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Abstract—With the ability to detect volumetric changes of 

contracting muscles, ultrasound (US) was a potential technique in 

the field of human-machine interface (HMI). Compared to the US 

imaging (B-mode US), the signal from a static single-element US 

transducer, A-mode US, was a more cost-effective and convenient 

way towards the real-world application, particularly the 

wearables. This study compared the performance of the 

single-channel A-mode US with single-channel surface 

electromyogram (sEMG) signals, one of the most popular signal 

modalities for wrist and finger gesture recognition. We 

demonstrated that A-mode US outperformed sEMG in six out of 

nine gestures recognition, while sEMG was superior to A-mode 

US on the detection of the Rest state. We also demonstrated that, 

through feature space analysis, the advantage of A-mode US over 

sEMG for gesture recognition was due to its superior ability in 

detecting information from deep musculature. This study 

presented the clear complementary advantages between A-mode 

US and sEMG, indicating the possibility of fusing two signal 

modalities for the gesture recognition applications.  

Index Terms—Human machine interface (HMI), pattern 

recognition, surface electromyogram (sEMG), ultrasound signal 

I. INTRODUCTION

UMAN-machine interface (HMI) has been a research focus

for a wide range of applications in biomedicine, 

manufacturing and aerospace [1]. A specific type of HMI 

enables users to interact with mechanical or electronic systems 

by recognizing the intended gestures through the measurement 

of muscle activities. This technology is promising in the field of 

rehabilitation engineering for providing intuitive control of 

advanced powered upper-limb prostheses for amputees [2], 
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interpreting sign language to facilitate communication for the 

deaf and mute [3], assisting stroke patients with powered 

exoskeleton control [4], and much more [5][6]. In addition, it 

could be paired with virtual or augmented reality commercial 

devices to realize effortless and intuitive interaction between 

human and artificial entities, such as computers, robotics, and 

virtual reality objects [7]. 

Surface electromyogram (sEMG) is the manifestation of the 

electrical activities from muscle contractions and has been 

widely used as a source signal for hand and wrist gesture 

recognition. With advanced signal processing algorithms, 

promising results have been achieved in sEMG-based gesture 

recognition [8]. However, this technique is still facing many 

challenges in the practical application, due to its inherent 

limitations [2][9]. One of these limitations is that the activities 

of deep and small muscles are difficult to be detected accurately 

with the electrodes at the skin surface. Consequently, sEMG is 

not reliable in recognizing fine finger gestures and movements 

[10], such as fine pinch, thumb extension, which are mostly 

controlled by deep and fine muscles of the forearm. 

Ultrasound (US) refers to the sound waves with the 

frequency over 20 kHz. When the ultrasound pulses are emitted 

into human tissues, it would propagate, as well as reflect at 

boundaries where differences of US conductance exist [11]. 

Such reflections contain structure information of the tissues 

under investigation. As such, the volumetric changes of the 

contracting skeletal muscles, both superficial and deep ones, 

can be extracted from the US echoes. US modality is a potential 

source signal for wrist and hand gesture recognition. There are 

several modes of US, and the most common one in gesture 

recognition studies is B-mode US (US imaging), which 

presents the human tissue state in two-dimensional images. US 

imaging has been reported in finger [12][13] and wrist [14] 

gesture recognition, individual finger joint angle prediction 

[12][15][16], and fingertip force prediction [17]. It was 

presented that the performance of US imaging was better than 

that of sEMG in finger gesture classification and 

metacarpophalangeal joint angle prediction [12]. However, the 

condition of the US imaging generation is critical. To produce 

US images, the acoustic beam must be moved in a prescribed 

direction, either mechanically or electronically, for the scan of 
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the defined image plane. This makes the corresponding probe 

complicated and bulky, significantly limiting its potential 

wearable applications where compact physical size and 

low-energy consumption is required. 

An alternative mode of US is A-mode, where only a single 

static transducer is used, scanning a line through the body. 

Compared to B-mode US, A-mode US is one-dimensional, 

containing less information of human tissues. However, 

A-mode US is easy to generate and process, requiring much 

less energy to operate. It should be noted here that A-mode US 

is not simply one column data of B-mode US. Sophisticated 

algorithms are employed to integrate information from multiple 

US transducers into one image. Therefore, one column data of  

B-mode US contains information from multiple transducers, 

not only one [18]. Previous work reported the effectiveness of 

A-mode US on predicting the angle of wrist extension with one 

single transducer (one channel) [19], and classifying the 

flexions of each individual finger with four transducers (four 

channels) [20]. These studies indicated the potential of A-mode 

US in the application of HMI. However, the performances of 

A-mode US and sEMG in gesture recognition have not been 

compared systematically. Further, although it is claimed that 

the information from deep muscles is the main advantage of US 

signal over sEMG in gesture recognition, no further analysis is 

presented to support the point except the classification 

performance.   

The goal of this study is to compare the performance of 

A-mode US with that of sEMG on the classification of the hand 

and wrist gestures. For both signal modalities, only one channel 

data were used. The sensors were placed as close as possible to 

ensure the comparison was as realistic as possible. Further, the 

role of the depth information for gesture recognition was 

illustrated through feature space analysis. This study presented 

the characteristics of A-mode US on gesture recognition, 

demonstrating the advantage of A-mode US over sEMG, and 

the importance of the fusion of two signal modalities. 

II. METHOD 

A. Subjects 

Ten able-bodied subjects (nine males and one female, aged 

from 18 to 32 years old) took part in this study. The forearm 

circumference of the interest site (position of the US probe) 

ranged from 23 to 29 cm, and the average was approximately 

26 cm. Before the participation, all subjects read and signed the 

informed consent. The experiment protocol was in accordance 

with the Declaration of Helsinki, and approved by the local 

research ethics authority. 

B. Experimental Protocol 

A commercial US transducer with a 64-element array 

(P4-2v, Verosonics Inc.) was placed on the forearm, around the 

compartments of flexor digitorum superficialis (FDS) and 

flexor carpi ulnaris (FCU), which were mainly responsible for 

the flexion of the joints. The center frequency of the transducer 

was 2.976 MHz. In each echo epoch (when the transducer was 

receiving US echo), the echoed US signal was sampled at the 

frequency of four times of the central frequency by a 

commercial processing system (Vantage 64 LE, Verasonics 

Inc.). Four monopolar sEMG electrodes were placed in close 

vicinity to the US probe (Fig. 1), for the fairness of the 

comparison. As the existing of cross talk , the ability of 

information detection from the surrounding areas, the sEMG 

electrodes were not necessarily positioned on the specific 

muscles [21][28]. The sEMG signal was amplified and 

digitized by a commercial myoelectric system (g.USBamp, 

g.Tec Medical Engineering, Austria), with the sampling 

frequency of 1200 Hz. As this study aimed to compare the 

single-channel performance between sEMG and A-mode US, 
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Fig. 1. The placement of the US probe and sEMG electrodes on the 

forearm. The US probe is around the compartments of flexor digitorum 

superficialis (FDS) and flexor carpi ulnaris (FCU), and the four 

monopolar electrodes are located on the four corners of the probe. Only 

the center element of the probe, labeled as the cross, is used in this study. 

TABLE I 

SEMG CHANNEL FORMATION FOR PERFORMANCE COMPARISON 

Symbol Description 

Monopolar 1 (M1) Signal from electrode 1. 

Monopolar 2 (M2) Signal from electrode 2. 

Monopolar 3 (M3) Signal from electrode 3. 

Monopolar 4 (M4) Signal from electrode 4 

Monopolar Average (MA) 
Signal averaged across four 

electrodes 

Bipolar 1 (B1) 
Signal from the differential between 

electrode 1 and 4 

Bipolar 2 (B2) 
Signal form the differential between 
electrode 2 and 3 

Note: the electrode sequence is displayed in Fig. 1. 

 
              (a)                          (b)                           (c)                           (d) 

 
              (e)                          (f)                           (g)                           (h) 

Fig. 2. The wrist and finger gesture investigated in the study: (a) wrist 

extension (WE), (b) wrist flexion (WF), (c) wrist supination (WS), (d) 

wrist pronation (WP), (e) thumb extension (TE), (f) fine pinch (FP), (g) 

four-finger extension (FE), (h) little-finger extension (LE). 
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only one element (the one in the center of the probe) of the US 

transducers was activated during the experiment.  

Four wrist gestures, four finger gestures, and Rest were 

investigated in this study (Fig. 2): wrist extension (WE), wrist 

flexion (WF), wrist supination (WS), wrist pronation (WP), 

thumb extension (TE), fine pinch (FP), four-finger extension 

(FE) and little-finger extension (LE). In the experiment, each 

gesture was repeated six times, and each repetition was 12 s 

long. The sequence of the gestures was randomized, and there 

was a 5-s relax period between two consecutive gestures. A 

schematic diagram for sEMG and US data synchronization is 

illustrated in Fig. 3a. Due to a limitation of the US instrument, 

during each 12-s contraction, US signals were collected in five 

epochs. In each epoch, the transducer repeated the following 

procedures: sending the sound wave, receiving the echo, and 

pausing. One US echo frame was obtained in such a repetition. 

Each epoch lasting around 0.9s, containing 100 US echo 

frames. A representative frame is illustrated in Fig. 3b. For each 

contraction, the sEMG data collected during these five epochs 

were extracted for subsequent analysis. The data acquisition 

and subsequent processing procedures were performed by a 

customized software program running on Matlab platform 

(Mathworks Inc.). 

C. US Processing 

In each US echo, 1536 data points were recorded. Given the 

average sound speed in human body was 1540 m/s [18], the 

maximal inspecting depth was 9.94 cm, enough to cover the 

forearm muscles and bones of the participants in this study. The 

first 50 points were removed for their comparative large values, 

caused by the reflection at the probe/skin interface, as they were 

consistent across all sessions for all participants. The remaining 

1486 data points, representing the echo of US when it traveled 

through the tissues from 0.32 to 9.94 cm away from the 

receiver, formed a US data frame for the subsequent analysis. 

The US data allocated during the five epochs in each 

contraction were segmented into 200-ms analysis windows, 

with an increment of 50 ms (150-ms overlap between 

windows). In each window, the root mean square (RMS) value 

of each data point was calculated, obtaining a feature vector 

with 1486 dimensions. Principal component analysis (PCA) 

was employed to reduce the feature dimension to 30, avoiding 

the curse of dimensionality for subsequent classification. The 

reduced dimension was chosen empirically, mainly considering 

the tradeoff between the information retained (>82% variance) 

and the computational load of the classifier [22]. Three 

classifiers, linear discriminant analysis (LDA), support vector 

machine (SVM), and artificial neural network (ANN), were 

adopted to test the effect of the classifier on US signal 

classification. The kernel of SVM was linear for its comparable 

performance with other kernels [23]. The number of nodes in 

hidden layer of ANN was twice as the number in input layer 

[24]. The classification results were computed through a 5×3 

cross-validation, where a 3-fold cross-validation was 

performed 5 times, and in each time, the training data was the 

four repetitions of each gesture, and the testing data was the 

remaining two repetitions. 

D. sEMG Processing 

Seven sEMG channels were derived from four monopolar 

electrodes (Table I). Four of them, namely M1 to M4, were 

derived from each monopolar electrode, respectively. MA was 

the average of four monopolar electrodes, simulating the sEMG 

signal from the exact site of the US probe. The remaining two, 

B1 and B2, was the differential of two monopolar electrodes 

orientated parallel to the ulnar bone, i.e. electrode 1 minus 

electrode 4, and electrode 2 minus electrode 3 (Fig. 1). The 

differential direction was chosen because it had been shown 

that the parallel differential direction outperformed the 

perpendicular one [25]. For data from each of the seven derived 

EMG channels, the period corresponding to each US epoch was 

first band-pass filtered between 10 and 500 Hz using a 

third-order Butterworth filter. Then, the signal was windowed 

with the same setting as the A-mode US (200-ms window with 

50-ms overlap). The classic Hudgins’ time domain (TD) feature 

set [26], including absolute value (MAV), zero crossing (ZC), 

sign slope changes (SSC), wavelet length (WL), were extracted 

from each window (the dimension of the sEMG feature vector 

was four) for it was regarded as a benchmark feature in many 

sEMG studies [8][9][27]. As prior studies indicated that the 

effect of the classifier was not significant on sEMG signal 

classification [23][28], LDA was chosen as the classifier for its 

Time

A
m

p
lit

u
d

e

...

100 Frames} 

... ... ...

100 Frames} 100 Frames} 100 Frames} 

...

100 Frames} 

sEMG

US

Signal Synchronization

 

                                                                      (a)                                                                                                                      (b) 

Fig. 3 Schematic diagram for sEMG and US data acquisition: (a) Relationship between the acquired sEMG signal and the corresponding US signal, 

illustrated with one gesture contraction. The continuously acquired sEMG signal is indicated in the grey trace. Due to the constraints of the US 

instrument, US data could only be collected from five separate epochs in each gesture contraction, indicated by the black segments, along the direction 

marked as ‘Depth’. For each of such epoch, 100 frames of US echo data are acquired. The length of each epoch represents the depth of the sound 

reflections from the data receiver (sensor). The black overlay of sEMG is the sEMG data collected during these five US epochs. (b) A representative frame 

of US echo data from wrist extension. The total sample points in (b) is 1486, with the removal of the first 50 points, representing the reflections 0.32 to 9.94 

cm away from the receiver (sensor). The frame is divided into ten layers for subsequent quantification analysis, and each layer is approximately 0.95 cm.  
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simplicity. The following cross-validation procedure was the 

same as that of US data. 

E. Quantification of US Feature Space 

As US signal could detect volumetric change of deep 

muscles, whose electrical activities were usually masked by 

those of superficial muscles at the sEMG recordings, to 

systematically investigate the importance of such depth 

information in A-mode US, we introduced separability index 

(SI) [27] to quantify the effect of depth information on gesture 

classification 

SI =
1

N

NX

j=1

min
1·i·N;i6=j

1

2

q

(¹j ¡ ¹i)TS¡1
j (¹j ¡ ¹i) 

where µj and µi is the centroid of class i and class j; Sj is the 

covariance matrix of class j; N is the number of gesture classes. 

SI measures the half Mahalanobis distance from one class to its 

nearest class, and averages the values across the classes in the 

same group.  

Each US feature vector was segmented into ten layers from 

the most superficial to most deep. The dimension of first six 

layers was 149 data points, and the dimension of last four layers 

was 148 data points (approximately 0.95 cm per layer). There 

were no overlap between two adjacent layers. The SI values of 

each layer for three groups, wrist gestures (WE, WF, WS, WP), 

finger gestures (TE, FP, FE, LE) and all the gestures were 

separately calculated. 

F. Statistical Analysis 

To compare the performance of three classifiers, LDA, 

SVM, ANN, on A-mode US data classification, a one-way 

repeated-measure analysis of variance (ANOVA) was 

conducted on the classification error rates. Further, for the 

comparison of two signal modalities, A-mode US and sEMG, a 

two-way repeated-measure ANOVA was performed. The two 

factors were gesture class (nine gestures) and data source (M1, 

M2, M3, M4, MA, B1, B2, US).  If a significant interaction 

between two factors was detected, focused ANOVA would be 

performed by fixing the level of the gesture class. In addition, a 

one-way repeated-measure ANOVA was conducted on SI to 

compare the separability among the layers of the US feature 

vector for the three gesture groups: finger gestures, wrist 

 

                         (a)                                              (b)                                            (c)                                                  (d)                                              (e)              

  

                         (f)                                              (g)                                            (h)                                                  (i)                                              (j)              

Fig. 5. Comparison of the two signal modalities, sEMG, including M1, M2, M3, M4, MA, B1, B2, and A-mode US, on wrist and finger gesture 

classification: (a) wrist extension, (b) wrist flexion, (c) wrist supination, (d) wrist pronation, (e) thumb extension, (f) fine pinch, (g) four-finger extension, 

(h) little-finger extension, (i) rest, and (j) all the movements. The values are averaged across all the subjects. The letters below each plot indicate the 

results of the post-hoc comparison. There is no significant difference (p > 0.05) if two methods share the same letter. For example, in (a), the difference 

between M1 and M2 is significant for labeled with different letters, B and C, respectively. The difference between M3 and M2 is not significant for sharing 

the same label B. The error rate is in ascending order alphabetically. The results varied against gesture classes. 
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gestures and all the gestures. In all the tests, Turkey comparison 

with Bonferroni correction was performed when significant 

difference was detected for the factor of interest. Participant 

was a random factor in all the tests, and the significance level 

was set to 0.05. 

III. RESULTS 

A. Gesture Classification Comparison 

Fig. 4 displays the classification errors of three classifiers, 

LDA, SVM, and ANN, on A-mode US data classification. 

There was no significant difference between the values of LDA 

and SVM, and they were significantly lower than the value of 

ANN. However, the abstract difference among the three 

average classification errors was less than 4%, indicating the 

limited effect of the classifier on A-mode US data 

classification. The results of LDA was selected for the 

subsequent comparison with sEMG. 

For the comparison of two modalities, A-mode US and 

sEMG (Fig. 5), the averaged error rate of A-mode US, 32.99 ± 

10.94%, was much lower than the value of sEMG (50.29 ± 

9.69% averaged across all seven sEMG methods). For the 

specific gestures, the results varied. A-mode US outperformed 

sEMG on FP, FE, WE and TE with a large margin (>18.26%), 

as well as on LF and WF with the difference >11.69% and 

>5.18%, respectively. On the other hand, the performance of 

A-mode US was inferior to sEMG on two gestures, WP and 

Rest class. In particular, for the Rest class, the performance of 

A-mode US was much worse to that of sEMG with the 

difference >32.14%.  

The statistical analysis confirmed the observation of the 

comparison between A-mode US and sEMG. A significant 

interaction was detected between the two factors, gesture class 

and data source, indicating the performance of the methods 

depended on the type of gesture class. As such, the focused 

ANOVAs were performed on each gesture. The effect of 

methods (data source) was significant in all the tests. Post-hoc 

comparison revealed that the performance of A-mode US was 

significantly better than that of the seven sEMG methods on the 

classification of the following six gestures, WE, WS, TE, FP, 

FE and LF. For gesture WF, there was no significant difference 

among the error rates of A-mode US, B2, M2, and the error 

rates of A-mode US was significantly lower than the error rates 

of the other methods. For gesture WP, the error rates of A-mode 

US were significantly higher than the error rates of M1, M3, 

MA, and B1, and comparable to the error rates of M2, M4 and 

B2. For the Rest class, the performance of A-mode US was 

significantly worse than all the sEMG methods. 

For the misclassification displayed in confusion matrices 

(Fig. 6), the gestures from wrist (WE, WF, FS, FP) and finger 

(TE, FP, FE, LF) group of A-mode US were mostly 

                     

                                       (a)                                                   (b)                                                      (c)                                                     (d) 

                   

                                       (e)                                                   (f)                                                      (g)                                                     (h) 

Fig. 6. Confusion matrices for the gesture classification of two signal modalities, sEMG (a-g) and A-mode US (h). The values are averaged across all the 

subjects. The column label represents the actual class, and the row label represents the predicted class. For a perfect classification of one movement with 

0% error rate, each row should be white except that the entry on the diagonal, which should be black. 

 

 
Fig. 4. Comparison of three classifiers on A-mode US data classification. 

The values are averaged across all the subjects. The abstract difference 

among the three average errors is <4%, indicating the effect of the 

classifier is limited.  
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misclassified as the one within the same group. Evidently, the 

diagonal boxes in the lower-right corner of A-mode US were 

darker than those of sEMG methods, indicating a significant 

higher accuracy achieved by A-mode US over sEMG for fine 

finger gestures, which was in part explained by the feature 

space analysis presented below. 

B. Separability of US Data 

SI value was adopted to quantify the separability of each US 

layer for three groups, wrist, finger and all the gestures (Fig. 7). 

For the wrist gesture group, the SI value decreased as the depth 

increased (away from the US transducer), and dropped sharply 

after the seventh layer. For the finger gesture group, the SI 

values did not change significantly for the first seven layers, 

and then it decreased sharply, similar to the scenario in wrist 

gestures. For the group of all the gestures, the trend of SI 

changes were between those of wrist and finger gestures, which 

was expected. It was interesting to note that the peak of SI for 

all cases was at the seventh layer, indicating crucial information 

contribution was obtained from deep muscles (the distance 

from this layer to the US transducer was between 6.11 and 7.06 

cm). The statistical analysis indicated that US layer had a 

significant effect on the SI value for all the three groups. 

Post-hoc comparison confirmed the above qualitative 

observation of the three curves, displaying the significant 

difference among the SI value of each layer.  

IV. DISCUSSION 

A. Effectiveness of Depth Information 

The muscle activities captured by sEMG and A-mode US 

were located in different areas. For sEMG, the activities were 

mainly from the superficial muscles, around the pickup area of 

the surface electrodes. For A-mode US, the activities were 

mainly from the muscles located on the scanning line of the 

transducer. The scanning area of A-mode US was not as broad 

as that of B-mode US, which was a plane. However, compared 

to sEMG, A-mode US still had advantages in capturing 

information from the deep muscles (depth information), such as 

flexor digitorum and profundus, which controlled the fine 

finger gestures. This advantage was illustrated in Fig. 5, where 

A-mode US outperformed sEMG in six out of nine gestures 

recognition, including all the four finger gestures, with the US 

probe on flexor muscles. High classification accuracy (>90%) 

was reported with the US sensor on flexors [12][14], extensors 

[13] and around the forearm [20]. As the ability of US modality 

in detecting activities away from the sensor, the sensor location 

would not affect the conclusion of this study.  

The depth US signal detected was subject to the data length 

in one US echo frame. For simplicity, the length of the frame 

was set to be constant among the participants. The maximum 

depth US signal could reach was 9.94 cm in this study, longer 

than the forearm diameters of all the participants (from 7.3 to 

9.2 cm). As few sound waves penetrated the forearm skin for 

high energy loss in the forearm, little information in the US 

echo was obtained from the outside of the forearm, and it would 

not contribute to the gesture classification for the status of the 

object under the forearm didn’t change during the experiment. 

The SI value was proposed to quantify the effectiveness of 

the depth information on the gesture classification for A-mode 

US. The difference between the curves of finger and wrist 

gesture group indicated that the role of each muscle layer in 

classification was different between two groups: the 

classification of wrist gestures relied more on the information 

from the superficial muscles, while the classification of finger 

gestures was more on the information from deep muscles. The 

peak at the seventh layer, approximately 6.11 to 7.06 cm away 

from the transducer, was observed on both curves. The value of 

US echo was positively related with the acoustic impedance 

difference of two adjacent substances. The biggest impedance 

difference was the muscle/bone interface. Considering the peak 

value of the raw A-mode US data in this segment (Fig. 3b), we 

inferred that the muscle/bone interface might be contained in 

                

                                                      (a)                                                                            (b)                                                                        (c) 

Fig. 7. Separability quantification of ten US layers for three gesture groups, (a), wrist gestures, (b) finger gestures, (c) all the gestures. The grey shade 

represents the standard deviation. The values are averaged across all the subjects. The letters indicate the results of post-hoc comparison, same as Fig. 5. 

There was no significant difference (p > 0.05) between two layers if they are labeled with the same letter. The SI value decreases with the sequence of the 

letter. The high SI value of the middle layer indicates the importance of the information from deep muscles. 
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the seventh layer. It was possible in physics for the layer was 

located around three fourths to four fifths of the forearm 

diameter with the average diameter of 8.28 cm. This type of 

depth information was difficult to be extracted from sEMG. 

The layers at the two ends of the SI curve, represented the 

scenarios of the superficial muscles. The values close to the 

transducer, such as Layer 1, Layer 2 and Layer 3, were much 

bigger than the values away from the transducer, such as Layer 

8, Layer 9, and Layer 10. It was because that the energy of the 

sound wave was reduced when penetrating the tissues, due to 

reflection, scattering, absorption and dispersion [29]. As such, 

the signal to noise ratio was reduced, inducing the decrease of 

the SI value with the increase of the depth. 

B. Rest State Detection 

Rest state detection was important for practical applications, 

because false activation was most detrimental to overall system 

performance [30]. One important finding of this study was the 

poor performance of A-mode US on the Rest state detection, 

comparing with sEMG. All sEMG methods achieved the low 

error rates on the classification of the Rest, much better than 

that of A-mode US. The difference between the performances 

of two signal modalities stemmed from their inherent 

properties. sEMG was related to the electrical activities from 

muscle contractions. When there was no contraction (the Rest), 

no signal could be detected. The abstract value of sEMG 

amplitude was the smallest, close to zero, while the values from 

the active gestures were all positive. As such, the expression of 

the Rest state in sEMG was special, easily distinguishable from 

the other classes, inducing its high classification accuracy. The 

good performance of sEMG on the Rest state detection was also 

reported in [31][32]. On the other hand, US signal was related 

to the volumetric changes in muscle. The expression of the Rest 

state in A-mode US was not special in values compared to that 

of the active gestures. As such, its detection accuracy was close 

to that of the other classes, not as good as the results from 

sEMG. This point was first reported in US-based gesture 

recognition studies. 

C. Future work  

This study presented the comparison of the gesture 

recognition between the single-channel A-mode US and 

sEMG. Advantages and limitations were illustrated for A-mode 

US gesture classification. Some issues needed to be addressed 

before its practical application. In this study, only static 

contraction, or discrete gesture recognition, was investigated. 

In daily lives, dynamic contraction, or continuous joint angle 

prediction, would be more useful. For dynamic contractions, 

the advantage of US modality over sEMG, the ability to detect 

deep muscle activities, was still important. Promising results 

were achieved with B-mode US on finger joint angle prediction 

[12][15]. As the similar characteristics between A-mode and 

B-mode US, it was expected that A-mode US could also benefit 

the scenario of joint angle prediction. Systematic studies were 

needed to shed more light on this. 

As the dimension of A-mode US data was much larger than 

that of sEMG, the processing time could be increased. In this 

study, with the PC setting of Intel Core i7-6700 CUP, 3.4 GHz 

clock speed, and16 G RAM, the time to generate one decision 

from raw data was less than 0.3 ms for sEMG, and around 7 ms 

for A-mode US in matlab R2016b platform, both less than the 

window step length (50 ms). The time could be reduced with 

the low-level programming languages, such as C, C++. As 

online control achieved with B-mode US [12][14], it was 

achievable for real-time A-mode US gesture recognition. In 

addition, power consumption of A-mode US was also different 

from sEMG. A-mode US needed external power to generate 

sound waves, while sEMG didn’t. As such, it would raise a 

challenge for battery capacity if it was applied in wearable 

devices. Methods to decrease power consumption, such as 

using less elements, would be considered for future application.  

For sEMG-based gesture recognition, lack of robustness was 

one main obstacles for its practical application. As for A-mode 

US, the main challenge in robustness was the relative 

movement between the US transducer and the forearm. As the 

plane of the current transducer was not complied with the skin 

surface, it was inevitable that the transducer would move 

during contractions. Such change of the transducer/skin 

interface would change the echo waveform received and reduce 

the repeatability of the signal, resulting in a degradation of 

classification accuracy in various degree. Consequently, we 

observed a larger standard deviation in such as WS, FP in Fig. 

5. Robust feature extraction, such as using effective spatial 

filtering algorithms [33][34], and/or applying deep learning for 

feature representation learning [35], would provide a solution 

for this problem. 

Finally, sEMG and US have been investigated for gesture 

recognition separately. However, as far as we knew, there was 

no prior studies reporting the possibility of using both signal 

modalities synergistically. Clear evidences were showed in this 

study that the two signal modalities, sEMG and A-mode US, 

had complementary advantages in detecting hand and wrist 

gestures. Therefore, it was necessary to develop an effective 

sensor fusion algorithm to exploit the respective strengths of 

two modalities, enhancing the performance of the gesture 

recognition.  

V. CONCLUSION 

This study compared the single-channel performance of two 

signal modalities, sEMG and A-mode US, on the recognition of 

nine hand and wrist gestures. The classification performance of 

A-mode US was better than that of sEMG on six gestures (two 

wrist gestures, WE and WS; four finger gestures, TE, FP, FE 

and LF), but significantly worse on the Rest class. For A-mode 

US, the effectiveness of its depth information on gesture 

recognition was analyzed and confirmed by the quantification 

of the signal separability in each layer. This study presented the 

potential of A-mode US from the single-element transducer in 

the application of HMI.  
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