state transition between the states that are color
matched with the figures shown in the left. The opacity of the arrow shows the transition
probability of between the states (i.e. darker arrow corresponds to the higher probability of
transition). To simplify the convergence, we have forced the transition probability model
to be left-to-right topology.

34

Figure 3.7: HMM for left finger

35

Figure 3.8: HMM for right finger

36

3.4.4 Generalized Motion Profile for Nonprehensile Spinning Task

From the encoded models (ΘGMM,ΘGMM+DTW,ΘHMM
left ,ΘHMM

left) calculated in the previous
sections, generalized motion profiles are reproduced as described in Section 3.2.2 and 3.3.2.
For GMMs the input to the regression model was the time sequence (t0:3s). For the HMM
models we had to use joint angles as an input to the model to retrieve the corresponding
finger-tip force output; hence, we have used generalized joint angles generated by GMM
for the regression calculation. Results are summarized in Figure 3.9.

37

Figure 3.9: Reproduced generalized trajectories

38

3.4.5 Discussion

In this section, we were able to collect M = 4 demonstrations to calculate multiple gener-
alized motion profiles for nonprehensile spinning task through different LfD methods. The
length of the motion profile is T = 3, 000 time steps, which is equivalent to 3s as each
time step is 0.001s. For the model training, the iteration count for convergence of GMM,
GMM+DTW and each HMM models (left and right) took 77, 75, 22 and 13, respectively.
By comparing the two figures Figure 3.5 and 3.6, one can see that the covariance of the
GMM gets smaller with time-warped input, which implies that the temporal variation has
been compensated by utilizing DTW process. As we can see from the results in Figure
3.9, the generalized trajectories all share the similar behaviour for both angle and force
profiles. One key point to note is that using HMM, the impulsive behaviour of the spinning
is well-established through the reproduction stage. The narrow peak on F1 profile illus-
trates this, which is compared to GMM/GMR methods. The performance of each motion
profile will be compared in the next section when we use them for experiment with the
same controller.

39

Chapter 4

Reproduction of Nonprehensile
Spinning Task

In this section, we develop the controller to implement the generalized motion profiles that
were generated in the previous chapter. As nonprehensile manipulation task utilizes both
position and force profiles, we have selected to use combination to two controllers to control
the entire system. Specifically, we have implemented the feedback control for the position
profile and the feedforward control for the force profile.

4.1 Controller Design

After successful reproduction of generalized motion profiles in Chapter 3, these motion
profiles are applied to a robot hand as control inputs, which are denoted by θd and Fd.
Since the motion is represented with the joint angles, a simple PD feedback controller is
capable of generating the desired finger motion. To perform nonprehensile manipulation,
additional end-effector forces are often needed. Hence, we perform hybrid control by adding
feedforward term to the PD position controller. To provide the desired end-effector force
during the manipulation, we use the Jacobian transpose control to calculate the required
feedforward portion of the joint torque. Thus, the control input (τinput) to the robot hand
is given as

τinput = τff + τfb

40

where τff and τfb are the feedforward and the feedback control terms, respectively, which
are given by

τff = Jᵀ(θ)Fd

τfb = KP (θd − θ) +KD(θ̇d − θ̇)
(4.1)

where J ∈ R4×4 denotes the Jacobian matrix, and KP ∈ R4×4 and KD ∈ R4×4 are diagonal
matrices that contain the proportional and derivative gains for each joint. The control
input τinput ∈ R4 is a vector that is fed into the motor of each joints. The block diagram
of the controller for the nonprehensile manipulation is depicted in Figure 4.1.

PD

Controller

J
T

Robot
+-

Figure 4.1: Controller for the nonprehensile manipulation

4.2 Experimental Result

We performed several experiments to validate the performance of the proposed controller
design to the custom-built two finger robot introduced in Section 1.4.1. After the controller
design verification, the generated motion profiles for the nonprehensile spinning task from
different LfD framework are fed into the robot to compare the performance of each gener-
ation methods. We first evaluate the performance of feedback and feedforward controller
separately. This seemed to be a valid approach for evaluating the controller as the control
input to the robot hand is the superposition of the two. Once the performance of each
controller design is verified, the reference control signals established in Section 3.4.4 are
used as the controller input signals and performance of each nonprehensile manipulation
task will be compared.

4.2.1 Valication of Feedback Controller for Position Tracking

The position feedback controller is a simple PD controller that utilizes the error between
the desired and reference angles and their derivatives. The selected controller gains are

41

KP = diag (20, 20, 20, 20) and KD = diag (1500, 1500, 1500, 1500). The chosen reference
signal is a smooth spline profile that allows robot to pre-shape the grasp position from
its zero position. The experimental results are shown in Figure 4.2. It includes the plots
of desired and actual joint angle response plotted together and a single plot to show the
errors between them. We can see that the position tracking is well performed as the error
is in the range of 2 to 3 degrees. By adding the integration term, the steady state error
can be reduced, but the further controller design was not implemented as the performance
was suitable for our use.

0 0.5 1 1.5 2 2.5 3 3.5

-60

-40

-20

0

0 0.5 1 1.5 2 2.5 3 3.5

0

20

40

60

0 0.5 1 1.5 2 2.5 3 3.5

-100

-50

0

0 0.5 1 1.5 2 2.5 3 3.5

0

50

100

0 0.5 1 1.5 2 2.5 3 3.5

0

1

2

3

Figure 4.2: Position controller performance

4.2.2 Validation of Feedforward Controller for End-Effector Force

Similar approach was used to verify the performance of the feedforward controller. The
robot’s finger tip was placed against the stationary object and the normal directional force
was applied towards the object in a stepwise command (i.e. a series of step signals that
increase every 1s by 0.5N). The experimental results are shown in Figure 4.3. The top
figures show the system responses against the desired command signal and the bottom

42

figures illustrate the error responses. The average error magnitude sits around 0.2N , the
performance of which is adequate for our purpose.

0 1 2 3 4 5

0

0.5

1

1.5

2

2.5

0 1 2 3 4 5

-0.2

0

0.2

0.4

0.6

0.8

0 1 2 3 4 5

0

0.5

1

1.5

2

2.5

3

0 1 2 3 4 5

-0.4

-0.2

0

0.2

0.4

0.6

Figure 4.3: Stairway force step for feedforward controller verification

4.2.3 Evaluating Reproduced Generalized Motion Profiles

The reference control signals established in Section 3.4.4 are used as the controller input
signals in this section to compare the performance of each motion profile. To describe the
performance of the proposed controller in nonprehensile manipulation task, the reproduced
generalized motion profiles and the actual experimental output are shown in Figure 4.5
(force) and Figure 4.4 (position). For the demonstration purpose, we are only showing
the results from GMM+DTW/GMR on these figures as the other methods result a similar
behaviour. Figures 4.5a, 4.4a and 4.4c correspond to Finger 1 while Figures 4.5b, 4.4b
and 4.4d correspond to Finger 2. (See Figure 3.3). The thin dotted lines represent the
demonstration data from kinesthetic teaching (4 of them in each plot). The thick dash-dot
line is the generalized trajectory obtained through GMM+DTW/GMR. The generalized
trajectories in Figures 4.5 and 4.4 are implemented to the controller in Figure 4.1, and

43

the resulting signals are depicted as thick solid lines in Figures 4.5 and 4.4. Note that the

0 1 2 3

1.5

2

2.5

3

(a) Joint 1 (θ1)

0 1 2 3

0

0.5

1

1.5

(b) Joint 2 (θ2)

0 1 2 3

1

1.2

1.4

1.6

1.8

2

(c) Joint 3 (θ3)

0 1 2 3

1.2

1.4

1.6

1.8

2

2.2

(d) Joint 4 (θ4)

Figure 4.4: GMR trajectories for position variables.

0 0.5 1 1.5 2 2.5 3

-5

0

5

10

15

Genralized Trajectory (F
d
)

Demonstrations

Experimental Result (F)

(a) Finger 1 (Left Finger)

0 1 2 3

-10

-5

0

5

(b) Finger 2 (Right Finger)

Figure 4.5: GMR trajectories for tangential forces.

44

fingers are in contact with the object from around 0.8s until around 2.7s.

The performance of the reference input tracking for position and force is not as good
as that shown in Figure 4.2 and Figure 4.3 although the desired nonprehensile spinning
motion has been achieved by the robot. The main source of error for position tracking
may be attributed to ignoring any kinematic constraints during the learning process and
a possible source of error for the force tracking is postulated to come from subtracting out
the tangential force created by the motion of the robot. Although the robot was not able to
reproduce expert level of nonprehensile manipulation task, the robot showed a significant
improvement over classical manipulation approach based on regrasping.

We have collected 10 trials for each motion profiles and recorded the total rotated angle
from the starting position. We used the total rotated angle as the performance measure
to compare how closely the generated profiles follow the expert’s demonstration. The
collected data are summarized in Table 4.1 and Figure4.6.

Table 4.1: Performance of nonprehensile spinning task without catching

Motion Profile
Generation Method

Median
Angle

Maximum
Angle

Minimum
Angle

GMM/GMR 170◦ 183◦ 157◦

GMM+DTW/GMR 206◦ 221◦ 196◦

HMM/GMRa 235◦ 256◦ 216◦ (outlier)

45

160

170

180

190

200

210

220

230

240

250

260

Figure 4.6: Spinning result

Discussion

Through the experiment, we have clearly verified that the proposed motion profile gener-
ation methods and the controller design allow robot to perform an object spinning task
much better than the classical spinning method that utilizes grasp-stability. More specif-
ically, through the new approach, robot can spin the object much faster and at greater
angles than the traditional method of spinning which keeps the contact between object
and robot’s fingertips (approximately ∼ 25◦).

Although the human expert’s demonstration resulted object spinning of about full 2
rotations, none of the experimental results was performing the nonprehensile spinning task
at the human-level. Hence, the criteria for comparison between the experimental results
was simply which motion turned the greater angle. From the experiment, it was shown
that the each LfD framework provided different results for the desired task. The result
shows that compensating not only the spatical variation but also the temporal variation
provides much better performance for the desired task. HMM/GMRa showed the best
performance as this framework is independent of the time index.

46

Chapter 5

Dynamic Catching through
Parameter Learning

Since we can spin the object at a much greater angle in a short amount of time, we also need
to catch the object at a right time to complete the manipulation goal of object spinning at
a desired angle. Finding the right timing will be discussed in this section. We utilize the
theory from the iterative learning control (IRC) to iteratively find the optimal timing to
trigger the stopping comman to the robot in order to stop the spinning object at a desired
angle.

5.1 Main Control Parameter

After the robot makes an impulsive spin, the visual feedback is used to stop the spinning
object at a desired angle φd. Stoping action is made by dynamic catching (or an impulsive
grasping action) by sending a simple closing command for both fingers. Denoting by φ̄t the
rotation angle of the object measured by the vision at the time step t, the time to trigger
the regrasping action, denoted by ttr, can be determined by the following equation;

ttr = t such that φ̄t = φd − ω (Tv + Ta) (5.1)

where ω is the angular velocity of the object, Tv is the sample time of vision sensor, Ta is the
time duration of both fingers completing their closing action. Here, we made an assumption
that the object is rotating quasi-statically, i.e. at a relatively constant angular speed (which
holds true for the experiments that will be shown in the next section). However, it may

47

also be computed online by the numerical differentiation of successive vision data for the
orientation of the object.

5.2 Iterative Learning Control

From Equation (5.1), Ta is the only unknown parameter. We plan to adapt the idea of
iterative learning control (ILC) method to learn the parameter from repetitive experiments.
As the name suggests the key idea of ILC is learning through a predetermined hardware
repetition [1]. Among various ILC methods, we are using the iterative learning scheme of
”Arimoto-type”[6], given by

uk+1 = uk + Γek (5.2)

where index k is the iteration number, u is the control signal, Γ is the learning gain and ek
is the error between the desired trajectory and the actual value (i.e. ek = xd− x). For our
purpose, we do not seek for the control signal directly, but we prefer to learn the unknown
parameter Ta. Therefore, we modify the Equation (5.2) to fit our purpose.

Ta,k+1 = Ta,k + Γ
(
φd − φ̄t,k

)
(5.3)

5.2.1 Experimental Result

To learn the parameter, we have selected nonprehensile spinning manipulation with desired
angle of 90◦ to repetitively perform. By utilizing Equations (5.1) and (5.2), the unknown
parameter Ta was learned. We first fixed the unchanging parameters such as ω = 209◦/sec,
Tv = 0.08s and Γ = 0.001. The angular speed of the object is set to a fixed point because
the object’s angle changes almost linearly right after the spinning action is made, and this
remains linearly until the object spun about 200◦. Hence, the angular speed can be kept
fixed if the nonprehensile spinning task is done within 200◦. The red line in Figure 5.1
shows the linear region of the object angle change. The slope of this line is 209◦/sec.

Through the iteration algorithm described in Equation (5.2), Ta was found to be 0.129s
in 12 iteration steps. The change in the parameter value and the error indicating the
control performance is shown in Figure 5.2. The parameter learning was stopped when
there was no longer significant changes to the learned parameter. In order to verify whether
the parameter was learned correctly, the nonprehensile spinning tasks were performed at
various desired angles and the results are displayed in the next section.

48

0 1 2 3 4 5 6 7 8 9

-50

0

50

100

150

200

250

300

Figure 5.1: Object angles after free spinning

49

0 2 4 6 8 10 12 14

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0

5

10

15

20

25

30

35

Figure 5.2: Iterative parameter learning for Ta

5.3 Complete Nonprehensile Spinning Task Experi-

mental Result

The experiments are conducted to realize fast rotation of the object beyond the range
achievable by the single step stable grasping manipulation through nonprehensile spinning
method. Specifically, we chose three different desired rotation angles, φd = 90◦, 120◦ and
180◦. Note that the same impulsive spinning move can be used for any φd because the
particular values of φd can be achieved by different values of ttr in Equation (5.1) (i.e. the
time to engage in the stopping action). Thus, we obtained only one set of generalized tra-
jectories of position and force for the spinning move. Among several generalized trajectory
from the previous section, we’ve selected the fastest one which is from the HMM/GMRa
framework.

To illustrate the whole procedure of the nonprehensile spinning manipulation, the snap-
shots for φd = 180◦ is shown in Figure 5.3, which are taken by the vision camera. The five
snapshots in Figure 5.3 delineate different stages of motion that constitute the complete
nonprehensile spinning manipulation. As shown in Figure 5.3a, at first, both fingers are
moved to the object so that they grasp it, symmetrically, at the rightmost and the leftmost
contact points located along the horizontal line passing through the object center. Then,

50

(a) Initial position (b) Pre-motion

(c) Impulsive action (d) Free rotation

(e) Catching

Figure 5.3: Snapshots of the manipulation for φd = 180◦.

51

both fingers are engaged in the wind-up motion (called the pre-motion) as shown in Figure
5.3b, by which the object is slowly rotated counterclockwise through a finger tip rolling
to its maximum range (∼ −29◦ in this case) to be ready for the impulsive spinning move.
Then, both fingers quickly fling the object to the opposite (i.e. clockwise) direction through
the impulsive spinning as shown in Figure 5.3c which depicts the snapshot of the moment
when both fingers have just spun the object with a quick motion. After that, a period
of free motion follows as shown in Figure 5.3d. During this period, the object undergoes
a constant speed rotation while the fingers remain detached from the object. Finally, as
shown in Figure 5.3e, when the object is getting close to his desired rotation φd (which is
180◦ in this case), the fingers are engaged in the fast catching action to stop the rotation
according to Equation (5.1).

The same task can be done with the classical re-grasping method. The task’s objective
was to rotate the object about 180◦ in counterclockwise direction. Due to the kinematic
constraints, the robot is only capable of rotating the object about 25◦ while maintaining the
grasp stability. Hence, to perform the 180◦ rotating task, robot is required to perform six
regrasping motion. The resulting dynamic dexterous manipulation shows that it has a great
advantage over regrasping when considering the manipulation time. The nonprehensile
manipulation only requires less than 2.5s whereas, the regrasping takes about 12s. The
accuracy of the catching while the object is spinning is another concern to achieve the task
objective. However, this can be easily dealt by performing the nonprehensile manipulation
then performing the fine adjustment of the object while maintaining the stable grasping.

We conducted 10 repeated trials for each φd to evaluate the performance of the robotic
hand. The performance of the nonprehensile spinning manipulation is compared with
that of finger regrasping method in Tables 5.1 and 5.2. For all three values of φd, the
nonprehensile manipulation completed the rotation task within 2.5 seconds as shown in
Table 5.1. On the hand, it takes significantly longer time if we use the classical finger gating.
Specifically, it takes about 7.5 seconds to rotate the object by 90 degrees as shown in Table
5.2. This is because the robotic fingers need to go through 4 rounds of regrasping before
completing the desired rotation. Of course, the time of completion increases in portion to
φd, e.g. it requires 11.78 seconds to complete 180circ of rotation. Although the angle errors
appear smaller for finger gating, the error values in Table 5.1 are insignificant because we
can easily compensate for all these errors by incorporating a small rolling manipulation
followed by the catching motion (which will take only a fraction of a second).

52

Table 5.1: Performance of nonprehensile manipulation to generate the desired angle φd

Desired Angle
Average

final angle
Average time
of completion

Mean of
angle error

90◦ 91.63◦ 2.007s 1.63◦

120◦ 119.4◦ 2.1739s 0.6◦

180◦ 182.1◦ 2.4612s 2.1◦

Table 5.2: Performance of finger gating to generate the desired angle φd

Desired Angle
Average

final angle
Average time
of completion

Mean of
angle error

90◦ 91.03◦ 7.520s 1.03◦

120◦ 120.8◦ 10.608s 0.8◦

180◦ 180.4◦ 11.782s 0.4◦

53

Chapter 6

Conclusion

6.1 Conclusion

In this thesis, we proposed the use of multisensory learning from demonstration (LfD)
framework to enable nonprehensile (or dynamic dexterous) manipulation tasks with a
multifingered robotic hand. The main idea is to produce generalized trajectories for both
position and force using probabilistic LfD technique. Among various probabilistic LfD
techniques, we have used GMM/GMR, GMM+DTW/GMR and HMM/GMRa. From the
same demonstration data, we have trained different probabilistic models and retrieved the
generalized motion profile through regression step. We demonstrated the performance of
each LfD technique and it was shown that the HMM/GMRa performs most closely to the
expert’s demonstration among others. This is due to the capability of compensating for
both spatial and temporal variations in the training data. Then, we have completed the
task goal of spinning object at desired angle by incorporating dynamic catching action. The
control parameter required for dynamic catching was learned through iterative method.

The proposed overall manipulation technique was verified through experimental tests
with two-finger planar robotic hand which is controlled to spin the circular object fast and
accurately. The proposed technique is also compared with the classical regrasping method
based on force closure and finger gating, which showed the superiority of our approach in
terms of speed and agility. We believe that the proposed framework can be generalized to
other nonprehensile manipulation tasks that involve more complex dynamics between the
object and the manipulating bodies.

54

6.2 Recommendation

As a future work, a simulation environment can be established for the robot using dynamic
simulation tool such as V-REP [75] or MuJoCo [87]. Through the simulation environment
more complex nonprehensile manipulation tasks can be learned and tested without the
need of creating a different testing environment. Creation of such simulation environment
can be extended to performing reinforcement learning (RL) to the system. The simulation
environment solves the issue of physical robot getting damaged by performing repeated
experiments. Through RL, robot can learn to perform the nonprehensile manipulation
at a human-like level through learning from its own experience. The converging time (or
learning time) of the RL can be reduced by starting from a good initial motion profile.
This is where the current research can be useful for; the learned motion profile from LfD
framework can be used as a good initial motion profile of RL framework.

This work can be also extended to learn prehensile manipulation tasks by utilizing
both position and force sensor observations. Through this, robot can learn new tasks
without the need to mathematical modeling for the task. Also, after learning several low-
level manipulation skills, high-level task learning can be applied to learn more complex
manipulation task from the expert’s demonstration. Future tasks involves task such as
pushing or ball throwing that have more than one degree of freedom as we demonstrated
in our research. We believe, that our LfD framework is capable of generalizing various
well-demonstrated expert information that is provided to robot.

55

References

[1] H. Ahn, Y. Chen, and K. L. Moore. Iterative learning control: Brief survey and catego-
rization. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications
and Reviews), 37(6):1099–1121, Nov 2007.

[2] H. Akaike. A new look at the statistical model identification. IEEE Transactions on
Automatic Control, 19(6):716–723, December 1974.

[3] B. Akgun, M. Cakmak, J. W. Yoo, and A. L. Thomaz. Trajectories and keyframes
for kinesthetic teaching: A human-robot interaction perspective. In ACM/IEEE Int.
Conf on Human-Robot Interaction (HRI), pages 391–398, March 2012.

[4] P. K. Allen, A. T. Miller, P. Y. Oh, and B. S. Leibowitz. Using tactile and visual
sensing with a robotic hand. In IEEE Int. Conf. on Robotics and Automation (ICRA),
volume 1, pages 676–681, April 1997.

[5] Brenna D. Argall, Sonia Chernova, Manuela Veloso, and Brett Browning. A survey
of robot learning from demonstration. Robotics and Autonomous Systems, 57(5):469
– 483, 2009.

[6] S. Arimoto, S. Kawamura, and F. Miyazaki. Bettering operation of dynamic systems
by learning: A new control theory for servomechanism or mechatronics systems. In
IEEE Conf. on Decision and Control, pages 1064–1069, Dec 1984.

[7] T. Asfour, F. Gyarfas, P. Azad, and R. Dillmann. Imitation learning of dual-arm ma-
nipulation tasks in humanoid robots. In IEEE-RAS Int. Conf. on Humanoid Robots,
pages 40–47, Dec 2006.

[8] C. G. Atkeson, J. G. Hale, F. Pollick, M. Riley, S. Kotosaka, S. Schaul, T. Shibata,
G. Tevatia, A. Ude, S. Vijayakumar, E. Kawato, and M. Kawato. Using humanoid
robots to study human behavior. IEEE Intelligent Systems and their Applications,
15(4):46–56, July 2000.

56

[9] Hyunki Bae, Soo Jeon, and Jan P. Huissoon. Vision and force/torque integration for
realtime estimation of fast-moving object under intermittent contacts. ROBOMECH
Journal, 3(1):15, Jul 2016.

[10] G. Bätz, A. Yaqub, Haiyan Wu, K. Kühnlenz, D. Wollherr, and M. Buss. Dynamic
manipulation: Nonprehensile ball catching. In Mediterranean Conf. on Control and
Automation (MED), pages 365–370, June 2010.

[11] Leonard E. Baum, Ted Petrie, George Soules, and Norman Weiss. A maximization
technique occurring in the statistical analysis of probabilistic functions of markov
chains. Ann. Math. Statist., 41(1):164–171, 02 1970.

[12] Jacob Benesty, M. Mohan Sondhi, and Yiteng (Arden) Huang. Springer Handbook of
Speech Processing. Springer-Verlag, Berlin, Heidelberg, 2007.

[13] A. Bicchi. Hands for dexterous manipulation and robust grasping: a difficult road
toward simplicity. IEEE Transactions on Robotics and Automation, 16(6):652–662,
Dec 2000.

[14] A. Bicchi and V. Kumar. Robotic grasping and contact: a review. In IEEE Int. Conf.
on Robotics and Automation (ICRA), volume 1, pages 348–353, April 2000.

[15] Antonio Bicchi. On the closure properties of robotic grasping. The International
Journal of Robotics Research, 14(4):319–334, 1995.

[16] Zeungnam Bien and Jian-Xin Xu, editors. Iterative Learning Control: Analysis, De-
sign, Integration and Applications. Kluwer Academic Publishers, Norwell, MA, USA,
1998.

[17] Aude Billard, Sylvain Calinon, Rüdiger Dillmann, and Stefan Schaal. Robot program-
ming by demonstration. In Bruno Siciliano and Oussama Khatib, editors, Springer
Handbook of Robotics, pages 1371–1394. Springer Berlin Heidelberg, Berlin, Heidel-
berg, 2008.

[18] Hamparsum Bozdogan. Model selection and akaike’s information criterion (aic): The
general theory and its analytical extensions. Psychometrika, 52(3):345–370, Sep 1987.

[19] S. Calinon and A. Billard. Incremental learning of gestures by imitation in a humanoid
robot. In ACM/IEEE Int. Conf. on Human-Robot Interaction (HRI), pages 255–262,
March 2007.

57

[20] S. Calinon, D. Bruno, and D. G. Caldwell. A task-parameterized probabilistic model
with minimal intervention control. In IEEE Int. Conf. on Robotics and Automation
(ICRA), pages 3339–3344, May 2014.

[21] S. Calinon, F. D’halluin, E. L. Sauser, D. G. Caldwell, and A. G. Billard. Learning
and reproduction of gestures by imitation. IEEE Robotics Automation Magazine,
17(2):44–54, June 2010.

[22] S. Calinon, F. Guenter, and A. Billard. On learning, representing, and generalizing
a task in a humanoid robot. IEEE Transactions on Systems, Man, and Cybernetics,
Part B (Cybernetics), 37(2):286–298, April 2007.

[23] Sylvain Calinon. Robot Programming by Demonstration - a Probabilistic Approach.
EPFL Press, 2009.

[24] B. Calli and A. M. Dollar. Vision-based precision manipulation with underactuated
hands: Simple and effective solutions for dexterity. In IEEE/RSJ Int. Conf. on Intel-
ligent Robots and Systems (IROS), pages 1012–1018, Oct 2016.

[25] C. C. Cheah, H. Y. Han, S. Kawamura, and S. Arimoto. Grasping and position control
for multi-fingered robot hands with uncertain jacobian matrices. In IEEE Int. Conf.
on Robotics and Automation (ICRA), volume 3, pages 2403–2408, May 1998.

[26] Sonia Chernova and Andrea L. Thomaz. Robot Learning from Human Teachers. Mor-
gan & Claypool Publishers, 2014.

[27] Chih-Yi Chiu, Shih-Pin Chao, Ming-Yang Wu, Shi-Nine Yang, and Hsin-Chih Lin.
Content-based retrieval for human motion data. Journal of Visual Communication
and Image Representation, 15(3):446 – 466, 2004.

[28] H. I. Christensen. A roadmap for u.s. robotics: From internet to robotics. Technical
report, Robotics Virtual Organization, Oct 2016.

[29] A. A. Cole, P. Hsu, and S. S. Sastry. Dynamic control of sliding by robot hands for
regrasping. IEEE Transactions on Robotics and Automation, 8(1):42–52, Feb 1992.

[30] John J. Craig. Introduction to Robotics: Mechanics and Control. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 2nd edition, 1989.

[31] P. Poornesh L. Narayana Rao N. Arun Kumar D. Hari Hara Santosh, P. Venkatesh.
Tracking multiple moving objects using gaussian mixture model. International Journal
of Soft Computing and Engineering (IJSCE), 3(2):2231–2307, May 2013.

58

[32] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incom-
plete data via the em algorithm. Journal of the Royal Statistical Society. Series B
(Methodological), 39(1):1–38, 1977.

[33] Z. Deng, J. Mi, Z. Chen, L. Einig, C. Zou, and J. Zhang. Learning human compliant
behavior from demonstration for force-based robot manipulation. In IEEE Int. Conf.
on Robotics and Biomimetics (ROBIO), pages 319–324, Dec 2016.

[34] K. R. Dixon and P. K. Khosla. Trajectory representation using sequenced linear dy-
namical systems. In IEEE Int. Conf. on Robotics and Automation (ICRA), volume 4,
pages 3925–3930, April 2004.

[35] S. Ekvall and D. Kragic. Learning task models from multiple human demonstrations.
In IEEE International Symposium on Robot and Human Interactive Communication,
pages 358–363, Sept 2006.

[36] Michael Erdmann. An exploration of nonprehensile two-palm manipulation: Planning
and execution. In Georges Giralt and Gerhard Hirzinger, editors, Robotics Research,
pages 16–27. Springer London, London, 1996.

[37] H. Friedrich, S. Münch, R. Dillmann, S. Bocionek, and M. Sassin. Robot programming
by demonstration (rpd): Supporting the induction by human interaction. Machine
Learning, 23(2):163–189, May 1996.

[38] Michel Gilloux.

[39] A. Gupta, C. Eppner, S. Levine, and P. Abbeel. Learning Dexterous Manipulation
for a Soft Robotic Hand from Human Demonstration. ArXiv e-prints, March 2016.

[40] Blake Hannaford and Paul Lee. Hidden markov model analysis of force/torque
information in telemanipulation. The International Journal of Robotics Research,
10(5):528–539, 1991.

[41] J. A. Hartigan and M. A. Wong. Algorithm as 136: A k-means clustering algorithm.
Journal of the Royal Statistical Society. Series C (Applied Statistics), 28(1):100–108,
1979.

[42] A. J. Ijspeert, J. Nakanishi, H. Hoffmann, P. Pastor, and S. Schaal. Dynamical move-
ment primitives: Learning attractor models for motor behaviors. Neural Computation,
25(2):328–373, Feb 2013.

59

[43] A. J. Ijspeert, J. Nakanishi, and S. Schaal. Movement imitation with nonlinear dy-
namical systems in humanoid robots. In IEEE Int. Conf. on Robotics and Automation
(ICRA), volume 2, pages 1398–1403, May 2002.

[44] Tetsunari Inamura, Iwaki Toshima, and Yoshihiko Nakamura. Acquiring motion ele-
ments for bidirectional computation of motion recognition and generation. In Bruno Si-
ciliano and Paolo Dario, editors, Experimental Robotics VIII, pages 372–381. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2003.

[45] S. James, A. J. Davison, and E. Johns. Transferring End-to-End Visuomotor Control
from Simulation to Real World for a Multi-Stage Task. ArXiv e-prints, July 2017.

[46] S. Jeon. State estimation based on kinematic models considering characteristics of
sensors. In American Control Conference (ACC), pages 640–645, June 2010.

[47] Y. Jia and Y. Xue. Dexterous manipulation by two fingers with coupled joints. In
IEEE Int. Conf. on Robotics and Automation (ICRA), pages 3172–3179, May 2018.

[48] M. Kalakrishnan, L. Righetti, P. Pastor, and S. Schaal. Learning force control poli-
cies for compliant manipulation. In IEEE/RSJ Int. Conf. on Intelligent Robots and
Systems, pages 4639–4644, Sept 2011.

[49] Eric R Kandel, James H Schwartz, Thomas M Jessell, Department of Biochemistry,
Molecular Biophysics Thomas Jessell, Steven Siegelbaum, and AJ Hudspeth. Princi-
ples of neural science. McGraw-hill New York, 2000.

[50] S. M. Khansari-Zadeh and A. Billard. Learning stable nonlinear dynamical systems
with gaussian mixture models. IEEE Transactions on Robotics, 27(5):943–957, Oct
2011.

[51] J. Kober, B. Mohler, and J. Peters. Learning perceptual coupling for motor primitives.
In IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pages 834–839, Sept 2008.

[52] John W Krakauer and Pietro Mazzoni. Human sensorimotor learning: adaptation,
skill, and beyond. Current Opinion in Neurobiology, 21(4):636 – 644, 2011.

[53] R. Krug and D. Dimitrovz. Representing movement primitives as implicit dynamical
systems learned from multiple demonstrations. In Int. Conf. on Advanced Robotics
(ICAR), pages 1–8, Nov 2013.

60

[54] Dana Kulić, Christian Ott, Dongheui Lee, Junichi Ishikawa, and Yoshihiko Nakamura.
Incremental learning of full body motion primitives and their sequencing through hu-
man motion observation. The International Journal of Robotics Research, 31(3):330–
345, 2012.

[55] V. Kumar, E. Todorov, and S. Levine. Optimal control with learned local models:
Application to dexterous manipulation. In 2016 IEEE International Conference on
Robotics and Automation (ICRA), pages 378–383, May 2016.

[56] A. X. Lee, H. Lu, A. Gupta, S. Levine, and P. Abbeel. Learning force-based manip-
ulation of deformable objects from multiple demonstrations. In IEEE Int. Conf. on
Robotics and Automation (ICRA), pages 177–184, May 2015.

[57] C. Lee and Yangsheng Xu. Online, interactive learning of gestures for human/robot
interfaces. In IEEE Int. Conf. on Robotics and Automation (ICRA), volume 4, pages
2982–2987, April 1996.

[58] M. Li, Y. Bekiroglu, D. Kragic, and A. Billard. Learning of grasp adaptation through
experience and tactile sensing. In IEEE/RSJ Int. Conf. on Intelligent Robots and
Systems (IROS), pages 3339–3346, Sept 2014.

[59] Zexiang Li, Ping Hsu, and Shankar Sastry. Grasping and coordinated manipulation by
a multifingered robot hand. The International Journal of Robotics Research, 8(4):33–
50, 1989.

[60] Y. Lin, Shaogang Ren, M. Clevenger, and Y. Sun. Learning grasping force from
demonstration. In IEEE Int. Conf. on Robotics and Automation (ICRA), pages 1526–
1531, May 2012.

[61] K. M. Lynch and M. T. Mason. Dynamic manipulation with a one joint robot. In
IEEE Int. Conf. on Robotics and Automation (ICRA), volume 1, pages 359–366, April
1997.

[62] Kevin M. Lynch and Matthew T. Mason. Dynamic nonprehensile manipulation: Con-
trollability, planning, and experiments. The International Journal of Robotics Re-
search, 18(1):64–92, 1999.

[63] C.-C. Wang M. Tomizuka, H. Cheng. Sensing rich drive trains for modern mechatronic
systems: first year progress report. In Proc.SPIE, volume 6529, 2007.

61

[64] R. R. Ma and A. M. Dollar. On dexterity and dexterous manipulation. In Int. Conf.
on Advanced Robotics (ICAR), pages 1–7, June 2011.

[65] H. Maekawa, K. Tanie, and K. Komoriya. Tactile sensor based manipulation of an
unknown object by a multifingered hand with rolling contact. In IEEE Int. Conf. on
Robotics and Automation (ICRA), volume 1, pages 743–750, May 1995.

[66] Matthew T. Mason. Progress in nonprehensile manipulation. The International Jour-
nal of Robotics Research, 18(11):1129–1141, 1999.

[67] Eduardo F. Morales and Claude Sammut. Learning to fly by combining reinforcement
learning with behavioural cloning. In Int. Conf. on Machine Learning, pages 76–,
2004.

[68] Richard M. Murray, S. Shankar Sastry, and Li Zexiang. A Mathematical Introduction
to Robotic Manipulation. CRC Press, Inc., Boca Raton, FL, USA, 1st edition, 1994.

[69] B. Nemec, F. J. Abu-Dakka, B. Ridge, A. Ude, J. A. Jørgensen, T. R. Savarimuthu,
J. Jouffroy, H. G. Petersen, and N. Krüger. Transfer of assembly operations to new
workpiece poses by adaptation to the desired force profile. In Int. Conf. on Advanced
Robotics (ICAR), pages 1–7, Nov 2013.

[70] Monica N. Nicolescu and Maja J. Mataric. Natural methods for robot task learning:
Instructive demonstrations, generalization and practice. In Proceedings of the Second
International Joint Conference on Autonomous Agents and Multiagent Systems, pages
241–248, 2003.

[71] A. M. Okamura, N. Smaby, and M. R. Cutkosky. An overview of dexterous manipula-
tion. In IEEE Int. Conf. on Robotics and Automation (ICRA), pages 255–262, April
2000.

[72] M. Pardowitz, S. Knoop, R. Dillmann, and R. D. Zollner. Incremental learning of tasks
from user demonstrations, past experiences, and vocal comments. IEEE Transactions
on Systems, Man, and Cybernetics, Part B (Cybernetics), 37(2):322–332, April 2007.

[73] L. R. Rabiner. A tutorial on hidden markov models and selected applications in speech
recognition. Proceedings of the IEEE, 77(2):257–286, Feb 1989.

[74] A. A. Rizzi and D. E. Koditschek. An active visual estimator for dexterous manipu-
lation. IEEE Transactions on Robotics and Automation, 12(5):697–713, Oct 1996.

62

[75] E. Rohmer, S. P. N. Singh, and M. Freese. V-rep: A versatile and scalable robot
simulation framework. In IEEE/RSJ Int. Conf. on Intelligent Robots and Systems
(IROS), pages 1321–1326, Nov 2013.

[76] L. Rozo, D. Bruno, S. Calinon, and D. G. Caldwell. Learning optimal controllers in
human-robot cooperative transportation tasks with position and force constraints. In
IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), pages 1024–1030,
Sept 2015.

[77] L. Rozo, P. Jimenez, and C. Torras. Robot learning from demonstration of force-based
tasks with multiple solution trajectories. In Int. Conf. on Advanced Robotics (ICAR),
pages 124–129, June 2011.

[78] F. Ruggiero, V. Lippiello, and B. Siciliano. Nonprehensile dynamic manipulation: A
survey. IEEE Robotics and Automation Letters, 3(3):1711–1718, July 2018.

[79] F. Sadeghi, A. Toshev, E. Jang, and S. Levine. Sim2Real View Invariant Visual
Servoing by Recurrent Control. ArXiv e-prints, December 2017.

[80] J. Kenneth Salisbury, Jr. Recent advances in robotics. chapter Kinematic and Force
Analysis of Articulated Hands, pages 131–174. John Wiley & Sons, Inc., New York,
NY, USA, 1985.

[81] Stefan Schaal. Dynamic movement primitives -a framework for motor control in hu-
mans and humanoid robotics. In Hiroshi Kimura, Kazuo Tsuchiya, Akio Ishiguro, and
Hartmut Witte, editors, Adaptive Motion of Animals and Machines, pages 261–280.
Springer Tokyo, Tokyo, 2006.

[82] Gideon Schwarz. Estimating the dimension of a model. Ann. Statist., 6(2):461–464,
03 1978.

[83] T. Starner and A. Pentland. Real-time american sign language recognition from video
using hidden markov models. In Int. Symp. on Computer Vision - ISCV, pages 265–
270, Nov 1995.

[84] S. A. Stoeter, S. Voss, N. P. Papanikolopoulos, and H. Mosemann. Planning of regrasp
operations. In IEEE Int. Conf. on Robotics and Automation (ICRA), volume 1, pages
245–250, May 1999.

[85] Richard S. Sutton and Andrew G. Barto. Introduction to Reinforcement Learning.
MIT Press, Cambridge, MA, USA, 1st edition, 1998.

63

[86] Evangelos Theodorou, Jonas Buchli, and Stefan Schaal. Learning policy improvements
with path integrals. In Yee Whye Teh and Mike Titterington, editors, Int. Conf. on
Artificial Intelligence and Statistics, volume 9 of Proceedings of Machine Learning
Research, pages 828–835. PMLR, May 2010.

[87] Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-
based control. In IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS),
pages 5026–5033, 2012.

[88] S. K. Tso and K. P. Liu. Hidden markov model for intelligent extraction of robot
trajectory command from demonstrated trajectories. In IEEE Int. Conf. on Industrial
Technology (ICIT), pages 294–298, Dec 1996.

[89] H. van Hoof, T. Hermans, G. Neumann, and J. Peters. Learning robot in-hand ma-
nipulation with tactile features. In IEEE-RAS Int. Conf. on Humanoid Robots (Hu-
manoids), pages 121–127, Nov 2015.

[90] Jie Yang, Yangsheng Xu, and C. S. Chen. Human action learning via hidden markov
model. IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and
Humans, 27(1):34–44, Jan 1997.

[91] M. Yashima and T. Yamawaki. Iterative learning scheme for dexterous in-hand manip-
ulation with stochastic uncertainty. In IEEE Int. Conf. on Robotics and Automation
(ICRA), pages 3166–3171, May 2018.

[92] M. Yoshida, S. Arimoto, and J. Bae. Blind grasp and manipulation of a rigid object by
a pair of robot fingers with soft tips. In IEEE Int. Conf. on Robotics and Automation
(ICRA), pages 4707–4714, April 2007.

[93] Hanna Yousef, Mehdi Boukallel, and Kaspar Althoefer. Tactile sensing for dexter-
ous in-hand manipulation in robotics—a review. Sensors and Actuators A: Physical,
167(2):171 – 187, 2011.

[94] H. Zhu, A. Gupta, A. Rajeswaran, S. Levine, and V. Kumar. Dexterous Manipulation
with Deep Reinforcement Learning: Efficient, General, and Low-Cost. ArXiv e-prints,
October 2018.

64

	List of Tables
	List of Figures
	Introduction
	Motivation
	Related Works
	In-hand Manipulation
	Learning from Demonstration (LfD)
	Perception Systems
	Reinforcement Learning in Dexterous Manipulation

	Objective
	Experiment: Nonprehensile Spinning Task
	Experimental Setup
	Nonprehensile Task: Nonprehensile Spinning

	Organizations

	Mathematical Background
	Notation
	GMM/GMR Framework
	Gaussian Mixture Model (GMM)
	Parameter Learning: Expectation-Maximization (EM) Algorithm
	Gaussian Mixture Regression (GMR)
	Dynamic Time Warping (DTW)

	HMM/GMRa Framework
	Hidden Markov Model (HMM)
	Forward Variable
	Backward Variable
	Parameter Learning: Baum-Welch Algorithm
	GMR for HMM

	Modeling of Robot Manipulators
	Forward Kinematics
	Inverse Kinematics
	Jacobian

	Motion Profile Learning from Demonstration
	Demonstration Collection
	GMM/GMR
	Training with GMM
	Motion Profile Reproduction with GMR

	HMM/GMRa
	Training with HMM
	Trajectory Reproduction with GMRa

	Experimental Result
	Gaussian Number Selection
	GMM for Nonprehensile Spinning Task
	HMM for Nonprehensile Spinning Task
	Generalized Motion Profile for Nonprehensile Spinning Task
	Discussion

	Reproduction of Nonprehensile Spinning Task
	Controller Design
	Experimental Result
	Valication of Feedback Controller for Position Tracking
	Validation of Feedforward Controller for End-Effector Force
	Evaluating Reproduced Generalized Motion Profiles

	Dynamic Catching through Parameter Learning
	Main Control Parameter
	Iterative Learning Control
	Experimental Result

	Complete Nonprehensile Spinning Task Experimental Result

	Conclusion
	Conclusion
	Recommendation

	References

