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Abstract This paper analyzes a 2-class, single-server polling model operating under a k;-
limited service discipline with class-dependent switchover times. Arrivals to each class are
assumed to follow a Poisson process with phase-type distributed service times. Within each
queue, customers are impatient and renege (i.e., abandon the queue) if the time before entry
into service exceeds an exponentially distributed patience time. We model the queueing
system as a level-dependent quasi-birth-and-death process, and the steady-state joint queue
length distribution as well as the per-class waiting time distributions are computed via the
use of matrix analytic techniques. The impacts of reneging and choice of service time dis-
tribution are investigated through a series of numerical experiments, with a particular focus
on the determination of (ki, k2) which minimizes a cost function involving the expected time
a customer spends waiting in the queue and an additional penalty cost should reneging take
place.

Keywords Polling model - k;-limited service discipline - Reneging - Quasi-birth-and-death
process - Switchover times - Phase-type distribution

1 Introduction

A typical polling model consists of multiple queues attended by a single server in cyclic order.
Due to its wide use in the areas of public health systems, transportation, and communication
and computer networks, it has drawn considerable attention over the past fifty years. As a
case in point, Levy and Sidi (1990) focused on polling model applications in various fields of
operations research. An early survey conducted by Takagi (1988) summarized the important
criteria needed to characterize a polling model in a queueing context, including a description
of different possible service disciplines encountered in practice. Vishnevskii and Semenova
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(2006) provided an extensive review of the existing literature on polling models. In particular,
new approaches and more general models, including several related optimization problems,
were outlined and discussed in their review. For more information concerning recent efforts
and current progress in the research of polling systems, the interested reader is directed to
Boon (2011) and Boon et al. (2011).

Most of the polling model literature focuses on the determination of two fundamental
performance measures — namely, the queue length distribution and the waiting time dis-
tribution for each queue. Explicit, closed-form expressions for the associated distribution
functions are generally not obtainable, due mainly to the mathematical complexity inherent
in the analysis of these kinds of queueing models. While much attention has been paid to de-
termining the Laplace-Stieltjes transform of the waiting time distribution (e.g., see Winands
et al. 2009), some authors have employed Markov chains (e.g., see MacPhee et al. 2007)
and/or matrix analytic techniques (e.g., see Mishkoy et al. 2012; Perel and Yechiali 2017)
as a tool to construct and analyze a wide class of polling models. Other authors (e.g., see
van Vuuren and Winands 2007) have taken an alternate route and developed approximation
procedures to accurately compute these distribution functions.

In this paper, we utilize the concept of absorption times within a continuous-time Markov
chain setting to obtain, in an algorithmically tractable fashion, the distribution function of
the waiting time in a single-server polling system consisting of two queues operating under
a k;-limited service discipline with Poisson arrivals and phase-type distributed service times.
A great deal of work has been done in analyzing polling models with the k;-limited service
discipline (e.g., see Chang and Down 2002; Boon and Winands 2014), in which the server,
when visiting class i, serves (in a non-idling fashion) up to k; class-i customers before switch-
ing over to another class. In addition, we model server switchover times and the possibility
of customers reneging from their queues. Queues with reneging (or abandonment) occur
in many facets of everyday life, most notably in situations encountered in manufacturing
systems of perishable goods (e.g., see Graves 1982) and telecommunication systems (e.g., see
Gromoll et al. 2006). Although numerous papers in the polling model literature have incor-
porated the notion of switchover times (e.g., see Boon et al. 2010 and references therein),
it is somewhat surprising that there is a dearth of results for reneging in polling models. In
fact, we are aware of only a few papers (i.e., Vishnevskii and Semenova 2008, 2009; Boon
2012) which have integrated this feature within a polling model framework.

The rest of the paper is organized as follows. Section 2 introduces notation and provides a
detailed description of the polling model. In Section 3, we build the fundamental components
underlying our Markov chain based approach, which turns out to involve a level-dependent
quasi-birth-and-death (QBD) process, in order to develop an algorithm for computing the
steady-state joint queue length distribution. In Section 4, we modify the Markov chain
structure of Section 3 to construct a phase-type framework which inevitably yields an explicit
formula for the per-class waiting time distribution function and moments. In Section 5,
we apply our results and provide a detailed numerical analysis of a defined cost function
depending on the expected time waiting in system, probability of reneging, and the arrival
rates of both classes of customers. Optimal combinations of k; and ko are found which



minimize the cost function for a pair of scenarios over a range of reneging rates and service
time distributions, under a constraint which limits the maximum number of services in a
single cycle. By way of varying the cost parameters and contrasting the two scenarios, several
observations are made and discussed. We end the paper with some concluding remarks in
Section 6.

2 Model Description

We consider a polling model in which a single server provides service to two distinct classes
of customers, each having its own respective queue. Customers are served on a first-come,
first-served basis within their own queue. Let b; < oo be the class-i buffer size, i = 1,2.
Customers of classes 1 and 2 arrive to the system according to independent Poisson processes
with rates A\; and \g, respectively. Service times for class-i customers, i = 1,2, are assumed
to be distributed as PH (éﬁ, S;), referring to a phase-type distribution with rate matrix S;
(of dimension s; X s;) and initial probability row vector B, = (Bi1, Bias -, Bis;), where
ijl Bi; = 1. For ¢ = 1,2, let p; denote the mean class-i service time. We assume that
a customer’s service time is independent of all other service times as well as the arrival
processes.

Service is administered according to the k;-limited service discipline, in which the server
serves up to k; customers of class i, switching over to the other class once the class-i queue
empties or the maximum number of services has been reached. Note that by letting k; — oo
for i = 1,2, it is possible to model a 2-class polling model with ezhaustive service. Moreover,
we can capture the non-preemptive priority service discipline (with switchovers) by letting
ki — oo and ky = 1 (i.e., class 1 has higher priority over class 2). Once the decision
to switch out of class ¢ has been made, the server initiates an exponentially distributed
switchover time with rate v;, which must complete before service can begin on the other
class. Switchover times are independent of each other, and independent of service times
and the arrival processes. Furthermore, we assume that the server is unable to determine
whether the other class is empty before initiating a switchover, so it is possible for multiple
switchovers to take place before the server finally encounters a customer waiting to be served.
As a result, the server is never truly idle in the system, even when both queues are empty.

We also incorporate the notion of class-dependent reneging and assume that when an
arriving class-i customer enters the system, it leaves the system following an (independent)
exponentially distributed amount of time with rate «; and is subsequently lost. Once a
customer does reach the server, however, we assume that customer is no longer subject
to reneging. A graphical illustration of the polling model is given in Fig. 1, in which we
designate the colours red and blue to represent characteristics of classes 1 and 2, respectively.
The left (right) half of the figure depicts the system during a sojourn of the server to the class-
1 (class-2) queue. The solid red and blue boxes denote customers who are either waiting, or
in service, and the empty red and blue boxes represent open slots in either queue available
to future arriving customers.
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Figure 1: Depiction of the polling model during a sojourn of the server to either queue.

3 Determination of the Steady-state Probabilities

For ¢ = 1,2, let X; represent the number of class-i customers present in the system (at
stationarity), so that 0 < X; < b;. Our first objective is to determine P, ,,, the steady-state
joint probability that X; = m and Xo =n for m =0,1,...,by and n =0,1,...,by. To aid
in this regard, we define an associated quantity =, ., representing the steady-state joint
probability that X; = m, X, = n, the server occupies position [, and the current phase of
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service is y (with y = 0 indicating that the system is in switchover mode). In particular, the
possible values of | depend on the corresponding values of m and n in the following manner:

m=0andn=0 = = ki +ky+ 1,k +ky+ 2,
m%Oandnzo — = 1,2,... ki, ki + ko + 1,k + ky+ 2,
m:Oandn#O — [ = ]{51—f-]_,k’l+27...,k’1+k’2,k’1+k2+17 (1)
ky + ko + 2,
m#Oandn#O — [ = 1,2,...,k1,k1+1,]€1+2,...,k1—|—k2,
k14 ko + 1, k1 4+ ko + 2.
In other words, when [ = 1,2, ..., k;, the server is known to be serving its {** customer from

the class-1 queue. On the other hand, when | = k1 +1, k1 +2, ..., k1 + ko, the server is known
to be serving its (I — ky)™ customer from the class-2 queue. Also, | = ky + ky +14, i = 1,2,
indicates that the server is conducting a switchover out of the class-i queue. Similarly, the
possible values of y depend on [ as follows:

= 1,27...,k1 = y= 1,2,...,sq,
= k1+1,]€1—|—2,...,k‘1+]{52 = y= 1,2,..., 59, (2)
= k1+k2+1,k1+k2—|—2 - Y = 0.

Note that in the case when m = n = 0 (i.e., the queue is empty), the system can only be in

one of the two possible switchover modes (as there are no customers to serve in either queue),
and so Py = 70,0k, +ks+1,0 T 70,0 ki +ko+2,0- Furthermore, it is an immediate consequence that

ki+ka  s2 k1+ko+2
E § To,n,Ly + E To,n,1,0 » T Z 17
I=k1+1 y=1 I=k1+ko+1
k1+ko+2
mO— E E 7Tm0ly+ E 7Tm0l07m>1
=1 y=1 I=k1+ko+1
and
ki+ka  s2 k1+ko+2
E E 7T’mnly_{— E E 7T-mnly_’_ E 7Tmn107mn>1
=1 y=1 I=k1+1 y=1 l=ki1+ko+1

We define the 0" steady-state probability row vector to be
Ty = (Eo,oﬂo,b S 7E0,b2)7
where 7o = (70,0,k1-+k2+1,05 70,061 +k5+2,0) and

20771 = (ﬂ-O,TL,k1+1,17 e 77T0,n,k‘1+1,827 ﬂ-o,n,k1+2,17 e 77T0,’n,k1+k2,827

TT0,n,k1+ka+1,05 TT0,n, k1 +k2+2,0)



is a row vector of size z; = kasy + 2 for n = 1,2,...,bo. For m > 1, the m" steady-state

probability row vector is defined as

Ny — —m,07zm,17 cee 7£m,b2)’

where

om0 = <7Tm,0,1,17 <5 Tm0,1,515 Tm,0,2,15 - - -5 Tm,0,k1,815 Tm,0,k1+k2+1,0;

Tm,0,k1 +ka+2,0)

is a row vector of size k;s; + 2 and

Em,n = (’/Tm,n,l,la cee 77Tm,n,1,3177rm,n,2,17 cee aﬂm,n,kl,sU’/Tm,n,lirl,l; ey

7Tm,n,lq+l,527 7Tm,n,lq+2,17 s 77Tm,n,k1+k2,827 Wm,n,k1+k2+1,07

ﬂ—m,n,kl +ko +2,0)

is a row vector of size z5 = kys; + 21 for n = 1,2,... by. Referring to X; as the level of
the process, we remark that level 0 is comprised of n; = byz; + 2 sub-levels, whereas each
non-zero level consists of a total of ny = byze + k157 + 2 sub-levels.

Let © = (my, 73, ..., m,,) be the concatenated steady-state probability row vector having
a total of by + 1 levels. To determine m,, for m > 0, we need to solve 0 = 7@ where Q
is the infinitesimal generator of the process and 0 = (0,,,0,,,---,0,,) is an appropriately
partitioned row vector with a total of b; + 1 levels (throughout the rest of the paper, 0,
denotes a 1 x ¢ row vector of zeros). We note that ) is block-structured with blocks Q; ;
containing all transitions where X; changes from ¢ to 5. Due to the presence of reneging in
our model, we end up with a level-dependent QBD process having infinitesimal generator of
the form

0 1 2 by — 2 by — 1 by
0 (Qo,o Qo1 0O 0 0 0
1 Qo Qiqn Qe 0 0 0
2 0 Q21 Q22 0 0 0
Q= : : : : 3)
bp—2] O 0 0 Qvi—2p1—2  Qbi—2b1-1 0
by —1 0 0 0 o Qu—ip—2 Q-1 Qui—1p
bl \ 0 0 O e O le,bl—l le,bl

In (3), 0 denotes an appropriately dimensioned zero matrix. The overall dimension of @) is
ny + bing, as Qoo is an ny X n; sub-matrix, Qo ; is an n; X ng sub-matrix, )1 is an ny X Ny
sub-matrix, and all remaining sub-matrices are of size ny x ns.

We first observe that Q12 = Q23 = -+ = Qp,—14, = Mln,, Where, in general, I; denotes
an ¢ x ¢ identity matrix. In what follows, let ® denote the Kronecker product operator and



let d;; be the standard Kronecker delta function. Also, let ¢, ; be a row vector of length 4
with 1 as the j entry and zeros everywhere else, and let e; be a row vector of i ones. In
addition, let §67i = —S;e,,, where the prime symbol, , denotes vector transpose. Finally, for
further notational convenience, define A = A\; + Ay, v = (v, v2), V = diag(v), Vi = viey €95,
and Va = vaeh 965 ;. Based on this notation, the diagonal components of () can be expressed
as

0 1 2 .. by—1 b
0 (—(AL+V-Vi-V) [0 b] O ... O 0 \
/ Sl
1 { §k2§222}8; £0,2 } Ay Aol . 0 0
Qoo= 2 0 T, Ay .0 0
by — 1 0 0 0 ... Ay1 Mol
by \ 0 0 o . T A,)
and
0 1 2 .. be—1 b
) [)‘2‘[16151 Q;{:lslgkgsz] 0
0 Cio { 0 Nl 0 0
Olglklsl 0
1 0 Q;CQQQ,Q ® §/072 Ciql )\2122 T 0 0
Q' o 0 04212
’ 2 0 By Co . 0 0
by 1 0 0 0o ... 0“;2,1 /\2'[;&
by 0 0 0 ... By, Ci,
fort=1,2,...,b1, where
I — (i = Dagly,s, + Us Q;cg,k2§2,2 ® &),2
! 0 i(XQ[Q ’
A= | e @ (A= A2djp + (7 — Das) Iy, — 5) 0
g €31€5,1 @ V13, —((A = A2jp, +ja) b +V = Vo) |
L i&glklsl O
BZ - |: 0 FZ :| Y
0 if by =1,
N
SRl R @ S0 B itk > 2,
0 0Ok T




[ _Ik1 ® ((A—A15i7b1+(i—1)a1)]51—Sl) 0

if j =0,
_ ) 9ar ® V2B, (A= Mgy +ion) -V — Vi) g
Cii=14 .
Ciij 0 0
0 2, 0 if j=1,2,...
L §/2,2§k1,1 ® U2§1 §/211§k2’1 ® U1ﬁ2 _((>\_)\16i,b1 _>\25j,b2 +i0q +j042)]2+v)
and
Crig = —Ir, ® (A=A10ip, —A20jp, + (i =0z 1)1+ (J — 0z 2) ) [, — i)
In addition, we have that
0 1 2 by
0 ([ 0504, Ml ] 0 0 0
1 0 [ 00,00, Al | 0 0
Qo1 = 2 0 0 [ 0004, Al | 0
b2 0 0 0 [Q;lgk‘lsl )\1[z1 ]
0 1 2 ba
0 Q;clﬁz,l ® 56,1 0 0 0
a1]2
1 0 g;clgzl,zl—l ® §E) 1 0 0
Oél[zl
Qo = 2 0 0 Q;clﬁzl,zl—l ®§{)1 0
061121
. . . ' Q;clgzl,zlil ® 56 1
ba 0 0 0 o { oL,
and
0 1 2 by —1 by
0 Aig O 0 0 0
1 0 A: O 0 0
Q.= 2 |0 0 An 0 0 [ y_93 b,
by — 1 0 0 0 Ain 0
ba 0 0 0 0 Aia
where . / /
A .= (Z - 1)a1[k131 + Ui Chy k1 Cka 526142, k252851 +1 ® §0,1
Z7] -

0 ia11k232§j,1+2

7b2a




Level-dependent QBD processes are well-studied in the literature (e.g., see Bright and
Taylor 1995) and it is possible to adapt a computational procedure proposed by Gaver et
al. (1984) to calculate the steady-state probabilities associated with our model, which we
quickly summarize below. First of all, from 0 = 7Q, we immediately obtain the equilibrium
equations in block form as follows:

0,, = muQo,0 + Q10 (4)
0,, = myQo1 + Q11 + TQ21, (5)
0ny = MTp 1+ T Qi + T 1 Qurstms M = 2,3, by — 1, (6)
0,y = ATy, 1 + 1, Qby by - (7)
Solving (5) through (7) in a backward fashion readily yields

m
EmZEOHSj,m:LZ,...,bl, (8)
j=1
where the set of matrices {S1,Ss, ..., S, } satisfy the recursive relation

Si=-M(Q; +S;:1Q11,) " 7=2,3,...,b — 1,
with
Sy, = —Ale;%bl
and
S1=—Qo1(Qr1+ S2Q2,1)_1'
In addition, if we define Sy = Qoo + S1Q1,0, then (4) becomes m,Sy = 0,,,- Since all steady-

state probabilities must sum to 1, we ultimately end up with the following system of linear
equations which must be solved to determine 7,, namely:

o [ SO Ql ] = (Qn17 1)7 (9)
where
by m
u=c, +Y [[Sich
m=1 j=1
In (9), (0,,,1) represents the concatenated row vector of size n; + 1. Once 7 is calculated,

we then proceed to obtain «,,, m = 1,2,...,by, via (8).

With the determination of these steady-state probabilities, we introduce two important
quantities of interest associated with this particular queueing system. First of all, P, « =

?.2:0 Py, ; represents the probability that an arbitrarily arriving class-1 customer is turned
away at entry (and subsequently lost) due to the class-1 queue being full, and is referred
to as the class-1 blocking probability. Likewise, the class-2 blocking probability is given by
Pop, = Z%:o P p,, and it represents the probability that an arbitrarily arriving class-2
customer is denied entry to the system due to the class-2 queue being full. We remark that
Py, o and P,, are particularly useful in helping choose values of b; and by so as to ensure

negligible blocking probabilities are obtained for both queues.



4 Determination of the Waiting Time Distribution

We derive the steady-state distribution of the random variable W;, i = 1,2, representing
the duration of time from the (non-blocked) arrival of an arbitrary class-i customer to the
system until the server is reached. For reasons that will become evident shortly, we refer to
W, as the nominal class-i waiting time, as it does not consider the reneging behaviour of this
customer. Without loss of generality, we focus our analysis only on W, as the characteristics
of the two queues are essentially indifferent. In other words, the approach we develop below
to obtain the distribution of W; can readily be adapted (via a simple relabeling of classes 1
and 2) to obtain the distribution of Ws.
Let us first define the modified steady-state probabilities

®0,0,0,0 = 1 _0’(;;:7.
and Mty
Pty = 1_—Pb17.,
where m = 1,2,...,b; — 1, n = 1,2,..., by, and the components [ and y are as defined in

(1) and (2), respectively. Based on the above definitions, we introduce several row vectors
required in the subsequent analysis. Specifically, define

L20,n
: 1<n<b
?O,n 1 — th.’ - 25
£m,0 _
?m,o 1—Pb17.’1§m<b1 1’
and
o = Imn o c<b —1.1<n<b
Zmn 1— Pbl,.’ = =~ U1 y L= =~ U2.
Furthermore, let
Do = (D001 k241,05 D001 +h2 42,05 Dy 13 Py yr -+ Dy )

and

? - (?m,07?m,1’ e ’?

m

), m=1,2,....b;—1.

m,ba

If we now construct
= (0, 0, 0, (10)
to be the concatenated row vector of dimension

{= (bl - 1)712 + ni, (1].)

then ® e, = 1 due to our earlier observation that, even when both queues are empty, the
server is still busy in the midst of completing a switchover (and thus the wait time will be
NON-Zero).
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Upon successful entry into a busy system (i.e., to one of the ¢ possible states above),
the PASTA property (e.g., see Tijms 2003, Theorem 2.4.1) ensures that our target Poisson-
arriving class-1 customer finds the system in state (m,n,l,y) with probability ¢y, ,,. For
the moment, we assume that our target class-1 customer is not subject to reneging (later on,
we will incorporate the reneging behaviour of this specific customer back into the problem).
While waiting in the class-1 queue, the number of customers in the class-2 queue potentially
changes, not to mention the service indicator component used to identify how many cus-
tomers have completed service within the active serving cycle. On the other hand, as the
number of customers in the class-1 queue changes, the ones arriving later have no impact
on the waiting time of the target class-1 customer. Therefore, if we effectively think of the
arrival rate for the class-1 queue to be equal to 0, the distribution of W; can in fact be
modeled as the distribution of the time to absorption in a Markov chain with infinitesimal
generator of the form

R —Re)
0 o0 |
where
by —1 by —2 by — 3 2 1 0
bi =1 /Qp—1p-1 Qbi—16—2 0 0 0 0 \
by —2 0 Qbi—2p1—2 Qbi—24-3 0 0 0
by — 3 0 0 Qp_sps o 0 0
R = : : . . . . . (12>
0 0 0 C~22,2 Q1 O
1 0 0 0 cee 0 Qi1 Ql,o
\ 0 0 0 0 0 Qoo

In (12), the sub-matrices Q1, @32, ..., Qs —1,,—2 are identical to those defined in Section
3 and @m,m = Qmm + Mln,m = 1,2,...,by — 1. Moreover, the levels {0,1,...,b; — 1}
of R represent how many possible customers are in the class-1 queue in front of our target
customer upon arrival. Using the same notation from Section 3 whenever possible, it readily
follows that

0 1 2 ba
0 §§gl,k1§2,1 ® §6,1 ] 0 0 0
ail,
1 0 g;cl,klgzhn—l ® ﬁgvl 0 0
ol
Qo= 0 0 € €121 @ o 0
aq Iz1
by 0 0 0 [ oy Exr,1—1 @ S 1
Oé].[zl
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and

0 1 2 .. by —1 by
0 —(/\2[2+V—V1) [ 0 My ] 0 0 0
/ / R
1 |: Ep€2,2 © §0’2 :| Aq )\lel I 0 0
042.[2
Qo= 2 0 I, A, .0 o |

by — 1 0 0 0 ... Ay NI,

by 0 0 0 e Iy, Ay,

where A; = A; + diag( A\ Iiysy, M1y — Va).

According to the structure of the rate matrix R, once our target customer enters the
class-1 queue, the Markov chain will progressively make transitions from higher levels to
lower ones, indicating the fact that the number of customers in front of the target customer
reduces over time. The time to absorption distribution of such a Markov chain has received
extensive attention in the literature (e.g., see Latouche and Ramaswami 1999, Chapter 2),
and it is well-known that the distribution function of Wi, denoted by Fj(w), is given by

Fi(w)=1—®exp{Rw}e), w >0,

which is of phase-type form with representation PH(®,R). If we now proceed to include
the reneging behaviour of our target class-1 customer by defining W7 to be the actual class-
1 waiting time (i.e., the arriving class-1 customer’s total time spent in system prior to
successfully entering service), then it clearly follows that G1(w) = Pr(Wy < w) = Pr(W; <
w | Wy < Ry), where R; denotes an exponentially distributed random variable, independent
of Wi, with rate ;. Making use of fundamental matrix algebraic techniques, the following
expression for G1(w) is obtained:

G1<W) = 1- PI‘(Wl > w ‘ Wi < R1>
B Pr(w <W; < Rl)

1
Pr(W, < Ry)

-1 f;o PI‘(Wl > (JJ)Oéle*Oqu:L' — f:o Pr(W1 > x)alefalxdx
E L= fooo Pr(Wy > z)aje-1edx
- 1= g [IK - 011(@115 — R)fl] exp {Rw}gzefalw
= 1 — a1 @(al, — R) e,

Q[IZ_OQ(OQIZ—R)_l] )
- -l >0 13

1 —a1®(arl, — R)" ¢ exp{(R —alpwier, w 2 0, (13)

which implies that
Q[ — ar(anly — R)™]
~PH o)
Wl (1—@1@(041](_7'\),)—12/677?’ Q1 ly
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As a consequence (e.g., see Latouche and Ramaswami 1999, Equation 2.13), it is straight-
forward to show that

r®(on I, — R)~ D
E[W"] = el ~ R) L 19

= 14
1—041@(041]@—72)—@2’ r ) 4y ) ( )

where p’ = —Re; denotes the column vector of absorption rates associated with the phase-
type representation of W;. Finally, as noted at the outset of this section, corresponding
results for W5 can be obtained in a completely analogous fashion.

5 Numerical Analysis

In this section, we investigate the selection of service discipline parameters k; and k5 in order
to optimize the system by way of minimizing a particular cost function. From the previous
section, W; is the nominal class-i waiting time, representing the total time a class-¢ customer
must wait before reaching the server. On the other hand, if R; denotes the (exponentially
distributed) amount of time a class-i customer is willing to wait to reach the server, then
WZ# = min{W;, R;} represents the actual time a class-i customer spends waiting in the
system. Since W was shown to have a PH(®,,R;) representation (with ®; and R, given
by (10) and (12), respectively), it readily follows that TW;* is also phase-type distributed,
but with representation PH(®,, Ry — a1ly,), where ¢4 is given by (11). Likewise, WJ is
phase-type distributed with representation PH (®,, Ry — aly,), where {5, @, and R, are
similarly determined.
In what follows, we consider the cost function given by

Cost = Cost; + Costo,

where

Cost; = ; NE[WH] + r\Pr(R; < W))

and ¢; (the waiting cost parameter associated with class i) and r; (the penalty cost parameter
associated with a class-i customer who reneges), i = 1,2, are assumed to be non-negative
constants. Due to the phase-type representation for VVi#, it can ultimately be shown that

Cost; = Ni(¢; + rioy) @ (i Lo, — R;) ey (15)

We remark that this choice of cost function is inspired by the work of Borst et al. (1995), in
which the authors studied a cyclic polling model with infinite buffers (but no reneging), and
sought to determine optimal k; values so as to minimize the mean waiting cost of customers,
subject to a constraint limiting the number of services per cycle. In particular, by setting
the reneging rates a; and as both equal to zero, our cost function reduces to their waiting
cost function. Moreover, as a means of testing the accuracy of our results, we were able
to replicate the choice of optimal (ki, k) in Table La, p. 607, of Borst et al. (1995) by
setting oy = ap = 0, choosing b; = 45 and by = 90, and calculating the cost function for
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all by = 1,2,...,11, ks = 1,...,12 — ky. These buffer sizes yielded blocking probabilities
no larger than 0.0002663 for class 1 and 0.003710 for class 2, which occurred in the most
extreme combinations of (kj,ks) — namely, (1,11) or (11,1). If we only consider those
(k1, ko) combinations with k; > 2, ¢ = 1,2, then the blocking probabilities were no larger
than 6.890 x 107% for class 1, occurring at (ki, k) = (2,10), and 7.521 x 10~* for class 2,
occurring at (kq, ko) = (10, 2).

Similar to the study conducted by Borst et al. (1995), we investigate the behaviour of our
proposed cost function and how optimal (ky, ko) combinations might change in the presence
of reneging and varying service time distributions, subject to the constraint ky + ky < K
which limits the number of services per cycle. As a point of comparison, we consider two
specific parametric cases which are both drawn from Section IV of Borst et al. (1995) with
K = 12. In Case 1, we assume equal arrival rates (A\; = Ay = 0.75), equal switchover rates
(v = vy = 1/0.1), and mean service times of p; = 0.9 and py = 0.1. In Case 2, we assume
i1 = po = 1 along with differing arrival /switchover rates according to A\; = 0.5, Ay = 0.25,
v; = 1/0.1, and vy, = 1/0.2. In both cases, we consider reneging rates «; and ay chosen
from the set {0.025,0.05,0.25}. Furthermore, the service time distribution for a given class
could either be “Exp” (for exponential), “E3” (for Erlang-3), or “Hy” (for hyperexponential-
2, referring to a mixture of two exponential distributions with selected weights of 0.001
and 0.999). Regardless of which service time distribution is in place, mean service times
adhered to the values specified above for Cases 1 and 2. We remark, however, that the Hy
distribution we used possesses 1000 times the variance of the Exp distribution, whereas the
E; distribution we used possesses 1/3 times the variance of the Exp distribution.

The various parameter combinations resulted in a range of observed blocking probabili-
ties, and the maximum blocking probability per class (over the different possible pairs of k;
and ko) for each combination of reneging rate and service time distribution was compared
(setting by = by = 20). Of these local maxima, class-1 blocking probabilities under Case
1 (Case 2) had a median of 8.431 x 107¢ (1.741 x 107°%) and a global maximum of 0.1312
(0.0577). With respect to class 2, the local maxima under Case 1 (Case 2) possessed a me-
dian of 2.518 x 107* (2.772 x 1071%) and a global maximum of 0.1242 (0.00075). Although
our model, with buffer sizes of b; = by = 20 used throughout, falls short as a precise emula-
tion of the corresponding infinite buffer system for a few combinations of k;, «;, and service
time distribution (particularly in situations involving the variance-inflated Hy distribution
and low reneging rates), it does a more than adequate job when using only the Exp or Es
distributions, or when reneging rates are moderate to high. If the goal is to emulate an
infinite buffer system with as high of an accuracy as possible, under those aforementioned
conditions (e.g., extremely large service time variance), we would recommend increasing b,
and by, computational resources permitting, to achieve more tolerable blocking probabilities.

In Table 1, we investigate the relationship between selected buffer size and blocking prob-
abilities, as well as run times using a 4.00 GHz i7-6700K processor. Here, we simultaneously
increase both buffers, while considering (Exp, Exp), (Hs, Hs), and (E3, E3) service time distri-
bution combinations. Case 1 parameters with a; = as = 0.025 were chosen as they produce
the highest blocking probabilities of our considered parameter ranges, while (kq, ko) = (6, 6)
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Table 1: Blocking probabilities and run times (in seconds) for varying buffer sizes by = by = b
and (Exp, Exp), (Hs, Hy), or (E3, E3) service time distributions, with ay = as = 0.025,

(k1,k2) = (6,6), and Case 1 model parameters. [A\; = Ay = 0.75, v; = vy = 1/0.1, py =
0.9, Ho = 01]
Service Time Distributions

Buffer (Exp, Exp) (Hy, Hy) (Es, E3)
b Py e Py, Run Time By e Py, Run Time Py e Py, Run Time
5 51x1072  8.1x1072 0.11 3.0x107! 2.9x107! 0.19 29x1072  5.6x1072 0.34
10 4.4x107%  7.2x1073 0.45 2.4x107! 2.3x107! 1.64 1.3x107% 2.2x1073 4.49
15 2.5x107*  3.9x10~* 1.88 1.8x107! 1.7x107! 8.94 33x107°  4.4x107° 25.73
20 9.1x107%  1.3x107? 589 1.3x107' 1.2x107! 31.38 5.2x1077  5.9x1077 94.89
25 2.2x1077  3.1x1077 15.30 8.4x107%2 7.7x1072 86.81 5.4x107°  5.4x107° 296.52
30 3.4x107°  4.9x107° 34.34 4.6x107%2 4.0x1072 205.29 < 1x1071° < 1x1071% 767.57
35 <1x107%0 < 1x1071° 69.48 1.9x1072 1.6x1072 456.00 < 1x1071% < 1x1071% 1649.16
40 <1x10710 < 1x1071° 128.29 5.4x107% 4.1x1073 941.35 < 1x1071° < 1x10710 3162.91
45 <1x107%0 < 1x1071° 224.64 9.3x107* 6.3x107* 1719.31 < 1x1071% < 1x1071° 5630.37
50 <1x10710 < 1x1071° 369.50 9.6x107° 5.9x107° 2930.37 < 1x10710 < 1x1071° 9365.38

was selected so as to maximize the dimension of the state space of our process, subject to
ki + ko = 12. Tt is clear that under Exp or Ej service, blocking probabilities are not an issue
at our selected by = by = 20. However, as stated earlier, the blocking probabilities are not
ideal at this range under H, service. Unfortunately, to reduce these blocking probabilities
to under a percentage, we would need to increase the buffer sizes beyond 35, which greatly
increases the computational load for the Hy service time distribution, and drastically more so
for the E;5 distribution. Thus, in an effort to keep computation times manageable, we elected
to accept these blocking probabilities and use buffer sizes of 20 apiece over all parameter
combinations. To check the impact of this decision, we also considered only the (Hs, Hy)
combination for both cases with b; = b, = 40 in Table 4, which we will discuss shortly.
Tables 2 and 3 display the optimal (ki, ks) pairs, along with their corresponding cost
values, for each combination of reneging rate and service time distribution under Cases 1
and 2, respectively. In each table, we present results corresponding toc; =2, ¢co =1, 1r; =1,
and o = 0.5, as well as results for select combinations of service time distribution when
ry = ro = 40. In looking at the optimal values of k; and ks under Case 1 over a range of
cost parameters, we observed that the limit of the optimal choice of (ki, k2) is (11,1) as ¢
or r; approaches oo, or (1,11) as ¢y or ro approaches co. An example of this convergence is
illustrated in Fig. 2, where we plotted the optimal values of ky against ¢; (with ¢y, 71, and
ro held constant). The rates of convergence (to k; = 11) appear to be largely dependent
on the relative values of oy and as. Note that k; converges faster when class-2 customers
are more impatient, causing fewer of them to reach service and resulting in relatively longer
class-1 queues. This causes class 1 to dominate the expected time waiting in system portion
of the cost function, whereas class-2 customers dominate the probability of reneging portion.
Since we are plotting against the class-1 waiting cost parameter (while keeping reneging
costs constant), it is easy to see why the (0.025,0.25) combination converges the fastest and
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Table 2: Optimal (k1, k2) and minimum cost values for Case 1 with ¢; = 2, ¢ = 1, and
rn = 1, ro = 0.5 or r =7T9 = 40. [)\1 = >\2 = 075, V1 = Vg = 1/01, M1 = 0.9,#2 = 01]
Reneging Service Time Distributions
Rates (EXp, EXp) (EXp7 HQ) (EXp, E3) (EXp, EXp)
(03] (6% k’l, ]{72) Cost k’l, ]{72) Cost k’l, ]{72) Cost k’l, ]{72) Cost
0.025 0.025 (3,9) 4.3398 (3,9) 6.2866 (3, 9) 4.3281 3,9) 6.9361
0.05 (4, 8) 4.2581 (3,9) 5.9977 (4, 8) 4.2468 2,10) 7.7429
0.25 (7, 5) 3.7352 (9, 3) 4.8325 (7, 5) 3.7269 2,10) 11.9875
0.05 0.025 (3,9) 3.6482  (3,9) 5.2460 (3, 9) 3.6386 3,9) 7.1422
0.05 (3,9) 3.5947  (3,9) 4.9824  (3,9) 3.5855 2,10) 7.8847
0.25 (6, 6) 3.2543 (6, 6) 4.0882 (6, 6) 3.2470 1, 11) 11.9519
0.25 0.025 (2,10) 21520 (2,10) 3.0167 (2,10) 2.1464 3,9) 9.0264
0.05 (2,10) 2.1334 (2,10) 2.8169 (2,10) 2.1279 3,9) 9.7272
0.25 (2, 10) 2.0230 (2,10) 2.2667 (2, 10) 2.0183 1, 11) 13.3357
(Hz, Exp) (Hz, Hy) (Ho, E3) (Hz, Hy)
a1 (%) k’l, kQ) Cost k’l, kQ) Cost k’l, kg) Cost k’l, kg) Cost
0.025 0.025 (4,8) 20.3486 (3,9) 21.7547 (4,8) 20.3441 3,9) 35.8657
0.05 (5,7) 182711 (4,8) 19.5065 (5,7) 18.2666 3,9) 36.3322
0.25 (8,4) 14.6158 (9,3) 155758 (8,4) 14.6114 2,10) 33.8738
0.05 0.025 (3,9) 16.4205 (2,10) 17.4343 (3,9) 16.4171 2,10) 34.1935
0.05 (4,8) 14.3710  (3,9) 15.2235 (4,8) 14.3676 3,9) 34.6786
0.25 (7,5) 10.7526  (8,4) 11.3615 (7,5) 10.7490 2,10) 32.2619
0.25 0.025 (1,11) 88681 (1,11) 9.4376 (1,11) 8.8681 3,9) 27.1216
0.05 (1, 11)  6.9769 (1,11) 7.3890 (1,11) 6.9756 3,9) 27.6632
0.25 (6, 6) 3.5293 (5, 7) 3.7245 (6, 6) 3.5263 2,10) 25.4136
(E3a EXP) (E3, HQ) (E3, E3) (E3, E3)
(&3] [6%) kl, k’g) Cost kl, k’g) Cost kl, k’g) Cost kl, k’g) Cost
0.025 0.025 (4, 8) 3.4530 (3, 9) 5.5164 (4, 8) 3.4401 . 9) 5.5277
0.05 (4, 8) 3.3965 (4, 8) 5.2494 (4, 8) 3.3839 . 9) 6.2533
0.25 (7, 5) 3.0303 (8, 4) 4.2083 (7, 5) 3.0210 2 10) 10.1034
0.05 0.025 (3,9) 2.9907 (3,9) 4.6552 (3, 9) 2.9800 3,9) 5.8344
0.05 (3,9) 2.9587  (3,9) 4.4143 (3, 9) 2.9483 2,10) 6.5219
0.25 (5, 7) 2.7179 (6, 6) 3.6040 (5, 7) 2.7096 1, 11) 10.1745
0.25 0.025 (2,10) 1.8771 (2,10) 27582 (2,10) 1.8710 4, 8) 7.8647
0.05 (2,10) 1.8677 (2,10) 2.5692 (2, 10) 1.8618 3,9) 8.4997
0.25 (2, 10) 1.8065 (2, 10) 2.0618 (2, 10) 1.8013 1,11) 11.8951
(r1, m2) (1, 0.5) (1, 0.5) (1, 0.5) (40, 40)
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Table 3: Optimal (k1, k2) and minimum cost values for Case 2 with ¢; = 2, ¢ = 1, and
T = 1, o = 0.5 or M =79 = 40. [)\1 = 0.5,)\2 = 025, V1 = 1/0.1,1]2 = 1/02, M1 = g = 1]

Reneging Service Time Distributions
Rates (EXp, EXp) (EXp7 HQ) (EXp, E3) (EXp, EXp)
(03] (6% (k’l, kg) Cost (k’l, kg) Cost (k’l, kg) Cost (k’l, k‘g) Cost
0.025 0.025 (10, 2) 2.6649 (10, 2) 7.8090 (10, 2) 2.4761 (10, 2) 4.3972
0.05 (11, 1) 2.4083 (11, 1) 6.8184 (11, 1) 2.2577 (9, 3) 4.6890
0.25 (11, 1) 1.8357 (11, 1) 5.1854 (11, 1) 1.7432 (8, 4) 5.9054
0.05  0.025 (10, 2) 2.3812 (9, 3) 5.6575 (10, 2) 2.2247 (10, 2) 4.6660
0.05 (10, 2) 2.2030 (10, 2) 4.8100 (10, 2) 2.0669 (10, 2) 4.9625
0.25 (11, 1) 1.6934 (11, 1) 3.5890 (11, 1) 1.6127 (8, 4) 6.1953
0.25 0.025 (6, 6) 1.5047 (5, 7) 2.9877 (6, 6) 1.4353 (11, 1) 6.4562
0.05 (7, 5) 1.4550 (6, 6) 2.2615 (7, 5) 1.3907 (10, 2) 6.7245
0.25 (11, 1) 1.2323 (10, 2) 1.5454 (11, 1) 1.1879 (8, 4) 7.8861
(Hz, Exp) (Hz, Hy) (Ho, E3) (Hz, Hy)
a1 (%) (k/’l, k’g) Cost (k/’l, k’g) Cost (k/’l, k’g) Cost (k/’l, k’g) Cost
0.025 0.025 (11,1) 11.9085 (10,2) 15.6149 (11,1) 11.8306 (10,2) 24.8349
0.05 (11,1) 10.6576 (11,1) 13.9119 (11,1) 10.5843 (10,2) 23.2350
0.25 (11, 1) 9.5631 (11,1) 123096 (11, 1) 9.5085 (9,3) 21.9772
0.05 0.025 (10, 2) 8.2620 (9, 3) 10.5575 (10, 2) 8.1927  (9,3) 20.6821
0.05 (11, 1) 7.0367 (10, 2) 8.9056 (11, 1) 6.9730  (9,3) 19.1262
0.25 (11, 1) 5.9644 (11, 1) 7.4260 (11, 1) 59166  (8,4) 17.9732
0.25 0.025 (4, 8) 3.9129 (4, 8) 5.0239 (4, 8) 3.8846  (8,4) 15.7298
0.05 (9, 3) 2.8207 (6, 6) 3.4547 (9, 3) 2.7818 (8,4) 14.2528
0.25 (11, 1) 1.8533 (9, 3) 2.1237 (11, 1) 1.8198  (7,5) 13.2301
(E3a EXP) (E3, HQ) (E3, E3) (E3, E3)
o 1 (k1, ko)  Cost (k1, ko)  Cost (k1, ko)  Cost (k1, ko)  Cost
0.025 0.025 (10, 2) 2.2940 (10, 2) 7.5463 (10, 2) 2.0953 (10, 2) 3.4708
0.05 (11, 1) 2.0828 (11, 1) 6.5993 (11, 1) 1.9246 (9, 3) 3.7560
0.25 (11, 1) 1.5665 (11, 1) 5.0376 (11, 1) 1.4696 (7, 5) 5.0495
0.05 0.025 (10, 2) 2.0877 (9, 3) 5.4309 (10, 2) 1.9226 (10, 2) 3.7678
0.05 (10, 2) 1.9375 (10, 2) 4.6075 (10, 2) 1.7938 (9, 3) 4.0603
0.25 (11, 1) 14762 (11, 1) 3.4371 (11, 1) 1.3913 (7, 5) 5.3424
0.25 0.025 (6, 6) 1.3829 (5, 7) 2.8826 (6, 6) 1.3106 (11, 1) 5.6070
0.05 (7, 5) 1.3415 (7, 5) 2.1606 (7, 5) 1.2744 (10, 2) 5.8895
0.25 (11, 1) 1.1422 (10, 2) 1.4620 (11, 1) 1.0960 (8, 4) 7.0570
(r1, m2) (1, 0.5) (1, 0.5) (1, 0.5) (40, 40)
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Figure 2: Plots of k; vs. ¢; under both Cases 1 and 2 with Exp service times, c; = 2,
r1 =19 = 1, and four combinations of reneging rates.

(0.25,0.025) the slowest, whereas equal reneging rate combinations tend to be comparable
to one another. This result is consistent between Cases 1 and 2. However, we note that in
Case 2, since the class-1 arrival rate is twice that of class 2, costs associated with class 1
dominate the cost function sooner. As a result, we observed that Case 2’s system converges
to (11,1) faster and (1,11) slower in comparison to Case 1’s system.

Tables 2 and 3 also suggest that when the waiting and reneging cost parameters are
of a comparable size (or the waiting cost parameters are much larger), the size of k; is
inversely proportional to «; (while keeping the other class’s reneging rate constant). When
the reneging cost parameters are much larger than the waiting cost parameters, such as in
the ry = ry = 40 examples, this relationship may invert, as serving less class-¢ customers per
cycle, in combination with a larger «; that increases the probability of a class-i customer
reneging before service becomes available, becomes more costly. In general, the system
appears to be more sensitive to smaller changes in the waiting cost parameters. This is an
intuitive result considering the final form of the cost function in (15), in which the product
of r; and «; is present. Depending on the choice of reneging rates, this may lead to the
reneging cost being much smaller than the waiting cost.

For a given pair of a; and «y, we observed that changing the service time distribution
could affect the optimal choice of k; and ks. Our results in Tables 2 and 3 indicate that it
is possible to vary the optimal (kq, k2) values by switching only one (or both) of the service

18



Table 4: Optimal (k;, k) with corresponding minimum cost values, as well as maximal
class-1 and class-2 blocking probabilities over all possible (ki, k2) combinations, for (Hy, Hy)
service time distributions under Case 1 and Case 2 model parameters with b; = by = 40,
c1=2,c=1,r =1,and r, =0.5.

Reneging Rates Case 1 Case 2
o Q9 (k1 ko) Cost max Py, o max Pop,  (k1, k2)  Cost max Py, o max P, p,
0.025 0.025 (3,9) 20.8757 54x1073  4.1x10-3 (10,2) 17.1809 1.3x10~° < 1x10~10
0.05 (5,7) 252273 54x1073  1.3x10~° (11,1) 154646 1.3x10~° < 1x1071°
0.25 (9,3) 21.1141 54x 1073 < 1x1071 (11, 1) 13.8489 1.3x 107 < 1x10710
0.05 0.025 (2,10) 20.3077 3.1x107%  4.0x1073 (9,3) 105754 < 1x1070 < 1x1071°
0.05 (3,9) 157629 3.1x107% 1.3x107% (10, 2) 8.9186 < 1x10710 < 1x10710
0.25 (8,4) 117568 32x10™% < 1x1071° (11,1) 7.7391 < 1x10710 < 1x10710
0.25  0.025 (1,11) 11.8187 < 1x1071® 3.8x1073 (4, 8) 5.0286 < 1x10719 < 1x10710
0.05 (1,11) 75269 <1x107° 13x10=%  (6,6) 34547 < 1x10710 < 1x1071
0.25 (5,7) 37245 <1x1070 <1x10710 (9,3) 21237 <1x10710 < 1x1071°

time distributions. The larger the difference between the variances of the previous and new
service time distributions, the more likely we were to observe changes in the optimal (k1, k»)
values. In many situations, there was no discernible difference when comparing the Exp and
E3 distributions, except for a decrease in the optimal cost when using the E3 distribution.
However, when comparing either Exp or Ej against the Hy distribution, it was common to
find different optimal (k1, k2) pairs and we always observed an increase in the optimal cost.

Although there is some evidence to suggest that the optimal (ky, ko) values are, more or
less, insensitive to the second moment of the service time distribution in our model (and
this is consistent with the remarks in Borst et al. 1995), we did capture varying results by
inflating the relative variance difference between the two service time distributions to a large
enough degree. One may be inclined to attribute the presence of these observed changes in
our optimal results to only the occasional high blocking probability rather than the service
time distribution, but we must emphasize that some of these variations were still present in
settings with negligible blocking probabilities, such as, for example, when a1 = ay = 0.25
and Hy service times are used for both classes. In order to confirm that these differences
are due to the service time distributions for lower reneging rates, and not just by negative
expected waiting time bias as a result of non-negligible blocking probabilities, we reran the
experiment for (Hs, Hy) at by = by = 40, which guaranteed maximal blocking probabilities
of less than a percent for Cases 1 and 2. This updated data is presented in Table 4. While
the aforementioned negative bias in E[WZ#] is observable in the optimal costs, all optimal
(k1, ko) are unchanged except when (o, as) = (0.025,0.05) in Case 1. Here, however, we
observe a shift from (4,8) to (5,7), bringing it in line with (Hy, Exp) and (Hs, E3), rather
than having the same optimal (kq,ks) as (Exp, Exp). This supports our claim that these
observed deviations are due to our choice of Hy distribution, and not solely due to the
blocking probabilities.

So while blocking probabilities can contribute to the variability in the optimal (kq, k2)
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combinations, we cannot conclude that the selection is completely insensitive, as differences
may exist even when variances are similar (for instance, compare (Exp, Exp) with (E3, Exp)
in Table 2). Furthermore, based on the form of (15), another conclusion may be made. By
selecting a larger arrival rate for a class, the expected time waiting in the system will increase,
as well as the probability of reneging, while simultaneously raising that class’ weight in the
cost function. This will heighten the system’s sensitivities to the service time distribution of
that class, and may lead to more variation in the selection of optimal (k1, ko) when comparing
combinations of service time distribution for that class with smaller differences in variance.

To illustrate the impact of the service time distribution’s second moment, we plot in
Fig. 3 the reneging probability for a customer of either class against Mg, under Case 2
parameters and a; = ag = 0.05 for (ky, k2) € {(6,6), (11,1), (1,11)} with (Ha(Mgnr), Exp),
(Exp, Ho(Msny)), or (Ha(Mgar), Ho(Msyy)) service time distributions. Here, Ho(Mgys) de-
notes the phase-type distribution

—0.5
i 0.25 Mgy — 1 1 522 0
Mgy — 14025 Mgy —1+025) 7 0o —2|)

which ensures a mean class-i service time of j;, and a second moment of Mgy (2u2), for
Mgy > 1. In words, Mgy, acts as a multiplier on the second moment, relative to the Exp
service time distribution for that class. We remark that the following results also apply to
E[W*], since as seen in (15), the reneging probability for class i equals a; E[W/], resulting
in plots of E[IW#] against Mgy, having the same shape.

From Fig. 3, we first observe that a customer’s reneging probability increases with
Mgy, but becomes insensitive to further increases after the second moment becomes large.
Moreover, increasing the second moment of class 2’s service time distribution only results
in a smaller increase in reneging probability (for either class) than the same increase for
only class 1’s service time distribution. This is due to A\; = 2)\y under Case 2, which
results in twice as many (on average) class-1 customers arriving to the system than class-
2 customers over a period of time, thereby creating more opportunities for the server to
be involved in a particularly long service. In addition, it is not surprising that increasing
the second moment for both classes simultaneously results in a larger increase in reneging
probability than increasing a single class in isolation. Finally, in the corresponding plots
for Case 1 (which we have omitted here), we observed that there was much less sensitivity
when increasing the second moment for class 2, as a result of its smaller mean service
time of 0.1 (and scaling class 1 was similar as in Case 2, since their expected values only
differ by 0.1). We can therefore conclude that in the presence of reneging, it would be
quite inappropriate to approximate a highly variable service time distribution with a simpler
exponential distribution.

Next, Figs. 4 and 5 present plots of G;(w), the distribution function of the actual waiting
time random variable W}, as defined in Section 4. These functions were evaluated via (13)
for both classes under a particular pair of reneging rates (namely, a; = 0.025 and ay = 0.25)
and four combinations of Exp and Hy service times, with Cases 1 and 2 presented in Figs.
4 and 5, respectively. For each combination of service time distribution, the optimal values
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Figure 3: Plots of reneging probability vs. Mgy, for both classes under Case 2 with a; =
az = 0.05 and (kq, ko) € {(6,6),(11,1), (1,11)}.
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Figure 4: Plots of G;(w) vs. w for both classes under Case 1 with oy = 0.025, ay = 0.25,
either Exp or Hy service times, and optimal (kq, ko) from Table 2.

of k1 and ko were selected for use from Tables 2 and 3. It is interesting to note that the
H, distribution in these cases typically yielded shorter actual waiting times than the Exp
distribution. This is due to the fact that the actual waiting time distribution is conditional
on the customer reaching service before reneging. In order to have the same mean as the
Exp distribution (while inflating the variance), the Hy distribution was constructed as a
mixture of two exponential distributions, one with a higher rate and a great likelihood of
occurrence (namely, 99.9%) and the other with a very low rate and a rare chance of occurrence
(namely, 0.1%). The conditional nature of W;* results in an exponentially distributed bound
on the total time for the preceding customers’ service/reneging times, implying that if the
reneging rate of the target customer is high enough (so that the bound on the total time is
short enough), we only really observe services which follow the higher rate. This essentially
reduces the Hy distribution to an exponential distribution with faster service times (and
hence shorter actual waiting times).

In order to better understand the behaviour of the actual waiting time distribution, we
also calculated E[W}] via (14) for a variety of scenarios. Specifically, we considered each
reneging rate pair (as in Tables 2 and 3), values of k; € {1,2,...,11} satisfying k; + ks = 12,
and combinations of Exp and Hy service times. We found that the Hy distribution yielded
shorter mean actual waiting times in comparison to the Exp distribution (all else being
equal), except in Case 1 when the distribution we were changing was that of class 2, and the
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Figure 5: Plots of G;(w) vs. w for both classes under Case 2 with oy = 0.025, ay = 0.25,
either Exp or Hy service times, and optimal (kq, ko) from Table 3.

reneging rate of the target customer was not large (i.e., 0.025 or 0.05). This is likely due to
the combination of a small mean service time for class 2 and longer exponentially distributed
time bounds failing to reproduce the “reducing” effect as previously noted, thereby allowing
the Hy distribution to act (approximately) unchanged for class 2. Thus, the higher service
time variance resulted in higher expected actual waiting times. In some of these instances,
however, when ks was small and the target customer came from class 2, it was still possible
for the mean actual waiting time to decrease. Since the small value of ky increases the
probability of class-2 customers waiting in front of the target customer to renege (instead
of reaching service, despite the small value of «s), this reduces the effect of the service time
distribution in place.

Overall, we observed that the mean actual waiting times in Case 1 were primarily de-
pendent on the class-1 service time distribution due to its larger mean service time (i.e.,
1 = 0.9 vs. ps = 0.1). Combined with the fact that a high reneging rate for a particular
class reduces the influence of that class’s service time distribution, we witnessed the rather
extreme situation seen in Fig. 4, where the distribution is almost entirely dependent on
class 1 (since ag = 0.025 and ay = 0.25). While the assumption of equal mean service times
helped balance the dependence between classes in Case 2, the fact that the class-1 arrival
rate is twice that of class 2 still resulted in a larger influence from class 1, as seen in Fig.
5. Finally, as expected, increasing k; decreased class-i’s mean actual waiting time, since
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it increased the number of customers (queued ahead of the target customer) that could be
served during a single visit by the server.

6 Concluding Remarks

We have presented a 2-class, single-server polling model with reneging customers operating
under a k;-limited service discipline in order to analyze the queueing performance of the
system in terms of customer loss and delay. Using matrix analytic techniques, we derived
important performance measures of interest including the joint queue length distribution
as well as the per-class waiting time distributions and their moments. We utilized our
mathematical results to investigate a constrained optimization problem under a variety of
scenarios involving the system parameters. All in all, our results revealed a number of
interesting and non-trivial combinations of (ki, k2) which minimize our proposed objective
function.

Future work will proceed along two fronts. On the one hand, our goal is to generalize
the model beyond the exponential interarrival /reneging assumption to something more wide-
ranging such as a phase-type or Coxian distribution. On the other, we plan to extend the
existing results to allow for a third class of customers. The approach would parallel the
methodology used in the 2-class case, although we anticipate that the dimensionality of the
phase-type representation for the waiting time distribution would increase considerably due
to the presence of the extra queue. In general, we expect that using this exact method for
a system having N queues (with finite buffer sizes by, by, ..., by) would require

21: Zl: % ZI: (ﬁ bﬁi) <N+ gtjkjsj>

t1=0t2=0 tn=0 =1

total states, and thus the rate matrix of the underlying phase-type distribution for the
waiting time would be of dimension

11 1 N N
Yy ((b1 oy Hbﬁi) (N N thkjsj> |

t1=012=0  tN=0 =2 j=1
As such, the particular structure of the block matrices comprising the associated infinitesimal

generator may require further exploitation in order to reduce the memory storage require-
ments inherent in this model formulation.
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