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Abstract

We introduce a problem called the Minimum Shared-Power Edge Cut (MSPEC ). The
input to the problem is an undirected edge-weighted graph with distinguished vertices s
and t, and the goal is to find an s-t cut by assigning “powers” at the vertices and removing
an edge if the sum of the powers at its endpoints is at least its weight. The objective is to
minimize the sum of the assigned powers.

MSPEC is a graph generalization of a barrier coverage problem in a wireless sensor
network: given a set of unit disks with centers in a rectangle, what is the minimum total
amount by which we must shrink the disks to permit an intruder to cross the rectangle
undetected, i.e. without entering any disc. This is a more sophisticated measure of barrier
coverage than the minimum number of disks whose removal breaks the barrier.

We develop a fully polynomial time approximation scheme (FPTAS) for MSPEC . We
give polynomial time algorithms for the special cases where the edge weights are uniform,
or the power values are restricted to a bounded set.

Although MSPEC is related to network flow and matching problems, its computational
complexity (in P or NP-hard) remains open.
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Chapter 1

Introduction

Minimum weight edge cuts in graphs are very well-studied. In this thesis we look at a
variation that arises from unit disk graphs, i.e., intersection graph of unit disks, and other
situations where the edges of the graph are determined by geometric properties of the
vertices. In this variation, we assign a power pv to each vertex v and an edge e = (u, v) is
removed if pu + pv is at least the weight of edge e. The goal is to remove the edges of an
s-t cut while minimizing the power sum. More formally, the Minimum Shared-Power Edge
Cut (MSPEC ) problem is defined as follows:

Input: Graph G = (V ∪{s, t}, E) with n vertices, m edges, and a non-negative weight
wu,v on each edge (u, v) ∈ E.

Problem: Assign a non-negative power pv to each v ∈ V and assign ps = pt = 0 so
that removing the edge set {(u, v) ∈ E : pu + pv ≥ wu,v} disconnects s and t and

∑
v∈V pv

is minimized.
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Figure 1.1: Minimum Shared-Power Edge Cut problem: (a) shows the input edge-weighted
graph G; (b) shows a s-t cut with the cut edges in gray and the assigned power value in
red.

There has been substantial work in the area of activation and survivable network design.
Motivated by the application in wireless networks, survivable network design involves
designing minimum cost networks subject to connectivity requirements. The cost involves
an activation cost to activate the set of edges. The cost function could depend on the
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edge weights, vertex weights or a combination of the two. We describe activation network
design in detail in Section 1.2.

The main result of this thesis is a fully polynomial time approximation scheme (FPTAS)
for the minimum shared-power edge cut problem.

A special case of MSPEC —and our original motivation for studying it—is the problem
of measuring barrier coverage of a sensor network. A sensor network is typically modeled
as a collection of unit disks in the plane, where each disk represents the sensing region of
its corresponding sensor [45]. Such a collection of unit disks in the plane is represented by
a unit disk graph. Given a set P of points in R2, the unit disk graph, UDG(P), is defined
by setting its vertex set to P (in particular, set P corresponds to the centers of unit disks)
and creating an edge between any two points of P whose Euclidean distance is at most
two. Figure 1.2 shows a rectangular barrier and unit disks representing sensors.

The network provides a barrier between regions R1 and R2 if every path from R1 to
R2 intersects the union of the disks. One simple quantitative measure of barrier strength
is the minimum number of disks whose removal permits a path from R1 to R2 in the free
space outside the disks. This can be computed in polynomial time [25] for the special case
of a rectangular barrier, where the sensors lie in a rectangle and must block paths from the
bottom to the top of the rectangle. Figure 1.3 shows the optimal solution for this measure
for the sensor network modeled as in Figure 1.2.

We suggest, as a more sophisticated measure, the minimum total amount by which we
must shrink the disks to permit such a path. This measure reflects the reality that sensor
strength typically deteriorates (“attenuates”) with distance from the sensor [45]. For a
rectangular barrier, our Minimum Shrinkage problem (as in Figure 1.4) can be modeled
as MSPEC , where we have a vertex for each disk, and the power assigned to a vertex
tells us how much to shrink the corresponding disk. We explain barrier coverage and
minimum shrinkage in detail in Chapter 2. Thus the main result of this work provides an
approximation scheme to compute Minimum Shrinkage for rectangular barrier coverage.

Figure 1.2: Shows the rectangular barrier and unit disks representing sensors.
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Figure 1.3: Path from bottom to top in the free space after removing three of the disks.

Figure 1.4: Minimum shrinkage for the rectangular barrier coverage problem: shows a path
from bottom to top in the free space after shrinking three of the disks.

Outline of the Thesis

In Section 1.1 of this chapter, we explain the preliminaries that will help readers to
understand the thesis better. In Section 1.2, we give a brief survey of the related models
and problems considered in the literature. We conclude this chapter by giving alternative
formulations of MSPEC . In Chapter 2, we give a survey on barrier coverage and formally
introduce minimum shrinkage. We show the connection between minimum shrinkage
and MSPEC . Chapter 3 is the heart of the thesis where we describe our approximation
algorithm for MSPEC and also give a polynomial time algorithm for the bottleneck version
of MSPEC . In Chapter 4, we discuss some possible variants of MSPEC . In Chapter 5, we
show to speed up our approximation algorithm. Chapter 6 concludes the thesis and suggests
directions for future work.

3



1.1 Preliminaries

In this section we give the basic definitions and theorems that will assist in understanding
the problem formulation and proofs.

1.1.1 FPTAS

A Fully Polynomial Time Approximation Scheme, FPTAS, is an 1+ε approximation scheme
whose running time is polynomial in the input size and also polynomial in 1/ε (for instance,
a running time of O((n/ε)c)) [43].

In contrast, a polynomial time approximation scheme, PTAS, is an 1 + ε approximation
scheme whose running time is only polynomial in the input size (for instance, a running
time of O(n1/ε)).

1.1.2 Menger’s Theorem

Let G = (V,E) be a graph and let S, T ⊆ V . A path is an S-T path if it runs from a vertex
in S to a vertex in T . A set C ⊆ V of vertices is called S-T disconnecting if C intersects
each S-T path.

Theorem 1 (Menger’s theorem, e.g. [39, chapter 9]). Let G = (V,E) be a graph and let
S, T ⊆ V . Then the maximum number of vertex-disjoint S-T paths is equal to the minimum
size of an S-T disconnecting vertex set.

1.1.3 Kőnig’s Theorem

Theorem 2 (Kőnig’s theorem, see [38] or [39, chapter 16]). For any bipartite graph G =
(V,E), the maximum size of a matching is equal to the minimum size of a vertex cover.

For a general graph G, this relationship is an inequality instead of an equality, i.e., the
maximum size of a matching is at most the minimum size of a vertex cover.

1.1.4 w-vertex cover

We will need a generalization of Kőnig’s theorem (Theorem 2) to the case of edge weights,
which was proved by Egerváry.

Let G = (V,E) be a graph and let w : E → R+. A w-vertex cover is a vector
y : V → R+ such that yu + yv ≥ we for each edge e = (u, v) [39, chapter 17].
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In general computing a minimum w-vertex cover is NP-hard since it generalizes the
vertex cover problem. But for bipartite graphs, the minimum w-vertex cover can be
computed in polynomial time. This is a consequence of Egerváry’s characterization of
the maximum weight matching for bipartite graphs.

Theorem 3 (Egerváry’s theorem, see [24] or [39, chapter 17]). Let G = (V,E) be a bipartite
graph and let w : E → R+ be a weight function. Then the maximum weight of a matching
in G is equal to the minimum value of y(V ), where y : V → R+ is such that yu + yv ≥ we
for each edge e = (u, v).

Using the Hungarian method [23] the maximum-weight bipartite matching can be found
with running time O(n(m + n log n)). As a consequence of Theorem 3, it is also possible
to find the minimum w-vertex cover from the given maximum-weight bipartite matching
with running time O(n(m+ n log n)) [19].

1.1.5 Total Unimodularity

A more general tool that implies Egervary’s theorem (Theorem 3), and many other min-max
equalities, is the theory of total unimodularity. Total unimodularity of matrices is an
important tool in the area of integer programming. A matrix A is called totally unimodular
if each square submatrix of A has a determinant either −1, 0, or +1.

Theorem 4 (Hoffman-Kruskal Theorem, see [18] or [39, chapter 5]). A is a totally unimodular
(TUM) m×n matrix if and only if for all integral b ∈ Zm, the polyhedron P = {x|Ax ≤ b}
is an integral polyhedron.

A polyhedron P is called an integer polyhedron if it is the convex hull of the integer
vectors contained in P . This gives us a strong property that the linear program solution
will be equal to the integer program solution in such cases i.e., max{cTx | Ax ≤ b;x integer}
= max{cTx | Ax ≤ b}.

Theorem 5 (See [39, Theorem 18.2]). A graph G = (V,E) is bipartite if and only if its
“vertex-edge incidence matrix” A is totally unimodular.

1.2 Related Models

Motivated by problems in design of wireless networks, there is substantial previous work
on graph optimization problems in which edges are selected depending on “power” values
pv that are assigned to each vertex v. The objective is to minimize the sum of the powers,
while satisfying connectivity properties for the selected edges that are of interest in the
design of ad-hoc wireless networks. For example, the selected edges form a spanning tree,
or a k-connected subgraph.
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For edge-weighted graphs the models that have been considered for selecting, or “activating”,
an edge (u, v) of weight wu,v are:

1. min{pu, pv} ≥ wu,v (“Power Optimization”, e.g. [15])

2. max{pu, pv} ≥ wu,v (“Max Power Optimization”, e.g. [3])

3. pu + pv ≥ wu,v (“Installation Cost Optimization”, e.g. [34])

4. a more general function of pu and pv (“Activation Networks”, e.g. [34])

In general, in the activation network problems we are given a graph G = (V,E), a
domain, D, of parameter values, activation function fu,v : D ×D → {0, 1} for every edge
(u, v) ∈ E, and a connectivity requirement C. The goal is to select pv ∈ D at each
vertex v such that it minimizes the sum

∑
v pv and the set of activated edges satisfies the

connectivity requirement C [35].

There is also an older notion of Node-Weighted Optimization, e.g. [20], for vertex-weighted
graphs. For vertices u and v with weight wu and wv, respectively, the requirement to
activate the edge (u, v) is that pu ≥ wu and pv ≥ wv.

1.2.1 Connectivity Requirements

In the literature there are a lot of connectivity requirement problems considered for activation
network design. Some of the important ones are:

1. Minimum Vertex-connected Activation Network: Each pair of vertices should
have k vertex-disjoint paths between them in the activated subgraph, for some given
k > 0.

2. Minimum Edge-connected Activation Network: Each pair of vertices should
have k edge-disjoint paths between them in the activated subgraph, for some given
k > 0.

3. Minimum Steiner Activation Network: Each pair of vertices in each of k
terminal sets R1, R2, . . . , Rk ⊆ V should be connected in the activated subgraph.

4. Minimum Spanning Activation Tree: The activated set of edges must contain
a spanning tree on all vertices v ∈ V .

5. Minimum Activation Path: The activated set of edges must contain a path
between two specified vertices {s, t} ∈ V .

6



1.2.2 Known results for power optimization

In the most well-studied model, called “Power Optimization,” an edge (u, v) with weight
wu,v is selected, or “activated”, if pu and pv are both at least wu,v i.e., min{pu, pv} ≥ wu,v.

The power at a vertex will be equal to the weight of one of its incident edges, so the
possible powers form a discrete set.

Calinescu and Wan [9] gave a 2k-approximation algorithm for minimum edge-connected
activation network. Hajiaghayi et al. [15] gave an O(

√
n)-approximation algorithm for the

same. Lando and Nutov [26] improved the approximation ratio to k. They showed it
cannot be approximated within a factor of o(log n) unless P=NP. Panigrahi [34] gave
a bi-criteria approximation algorithm with the approximation factor of O(log n log k, 2).
Here, O(log n log k, 2) approximation means that his result achieve an approximation factor
of O(log n log k) while achieving an edge connectivity of k/2 instead of k. Note that
Panigrahi’s result extends to the installation cost framework also.

Hajiaghayi et al. [15] observed that the directed version of the minimum vertex-connected
activation network is in P , whereas the directed version of the minimum edge-connected
activation network cannot be approximated within a factor of O(2log1−ε n) for any fixed
ε > 0, unless NP-hard problems can be solved in quasi-polynomial time.

For k=2, Kortsarz and Nutov [22] gave an 11/3-approximation algorithm for the minimum
vertex-connected activation network. For the minimum edge-connected activation network,
Calinescu et al. [9] gave a 4-approximation algorithm for k = 2.

Althaus et al. [2] gave a 5/3-approximation algorithm for the minimum spanning
activation tree problem. Kortsarz and Nutov [22] gave a 4-approximation algorithm for
the minimum Steiner activation network problem.

1.2.3 Known results for max power optimization

The max power optimization model was introduced by Angel et al. [3] where they defined an
edge (u, v) to be activated if max{pu, pv} ≥ wu,v. They gave 2-approximation algorithm for
the minimum max power vertex cover problem and as a consequence of total unimodularity
(Subsection 1.1.5), they have a polynomial time algorithm for bipartite graphs. They also
showed that under this model minimum max power s-t cut (in the paper they call it
Min-Power-Cover Cut) can be solved in polynomial time. The key idea here is that the
optimal power at a vertex will be equal to the weight of one of its incident edges, so
there are only a discrete set of possible powers that may be assigned to a node. Using
this property, they create a modified graph and solve the traditional min s-t cut problem
on this modified graph to get an optimal answer for the max power s-t cut. They also
showed that the minimum spanning activation tree problem in this model is as hard to
approximate as the dominating set problem.
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1.2.4 Known results for installation cost optimization

In the “installation cost” model, an edge (u, v) with weight wu,v is selected if pu+pv ≥ wu,v.

Panigrahi [34] gave an O(log n) approximation algorithm for the minimum spanning
activation tree problem. He proved that this approximation factor is best possible assuming
P 6= NP [34]. Since minimum spanning tree is a special case of minimum vertex-connected
activation network, minimum edge-connected activation network, and minimum Steiner
activation network with k = 1, it is also NP-hard to approximate these problems to a
factor of o(log n).

1.2.5 Known results for activation network

The unified model of activating edges was introduced by Panigrahi [34]. In the activation
network model, there is an activation function fu,v : D ×D → {0, 1} that takes as input
the values of xu and xv and returns 1 if the edge (u, v) is activated for the chosen values
of xu and xv. In this setting there are generally two assumptions made:

• Finite domain. It is assumed that power values are chosen from a finite set of
discrete values D and therefore the running time of any algorithm can be polynomial
in terms of the size of D.

• Monotonicity. It is assumed that the activation function is monotonic, i.e., if
fxu,xv = 1 then fyu,yv = 1 for any yu and yv satisfying yu ≥ xu and yv ≥ xv.

In this setting Panigrahi [34] showed that it is NP-hard to approximate minimum
spanning tree to a factor of o(log n) and gave a greedy algorithm with an approximation
factor of O(log n). For k = 1 and 2, he also gave O(log n)-approximation algorithms
for both minimum vertex-connected activation network and minimum edge-connected
activation network problems. He also showed that even for k = 1, it is NP-hard to obtain an
approximation factor of o(log n) for both problems. He gave a polynomial time algorithm
to solve the minimum activation path problem.

1.2.6 Known results for node-weighted optimization

The node-weighted optimization model is slightly different from all other models as the cost
is associated with the nodes instead of the edges. The goal is to minimize the sum of the
assigned powers pv on vertices v ∈ V i.e., min

∑
v∈V pv. An edge (u, v) is said to be activated

if pu ≥ wu and pv ≥ wv. In this model, Klein and Ravi [20] gave an O(log n) approximation
algorithm for the minimum node-weighted Steiner activation network for k=1. In the same
paper they also mentioned that approximating minimum node-weighted Steiner tree is as
hard as set cover and therefore unless P = NP , this is the best approximation factor.
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For further background on activation network design problems, we refer readers to Nutov’s
survey [33].

1.3 Alternative Formulations of MSPEC

In this section we give two alternative formulations of the MSPEC problem.

1.3.1 MSPEC as a Matching

In MSPEC we are searching for an edge cut. The set of edges in an s-t cut form a
bipartite graph. Given an edge cut C, the power assignment that will remove those edges
corresponds to a minimum “w-vertex cover”(see Subsection 1.1.4), i.e., an assignment of
weights yv to the vertices so that yu + yv ≥ wu,v for all edges (u, v) in the cut C. In a
bipartite graph, due to Theorem 3, we know that the minimum value of a w-vertex cover
is equal to the maximum weight matching. Therefore, MSPEC can be alternatively stated
as: given an edge-weighted graph, partition the vertices into two sets with s in one set
and t in the other, and minimize the weight of a maximum matching of the edges crossing
between the two sets, e.g., see Figure 1.5(a).

1.3.2 Integer Program formulation for MSPEC

We can also formulate MSPEC as an integer program (ILP). Although we do not use it in
our algorithms, it may lead to future developments. Let Πst be the set of all paths in G
from s to t. We will have a non-negative variable pu for each u ∈ V and a 0-1 variable xu,v
for each edge (u, v) ∈ E with the intended interpretation that the cut edges have xu,v = 1.

min
∑
u∈V

pu

s.t.
∑

(u,v)∈π

xu,v ≥ 1 ∀π ∈ Πst

pu + pv ≥ wu,vxu,v ∀(u, v) ∈ E
xu,v ∈ {0, 1} ∀(u, v) ∈ E
pu ≥ 0 ∀u ∈ V
ps = pt = 0

(1.1)

This integer programming formulation has an integrality gap of at least 2 even for
unweighted graphs. Consider the graph shown in Figure 1.5(b). It is easy to verify that
the optimum integral solution has cost 1. On the other hand, if we assign pc = 0.5 and
xb,c = 0.5, xc,d = 0.5 and xc,t = 0.5, this is a feasible solution for the LP relaxation of the
above ILP. The integrality gap of this ILP is thus ≥ 1

0.5
= 2.
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Figure 1.5: (a) Illustration for MSPEC . The powers on the vertices are shown in red.
The cut edges are in green and the edges of the maximum matching are shown in bold

green. (b)The integrality gap of ILP (1.1) is 2 for this graph.
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Chapter 2

Barrier Coverage in a Sensor
Network

In this chapter, we discuss the motivation for studying MSPEC which arises from the
problem of barrier coverage. We discuss related work in the area of barrier coverage. In
Section 2.2, we propose a new measure of barrier coverage, i.e., “Minimum Shrinkage”. In
Section 2.2.1 we give a reduction from the minimum shrinkage problem to MSPEC .

Our motivation for studying the Minimum Shared-Power Edge Cut problem comes from
a problem of measuring barrier coverage in a sensor network. A sensor network consists
of a set of sensors, where each sensor is modelled as a unit disk (a disk of radius 1) in the
plane. The location of a sensor is the center point of its unit disk, and the sensor detects
points within its unit disk.

A sensor network provides a barrier between one region of the plane, R1, and another
region, R2, if any point that travels from R1 to R2 will be detected by the sensors, i.e., there
is no path between the two regions that remains outside all the disks.

In a rectangular barrier the sensors are located at points in a rectangle and the sensor
network must detect any path that crosses the rectangle from below to above. Kumar
et al. [25] introduced this concept and suggested measuring “barrier coverage” as the
minimum value k such that every path that crosses the barrier intersects at least k sensor
disks. Equivalently, the barrier coverage is the minimum number of sensors that must be
removed to allow a path in the free space between disks. For a rectangular barrier, Kumar et
al. showed that barrier coverage can be computed in polynomial time by applying Menger’s
theorem (Theorem 1) to the intersection graph of the disks—barrier coverage becomes the
minimum size of a vertex cut, which is equal to the maximum number of vertex disjoint
paths that go from the left of the rectangle to the right of the rectangle. Figure 2.1 shows
the relationship between vertex disjoint paths and the minimum barrier coverage.

A number of alternative measures of barrier coverage have been proposed in the literature
with the (conflicting) goals of having a measure that models reality and that can be
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s t

Figure 2.1: Barrier coverage is equal to the maximum number of vertex disjoint paths that
go from left to right of the rectangle

computed efficiently. We propose a new measure called Minimum Shrinkage. Like some
of the previous measures (see the following section for more background) it models the
fact that a sensor’s ability to detect points decreases with distance from the sensor. Our
approximation algorithm for Maximum Shared-Power Edge Cut can be applied to compute
Minimum Shrinkage for rectangular barrier coverage.

Our new measure is defined in Section 2.2, and the reduction to MSPEC is given in
Section 2.2.1. We begin with further background on barrier coverage in Section 2.1.

2.1 Background on Barrier Coverage

As mentioned above, Kumar et al. [25] introduced the idea of measuring barrier coverage
by the minimum number of sensors whose removal permits a path from region R1 to region
R2 in the free space outside the sensor disks.

Bereg and Kirkpatrick [6] applied the measure of Kumar et al. [25] more broadly and
called it “resilience”. They introduced a new measure of barrier coverage called thickness
which is defined to be the minimum, over all paths from R1 to R2, of the number of
times the path enters a disk, counting repeats. Whereas resilience seems to be hard to
compute except for the case of a rectangular barrier, thickness can easily be computed in
polynomial time using weighted shortest path algorithms. Although a path from R1 to
R2 that intersects at most k discs may intersect each of those discs many times, Bereg
and Kirkpatrick show that a Euclidean shortest path that intersects only those k discs will
intersect any one disc at most three times. Using this structural property, they showed
that thickness provides a 3-approximation to resilience. The approximation factor can be
improved to 2 if R1 and R2 are well separated.

Korman et al. [21] showed that computing resilience of bounded fat regions is NP-hard.
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They also gave a fixed-parameter tractable algorithm (parameterized by the resilience) for
unit disks.

The above measures implicitly assume that a sensor can detect points uniformly across
its unit disk. In reality, the power of a sensor decreases with distance, and a sensor can
detect closer points more easily than farther points. In order to take distance from the
sensors into account, we can think of diminishing the power of the sensors, or shrinking
their unit disks. Meguerdichian et al. [29] formulated this as a “maximum breach path”—to
find the maximum value d such that there is a path from region R1 to R2 where every point
of the path is at least distance d from every sensor point. They showed that a maximum
breach path should travel on the Voronoi diagram of the sensor points, and thus can be
computed in time O(n log n). The maximum breach measure is equivalent to asking for
the maximum value d such that shrinking all the sensor disks to radius d permits a path
in the free space between the shrunken disks.

In a related paper Megerian et al. [28] introduced the notion of “exposure”. This
measure takes into account, not only how close the path goes to the sensor points, but also
the amount of time that is spent close to sensor points. More formally, the “[all] sensor field
intensity” at a point is the sum of all the sensor’s powers at that point, and “exposure”
along a path is the integral of the sensor field intensity along the path. Computing a
path of minimum exposure is a very difficult continuous problem. Djidjev [11] gave an
approximation algorithm, using the idea of discretizing the domain. For the special case
of a rectangular barrier, there is a min-max formula that relates the minimum exposure of
a path from bottom to top of the rectangle and a maximum flow from left to right of the
rectangle—see Strang [40] and Mitchell [30].

Veltri et al. [44] studied the maximum exposure path as a variant of the minimum
exposure path. Given a sensor network with an exposure model, the maximum exposure
path between the starting region R1 and an ending region R2 is a path connecting the two
regions such that this path has the highest exposure among all the R1-R2 paths. Intuitively,
it can be thought of as the best-case coverage path. They showed computing the maximum
exposure path is NP-hard.

For further background on exposure and maximum breach path refer to Ghosh and
Das’s survey on coverage and connectivity issues in wireless sensor networks [12] (in
particular, Section 4).

We discuss related work in the area of barrier coverage which instead of focusing on
the worst case behavior, focuses on the expected barrier coverage. Liu et al. [27] showed
the necessary condition for barrier coverage under Poisson distribution of the sensors in a
2-D rectangle. They showed that if the width of a rectangle is Ω(log(height)) and sensors
are deployed according to a Poisson process then with high probability, the network is
k-barrier covered. A sensor network is k-barrier covered if all paths from region R1 to R2

are k-covered, i.e., each path intersects with at least k disks.

There has been a long line of study from barrier coverage of non-disk sensor networks
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to minimizing the movements of sensors for achieving barrier coverage. In the remainder
of this section, we discuss other works that have been motivated by barrier coverage.

Gibson et al. [14] studied the opposite problem of minimum barrier coverage, “Isolating
points using unit disks”. The input is a set of unit disks D, and a set of points P such
that D separates any two points in the P , that is, for any two points p, q in P , every
path between p and q intersects at least one disk in D. The goal is to find a minimum
cardinality subset of D that separates P . They gave an O(1) approximation algorithm for
this problem. Later Penninger and Vigan [36] showed that this problem is NP-hard. In
the journal version of the paper, Gibson et al. [13] improved the approximation ratio to
(9 + ε).

Cabello and Giannopoulos [7] considered the above problem for general curves but
for two specified points. They formulated “2-point separation” problem as given a set C
of n curves in the plane whose intersection graph is connected. Compute the smallest
cardinality subset C ′ ⊆ C that separates s from t. They gave a polynomial time algorithm
to solve this problem with a running time of O(n3). They also showed that the general
point-separation problem is NP-hard for unit disks, and horizontal and vertical segments.
Note that Penninger and Vigan [36] independently proved NP-hardness of the general
point-separation problem for unit disks.

There has been some work in studying non-disk sensor networks. Tseng and Kirkpatrick
[42] showed that determining resilience of a network of unit-line segments is APX-hard.
They extended their NP-hardness proof to unit square sensors, and elliptical sensors
and argued that their technique can be extended to any non-symmetrical shape sensors.
Tseng [41] considered the question of given a sensor network of spheres in 3D space and two
points s and t, what is the resilience of the senor network. They showed that computing
this is NP-hard by a reduction from the vertex cover problem.

For further background refer to Wang’s survey on coverage problems in sensor networks [45]
(in particular, Section 6).

2.2 Minimum Shrinkage

We propose a new measure of barrier coverage, called minimum shrinkage. This new
measure models the reality that a sensor’s detection ability drops off with distance.

To shrink a unit disk by amount si for 0 ≤ si ≤ 1 means to decrease its radius by si,
i.e., to replace the unit disk by a disk of radius (1−si). Let ci, i = 1, . . . , n be the locations
of unit disk sensors in a sensor network that is supposed to act as a barrier between region
R1 and region R2 in the plane. The minimum shrinkage of the sensor network is the
minimum

∑
si such that if we shrink the ith sensor disk by si, 1 ≤ i ≤ n, then the network

no longer provides a barrier between regions R1 and R2, i.e., there is a path from R1 to R2

in the free space between the shrunken disks. See Figure 1.4.
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2.2.1 Reduction from Minimum Shrinkage to MSPEC

We will show that the Minimum Shrinkage problem for rectangular barrier coverage can
be formulated as an MSPEC problem.

Given a set of n points P in R2, the unit disk graph induced by P , denoted UDG(P ),
is an embedded graph with vertex set P and an edge (u, v) when the unit disks centered
at u and v intersect, i.e., the edge set is {(u, v) : u, v ∈ P and dist(u, v) ≤ 2}.

An instance of the Minimum Shrinkage problem for rectangular barrier coverage consists
of a set of points P inside a rectangle R. To reduce to MSPEC we start with the graph
UDG(P ). Define the weight of edge (u, v) to be (2 − dist(u, v)). This is the amount of
shrinkage at u and v that is needed to make the disks at u and v non-intersecting. We
add two special vertices s and t. Vertex s is connected to every vertex whose unit disk
intersects the left boundary of R, and vertex t is connected to every vertex whose unit
disk intersects the right boundary of R. To define the weight of these edges, let Rl and
Rr be the lines through the left and right boundaries of R, respectively, and, for line L,
let dist(u, L) be the distance from point u to line L. Define the weight of an edge (s, u)
to be (1 − dist(u,Rl)). This is the amount of shrinkage needed to make the disk at u
not intersect the left boundary of R. Similarly, define the weight of an edge (t, u) to
be (1 − dist(u,Rr)). A solution to MSPEC on the resulting graph solves the Minimum
Shrinkage problem where we interpret pv as the amount to shrink the disk centered at v.
We started this work originally by looking at the minimum shrinkage problem but due to
this reduction, we know that the minimum shrinkage problem is a special case of MSPEC .

s t

(a)

s t

A

B

C

p A

pB

pC

(b)

Figure 2.2: Reduction from MSPEC to Minimum Shrinkage problem: (a) shows the
intersection graph of unit disks. Weight of an edge (u, v) is (2 − dist(u, v)). Vertex s
and t are connected to vertices whose unit disk intersects the left and the right boundary
of rectangle respectively; (b) shows shrunken disc for Minimum Shrinkage problem and the
corresponding cut obtained for the MSPEC problem.

Observe that this reduction still works (with obvious modifications) for the more general
problem where each sensor disk has a specified radius, i.e., the radii are not uniform.
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Chapter 3

Approximation Scheme for MSPEC

In this chapter, we describe our approximation scheme for MSPEC . We give the precise
construction of the algorithm. We also prove the relevant theorems needed to show that
indeed our approximation algorithm is a (1 + ε)-approximation to MSPEC . We show that
our algorithm is an FPTAS by carefully analyzing the running time of the algorithm.

The idea of our approximation algorithm is to convert the MSPEC problem to a
minimum vertex cut problem. Observe that if we can only assign power 0 or 1 to every
vertex in V , then our problem is Minimum Vertex Cut—remove a minimum number of
vertices to disconnect s and t. We will discretize our problem by replacing each vertex
v ∈ V by multiple copies of v such that removing one copy corresponds to assigning a
small fraction of the maximum power to v. A similar approach was used, in a geometric
setting, by Agarwal et al. [1]. We want to ensure that the discretization introduces an
error of at most ε

n
for each vertex with respect to the optimum solution.

In order to carry out this plan, we need an upper bound on the maximum power we
might assign to any vertex, and, for the error analysis, we need a lower bound on the
optimum solution.

3.1 Minimum Bottleneck Shared-Power Edge Cut

To approximately solve the minimum shared-power edge cut problem, we will need a
solution to another closely related problem which we refer to as the “Minimum Bottleneck
Shared-Power Edge Cut Problem”. This problem is very similar to MSPEC in that we
want to assign powers to the vertices such that s and t become disconnected if we remove
any edge where the sum of the powers on its endpoints is at least its weight. The key
difference is that instead of assigning different powers to every vertex we will assign the
same power to each vertex in V and minimize this “bottleneck” power. More precisely, we
want the minimum value p such that s and t become disconnected if we remove the edges
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(u, v), u, v ∈ V with 2p ≥ wu,v and the edges (u, v), u ∈ V, v ∈ {s, t} with p ≥ wu,v (See
Figure 3.1).
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Figure 3.1: (a) Input graph G (b) Bottleneck power is shown in red. The cut edges are
shown in light gray.

In the case of barrier coverage for a rectangular barrier, the minimum bottleneck
shared-power edge cut is equivalent to the “maximum breach path” measure introduced
by Meguerdichian et al. [29]. Namely, we want to shrink all sensor disks by the same
(minimum) amount to permit a path in the free space between disks. Meguerdichian et
al. computed the maximum breach path in polynomial time using Voronoi diagrams (See
Figure 3.2). It is interesting that the problem can be solved in a more general non-geometric
setting.

In the following we show how to obtain an exact solution to the minimum bottleneck
shared-power edge cut in polynomial time. Let the set of removed edges in the optimal
solution be M∗ and the optimal power be p∗.

Claim 1. There is an edge e = (u, v) ∈ M∗ which is tight for p∗, i.e., wu,v = 2p∗ if
u, v ∈ V or wu,v = p∗ if u ∈ V and v ∈ {s, t}.

Proof. Suppose wu,v < 2p∗ for all edges in M∗ with both end points in V and wu,v < p∗ for
all edges in M∗ with one end point in V . Then we can reduce p∗ to (p∗−ε) and still ensure
that wu,v ≤ 2(p∗ − ε) for all edges in M∗ with both end points in V and wu,v ≤ p∗ − ε for
edges in M∗ with one end point in V , so p∗ was not the minimum bottleneck power.

Theorem 6. Minimum Bottleneck Shared-Power Edge Cut can be solved optimally in
O((n+m) logm) time.

Proof. Define the power requirement of edge e = (u, v) to be 1
2
wu,v if u, v ∈ V or wu,v if

u ∈ V and v ∈ {s, t}. By Claim 1, p∗ is equal to the power requirement for some edge
e ∈ E, and we can use binary search on the power requirements to find the minimum p
such that s and t become disconnected if we remove the edges whose power requirement is
at most p. We sort all the power requirements in non-decreasing order and perform binary
search on this list. To test a value p′ from this list, we create a graph G′ with vertices of
G and edges of G whose power requirement is greater than p′.
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Figure 3.2: Maximum breach path travel on the Voronoi diagram of the sensor points.
The shrunken discs are shown in red

If s and t are disconnected in G′ we recursively perform a binary search on the power
requirements between 0 and p′, otherwise we recurse on all higher power requirements.
The running time for this approach is determined by the binary search, which takes time
O(logm), and by checking connectivity of s and t in G′, which takes time O(n + m).
Therefore, the total running time is O((n + m) logm). Here n is the number of vertices
and m is the number of edges.

3.2 Approximation Scheme

Let n = |V |, let p∗ be the minimum power for the bottleneck shared-power edge cut
problem, and let OPT be the minimum power sum for MSPEC .

Lemma 7. p∗ ≤ OPT ≤ np∗.

Proof. Assigning power p∗ to every vertex in V provides a feasible solution to MSPEC ,
and therefore OPT ≤ np∗.

For the other inequality, let pmax be the maximum power assigned to any vertex of V
in an optimum solution to MSPEC . Then pmax ≤ OPT. Assigning pmax to every vertex
in V provides a solution to the minimum bottleneck shared-power edge cut. Therefore,
p∗ ≤ pmax ≤ OPT.

From this lemma, we know that the maximum power we might assign to a vertex is
np∗. The lemma also implies that if we introduce an error of at most α = ε

n
p∗ for each

vertex, then the total error over all vertices will be at most εp∗ ≤ εOPT. Our plan is to
construct a new graph G′ = (V ′, E ′) in which we replace each vertex of V by c copies,
where each copy represents power α. Since the total power that we might assign to the
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vertex is np∗, the number of copies of the vertex that we need is c = dnp∗
α
e = dn2

ε
e. We will

replace each vertex of V by a sequence of c vertices, v(0), v(1), . . . , v(c− 1).

Removing the first k vertices of the sequence will correspond to assigning power kα to
v. In G′ we will assign edges to the copies v(i) to reflect this. In particular, for u, v ∈ V
we put an edge (u(i), v(j)) in G′ if iα + jα < wu,v. For u ∈ V, x ∈ {s, t} we put an
edge (u(i), x) in G′ if iα < wu,x. A related idea of discretizing the choices using vertices
combined with minimum cuts was developed by Hochbaum et al. [16, 17] for integer linear
programs with at most two variables per inequality. They rely on an algorithm by Picard
[37] for finding the minimum-cost closure of a directed graph.

The precise construction of G′ is given in Algorithm 1.

Algorithm 1 Construction of G′

∀v ∈ V , make c = dn2

ε
e copies of v numbered v(0), v(1), . . . , v(c− 1)

V ′ = {v(i) | ∀v ∈ V, 0 ≤ i < c} ∪ {s, t}
α = εp∗

n

E ′ = {(u(i), v(j)) | iα + jα < wu,v} ∪ {(u(i), x) | x ∈ {s, t}, iα < wu,x}
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Figure 3.3: (a) Input graph G (b) Replace each vertex with dn2

ε
e copies of it.
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Figure 3.4: Add edges between u(i) and v(j) if iα + jα < wu,v. Modified graph G′ with
α = 1.

Our approximation algorithm now proceeds as follows. We find a minimum s-t vertex
cut in G′, denoted K∗, and use it to define power values on the vertices of G as given in
Algorithm 2.
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Algorithm 2 Approximation Algorithm for MSPEC

Construct G′ as in Algorithm 1
K∗ ← minimum s-t vertex cut for G′

k∗v = |{v(j) ∈ K∗}| for v ∈ V
pv = k∗v · α for v ∈ V
return p = (pv)v∈V as the solution for MSPEC on G
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Figure 3.5: Approximate value of MSPEC can be found using the min s-t vertex cut of
graph G′. f(0), f(1), f(2), d(0), e(0), and b(0) are in min s-t vertex cut.

To prove that this algorithm is an FPTAS we will first prove that the solution returned
by the algorithm is indeed a feasible solution for MSPEC . Then, to bound the approximation
factor, we will derive an upper bound on the solution returned by the algorithm in terms
of the optimum solution to MSPEC . We first prove some properties of G′ and of K∗.

Claim 2. If v ∈ V and i1 < i2, then in G′ the neighbourhoods of v(i1) and v(i2) are related
by N(v(i1)) ⊇ N(v(i2)).

Proof. We will show that (v(i2), x) ∈ E ′ implies (v(i1), x) ∈ E ′.
Case 1. x = u(j) for u ∈ V . Since the edge (v(i2), u(j)) is in E ′ we have i2α + jα < wv,u
so i1α + jα < wv,u which implies (v(i1), u(j)) ∈ E ′.
Case 2. x ∈ {s, t}. Since the edge (v(i2), x) is in E ′ we have i2α < wv,x so i1α < wv,x
which implies (v(i1), x) ∈ E ′.

Claim 3. The copies of v in K∗ are v(0), v(1), . . . , v(k∗v − 1).

Proof. We will prove that the copies of v in K∗ form a prefix of v(0), v(1), . . . v(c − 1).
Then the result follows since there are k∗v copies of v in K∗.

Consider i1 < i2. By Claim 2, N(v(i1)) ⊇ N(v(i2)). Now observe that if a graph
contains vertices u and v with N(u) ⊇ N(v) and v is in a minimum vertex cut, then u
must be as well, since u is a duplicate of v with possibly some more edges. Therefore if
v(i2) is in K∗ then so is v(i1).

Lemma 8. A solution of Algorithm 2 is a feasible solution for MSPEC and the sum of the
assigned powers is α|K∗|.
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Proof. Let Gp be the result of removing from G all the edges (u, v) with pu + pv ≥ wu,v
where p is as defined by Algorithm 2. (Recall that we always set ps = pt = 0.) We must
show that s and t are disconnected in Gp. Suppose not. Then there is an s-t path P in
Gp, say s, x1, x2, . . . , xl, t. We will show that the path P ′ = s, x1(k

∗
x1

), x2(k
∗
x2

), . . . , xl(k
∗
xl

), t
exists in G′ −K∗, a contradiction to K∗ being an s-t vertex cut.

First, note that all the vertices of P ′ lie in G′ − K∗ by Claim 3. Consider an edge
(u, v) of the path P with u, v ∈ V . Since this edge is still present in Gp, we know that
pu+pv < wu,v. Thus by the definition of the p values, k∗uα+k∗vα < wu,v. By the construction
of G′, the edge (u(k∗u), v(k∗v)) is in E ′.

It remains to consider the edges of P incident to s and t. Since the edge (s, x1) is in Gp,
we know that px1 < ws,x1 . Thus by the definition of the p values, k∗x1α < w(s, x1). By the
construction of G′, the edge (s, x1(k

∗
x1

)) is in E ′. The argument for edge (xl, t) is similar.

Thus the path P ′ exists in G′ −K∗ which gives the desired contradiction.

In our solution we assign a power of pv to vertex v, so the total power assigned is:∑
v∈V

pv =
∑
v∈V

k∗v · α = α
∑
v∈V

k∗v = α|K∗| (3.1)

Next we prove an upper bound on the size of the set K∗ (a minimum s-t vertex cut
in G′) in terms of an optimum solution to MSPEC . Let p∗v, v ∈ V be an optimum power
assignment for MSPEC . Let p∗s = p∗t = 0.

Lemma 9. G′ has a vertex cut K of size
∑
dp
∗
v

α
e. Thus |K∗| ≤

∑
dp
∗
v

α
e.

Proof. Let M∗ be the set of edges of G that are removed by the optimum power assignment
p∗v, v ∈ V , i.e., M∗ = {(u, v) : p∗u + p∗v ≥ wu,v}. M∗ is an s-t cut in G.

Define kv = dp
∗
v

α
e for v ∈ V . Define K, a set of vertices of G′, to consist of the first

kv copies of each vertex v ∈ V , i.e., K = {v(i) : v ∈ V, 0 ≤ i < kv}. Observe that
|K| =

∑
dp
∗
v

α
e. To prove the lemma, we just need to show that K is an s-t vertex cut in G′.

It suffices to show that if (u, v) ∈ M∗ then there is no copy of edge (u, v) in G′ −K.
Consider an edge (u, v) ∈ M∗. Then p∗u + p∗v ≥ wu,v, so dp

∗
u

α
eα + dp

∗
v

α
eα ≥ wu,v, i.e.,

kuα + kvα ≥ wu,v.

Now observe that if i ≥ ku and j ≥ kv then iα+ jα ≥ kuα+ kvα ≥ wu,v, so (u(i), v(j))
is not an edge of G′ (by definition of G′). On the other hand, if i < ku then u(i) ∈ K,
so u(i) is not a vertex of G′ −K, and similarly, if j < kv then v(j) ∈ K, so v(j) is not a
vertex of G′ −K. Thus no copy of the edge (u, v) exists in G′ −K. This proves that K is
an s-t vertex cut in G′ and completes the proof of the lemma.

Theorem 10. Algorithm 2 is a fully polynomial time approximation scheme (FPTAS) for
the Minimum Shared-Power Edge Cut problem (MSPEC). Furthermore, the running time
of Algorithm 2 is O(n5.5mε−2.5).
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Proof. By Lemma 8 we know that Algorithm 2 gives a solution to MSPEC of cost α|K∗|,
and by Lemma 9 we have |K∗| ≤

∑
dp
∗
v

α
e.

Value of approximate solution = α|K∗| ≤
∑
v∈V

⌈p∗v
α

⌉
· α <

∑
v∈V

(p∗v
α

+ 1
)
· α

=
∑
v∈V

(
p∗v + α

)
=
∑
v∈V

p∗v + nα = OPT + nα.

Thus the approximation ratio is at most OPT+nα
OPT

=
OPT+nεp∗

n

OPT
= 1+ εp∗

OPT
≤ (1+ε), since

OPT ≥ p∗. The running time of Algorithm 2 depends on the running time of finding a
minimum s-t vertex cut and this can be done in time O(n1/2m) = O(n2.5) for a graph with
n vertices and m edges using a modified version of Dinitz’s flow algorithm [31, Chapter
1] [39, Corollary 9.7a]. If our original graph G has n vertices and m edges, then the
graph G′ has |V ′| = nc = O(n

3

ε
) vertices and at most |E ′| ≤ |E|c2 = O(mn

4

ε2
) edges, and

Algorithm 2 finds a vertex cut in graph G′ in O(n5.5mε−2.5) time.
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Chapter 4

Variations of MSPEC

In this chapter we give polynomial time algorithms for three special cases of MSPEC :
MSPEC with uniform edge weights, MSPEC with integral edge weights, and when the
power values at each vertex are restricted to a polynomially bounded domain. In Section
4.3 we show that our FPTAS extends to a general version of MSPEC where there are costs
on vertices.

4.1 Uniform/Integral edge weights

We use the alternative formulation of MSPEC given at the start of Section 1.3. For any
instance of MSPEC there is a vertex partition S, T with s ∈ S and t ∈ T , such that the
minimum power sum is equal to the minimum “w-vertex cover” in the bipartite graph B of
edges between S and T , and this is equal to the weight of a maximum matching in B. By
Kőnig’s Theorem (see Theorem 2) and its generalization to weights (Egerváry’s Theorem,
see Theorem 3) we know that if the edge weights are integral then there is an optimal
solution where the power values are also integral, and if the edge weights are all 1 then it
suffices to consider power values that are {0, 1}-valued.

For MSPEC with uniform edge weights, we can scale so that all edge weights are 1.
Then, by the above, the power values will be 0 or 1 and the problem reduces to Minimum
Vertex Cut, which can be solved in time O(n1/2m) time as discussed in the previous section.

For MSPEC with integer edge weights, we can assume that the power values are
integral. Furthermore, if the edge weights are bounded by W , then so are the power values.
We can then use the same approach as Algorithm 1, but make W +1 copies of each vertex,
and set α = 1. This solves MSPEC exactly, with a running time of O((nW )1/2(mW 2)) =
O(n1/2mW 5/2). Thus it provides a pseudo polynomial time algorithm for MSPEC with
integral edge weights.
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4.2 Polynomial Domain

In activation network design problems, one of the most common assumptions is that of a
‘polynomial domain’ for the power values (See Subsection 1.2.5 or [34, 32]). This means that
the power values for vertex v come from a set Dv whose size is bounded by a polynomial in
n = |V |. The polynomial domain assumption is realistic for wireless networks when there
are a small number of possible powers that can be assigned to a vertex. However, this does
not apply to the minimum shrinkage problem because we are using shrinkage as a measure
of barrier coverage rather than making any assumption about sensor powers.

Under the polynomial domain assumption, MSPEC admits a polynomial time algorithm.
We sketch the algorithm. The technique is similar to the one we used in the previous
section. We assume 0 ∈ Dv for all v (otherwise, we must pay min(Dv) directly, and can
then subtract it from all later values). Let the values in Dv be dv0, d

v
1, . . . , d

v
cv in increasing

order. We modify the construction of graph G′ from Algorithm 1, to create |Dv| = cv + 1
copies of each vertex v, which we number v(0), v(1), . . . , v(cv). We assign a cost of dvi+1−dvi
to v(i) for i = 0, . . . , cv − 1, and ∞ to v(cv).

In graph G′ we add an edge between two vertices u(i) and v(j) if dui + dvj < wu,v. We
now run a max flow algorithm to find the minimum cost s-t vertex cut in G′ by applying the
standard graph transformation (see [46]) to convert a vertex cut to an edge cut, and vertex
weights to edge capacities. If the minimum cost is ∞ then there is no feasible assignment
of powers from the given domains. Otherwise, for vertex v, if i is the maximum index for
which v(i) is included in the cut, then we assign pv = dvi+1. Note that a feasible solution
has i < cv so this is well-defined.

For correctness, first observe that the prefix property, as mentioned in Claim 3, still
holds. Next, we claim that if the assigned powers do not remove edge (u, v) then there was
a copy of that edge in G′ after removing the optimum vertex cut. Suppose we assigned
pu = dui+1 and pv = dvj+1 but pu + pv < wu,v. Then the edge (u(i + 1), v(j + 1)) still exists
in G′. In the other direction, a solution to MSPEC with powers from the given domains
yields a vertex cut in G′ of equal cost.

The running time for the algorithm is determined by the running time of the standard
max-flow algorithms, which is O(n3/ log n) [10] (or see [39, Section 10.8]). The number of
vertices in the new graphG′ is

∑
v |Dv|, thus the running time isO((

∑
v |Dv|)3/ log(

∑
v |Dv|)).

4.3 MSPEC with Vertex Costs

While trying to prove NP-hardness for MSPEC , we thought it might be easier to prove
the hardness result for a more general version of MSPEC where each vertex also has
a multiplicative cost associated with it. Though we were unsuccessful in proving the
hardness, we were able to extend our FPTAS result to even this case. Formally, MSPEC
with multiplicative vertex costs problem is defined as:
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Input: Graph G = (V ∪ {s, t}, E) with a non-negative weight wu,v on each edge
(u, v) ∈ E and a non-negative cost cv on every vertex v ∈ V .

Problem: Assign a non-negative power pv to each v ∈ V and assign ps = pt = 0 such
that removing the edge set {(u, v) ∈ E : pu+pv ≥ wu,v} disconnects s and t and

∑
v∈V cvpv

is minimized.

Analogously to Section 3.1, we define a bottleneck version of MSPEC with multiplicative
vertex costs, where we want to pay the same cost k = pvcv at each vertex v ∈ V .
For the same input as above, we want the minimum value k such that s and t become
disconnected if we remove the edges (u, v), u, v ∈ V with k

cu
+ k

cv
≥ wu,v and the edges

(u, v), u ∈ V, v ∈ {s, t} with k
cu
≥ wu,v.

We show how to obtain an exact solution to Minimum Bottleneck Shared-Power Edge
Cut with vertex costs in polynomial time. Let the set of removed edges in the optimal
solution for Minimum Bottleneck Shared-Power Edge Cut with vertex costs be M∗ and
the optimal cost be k∗.

Claim 4. There is an edge e = (u, v) ∈ M∗ which is tight for k∗, i.e., wu,v = k∗

cu
+ k∗

cv
or

wu,v = k∗

cu
if u ∈ V and v ∈ {s, t}.

Proof. Suppose wu,v <
k∗

cu
+ k∗

cv
for all edges in M∗ with both end points in V and wu,v <

k∗

cu
for all edges in M∗ with one end point in V . Then we can reduce k∗ to (k∗ − ε) and
still ensure that wu,v ≤ k∗−ε

cu
+ k∗−ε

cv
for all edges in M∗ with both end points in V and

wu,v ≤ k∗−ε
cu

for edges in M∗ with one end point in V , so c∗ was not the minimum bottleneck
cost.

Theorem 11. Minimum Bottleneck Shared-Power Edge Cut with vertex costs can be solved
optimally with a running time of O((n+m) logm).

Proof. Define the cost requirement of an edge e = (u, v) to be wu,v
1
cu

+ 1
cv

if u, v ∈ V or wu,vcu

if u ∈ V and v ∈ {s, t}. By Claim 4, k∗ is equal to the cost requirement for some edge
e ∈ E, i.e., wu,v = k∗

cu
+ k∗

cv
or wu,v = k∗

cu
which implies that k∗ = wu,v

1
cu

+ 1
cv

if u, v ∈ V or

k∗ = wu,vcu if u ∈ V and v ∈ {s, t}. We can use binary search on the cost requirements to
find the minimum k such that s and t become disconnected if we remove the edges whose
cost requirement is at most k.

Similar to the proof of Theorem 6, we do a binary search on the sorted (in non-decreasing
order) list of cost requirements instead of the power requirements to find the optimal cost.
This can be done in O((n+m) logm) running time.

Let OPT be the optimal solution of MSPEC with vertex costs and let k∗ be the optimal
solution of bottleneck MSPEC with vertex costs.
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Lemma 12. k∗ ≤ OPT ≤ nk∗.

Proof. Assigning cost k∗ to every vertex in V provides a feasible solution to MSPEC with
vertex costs, therefore, OPT ≤ nk∗.

For the other inequality, let kmax be the maximum cost assigned to any vertex of V
in OPT . Then kmax ≤ OPT. Assigning kmax to every vertex in V provides a solution to
Minimum Bottleneck Shared-Power Edge Cut with vertex costs. Therefore, k∗ ≤ kmax ≤
OPT.

To get an FPTAS for MSPEC with vertex costs we modify the construction of graph
G′ = (V ′, E ′) in Algorithm 1. In V ′, we still create dn2

ε
e copies of every vertex in V . We

set α equal to εk∗

n
and define the edge set E ′ = {(u(i), v(j)) | iα

cu
+ jα

cv
< wu,v} ∪ {(u(i), x) |

x ∈ {s, t}, iα
cu
< wu,x}. The remainder of the algorithm and the proofs carry over after

similar modifications.
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Chapter 5

Faster Approximation for MSPEC

In this chapter, we will discuss two different approaches to speed up the running time of
our approximation algorithm. For the first approach, we show that a discrete version of
MSPEC is a 2-approximate solution for MSPEC . Using this solution, we design a faster
FPTAS for MSPEC with a running time of O(n3mε−2.5 + m3/ logm). In the second
approach, using max power s-t cut as a 2-approximate solution for MSPEC we manage to
shave off O(m3/ log(m)) from the running time of our FPTAS.

5.1 Speedup using the discrete version of MSPEC

In this section, we will show how to speed up our FPTAS from the current running
time of O(n5.5mε−2.5) to O(n3mε−2.5 + m3/ logm). To accomplish this, we discretize
the problem using a faster 2-approximation for MSPEC instead of the n-approximation
given by the minimum bottleneck shared power edge cut. This kind of approach is
well studied in the literature, for instance Benkoczi et al. [5] improved the running time
of a (1 + ε)-approximation algorithm for “minimizing total sensor movement for barrier
coverage by non-uniform sensors on a line” from O(n7ε−3) [4] to O(n5ε−3).

For the 2-approximation, we consider a discrete version of MSPEC where a vertex
can only be assigned a power equal to the weight of one of its incident edges. With this
restriction, the number of possible choices of power assignment at a given vertex is equal
to the degree of the vertex in G.

Thus the polynomial domain assumption is satisfied and the algorithm of Section 4.2
solves this discrete version in time O((

∑
v deg(v))3/ log(

∑
v deg(v))) = O(m3/ logm).

We now use the fact that the discrete MSPEC provides a 2-approximation. This was
proved more generally by Panigrahi [34, Lemma 3.11], but we include his short argument.
Let OPT be the optimum solution value for MSPEC .

Theorem 13 ([34]). Discrete MSPEC is a 2-approximation for MSPEC.
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Proof. We will show that 2OPT is an upper bound for the discrete version of MSPEC ,
which proves the theorem. Let C be the set of edges in the s-t cut determined by an
optimum solution. For each edge e = (u, v) ∈ C, select the endpoint v of higher power.
Then pv ≥ 1

2
wu,v. For each selected vertex we raise pv to the maximum wx,v where (x, v)

is an edge of C that selects v. Then we at most double the power of v. Furthermore, any
vertex not selected can have its power decreased to 0. The new power values still activate
all edges of C and provide a solution to discrete MSPEC .

Let Z be the optimal value of a solution to the discrete MSPEC problem on graph G.
Clearly OPT ≤ Z, and from Theorem 13, we have Z ≤ 2OPT. Thus:

Z

2
≤ OPT ≤ Z (5.1)

We can use these bounds in place of those in Lemma 7 to obtain a faster approximation
algorithm for MSPEC . From Equation (5.1), the maximum power we assign to any vertex
is Z. If we introduce an error of at most α = εZ

2n
at each vertex, the total error will be at

most nα ≤ εOPT. We construct the graph G′ as in Algorithm 1, though instead of taking
dn2

ε
e copies of each vertex, we only use c′ = dZ

α
e = d2Zn

εZ
e = d2n

ε
e copies.

Algorithm 2 on this new G′ is an FPTAS with a running time of O(|V ′|1/2|E ′|) =
O((nn

ε
)1/2(m(n

ε
)2)) = O(n3mε−2.5). Since the time to compute Z is O(m3/ log(m)), the

overall running time of our fast FPTAS is O(n3mε−2.5 + m3/ logm). In addition to
improving the running time, this algorithm also improves the space complexity by at least
O(n2).

5.2 Speedup using Min-Power Cover Cut

We use ideas similar to those in the previous section to get a faster FPTAS. In particular,
we shave off O(m3/ log(m)) from the previous running time to get an FPTAS with a
running time of O(n3mε−2.5). The plan is to use a faster 2-approximation algorithm for
MSPEC and then use a similar discretization approach as of Section 5.1.

The faster 2-approximation relies on an algorithm by Angel et al. [3] to find a minimum
edge cut under a different power model. Recall from Subsection 1.2.3 the “Max Power
Optimization” model (2) where an edge e = (u, v) is said to be activated if max{pu, pv}
≥ wu,v. In this model the edge cut problem becomes: Given a graph with distinguished
vertices s and t, assign powers to the vertices so that the “activated” edges with max{pu, pv}
≥ wu,v form an s-t cut, and the sum of powers is minimized. We will call this the MMPEC
problem, for “Min Max-Power Edge Cut”. Angel et al. [3] called it the “Min-Power-Cover
cut problem”, and gave an optimal algorithm with running time O(m1/2m) = O(m3/2).

We will now show that an optimal solution to MMPEC is a 2-approximation to MSPEC .
We begin with a claim that any edge cut provides a feasible solution to MMPEC .
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Algorithm 3 Greedy power assignment for a given cut C

Let C be an s-t cut.
Initialize set S to consist of the edges of C initialize M ′ to {}.
while S is not empty do

Choose the edge (u, v) ∈ S with max weight wu,v and assign pu = pv = wu,v.
Update M ′ ←M ′ ∪ (u, v).
Delete all the edges in S incident to u and v including (u, v).

end while

Claim 5. The greedy power assignment (Algorithm 3) is a feasible solution for MMPEC.
The greedy power assignment computes powers and a matching M ′ that provide a feasible
solution to MMPEC with objective value 2×

∑
e∈M ′ we.

Proof. Notice that if we can remove all the edges of C by assigning sufficient power to the
vertices in V , then we are done. Let us consider the ith iteration of the greedy algorithm
where we picked the max weight edge (u, v) ∈ S, assigned power wu,v to both u and v,
and deleted all the edges in S incident to either u or v. The weight of all edges that were
deleted in this iteration was less than or equal to wu,v. Since all the deleted edges had
at least one of their endpoints as either u or v, assigning wu,v to u and v is sufficient to
delete them under the max power optimization model. Given an s-t cut C, by the greedy
assignment of powers, we get a feasible solution for MMPEC .

Notice that M ′ is a matching of cut edges. In the ith iteration, we take the edge (u, v)
and delete all the edges incident to either u or v. All edges that are selected in subsequent
iterations have no endpoint common either with u or v.

By the greedy assignment, we assign a total power of
∑

(u,v)∈M ′ 2wu,v.

Theorem 14. A solution to MMPEC is a 2-approximation for MSPEC.

Proof. Consider the alternative formulation of MSPEC in terms of the matching (as defined
in Subsection 1.3.1), i.e., partition the vertices of G into two sets with s in one set and
t in the other, and minimize the weight of a maximum matching of the edges crossing
between the two sets. Let the edges in an optimal cut for MSPEC be C and the max
weight matching of C be M . Then OPTMSPEC =

∑
e∈M we.

Consider the greedy matching M ′ of C as computed in Claim 5. By Claim 5, there
is a feasible solution of MMPEC with a cost of

∑
e∈M ′ 2we. Therefore, OPTMMPEC ≤∑

e∈M ′ 2we = 2×
∑

e∈M ′ we.

M is a max-weight matching of C, therefore,
∑

e∈M ′ we ≤
∑

e∈M we. We get following
chain of inequalities:

OPTMMPEC ≤ 2×
∑
e∈M ′

we ≤ 2×
∑
e∈M

we = 2×OPTMSPEC (5.2)
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Let Z be the optimal solution of MMPEC and OPT be the optimal solution of MSPEC .
From Theorem 14, we have Z ≤ 2OPT. Since a feasible solution for MMPEC is also a
feasible solution for MSPEC , we get OPT ≤ Z and combining the above two gives:

Z

2
≤ OPT ≤ Z (5.3)

This approach can be used to compute a (1 + ε)-solution as done in Section 5.1. A
2-approximate solution using MMPEC can be found with a running time of O(m3/2). This
gives us an FPTAS for MSPEC with a running time of O(n3mε−2.5).
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Chapter 6

Conclusion and Open Problems

We introduced a new problem called the Minimum Shared-Power Edge Cut (MSPEC ).
The goal is to assign powers at the vertices and remove an edge if the sum of powers on
vertices is at least the weight of the edge between them. The original motivation for this
problem comes from studying Minimum Shrinkage problem. Minimum Shrinkage problem
is a more practical measure of classic barrier coverage problem.

We also studied several other variants of MSPEC that include uniform edge weights,
MSPEC under the polynomial domain assumption, and vertex weighted MSPEC . For
MSPEC , minimum shrinkage problem, and vertex weighted MSPEC we gave a fully
polynomial time approximation scheme. For uniform edge-weighted MSPEC , we showed
that the problem can be solved in pseudo-polynomial time. Under the polynomial domain
assumption, we showed that MSPEC admits a polynomial time solution.

We hope that this work will help to unify barrier coverage problems with activation
network design problems and foster a new research direction.

The biggest open question is to settle the complexity of the MSPEC problem—is it in
P? NP-hard? For hardness, a starting point would be to show that MSPEC with vertex
costs is NP-hard. On the other side, the complexity of the minimum shrinkage problem
(i.e., the special case of MSPEC arising from shrinking unit disks in the plane) is also open.
Can the geometry of unit disk graphs be used to develop a polynomial time algorithm?
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