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ABSTRACT. In this paper, we study the structure of the fixed point sets of noncommutative
self maps of the free ball. We show that for such a map that fixes the origin the fixed
point set on every level is the intersection of the ball with a linear subspace. We provide
an application for the completely isometric isomorphism problem of multiplier algebras of
noncommutative complete Pick spaces.

1. INTRODUCTION

Function theory and hyperbolic geometry of Bd, the unit ball of Cd, were studied exten-
sively throughout the years, see for example [59] and [30]. The fact that Bd is the unit
ball of a finite dimensional Hilbert space leads to a generalization of many classical re-
sults from the unit disc setting, like the Schwarz lemma and the Julia-Caratheodory-Wolff
theorem (see [59] and [37] for details).

In operator algebra theory the Drury-Arveson space H2
d, the model space for commut-

ing row contractions, is a reproducing kernel Hilbert space of analytic function on Bd
with reproducing kernel kd(z, w) = 1

1−〈z,w〉 (see [11] and [24]). This space is a complete
Pick space, i.e., the multipliers of the Drury-Arveson space admit an interpolation the-
orem for matrix valued functions generalizing the classical Nevanlina-Pick interpolation
theorem in the unit disc. Let us write Md for the algebra of multipliers on H2

d, it is a
maximal abelian WOT-closed operator subalgebra of B(H2

d) generated by the operators
Mzj of multiplication by coordinate functions. In [3, Theorem 8.2] it was shown that the
Drury-Arveson space for d = ∞ is the universal complete Pick space, namely, if H is a
separable complete Pick reproducing kernel Hilbert space on a set X with kernel k, then
there exists an embedding b : X → B∞ and a nowhere vanishing function δ on X, such
that k(x, y) = δ(x)δ(y)k∞(b(x), b(y)) and H is isometrically embedded in δH2

d.
Let V ⊂ Bd be an analytic subvariety of Bd cut out by functions inMd. We can associate

to it a reproducing kernel Hilbert spaceHV spanned by kernel functions kd(·, w) for w ∈ V .
This space turns out to be a complete Pick space and the multiplier algebra MV of HV

is completely isometrically isomorphic to Md/IV , where IV is the WOT-closed ideal of
functions vanishing on V . It is thus natural to ask to what extent does the algebra MV

determine the variety V and vice versa. The isomorphism problem for subvarieties of
Bd cut out by multipliers of the Drury-Arveson space was studied by Davidson, Ramsey
and Shalit. In [22] and [23] they studied the algebraMV and its norm closed analog and
proved that if V,W ⊂ Bd are subvarieties of Bd, such that their affine span is all of Cd, then
MV is completely isometrically isomorphic toMW if and only if there is an automorphism
of Bd mapping V onto W (see also [60] for a survey and more results on the commutative
isomorphism problem). One of the main tools in the proof of the theorem is a theorem
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that appears both in [59] and [37] and states that the fixed point set of a self map of Bd is
the intersection of Bd with an affine subspace.

The noncommutative (nc for short), or free functions were introduced by Taylor in [62]
and [63]. Taylor’s goal was to facilitate noncommutative functional calculus and thus
he endeavored to give topological algebras analogous to the classical Frechet algebras of
analytic functions on open domains in Cd. Voiculescu in [68], [69], [70] and [71] devel-
oped the ideas of Taylor in the context of free probability. Helton, Klep , McCullough and
Schweighofer applied noncommutative analysis in order to obtain dimension free relax-
ation of the LMI containment problem (see [32] and [33]). Their results were extended
and improved upon by Davidson, Dor-On, Shalit and Solel in [18], Passer, Shalit and Solel
in [47] and Fritz, Netzer and Thom in [29]. For other applications to free real algebraic ge-
ometry see for example [36] and [35]. More applications to free probability were provided
by Belinschi, Popa and Vinnikov in [15] and Popa and Vinnikov in [48]. A fundamental
book [38] on the properties of nc function was written by Kaliuzhnyi-Verbovetskyi and
Vinnikov. The theory of bounded functions on free domains was studied by Agler and
McCarthy in [2], [4], [5], [8], [7] and [6]. They have obtained interpolation and real-
ization results with applications to H∞ functional calculus on free analogs of polynomial
polyhedra. Similar interpolation and realization results were obtained by Ball, Marx and
Vinnikov in [14] and [13], where they have also developed the theory of noncommuta-
tive reproducing kernels and defined the complete Pick property for such kernels. Muhly
and Solel formulated a much more general theory using W ∗-correspondences in [44] (see
also [46]).

In Section 3 we will prove an analog of the result of Rudin and Hervé for the free
ball. Automorphisms of the ball were studied by Davidson and Pitts in [19], McCarthy
and Timoney in [42], and Popescu in [57]. More generally self maps of the free ball and
quantizations of Cartan domains of type I were studied by Helton, Klep, McCullough and
Slinglend in [34]. They, however, have studied self maps with nice boundary properties
and here we make no such assumptions. Automorphisms of quantizations of Cartan do-
mains of type I were also studied in [42]. A study of isomorphisms of free LMI domains
was carried out by Helton, Klep and McCullough in [31] and by Augat, Helton, Klep and
McCullough in [12]. In our study of self nc-maps of the free ball, we employ the classical
techniques of complex geodesics developed by Vesentini in [64] and [65], Vigué in [66]
and [67] and others.

Analogously to the commutative case, the free matrix ball admits a noncommutative
reproducing Szego kernel and the associated nc reproducing kernel space is the full Fock
space. The fact that the full Fock space is the noncommutative analog of the Drury-Arveson
space was observed by Bunce [16], Frazho [28] and Popescu [49], [50], [51] and [52].
Noncommutative bounded functions on the free ball and its hyperbolic geometry were
studied by Popescu in [54], [53], [55], [56], [57] and [58] and Davidson and Pitts in [21]
and [19]. Noncommutative Nevanlinna-Pick interpolation on the ball was obtained by
Arias and Popescu in [10] and Davidson and Pitts in [20] using operator algebraic meth-
ods. A more generalHardy algebras in the setting of W ∗-correspondences were considered
by Muhly and Solel in [43] and [45]. They have also obtained analogs of Nevanlinna-Pick
results in this setting.
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The noncommutative analog of the isomorphism problem for multiplier algebras of sub-
varieties of the free ball was formulated by Salomon, Shalit and Shamovich in [61], where
the completely isometric isomorphism case was studied. In [61] a generalization of the re-
sults of [22] and [23] for homogeneous varieties was provided and it was shown that in the
nonhomogeonous case two varieties with completely isometrically isomorphic multiplier
algebras are biholomorphic. If V ⊂ Bd and W ⊂ Be are two subvarieties with completely
isometrically isomorphic multiplier algebras, then there exist two nc maps f : Bd → Be

and g : Be → Bd, such that f ◦ g|W = idW and g ◦ f |V = idV. IF V and W are homo-
geneous then [61, Theorem 8.4] shows that there exists a k and an automorphismϕ of
Bk , such that V,W ⊂ Bk and ϕ maps V onto W. In the commutative case, as stated
above, Davidson, Ramsey and Shalit proved that for completely isometric isomorphism
can be realized by an automorphism of the ball without the assumption that the varieties
are homogeneous. In Section 4 we will provide as an application of our main results a
noncommutative generalization of the result of Davidson, Ramsey and Shalit on the fact
that a completely isometric isomorphism of multiplier algebras of two varieties with scalar
points, that are embedded in a non-degenerate way in the free ball is implemented via an
automorphism of the free ball.

2. BASIC DEFINITIONS AND NOTATIONS

From this point on d is a positive integer. Let us denote by Md = t∞n=1Mn(C)⊕d and we
think of this space as the space of d-tuples of matrices of all sizes. Let us write Bd for
the nc-ball in Md, namely the set of all d-tuples of matrices X = (X1, . . . , Xd), such that∑d

j=1XjX
∗
j < I. In other words, Bd(n) is the set of all strict d-row contractions of size

n × n. In fact Bd(n) is a Cartan domain of type I for every n. To each point X ∈ Bd(n)
we associate a completely positive map ΦX(T ) =

∑n
j=1XjTX

∗
j . We will say that a point

X ∈ Md(n) is generic if the algebra generated by X1, . . . , Xd is all of Mn(C). There is a
natural action of GLn(C) on Md(n), given by S ·X = S−1XS = (S−1X1S, . . . , S

−1XdS), for
all X ∈Md(n) and S ∈ GLn(C).

The main objects of study in this paper are nc functions and maps. In this section, we
will provide some basic definitions. For properties of nc functions the reader is referred to
the works of Agler and McCarthy (cf. [4]) and the foundational book [38].

By a direct sum of points X ∈ Md(n) and Y ∈ Md(m), we mean X ⊕ Y =

(
X 0
0 Y

)
.

Let Ω ⊂ Md be a set closed under direct sums. A function f : Ω → M1 is said to be an nc
function if the following conditions hold:

• f is graded, namely f(Ω(n)) ⊂M1(n), for every n ≥ 1;
• f respects direct sums, i.e., if X ∈ Ω(n) and Y ∈ Ω(m), then f(X ⊕ Y ) = f(X) ⊕
f(Y );
• f respects similarities, i.e., if X ∈ Ω(n) and S ∈ GLn(C), such that S · X =
S−1XS ∈ Ω(n), then f(S−1XS) = S−1f(X)S.

One can replace the second and third item by a single item that states that f respects
intertwiners, but we will not use this property.
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If we assume additionally that Ω(n) is open for every n and we have a point P =(
X Z
0 Y

)
, with X ∈ Ω(n) and Y ∈ Ω(m), then

f(P ) =

(
f(X) ∆f(X, Y )(Z)

0 f(Y )

)
.

Here ∆f(X, Y ) is the noncommutative difference-differential operator and it is a linear
map ∆f(X, Y ) : Mn,m(C)⊕d → Mn,m(C). The properties of the difference-differential op-
erator are studied thoroughly in [38]. Using this property one gets a rather surprising
result that a mere local boundedness assumption ensures analyticity of f on every level as
a function of the coordinates of the matrices. Since we will deal with nc-maps from Bd to
itself, they are thus automatically analytic. Furthermore, for every X ∈ Ω(n), ∆f(X,X) is,
in fact, the derivative of f at X, when we consider f as an analytic map f : Ω(n) → Mn.
The nc-difference differential operator has the following property that will be used several
times throughout the paper:

∆f(X ⊕ Y,X ⊕ Y )

((
P11 P12

P21 P22

))
=

(
∆f(X,X)(P11) ∆f(X, Y )(P12)
∆f(Y,X)(P21) ∆(Y, Y )(P22)

)
.

In particular, if Ω(1) 6= ∅, then for every vector α ∈ Ω(1) we have: that:

∆f(α⊕n,α⊕n(
(
{wij}ni,j=1

)
= {∆f(α,α)(wij)}ni,j=1 .

Namely, the derivative of f at the point α⊕n is the ampliation of the derivative of f at α,
i.e., ∆f(α⊕n,α⊕n) = ∆f(α,α)⊗ IMn.

A nc-map f : Ω → Md is just a map, such that every coordinate is an nc-function. If we
have a self nc-map f : Ω → Ω, we will write Fix(f) for the set of fixed points of f . Our
main focus in this paper will be the set Fix(f) for a self nc-map of Bd that fixes a scalar
point.

The theory of bounded nc functions and nc maps on the ball has been studied in relation
with operator algebras by Popescu in a series of papers (see for example [49], [50], [54],
[53], [57]), Arias and Popescu in [10], Davidson and Pitts in [21], [19] and [20] and
Salomon, Shalit and the author in [61]. We will provide more details in Section 4, where
we describe an application to the study of operator algebras arising as multipliers of certain
noncommutative complete Pick spaces.

We will also need some results from complex hyperbolic geometry of convex domains
in Cd. Here we will briefly recall some basic definitions and results from the theory, for
more information, the reader is referred to the excellent books [1], [27] and [39] . Let
us denote by D the unit disc in the complex plane. We will equip D with the Poincare-
Bergman metric, ρ, that will make D a complex hyperbolic space. It is a consequence
of the Schwarz-Pick lemma that the isometries of the disc are precisely the holomorphic
automorphisms of the disc. Furthermore, every self map of the disc is a contraction with
respect to the Poincare-Bergman metric.

Let U ⊂ Cd be a bounded domain. Let V ⊂ Cd′ be another domain and let us write
Hol(U, V ) for the set of holomorphic maps from U to V . One can define in general many
metrics and pseudometrics invariant under the holomorphic automorphisms of U . Two
such are the Caratheodory and Kobayashi pseudometrics. One defines the Caratheodory

4



pseudometric by
c(z, w) = sup{ρ(f(z), f(w)) | f ∈ Hol(U,D)}.

The Kobayashi pseudometric has a bit more complicated definition, that we do not present
here, since for bounded convex domains in Cn those pseudometric are in fact metrics (this
is true even if we omit convexity, see for example [1, Theorem 2.3.14]) and they coincide
by a result of Lempert [40]. Since we will only consider the free unit ball we will talk
about the Caratheodory metric and assume from now on that U is convex. A geodesic
between two points w1, w2 ∈ U with respect to the Caratheodory metric is a holomorphic
map ϕ : D → U , such that there exist z1, z2 ∈ D, such that ϕ(z1) = w1 and ϕ(z2) = w2 and
ϕ is isometric as a map from the unit disc with the Poincare-Bergman metric to U with the
Caratheodory metric. If U , for example, is the unit ball of some norm ‖ · ‖ on Cd, then for
every w ∈ U , c(0, w) = ρ(0, ‖w‖) and the map z 7→ zw is a complex geodesic. As in the case
of the disc every f ∈ Hol(U,U) is a contraction with respect to the Caratheodory metric
and a holomorphic automorphism of U is an isometry.

In fact the Caratheodry metric is an integrated form of an infinitesimal norm γ(w, v) on
the tangent space TwU to U at w. One can show that a map ϕ ∈ Hol(D, U) is a complex
geodesic if and only if there exist two points z1, z2 ∈ D, such that c(ϕ(z1), ϕ(z2)) = ρ(z1, z2).
Similarly, ϕ is a geodesic if there exists z ∈ D, such that the map dϕ : TzD → Tϕ(z)U is an
isometry with respect to the induced norms.

Vigué has shown in [66] and [67] that if we have f ∈ Hol(U,U), then every two distinct
fixed points of f are connected by a complex geodesic consisting entirely of fixed points of
f . Alternatively, if w ∈ U is fixed by f and v ∈ TwU is fixed by df , then there is a complex
geodesic fixed by f through w that is tangent to v at w. We will use those results in the
next section.

3. MAIN RESULT

A classical result of Rudin [59, Theorem 8.2.2] and Hervé [37, Theorem 1] asserts that
the fixed point set of a holomorphic self map of the unit ball in Cn is an intersection of
an affine subspace with the unit ball. Since the unit ball is homogeneous we may apply
an automorphism and assume that g fixes the origin. If f(0) = 0, then the fixed point
set is an intersection of the ball with a linear subspace and by applying a unitary we may
assume that this subspace is defined by the vanishing of some coordinates. The goal of this
section is to provide a free analog of this claim. Our first order of business is to show that
if f : Bd → Bd is an nc-map, such that f(0) = 0 and V (1) is the subspace of fixed points
of f on the first level, then f fixes the points that satisfy the linear relations of V on every
level, i.e. if we set V (n) = V (1)⊗Mn, then V = t∞n=1V (n) ⊂ Fix(f).

Lemma 3.1. Let f : Bd → Bd be an nc-map, such that f(0) = 0. If f fixes (X, 0, . . . , 0), for
some X 6= 0, then f fixes all points of the form (Z, 0, . . . , 0).

Proof. Assume there exists a point λ 6= 0 in the spectrum of X. Applying similarities
we can transform X into an upper-triangular matrix with λ one of the entries on the
diagonal. Since f is an nc-map, we conclude that f(λ, 0, . . . , 0) = (λ, 0, . . . , 0). By [59,
Theorem 8.2.2] we know that all points of the form (z, 0, . . . , 0) are fixed. Taking direct
sums and similarities we can conclude that every point of the form (Z, 0, . . . , 0) is fixed
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with Z diagonalizable. However, since diagonalizable matrices are dense in the matrix
algebra, we conclude that all points of the form (Z, 0, . . . , 0) are fixed.

If the spectrum of X does not contain a non-zero point, then X is nilpotent. Hence X is
similar to a direct sum of Jordan blocks. Since f is nc, we may assume that X is a single
Jordan block. Since both 0 and (X, 0 . . . , 0) are fixed, we get that ∆f(0, 0) fixes (1, 0, . . . , 0)
and thus the disc (z, 0, . . . , 0) is fixed on the first level and we proceed as above. �

An immediate corollary is that if f fixes the points (z, 0, . . . , 0), with z 6= 0 on the first
level, then it fixes all of the points of the form (Z, 0, . . . , 0).

The following proposition is one of the main tools that we use to obtain the main result.

Lemma 3.2. If X ∈ Bd(n) is a generic point, then there exists S ∈ GLn(C), such that
(S−1XS)(S−1XS)∗ = rI, for some 0 < r < 1.

Proof. By [26, Theorem 2] since X is generic the map ΦX is irreducible, hence we can
apply [25, Theorem 2.3] to find r > 0 that is a simple eigenvalue of ΦX and a positive-
definite A, such that ΦX(A) = rA. Since X is a strict contraction the spectral radius of ΦX

is strictly less than 1 and in particular, r < 1. Set S =
√
A, the unique positive definite

square root of A. Multiplying the equality ΦX(A) = rA both on the left and on the right
by S−1 we get

rI = S−1ΦX(A)S−1 = S−1XSSX∗S−1 = S−1XS
(
S−1XS

)∗
.

�

Note that since Bd(n) is a ball of a norm, we know that for every X ∈ Bd(n), there
is a complex geodesic that connects X to 0, given by z 7→ zX/‖X‖, where the norm is
the row norm. By [9, Theorem A] and [41, Theorem 3.4] the coisometries, namely points
X ∈Md(n) that satisfy ΦX(I) = I, are real exposed points of Bd(n) and thus, in particular,
are complex extreme points. Recall that for a convex domain U ⊂ Cm, a point x ∈ ∂U
is said to be complex extreme if the only vector y ∈ Cm satisfying x + ∆y ⊂ U is y = 0
(see [1, Section 2.6]). Since not every point on the boundary is a coisometry, the geodesic
described above is in general not unique, i.e., there might exist other complex geodesics
that connect 0 to X. However, if we have X ∈ Bd(n), such that X/‖X‖ is a coisometry,
then the above geodesic is unique. We will need the following result:

Lemma 3.3. Let f : Bd(n) → Bd(n) be a holomorphic map, such that f(0) = 0. Let X ∈
Bd(n) be a coisometry. If ∆f(0, 0)(X) = X. Then the complex geodesic z 7→ zX is fixed by f .

Proof. The proof follows the idea of [59, Theorem 8.2.2]. SinceX is an exposed point there
exists a support hyperplane H of Bd(n), such that H ∩Bd(n) = {X}. Normalizing we may
assume that there is a linear functional ϕ on Md(n), such that ϕ(X) = 1 and <ϕ(Y ) < 1,
for every Y ∈ Bd(n) \ {X}. Now we define a function on the unit disc g(z) = ϕ(f(zX)).
Taking the derivative at the origin we see that g′(0) = ϕ(∆f(0, 0)(X)) = 1 and thus by the
Schwarz lemma g(z) = z. We conclude that for every 0 < r < 1 we have 1

r
ϕ(f(rX)) = 1

and thus by our assumption on ϕ we get that f(rX) = rX. To conclude the proof we note
that if X is a coisometry, then so is eitX, for every t ∈ R. Repeating the argument above
we see that for every z ∈ D, f(zX) = zX. �
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Let X ∈ Md(n) and denote by LX the space of all homogeneous linear polynomials on
d variables of degree one satisfied by the coordinates of X. Applying a unitary we can
always assume that LX is spanned by zk, . . . , zd. In [61] Salomon, Shalit and the author
have defined the notion of a matrix span of a set of points S ⊂ Md. Recall that the matrix
span of a set S is defined via

mat-span(S)(n) = Span {(Id ⊗ T ) (X) | X ∈ S(n), T ∈ L(Mn)} .
Here L(Mn) stands for the linear operators on Mn(C) and for each T ∈ L(Mn) we have
(Id ⊗ T ) (X) = (T (X1), . . . , T (Xd)).

Lemma 3.4. If S = {X} for X ∈ Md(n), then mat-span(S)(n) is precisely the set of points
Z ∈Md(n), such that LX ⊂ LZ .

Proof. First, let us assume that LX = {0}, i.e, the coordinates of X are linearly indepen-
dent. Then applying linear transformations T ∈ L(Mn) coordinate-wise, we can get any
point in Md(n) and thus we are done. Now assume that X = (X1, . . . , Xk−1, 0, . . . , 0),
with X1, . . . , Xk−1 linearly independent. As in the previous case we can get by applying
linear transformations coordinate-wise any point of the form Z = (Z1, . . . , Zk−1, 0, . . . , 0).
In particular, every such point satisfies LX ⊂ LZ . Applying a linear transformation on
the coordinates just changes bases in the spaces of linear polynomials and thus the above
statement is true for any X.

To prove the converse inclusion observe that if Z ∈ mat-span(S)(n), then there exist a
linear transformation T ∈ L(Mn), such that

Z = (Id ⊗ T ) (X) = (T (X1), . . . , T (Xd)) .

Hence if p =
∑d

j=1 αjzj ∈ LX , then by linearity p(Z) = T (p(X)) = 0 and thus p ∈ LZ .
�

Proposition 3.5. If f is an nc self-map of Bd, such that f fixes the subspace of points of
the form (z1, . . . , zk−1, 0, . . . , 0) in Bd(1), for k > 2, then f fixes all points of the form
(Z1, . . . , Zk−1, 0, . . . , 0).

Proof. By Lemma 3.1 we know that the points (Z1, 0, . . . , 0), (0, . . . , 0, Zk−1, 0, . . . , 0) are
fixed by f . Now [61, Lemma 8.1] implies that ∆f(0, 0) fixes the matrix span of these
points and thus fixes all points of the form (Z1, . . . , Zk−1, 0, . . . , 0). Consider the n-th level
Bd(n). Let Z = (Z1, . . . , Zk−1, 0, . . . , 0) be a point such that Z/‖Z‖ is coisometric. As
was mentioned there is a unique geodesic passing between 0 and Z and it is just the
disc through the two points. Additionally, the above argument shows that ∆f(0, 0)(Z) =
Z and it is the derivative of f at the origin on level n. Applying Lemma 3.3 we get
that the geodesic w 7→ wZ is fixed by f . By Lemma 3.2 every generic point of the form
(X1, . . . , Xk−1, 0, . . . , 0) is similar to such a Z we conclude that every generic point of this
form is fixed. Since k > 2 the generic points are dense in the set of all points of this form
and thus the entire set is fixed. �

This proposition combined with Lemma 3.1 gives us the following corollary.

Corollary 3.6. Let f : Bd → Bd be an nc-map, such that f(0) = 0. Let V (1) be the fixed
point set of f on the first level. Set V (n) ⊂ Bd(n) the subspace of matrices, such that their
coordinates satisfy the linear relations of V (1) and V = t∞n=1V (n). Then f fixes V .
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Proposition 3.7. Let f : Bd → Bd be an nc-map, such that f(0) = 0. If there exists a
generic point X ∈ Bd(n), such that f(X) = X, then f(Z) = Z, for every Z ∈ Bd, such that
LX ⊂ LZ . In particular, if the coordinates of X are linearly independent, i.e., LX = {0}, then
f is the identity map.

Proof. Since f is nc and it fixes X, it is forced to fix the similarity orbit of X in the ball,
namely (GLn(C) ·X) ∩Bd(n). By Lemma 3.2 the similarity orbit contains a point Y , such
that Y/‖Y ‖ is a coisometry. Note that Y is also generic and LY = LX , since the action
of GLn(C) is linear. By [66, Corollary 4.2] we have that there exists a complex geodesic
consisting of fixed points of f that connects 0 to Y . Since Y/‖Y ‖ is a coisometry and
thus a complex extreme point on the boundary, this geodesic is necessarily z 7→ zY/‖Y ‖.
Thus, in particular, the derivative of f at 0 fixes this line as well. Since f is an nc map,
the derivative at 0 is ∆f(0, 0) ⊗ IMn and it fixes the line zY . By [61, Lemma 8.1] we
have that it must fix the intersection of the matrix span of Y with the ball. As above
we may assume that Y = (Y1, . . . , Yk−1, 0, . . . , 0), with k > 2 and Y1, . . . , Yk−1 linearly
independent. By Lemma 3.4 the matrix span of Y on level n is precisely the set of all
points of the form (Z1, . . . , Zk−1, 0, . . . , 0), i.e., LY ⊂ LZ . Now as in the proof of Proposition
3.5, since the ∆f(0, 0) fixes the matrix span of Y . Applying again Lemmas 3.3 and 3.2
and using the density of the generic points we obtain that all of the points of the form
(Z1, . . . , Zk−1, 0, . . . , 0) are fixed by f .

In particular, if the coordinates of X are linearly independent, then the coordinates of Y
are linearly independent and it implies that the derivative fixes Bd(n). By the free version
of Cartan’s theorem (see [42], [57] and [61]). We conclude that f is the identity. �

Remark 3.8. The above lemma is the noncommutative analog of a claim from [59] that
the fixed points of a holomorphic map f : Bd → Bd, such that f(0) = 0 are precisely the
fixed points of Df(0), the derivative of f at the origin.

Lemma 3.9. Let f : Bd → Bd be an nc-map, such that f(0) = 0. If X ∈ Bd(n) is a fixed
point of f , then the geometric and algebraic multiplicities of 1 as an eigenvalue of ∆f(X,X)
are the same.

Proof. Consider the iterates of f , namely f1 = f and fk = f ◦ fk−1. Since X is a fixed point
of f , it is a fixed point of every fk. Taking the derivative of fk we find by the chain rule that
∆fk(X,X) = ∆f(X,X)k. Since each fk is a self map of Bd(n), by [27, Proposition V.1.2]
the differential ∆fk(X,X) is contractive with respect to the infinitesimal Caratheodory
metric on the tangent space at X. By [65, Corollary 5.8] the infinitesimal Caratheodory
metric is equivalent to the row norm on Md

n. Thus there exists a constant C > 0, such that
for every k, ‖∆fk(X,X)‖2,2 = ‖∆f(X,X)k‖2,2 ≤ C, where ‖ ·‖2,2 is the operator norm with
respect to the Hilbert-Schmidt norm on Md

n. Now if ∆f(X,X) would have had a Jordan
block for 1, then the norm of ∆f(X,X)k would have increased polynomially, contradicting
the uniform boundedness. �

For every n ∈ N, consider the subspace V (n) ⊂ Bd(n), consisting of all the points of the
form (Z1, . . . , Zk−1, 0, . . . , 0). Assume that f : Bd → Bd is an nc-map, such that V ⊂ Fix(f).
On the n-th level let X ∈ V (n) and consider the tangent spaces at X to V (n) and to Bd(n).
We have an exact sequence 0→ TXV (n)→ TXBd(n)→ NXV (n)→ 0. Since both tangent
bundles are trivial this sequence splits. Since f fixes V and thus, in particular, X, the
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differential of f at X has the matrix form df(X) =

(
I ?
0 ?

)
. Consider the compression

Qn(X) of df(X) − I to NXV (n). It is obvious that this defines a matrix valued analytic
function on V (n) and thus qn(X) = detQn(X) is an analytic function on V (n). Note that
by Lemma 3.9 for X0 ∈ V (n) there exists a tangent vector in TX0Bd(n) that is fixed by
df(X0) that is not tangent to V (n) at X0 if and only if qn(X0) = 0. Thus if qn(X) vanishes
at some point and is not identically zero, the zeros of qn(X) are of complex codimension
1. This leads us to the following claim:

Lemma 3.10. Let f : Bd → Bd be an nc-map, such that f(0) = 0. Let V (1) be precisely the
set of fixed points of f on the first level and assume that it is not a singleton. Let V (n) ⊂
Md(n) be the subspace of points satisfying the same linear relations on the coordinates as
V (1). Assume that there exist X ∈ V (n) and Y ∈ V (m) and Z ∈ Mn,m(C)⊕d, such that

P =

(
X Z
0 Y

)
/∈ V (n + m) is fixed by f . Then the set of points W ∈ V (n + m), such

that there exists a vector not tangent to V (n + m) that is fixed by ∆f(W,W ) is of complex
codimension 1 in V (n+m).

Proof. By Corollary 3.6 we know that V ⊂ Fix(f). We may assume as above that V (n) is the
subspace of points of the form (Z1, . . . , Zk−1, 0, . . . , 0). Since P is fixed by f we conclude
that ∆f(X, Y )(Z) = Z. By the properties of the nc difference-differential operator we have
that:

∆f(X ⊕ Y,X ⊕ Y )

((
0 Z
0 0

))
=

(
0 Z
0 0

)
.

If we assume that P /∈ V (n + m) this would imply that Zj 6= 0 for some j ≥ k. Hence we

have a point X ⊕ Y ∈ V (n + m), such that the vector
(

0 Z
0 0

)
is not tangent to V (n + m)

at that point, but is fixed by the derivative of f at X ⊕ Y . As we have discussed above we
can conclude that qn+m(X ⊕ Y ) = 0. On the other hand qn+m(0) 6= 0, since the derivative
at 0 of f on the n+m-th level is just the ampliation of ∆f(0, 0) and by our assumption the
dimension of the kernel of Qn+m(0) is precisely (n + m)2(k − 1) and that is the dimension
of V (n+m). Thus the zeros of qn+m is of complex codimension 1 and again by Lemma 3.9
we know that at each of those points we have a vector fixed by the derivative, that is not
tangent to V (n+m). �

Proposition 3.11. Let V be as above and assume that k > 2 and that the fixed points of f
on the first level are precisely V (1). Then V = Fix(f).

Proof. First, note that by Corollary 3.7 there are no generic fixed points outside V (n) for
any n, for otherwise if X /∈ V (n) is a fixed generic point, then we have that every Y ,
such that LX ⊂ LY is fixed, in particular, there are such scalar points contradicting our
assumption.

If we have a non-generic fixed point we can consider its Jordan-Hölder constituents that
are generic and they are all fixed since f is nc. Thus each of them is in V . Let us first

consider the case of two constituents. Let P =

(
X Z
0 Y

)
∈ Bd(n + m) be a fixed non

generic point with X and Y both generic and thus in V (n) and V (m), respectively. Now
9



by Lemma 3.10 we have that the points where we have a vector that is not tangent to
V (n + m) and is fixed by the derivative is of codimension 1 in V (n + m). We note that in
case k > 3 or k = 3 and n+m > 2, then the non-generic points are of codimension greater
than 1 in V (n+m) and thus there is a generic point W ∈ V (n+m), such that qn+m(W ) = 0
(in fact there are many such). So there is a vector that is not tangent to V (n + m) and is
fixed by the derivative at W , applying [67, Theorem 4.1] we get a geodesic in the direction
of the vector from W that consists of fixed points of f . Since the original vector was not
tangent to V (n + m) the geodesic leaves V (n + m) and since the generic points are open
in Bd(n+m) we know that the geodesic will initially stay in the generic points. Conclude
that there are generic points not in V (n + m) fixed by f and we reach a contradiction as
above. If k = 3 and n = m = 1, then we can take the direct sum of X ⊕ Y with itself and
consider the following tangent vector:

0 0 0 Z
0 0 0 0
0 0 0 0
0 0 0 0

 .

To complete the proof note that the fact that X and Y are generic is used only to deduce
that they are in V . So we can proceed by induction on the number of Jordan-Hölder
constituents. We know the result for one and two constituents. If we have r constituents,
then we consider the block with r−1 constituents as X and apply the induction hypothesis
to obtain that X ∈ V and now we are back in the case described above. �

Theorem 3.12. Let f : Bd → Bd be an nc map and assume that f(0) = 0. If f fixes precisely
the intersection of the subspace V (1) with Bd(1), then the fixed points of f are precisely all
the points that satisfy the linear relations of V (1).

Proof. As above let us write V for the set of all points on all levels that satisfy the linear
relations of V (1). Corollary 3.6 asserts that V is fixed by f . By Propositions 3.11, if the
dimension of V (1) is at least 2 we are done. Hence, we need to prove the theorem for the
cases when 0 is the unique fixed point on the first level and when the fixed points on the
first level are a disc.

Case 1: Unique fixed point. Let us first deal with the case of a unique fixed point on
the first level. Let us assume first that d > 1, then we cannot have generic fixed points
by Proposition 3.7. If we have a non-generic fixed point then again by Proposition 3.7
the Jordan-Hölder constituents must be 0, hence we can conclude that the point is similar
to a point with upper triangular coordinates with zeros on the diagonal. If n = 2, then

such a point is of the form:
(

0 v
0 0

)
. If it is fixed then ∆f(0, 0)(v) = v, but this is a

contradiction, since on the first level, we have only 0 fixed and the derivative has exactly
the same fixed points as the function. Now we proceed by induction on n. Given a fixed

point, we can write it as
(

0 v
0 Y

)
, where Y is a fixed point of size n − 1 and thus by the

induction hypothesis is 0. Similarly, if we isolate the upper block only we know that it is
zero as well, thus the only possible non zero entry of every coordinate is the upper right
one. Conjugating by permutation matrix we can move the upper right entry to be second
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from the left in the first row and thus we are back in the two dimensional case that we
have solved.

In case d = 1 we still know that the spectrum of the fixed matrix must contain only 0,
i.e., the matrix is nilpotent. We can thus assume that the matrix is a Jordan block and
apply the Schwarz lemma to get the result.

Case 2: Fixed point set is a disc, n=2. Now for the case that k = 2, i.e., when the
fixed point set on the first level is a disc. We may assume that d ≥ 2, otherwise the
map is the identity. The same arguments as above show that if Z is a fixed point then
the coordinates of Z have simultaneous upper triangularization and the diagonals of the
coordinates Z2, . . . , Zd are zero.

Let us assume that n = 2 and also assume that f(X) = X, where

X =

((
α1 w1

0 β1

)
,

(
0 w2

0 0

)
, . . . ,

(
0 wd
0 0

))
.

We suppose towards contradiction that for at least one j = 2, . . . , d we have wj 6= 0. To
simplify notations let us write α = (α1, 0, . . . , 0), β = (β1, 0, . . . , 0) and w = (w1, . . . , wd).

Hence we can write X =

(
α w
0 β

)
. We will divide the proof of this case into subcases.

Case 2.1: The first coordinate has a double eigenvalue. Assume that α1 = β1, therefore

f(X) =

(
α ∆f(α,α)(w)
0 α

)
.

We conclude that the derivative of f at α fixes w, but this is impossible since it will add
additional fixed points on the first level contradicting our assumption.

Case 2.2: The first coordinate has two eigenvalues of distinct magnitudes. Next, we

will assume that α1 6= β1. First, note that by conjugating by the matrix Et =

(
1 t
0 1

)
we

get:

E−1t XEt =

((
α1 w1 + t(α1 − β1)
0 β1

)
,

(
0 w2

0 0

)
, . . . ,

(
0 wd
0 0

))
.

Hence if we choose t = −w1

α1−β1 we can annihilate w1, hence we will assume from now on

that w1 = 0. Consider conjugating by St =

(
t−1 0
0 t

)
. We will get S−1XS =

(
α t2w
0 β

)
.

Therefore, if |α| < |β|, then we can choose t > 0, such that t4 = |β|2−|α|2
|w2|2+···+|wd|2

. Conjugating
by St we will get that XX∗ = |β|2I and thus there is a unique geodesic connecting it
to 0 given by z

|β|X. In particular, it implies that ∆f(0, 0) fixes X and thus by the direct
sum property of the nc difference-differential operator ∆f(0, 0)(w) = w and that is a
contradiction.

Now assume that |α| > |β| and consider a new nc-map g(Z) = f(ZT )T , here superscript
T stands for transpose and we apply it coordinate-wise. It is straightforward to check that
g is indeed an nc-map. Now note that on the first level g and f agree and that the transpose
of every fixed point of f is a fixed point of g and vice versa. In particular, 0 is a fixed point
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of g and so is XT =

(
α 0
w β

)
. The same argument as above shows that there exists a t,

such that (S1
tX

TSt)(S
−1
t XTSt)

∗ = |α|2I. We conclude again that ∆g(0, 0)(w) = w, but
since f and g agree on the first level and thus have the same fixed points we obtain a
contradiction again.

To summarize the above discussion we have shown that if X is a fixed point of f on
the second level and X1 has either two identical eigenvalues or two eigenvalues of distinct
magnitudes, then X ∈ V (2).

Cases 2.3: First coordinates has two distinct eigenvalues of the same magnitude. We
are left with the case that |α| = |β| and α 6= β. The set of matrices with two distinct
eigenvalues of the same magnitude is not closed. Its closure will contain the scalar points
and is contained in the set of all matrices with two eigenvalues of the same magnitude.
To see it consider the symmetrization map π : C2 → C2, π(z, w) = (z + w, zw). The map
π is proper by [17, Section 2.1(f)], hence, in particular, closed and thus the image of the
set S = {(z, w) | |z| = |w|} is closed. Now we consider the map τ : M2(C) → C2 given by
τ(X) = (tr(X), det(X)). The fiber of τ over a point is the closure of the similarity orbit of
a matrix with the given trace and determinant. Given a point (z, w) ∈ C2, we consider the
polynomial x2 − zx + w, if the discriminant is not zero, then the τ−1({(z, w)}) is precisely
the similarity orbit of of the diagonal matrix with x2− zx+w as characteristic polynomial.
Otherwise, the fiber consists of two orbits, the orbit of the Jordan block and the scalar
matrix. Now the set of all matrices with eigenvalues of the same magnitude is given by
τ−1(π(S)) and thus is closed.

By Lemma 3.10 we know that the subset of the ball of 2 × 2 matrices that has a vector
fixed by the derivative not tangent to V (2) is of complex codimension 1 and in particular,
is a closed analytic subvariety. Let us denote this hypersurface by H. Note that the scalar
points can not have a tangent vector fixed by the derivative that is not tangent to V (2).
To see it we apply the fact described in Section 2 that ∆f(α⊕2,α⊕2) = ∆f(α,α) ⊗ IM2.
It implies that the hypersurface H can only intersect the set of points with distinct eigen-
values of the same magnitude, so there must be points with distinct eigenvalues on H of
different magnitudes. Note that the set of points U ⊂ Bd(2), such that the first coordinate
has two eigenvalues with different magnitudes is open. Let Y ∈ H ∩ U , by [67, Theorem
4.1] there exists a complex geodesic passing through Y , that leaves V (2). Since U is open
it has points in U that are not in V (2) contradicting the fact that if the first coordinate of a
fixed point has eigenvalues of distinct magnitude, then the point is in V (2).

Case 3: Fixed point set is a disc, induction on n. Now we proceed by induction on n
and partition the upper-triangular point X in two different ways:

X =

(
z v
0 Y

)
=

(
Ỹ ṽT

0 z̃

)
.

Thus by the induction hypothesis all the entries of X2, . . . , Xd are 0 except for perhaps the
upper right corner.

Now if z is not in the spectrum of Y we can apply similarity as follows:(
1 −v(z − Y )−1

0 I

)(
z v
0 Y

)(
1 v(z − Y )−1

0 I

)
=

(
z 0
0 Y

)
.
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Now if J =

(
0 1
1 0

)
, then since Y is upper triangular we get that:(

J 0
0 I

)(
z 0
0 Y

)(
J 0
0 I

)
=

(
y ∗
0 Y ′

)
.

Here y1 is the left upper corner of Y and Y ′ is the matrix obtained from Y and in particular,
its upper left corner is z. When we apply the same similarities to a matrix with only the
upper right corner non-zero we get that the first similarity keeps it invariant whether from
the second we obtain:

(
J 0
0 I

)
0 0 · · · 0 w
0 · · · · · · 0
...

...
...

0 · · · · · · 0

(J 0
0 I

)
=


0 0 · · · 0 0
0 · · · · · · 0 w
...

...
...

0 · · · · · · 0


Since the similar point is fixed and we have again an upper triangular form, but now we
can apply the induction hypothesis again on the lower right (n−1)×(n−1) block to obtain
the upper right corner is 0 as well. Similar argument will apply if z̃ is not in the spectrum
of Ỹ . If z = z̃, then we can write:

X1 =

z v vd
0 Ŷ ṽT

0 0 z

 .

Let us assume now that z is not in the spectrum of Ŷ . Proceeding as above on each block
separately, we can use similarity to obtain a fixed point with

X1 =

z 0 v′d
0 Ŷ 0
0 0 z

 .

Thus we can apply the same similarity as above and again reduce the problem to the
induction hypothesis. Hence we are left with case when the first coordinate has at least
two eigenvalues of algebraic multiplicity two or one eigenvalues of algebraic multiplicity
three. By Lemma 3.10, we have that the subset of V (n) that has a fixed vector of the
derivative that is not tangent to V (n) is a hypersurface. The set of matrices of the type
above is the locus of points, where the discriminant of the characteristic polynomial of the
first coordinate has at least a double root, and thus of higher codimension. Hence we must
have points as described in the first two cases and we are done by the same argument as
in the proof of Case 2.3.

�

4. APPLICATION TO MULTIPLIERS ALGEBRAS OF NONCOMMUTATIVE COMPLETE PICK SPACES

Let d < ∞ and Fd be the full Fock space on d generators. As shown in [13] Fd is a
noncommutative reproducing kernel Hilbert space (nc-RKHS for short) with the noncom-
mutative Szego kernel

K(Z,W )(T ) =
∑
α∈Wd

ZαTWα∗.
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Here Wd is the monoid of words on d letter and for Z ∈ Bd, Zα is the evaluation of the
monomial defined by the word α on Z. In [13] and [61] using different techniques, it was
shown that K is a complete Pick kernel. Let us write H∞(Bd) for the algebra of bounded
nc functions on Bd. It turns out that H∞(Bd) is completely isometrically isomorphic to the
algebra of multipliers of Fd. By [61, Corollary 3.6] this algebra is precisely the WOT-closed
algebra considered by Popescu, Arias and Popescu and Davidson and Pitts. Let V ⊂ Bd be
a subvariety cut out by bounded nc functions. As in the commutative case, described in
Section 1, one can associate to V a nc-RKHS HV spanned by the kernel functions K(·,W ),
for W ∈ V and its multiplier algebra H∞(V). In [10] and [20] it is proved that H∞(V)
is completely isometrically isomorphic to the algebra of bounded nc function on V and
to the quotient H∞(Bd)/IV , where IV is the WOT-closed ideal of bounded nc functions
vanishing on V (see [61] for a proof in the language of nc-functions).

Theorem 3.12 allows us to resolve a question asked in [61]. Namely, let V ⊂ Bd and
W ⊂ Be be subvarieties as above. We assume that the algebras of multipliers H∞(V) and
H∞(W) are completely isometrically isomorphic, then by [61, Theorem 6.12] we know
that there exist nc-maps f : Bd → Be and g : Be → Bd, such that g ◦ f |V = idV and
f ◦ g|W = idW. The following theorem strengthens [61, Theorem 6.12] and is a free
generalization of [23, Theorem 4.5] in the case when the varieties have scalar points.

Theorem 4.1. Assume that V ⊂ Bd and W ⊂ Be are subvarieties, such that H∞(V) and
H∞(W) are completely isometrically isomorphic. If V (and thus W) has a scalar point, then
there exists a positive integer k and an automorphism ϕ of Bk, such that V,W ⊂ Bk and ϕ
maps V onto W.

Proof. The first part was in fact proved in [61, Theorem 8.4] but we will state the argument
here for the sake of completeness.

As was proved by Popescu in [57] and Davidson and Pitts in [19] the free automorphisms
of Bd are precisely those that arise from the automorphisms of the first level (see also [61]
for a more elementary proof). Since V has a scalar point we can apply an automorphism
and assume that this point is 0. Composition with an automorphism of the ball induces a
unitary equivalence on H∞(V) with the multiplier algebra of the image. Hence we may
assume that 0 ∈ V and also 0 ∈ W. Since d < ∞, by [61, Lemma 8.2] we have that for
every S ⊂Md, there exists a linear subspace V ⊂ Cd, such that for every sufficiently large n
we have mat-span(S)(n) = V⊗Mn. Hence there exist subspaces V (1) ⊂ Cd andW (1) ⊂ Ce,
such that if we set V (n) = V ⊗Mn and W (n) = W ⊗Mn, then V ⊂ V = t∞n=1V (n) and
W = t∞n=1W (n). Thus we may assume that V = Cd and W = Ce or in other words
that there exists n0, such that for every n ≥ n0, we have mat-span(V)(n) = Md(n) and
mat-span(W)(n) = Me(n).

Let f and g be nc-maps f : Bd → Be and g : Be → Bd, such that g ◦ f |V = idV and
f ◦ g|W = idW. Consider the map h = g ◦ f . By our assumption h(0) = 0 and thus the fixed
points of h are the points that satisfy the linear relations of the fixed points on level 1. Since
the matrix span of V(n) is everything it implies that the fixed points of h on level n don’t
satisfy any linear relations and thus h is the identity. The same argument applied to W
shows that f and g are inverse to each other and thus d = e and f is a free automorphism
of Bd. �

14



Example 4.2. To see an example of a subvariety V ⊂ Bd that contains 0, such that
mat-span(V)(2) = Md(2), but the linear span of V(1) is one dimensional, consider the vari-
ety cut out in B2 by the polynomial XY −Y X− 1

2
Y . Clearly, V(1) is the set of points, such

that y = 0. However, on the second level, we have the point P =

((
1/2 0
0 0

)
,

(
0 1/2
0 0

))
and by Lemma 3.4 we have that mat-span({P}) = M2(2), since the coordinates are linearly
independent.

Example 4.3. Another interesting example of a subvariety of the free ball B2 is the subva-
riety cut out by the polynomial XY − qY X, for some q ∈ C \ {1}. , the points on the first
level are the axes. However, on the second level we will have many points. For example if

q = 2, then the point P =

((
1
2

0
0 1

4

)
,

(
0 1

2
0 0

))
is in the variety and thus the matrix span

on the second level is everything.

Example 4.4. Not every variety must have scalar points. Consider the variety V ⊂ B2 cut
out by the polynomials X2, Y 2 and XY + Y X − 1

2
. Clearly, from the definition, there are

no scalar points in the variety. However, on the second level, we note that the condition
implies that both coordinates are nilpotent and thus we can always conjugate them to a
point of the following form:

P =

((
0 λ
0 0

)
,

(
a b
c −a

))
.

With detY = −a2 − bc = 0 Now the vanishing of the third polynomial implies that λc = 1
2

and thus b = −2λa2. Thus for example if we take a = 0 and λ = c = 1√
2
, then the following

point is in V:

P =

((
0 1√

2

0 0

)
,

(
0 0
1√
2

0

))
.

This point is generic and in fact, every point in V(2) is generic, since V is a variety that
is the vanishing locus of nc functions and since the V(1) = ∅, then V(2) must consist of
generic points only.

Remark 4.5. As was mentioned in the introduction the papers [34] and [42] study auto-
morphisms of more general free domains, namely they consider quantizations of Cartan
domains of type I. Recall that Cartan domains of type I are precisely the sets of matrices
X ∈ Mp,q(C), such that XX∗ < I, where the identity is a p × p matrix. Clearly, if we take
p = 1 and q = d, then we get Bd. The quantization is obtained in the same way as for the
free ball.

It seems that Lemma 3.2 does not admit a straightforward generalization to quanti-
zations of general Cartan domains of type I. Understanding fixed points of self maps of
quantizations of Cartan domains of type I might allow one to remove the assumption of
scalar points in Theorem 4.1.

Acknowledgments. The author thanks John E. McCarthy, Guy Salomon and Orr Shalit for
helpful discussions on the topics of this paper. Part of the work of the author was carried
out during his postdoctoral fellowship at the Technion, Haifa.

15



REFERENCES

[1] M. Abate. Iteration theory of holomorphic maps on taut manifolds. Research and Lecture Notes in Math-
ematics. Complex Analysis and Geometry. Mediterranean Press, Rende, 1989.

[2] J. Agler and J. E. McCarthy. Complete Nevanlinna-Pick kernels. J. Funct. Anal., 175(1):111–124, 2000.
[3] J. Agler and J. E. McCarthy. Pick Interpolation and Hilbert Function Spaces, volume 44 of Graduate

Studies in Mathematics. American Mathematical Society, Providence, RI, 2002.
[4] J. Agler and J. E. McCarthy. Global holomorphic functions in several noncommuting variables. Canad.

J. Math., 67(2):241–285, 2015.
[5] J. Agler and J. E. McCarthy. Non-commutative holomorphic functions on operator domains. Eur. J.

Math., 1(4):731–745, 2015.
[6] J. Agler and J. E. McCarthy. Pick interpolation for free holomorphic functions. Amer. J. Math.,

137(6):1685–1701, 2015.
[7] J. Agler and J. E. McCarthy. The implicit function theorem and free algebraic sets. Trans. Amer. Math.

Soc., 368(5):3157–3175, 2016.
[8] J. Agler and J. E. McCarthy. Noncommutative functional calculus. J. Anal. Math., to appear.
[9] J. Arazy. On the geometry of the unit ball of unitary matrix spaces. Integral Equations Operator Theory,

4(2):151–171, 1981.
[10] A. Arias and G. Popescu. Noncommutative interpolation and Poisson transforms. Israel J. Math.,

115:205–234, 2000.
[11] W. Arveson. Subalgebras of C∗-algebras. III. Multivariable operator theory. Acta Math., 181(2):159–

228, 1998.
[12] M. Augat, J. W. Helton, I. Klep, and S. McCullough. Bianalytic maps between free spectrahedra. arXiv,

1604.04952, 2016.
[13] J. A. Ball, G. Marx, and V. Vinnikov. Interpolation and transfer-function realization for the noncommu-

tative schur-agler class. arXiv, 1602.00762, 2015.
[14] J. A. Ball, G. Marx, and V. Vinnikov. Noncommutative reproducing kernel Hilbert spaces. J. Funct. Anal.,

271(7):1844–1920, 2016.
[15] S. T. Belinschi, M. Popa, and V. Vinnikov. On the operator-valued analogues of the semicircle, arcsine

and Bernoulli laws. J. Operator Theory, 70(1):239–258, 2013.
[16] J. W. Bunce. Models for n-tuples of noncommuting operators. J. Funct. Anal., 57(1):21–30, 1984.
[17] D. Chakrabarti and S. Gorai. Function theory and holomorphic maps on symmetric products of planar

domains. J. Geom. Anal., 25(4):2196–2225, 2015.
[18] K. R. Davidson, A. Dor-On, O. M. Shalit, and B. Solel. Dilations, Inclusions of Matrix Convex Sets, and

Completely Positive Maps. Int. Math. Res. Not. IMRN, (13):4069–4130, 2017.
[19] K. R. Davidson and D. R. Pitts. The algebraic structure of non-commutative analytic Toeplitz algebras.

Math. Ann., 311(2):275–303, 1998.
[20] K. R. Davidson and D. R. Pitts. Nevanlinna-Pick interpolation for non-commutative analytic Toeplitz

algebras. Integral Equations Operator Theory, 31(3):321–337, 1998.
[21] K. R. Davidson and D. R. Pitts. Invariant subspaces and hyper-reflexivity for free semigroup algebras.

Proc. London Math. Soc. (3), 78(2):401–430, 1999.
[22] K. R. Davidson, C. Ramsey, and O. M. Shalit. The isomorphism problem for some universal operator

algebras. Adv. Math., 228(1):167–218, 2011.
[23] K. R. Davidson, C. Ramsey, and O. M. Shalit. Operator algebras for analytic varieties. Trans. Amer. Math.

Soc., 367(2):1121–1150, 2015.
[24] S. W. Drury. A generalization of von Neumann’s inequality to the complex ball. Proc. Amer. Math. Soc.,

68(3):300–304, 1978.
[25] D. E. Evans and R. Hø egh Krohn. Spectral properties of positive maps on C∗-algebras. J. London Math.

Soc. (2), 17(2):345–355, 1978.
[26] D. R. Farenick. Irreducible positive linear maps on operator algebras. Proc. Amer. Math. Soc.,

124(11):3381–3390, 1996.
[27] T. Franzoni and E. Vesentini. Holomorphic maps and invariant distances, volume 69 of Notas de
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