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Highlights

• The impact of inlet boundary conditions on two-phase flow CFD solu-
tions is studied.

• The two-phase upward flow in a vertical pipe is modeled using the
Euler-Euler model.

• Solutions using inlet pressure and velocity Dirichlet boundary condi-
tions differ.

• The gas phase distribution is strongly dependent on the inlet condi-
tions.

• A control scheme is used to enforce the Dirichlet pressure boundary
and flow rates.
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Abstract

The sensitivity of two-phase flow simulations using the Euler-Euler model
on the inlet boundary conditions is studied. Specifically, the physical rel-
evance of Dirichlet uniform inlet velocity BCs is studied which are widely
used due their simplicity and the lack of a priori knowledge of the slip ve-
locity between the phases. It is found that flow patterns obtained with the
more physically realistic uniform inlet pressure BCs are radically different
from the results obtained with Dirichlet inlet velocity BCs, refuting the ar-
gument frequently put forward that Dirichlet uniform inlet velocity BCs can
be interchangeably used because the terminal slip velocity is reached after a
short entrance region. A comparison with experimental data is performed to
assess the relevance of the flows obtained numerically. Additionally, a mul-
tivariable feedback control method is demonstrated to be ideal for enforcing
desired flow rates for simulations using pressure BCs.

Keywords: two-phase flow, computational fluid dynamics, Euler-Euler
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1. Introduction

Computational fluid dynamics (CFD) simulation of multiphase flows is a
widely used tool for design and optimization of industrial processes. Com-
pared to alternative methods such as scaled-down laboratory experiments,
multiphase CFD simulations frequently result in time and cost savings while5

simultaneously avoiding safety issues inherent to experimental process de-
sign. They also yield information about the process which may be expensive
or, in many cases, infeasible to determine experimentally. For these reasons
and given the increasing accessibility of high-performance computing infras-
tructure, the use of multiphase CFD in academia and industry is expanding.10

Examples of multiphase processes in chemical engineering include bubble
columns [14, 18], packed-bed and fluidized bed reactors [13], trickle-bed re-
actors [13, 36], nuclear fuel rod assemblies [7] and hydrocarbon pipelines [12].
Two-phase flows are generally simulated using the two-fluid or Euler-Euler
model [11], which uses time-averaging to avoid explicitly capturing the fluid-15

fluid interface, thereby reducing computational complexity significantly and
enabling access to time and length scales relevant to industrial processes. It
should be mentioned that different averaging techniques were used in the lit-
erature to derive macroscopic momentum and mass conservation equations
for two-phase flow [11, 37].20

The use of multiphase CFD introduces significant challenges, in addition
to benefits. One significant challenge is the approximation of mathematical
conditions which, if not addressed appropriately, may offset the advantages
of simulation. While this enables simulation of a more simple part of a com-
plex physicochemical process, it introduces another possible source of error25

through the formulation and imposition of boundary conditions which have
differing degrees of physical and numerical relevance. This is especially sig-
nificant for multiphase flows due to the presence of additional dependent
variables such as phase fraction and phase velocities. Appropriate boundary
conditions reflect known interactions between the modelled system and the30

surroundings. Simulation boundary conditions that most faithfully represent
the physical reality are generally expensive to evaluate experimentally and
may be difficult to implement numerically. Therefore, in practice, coarse
approximations for boundary conditions are used which may introduce sig-
nificant uncertainty with respect to the exact solution and, in some cases,35

lead to numerical instability.
In multiphase CFD simulations, inlet boundary conditions are typically
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the most challenging. Focusing on incompressible two-phase flow simula-
tions using the two-fluid model, the uniform Dirichlet condition for phase
velocities at inlets is the most frequently used boundary condition due to40

its simple formulation and numerical implementation. This boundary con-
dition is, however, inconsistent with the expectations, on physical grounds,
of slip velocity between the two phases and no-slip at the intersection of the
inlet and walls. The effect of this inconsistency on simulated two-phase flow
profiles is hitherto unknown. Nonetheless, this boundary condition is widely45

used in the literature for simulations of different two-phase flow systems with
some recent examples including refs. [4, 17, 21, 42, 43].

Recent experimental research [9, 22, 38] further reinforces the importance
of accurate inlet conditions, where it is found that two-phase flow patterns
are extremely sensitive to inlet conditions. Liu et al. [22] studied the effect50

of uniform and non-uniform inlet conditions of vertical air-water two-phase
flow in a narrow rectangular duct and found that the velocity profiles across
the duct are different with a non-uniform inlet profile compared to an uni-
form one. Gregorc and Žun [9] found that inlet conditions strongly affected
the experimentally-observed bubble size, bubble distribution and flow regime55

transitions for liquid-gas two-phase flow in microfluidic channels. While the
two previous studies focus on gas dispersed in liquid, Yoneda et al. [38]
studied steam-water two-phase flow in a large-diameter pipe finding the sen-
sitivity of the distribution of the two phases over the pipe with respect to
the inlet conditions.60

In summary, despite several experimental studies showing the impact of
inlet conditions on the two-phase flow pattern, there exist very few multi-
phase CFD studies focused on this issue such as refs. [8, 20, 23] (focused on
sieve trays). The vast majority of two-fluid CFD studies, the most prevalent
in chemical engineering, have used uniform Dirichlet inlet velocity boundary65

conditions under the assumption that either (i) a physically accurate flow
profile will develop after a short entrance region and a terminal slip velocity
between phases will be achieved or (ii) the use of the these inlet conditions is
an acceptable physical approximation that has no significant impact on the
flow pattern. The essence of these assumptions is that there is no significant70

difference between the solutions obtained with the uniform phase inlet ve-
locity boundary conditions and those obtained with uniform inlet pressure
boundary conditions.

In this work, the impact of the inlet boundary conditions on the solu-
tions of two-phase flow problems using the two-fluid model is investigated75
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for the case of air-water upward dispersed flow in a vertical pipe. The phys-
ical relevance of the solutions obtained with inlet Dirichlet uniform velocity
boundary conditions are discussed in both cases with and without slip veloc-
ity between phases and compared to that obtained with Dirichlet pressure
boundary conditions.80

However, although the pressure inlet condition is more physically accu-
rate, the use of this boundary condition is not trivial because the velocity
distributions for both phases that satisfy desired flow rates with a uniform
pressure distribution across the inlet are not known a priori. We show in
this work that feedback control can be efficiently used to impose desired in-85

let phase volumetric flow rates. Such approach has been previously followed
for imposing one boundary condition in compressible two-fluid simulations
[24, 25]. We propose in this work the integration of multivariable feedback
control into two-fluid CFD simulations in order to enable the use of more con-
sistent Dirichlet pressure inlet boundary conditions under desired volumetric90

flow rate constraints for each of the two phases.
This paper is organized as follows: first, the background related to the

two-fluid model is presented in section 2. Then, the physical problem, the
different investigated boundary conditions and the adopted methodology are
described in section 3. The simulations results and their comparison to exper-95

imental data as well as the control scheme used to set the pressure Dirichlet
boundary conditions are presented in section 4. Finally, the conclusions of
this work are summarized in section 5.

2. Background

The two-fluid or Euler-Euler model [11] treats phases as inter-penetrating
continua where the volume of one phase can not be occupied by the other
one and the presence of each one is described by a phase volume fraction.
Defining the phase velocity, pressure and time by uq, p and t, respectively,
the phase averaged mass and momentum conservation equations are given as
follows

∂(αqρq)

∂t
+∇ · (αqρquq) = 0, in V, (1a)

∂(αqρquq)

∂t
+∇ · (αqρququq) =∇ · (αqσq) + (αqρqg) +M q, in V, (1b)

where the subscript q = g, l denotes the phase (g is the gas phase and l
is the liquid phase), αq (αg + αl = 1) is the phase volume fraction and ρq
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the phase density. In the momentum conservation equation (Eq. 1b), σq is
the phase stress tensor that includes both the viscous and Reynolds stress
tensors, g = −gez is the gravitational acceleration and M q is the inter-phase
momentum transfer term which results from the averaging procedure. The
inter-phase momentum transfer term can be decomposed into different terms
depending on their origin as follows [5, 37]

M q = F drag + F lift + F vm, q = g, l, (2)

where F drag, F lift and F vm represent the drag, lift and virtual mass con-
tributions to the momentum transfer term, respectively. The drag term has
the most important effect [37] on the inter-phase momentum transfer term,
hence, the choice of the drag model has a significant impact on simulation
results [2, 32, 40]. The drag effect is modeled by means of a mixture model
that is assumed valid for the whole range of volume fractions in the two-phase
system as follows [37]

F drag =
3

4
αaαb

[(
αa
Cdaρb
da

)
+

(
αb
Cdbρa
db

)]
‖ur‖ur, a, b = g, l, a 6= b,

(3)

where Cda and Cdb are the drag coefficients of phases a and b, respectively
and ur = ub − ua is the relative velocity. The diameter of the particles of
phases a and b are da and db, respectively. dg is the gas bubble diameter and
dl is the liquid droplet diameter. The Tomiyama empirical correlation of the
drag coefficient [34], generally applicable for slightly contaminated gas-liquid
systems, is used and is given as follows

Cda = max

{
min

[
24

Rea
(1 + 0.15Re0.687a ),

72

Rea

]
,

[
8

3

Eoa
Eoa + 4

]}
,

Eoa =
g(ρb − ρa)d2a

σg,l
,

Rea =
da‖ur‖
νb

,

a, b = g, l,

a 6= b,

(4)

where σg,l is the gas-liquid interface surface tension, Eoa is the Eötvös number
of phase a and represents the ratio of buoyancy to surface tension force, νb
is the kinematic viscosity of phase b and Rea is the Reynolds number. The
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lift contribution to the momentum transfer term, F lift, in Eq. 2 is given as
follows [37]

F lift = αaαb(αbClaρb + αaClbρa)ur ×∇× (αaua + αbub), a, b = g, l, a 6= b,
(5)

where Cla and Clb are respectively the lift coefficients for phases a and b. Few
studies have attempted to quantify the lift coefficient and the lift force is often
either neglected or a value for the lift coefficient is assumed [15, 16, 26]. The
lift force governs the transverse movement of the dispersed phase in a fluid
and has a perpendicular direction with respect to the flow direction [1, 31, 35].
As in the considered flow configurations the transverse movement of the fluids
is negligible compared to the main flow and as the lift contribution to the
inter-phase momentum transfer term is minor compared to the drag, the
lift force was neglected. The virtual mass force that occurs when one phase
accelerates with respect to the other is modeled in the same way as the drag
contribution. The mixture model is assumed to be valid for the whole range
of phase volume fractions. Accordingly, the virtual mass force is given by

F vm = αaαb(αbCvmaρb + αaCvmbρa)

[(
∂ub
∂t

+ ub · ∇ub
)

−
(
∂ua
∂t

+ ua · ∇ua
)]

,

a, b = g, l, a 6= b,

(6)

where Cvma and Cvmb are the virtual mass coefficients for phases a and b,100

respectively. The virtual mass coefficients are treated in the same manner
as the lift ones. A constant value of 0.5 is often assumed [31] for both Cvma
and Cvmb.

3. Methods

3.1. Initial Boundary Value Problem105

The example multiphase process used in this work is two-phase flow of
two immiscible, incompressible, Newtonian fluids in a vertical cylindrical pipe
with height H = 1.5 m and diameter D = 15 cm under isothermal conditions
(T = 293.15 K). The lower, upper and lateral boundaries are referred to as
inlet, outlet and wall, respectively (Fig. 1). The two considered fluids are110

air (g) and water (l) and their physical properties are shown in Table 1.
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Constant physical properties are assumed for both phases corresponding to
T = 293.15 K and p = 101325 Pa.

The initial and boundary conditions for the conservation of mass and
momentum equations (Eqs. 1) are:

uq(x, 0) = 0, (7a)

p(x, 0) = 0, (7b)

αg(x, 0) = 0.15, αl(x, 0) = 1− αg, (7c)

uq(x, t) = 0, on wall, (7d)

∇np(x, t) = 0,

∇nαq(x, t) = 0,
on wall, q = g, l, (7e)

p(x, t) = poutlet, on outlet, (7f)

∇nuq(x, t) = 0,

∇nαq(x, t) = 0,
on outlet, q = g, l, (7g)

where the two phases are initially static (Eqs. 7a-7b) and forming a disper-
sion of 15% gas (Eqs. 7c) It must be mentioned here that different initial115

conditions were tested and the same solution, in terms of time averaged
profiles, was obtained. At the wall boundary, a no-slip velocity boundary
condition (Eq. 7d) is imposed in addition to the Neumann zero normal gra-
dient boundary condition for both the pressure and phase fractions (Eqs. 7e),
where n is the unit outward normal to the surface. At the outlet, a Dirich-120

let pressure boundary condition is enforced (Eq. 7f) and the Neumann zero
normal gradient boundary condition is imposed for the velocity and phase
fractions (Eqs. 7g). Three different inlet boundary conditions were tested in
order to investigate their impact on the resulting flow pattern:

Case I: velocity Dirichlet boundary condition with no gas-liquid slip velocity125

(Eqs. 8a)

Case II: pressure Dirichlet boundary condition (Eqs. 8b)

8
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Case III: velocity Dirichlet boundary condition with gas-liquid slip (Eqs.
8c)

These boundary conditions are formulated, respectively, as:

uq = uinletq ,

uinletg = uinletl ,

αq = αinletq ,

on inlet, q = g, l, (8a)

p = pinlet,

αq = αinletq ,
on inlet, q = g, l, (8b)

uq = uinletq ,

uinletg = Sg−lu
inlet
l ,

αq = αinletq ,

on inlet, q = g, l, (8c)

where Sg−l is the gas-liquid slip velocity ratio.130

Case I, the velocity Dirichlet boundary condition without gas-liquid slip
velocity (Eqs. 8a), is the most widely used due to its simplicity of numerical
formulation and implementation. It was stated in ref. [21] that despite its
artificial imposition of zero slip velocity between the phases, the uniform
velocity condition is a valid approximation in that the velocity profiles will135

develop such that slip velocity between the phases is obtained after a short
entrance region. When this boundary condition is used, uniform gas and
liquid velocity profiles are imposed at the inlet and uinletg = uinletl as the gas-
liquid slip velocity is not known a priori. The two fluids enter the domain in
the direction normal to the inlet boundary and thus, only the z-component of140

the inlet velocity vector fields is non-zero,
∥∥uinletg

∥∥ = uinletgz =
∥∥uinletl

∥∥ = uinletlz .
The velocity value is determined from the operating total volumetric flow
rate, uinletg · n = uinletl · n = −Qinlet

T /A where A = πD2/4 is the inlet cross-
sectional area and n the unit outward normal. The total flow rate is given
by the sum of the gas and liquid flow rates as follows145

Qinlet
T = Qinlet

g +Qinlet
l = −

∫

inlet

αgug · nds−
∫

inlet

(1− αg)ul · nds, (9)

where Qinlet
g and Qinlet

l are the gas and liquid volumetric flow rates, respec-
tively and ds refers to a surface element. The inlet gas volume fraction of

9



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Eqs. 8a is given by αinletg = Qinlet
g /Qinlet

T = Qinlet
g /(Qinlet

g +Qinlet
l ).

In case II, the pressure Dirichlet boundary condition is given by Eqs. 8b.
A uniform pressure field is imposed at the inlet boundary which corresponds150

to the assumption that the outlet flow of the pump being unidirectional. The
physical justification of this condition is obvious, at least in the dispersed flow
regime, where no important velocity variation with respect to the mean flow
is expected to occur and alter the uniformity of the pressure field across each
cross-section of the pipe. The benefit of this boundary condition compared to155

the uniform velocity boundary condition is that the gas-liquid slip velocity
at the inlet is present, it allows for the development of non-uniform flow
profiles consistent with the model governing equations and it satisfies the zero
velocity condition at the wall. Imposing this condition is achieved through
determining values of pinlet and αinletg , unknown a priori, to satisfy desired160

gas and liquid volumetric flow rates. This condition is enforced in this work
by means of a multivariable control procedure described in section 4.3.

Case III, velocity Dirichlet boundary condition with slip between the two
phases (Eqs. 8c) requires a priori knowledge of the gas-liquid slip velocity
but, as with case I, assumes a uniform velocity profile within the inlet. The165

gas-liquid slip velocity ratio Sg−l is obtained from the simulation using case
II and consequently, it also requires the use of the feedback control scheme.
Although not strictly physical, the purpose of investigating this variation of
the velocity Dirichlet boundary condition is to assess whether or not it is
possible to obtain a flow pattern similar to the one obtained with case II by170

imposing the correct slip velocity between the two phases.

3.2. Simulation Conditions

The partial differential equation system under consideration consists of
Eqs. 1, Eqs. 7 and (individually) each of the inlet boundary conditions of
Eqs. 8. The model was solved numerically using the multiphaseEulerFoam175

solver of the open-source CFD toolbox OpenFOAM [33].
Two different flow configurations were considered in order to investigate

the impact of increasing the gas flow rate on the resulting flow structure.
Whereas one total volumetric flow rate was adopted for the two configura-
tions, Qinlet set

T = 6× 10−4 m3/s, the gas flow rate was varied as follows:180

Configuration A: a gas flow rate of Qinlet set
g = 0.3Qinlet set

T = 1.8×10−4 m3/s
corresponding to gas and liquid superficial velocities, respectively, ugs =
Qinlet set
g /A ≈ 0.0102 m/s and uls = Qinlet set

l /A ≈ 0.02377 m/s

10
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Configuration B: a gas flow rate of Qinlet set
g = 0.5Qinlet set

T = 3 × 10−4 m3/s
corresponding to gas and liquid superficial velocities, respectively, ugs =185

Qinlet set
g /A ≈ 0.017 m/s and uls = Qinlet set

l /A ≈ 0.017 m/s

The computational domain (Fig. 1) was meshed using hexahedral ele-
ments and mesh-independent (converged) numerical solutions where deter-
mined through a sensitivity analysis of the solution to the number of elements
(Fig. 2). This analysis was carried out using case I inlet conditions and con-190

figuration A of flow rates and the gas hold up 〈αg〉V was used as the basis for
comparison. This quantity corresponds to the time-average over the fully-
developed flow interval (FDFI) of the volume-averaged gas volume fraction.
It is given by

〈αg〉V =

∫

FDFI

〈αg〉V dt

∫

FDFI

dt
, (10)

where the volume averaged gas volume fraction is195

〈αg〉V =

∫

V

αgdv
∫

V

dv
, (11)

and dv is an elementary volume.
Fig. 2 shows that mesh-independence is achieved after 50000 elements.

Increasing the number of grid blocks 8 times leads to a relative error on the

gas hold up, 〈αg〉V , of less than 0.32%. Thus, the mesh adopted in this work
comprises of 137592 elements as a trade-off between acceptable accuracy and200

computation time. The number of cells across the cylinder’s diameter is 28.

4. Results and Discussion

4.1. Inlet Conditions Effects on Hydrodynamics

4.1.1. Phase Distribution

Simulations were performed of the air-water upward pipe flow process us-205

ing inlet conditions corresponding to cases I-III (Eqs. 8) and configurations
A and B in order to determine their effects on multiphase hydrodynamics.

11
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Fully-developed flow phase distribution for each of the cases and configu-
rations are shown in Figs. 3-6. The significantly differing flow patterns
resulting from the same simulation conditions, with the sole difference being210

inlet conditions, highlight the sensitivity of the solution of the two-phase flow
problem to the inlet boundary condition used to induce the flow.

The dispersed flow regime in co-current gas-liquid two-phase systems was
found from experiments reported in the literature to be characterized by al-
most uniformly distributed bubbles, and no bubble coalescence and breakup.215

Therefore, a narrow bubble size distribution was observed and the gas hold-
up was reported to be radially uniform in this flow regime [19, 28, 29].

For air-water systems at ambient conditions, Zhang et al. [41] proposed a
flow map diagram based on the values of gas and liquid superficial velocities in
a column of 0.0826 m diameter. According to Zhang et al. [41], dispersed and220

discrete flow regimes are both characterized by uniformly sized bubbles, with
slightly larger bubbles in the latter. From the diagram reported in the latter
reference, dispersed flow regime occurs while the superficial gas velocity is
less than 0.04 m/s regardless of the liquid superficial velocity. Hyndman et al.
[10] also reported observation of dispersed flow regime in superficial velocities225

of up to 0.04 m/s in a column of 0.2 m diameter. Fair [6] and Schumpe
and Grund [27] stated that dispersed flow regime prevails in systems with
superficial velocities of less than 0.05 m/s. In this work, the pipe diameter is
D = 0.15 m and the adopted superficial gas and liquid velocities are always
less than 0.024 m/s. Therefore, according to the cited experimental studies,230

the occurrence of the dispersed flow regime in the vertical cylindrical pipe
and hydrodynamic behavior similar to that of Zhang et al. [41] are expected.

Focusing on case I inlet conditions, velocity Dirichlet boundary conditions
without gas-liquid slip, simulation results for this case, shown in Figs. 3 and
5, correspond to gas-rich rising columns whose morphology varies in time.235

It must be emphasized that this flow morphology persists up to a distance
equivalent to ten times the diameter of the entrance of the domain (simulation
domain length) and is enhanced as distance from the inlet increases. As
shown in Figs. 3 and 5, simulations using case I inlet conditions result
in a fully-developed flow that is exhibits periodic large amplitude velocity240

fluctuations as different instantaneous gas-liquid distributions are observed.
This result may indicate that lateral forces, such as lift, might be impor-

tant and, hence, cannot be neglected. In order to investigate the effect of the
lift force on the flow pattern, we performed an additional simulation with
case I inlet conditions for flow configuration B modeling lift force. The two-245
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phase problem was solved using the twoPhaseEulerFoam solver of the CFD
toolbox OpenFOAM [33]. The Tomiyama lift closure model [35] was consid-
ered. The flow resulting from this simulation was similar to the one reported
on Figs. 5 for the simulation where lift force was neglected. Thus, neglect-
ing lift force for the flow configurations under study, where the velocity field250

around the bubbles with respect to the bubble’s axis parallel to the pipe is
quasi-symmetric, has only a marginal effect on the resulting flows. Moreover,
it should be mentioned that modeling lift is still under debate as no well-
accepted closure model is available in the literature [31, 32]. Additionally,
the lift coefficient is often used as a tuning parameter to improve the agree-255

ment between simulation and experimental results and does not necessarily
reflect the actual physics of the system [31].

Simulation results for cases II-III inlet conditions, pressure Dirichlet con-
ditions and velocity Dirichlet with gas-liquid slip velocity, are shown in Figs.
4 and 6 for configurations A and B, respectively. These simulation results260

differ significantly from case I in that a homogeneous distribution of the gas
and liquid phases is observed, for both cases II and III. In order to quan-
titatively analyze and compare gas volume fractions for simulations results,
histograms of the time-averaged portions of the computational domain (i.e.,
the pipe of Fig. 1) over the fully-developed flow interval (FDFI) Vα/V ,265

Vα/V =

∫

FDFI

Vα/V dt

∫

FDFI

dt
, (12)

corresponding to the different gas volume fraction αg intervals were com-
puted, shown in Figs. 7 and 8. The portion of the computational do-
main containing a dispersion of a gas volume fraction within the ith interval
[αg,i, αg,i+1] is given by

Vα/V =

∫

αg∈[αg,i,αg,i+1]

dv

V
. (13)

For configuration A (see Fig. 7), the distribution of αg for case I, ranging270

from αg = 0 to 0.1088 is significantly broader compared to those of cases II

13
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and III, which are highly localized. Indeed, whereas cases II and III lead to
values of αg ∈ [0.0335, 0.0419] occupying, respectively, 98.93% and 100% of
the volume of the pipe, only 64.16% of the computational domain corresponds
to this αg interval with case I inlet conditions. The remaining 26.73% and275

9.1% portions of the domain for case I contain values of αg ∈ [0, 0.0335] and
αg ∈ [0.0419, 0.1088], respectively. It should be emphasized that the gas-rich
rising columns observed with the case I inlet conditions on Fig. 3 correspond
to values of αg ∈ [0.0419, 0.1088] and occupy up to 9.1% of the volume of the
pipe.280

The analysis of the histogram corresponding to configuration B (see Fig.
8) shows, as for configuration A, a highly localized distribution of the gas
volume fraction αg with cases II and III inlet conditions and confirms the
phase distribution observations of Figs. 3-6. In fact, cases II and III have,
respectively, 74.85% and 100% of the volume of the pipe containing a dis-285

persion of αg ∈ [0.0480, 0.0640] whereas only 35.69% of the pipe’s volume
corresponds to this αg interval of values with case I inlet conditions. More-
over, compared to configuration A, increasing the gas flow rate results with
case I inlet conditions in a broader distribution of αg, ranging from αg = 0
to 0.21, and in gas-rich rising columns of relatively higher αg. Configuration290

B (Fig. 8) shows also, as for configuration A, a quasi-homogeneous phase
distribution with case III inlet conditions whereas cases I and II present a
certain heterogeneity. Indeed, 32.94% and 5.79% of the computational do-
main volume contain a dispersion of αg ∈ [0, 0.0480], respectively, for cases
I and II inlet conditions. The remaining 31.37% and 19.36% of the pipe’s295

volume, corresponding respectively to cases I and II, presents a dispersion
of αg ∈ [0.064, 0.21] with the solution obtained using the velocity Dirichlet
boundary conditions (i.e., inlet boundary condition case I) showing volume
portions with the highest αg values.

4.1.2. Velocity Profiles300

The velocity profiles obtained with the three different inlet conditions
cases and the flow rate configurations A and B are analyzed in this sec-
tion. Figures 9 and 10 correspond, respectively, to configurations A and B
and show the time-averaged gas and liquid velocity profiles over the fully-
developed flow interval considered in the simulations. These profiles were305

plotted at half-pipe height, z = 0.75 m, along an arbitrary radial direction
from the center of the pipe to the wall in order to ensure a minimum impact
from the inlet and outlet boundaries.
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Figure 9 shows that the gas velocity profiles obtained for each of the
three inlet conditions cases are generally similar to each other and present310

a flat shape on a large part far from the wall. Near the pipe’s wall, where
no-slip velocity boundary conditions are imposed, velocity profiles obtained
with case II and case III inlet conditions present a sharp angle, whereas a
smoother transition from zero velocity to the flat profile is observed for the
case I inlet conditions. A similar behavior is reported for the liquid velocity315

profiles where the three inlet conditions cases result in comparable profiles
with a large flat part at the center of the pipe and different shapes near
the wall (i.e., at high values of y). In particular, a non-negligible liquid
backflow occurs with case I inlet conditions at y ≥ 0.068 m as indicated
by negative velocity values while profiles corresponding to cases II and III320

inlet conditions show smooth shapes with positive velocities. It must be
highlighted here that the occurrence of the backflow is considered physical
as the same hydrodynamics were observed in both experimental [30, 39] and
numerical works [30, 32] on comparable two-phase systems.

On the other hand, when higher gas flow rate is considered (see Fig. 10325

corresponding to flow rate configuration B), the differences between velocity
profiles obtained for each of the three inlet conditions cases become more
significant. For example, from Fig. 10, the gas velocity profile for the case I
inlet conditions is parabolic unlike the ones for cases II and III that present
a flat shape at the central region of the pipe. Near the wall, the gas velocity330

profile for the case III inlet conditions presents a sharp angle as observed
before on configuration A while for case II, a smoother shape can be seen.
A parabolic profile for case I inlet conditions and a profile with a flat shape
region at the center of the pipe for cases II and III is also observed for
the liquid velocity. Furthermore, as for configuration A, a non-negligible335

liquid backflow develops near the wall for case I inlet conditions. A less
pronounced liquid backflow can also be seen for case II inlet conditions for
the flow conditions of configuration B.

The analysis of the velocity profiles carried out here highlights their sen-
sitivity to the inlet conditions. At low gas flow rate, similar profiles are340

observed with the exception that liquid backflow occurs with inlet Dirichlet
velocity boundary condition. At high gas flow rates, the velocity profiles
significantly differ. The velocity Dirichlet boundary condition with slip ve-
locity (i.e., case III inlet conditions) leads to velocity profile shapes quasi-
insensitive to the change in gas flow rate adopted here and to plug-flow like345

profiles. The velocity profiles reflect the different phase distributions over
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the computational volume depending on the inlet conditions case observed
in section 4.1.1. The shapes of these profiles result from the structure of the
flow, discussed in the section 4.1.3.

4.1.3. Flow Structure350

The phase distribution depends on the flow structure. In order to under-
stand the mechanisms that lead to the appearance of different distributions,
the structure of the flow was analyzed qualitatively and quantitatively from
the streamlines. The instantaneous gas and liquid streamlines over a longi-
tudinal cross section of the pipe, along its symmetry axis, are shown on Figs.355

11-14.
From Figs. 11 and 13, respectively corresponding to configurations A and

B, the gas streamlines are quasi-straight for the different inlet conditions cases
with some distortions that appear at high gas flow rate (Fig. 13). On the
other hand, liquid streamlines of Figs. 12 and 14 show distortions of different360

intensities as a function of the inlet boundary case. The liquid flow structure
obtained with case III inlet conditions is characterized by straight liquid
streamlines (see Figs. 12c and 14c). This can explain the fact that the phase
distribution observed with this inlet conditions case is more homogeneous as
compared to the other two cases. The liquid flow structures corresponding to365

cases I and II inlet conditions show distortions that become stronger and give
rise to traveling vortices as the gas flow rate increases. It should be noted,
however, that the liquid flow streamlines for case I inlet conditions appear to
be more distorted than the ones for case II. This may explain why the phase
distribution for case I inlet conditions is significantly broader compared to370

those of cases II and III.
In order to quantify the structure of the liquid streamlines, that are found

more sensitive with respect to the inlet condition, the liquid flow tortuosity,
T , was computed. Tortuosity characterizes the length of the flow paths
with respect to the main flow and different definitions were proposed in the375

literature [3]. In this work, the following definition, based on the liquid
velocity volume averages, was used

T =
〈|ul|〉V

〈ulz〉V
≥ 1, (14)

where 〈|ul|〉V and 〈ulz〉V are, respectively, volume averages of the liquid ve-
locity magnitude and the velocity component aligned with the main flow
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direction (i.e., along the z-axis). It should be noted here that the volume380

averages were computed in the same way as in Eq. 11. The advantage of
the tortuosity definition of Eq. 14 compared to the classical ones proposed
in the literature, that are based on the streamline length [3], lies in the fact
that the computation of the flow streamlines is not required. From Eq. 14,
T is equal to unity for streamlines perfectly aligned with the z-axis. As the385

streamlines become more tortuous, T increases.
The time-averaged tortuosity over the fully-developed flow interval, T ,

given by

T =

∫

FDFI

Tdt

∫

FDFI

dt
, (15)

was computed for all the simulation results corresponding to the different
inlet conditions cases and flow rate configurations. Values of T are reported390

on Tab. 2 and they further strengthen the observation that the solution of the
two-phase flow problem depends strongly on the inlet boundary condition. In
fact, values of T differ significantly from one inlet conditions case to another.

For the flow obtained with case III inlet conditions, T = 1 for both config-
urations A and B (see Tab. 2). This is consistent with the flow visualizations395

of Figs. 12c and 14c) as the streamlines are quasi-straight. Tortuosity values
for case II inlet conditions, T = 1.31 and 3.83 respectively for configura-
tions A and B, are larger than the ones for case III and approximately twice
smaller than the ones for case I. This indicates that the liquid flow paths are
longer for case I compared to cases II and III and that the ones for case II400

are longer than those for case III thus confirming the flow analysis of Figs.
11-14.

The differences in tortuosity highlight the correlation between the flow
structure and the phase distribution. It is found that the higher the flow
tortuosity is, the broader the phase distribution is. In the extreme case of405

quasi-straight streamlines and a tortuosity close to unity, as for the two-
phase flow solution with case III inlet conditions, a quasi-perfectly homoge-
neous phase distribution is observed. The disturbances that appear in the
velocity fields lead to distorted and tortuous flow streamlines, the formation
of vortices and to an heterogeneous phase distribution. These disturbances410

are attributed to the mechanisms of acceleration and deceleration of gas and
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liquid fluid particles relative to each other that occur in order to establish
the physical slip velocity when the non-physical inlet boundary condition is
used. In situations involving heat and mass transfer, significant differences
in the tortuosity of flow structures may be expected to have measurable415

implications.

4.2. Experimental Validation

Two-phase gas-liquid experiments were performed with the purpose of
providing a basis for further qualitative validation of the simulation results.
The experimental conditions replicate the simulation conditions described in420

4.1.1. The experimental gas-liquid flow system used in this study is depicted
in Figure 15. The setup is a cold-flow pilot scale reactor which consists of
two regions, the gas-liquid distributor (plenum chamber) at the bottom and
the test section. A column made of clear PVC pipe with an inner diameter
of 15.2 cm and a total height of 1.7 m, was used. The plenum chamber has425

the same diameter as the column and is 20 cm in height. A perforated plate
containing 3 mm circular holes is sandwiched between the test section and
the plenum chamber. This plate is designed to evenly distribute gas and
liquid within the column. Air and distilled water are used as the working
fluids in these experiments.430

Two sets of experiments were performed according to flow configurations
adopted in this work:

A) Qinlet set
g = 0.3Qinlet set

T = 1.8× 10−4 m3/s (ugs ≈ 0.0102 m/s and uls ≈
0.02377 m/s)

B) Qinlet set
g = 0.5Qinlet set

T = 3 × 10−4 m3/s (ugs ≈ 0.017 m/s and uls ≈435

0.017 m/s).

A Canon EOS 550D (f/4; 1/1000 s; ISO 3200) digital camera was used for
taking images in the developed region of the two-phase upward flow ranging
from 1.1 m to 1.3 m above the distributor plate.

Figure 16 shows the flow patterns observed for each flow rate configu-440

ration. For both considered flow rates, the bubbles are primarily uniformly
distributed across the cross-section of the pipe. The bubbles travel mostly
along the vertical direction without exhibiting a radial velocity component.
The flow pattern is a relatively homogeneous distribution of air and water
across the column which indicates that, at the given superficial velocities,445
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the flow is in the dispersed regime. This is consistent with the literature
[6, 10, 27, 41] for similar experimental conditions.

Comparisons between simulation results obtained using case II inlet con-
ditions and experimental data show that simulations predict the expected
flow regime. Indeed, comparisons between Figures 4a and 16a and between450

Figures 6a and 16b show similar flow pattern. These observations support
the physical relevance of the pressure Dirichlet boundary condition.

4.3. Integration of Feedback Control & Inlet Conditions

The key difficulty in enforcing the pressure boundary condition is that the
velocity distribution in the inlet for the chosen value of pressure is not known455

a priori. Similarly, when using the velocity boundary condition with gas-
liquid slip velocity, the slip velocity value is not available a priori. For both
cases we propose to use a multivariable feedback control scheme that will au-
tomatically find the necessary values over time. The control procedure used
along with the pressure Dirichlet boundary condition (Eqs. 8b) is described460

in this section. The results shown in Figs. 18-21 correspond to the flow rate
configuration A. The purpose of the control is to bring the system to the de-
sired fully-developed flow and obtain inlet values of pressure (pinlet) and the
gas volume fraction (αinletg ) that correspond to the desired flow rates, Qinlet set

T

and Qinlet set
g . The adopted control consists of two Proportional-Integral (PI)465

controllers (Fig. 17). The first PI controller is used to adjust Qinlet
T and the

second to adjust Qinlet
g . In order to impose an uniform pressure boundary

condition, it is necessary to compute the pressure that will correspond to a
desired overall flow rate of gas and liquid. Initially, an iterative trial and
error (shooting) methodology was considered whereby a pressure value was470

assumed and then, the velocity at the inlet was resolved from the solution
of the entire problem. The goal of that preliminary procedure was to iterate
on the assumed value of the pressure until the correct flow rate is obtained.
However, it was found that this procedure did not converge to a solution and
was computationally very intensive.475

Instead, a feedback multivariable control approach was applied. With
this approach, the inlet values of the pressure and the gas volume fraction
were manipulated to drive the flow rates of liquid and gas to their respective
set-points or desired values. The control strategy was decentralized in the
sense that the flow rate of liquid was paired to the pressure and the flow rate480

of gas was paired to the gas volume fraction using a PI controller for each of
these pairings.
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Each controller in Fig. 17 generates an output signal consisting of the
value of the manipulated variable in order to adjust the controlled variable to
its set value. This action is performed by correcting the manipulated variable485

to reduce the computed error that is equal to the difference between the
computed and the set values of the controlled variable. The type of control
used in this work, PI control, is a simpler version of the most common control
algorithm, the Proportional-Integral-Derivative (PID) control.

In the PI controller 1 (Fig. 17), the pressure pinlet is manipulated to
control the total volumetric flow rate Qinlet

T as follows

dpinlet

dt
= κ1

dET
dt

+

(
κ1
τ1

)
ET ,

ET = Qinlet
T −Qinlet set

T ,

on inlet, (16)

where κ1 is the proportional gain, τ1 the integral time and ET the error490

which represents the difference between the computed and the set total flow
rates. The first term on the right hand side of the first equation of Eqs.
16 corresponds to the proportional action of the controller and the second
term corresponds to the integral action where the latter term ensures that
the error at fully-developed flow interval is zero. The control operated here495

does not include a derivative action since, for the considered problem, the
resulting response with derivative action was oscillatory due to the presence
of numerical noise.

In the same manner, the gas volume fraction at the inlet αinletg is ma-
nipulated in the PI controller 2 to adjust the gas flow rate Qinlet

g . The PI
controller 2 is given by

dαinletg

dt
= κ2

dEg
dt

+

(
κ2
τ2

)
Eg,

Eg = Qinlet
g −Qinlet set

g ,

αinletl = 1− αinletg ,

on inlet, (17)

where κ2 and τ2 are the proportional gain and the integral time, respectively
and Eg is the control error of the PI controller 2 and represents the difference500

between the computed gas flow rate and the set one.
The setting of the control parameters κ1, τ1, κ2 and τ2 is important for the

efficiency and stability of the control process. In addition, each parameter has
to be readjusted frequently when one or multiple inputs of the problem are

20



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

varied. This situation will be often encountered during design optimization505

process where the geometry, the operating flow rates and even the physical
properties of the fluids are varied after each optimization iteration. Thus,
readjusting the proportional gain and the integral time manually to per-
form stable simulations may be a tedious task. This motivated the need for
using an online Estimator to set the values of κ1 and τ1 automatically for510

each simulation. It should be emphasized that a self-tuning procedure was
adopted only for the PI controller 1 since for the second PI controller, rapid
convergence of the controlled variable was always observed.

For the purpose of developing the online Estimator, it was assumed for
simplicity that the process under consideration is of first order. Accordingly,515

the dependence between the controlled and the manipulated variables is given
by

τp
dδQinlet

T

dt
+ δQinlet

T = κpδpinlet, (18a)

where κp and τp are the gain and the time constant of the process, respectively

and δQinlet
T = Qinlet

T −Qinlet

T and δpinlet = pinlet−pinlet are deviation quantities

with respect to the reference values of flow rate and pressure, Q
inlet

T and pinlet.520

It must be mentioned that the reference quantities are estimated from the
fully-developed flow solution of the simulation with inlet velocity Dirichlet
boundary condition without gas-liquid slip velocity (Eqs. 8a). From Eq. 18a,
the predicted flow rate is given by

δQinlet pred
T =

[
δpinlet −dδQinlet

T

dt

] [κp
τp

]
, (18b)

Finally, the adaptation law, implemented by the Estimator block in the block525

diagram of Fig. 17, is defined as follows

[
dκ1
dt
dτ1
dt

]
= −R

[
δpinlet

−dQinlet
T

dt

](
δQinlet pred

T − δQinlet
T

)
, (18c)

where R is the adaptation rate of the self-tuning. With this procedure, values
of κp and τp are iteratively updated using those of κ1 and τ1 until convergence.
To ensure stability by impeding the gains from changing sign, a lower bound
of 10−9 was imposed for both κ1 and τ1. In addition, to add robustness with
respect to model error since the process under consideration is in reality not
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first order, a dead zone of ±0.1Qinlet set
T was implemented within which the

self-tuning Estimator was turned off. It is given by

R = Rp,
∣∣Qinlet

T

∣∣ > 0.1
∣∣Qinlet set

T

∣∣, (18d)

R = 0,
∣∣Qinlet

T

∣∣ ≤ 0.1
∣∣Qinlet set

T

∣∣, (18e)

where Rp = 10−8 is the prescribed value of the adaptation rate.

4.3.1. Closed Loop Simulation

In this section, the performance of the control used along with the inlet
pressure Dirichlet boundary condition (Eqs. 8b) is analyzed. The perfor-530

mance of PI controller 1 (see Fig. 17) and its online Estimator are discussed
first. The performance of this controller is reported on Figs. 18 and 19.
Analysis of Figs. 18 and 19 show that the PI controller 1 successfully drove
the flow rate to the target total flow rate. In fact, the pressure (Fig. 18a) con-
verged to a fully-developed flow value and the total flow rate also converged535

to the prescribed target at fully-developed flow interval (Fig. 18b). In addi-
tion, the self-tuning procedure was also stable as shown by the convergence
of the proportional gain and the time integral respectively to constant values
(see Fig. 19). Performance of the PI controller 2 is shown in Fig. 20. As
observed before for the first controller, the manipulated and the controlled540

variables converged as αinletg (t) and Qinlet
g (t) converged to fully-developed flow

values after t ≈ 300 s. Fig. 20b shows that the gas flow rate converged to
the desired one. On the other hand, from Fig. 20a, the gas volume fraction
converged to αinletg ≈ 0.035 < (Qset

g /Qset
T ) corroborating the occurrence of a

slip velocity between the gas and liquid phases.545

4.3.2. Open Loop Simulation

Analysis of the performance of the two PI controllers showed that the con-
trol strategy successfully brought the system to the desired operating flow
rates and maintained the controlled variables at their target. However, it was
of interest to test the stability of the process when it is operated in open-loop550

without the controller. This is important since it should be remembered that
the feedback control was artificially introduced only to enforce an inlet pres-
sure that corresponds to a particular flow rate. Thus, the open-loop stability
of the simulation was checked and the closed and open-loop solutions were
compared to check whether, after reaching the desired flow and correspond-555

ing pressure or slip velocity values, the simulations remain stable even after
the controller is removed.
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It was found that the open-loop simulation, for the same air and water
flow rates considered for the closed-loop simulation, was unstable. The open-
loop instability is due to relatively low viscous dissipation in the flow and to560

the appearance of backflow at the inlet boundary that progressively brings
the system to instability. The origin of the instability was confirmed by per-
forming stable open-loop simulations by augmenting the viscous dissipation
using a liquid of higher viscosity than water that resulted in stability.

Moreover, it was also found from experimenting with different initial con-565

ditions that multiple solutions to the considered two-phase flow problem
exist. These solutions correspond to infinite possible distributions of the two
phases over the computational domain. For the uniform pressure Dirichlet
boundary condition, it was found that when two-phase columns of dispersion
of higher total density than the average one form in the pipe, they give rise to570

backflow at locations where the uniformly imposed inlet pressure was unable
to compensate for dispersion. This backflow results in transient high velocity
gradients and numerical instability.

One alternative to stabilize the flow simulations without explicitly using
feedback control is to assess the stability of the process when the pipe is con-575

sidered together with the pump that is driving the flow. This was motivated
by the observation that the calculated backflow into the pump exit chamber
will surely affect the pressure value there. Following this reasoning, an addi-
tional physical constraint was imposed at the inlet boundary. This constraint
was inspired from the centrifugal pump characteristic curve at fixed rotation580

speed. It is given by (
∆pinletoutlet

)(
Qinlet
T

)
= C, (19)

where C =
(

∆pinletoutlet

)(
Qinlet
T

)
is a constant computed from the closed-loop

simulation from time-averages of the pressure and total flow rate over the
fully-developed flow interval (FDFI). The constraint described by Eq. 19
states that at FDFI, for a given inlet−outlet pressure difference, corresponds585

a unique total volumetric flow rate. The results of the open-loop simulation
with the additional constraint of Eq. 19 were reported on Fig. 21. Indeed,
the analysis of these figures show that the open-loop simulation is stable
over the investigated time interval. Fig. 21a shows that the value of pinlet

is comparable to that obtained when fully-developed flow is reached in the590

closed-loop simulation (Fig. 18a). Figs. 21b and 21c show that the total
and gas flow rates correspond to the set values. Thus, imposing a physically
motivated constraint related to the pump can be effectively used to stabilize
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the simulations at the desired values of volumetric flows and inlet pressure
values without explicitly using feedback control.595

5. Conclusions

The two-phase upward dispersed co-current flow of air and water in a
vertical cylindrical pipe under isothermal conditions was considered. The
flow problem, modeled by the two-fluid model, was solved numerically and
particular attention was paid to the choice of the inlet boundary conditions.600

Specifically, their impact on the solutions of two-phase Eulerian flow prob-
lems was investigated.

While a uniform pressure Dirichlet boundary condition was used on the
outlet boundary, three different boundary conditions were considered on the
inlet and their effect on the resulting flow was analyzed. These three inlet605

boundary conditions are:

• The simple to implement, widely used, but physically inconsistent, uni-
form velocity Dirichlet boundary condition violates the no-slip condi-
tion at the wall and ignore the slip velocity between the phases at the
inlet boundary.610

• The uniform pressure Dirichlet boundary condition, that is considered
physically consistent as the pressure fields across the cross section areas
of the pipe are uniform. In addition, using this boundary condition,
the no-slip condition at the wall and gas-liquid slip velocity at the inlet
are no longer violated.615

• The velocity Dirichlet boundary condition with slip between the two
phases where the gas-liquid slip velocity is estimated from the pressure
Dirichlet boundary condition simulation. Although not strictly phys-
ical, it was investigated in order to determine whether by considering
the correct inlet slip velocity between the phases, it is possible to ob-620

tain a flow pattern similar to the one obtained with pressure Dirichlet
boundary condition.

The different flow profiles resulting from the simulations using each one
of the inlet boundary conditions were thoroughly analyzed. It was found
that the choice of the relevant inlet boundary conditions for two-phase flow625

problems is crucial. The analysis revealed that the solution obtained with ve-
locity Dirichlet boundary conditions is radically different from that resulting
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from the use of pressure Dirichlet boundary condition even when the correct
gas-liquid slip velocity was considered.

In fact, unlike what it is frequently stated in the literature, the distribu-630

tion of the phases in the fully-developed flow over the considered domain is
significantly affected by the inlet boundary condition and remains sensitive
to it even far from the inlet boundary. Whereas the flow resulting from the
velocity Dirichlet boundary condition without gas-liquid slip velocity is in the
form of gas-rich rising columns, the one obtained with the pressure Dirichlet635

boundary condition is in the form of a homogeneous dispersion. Moreover,
considering the correct gas-liquid slip velocity with the velocity Dirichlet
boundary condition resulted in a dispersion much more homogeneous than
the one obtained with pressure Dirichlet boundary condition.

The significant differences in flow patterns and phase distributions ob-640

served for the three inlet conditions cases considered in this study suggest
that in the presence of additional phenomena as heat transfer or chemical
reaction(s), the macroscopic quantities related to these phenomena are likely
to be affected by the choice of the boundary conditions.

A multivariable feedback control procedure was proposed for enforcing645

the inlet pressure Dirichlet boundary condition that corresponds to a desired
flow rate. It consists of two Proportional-Integral (PI) controllers with self-
tuning for one of them. Finally, open-loop and closed-loop stability of the
numerical simulation were discussed. It was shown that the concept of the
characteristic pump curve can be used to stabilize the simulations at the650

desired values of volumetric flows and inlet pressure values in the absence of
the PI feedback controllers.

Acknowledgements

This research was supported by the Natural Sciences and Engineering
Research Council (NSERC) of Canada, Shell Canada, and Compute Canada.655

References

[1] Drew, D. A., Lahey, R. T., 1987. The virtual mass and lift force on a
sphere in rotating and straining inviscid flow. Int. J. Multiphase Flow
13 (1), 113 – 121.

25



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

[2] Du, W., Bao, X., Xu, J., Wei, W., 2006. Computational fluid dynamics660

(cfd) modeling of spouted bed: Assessment of drag coefficient correla-
tions. Chem. Eng. Sci. 61 (5), 1401–1420.

[3] Duda, A., Koza, Z., Matyka, M., Sep. 2011. Hydraulic tortuosity in
arbitrary porous media flow. Phys. Rev. E 84 (3), 036319.

[4] Ekambara, K., Sanders, R. S., Nandakumar, K., Masliyah, J. H., 2008.665

Cfd simulation of bubbly two-phase flow in horizontal pipes. Chem. Eng.
J. 144 (2), 277–288.

[5] Enwald, H., Peirano, E., Almstedt, A.-E., 1996. Eulerian two-phase flow
theory applied to fluidization. Int. J. Multiphase Flow 22, 21–66.

[6] Fair, J. R., 1967. Designing gas-sparged reactors. Chem. Eng. 74 (14),670

67–74.

[7] Frank, T., Zwart, P. J., Krepper, E., Prasser, H.-M., Lucas, D., 2008.
Validation of cfd models for mono-and polydisperse air–water two-phase
flows in pipes. Nucl. Eng. Des. 238 (3), 647–659.

[8] Gesit, G., Nandakumar, K., Chuang, K. T., 2003. Cfd modeling of flow675

patterns and hydraulics of commercial-scale sieve trays. AlChE J. 49 (4),
910–924.
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Figure 1: Schematic of the longitudinal cross-section of the three-dimensional simulation
domain, a pipe of height H = 1.5 m, diameter D = 15 cm and volume V .
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Figure 2: Gas hold up 〈αg〉V (Eq. 10) versus number of mesh elements for case I inlet
conditions. Configuration A: total volumetric flow rate Qinlet setT = 6× 10−4 m3/s and gas
flow rate Qinlet setg = 0.3×Qinlet setT = 1.8× 10−4 m3/s.
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Figure 3: Simulation results of the fully-developed flow. Gas volume fraction αg field for
case I inlet conditions with (a) t = 900 s, (b) t = 950 s, and (c) t = 1000 s. Configuration
A: total volumetric flow rate Qinlet setT = 6 × 10−4 m3/s and gas flow rate Qinlet setg =

0.3×Qinlet setT = 1.8× 10−4 m3/s.
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Figure 4: Simulation results of the fully-developed flow. Gas volume fraction αg field at
(t = 1000 s) for (a) case II and (b) case III inlet conditions. Configuration A: total volu-
metric flow rate Qinlet setT = 6× 10−4 m3/s and gas flow rate Qinlet setg = 0.3×Qinlet setT =
1.8× 10−4 m3/s.
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Figure 5: Simulation results of the fully-developed flow. Gas volume fraction αg field for
case I inlet conditions with (a) t = 900 s, (b) t = 950 s, and (c) t = 1000 s. Configuration
B: total volumetric flow rate Qinlet setT = 6 × 10−4 m3/s and gas flow rate Qinlet setg =

0.5×Qinlet setT = 3× 10−4 m3/s.
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Figure 6: Simulation results of the fully-developed flow. Gas volume fraction αg field at
(t = 1000 s) for (a) case II and (b) case III inlet conditions. Configuration B: total volu-
metric flow rate Qinlet setT = 6× 10−4 m3/s and gas flow rate Qinlet setg = 0.5×Qinlet setT =
3× 10−4 m3/s.
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Figure 7: Histogram of time-averaged portions of the computational domain over the
fully-developed flow interval (FDFI) Vα/V (Eqs. 12 and 13) corresponding to the different
gas volume fraction αg intervals for each of the three inlet conditions cases (see legend).
Configuration A: total volumetric flow rate Qinlet setT = 6 × 10−4 m3/s and gas flow rate
Qinlet setg = 0.3×Qinlet setT = 1.8× 10−4 m3/s.
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Figure 8: Histogram of time-averaged portions of the computational domain over the
fully-developed flow interval (FDFI) Vα/V (Eqs. 12 and 13) corresponding to the different
gas volume fraction αg intervals for each of the three inlet conditions cases (see legend).
Configuration B: total volumetric flow rate Qinlet setT = 6 × 10−4 m3/s and gas flow rate
Qinlet setg = 0.5×Qinlet setT = 3× 10−4 m3/s.
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Figure 9: Simulation results of gas and liquid time-averaged velocity profiles over the fully-
developed flow interval for each of the three inlet conditions cases (see legend). Profiles at
half-pipe height, z = 0.75 m, along radial direction from the center of the pipe, y = 0 m,
to the wall, y = 0.075 m. Configuration A: total volumetric flow rate Qinlet setT = 6 ×
10−4 m3/s and gas flow rate Qinlet setg = 0.3×Qinlet setT = 1.8× 10−4 m3/s.
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Figure 10: Simulation results of gas and liquid time-averaged velocity profiles over the
fully-developed flow interval for each of the three inlet conditions cases (see legend).
Profiles at half-pipe, z = 0.75 m, height along radial direction from the center of the
pipe, y = 0 m, to the wall, y = 0.075 m. Configuration B: total volumetric flow rate
Qinlet setT = 6× 10−4 m3/s and gas flow rate Qinlet setg = 0.5×Qinlet setT = 3× 10−4 m3/s.
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Figure 11: Simulation results of the fully-developed flow. Gas flow streamlines at (t =
1000 s) for (a) case I, (b) case II and (c) case III inlet conditions. Configuration A:
total volumetric flow rate Qinlet setT = 6 × 10−4 m3/s and gas flow rate Qinlet setg = 0.3 ×
Qinlet setT = 1.8× 10−4 m3/s.
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Figure 12: Simulation results of the fully-developed flow. Liquid flow streamlines at
(t = 1000 s) for (a) case I, (b) case II and (c) case III inlet conditions. Configuration
A: total volumetric flow rate Qinlet setT = 6 × 10−4 m3/s and gas flow rate Qinlet setg =

0.3×Qinlet setT = 1.8× 10−4 m3/s.
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Figure 13: Simulation results of the fully-developed flow. Gas flow streamlines at (t =
1000 s) for (a) case I, (b) case II and (c) case III inlet conditions. Configuration B:
total volumetric flow rate Qinlet setT = 6 × 10−4 m3/s and gas flow rate Qinlet setg = 0.5 ×
Qinlet setT = 3× 10−4 m3/s.
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Figure 14: Simulation results of the fully-developed flow. Liquid flow streamlines at
(t = 1000 s) for (a) case I, (b) case II and (c) case III inlet conditions. Configuration
B: total volumetric flow rate Qinlet setT = 6 × 10−4 m3/s and gas flow rate Qinlet setg =

0.5×Qinlet setT = 3× 10−4 m3/s.
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Figure 15: Schematic of the gas-liquid flow system.

44



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T
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(a) Configuration A: total volumetric flow
rate Qinlet setT = 6 × 10−4 m3/s and gas flow
rate Qinlet setg = 0.3 × Qinlet setT = 1.8 ×
10−4 m3/s.

  1 cm

(b) Configuration B: total volumetric flow
rate Qinlet setT = 6 × 10−4 m3/s and gas
flow rate Qinlet setg = 0.5 × Qinlet setT = 3 ×
10−4 m3/s.

Figure 16: Observed two-phase upward flow pattern on the interval from 1.1 m to 1.3 m
above the distributor plate (see Fig. 15).
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Figure 17: Multi-variable, self-tuning, Proportional-Integral (PI) control diagram used
along with the Dirichlet pressure boundary condition (Eqs. 8b) at the inlet for solving
the flow problem in the pipe of Fig. 1 with CFD. PI controller 1 (Eqs. 16): the pressure
pinlet is manipulated to control the total flow rate QinletT by minimizing the error ET =
QinletT −Qinlet setT with respect to the set total flow rate. PI controller 2 (Eqs. 17): the gas
volume fraction αinletg is manipulated to control the gas flow rate Qinletg by minimizing the

error Eg = Qinletg − Qinlet setg with respect to the set gas flow rate. The Estimator (Eqs.
18) adjusts the proportional gain κ1 and the integral time τ1 of the PI controller 1.
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(a) The manipulated variable, value of the
pressure pinlet, versus time t.

(b) The controlled variable, total volumetric
flow rate QinletT , versus time t. Convergence
to the set flow rate Qinlet setT .

Figure 18: Performance of PI controller 1 of Fig. 17. Two-phase flow of water and air
in the vertical pipe of Fig. 1. Upward flow induced by case II inlet conditions, pressure
Dirichlet boundary condition of Eqs. 8b. Configuration A: total volumetric flow rate
Qinlet setT = 6× 10−4 m3/s and gas flow rate Qinlet setg = 0.3×Qinlet setT = 1.8× 10−4 m3/s.
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(a) Proportional gain κ1 versus time t. Con-
vergence to the gain of the process κp.

(b) Integral time τ1 versus time t. Conver-
gence to the time constant of the process τp.

Figure 19: Performance of the online Estimator used along with PI controller 1 of Fig. 17.
Two-phase flow of water and air in the vertical pipe of Fig. 1. Upward flow induced by
case II inlet conditions, pressure Dirichlet boundary condition of Eqs. 8b. Configuration
A: total volumetric flow rate Qinlet setT = 6 × 10−4 m3/s and gas flow rate Qinlet setg =

0.3×Qinlet setT = 1.8× 10−4 m3/s.
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(a) The manipulated variable, value of the gas
volume fraction αinletg , versus time t.

(b) The controlled variable, gas volumetric
flow rate Qinletg , versus time t. Convergence

to the set gas flow rate Qinlet setg .

Figure 20: Performance of PI controller 2 of Fig. 17. Two-phase flow of water and air
in the vertical pipe of Fig. 1. Upward flow induced by case II inlet conditions, pressure
Dirichlet boundary condition of Eqs. 8b. Configuration A: total volumetric flow rate
Qinlet setT = 6× 10−4 m3/s and gas flow rate Qinlet setg = 0.3×Qinlet setT = 1.8× 10−4 m3/s.
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(a) Pressure pinlet versus time t.

(b) Total volumetric flow rate QinletT versus
time t.

(c) Gas volumetric flow rate Qinletg versus
time t.

Figure 21: Open-loop simulation with the additional constraint of Eq. 19. Two-phase
flow of water and air in the vertical pipe of Fig. 1. Upward flow induced by case II
inlet conditions, pressure Dirichlet boundary condition of Eqs. 8b. Configuration A:
total volumetric flow rate Qinlet setT = 6 × 10−4 m3/s and gas flow rate Qinlet setg = 0.3 ×
Qinlet setT = 1.8× 10−4 m3/s.
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Table 1: Physical properties of the two fluid phases g (air) and l (water) at temperature
T = 293.15 K and pressure p = 101325 Pa.

gas (g) liquid (l)
Density (ρ) [kg/m3] 1.205 998.3
Kinematic viscosity (ν) [m2/s] 15.11× 10−6 1.004× 10−6

Gas-liquid surface tension (σ) [N/m] 72.86× 10−3

Bubble diameter (d) [mm] 3.000 –
Droplet diameter (d) [mm] – 1.000
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Table 2: Summary table of the time-averaged liquid flow tortuosity, T , over the fully-
developed flow interval (Eqs. 14 and 15) for the cases I, II and III inlet conditions and
the flow rate configurations A and B.

Case I Case II Case III
Configuration A 3.14 1.31 1.00
Configuration B 7.48 3.83 1.00
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