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Abstract

Abelian varieties, in particular Jacobian varieties, have long attracted interest in mathe-
matics. Their influence pervades arithmetic geometry and number theory, and understand-
ing their construction was a primary motivator for Weil in his work on developing new
foundations for algebraic geometry in the 1930s and 1940s. Today, these exotic mathemati-
cal objects find applications in cryptography and computer science, where they can be used
to secure confidential communications and factor integers in subexponential time.

Although in many respects well-studied, working in concrete, explicit ways with abelian
varieties continues to be difficult. The issue is that, aside from the case of elliptic curves, it
is often difficult to find ways of modelling and understanding these objects in ways amenable
to computation. Often, the approach taken is to work “indirectly” with abelian varieties,
in particular with Jacobians, by working instead with divisors on their associated curves to
simplify computations. However, properly understanding the mathematics underlying the
direct approach — why, for instance, one can view the degree zero divisor classes on a curve
as being points of a variety — requires sophisticated mathematics beyond what is usually
understood by algorithms designers and even experts in computational number theory. A
direct approach, where explicit polynomial and rational functions are given that define both
the abelian variety and its group law, cannot be found in the literature for dimensions
greater than two.

In this thesis, we make two principal contributions. In the first, we survey the mathe-
matics necessary to understand the construction of the Jacobian of a smooth algebraic curve
as a group variety. In the second, we present original work with gives the first instance of
explicit rational functions defining the group law of an abelian variety of dimension greater
than two. In particular, we derive explicit formulas for the group addition on the Jacobians
of hyperelliptic curves of every genus g, and so give examples of explicit rational formulas
for the group law in every positive dimension.
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1 Introduction
If one were forced to pick a most influential mathematical object of the past 150 years,
a certain candidate would be the elliptic curve. In many ways, elliptic curves lie at the
center of mathematics: their points are described by polynomials, and so lie in the domain
of number theory; they are groups, and so have abstract algebraic structure; and over
the complex numbers they are complex tori, and so lie in the domain of geometry. Due
to this rich abundance of structure, elliptic curves are not only fascinating in their own
right — having lead to a proof of Fermat’s Last Theorem and featuring in one of the Clay
Mathematics Institute’s Millennium Prize Problems — but also turn up as unexpected
solutions to problems in cryptography and computational number theory.

The essential properties which make elliptic curves special — being specified by polyno-
mial equations, possessing an algebraic group structure, and having geometric and topolog-
ical properties — are not unique to elliptic curves. The general notion is that of an abelian
variety : a projective algebraic variety with a group law given by algebraic maps. But unlike
elliptic curves, general abelian varieties are much harder to describe. While elliptic curves
can be characterized by their Weierstrass equations, describing higher-dimensional abelian
varieties is typically only undertaken indirectly, where one proves that such objects and
their defining equations must exist, but stops far short of writing any such equations down.
Indeed, just to be able to properly discuss these varieties over non-algebraically closed fields,
Weil was motivated to rewrite the foundations of algebraic geometry itself, work that was
later superseded by Grothendieck’s language of schemes.

But while developing the theory of these objects is probably best done indirectly, com-
putational applications typically require explicit constructions. And while there has been
increasing interest in work in this area, many basic operations lack efficient algorithms or
formulas. One difficulty is that much of the work done by mathematicians is written in a
language that requires years of serious study to understand properly, and so is inaccessible to
algorithm designers. The goal of this thesis is to understand and explain both perspectives:
we will show how to construct Jacobian varieties both in the modern formalism and using
explicit equations in the hyperelliptic case, and discuss the connections between these two
constructions. We also present some original results giving explicit equations for the group
law on hyperelliptic Jacobians of any genus g.

1.1 What is a Jacobian Variety?
The Jacobian variety of a curve C takes many forms. Over the complex numbers, it can be
viewed as arising from a quotient Ω1(C)∗/H1(C,Z), where Ω1(C)∗ is the dual space to the
space of holomorphic one-forms on C, and H1(C,Z) embeds into Ω1(C)∗ by sending [γ] to
the integration functional ω 7→

∫
[γ]
ω. Over general fields, it can be regarded as a variety

which parametrizes degree zero line bundles over C. Using the correspondence between
divisors and line bundles, this can in turn be regarded as a variety parametrizing degree
zero divisors modulo principal divisors.

Prior to the 1940s, varieties could be regarded as having two types: affine and projective.
But in 1940 Weil announced a proof of the Riemann Hypothesis for function fields that
required a theory of Jacobian varieties that did not exist at the time.1 In 1941, he was
unable to construct the Jacobian variety as a projective variety, and so was led to rewrite the
foundations of algebraic geometry to allow him to work with so-called “abstract varieties”

1See the footnote on page 31 of [5]
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— varieties without an embedding into affine or projective space — and completed his
proof. His work was later superseded by Grothendieck, who developed new foundations for
algebraic geometry which were broader and easier to work with than Weil’s.

There are at least two possible views on what it can mean for a variety to be “abstract”.
One version, which we will see when we review Mumford’s construction of hyperelliptic
Jacobians, is that an abstract variety is kind of like an abstract manifold, in that it is
described locally by charts satisfying certain compatibility conditions. This variant still
requires one to consider the object as being given by explicit equations affine-locally, and
so does not fully capture what, precisely, is meant when one refers to varieties for which no
such equations are known. The second viewpoint, which requires the abstract language of
category theory, will be the subject of the next section.
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2 Universal Constructions and Representable Functors
The claim that the Jacobian of a curve C “is” a variety should already be regarded as quite
curious. We have mentioned three realizations of Jacobians in passing — one involving
holomorphic one-forms, one involving line bundles, and a third involving divisors — and
none of these descriptions seem to resemble varieties. A related phenomenon is that one
often hears that projective algebraic curves (say of degree d) form a variety, or that projective
space is the variety of lines through the origin in some affine space. What is usually meant
in these cases is that there is a bijection between the collection of objects being considered
and the points of some algebraic variety, and in this sense the set under consideration is
“realized” as a variety.

Of course, not any bijection will do; any two sets of the same cardinality are in bijection,
and over an appropriate field a variety may be constructed of any desired cardinality, yet
plainly not every set is a variety. The usual excuse is that some bijections are “natural” and
some aren’t, and the ones that are can be used to realize a class of objects as points in some
space. But when one asks what exactly makes a map “natural” the answers received are
often unclear; common explanations include that natural maps somehow “lack choices” or
are “maps anyone else would choose”.2 In some ways, the notion is much like U.S. Supreme
Court Justice Stewart’s famous description of obscenity: it’s difficult to describe, but you
know it when you see it.

To understand just how category theory can make clear what it means for such a map
to be natural, let us consider two descriptions of the ring of integers Z. One way to describe
Z is by explicit construction: we begin with N, then consider equivalence classes of pairs of
elements of N with the same difference, then define an operation + and ×, and eventually
construct an object which we may call Z. A second description of Z is as follows: Z is a
ring such that for any ring R, there is a unique morphism Z→ R.

It is easy to see that Z satisfies the second property, but to what extent does this property
determine Z? Suppose we had a second ring Z′ which satisfied the second property. Then we
see that there is a unique map f : Z→ Z′ and a unique map g : Z′ → Z. The composition
g ◦ f : Z → Z is a map Z → Z, and must be the unique such map also. But the identity
map is such a map, so g ◦ f = idZ. Similarly, f ◦ g = idZ′ . So we see that the given property
determines Z up to isomorphism.

The isomorphisms f and g we have obtained in this way are in some ways very special.
Not only do they give us an isomorphism between Z and Z′, but they give us a way to
translate between maps leading out of Z′ and maps leading out of Z. If we have any map
Z′ → R, where R is a ring, precomposing with f gives us a map Z→ R which satisfies the
same uniqueness condition as the original map from Z′ → R. In other words, the map f
gives us not just a way to identify Z and Z′, but a way to translate maps from Z′ satisfying
a certain characterizing property to maps from Z which satisfy the same property. In effect,
the map f lets us replace Z′ with Z in the category of rings, in the sense that we have a
way of transforming any statement about Z′ and its outward-pointing morphisms into an
equivalent statement about Z and its outward-pointing morphisms.

The preceding example, although very straightforward, already contains several key
ideas. It is first and foremost an example of a universal property — one of the simplest
possible, since for a given “copy” of Z there is only one map Z → R to describe for each
ring R. The general idea of a universal property is that one can “define” objects up to a

2See for instance this MathOverflow discussion: https://mathoverflow.net/questions/56938/
what-does-the-adjective-natural-actually-mean
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certain flexibility in the underlying model being used; that is, provided we ensure that every
statement we wish to make about Z is some statement about its ring-theoretic properties
and its morphisms to other rings, it makes no difference which “version” of Z is chosen. Al-
though this seems to vastly overcomplicate matters when it comes to working with integers,
constructions in modern algebraic geometry can quickly grow very complicated, and it often
helps to be able to have a general description of what properties the object of interest must
satisfy, and then pick the most convenient model object for the situation of interest. The
maps that then “translate” one model to another are called natural isomorphisms.

This sort of reasoning gives us the first outline for what it will mean to construct the
Jacobian of a curve as a variety. The idea will be to find a universal-property-like description
of what maps to the Jacobian ought to look like, and then prove that there does indeed
exist an object (a variety) with maps matching the description. The description of those
maps will take the form of a functor, and the object which satisfies the required properties
will be said to represent the functor. The theory in this section develops these ideas.

2.1 Key Categorical Definitions
The following definitions are standard, so we present them without comment.

Definition 2.1. A category C consists of a collection of objects Obj(C) and a collection of
morphisms Mor(C) satisfying the following properties:

(i) Each morphism f belonging to Mor(C) has a domain and a codomain, which are objects
in Obj(C). We write f : C → C ′, where C is the domain of f and C ′ is the codomain
of f .

(ii) If f : C → C ′ and g : C ′ → C ′′ are morphisms in Mor(C), then there exists a morphism
g ◦ f : C → C ′′, where the operation − ◦ − is called composition.

(iii) For each object C in Obj(C), there is an identity morphism idC : C → C which satisfies
f ◦ idC = f and idC ◦ f = f whenever composition is defined.

Definition 2.2. If C and D are categories, then a functor F : C → D is a map defined on
the objects and morphisms of C, such that:

(i) For each C ∈ Obj(C) there is an object F (C) ∈ Obj(D).

(ii) For each f ∈ Mor(C) there is an morphism F (f) ∈ Mor(D).

(iii) If idC ∈ Mor(C) is an identity arrow, then F (idC) = idF (C).

(iv) Functors which are covariant satisfy the following additional properties. If f ∈ Mor(C)
takes the form f : C → C ′ then F (f) takes the form F (f) : F (C) → F (C ′). If
f, g ∈ Mor(C) then F (g ◦ f) = F (g) ◦ F (f).

(v) Functors which are contravariant satisfy the following additional properties. If f ∈
Mor(C) takes the form f : C → C ′ then F (f) takes the form F (f) : F (C ′)→ F (C). If
f, g ∈ Mor(C) then F (g ◦ f) = F (f) ◦ F (g).

Every functor is either covariant or contravariant. Often this label will be omitted when
the variance of the functor is understood from context. We will often (but not always) state
definitions and theorems for functors of one particular variance, with the understanding that
every definition, statement or theorem has a dual form for the other variance obtained by
simply reversing the relevant arrows.
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Notation 2.3. If C is a category and C,C ′ ∈ Obj(C) then we write HomC(C,C ′) to denote
all morphisms from C to C ′.

Definition 2.4. A functor F : C → D is said to be faithful if for all C,C ′ ∈ Obj(C) the in-
duced maps HomC(C,C ′)→ HomD(F (C), F (C ′)) (or HomC(C,C ′)→ HomD(F (C ′), F (C))
in the contravariant case) are injective.

Definition 2.5. A functor F : C → D is said to be full if for all C,C ′ ∈ Obj(C) the induced
maps HomC(C,C ′)→ HomD(F (C), F (C ′)) (or HomC(C,C ′)→ HomD(F (C ′), F (C)) in the
contravariant case) are surjective.

Definition 2.6. A functor F : C → D is said to be fully faithful if it is both full and faithful.

Definition 2.7. Suppose that F : C → D and G : C → D are functors. Then a natural
transformation η between F and G is a collection of morphisms ηC : F (C) → G(C) such
that for any morphism f : C → C ′ in Mor(C) the following diagram commutes:

F (C) G(C)

F (C ′) G(C ′)

ηC

F (f) G(f)

ηC′

Note that we say a diagram commutes when any pair of compositions obtained by following
any path of arrows between two objects are equal. We write η : F =⇒ G to mean that η
is a natural transformation from F to G.

Definition 2.8. If F,G and H are three functors from C to D, η : F =⇒ G and τ : G =⇒
H are two natural transformations, then we have a natural transformation τ ◦ η : F =⇒ H
defined via (τ ◦ η)C = τC ◦ ηC .

Definition 2.9. We say that a natural transformation η : F =⇒ G is a natural equivalence
or an isomorphism of functors, if there exists a natural transformation η−1 : G =⇒ F such
that η−1◦η and η◦η−1 are both equal to the identity natural transformations idF : F =⇒ F
and idG : G =⇒ G respectively, which are the natural transformations where all the
component maps are identity maps.

Definition 2.10. We have the following categories of interest:

(i) Set is the category whose objects are sets and whose morphisms are maps of sets with
the obvious composition rule.

(ii) Grp is the category whose objects are groups and whose morphisms are group homo-
morphisms with the obvious composition rule.

(iii) AbGrp is the category whose objects are abelian groups and whose morphisms are
group homomorphisms with the obvious composition rule.

(iv) Ring is the category whose objects are (commutative) rings and whose morphisms are
ring homomorphisms with the obvious composition rule.

(v) Let R be a ring. Then R-Mod is a category whose objects are R-modules and whose
morphisms are morphisms of R-modules with the obvious composition rule.
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(vi) If C and D are categories, then DC is the category of (covariant) functors from C
to D with morphisms being natural transformations between functors. Note that if
F : C → D is a functor then there is a trivial natural transformation η : F =⇒ F
where each ηC = idF (C) that serves as the identity morphism for the functor F in the
category DC .

(vii) Analogously, if C and D are two categories, there is a category of contravariant functors
from C to D. We will denote this DCop . The notation is explained by the notion of
opposite category, but we will not need this here.

2.2 Universality and Representability
A particular class of functors which plays a special role in category theory is the “Hom”
functors. A Hom-functor on a category C is a functor Hom(C,−) : C → Set (or Hom(−, C) :
Cop → Set in the contravariant case) associated to an object C ∈ Obj(C) which acts as
follows:

(i) For any object C ′ ∈ Obj(C), we have C ′ 7→ Hom(C,C ′).

(ii) For any morphism f : C ′ → C ′′ we have a map f∗ (respectively f∗ in the contravariant
case) where f∗ : Hom(C,C ′)→ Hom(C,C ′′) via [g : C → C ′] 7→ [f ◦ g : C → C ′′].

The importance of Hom-functors is tied to the same philosophy behind universal properties
we described earlier: a Hom-functor associated to an object C effectively determines the
object C up to a “natural isomorphism” between possible models of C, and the way in which
this happens is closely related to the way in which universal properties determine objects
up to “translating isomorphisms” as described earlier. To make this relationship precise we
will consider some explicit cases of this phenomenon, for which the following definitions will
prove useful.

Definition 2.11. Let C be a category, and X and Y objects in C. A product of X and Y
is an object X × Y whose properties are characterized by the following diagram:

W

X × Y Y

X

αY

αX

∃!

πY

πX

That is, it is an object with two morphisms πX : X×Y → X and πY : X×Y → Y such that
for any other objectW ∈ Obj(C) and any pair of morphisms αX : W → X and αY : W → Y
there exists a unique morphism W → X × Y such that the above diagram commutes.

Definition 2.12. Let C be a category, X,Y and Z objects in C, and α : X → Z and
β : Y → Z morphisms in C. A fibre-product of X and Y over Z with respect to the
morphisms α and β is an object X×Z Y whose properties are characterized by the following
diagram:

6



W

X ×Z Y Y

X Z

γY

γX

∃!

πY

πX β

α

That is, it is an object with two morphisms πX : X ×Z Y → X and πY : X ×Z Y → Y
so that the bottom right square commutes. In addition, for any other object W ∈ Obj(C)
and any pair of morphisms γX : W → X and γY : W → Y such that the square involving
X,Y, Z and W commutes, there exists a unique morphism W → X ×Z Y such that the
above diagram commutes.

Definition 2.13. Consider the specific case when C = Ring. Let A,B and C be objects in
C, and suppose that α : C → A and β : C → B are morphisms of C. Then a tensor product
(of rings!) A⊗C B of A and B over C with respect to the morphisms α and β is an object
whose properties are characterized by the following diagram:

D

A⊗C B B

A C

∃!

γB

jBγA
jA

α

β

That is, it is an object with two morphisms jA : A→ A⊗C B and jB : B → A⊗C B such
that the bottom right square commutes. In addition, for any other object D ∈ Obj(C) and
any pair of morphisms γA : A→ D and γB : B → D such that the square involving A,B,C
and D commutes, there exists a unique morphism A⊗CB → D such that the above diagram
commutes.

The definitions 2.11, 2.12 and 2.13 are all examples of universal properties. A universal
property is a description which characterizes an object in a category by describing either the
morphisms out of it or the morphisms into it. Objects described by universal properties tend
to have the interpretation of being the “simplest” or “most efficient” constructions satisfying a
certain property. Another way to describe this phenomenon is that one describes a universal
property in a category C by giving a functor F : C → Set, and saying that an object C
satisfies the universal property described by F if there exists an isomorphism of functors
between F and one of the functors Hom(−, C) or Hom(C,−). This motivates the following
definition:

Definition 2.14. We say that a functor F : C → Set is representable if there exists an
object C ∈ Obj(C) and either an isomorphism of functors η : F =⇒ Hom(−, C) or an
isomorphism of functors η : F =⇒ Hom(C,−). In such a situation, we say that C is a
representing object for F .

The functor F which is being represented should be interpreted as a functor which
sends objects of C to sets whose elements describe what the morphisms of a representing
object “ought to look like”, and which sends morphisms of C to sets whose elements describe
what composing those morphisms with other morphisms in the category “ought to do”. In
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some ways one can think of this as giving a kind of “axiomatic” description of an object —
specifying how it should behave and what is relations to other objects in the category should
be — and the task of deciding whether the functor is representable is the task of deciding
whether there exists an object satisfying the axioms. The following lemmas give us some
concrete examples of the connection between representability and universal properties.

Lemma 2.15. Let C be a category, and X and Y objects in C. Then W is a product of X
and Y if and only if it (contravariantly) represents the functor Hom(−, X) × Hom(−, Y ),
defined as follows:

(i) On objects U we have U 7→ Hom(U,X)×Hom(U, Y ).

(ii) If f : V → U is a morphism in C, then the functor sends f to

f∗ : Hom(U,X)×Hom(U, Y )→ Hom(V,X)×Hom(V, Y ),

where f∗ acts on a pair (αX , αY ) ∈ Hom(U,X)×Hom(U, Y ) via

f∗(αX , αY ) = (αX ◦ f, αY ◦ f).

Proof. Suppose first that W is a product of X and Y . Define the maps

ηU : Hom(U,X)×Hom(U, Y )→ Hom(U,W ),

by sending a pair of maps (αX , αY ) to the unique map αW induced by the universal property.
Then suppose that f : V → U is a morphism in C. Then

ηV (f∗(αX , αY )) = ηV (αX ◦ f, αY ◦ f) = f∗(ηU (αX , αY )),

or alternatively, the following diagram commutes:

Hom(U,X)×Hom(U, Y ) Hom(U,W )

Hom(V,X)×Hom(V, Y ) Hom(V,W ).

ηU

f∗ f∗

ηV

Since all the maps ηU are invertible for all U , then the natural transformation η is invertible,
hence an isomorphism of functors.

Secondly, we suppose that we have an isomorphism of functors

η : Hom(−, X)×Hom(−, Y ) =⇒ Hom(−,W )

for some object W . Then we also have an inverse natural transformation η−1. Define
(πX , πY ) = η−1

W (idW ). Then if U is an object in C equipped with two maps (αX , αY ) ∈
Hom(U,X)× Hom(U, Y ), we may consider the map f := ηU (αX , αY ) : U → W . Since η−1

is a natural transformation, we know that

Hom(W,W ) Hom(W,X)×Hom(W,Y )

Hom(U,W ) Hom(U,X)×Hom(U, Y )

η−1
W

f∗ f∗

η−1
U

8



commutes, and so tracing the path of idW through the diagram we find that (αX , αY ) =
(πX ◦ f, πY ◦ f), which is simply the commutativity of the product diagram. This relation
also shows the uniqueness of the map f , since the definition of f means that f is determined
by (αX , αY ), and the equation shows that f also determines this pair.

Lemma 2.16. Let C be a category, X,Y and Z objects in C, and α : X → Z and β : Y → Z
maps in C. Then W is a fibre product of X and Y over Z with respect to the maps α and
β if and only if it (contravariantly) represents the functor

F := Hom(−, X)×Hom(−,Z) Hom(−, Y ),

defined via

(i) For any object U , the set F (U) is equal to the collection of all pairs of morphisms
(γX , γY ) ∈ Hom(U,X)× Hom(U, V ) such that α ◦ γX = β ◦ γY (i.e., the fibre product
diagram commutes).

(ii) The image of F on a morphism f : V → U is the induced pullback map.

Proof. The proof is analogous to the argument in Lemma 2.15 above. Alternatively, it will
follow from Lemma 2.18 below, with the understanding that the functor F is a fibre product
object in the functor category SetC

op

obtained by applying the map C → SetC
op

described
in Lemma 2.18 to the fibre product diagram in C.

Lemma 2.17. Let C = Ring, A,B and C objects in C, and α : C → A and β : C → B
maps in C. Then D is a tensor product of A and B over C with respect to the maps α and
β if and only if it represents the functor

F := Hom(A,−)×Hom(C,−) Hom(B,−),

defined via

(i) For any object E, the set F (E) is equal to the collection of all pairs of morphisms
(γA, γB) ∈ Hom(A,E)×Hom(B,E) such that γA ◦α = γB ◦β (i.e., the tensor product
diagram commutes).

(ii) The image of F on a morphism f : E → E′ is the induced pushforward map (post
composing with f).

Proof. This holds via an analogous argument as with 2.16, obtained by “reversing all the
arrows”.

The preceding Lemmas can all be viewed as instances of the observation that to describe
an object in a category C, it suffices to describe (at least one of) its Hom-functors. The
following Lemma makes this observation precise by showing that any category C is equivalent
to a category formed from the collection of its Hom-functors and the natural transformations
between them.

Lemma 2.18 (The Yoneda Lemma). Let C be a category. The map C 7→ Hom(−, C) is a
functor3, and it defines a full and faithful embedding C → SetC

op

. The analogous result is
true in the contravariant case.

3This really just gives the functor on objects, for its description on morphisms see part (i) of the proof.
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Proof. The proof is essentially a series of “trivial” verifications, although what precisely is
being said takes time to internalize.

(i) We first need to check that the given map is indeed a functor, which means we have
to describe its action on morphisms. Suppose that f : C → C ′ is a morphism in C.
Then we obtain a collection of maps (f∗)A : Hom(A,C)→ Hom(A,C ′) for each A ∈ C
sending g : A→ C to f ◦ g : A→ C ′. We then have that if A′ ∈ C and α : A→ A′ is
a morphism of C, then (f∗)A ◦ α∗ = α∗ ◦ (f∗)A′ , i.e., the following diagram commutes

Hom(A′, C) Hom(A′, C ′)

Hom(A,C) Hom(A,C ′)

(f∗)A′

α∗ α∗

(f∗)A′

This shows that f∗ : Hom(−, C) =⇒ Hom(−, C ′) defines a natural transformation
(note that α∗ here is the image of the morphism α under the respective Hom-functors).
It is clear that (idC)∗ gives the identity natural transformation, and that post com-
posing respects composition (i.e., (f1 ◦ f2)∗ = (f1)∗ ◦ (f2)∗) so we see that the map
C 7→ Hom(−, C) is indeed a functor C → SetC

op

.

(ii) Suppose that γ1 : C → C ′ and γ2 : C → C ′ are morphisms which are sent to the
same natural transformation, i.e., the natural transformations (γ1)∗ : Hom(−, C) =⇒
Hom(−, C ′) and (γ2)∗ : Hom(−, C) =⇒ Hom(−, C ′) are equal. Then in particular,
we have that ((γ1)∗)C(idC) = ((γ2)∗)C(idC), i.e., that γ1 = γ2. So we see that the
functor C 7→ Hom(−, C) is faithful.

(iii) Suppose that η : Hom(−, C) =⇒ Hom(−, C ′) is a natural transformation. We
will show that η = (ηC(idC))∗. For any A ∈ Obj(C) and α : A → C, we have the
commutativity of the diagram

Hom(C,C) Hom(A,C ′)

Hom(A,C) Hom(A,C ′)

ηC

α∗ α∗

ηA

and so

((ηC(idC))∗)A(α) = ηC(idC) ◦ α
= ηA(idC ◦ α)

= ηA(α).

Hence we see that ηA = ((ηC(idC))∗)A, and since A was arbitrary, that η = (ηC(idC))∗.
This shows that the functor C 7→ Hom(−, C) is full.

In section 4, we will want to construct the Jacobian as a certain object in the category
of schemes. In order to ensure that the object we are constructing has the properties that
we want, we will describe how it “ought to behave” by describing a certain functor which
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describes what its morphisms “ought to look like”. The question of constructing the Jacobian
is then the question of constructing an object which can be shown to represent the desired
functor. The Yoneda Lemma then tells us that, in many situations of interest, working
with the functor we are representing is just as good as working with the object we have
constructed, and so in many cases this lets us discard the explicit construction and work
simply with the properties of the object determined by the functor.
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3 Scheme Theory Background
In this section we introduce some necessary scheme theory background for the construc-
tion we will perform in Section 4. Since the background is somewhat extensive, most of
the key definitions and theorems will be presented with minimal exposition. Readers inter-
ested in additional exposition of the basic material presented here can refer to the author’s
introductory article on schemes and sheaves[13].

3.1 Schemes and Sheaves
Definition 3.1. Let X be a topological space. The category associated to X is a category
whose objects are the open sets U ⊆ X and whose morphisms are inclusion maps U ↪→ U ′.
We often use X and this category interchangeably when the context is clear.

Definition 3.2. Let X be a topological space. A presheaf on X with values in a category
C is a contravariant functor F : X → C. If ι : U ↪→ U ′ is an inclusion of open sets in X,
then we often refer to F(f) as a restriction map and label it resU

′

U . We also require that C
be a concrete category4, so the objects in it can be thought of as having elements.

Notation 3.3. Let X be a topological space, and F : X → C a presheaf. If U ⊆ X is open,
we refer to the elements of F(U) as sections over U . We will sometimes use the notation
Γ(U,F) := F(U), which has the advantage that one can also consider varying the second
argument.

Definition 3.4. Let F ,G : X → C be presheaves on X. A morphism of presheaves η : F →
G is a collection of maps ηU such that for each inclusion map ι : U ↪→ U ′, the following
diagram commutes:

F (U ′) G(U ′)

F (U) G(U)

ηU′

resU
′

U resU
′

U

ηU

This can also be viewed as a natural transformation between the functors F and G.

Definition 3.5. Let X be a topological space. A sheaf on X with values in C is a presheaf
F : X → C which satisfies the following two additional axioms:

(i) Suppose s, s′ ∈ F(U) where U ⊂ X is open and {Uα}α∈I is an open cover of U . Then
if resUUα(s) = resUUα(s′) for all α ∈ I then s = s′.

(ii) Suppose that {sα}α∈I is a collection of sections, where sα ∈ F(Uα) and {Uα}α∈I is
an open cover of an open set U ⊆ X. Then if resUαUα∩Uα′ (sα) = resUα′Uα∩Uα′ (sα

′) for
all choices of indices α and α′ such that Uα ∩ Uα′ 6= ∅, then there exists a section
s ∈ F(U) such that resUUα(s) = sα for all α ∈ I.

The first axiom is called the identity axiom, and the second the gluability axiom.
4Intuitively, this just means that the objects are sets and the morphisms are maps of sets satisfying some

additional structural properties, e.g. the category of Rings, the category of Groups, etc.
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Definition 3.6. Let F ,G : X → C be sheaves. A morphism of sheaves is simply a morphism
between the underlying presheaves. In particular, this means that the category of sheaves
on X is a full subcategory of the category of presheaves on X.

Definition 3.7. Let F : X → C where C is one of AbGrp, Ring, or R-Mod (in essence,
we just need to be able to add things). Let p ∈ X be a point of X. The stalk above p of F
is an object Fp in C constructed as follows:

(i) As a set it is

Fp := {(s, U) : s ∈ F(U), U ⊆ X open containing p}/ ∼

where (s, U) ∼ (s′, U ′) holds if and only if resUU∩U ′(s) = resU
′

U ′∩U (s′).

(ii) As an object in C it has the natural operations, where sections are added, scalar
multiplied or multiplied by applying restriction maps to the domains if necessary.

Lemma 3.8. Let F : X → C be a (pre)sheaf in one of AbGrp, Ring, or R-Mod. Then
if p ∈ X, the stalk Fp can be characterized by the following universal property:

(i) For all open sets U containing p, there exist maps resUp : F(U) → Fp such that if U
and U ′ are two open sets containing p with U ′ ⊆ U , we have that resUp = resU

′

p ◦ resUU ′ .

(ii) If S is any other object satisfying (i) with respect to the maps γUp : F(U) → S, then
there exists a unique map γ : Fp → S such that γUp = γ ◦ resUp for all open U ⊆ X.

Proof. We first show that the object Fp described in Definition 3.7 satisfies this property. We
define the maps resUp via s 7→ (s, U). It is clear that when U ′ ⊆ U , both open sets containing
p, we have resUp = resU

′

p ◦ resUU ′ since this amounts to saying that (s, U) ∼ (resUU ′(s), U
′) for

all s ∈ F(U).
Now suppose that we have an object S and maps γUp : F(U) → S as described. We

define the map γ : Fp → S by taking (s, U) 7→ γUp (s). There are several things to check:

(1) This is well-defined. Indeed, if (s, U) ∼ (s′, U ′), then (s, U) 7→ γUp (s) and (s′, U ′) 7→
γU
′

p (s′). But we know that resUU∩U ′(s) = resU
′

U∩U ′(s
′), and so in particular that

γUp (s) = γU∩U
′

p (resUU∩U ′(s)) = γU∩U
′

p (resU
′

U∩U ′(s
′)) = γU

′

p (s′).

(2) The map γ satisfies the desired condition; more precisely, we have that γUp = γ ◦ resUp .
This is because if s ∈ F(U), then γ(resUp (s)) = γUp (s) by definition.

(3) The map γ is the unique such map. Indeed, for property (ii) to hold we must have that
γUp = γ ◦ resUp and so we must have (s, U) 7→ γUp (s).

(4) One may check that this map is a group homomorphism, a ring homomorphism or an
R-module homomorphism as appropriate; this is simply a consequence of the fact that
the maps γUp have the appropriate properties.

The fact that this property determines the stalk up to isomorphism is simply the usual
universal property argument.
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Definition 3.9. Let F : X → C be a (pre)sheaf. The étalé space of F is a topological space
associated to F . As a set it is defined as:

Et(F) :=
⋃
p∈X
Fp.

There is a natural projection map π : Et(F)→ X given by (s, U)p 7→ p, where (s, U)p ∈ Fp.
The topology on Et(F) is generated by sets [s, U ] := {(s, U)p}p∈U ; that is, it is the coarsest
topology such that the maps U → Et(F) given by p 7→ (s, U)p are homeomorphisms onto
their image for any fixed s ∈ F(U).

Suppose we have some base {Uα}α∈I for the topology on X, a collection of objects
{F(Uα)}α∈I in C, and restriction maps resUα′Uα

: F(Uα′) → F(Uα) whenever Uα ⊂ Uα′ that
satisfy the usual axioms. Note that this information alone allows us to construct an étalé
space Et(F), since the stalks are determined on a base, and since the topology on Et(F) is
likewise determined on a base. Hence we may define a “completion” of F via

F(U) := {continuous maps U → Et(F )}.

If Uα is a basis set, we first observe that F(Uα) ' F(Uα). Indeed, there is a map ϕ :
F(Uα) → F(Uα) which sends s to the map p 7→ (s, U)p, which is clearly injective. To see
that it is surjective, suppose have some f ∈ F(Uα). Then since f is continuous, there exists
some basis open set [s, V ] such that f−1([s, V ]) is a non-empty open set. But this then
means that f looks locally like a map p 7→ (s, V )p. All the sections s obtained in this way
must agree on overlaps, and so must lift to some section of Uα; this shows surjectivity.

We have shown that one can construct a sheaf provided we know the values of the sheaf
on a base and have restriction maps satisfying the sheaf axioms on that base. With more
work, one can show that there is a unique (up to isomorphism) sheaf obtained in this way.
We also have the following lemma:

Lemma 3.10. Suppose that F ,G : X → C are sheaves, and that we have a collection of
maps ηUα : F(Uα)→ G(Uα) which commute with restrictions, where {Uα}α∈I is a base for
the topology on X. Then there is a unique morphism of sheaves η : F → G which extends
the maps ηUα .

Proof. We have just seen that we may identify F(U) with continuous maps U → Et(F) and
identify G(U) with continuous maps U → Et(G). To define ηU : F(U)→ G(U), we therefore
need to describe a continuous map ηU (f) : U → Et(G) determined by a continuous map
f : U → Et(F). The map f is determined by its restrictions to some open cover {Uα}α∈A
of U by basis open sets, and so we may define ηU (f) to be the unique map determined by
the compatible sections {ηUα(f

∣∣
Uα

)}α∈A.
If {Vβ}β∈B is another open cover of U , we wish to show that the compatible sections

{ηUα(f
∣∣
Uα

)}α∈A and {ηVβ (f
∣∣
Vβ

)}β∈B determine the same map ηU (f). Since ηU (f) is a
function, it suffices to show the two functions produced from the two different open covers
agree at any p ∈ U . Since the value of ηU (f) at p is equal to the value of any of its restrictions
at p, then it suffices to show that if p ∈ Uα and p ∈ Vβ , then ηUα(f

∣∣
Uα

) equals ηVβ (f
∣∣
Vβ

) at
p. But by the compatibility conditions on the maps η−, we know that the value of both of
these maps at p is the value of ηUα∩Vβ (f

∣∣
Uα∩Vβ

) at p, so this shows that this definition is
well-defined.
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To see that the definition commutes with restriction maps, we note that in this case the
restriction maps are merely restrictions maps of functions, and so the compatibility with
restriction maps is easy to check from the fact that the sections ηU (f) are defined so as to
be determined by their restrictions to any open cover. The uniqueness claim follows from
the fact that ηU (f) must restrict to ηUα(f |Uα) whenever Uα ⊆ U , and so this is the only
possible definition.

Definition 3.11. Let F : X → C be a (pre)sheaf. Then the sheafification of F is the sheaf
Fsh : X → C defined via

Fsh(U) = {continuous maps U → Et(F)},

and with the restriction morphisms being ordinary restrictions of functions.

Note that if a map f : U → Et(F ) is continuous, then f−1([s, V ]) is open for all open
V with s ∈ F(V ). Assuming U ′ := f−1([s, V ]) is non-empty, this means that on some open
set U ′ ⊆ U we have that f(U ′) ⊆ [s, V ], and so since [s, V ] contains at most one element
in every stalk, that locally f looks like p 7→ (s, U ′)p for some appropriate s. We have the
following universal property characterizing the sheafification.

Lemma 3.12. Let F be a (pre)sheaf. Then Fsh is a sheaf with a morphism of presheaves
α : F → Fsh such that for any sheaf G and any morphism of presheaves α̃ : F → G there
exists a unique morphism of sheaves γ : Fsh → G such that α̃ = γ ◦ α.

Proof. The map α : F → Fsh consists of the maps αU : F(U)→ Fsh(U) defined by s 7→ fs
where fs(p) = (s, U)p ∈ Et(F). It is clear that these maps commute with restrictions, since
if U ′ ⊆ U then

fresU
U′ (s)

(p) = (resUU ′(s), U
′)p = (s, U)p = fs(p) = fs

∣∣
U ′

(p).

Now suppose that we have some presheaf map α̃ : F → G where G is a sheaf. Define
γ : Fsh → G via the maps γU : Fsh(U)→ G(U), defined as follows:

(i) Given f ∈ Fsh(U), we know that f looks locally like the map p 7→ (s, V ∩ U)p
for some s ∈ F(V ∩ U). Define γU (f) to be the unique element of G(U) such that
γU (f)

∣∣
V ∩U = α̃V ∩U (s) for all choices of s and V which represent f in this way.

(ii) If near the point p, f ∈ Fsh(U) takes both the form p 7→ (s, V ∩ U)p and p 7→
(s′, V ′ ∩ U)p, then s and s′ must agree on V ∩ V ′ ∩ U , and so the conditions that
γU (f)

∣∣
V ∩U = α̃V ∩U (s) and γU (f)

∣∣
V ′∩U = α′V ′∩U (s′) are mutually consistent, in the

sense that the sections α̃V ∩U (s) and α̃V ′∩U (s′) have compatible restrictions and so the
element γU (f) is well-defined.

(iii) Suppose U ⊆ U ′, and that f ∈ F(U ′). Then the map γU ′(f) is defined by the property
that γU ′(f)

∣∣
V ∩U ′ = α̃V ∩U ′(s) for all choices of s and V which represent f in the sense

described in (i). The restriction of γU ′(f) to U , therefore, is defined by the property
that its restriction to V ∩ U equals α̃V ∩U (s) for these same choices of s and V since
U ⊆ U ′. But this is simply the definition of γU (f), so we see that γ commutes with
restrictions, and is a well-defined sheaf morphism.

(iv) The uniqueness of γ follows from the fact that property (i) must be satisfied for any
such γ, since a section s ∈ F(U) is sent to the map fs : U → Et(F) by α, and the
condition that α̃ = γ ◦ α tells us that we must have γU (fs) = α̃U (s).
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We will have two main uses for sheaves in this article. The first will be to construct the
structure sheaf of a scheme, and the second will be to construct “invertible sheaves”, which
are objects that more-or-less take the role of line bundles in algebraic geometry (and are
often simply referred to as such). For now, we have done enough work to proceed with the
basic definitions and properties of schemes, so we postpone a further discussion of sheaves
until it is needed.

Definition 3.13. A ringed space is a pair (X,OX) consisting of a topological space X and
a sheaf of rings OX .

Definition 3.14. A locally ringed space is a ringed space (X,OX) such that all the stalks
of OX are local rings.

Definition 3.15. Suppose that ϕ : X → Y is a continuous map, and F is a sheaf on X.
Then we may define a sheaf ϕ∗F on Y , called the pushforward of F along ϕ, on open sets
U via:

(ϕ∗F)(U) := F(ϕ−1(U)).

The restriction maps are those of F .

Definition 3.16. A morphism of locally ringed spaces ϕ : (X,OX)→ (Y,OY ) consists of:

(i) A continuous maps ϕ : X → Y (written with the same symbol by abuse of notation).

(ii) A morphism of sheaves ϕ̃ : OY → (ϕ∗OX) (thought of as a “pullback" map).

(iii) The morphism of sheaves in (ii) is local on stalks, which means that the induced maps
on stalks map the maximal ideal mq of the stalk at q = f(p) into the maximal ideal
mp in the stalk at p.

Definition 3.17. Two locally ringed spaces (X,OX) and (Y,OY ) are isomorphic if there is a
pair of mutually inverse morphisms of locally ringed spaces between them, where the identity
morphisms on (X,OX) and (Y,OY ) are given by the identity maps on the topological spaces
and the identity sheaf morphisms.

Definition 3.18. Let R be a ring. We define the affine scheme X = SpecR to be a locally
ringed space (X,OX) constructed as follows:

(i) As a set, X = SpecR is the collection of all prime ideals in R.

(ii) As a topological space, its open sets are generated by the sets, associated to each
f ∈ R,

D(f) := {p ∈ SpecR : f 6∈ p}.
We often refer to this as the set of points where f does not vanish, in light of the
fact that these are precisely the ideals such that f is non-zero under the quotient map
R 7→ R/p.

(iii) The sheaf OX is specified on the base D(f) by OX(D(f)) = Rf , where Rf is the
localization of R by f , and the restriction maps are the natural localization maps.
Note that if D(f) ⊂ D(g), then we have that

f ∈
⋂

p prime
g∈p

p =
√
〈g〉,
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where the equality holds by a theorem from commutative algebra. Hence 1/g is of the
form r/fk for k ∈ Z≥0 and r ∈ R, and so the map Rg → Rf does exist.

Notation 3.19. If R is a ring and I ⊂ R is an ideal, we denote by V (I) the subset of
SpecR consisting of all prime ideals containing I; i.e., all points at which the functions in
I are zero. If f ∈ R, we write V (f) for V (〈f〉). Note that the closed sets on SpecR are
generated by the sets V (f) for f ∈ R, and these sets are the complements of the sets D(f).

Lemma 3.20. Consider the affine scheme SpecR constructed in Definition 3.18. Then if
p ∈ SpecR, the local ring at p is Rp, which is the localization of R at the prime ideal p.

Proof. Using the fact that the stalks of sheaves are determined on a base, we simply observe
that Rp satisfies the universal property described in Lemma 3.8.

Definition 3.21. An affine scheme is a locally ringed space isomorphic to the locally ringed
space SpecR for some ring R.

The association between affine schemes and schemes is actually much stronger than
simply the statement that an affine scheme is built out of a ring. For instance, if π : R→ S
is a ring morphism, then we have natural maps πf : Rf → (π∗OSpecS)(D(f)) defined as the
unique maps such that the diagrams

R S

Rf (π∗OSpecS)(D(f))

π

πf

commute (i.e., where πf (1/f) = 1/π(f)). One can check that this gives a morphism of
sheaves OSpecR → π∗OSpecS and hence a morphism of schemes SpecS → SpecR (as a map
of topological spaces it is p 7→ π−1(p)). For a full discussion of this we refer to the author’s
expository article on schemes and sheaves[13]. We have the following result:

Proposition 3.22. The functors Spec : Ring→ AffSch and Γ(−,O−) : AffSch→ Ring
give an equivalence of categories between Ring and AffSch.

Definition 3.23. Suppose that (X,OX) is a ringed space. Then if U ⊂ X is open,
(U,OX

∣∣
U

) is a ringed space where U has the subspace topology and the sheaf is defined
in the natural way.

Definition 3.24. A scheme is a locally ringed space (X,OX) such that every point p ∈ X
has an open neighbourhood U such that the locally ringed space (U,OX

∣∣
U

) is isomorphic
as a locally ringed space to an affine scheme.

When working with schemes, we will often make a temporary identification between an
open set U ⊆ X and some affine spectrum SpecR. Thus, the points of X can be thought
of as collections of prime ideals which are identified by the various restriction maps in the
structure sheaf, where we use the usual correspondence between prime ideals in a ring R and
prime ideals in a localization Rf or Rp. The sections of the structure sheaf OX are to be
thought of as functions on the points of X, and we may evaluate such a function f ∈ OX(U)
at p ∈ U by considering the image of f modulo p in the stalk (OX)p. We will sometimes
use the notation κ(p) for the field (OX)p/p.
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The equivalence in Proposition 3.22 may be extended as follows. Suppose that π : X →
SpecR is a morphism of schemes. Then the associated morphism of structure sheaves gives
us a morphism π] : R→ Γ(X,OX). If Rf is the coordinate ring of SpecR on the set D(f),
then we have associated morphisms (by abuse of notation) π] : Rf → OX(π−1(D(f)))
which commute with the restriction maps. Note that the value of π](f) is determined by
the map R → Γ(X,OX) and the requirement that the maps commute with restrictions,
and so there is only one choice for the map Rf → OX(π−1(D(f)): the one which satisfies
π](1/f) = 1/π](f). Hence we see that the sheaf morphism OSpecR → π∗OX is uniquely
determined by the ring morphism π] : R→ Γ(X,OX), and it is easy to see that given such
a morphism we may define a scheme morphism π : X → SpecR by making the only possible
choices for the associated maps.

The preceding argument exhibits a bijection HomRing(R,Γ(X,OX)) ' HomSch(X,SpecR).
It is easy to show that this bijection is natural in both X and Y , i.e., that we have natural
isomorphisms

HomRing(−,Γ(X,OX)) ' HomSch(X,Spec−) and
HomRing(R,Γ(−,O−)) ' HomSch(−, SpecR).

We say that the functors Γ(−,O−) and Spec form an adjoint pair. This correspondence is
useful for understanding fibre products, which we now discuss.

Lemma 3.25. Suppose that α : SpecA → SpecC and β : SpecB → SpecC are morphisms
of schemes. Then the fibre product SpecA×SpecC SpecB is equal to SpecA⊗C B, where the
morphisms associated to the tensor product are the ring morphisms associated to α and β
(see also Definition 2.13).

Proof. We have

HomSch(−, SpecA⊗C B) ' HomRing(A⊗C B,Γ(−,O−))

' HomRing(A,Γ(−,O−))×HomRing(C,Γ(−,O−)) HomRing(B,Γ(−,O−))

' HomSch(−,SpecA)×HomSch(−,SpecC) HomSch(−,SpecB).

The identifications are to be interpreted in the sense of natural isomorphism of functors,
where the natural isomorphisms exist due to the adjoint property just discussed and Lemma
2.17. The fact that SpecA⊗C B is a fibre product then follows by Lemma 2.16.

We will use the fact that general fibre products exists in the category of schemes without
proof. In general, it is common in specific concrete situations to find a scheme that satisfies
the universal property rather than use a general construction, and so there is little sense in
proving an existence theorem (and it is too much of a distraction).

Although the language of schemes will be convenient for constructing the Jacobian vari-
ety, general schemes can be quite unwieldy, and what we will want in many cases is something
that more closely resembles classical affine and projective varieties. For this reason, we in-
troduce several properties of schemes which will be useful. Note that although a scheme is
a pair consisting of a topological space and its structure sheaf, we often refer to it as just
the topological space with the structure sheaf implicit.

Definition 3.26. We say a scheme X is Noetherian if it admits a finite covering by affine
open sets U ∼= SpecRi where each Ri is a Noetherian ring.
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Definition 3.27. We say that a scheme X is irreducible if it is irreducible as a topological
space.

Lemma 3.28. A scheme X is irreducible if and only if every affine open set is irreducible.

Proof. If X = D ∪E is a non-trivial decomposition of X as a union of two closed sets, and
U is an affine open, then U = (U ∩D) ∪ (E ∩ U) is a decomposition of U as a union of two
relatively closed sets which is non-trivial provided that U is not contained in either D or E.
Since the affine opens form a base for the topology on X, we may find an affine open U1

in X \D and an affine open U2 in X \ E. The intersection U1 ∩ U2 contains neither points
from D or E and so is empty, hence the union U1 t U2 is disjoint. If U1 = SpecR1 and
U2 = SpecR2, then U1 t U2 = Spec(R1 ×R2) and so U1 t U2 is affine and not contained in
either D or E. Hence if X is reducible then so must be this affine open, which means that
if the affine opens are irreducible then so is X.

Alternatively, suppose that X is irreducible, and let U ⊆ X be an affine open. Since U
has the subspace topology, if it is reducible then it is of the form U = (D∩U)∪(E∩U) where
D and E are closed in X and U is not contained in either D or E. Then D ∪ (E ∪ (X \U))
is a non-trivial decomposition of X, and so if X is irreducible so must be U .

Definition 3.29. We say that a scheme X is reduced if all of the rings OX(U) for open
U ⊆ X are reduced, i.e., have no non-zero nilpotent elements. Equivalently, X is reduced if
all its stalks are reduced.

Definition 3.30. We say that a scheme X is integral if all of the rings OX(U) are integral
domains for all open U ⊆ X.

The concepts in definitions 3.30, 3.29 and 3.30 are related by the following Lemma.

Lemma 3.31. A scheme X is integral if and only if it is both irreducible and reduced.

Proof. If X is integral then it is reduced, since if OX(U) is integral for U ⊆ X open then it
is reduced. Moreover, if SpecR = U ⊆ X is an affine open which is reducible, then it is of
the form U = V (f) ∪ V (g) for f, g ∈ R. We have V (f) ∪ V (g) = V (fg). But then fg = 0
as the ideal 〈fg〉 is contained in every prime ideal, contradicting the integrality of R. Thus
if X is integral every affine open is irreducible, hence X is irreducible by Lemma 3.28.

Suppose X is both reduced and irreducible, and let OX(U) = R be some coordinate
ring of an affine open U = SpecR. Then if f, g ∈ R are non-zero and fg = 0 we see that
U = V (f) ∪ V (g). If V (f) = SpecR then 〈f〉 is contained in every prime ideal, and so
is contained in their intersection, the nilradical ideal. But since R is reduced, this ideal
is zero, and so V (f) is a non-trivial closed set; the same argument works for V (g). But
since X is irreducible such a decomposition can’t exist, and therefore there is no product
fg of non-zero elements f and g which equals zero, i.e., R is integral. The result follows
as integrality can be checked on affine opens, since a non-trivial product fg = 0 in some
coordinate ring would give another such product in some affine coordinate ring.

Lemma 3.32. Suppose that X is integral. Then there is a unique point, called the generic
point of X, which corresponds to the ideal 〈0〉 in any affine coordinate ring.

Proof. If U and V are two affine opens in X then U ∩V is non-trivial since X is irreducible.
The restriction maps resUU∩V and resVU∩V identify the generic points of U and V , and so
they must both correspond to the same point in X.
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Definition 3.33. If X is integral then the fraction field of X, written K(X), is defined to
be the stalk at the generic point of OX .

Remark. We could actually define the fraction field to be the fraction field of any affine open,
but we prefer this definition since we wish to emphasize that there are natural restriction-
compatible inclusions into the fraction field from all the coordinate rings of X.

Definition 3.34. If R is a ring, then the Krull dimension of R is the maximum (if it exists)
of the lengths of chains 〈0〉 ⊂ p1 ⊂ p2 ⊂ · · · ⊂ pk of prime ideals where each inclusion is
strict. Note the length of the chain is the number of strict inclusions, or one less than the
number of prime ideals in the chain.

Definition 3.35. Let X be a scheme. Then the dimension of X is the maximum (if it
exists) of the lengths of chains X = D0 ⊃ D1 ⊃ D2 ⊃ · · · ⊃ Dk = {p} of irreducible closed
sets where each inclusion is strict and where Dk is a one-point space. Note that the length
of the chain is the number of strict inclusions, or one less than the number of closed sets
involved in the chain.

Lemma 3.36. If R is a ring, the Krull dimension of R is equal to the dimension of SpecR.

Proof. We claim that the map SpecR→ P(X) given by p 7→ {p} gives an inclusion-reversing
bijection between points of SpecR and irreducible closed subsets of SpecR. Note that
{p} = V (p), so it suffices to show that any irreducible closed set is the vanishing set of some
prime ideal. To see this, suppose that V (J) is a closed irreducible subset where J ⊂ R is
an ideal. If J is not prime, then there is ab ∈ J such that neither a ∈ J nor b ∈ J . Hence
V (J) = V (〈J, a〉) ∪ V (〈J, b〉) and V (J) is not irreducible. Hence if V (J) is irreducible then
J must be prime.

The inclusion-reversing property is straightforward.

Definition 3.37. We say that a scheme X is regular if the Krull-dimension of every stalk
is equal to the minimal number of generators for its maximal ideal.

Definition 3.38. We say that a scheme X is factorial if all stalks are unique factorization
domains.

3.2 Line Bundles
To discuss invertible sheaves (line bundles), we will need the notion of an OX -module. We
begin by motivating this notion.

In algebraic geometry, many objects of interest can be viewed as algebraic analogues of
notions one finds in manifold theory. In manifold theory, a bundle over a space X is a space
E (called the “total space”) equipped with a projection map π : E → X which satisfies
certain properties appropriate for the category of interest (continuous, smooth, etc.). The
bundle map associates to each point p ∈ X a fibre π−1(p) above p, and the fibres are
typically required to satisfy some regularity conditions. For instance, when dealing with
fibre bundles, there is typically some “standard” fibre F such that around any point p ∈ X,
there is an open neighbourhood U of p such that π−1(U) ∼= U × F . The canonical example
is that of a vector bundle such as the tangent bundle of a manifold, where F is chosen to
be some standard vector space such as Rn or Cn, and then the fibre above p is a collection
of vectors located “above” p.
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The main use of such a construction is that one can define many objects of interest as
“sections” of such a bundle. A section of a bundle π : E → X is an appropriate (continuous,
smooth, etc.) map α : X → E such that π ◦ α = idX . That is, it assigns to each point
p ∈ X a single object in the fibre π−1(p) in an appropriately varying way. Sections can
then be used to define vector fields (a collection of vectors, one for each point of X, which
varies accordingly with the manifold structure), differentials (an object which associates a
dual vector to each point and can be used to define integrals), and higher-order tensors.

One can imagine transporting such a construction to algebraic geometry as follows:
define E to be a scheme equipped with a morphism π : E → X of schemes together with
an open cover {Ui}i∈I of X such that we have isomorphisms ϕi : π−1(Ui) ∼= Ui × F (for
some appropriate F ) and the “chart transition maps” ϕj ◦ϕ−1

i : Ui×F → Uj ×F restrict to
isomorphisms between the copies of F at each point p ∈ Ui where the map is defined (i.e.,
the transition maps preserve the fibres above each point). This would be a direct translation
of the conventional manifold theory, and it works, but the difficulty is that the spaces E
and its associated maps are often very difficult to construct.

A simpler idea is to work simply with the sections themselves, and ignore the concrete
construction of the bundle object. In the case of vector bundles, in particular, where each
fibre F is in fact a vector space, sections can be added and scaled point-wise. This makes
the space of sections of the bundle into a module over space of functions on X. The idea
in algebraic geometry is to interpret an R-module M in this manner: since every ring R
corresponds to the functions on some algebraic space (the scheme SpecR) then we hope to
be able to interpret an R-moduleM as being sections of some bundle over the space SpecR.
This motivates the following definitions.

Definition 3.39. Let (X,OX) be a ringed space. An OX-module is a sheaf F of abelian
groups such that for every open U ⊆ X, the space of sections F(U) is an OX(U)-module.
We also require that the module action commutes with restriction, i.e., if U ⊆ U ′, the
following diagram commutes:

OX(U ′)×F(U ′) F(U ′)

OX(U)×F(U) F(U)

action

resU
′

U ×resU
′

U resU
′

U

action

Useful examples include OX acting on itself, and the sheaf of functions on a manifold acting
on the sheaf associated to a vector bundle.

Definition 3.40. If F and G are OX -modules, then a morphism between F and G is a
sheaf map α : F → G such that for each open set U ⊆ X the following diagram commutes:

OX(U)×F(U) F(U)

OX(U)× G(U) G(U)

action

idOX (U)×αU αU

action

Definition 3.41. If F is a OX -module and X is integral, then a rational section of F is an
element of the stalk at the generic point.

Definition 3.42. Let M be an R-module. We may construct a sheaf on SpecR associated
to M , denoted M̃ , as follows:
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(i) On the open set D(f), we define M̃(D(f)) = Mf , where Mf is a module defined by

Mf :=

{
m

fk
: m ∈M,k ∈ Z≥0

}
,

with the obvious addition rule, equivalences, and with Rf action defined by

r

f `
· m
fk

:=
r ·m
f `+k

.

(ii) If D(f) ⊂ D(g), then we may map Mg →Mf in the natural way, noting as we did in
the construction of the affine scheme SpecR that D(f) ⊂ D(g) implies that 1/g is of
the form r/fk for r ∈ R and k ∈ Z≥0. This gives us the restriction maps.

One may verify both the sheaf axioms and that the construction gives the sheaf M̃ an
OSpecR-module structure.

Lemma 3.43. Given a morphism ϕ : M → N of R modules, we obtain a unique morphism
φ̃ : M̃ → Ñ of OSpecR-modules, and every morphism of OSpecR-modules between M̃ and Ñ
arises in this way. In particular, we have a functor (̃−) : R-Mod→ Sh(SpecR), where the
latter is the category of sheaves on SpecR.

Proof. If we have a morphism ϕ : M → N , then this induces a morphism ϕf : Mf → Nf
defined by m

fk
7→ ϕ(m)

fk
such that the diagram

M N

Mf Nf

ϕ

res res

ϕf

commutes. The map ϕf is the uniquely determined, since we must have m
1 7→

ϕ(m)
1 by the

commutativity of the square, and the behaviour on the denominators is forced on us by the
fact that ϕf must be a homomorphism of Rf -modules. This gives us one possible choice
for the morphism of OSpecR modules ϕ̃ : M̃ → Ñ , namely the one determined by the maps
ϕf on the open base {D(f)}f∈R, and it is easy to see that this does in fact give such a
morphism.

To see that every morphism φ̃ : M̃ → Ñ arises in this way, we simply observe that any
such map of OSpecR modules gives a map M = M̃(SpecR) → Ñ(SpecR) = N which must
determine the rest of the map φ̃ in the manner just described. The claim of functoriality
amounts to checking that an identity map of R-modules induces an identity map of sheaves,
and that the construction respects composition, and both of these facts are straightforward.

Much like the affine schemes SpecR serve as a kind of “standard local model” for schemes,
the sheaves M̃ often serve as a kind of “standard local model” for sheaves associated to
schemes. Sheaves for which this holds (in some precise sense) are called quasi-coherent. We
won’t need this notion, although all sheaves we consider will in fact be of this type. In the
case we are most interested in, in fact, the sheaves will “look locally” like OSpecR acting on
itself by left-multiplication, for some appropriate choice of R. The reason for this is because
we are interested in line bundles, and a section of a line bundle “looks locally” like a single
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function from the base space into the total space, but where these functions can be scaled
pointwise by functions on the space. Defining this concept directly however is somewhat
unintuitive, so we first define general vector bundles and then consider these “line bundles”
as a special case.

Definition 3.44. Let F and G be OX -modules. Then F ⊕ G is a OX module, where on
U ⊂ X we have (F ⊕G)(U) := F(U)⊕G(U), where the right-hand side is a OX(U)-module.
The restriction maps are the natural ones.

Definition 3.45. A free sheaf of rank n is an OX module F such that F ∼= O⊕nX where
the exponent denotes an n-fold direct sum.

Definition 3.46. Let X be a scheme. A locally free sheaf on X is a sheaf F such that
around every point p ∈ X there exists an open neighbourhood U such that the scheme
(U,F

∣∣
U

) is isomorphic to a free sheaf of rank n. Note that n does not vary with the choice
of point p or open set U .

The idea behind Definition 3.46 is that it mimics the definition of a vector bundle in that
it says that all points of X must have a neighbourhood on which the sheaf is “trivializable”.
In the ordinary bundle-based definition, where π : E → X is a vector bundle over X, this
means we have some open set U on which π−1(U) ∼= U ×Kn for some appropriate vector
space Kn (or alternatively, an n-dimensional affine space). When one uses this isomorphism
to describe E, then with respect to this trivialization sections of E must look like maps
p 7→ (p, f1(p), . . . , fn(p)), where the fi’s are functions on U . Thus we may regard the
sections of a vector bundle as things which are locally n-tuples of functions on U , or in
other words, the sheaf F associated to a vector bundle should be locally free.

Definition 3.47. Let X be a scheme. An invertible sheaf is a locally free sheaf of rank 1.
We will frequently refer to this as a line bundle.

Definition 3.48. Let F and G be two OX -modules. The tensor product of F and G,
denoted F ⊗ G, is the sheaf associated to the sheafification of the presheaf

(F ⊗ G)pre(U) := F(U)⊗OX(U) G(U),

with the natural restriction maps.

Lemma 3.49. Suppose that M and N are R-modules. Then M̃ ⊗ Ñ is equal to M̃ ⊗N .

Proof. It suffices to exhibit a map from the presheaf F := (M̃ ⊗ Ñ)pre to the sheaf M̃ ⊗N
which satisfies the universal property of sheafification. This means that, for each standard
open D(f) ⊂ SpecR, we need maps αD(f) : Mf ⊗ Nf → (M ⊗ N)f which commute with
restrictions. Note that tensor products commute with localizations, so there are natural
maps that do this; in particular, the maps defined on pure tensors by m

fk
⊗ n

f`
→ m⊗n

fk+`

will work. These maps are isomorphisms, hence the map of presheaves thus induced is an
isomorphism, and so satisfies the required universal property. In particular, we see that
sheafification is not needed in this case.

The two preceding definitions of “invertible sheaf” and “tensor product of sheaves” are
each confusing in their own way. First of all, the term “invertible sheaf” needs explaining.
Secondly, the tensor product construction can be unintuitive. These two things are in fact
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closely related: the tensor product can be used to define an operation on isomorphism
classes of sheaves for which the invertible sheaves are precisely the “invertible” elements.
To understand these two phenomena, we consider a classic example from algebraic number
theory.

Let K be a number field, and OK its ring of integers. As OK is a Dedekind domain, we
may define a fractional ideal of OK to be an OK-submodule a of K such that there exists
another OK-submodule b of K such that the ideal product satisfies a ·b = OK . In this case,
both a and b are fractional ideals, and b is the inverse of a (and vice versa). The collection
of all fractional ideals of K with the ideal product operation form an abelian group with
identity element OK . An important subgroup is the group of principal fractional ideals —
those fractional ideals generated over OK by a single element of K. The quotient by this
subgroup is called the class group of K, denoted Cl(K).

We may in fact interpret the above group in terms of the language of invertible sheaves
and tensor products of sheaves we have just defined. For this we need the following lemma.

Lemma 3.50. Let a and b be OK-submodules of K. Then the product a · b is isomorphic
to the tensor product of OK modules a⊗OK b.

Proof. For ease of notation, we will omit the subscript on all tensor products, which we
assume to be over OK . We begin by establishing some properties of the OK-modules a.
Suppose in particular that OK ⊆ a. Since there exists some c ⊆ OK such that a · c = OK ,
we may in particular find elements a1, . . . , an ∈ a and c1, . . . , cn ∈ c such that

∑n
i=1 aici = 1.

This lets us define two maps, one a map ι : a→ OnK and another a map ρ : OnK → a, where
ι(a) = (ac1, . . . , acn) and ρ is defined on the standard basis vector ei by ρ(ei) = ai. Note
that ρ ◦ ι = ida. With these definitions, we have the following split exact sequence

0 a OnK OnK/ι(a) 0,ι

ρ

and so we see that a is a direct summand of OnK . In this case, one says that a is projective
(i.e., it is the direct summand of a free module). An analogous argument (where the exact
sequence splits on the other side) shows that c is projective.

Now suppose we consider the injective map b → K. If we were to tensor both sides
of the arrow on the left with OnK , we would obtain an injection α : b⊕n → K⊕n. Writing
OnK ∼= a⊕ s, we obtain the commuting diagram

(a⊕ s)⊗ b (a⊕ s)⊗K

(a⊗ b)⊕ (s⊗ b) (a⊗K)⊕ (s⊗K),

α

α1×α2

where the maps α1 and α2 are the natural ones. Using the fact that a ⊗ K ∼= K via the
m : a ⊗ K → K given by a ⊗ r 7→ a · r, we thus see that the map m ◦ α1 : a ⊗ b → K
is injective (as α is injective), and so gives an isomorphism between a ⊗ b and its image
a · b.

Using this lemma, we may reinterpret the equivalence relation we have imposed on
the fractional ideals of K as specifying isomorphism classes of OK-modules, and hence by
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Lemma 3.43, isomorphism classes of invertible sheaves on SpecOK . For instance, if a and
a′ are isomorphic as OK-modules, then we see that

a′a−1 ∼= a′ ⊗ a−1 ∼= a⊗ a−1 ∼= a · a−1 = OK ,

and so a′a−1 is principal, and hence a and a′ are related by a principal ideal. Alternatively,
if a′ = (rOK) · a, then the map a 7→ r · a gives an isomorphism a

∼−→ a′. Thus we see that
the group Cl(K) embeds naturally into the commutative monoid consisting of isomorphism
classes of sheaves on SpecOK with the tensor product operation. To characterize the image
of this embedding, we prove the following lemmas.

Lemma 3.51. Let X be a scheme and F and G two invertible sheaves. Then F ⊗OX G is
also invertible.

Proof. Let p ∈ X be a point, and let U and V be neighbourhoods of p such that F
∣∣
U
∼= OX

∣∣
U

and G
∣∣
V
∼= OX

∣∣
V

we then have that F
∣∣
U∩V

∼= G
∣∣
U∩V

∼= OX
∣∣
U∩V , and so

F ⊗OX G
∣∣
U∩V = F

∣∣
U∩V ⊗OX

∣∣∣
U∩V

G
∣∣
U∩V

∼= OX
∣∣
U∩V ⊗OX

∣∣∣
U∩V

OX
∣∣
U∩V

∼= OX
∣∣
U∩V .

Definition 3.52. Let X be a scheme and F and an OX -module. We will define an OX -
module Hom (F ,OX) in a series of steps. Note that this is not the same as the object
HomC(F ,OX), which is a collection of morphisms in the category C (written without a
subscript when no ambiguity is possible), and we distinguish between the two cases by the
calligraphic font in use when referring to the OX -module.

(i) On the open set U ⊆ X, define (as a set)

Hom (F ,OX)(U) :=
{
morphisms F

∣∣
U
→ OX

∣∣
U

of OX
∣∣
U

modules.
}
.

(ii) For each open U ⊆ X, we turn Hom (F ,OX)(U) into an abelian group by the addition
law that takes two morphisms of OX -modules α, α′ : F

∣∣
U
→ OX

∣∣
U

and produces the
morphism of OX -modules α+ α′ defined on open sets V ⊆ U by

(α+ α′)V (f) := αV (f) + α′V (f).

It is clear that these maps are morphisms of OX(V )-modules (as they are defined as
the sum of two such maps), and that they commute with restrictions since this is true
for both αV and α′V . Hence α + α′ is a well-defined morphism of OX -modules. It is
clear that this operation is commutative, associative, has additive inverses (since we
may negate morphisms), and a zero element (the zero morphism).

(iii) We turn Hom (F ,OX)(U) into an OX(U)-module by adding an OX(U)-action to the
addition law. If α : F

∣∣
U
→ OX

∣∣
U

and a ∈ OX , then we may define a map (a · α) :

F
∣∣
U
→ OX

∣∣
U

on open sets V ⊆ U via as (a · α)V (f) = a
∣∣
V
· αV (f). To see that

this is a morphism of sheaves, it suffices to observe that both the OX -module action
and the maps αV commute with restrictions. Furthermore, each map (a · α)V is
clearly a OX(V )-module homomorphism since αV is, and so this gives a morphism of
OX -modules. If α and α′ are two morphisms of OX -modules, then we clearly have
a · (α+α′) = a ·α+ a ·α′ since this is true for each of the “component maps” αV , α′V ,
etc.
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(iv) The restriction maps for the sheaf Hom (F ,OX) are defined by restriction of morphisms,
i.e., by taking a map α : F

∣∣
U
→ OX

∣∣
U

and obtaining the map α
∣∣
V

: F
∣∣
V
→ OX

∣∣
V

where V ⊆ U by keeping only the maps αW whereW ⊆ V . These restrictions commute
with addition and scalar multiplication of morphisms since those definitions are all done
“component-wise”, i.e., they are defined in terms of the maps αU : F(U)→ OX(U).

(v) Supose that {Ui}i∈I is an open cover of the open set U , and that we have some
α ∈ Hom (F ,OX)(U) such that α

∣∣
Ui

= 0 for all i. Then given some αV for any open
V ⊆ U , we know that αV is determined by the maps αV ∩Ui as i ranges over all values
in I. But we know that αV ∩Ui = (α

∣∣
Ui

)V ∩Ui = 0 for all i ∈ I, hence αV = 0. Since V
was an arbitrary open subset of U , we see that α = 0. This verifies the identity axiom.

(vi) Suppose that {Ui}i∈I is an open cover of the open set U , and we have a collection of
sheaf maps βi ∈ Hom (F ,OX)(Ui) with compatible restrictions. We define an element
α ∈ Hom (F ,OX)(U) by requiring that for any open V ⊆ U , the map αV restricts on
V ∩ Ui to (βi)V ∩Ui . The fact that the βi’s are compatible ensures this requirement is
consistent, and if fi = f

∣∣
V ∩Ui

where f ∈ F(V ), applying the gluability axiom to the
collection of compatible sections (βi)V ∩Ui(fi) determines a unique section in OX(V )
which is the image of αV on f . This verifies the gluability axiom.

Lemma 3.53. Let F be an invertible sheaf on a scheme X. Then Hom (F ,OX) is an
invertible sheaf and Hom (F ,OX)⊗OX F ∼= OX .

Remark. This does not work for locally free sheaves of rank greater than one; in fact, for
reasonable classes of OX -modules, invertible sheaves can be characterized by this property.
Remark. A useful example to keep in mind is the case of one-dimensional (say smooth)
manifolds M . In that case, we have two natural line bundles, namely the tangent and
cotangent bundles TM and T ∗M respectively. If X is a vector field on U ⊆M (a section of
TM over U) and ω is a one-form on U ⊆M (a section of T ∗M over U) then there is a natural
pairing (X,ω) 7→ ω(X) ∈ C∞(U). This is a collection of bilinear maps, and produces a map
Γ(−, TM)⊗Γ(−, T ∗M)→ C∞(−). The fact that this map is an isomorphism is due to the
fact that “1 · 1 = 1”, namely, that the vector spaces TpM ⊗ T ∗pM are 1 · 1 dimensional since
both TpM and T ∗pM are one-dimensional.

Proof. In the spirit of the above remark, we define a map η : Hom (F ,OX) ⊗OX F → OX
and show it is an isomorphism. If U ⊆ X is open, we define (ηpre)U on pure tensors
α ⊗ s in Hom (F ,OX)(U) ⊗OX(U) OX(U) by α ⊗ s 7→ αU (s) ∈ OX(U). This gives us a
presheaf morphism ηpre from

(
Hom (F ,OX)(U)⊗OX(U) OX(U)

)pre to OX , and thus gives
us a morphism of sheaves η in accordance with the universal property. We will show this
morphism is an isomorphism.

Since F is invertible, around each point p there is some affine open neighbourhood U such
that F

∣∣
U
∼= OX

∣∣
U
. Using this isomorphism, we may express the map η

∣∣
U

as being deter-
mined by the maps, Hom

(
OX
∣∣
U
,OX

∣∣
U

)
(V )⊗OX(V )OX(V )→ OX(V ). Using Lemma 3.43,

and the obvious naturality of the addition and multiplication law on Hom
(
OX
∣∣
U
,OX

∣∣
U

)
(V ),

we may view these as being maps HomOX(V )(OX(V ),OX(V ))⊗OX(V )OX(V )→ OX(V ) of
modules given on pure tensors by α ⊗ s 7→ α(s). Taking α = idOX(V ) we see this map is
surjective; if α(s) = 0, and then since α(s) = sα(1) we find that α⊗s = sα⊗1 = 0 since the
map sα is identically zero. Note that every element in the tensor product is a pure tensor
in this case, so this shows that the map is also injective, and hence an isomorphism. This
shows that the maps η

∣∣
U

are isomorphisms for all U , and so η is an isomorphism.
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Using Lemma 3.53, we may (finally) define:

Definition 3.54. Let X be a scheme. The group Pic(X) is the collection of all isomorphism
classes of invertible sheaves on X with the operation of tensor product. Lemma 3.53 shows
that inverses exist, and the isomorphism class of OX is the identity element. If R is a ring,
we sometimes write Pic(R) for Pic(SpecR).

Returning to our class group example, we see that we have an embedding of groups
Cl(K) ↪→ Pic(OK). To see that this is an isomorphism, we need to show that any line
bundle on SpecOK comes from a fractional ideal of K. If L is such a line bundle, then
M := L(SpecOK) is an OK-module which satisfies the property that for each prime p ∈
SpecOK we haveMp

∼= (OK)p. Using an argument similar to the one in Lemma 3.50, which
we omit, one can again show thatM must be projective, and in particular that we may tensor
the injective map OX ↪→ K on the left withM to get an injective mapM →M⊗OKK ∼= K
which exhibits M as a fractional ideal in K. Hence we see that Cl(K) ∼= Pic(OK).

This may seem like a tedious and unnecessary way to interpret a concept that is much
more straightforward in its original formulation (and it is!), but it has the advantage that
the same language can also be used to formulate the theory of line bundles and divisors. In
particular, we will see that, with reasonable restrictions on X, the group Pic(X) is closely
related to the group of divisors on X, and a subgroup of Pic(X) will be our model for the
Jacobian variety of X.

3.3 Weil Divisors
In this section, we restrict our level of generality considerably and assume that every scheme
X is integral, Noetherian, regular, and finite dimensional. We do this both because it’s true
for the cases we are interested in (algebraic curves), and because it considerably simplifies
the exposition. In particular, it lets us speak of the function field K(X) of X, and lets us
use the tools of valuation theory in the codimension-one stalks of X.

Some results we will need here require prerequisite material which would lead us astray,
so we will omit some proofs. We begin with the following definition.

Definition 3.55. Define the group WeilX to be the free abelian group generated by irre-
ducible codimension 1 subschemes of X. Note that a subscheme has codimension 1 if the
(non-negative) difference between the dimension of X and its dimension is 1.

Definition 3.56. A divisor D is an element of WeilX, that is, a formal Z-linear combination
of irreducible codimension one subschemes of X. We write this as

D =
∑

nY [Y ],

where the sum is over all irreducible codimension one subschemes of X and only finitely
many of the coefficients nY ∈ Z are non-zero.

Definition 3.57. IfD andD′ are two divisors onX with coefficients nY and n′Y respectively
(as Y ranges over all irreducible codimension one subschemes) then we say D ≥ D′ if
nY ≥ n′Y for all Y .

Definition 3.58. If D is a divisor on X we say D is effective if D ≥ 0, where we regard 0
as the zero element of the group WeilX.
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Definition 3.59. If D is a divisor on X and U ⊆ X, then D
∣∣
U

is a divisor on U obtained
from D by keeping only those non-zero terms whose points lie in U .

The preceding definitions suggest two natural questions: what’s so special about codi-
mension one, and why are we “adding” schemes? The reason is that codimension one schemes
tend to naturally have “additive” (or multiplicative, depending on your point of view) struc-
ture! To understand why, suppose that R is an integral domain, and consider two elements
f, g ∈ R. Then f and g each define closed codimension one subschemes V (f) and V (g)
of SpecR respectively. We then have that V (fg) = V (f) ∪ V (g), and so to consider both
V (f) and V (g) simultaneously we may multiply f and g. This is not quite true, because
V (f) and V (g) may share some common components (i.e., they may have some non-trivial
intersection), and so we really should count these with multiplicity. The idea is then to
associate to V (f) a divisor which is the sum of its irreducible components, and likewise for
V (g), and to represent the “sum” V (f) + V (g) by adding these components keeping track
of how many times each component occurs.

Now if f or g are rational functions on X (i.e., defined only on a dense open set), then
their behaviour at certain points of X may have a cancellative effect when attempting to add
subschemes in this way. For instance, if f = rs and g = t/r, where r, s and t are all defined
on all of X, then V (fg) = V (st), and so the portion of V (f) corresponding to V (r) was in
effect “cancelled” by the denominator of g. This suggests that the divisor associated to g
should be the divisor associated to t minus the divisor associated to r. More specifically, we
will construct a group homomorphism div : K(X)× →WeilX which sends f ∈ K(X)× to a
divisor div(f) =

∑
Y ordY (f)[Y ], where ordY (f) is the “order of vanishing” of f at Y . The

image of this map gives an important subgroup of WeilX called the subgroup of principal
divisors.

Another source of additive (or multiplicative) structure on codimension one subschemes
comes from sections of line bundles. If s is a rational section on L, then s need not be a
function, and may not have a well-defined value at points p ∈ X. However, we may still
determine when s is zero by saying that s vanishes at p ∈ X if it vanishes at p under any
trivialization. That is, if we have a map L

∣∣
U

∼−→ OX
∣∣
U

which assigns s the function f on
U , then we say that s is zero at p ∈ U if f = 0 in κ(p). This is well-defined, since if we
have another map L

∣∣
V

∼−→ OX
∣∣
V

corresponding to the open set V ⊂ X which assigns s to
g, then the induced map OX

∣∣
U∩V

∼−→ OX
∣∣
U∩V induces an isomorphism between the stalks

at p that sends the image of f in κ(p) to the image of g in κ(p), and so f is zero in κ(p) if
and only if g is.

If we then have a rational section s of the line bundle L and a rational section t of the
line bundle L′, then we may view the expression st (or more carefully, s ⊗ t) as a rational
section of the line bundle L⊗L′. Note that since the stalks of L⊗L′ are the tensor products
of the corresponding stalks of L and L′, we see that the K(X)-module of rational sections
of L ⊗ L′ is the tensor product over K(X) of the K(X)-modules of rational sections of L
and L′. We will see that we can extend our group homomorphism div in such way that
div(st) = div(s) +div(t), and in doing so we will have a map from the commutative monoid
of pairs (L, s) consisting of line bundles on s and rational sections into the group WeilX.
We will then be interested in identifying these pairs up to isomorphism, and understanding
the image of div in WeilX which results. In good situations we will see that this gives an
isomorphism of groups, and that one really can view codimension one subschemes of X as
corresponding to a certain additive group structure in a natural way.

Notation 3.60. Let Y ⊂ X is an irreducible codimension one subscheme corresponding to
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the point p ∈ X. Then (OX)p is a discrete-valuation ring (recall that X is regular). We
denote the valuation at p either by valY or valp.

Definition 3.61. If L is a line bundle on X and s is a rational section, we define

div(s) =
∑
Y

valY (s)[Y ] ∈Weil(X),

where the sum is understood to be over irreducible codimension one closed subschemes of
Y (we will adopt the convention that Y is always understood to be a codimension one
irreducible closed subscheme).

Lemma 3.62. The sum in definition 3.61 is well-defined, in the sense that there are only
finitely many non-zero terms.

Proof. Since X is Noetherian, it has a finite open cover by affine open sets corresponding to
Noetherian rings, and so it suffices to consider the case where X = SpecR is affine and R is
Noetherian. Note that any open cover of an affine scheme SpecR admits a finite subcover;
this is true in particular for a subcover of the open cover {D(f)}f∈R since⋃

i∈I
D(fi) = SpecR ⇐⇒

⋂
i∈I

V (fi) = ∅ ⇐⇒
∑
i∈I
〈fi〉 = R,

and the right-hand side equality indicates there is a sum fi1 + · · · + fik = 1, and thus
SpecR = D(fi1) ∪ · · · ∪D(fik). Thus, by considering a finite open subcover of {D(f)}f∈R
where L is trivalizable on each open set in the cover, we may reduce further to the case
where L ∼= OX . A rational section may then be viewed as an element of the fraction field
Frac(R). We may therefore write this section as a/b where a, b ∈ R, and as valY (a/b) =
valY (a)− valY (b), it suffices to show that valY (a) is only non-zero for finitely many Y ⊂ X
(the same argument works for valY (b) by symmetry).

Let pY be the prime ideal corresponding to Y . If valY (a) = 0, then a ∈ pY . In particular,
〈a〉 ⊆ pY . In a Noetherian ring, there are only finitely minimal prime ideals containing any
given ideal (a fact that comes from primary decomposition), and so we see that there are
only finitely many such ideals pY .

Definition 3.63. We define the group

Sec(X) = {(L, s) : L a line bundle on X, s a rational section}/ ∼,

where the equivalence relation is defined by (L, s) ∼ (L′, t) if there is some isomorphism
L ∼−→ L′ which sends s to t. The group operation is tensor product (of both line bundles
and sections). The identity element is (OX , 1).

Lemma 3.64. The map div : Sec(X)→Weil(X) is a group homomorphism.

Proof. It suffices to show that valp(st) = valp(s)+valp(t). Note that the first valuation is the
valuation corresponding to the stalk Sp := (L ⊗OX L′)p = Lp ⊗OX,p L′p. Recall that these
stalks are (non-canonically) isomorphic to (OX,p ⊗OX,p OX,p), and so in particular every
element of the stalk is a pure tensor. The unique maximal ideal in Sp can be characterized
as the set of all non-invertible elements, hence it contains exactly the elements of the form
x ⊗ y where either x is in the maximal ideal mp of Lp or y is in the maximal ideal m′p of
L′p (or both). If x is a generator for mp, then x ⊗ 1 cannot be written as a product of two
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non-invertible elements in Sp and hence must be a generator for its maximal ideal; the same
is true of 1⊗ y when y is a generator for m′p. Factoring s⊗ t = (s⊗ 1)(1⊗ t) we may thus
compute that

valp(s⊗ t) = valp(s⊗ 1) + valp(1⊗ t) = valp(s) + valp(t).

We would next like to show that div is injective, which means characterizing its kernel.
In particular, we wish to understand what it means for a section s of a line bundle L to
have “no zeros or poles” in codimension one. The main tool is the following lemma from
commutative algebra, which effectively shows that a function having no poles in codimension
one extends over the entire set.

Lemma 3.65. If R is a regular integral domain, then

R =
⋂

codimp=1

Rp,

where the intersection takes place in the fraction field.

Proof. Omitted.

Using this lemma, we may prove the following.

Lemma 3.66. Suppose that s is a rational section of the line bundle L on X, and that s
has no poles (i.e., valp(s) ≥ 0 for all codimension one points p ∈ X). Then s is a regular
(global) section of L.

Proof. Let U = SpecR be an affine open subset of X and ϕ : L
∣∣
U

∼−→ OX
∣∣
U
a trivialization.

Then ϕ(s) satisfies valp(ϕ(s)) ≥ 0 for each codimension one point p ∈ SpecR, and so belongs
to Rp for all such points. By Lemma 3.65, we see that ϕ(s) ∈ R, and hence is regular on U .
Since the affine opens cover X, s is a globally regular section.

Lemma 3.67. The map div : Sec(X)→Weil(X) is injective.

Proof. Suppose that L is a line bundle on X and s is a rational section of L such that
div(s) = 0. Then s has no poles, hence is regular. We may thus define a map ϕ : OX → L
given by f ∈ OX(U) 7→ f · s

∣∣
U
. If we can show this is an isomorphism, we will have shown

that the pair (L, s) corresponds to the pair (OX , 1) and hence is the identity element in
Sec(X).

To show the morphism ϕ of sheaves is an isomorphism it suffices to show that it induces
isomorphisms over any open set U . Thus it suffices to show that for a trivialization ψ :
L
∣∣
U

∼−→ OX
∣∣
U

the map ψ ◦ ϕ
∣∣
U

: OX
∣∣
U
→ OX

∣∣
U

is an isomorphism. If f ∈ OX(V ) for
V ⊆ U open, then this map acts as f 7→ f · ψ(s

∣∣
V

). The element ψ(s
∣∣
U

) has no no zeros
and no poles (since div(s) = 0) so in particular it is invertible, and we may define a map
OX
∣∣
U
→ OX

∣∣
U

given on V ⊆ U open by g 7→ g · ψ(s
∣∣
V

)−1, which gives an inverse to
ψ ◦ ϕ

∣∣
U
.

The above lemma tells us that there is a subgroup of the group WeilX whose behaviour
corresponds to that of multiplying sections on various line bundles of X. The utility of
such a statement, however, would be very little if we could not identify any non-trivial line
bundles. The next definition gives a family of sheaves which, it turns out, exhausts all line
bundles on X.
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Definition 3.68. Let D ∈ WeilX be a Weil divisor. We define the sheaf OX [D] on the
open set U ⊆ X by

OX [D](U) := {f ∈ K(X)× : div
∣∣
U

(f) +D
∣∣
U
≥ 0} ∪ {0}

with the obvious OX(U) action and with the restriction maps being the obvious inclusions.
Note that div

∣∣
U

(f) means the function div corresponding to the subscheme U acting on f
∣∣
U

and D
∣∣
U

means the divisor obtained from D by ignoring any points of X which do not lie
in U .

Lemma 3.69. Suppose that L is an invertible sheaf, and that s is a rational section of L.
Then OX [div(s)] ∼= L.

Proof. Omitted.

Lemma 3.70. If L := OX [D] is an invertible sheaf, then there exists a canonical rational
section s of L such that div(s) = D corresponding to the element 1 ∈ K(X)×.

Proof. To eliminate possible confusion, we use the notation 1L to denote the rational section
of L corresponding to 1 ∈ K(X). Let p ∈ X be of codimension one. Since L is invertible,
we can find an affine open set U containing p such that L

∣∣
U
∼= OX

∣∣
U
. In particular, if p

is not in the support of D (the set of points whose coefficients in D are non-zero), then
this isomorphism arises simply from observing that L(U) = OX(U) for U small enough.
Since this isomorphism induces a correspondence between the valuation at p on L and the
valuation at p on OX , we see that valp(1L) = 0 if p is not in the support of D.

If p is in the support of D, then the isomorphism must send 1L to a function f regular
over U , with inverse map division by f . Hence for g ∈ L(U) with div(g) + D

∣∣
U
≥ 0, we

must have div(fg) ≥ 0 for all choices of g, and therefore div(g) = D
∣∣
U
. This in particular

means that div
∣∣
U

(1L) = D
∣∣
U
.

Lemma 3.71. By the preceding two lemmas, we may represent any element of Sec(X) in
the form (OX [div(s)], s). In this case, its inverse is given by (OX [−div(s)], 1/s).

Proof. Applying the div homomorphism to the product we get div(s(1/s)) = 0, which
completes the proof by the injectivity of div.

The preceding Lemmas show that any line bundle takes the form described in Definition
3.68, but it need not be the case that every sheaf of the form in Definition 3.68 is a line
bundle. We do not dwell on this point here, but instead introduce a condition that will give
us a family of objects X for which this correspondence does hold.

Lemma 3.72. If X is factorial, then OX [D] is an invertible sheaf for any divisor D.
Consequently, the map div : Sec(X)→Weil(X) is an isomorphism.

Proof. To show that L := OX [D] is an invertible sheaf, it suffices to show that there is a
covering by affine open sets U such that L

∣∣
U
∼= OX

∣∣
U
. Note that if g ∈ OX(U) satisfies

D
∣∣
U

= div
∣∣
U

(g), then the map OX(U)→ L(U) given by f 7→ f/g induces an isomorphism
between OX(U) and L(U) with inverse s 7→ sg. Thus it suffices to show that for each point
p ∈ X there is an affine open neighbourhood U and a rational function g on U such that
D
∣∣
U

= div
∣∣
U

(g). This is clearly true for the case when D
∣∣
U

= 0, so we consider the case
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when D
∣∣
U

= np for p ∈ U . In this case, we note that since OX,p is a UFD, we may take a
generator x for the principal prime ideal corresponding to p. Then valp(xn) = n, and so by
restricting to a small enough open set U we may take g = xn as desired.

We have already shown the map div is injective, and this Lemma, in conjunction with
Lemma 3.70, shows that the map is surjective.

The preceding results in some sense “justify” the consideration of the group Weil(X), in
that we see that it corresponds naturally to structures associated with X. A second question
of interest is the relationship between Weil(X) (or Sec(X)) and Pic(X). Intuitively, Pic(X)
is a group that we get when we “forget” about the rational section s in the pair (L, s) and
only worry about the line bundle. We will see that Pic(X) in fact corresponds naturally to
a quotient subgroup of Weil(X).

Definition 3.73. A divisor D is called principal if it is the image of a rational function
f ∈ K(X) under (OX , f) 7→ div(f). Note that the set {(OX , f) : f ∈ K(X)} forms a
subgroup of Sec(X). We denote the image of this subgroup by Prin(X).

Definition 3.74. Define the class group Cl(X) to be the group Weil(X)/Prin(X).

Lemma 3.75. We have an commuting diagram of groups

Sec(X) Weil(X)

Pic(X) Cl(X)

div

/Prin (X)

where the map Sec(X)→ Pic(X) is the map that “forgets” the section, and the bottom arrow
will be described over the course of the lemma. If X is factorial, the two horizontal arrows
are isomorphisms.

Proof. We first describe the bottom arrow. Suppose that L is a representative of an element
in Pic(X). Then we may find a rational section s of L and send L 7→ div(s) + Prin(X). If
L′ ∼= L and t is a rational section of L′, then L⊗L′∨ ∼= OX and so div(s)−div(t) ∈ Prin(X),
so this map is well-defined. It is injective since if (L, s) and (L′, t) are two elements of Sec(X)
such that div(s)− div(t) ∈ Prin(X), then we must have that L ⊗ L′∨ ∼= OX .

If X is factorial then the top arrow is an isomorphism. Hence every divisor D is of the
form D = div(s) for some section s of L, hence every equivalence class D + Prin(X) is of
the form div(s) + Prin(X) and the image of some L.

The use of the factoriality assumption in the preceding Lemmas may seem somewhat
ad-hoc, but it is justified by the fact that it holds for the important case of algebraic curves
which we will need to understand the idea of the Jacobian variety of a curve. We introduce
some basic terminology in the next section for this purpose.

3.4 Algebraic Curves
Throughout this section, we assume that k is an algebraically closed field.

Definition 3.76. An irreducible topological space X is said to be an curve if it is of
dimension one.
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Definition 3.77. A morphism π : X → Y of schemes is said to be affine if inverse images
of affine sets are affine.

Definition 3.78. A morphism π : X → Y is said to be a closed embedding if it is affine
and each induced map Γ(U,OY )→ Γ(π−1(U),OX) is surjective.

Definition 3.79. A scheme X is said to be projective over k if there is a closed embedding
X ↪→ Pn

k
for some n, where Pn

k
is n-dimensional projective space. Note that we have not

constructed Pn
k
as a scheme here, but a construction can be found in the author’s article on

schemes and sheaves[13].

Throughout the rest of the thesis, we use the term algebraic curve to mean a projective,
integral, regular scheme over a field k whose topological space is a curve. Over the complex
numbers, we will also view this curve as a complex manifold, which technically requires
that one exhibit a correspondence between curves in the sense we have defined them and
their so-called “analytification” (which has, for instance, a Hausdorff topology and a complex
manifold structure), but we will ignore this detail. We also introduce some additional ideas
regarding line bundles on algebraic curves.

Definition 3.80. If C is an algebraic curve and D ∈ Weil(C) is a divisor, where D =∑
p npp, the degree of D is defined to be the sum∑

p

np ∈ Z.

This gives a group homomorphism deg : Weil(C)→ Z.

Definition 3.81. Let π : C → C ′ be a morphism between algebraic curves, and π∗ :
K(C ′)→ K(C) be the induced morphism between the underlying function fields. If p ∈ C
is a closed point (i.e., not the generic point), then we define the ramification of π at p by

eπ(p) := valp(π∗tq),

where tq is any generator of the maximal ideal corresponding to q = π(p) (i.e., a uniformizer
at q).

Definition 3.82. Let π : C → C ′ be a morphism between algebraic curves, and D =∑
q∈C nqq a divisor on C ′. Then we define the pullback of D by

π∗(q) =
∑

p∈π−1(q)

eπ(p)p,

and extending linearly.

Definition 3.83. Let π : C → C ′ be a morphism between algebraic curves. The degree of
the map π is the degree of the field extension induced by π∗, i.e., [K(C) : π∗(K(C ′))].

The various notions of degree will let us better characterize the elements of Pic(C). In
particular, we will see that line bundles have a well-defined degree (the degree of any rational
section), and that the degree of the divisor associated to any rational function is zero. The
following proposition is of crucial importance. We omit the proof.
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Proposition 3.84. Let π : C → C ′ be a morphism of algebraic curves. Then for each
closed point p of C ′, we have

deg π∗(p) = deg π.

Note that on the LHS we interpret π∗(p) as a divisor on C ′.

Using this proposition, we may establish some crucial facts about divisors on algebraic
curves.

Lemma 3.85. Let C be an algebraic curve. There is a natural one-to-one correspondence
between elements of K(C) and morphisms C → P1.

Proof. The function field of P1 is k(x). Any morphism C → P1 induces a morphism
K(P1) → K(C) on function fields, and any such morphism on function fields is deter-
mined by the image of x. Conversely, given such a morphism on function fields (i.e., the
image of the element x) we have the natural morphisms of the corresponding structure
sheaves (identifying the function spaces with subrings of the function fields as usual), and
this induces a morphism C → P1.

Lemma 3.86. If C is an algebraic curve and f ∈ K(C) is non-zero, then div(f) = f∗(0)−
f∗(∞) where f is regarded as a map f : C → P1.

Proof. Let t0 ∈ K(P1) be a uniformizer at 0 ∈ P1. Then

f∗(0) =
∑

p∈f−1(0)

valp(f∗t0)p.

Note that valp(f∗t0) ≤ 0 means that f∗t0 does not belong to the maximal ideal at p.
Moreover, if valp(f∗t0) > 0 then f∗t0 belongs to the maximal ideal at p, hence the maximal
ideal at 0 ∈ P1 is mapped into the maximal ideal at p ∈ C by f∗, and so f(p) = 0. The
above sum is therefore just the divisor of zeros of f , and the analogous fact holds for the
point ∞ ∈ P1. This completes the proof.

Lemma 3.87. If C is an algebraic curve and f ∈ K(C) is non-zero, then deg div(f) = 0.

Proof. Using Proposition 3.84 with π = f and p = 0 (respectively π = f and p = ∞) in
conjunction with Lemma 3.86 we see that

deg div(f) = deg f∗(0)− deg f∗(∞) = deg f − deg f = 0.

Definition 3.88. If L is a line bundle on an algebraic curve C, then we define the degree
of L to be the degree of any rational section of L.

Lemma 3.89. The degree of L in definition 3.88 is well-defined.

Proof. Suppose that s and s′ are both rational sections of L. By Lemma 3.69 we have that
L ∼= OC [div(s)] ∼= OC [div(s′)], hence

OC ∼= L ⊗ L∨ ∼= OC [div(s)]⊗OC [div(1/s′)].

Since s/s′ corresponds to a rational section of OC under this isomorphism, we have div(s) =
div(s′).

34



3.5 Final Digression: Pullbacks of Line Bundles
We need one final tool before discussing the construction of the Jacobian variety, and due to
lack of a more opportune moment to discuss it we are forced to place it here. The notion is
that of the pullback of a line bundle; we will need it when describing the functor which the
Jacobian variety is meant to represent, and given a morphism f : X → Y and a line bundle
L on Y it will give us a line bundle f∗L on X. The version of this concept for manifolds or
even more general topological spaces is more intuitive, so we describe that first.

Recall that sheaves are objects typically associated to some sort of fibre bundle. If Y is
(say) a smooth manifold, then a fibre bundle over Y is an object E together with a map
π : E → Y such that above every point p ∈ Y the fibre π−1(p) is isomorphic to some
“standard fibre” F . In particular, every point p ∈ Y has a neighbourhood U ⊆ Y such that
π−1(U) ∼= U × F .

Now suppose that f : X → Y is a map. We wish to define a “pullback bundle” f∗E
which is in some sense the pullback of π : E → Y along f . A nice example of what we want
is the case where f : X ↪→ Y is an inclusion, in which case we wish that f∗E = π−1(X)
holds. This in particular is true if we define the pullback bundle via the fibre product, i.e.,
we define the pullback f∗E to be an object with two maps π∗ : f∗E → X and g : f∗E → E
such that the diagram

f∗E E

X Y

g

π∗ π

f

commutes and such that f∗E is universal with respect to this property.
Now when working with schemes, it is often easier to work with sheaves instead of

bundles, so we first reinterpret this definition in the language of sheaves. We have two
sheaves, F on Y and f∗F on X, defined by

F(U) = {U s−→ E : π ◦ s = idU}, and

(f∗F)(V ) = {V s−→ f∗E : π∗ ◦ s = idV }.

To describe f∗F via a universal property, we need to describe one of its functors of mor-
phisms in the category of sheaves on X. This functor of morphisms should itself be deter-
mined by the sheaf F and the map f alone.

To see how we can do this, suppose for the moment that G is another sheaf on X, and it
corresponds to a bundle π′ : E′ → X. Then a morphism of sheaves f∗F → G corresponds
to a bundle morphism E′ → f∗E, which is a fibre preserving map g′ : E′ → f∗E, i.e., a
map g′ such that π∗ ◦ g′ = π′. We then have the following commuting diagram:

E′

f∗E E

X Y

π′

g′

g

π∗ π

f

The question of whether the map g′ exists is then a question of whether the dotted arrow
exists satisfying the fibre product universal property: if the dotted arrow does exist, then
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the universal property of the fibre product guarantees the existence of g′, and if g′ exists
then we may take the dotted arrow to be g ◦ g′. The dotted arrow can itself be interpreted
as a bundle morphism between the bundle f∗E′ with projection map f ◦ π′ : E′ → Y and
the bundle E. Hence we have a bijection

{bundle maps E′ → f∗E} ←→ {bundle maps f∗E′ → E}.

Since the correspondence between sheaves and bundles is a contravariant one, this in turn
induces a bijection

{sheaf maps f∗F → G} ←→ {sheaf maps F → f∗G}.

Turning back to the categories of schemes and sheaves on schemes, this motivates the fol-
lowing definition:

Definition 3.90. Let X,Y be schemes, f : X → Y a morphism of schemes, and F a
OY -module. Then the pullback f∗F is a OX -module such that we have an isomorphism of
functors

HomOX (f∗F ,−) ' HomOY (F , f∗−).

We will use the fact that pullbacks exist without proof. The following lemmas are also
important.

Lemma 3.91. Suppose that ι : U ↪→ X is an inclusion which realizes U as an open sub-
scheme of the scheme X. Then if F is an OX-module, then ι∗F = F

∣∣
U
.

Proof. If G is a OU -module then ι∗G is a OX -module. Any morphism α : F → ι∗G corre-
sponds to a collection of restriction-respecting maps αV : F(V )→ G(ι−1(V )). We have the
commutativity of the diagram

F(V ) G(ι−1(V )) = G(U ∩ V )

F(U ∩ V ) G(U ∩ V )

αV

resVU∩V resU∩VU∩V

αU∩V

Since the right downward arrow is the identity map, the map αV is uniquely determined by
αU∩V , and so the morphism α : F → ι∗G is determined by the morphism α

∣∣
U

: F
∣∣
U
→ G.

We thus have a bijection HomOU (F
∣∣
U
,G) ' HomOX (F , ι∗G).

To check that this bijection is natural in G, we consider an arbitrary morphism of OU -
modules β : G → G′. Then the component maps of the morphism β ◦ α

∣∣
U

over the open
set V ⊆ U are given by βV ◦ αV . We denote the map ι∗β : ι∗G → ι∗G′ to be the map
induced by β via the functor ι∗, i.e., the one whose component maps (ι∗β)V : G(ι−1(V ))→
G′(ι−1(V )) are just the maps βU∩V . Then if V ⊆ U , the component maps of (ι∗β) ◦ α are
βU∩V ◦ αV = βV ◦ αV , and in particular we have ((ι∗β) ◦ α)

∣∣
U

= β ◦ α
∣∣
U
. Thus we see that

the unique extension to X of the sheaf morphism β ◦ α
∣∣
U

is in fact (ι∗β) ◦ α, and so the
bijection HomOU (F

∣∣
U
,G) ' HomOX (F , ι∗G) is natural in G.

Lemma 3.92. If f : X → Y is a morphism of schemes, then f∗OY = OX .

Proof. It suffices to exhibit a bijection HomOX (OX ,G) ' HomOY (OY , f∗G) which is natural
in G. We omit the proof.
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Lemma 3.93. If f : X → Y and g : Y → Z are morphisms of schemes, and F is an
OZ-module, then (g ◦ f)∗F = g∗(f∗F).

Proof.

HomOX ((g ◦ f)∗F ,−) ' HomOZ (F , (g ◦ f)∗−)

' HomOZ (F , f∗(g∗−))

' HomOY (f∗F , g∗−)

' HomOX (g∗(f∗F),−)

Lemma 3.94. If f : X → Y is a morphism of schemes and F and G are OY -modules, then

f∗(F ⊗OY G) = (f∗F)⊗OX (f∗G).

Proof. Omitted.

Lemma 3.95. If f : X → Y is a morphism of schemes and L is an invertible sheaf on Y ,
then f∗L is an invertible sheaf on X.

Proof. Since L is an invertible sheaf, around any p ∈ Y there is an open neighbourhood U
such that L

∣∣
U
∼= OX

∣∣
U
. Denote by ι the morphism ι : f−1(U) ↪→ X. Then by Lemmas

3.91, 3.92 and 3.93 we have

(f∗L)
∣∣
f−1(U)

= ι∗(f∗L)

= (f ◦ ι)∗L
= (f

∣∣
f−1(U)

)∗L
∣∣
U

∼= (f
∣∣
f−1(U)

)∗OX
∣∣
U

∼= OY
∣∣
f−1(U)

which shows that f∗L is also invertible.

All of this amounts to saying that

Lemma 3.96. If f : X → Y is a morphism of schemes, then f∗ : Pic(Y ) → Pic(X) is a
group homomorphism. In particular, Pic is a functor Sch→ Grp.
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4 Abstract Construction of the Jacobian Variety
In this section we describe how one goes about constructing the Jacobian variety of a curve
C. The idea will be along the lines we sketched in our exposition of category theory, in that
we will describe a particular functor in an appropriate category and argue that it can be
represented. To justify this as being a construction of “the” Jacobian variety, it is important
that the functor we describe has an interpretation where the points of the representing
object are in fact the things we wish to view as points of the Jacobian. Moreover, we need
to understand what we are to expect of a functor that corresponds to a “group object”. The
next section develops these ideas.

4.1 The Functorial Viewpoint on Group Schemes
When working with, say, manifolds, one can view a point p in a space X as a map • → X
from the one point space • whose image is {p}. An advantage of this viewpoint is that it
allows us to interpret the sets Hom(•, X) as being a collection of points of X, and thus if
a functor F is contravariantly representable by X, we are justified in thinking of the points
of X as being the set F (•).

With schemes the situation is more complicated, because there is not just one “type” of
point by many: a scheme can have points over Z, over Q, over an arbitrary ring or field, or
even over another scheme. In general, we have the following definition:

Definition 4.1. Let X be a scheme. Then a Y -valued point of X, where Y is also a scheme,
is an element of the set HomSch(Y,X).

The usual case is when Y = SpecR is affine, which we will often refer to being the R-
valued case. One can see that this generalizes the usual notion of the field of definition of a
point from classical algebraic geometry, since a map Speck→ X corresponds to a collection
of compatible morphisms OX(U)→ k for each open set U ⊆ X, and the kernel of each such
morphism is a maximal ideal of the ring OX(U) corresponding to the point of interest. If
OX(U) is a k-algebra, then this is just the usual notion of k-valued point.

In general, we would like to be able to ensure that all the rings OX(U) are k-algebras
over some field k, since our construction of the Jacobian of a curve C will generally have
the curve C defined over some field k. The next definition will ensure this is the case.

Definition 4.2. Let k be a field. We define a k-scheme to be a scheme X with a morphism
X → Speck. Note that because the topological space of Speck consists of a single point,
this is essentially just a collection of maps k ↪→ OX(U) which commute with restrictions,
or another way of saying that the elements of k are (constant) functions on X.

Definition 4.3. A morphism of k-schemes X and Y is defined to be a morphism π : X → Y
of schemes such that the following triangle commutes:

X Y

Speck

π

We refer to the category of k-schemes by k-Sch. The morphism into Speck is called the
structure morphism of the scheme. Note the important difference between a map X →
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Speck and a map Speck → X: while the former ensures that the functions on X include
the constant functions in k, the latter picks out a so-called “k-valued point” of X. This
idea will be important later, when we will want to ensure that the object X we are using
to represent the functor has the “right k-valued points”, which will simply mean that the
representing natural transformation associates the right set to Homk-Sch(Speck, X). Note
also that products in k-Sch are simply fibre products over the structure morphisms; we will
often write this as simply a product when the underlying category is understood.

To construct the Jacobian variety of a curve C over a field k, we will want it to be a
k-scheme with a group structure given by morphisms of k-schemes. An easy way to express
this idea is with the notion of a group object in the category k-Sch, which we now define.

Definition 4.4. A group object in k-Sch consists of the following data:

(i) A map m : G×k G→ G called the multiplication map.

(ii) A map i : G→ G called the inversion map.

(iii) A map e : Speck→ G.

These maps satisfy the following commutative diagrams:

(i) Associativity:

G×k G×k G G×k G

G×k G G

id×m

m×id m

m

(ii) Identity:

G×k Speck G×k G

G×k G G

id×e

ide×id m

m

(iii) Inverse:

G G×k G

G×k G Speck

G

id×i

i×id

m

m e

The maps a× b are all obtained from the universal property of the target products, where
we suppress some compositions with associated projection maps (as in the case of the as-
sociativity diagram, where the source is also a product). We note that G ×k Speck ' G,
which is why we have a diagonal identity arrow in the second diagram.
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If one applies the Yoneda Lemma to the diagrams in Definition 4.4, then one obtains the
same diagrams with G replaced by Homk-Sch(−, G) and the various morphisms replaced by
pushforward maps. If we evaluate these diagrams on some k-scheme X, then the diagrams
reduce to telling us that Homk-Sch(X,G) forms a group. The Yoneda embedding is functorial
in the first argument, and each induced pushforward morphism m∗, i∗, etc. commutes with
any pullback morphism induced by a map of k-schemes π : X → X ′. In fact, we have the
following:

Lemma 4.5. An object G in k-Sch is a group object if and only if Homk-Sch(X,G) is a
group functorially in X.5

Proof. We omit the proof because it is really nothing more than a tedious verification.

A functor satisfying the characterization of Lemma 4.5 is called a group functor. The
idea is that the points of the group scheme G should form a group over any field, ring, or
even scheme, and that the group operation should be natural in the sense that if one were to
perform a “base change” then the base change would commute with the group operation. So
for instance, if a group operation is given by polynomial or rational functions which describes
a group law in the sense that the algebraic expressions themselves satisfy the properties of
a group law (as opposed to just coincidentally giving maps of points that happen to satisfy
the group axioms), then one can freely extend the field or ring of definition of the points
of the space and still have a group law. Moreover, the process of extending the field of
definition commutes with the group operation itself: if one computes the sum of two points
on an elliptic curve defined over Q, and then views those points as lying in C, one gets the
same result as if one had first viewed those points as lying in C and then computed their
sum. This is exactly the intuition that the group functor language encodes, where we keep
in mind the interpretation of Homk-Sch(X,G) as the X-valued points of G as described
above.

4.2 Finding the Right Functor
We now turn to the question of where it is that Jacobian varieties come from, and how
we can find an appropriate functor to describe their points in the category k-Sch over
some field k. Like with many things in algebraic geometry, the picture is clearest over the
complex numbers. There, one can show the existence of a one dimensional abelian variety
as follows: if Λ ⊂ C is a lattice, then C/Λ is a compact Riemann Surface. The addition law
on C descends to an addition law on C/Λ which turns C/Λ into a group in the category
of compact Riemann Surfaces. The category of compact Riemann Surfaces is known to be
equivalent to the category of smooth, projective, algebraic curves over C, hence each such
lattice under this correspondence gives rise to an algebraic curve with an algebraic group
law. These curves are called elliptic curves.

This argument makes crucial use of the fact that every compact one dimensional com-
plex manifold (compact Riemann Surface) is an algebraic curve; this correspondence does
not extend to dimensions greater than one, and so establishing the existence of higher di-
mensional abelian varieties is not as simple. What is true, however, is that every complex
abelian variety is isomorphic to a complex manifold of the form Cg/Λ where Λ ⊂ Cg has

5The terminology “functorially in X” simply means that as we vary X all the natural diagrams (i.e., the
ones that encode the group law) induced by pullbacks of morphisms π : X → X′ commute. This is standard
terminology.
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the structure of a lattice (this fact follows from some basic Lie Group theory, but we do not
prove it here). The issue is that not every lattice Λ ⊂ Cg gives rise to an abelian variety, as
in general the space of meromorphic functions on these lattices might be sufficiently meagre
so as to not possess enough algebraic relations among them to give it a variety structure.

If C is a one-dimensional compact Riemann Surface of genus g, then the Jacobian of C is
a particular complex torus X ∼= Cg/Λ associated to C for which the space of meromorphic
functions on Jac(C) has “enough” algebraic relations to give it the structure of a variety. To
construct it we consider the vector space Γ(C,Ω1

C)∗, where Ω1
C is the sheaf of holomorphic

one-forms on C. This vector space is isomorphic to Cg, and there is a natural embedding
of H1(C,Z) into this vector space via the map [γ] 7→

∫
γ
−, where the notation on the right-

hand side denotes the integration functional that integrates a one-form along the curve γ.
The map is well-defined since any such integral is zero on closed curves homologous to a
point. This map is injective, and the embedding of H1(C,Z) ∼= Z2g defines a lattice Λ in
Γ(C,Ω1

C)∗. We then have Jac(C) = Γ(C,Ω1
C)∗/Λ.

In the theory of complex abelian varieties, which we do not develop here, there is a
natural notion of duality. The idea can be interpreted as coming from a certain point of
view regarding complex abelian varieties and their lattices. On one hand, we can imagine
studying complex abelian varieties of dimension g by simply studying those lattices Λ ⊂ Cg
such that Cg/Λ has the structure of a variety. But another, equivalent, perspective is to
imagine fixing a lattice Λ ∼= Z2g and instead studying the different complex structures on
Λ ⊗Z R ∼= R2g (i.e., R-algebra homomorphisms C → EndRΛ ⊗Z R)[11][12]. This second
perspective gives rise to a natural duality, where the dual lattice is Λ∨ = HomZ(Λ,Z) and
there is a natural map C→ EndRΛ∨ ⊗Z R which we omit. Under this duality, the complex
torus Γ(C,Ω1

C)∗/Λ satisfies the correspondence

Γ(C,Ω1
C)∗/Λ = Pic0(C)∨,

where we denote by Pic0(C) the group of isomorphism classes of degree 0 line bundles6 on
C. The Abel-Jacobi theorem gives a natural bijection between Γ(C,Ω1

C)∗/Λ and Pic0(C)
(they are dual, but need not be isomorphic, when C is not an algebraic curve), and so both
are called “the” Jacobian in this case.

Based on this motivating digression, we need to describe a functor k-Sch→ Set so that
the k-valued points of the functor (i.e., k-valued points of any representing scheme) are the
elements of Pic0(C). For a k-scheme T , we define

P0
C(T ) = Pic0(C × T )/q∗Pic0(T ),

where q : C × T → T is the standard projection. We have not defined what it means for a
general line bundle on a scheme X to be degree zero, but for our purposes we may say that
this is true when the pullback of the line bundle to any curve contained in X has degree
zero. The functor is then defined on morphisms via the natural pullback maps, where one
can show that the pullback of a degree zero line bundle is again degree zero.

It is easy to see that P0
C(Speck) = Pic0(C), and so this functor (assuming it in fact is a

functor) is a good candidate. It is also clear that P0
C(T ) forms a group for each T , and the

properties of the pullback show that this group operation is natural in T . We omit a proof
of the following proposition.

6We are sweeping the difference between holomorphic and algebraic line bundles under the rug here.
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Proposition 4.6. P0
C is a functor k-Sch→ Set.

Proof. Omitted.

The above proposition along with Lemma 4.5 shows that to construct Jac(C) as a group
scheme, it suffices to represent P0

C . To go on to show that Jac(C) is an abelian variety one
needs to demonstrate some additional properties of the k-scheme representing P0

C , which
we omit.

We now give a brief sketch, following Milne[5][6], of how one shows that P0
C is rep-

resentable. Noting the correspondence between Pic0(C) and degree zero divisors modulo
principal divisors, we endeavour to construct a variety whose points correspond to a divisor
from each equivalence class in Pic0(C). To represent a formal sum of r points, it is natural
to consider the symmetric product

C(r) := C × C × · · · × C︸ ︷︷ ︸
r times

/Sr,

where the group action is given by permuting elements. The k-points of C(r) then can
be thought of as representing effective divisors (divisors with non-negative coefficients) of
degree r. Denote by Picr(C) the set of equivalence classes of degree r divisors. If P ∈ C is
some k-point, then we have a bijective map Pic0(C)→ Picr(C) sending [D] 7→ [D+rP ]. By
defining a functor PrC analogous to P0

C one can extend this to an isomorphism of functors,
and so it suffices to represent PrC .

It is not in general true that every equivalence class in Picr(C) contains a unique represen-
tative which is an effective degree r divisor; in general there may be many representatives to
choose from, and so we might instead hope to be able to choose these representatives in some
canonical way and describe Jac(C) as a subvariety derived from C(r). Via the Riemann-
Roch Theorem, one can show that for r > 2g − 2 the natural map ϕ : C(r) → Picr(C)
sending an effective degree r divisor D to [D] is surjective, and so selecting a representative
of Picr(C) is just a matter of defining a map s : Picr(C)→ C(r) such that ϕ ◦ s = id.

The points p of C(r) of interest are then the ones in the image of s, or the ones that
satisfy p = (s ◦ ϕ)(p). If we can interpret both s and ϕ functorially, then map s ◦ ϕ will be
a morphism, and we may form the fibre product

J C(r)

C(r) C(r) × C(r)

(id,s◦ϕ)

∆

where ∆ is the diagonal map. The k-points of J will then be those pairs (a, b) ∈ C(r)×C(r)

such that a = b and a = (s◦ϕ)(b), and so correspond bijectively (and, hopefully, functorially)
to Picr(C).

Unfortunately, it is not always possible to find a map s which can be given a functorial
interpretation, but fortunately, this can be done “locally” on open subsets of C(r). The full
Jacobian can then be constructed as a union of subvarieties by gluing of charts. For details
on this construction please see the exposition by Milne[5][6].
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5 Concrete Equations for Hyperelliptic Jacobians and
their Group Law

In this section we present some original work which gives explicit equations for the group
law on hyperelliptic Jacobians on an affine dense open set. It can be read independently of
the rest of the thesis, and in fact should be, as it is essentially the rough draft of a paper
that will soon be submitted to a mathematical journal.

5.1 Introduction
Abelian varieties and their equations have long attracted interest in arithmetic geometry.
Although it is known that equations describing these varieties must exist, and their nature
has received some study[7–9], it is in general believed to be impractical or infeasible to write
such equations down. This attitude is perhaps best summarized in Milne’s notes[5] on the
subject, where he writes “In general, it is not possible to write down explicit equations for
an abelian variety of dimension > 1, and if one could, they would be too complicated to be
of use.”

A brief look at the literature on the matter seems to justify this outlook. For instance,
the paper of Flynn[16] gives a general set of equations for genus two Jacobians over an
arbitrary ground field; there are 72 equations in total, listed in an appendix, which describe
these Jacobians as projective subvarieties of a 15-dimensional projective space. A follow-
up paper from Flynn[15] describes the group law, the equations of which he describes as
“too large to be written down,” and instead focuses on methods to compute specializations
of the group law for tasks such as point-doubling or the addition of fixed points of low
order. Related work by Grant[3] gives a simpler set of defining equations in 8-dimensional
projective space, but at the cost of some generality.7 In both cases, the authors remark
that portions of their exposition required computer verification, as the algebraic expressions
involved are too complicated to be reliably manipulated by hand.

One of the difficulties that arises in these approaches is that the usual methods for
embedding genus g Jacobians into n-dimensional projective spaces tend to result in an
exponential dependence of n on g, with n = 3g − 1 and n = 4g − 1 being common (as in
the case for g = 2 above). This ensures that finding explicit equations via this strategy
must necessarily be impractical for large g. An alternative approach, which we pursue in
this paper, is to give explicit equations for Jacobians and their group law affine-locally, and
construct the full Jacobian by gluing of charts. For hyperelliptic curves, the Jacobian variety
itself is described in this manner by Mumford[10], with the affine-local pieces utilizing affine
spaces of dimension 3g+1, and hence with the number of parameters depending only linearly
on g. In this paper, we show how to extend this construction to give explicit equations for
the group law.

Our work is inspired by the paper of Leitenberger[4] and the paper of Costello and
Lauter[1], both of which essentially carry out this approach in the case g = 2. Our methods
can be viewed as a substantial generalization of their work.

5.2 Algebraic Construction of Hyperelliptic Jacobians
In this section, we review the construction of hyperelliptic Jacobians that appears in Mum-
ford’s Lectures on Theta[10] and set notation. We consider hyperelliptic curves C defined

7Although, in fairness to Grant, our work makes similar assumptions.
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over an algebraically closed field k with chark 6= 2 by two equations of the form

C1 : y2 = f(x) = f2g+1x
2g+1 + f2gx

2g + · · ·+ f0

C2 : s2 = h(t) = t(h2g+1t
2g+1 + h2gt

2g + · · ·+ h0)

glued along the morphism which makes the identifications x = 1/t and y = s/tg+1. We re-
quire that f(x) has non-vanishing discriminant, and that f is monic.8 Note that the equation
C2 completes the curve defined by C1 by adding a single “infinite” point corresponding to
(t, s) = (0, 0). Note also that hi = f(2g+1)−i. We will work with the equation C1, and refer
to the point (t, s) = (0, 0) by the symbol∞. We define the hyperelliptic involution to be the
map ι : C → C determined by (x, y) 7→ (x,−y). If P is a point on C, then ι(P ) is deemed
its conjugate.

One may check that the curve C is smooth, and that all divisor classes in Jac(C) =
Pic0(C) have a unique representative of the form P1 + · · · + Pg − g∞, where each Pi is a
point on C. To introduce coordinates into Jac(C), Mumford describes how to parametrize
unordered g-tuples of points on C1. Given Pi = (xi, yi), where 1 ≤ i ≤ g and Pi 6= ι(Pj) for
i 6= j, we define two polynomials describing the divisor P1 + · · ·+Pg. The first is defined as

u(x) =

n∏
i=1

(x− xi) = ugx
g + ug−1x

g−1 + · · ·+ u0;

that is, it is the monic polynomial whose roots are the x-coordinates of the Pi’s counted with
their multiplicity mult(Pi). The second polynomial v(x) =

∑g−1
i=0 vix

i is defined to be the
unique polynomial of degree g − 1 which approximates the function y up to order mult(Pi)
at Pi; that is, where valPi(v − y) = mult(Pi) for all 1 ≤ i ≤ g, and valPi is the valuation
at Pi. Note that for each i, the coordinate function zi = x− xi is a uniformizer at Pi, and
re-expressing the polynomial v in terms of zi the condition valPi(v−y) = mult(Pi) amounts
to imposing mult(Pi) linear relations on the coefficients vi. Since there are g such conditions
total a polynomial v satisfying these conditions must exist. To see the uniqueness claim,
observe that if v1 and v2 are any two such polynomials their difference v1 − v2 satisfies

valPi(v1 − v2) ≥ min{valPi(v1 − y), valPi(y − v2)} = mult(Pi).

But then v1 − v2 is a polynomial of degree at most g − 1 and has g roots with multiplicity,
hence must be zero.

The pairs (u, v) are in one-to-one correspondence with degree g effective divisors on C1

not containing any pair of conjugate points: the roots of u give the x-coordinates xi of the
g points, the value v(xi) gives their y-coordinates yi, and as we have seen the pair (u, v) is
uniquely determined. Moreover, we have

valPi(f − v2) = valPi(y
2 − v2) = mult(Pi) + valPi(y + v) = mult(Pi),

where we have used the fact that y+ v is non-vanishing at Pi since chark 6= 2. Hence f − v2

is a polynomial in x of degree 2g + 1 which vanishes to order mult(Pi) at each point Pi,
and so we have that u|(f − v2). Writing w =

∑g+1
i=0 wix

i for the unique monic degree g + 1

8For the formulas we will develop, it will be useful to consider all the coefficients of f on “equal footing,”
which is why we give the x2g+1 coefficient a distinct label despite the fact that we will always assume it is
equal to 1.
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polynomial which satisfies f − v2 = uw, we get the following relations by examining the xi
coefficient:

fi −
i∑

j=0

vjvi−j =

i∑
j=0

ujwi−j 0 ≤ i ≤ 2g + 1. (1)

Here we have adopted a convention which will be in use throughout the paper, which is
that polynomials may be regarded as formal power series in which all but finitely many
coefficients, all of which have non-negative index, are zero. Thus we have that each of the
sets of coefficients fi, ui, vi and wi are defined for all i ∈ Z≥0 (or, when it will be convenient,
all i ∈ Z), and so the equation (1) holds for all i ∈ Z≥0, although it is only non-trivial when
0 ≤ i ≤ 2g + 1.

The polynomials u, v and w have g + g + (g + 1) = 3g + 1 undetermined coefficients
among them, and as i ranges from 0 to 2g we obtain 2g + 1 relations from (1), where we
note that the relation obtained in the case i = 2g + 1 is redundant. We have the following
result from Mumford[10]:

Theorem 5.1 (Mumford). The equations (1) for 0 ≤ i ≤ 2g define a g-dimensional affine
variety Z ⊂ A3g+1

k
whose points are in bijection with divisors of the form{
D =

g∑
i=1

Pi : Pi 6=∞ for all i, Pi 6= ι(Pj) for i 6= j

}
.

If k = C then the variety is smooth.

The equations (1) therefore parametrize the points of Jac(C) \Θ, where

Θ :=

{
[D] ∈ Jac(C) : D ∼

g−1∑
i=1

Pi − (g − 1)∞, Pi ∈ C(k) for 1 ≤ i ≤ g − 1

}
.

Mumford then shows that one can cover Jac(C) by an atlas of charts isomorphic to Z.
He does this by studying sets of the form [eT ] + (Jac(C) \ Θ), where eT is a 2-torsion
divisor associated to a certain subset T of the branch points of C (those points P satisfying
ι(P ) = P ), and showing that they cover Jac(C). He then shows that the translation map
[D] 7→ [eT ]+[D] is algebraic, and that gluing a translate of Z for each set [eT ]+(Jac(C)\Θ)
gives an atlas of charts for Jac(C).

To describe an explicit group law on Jac(C), therefore, it suffices to describe it on Z.
This is first and foremost because Z defines a dense open set of Jac(C), and so knowing the
group law on Z allows one to compute it for almost all points of Jac(C) (i.e., apart from
on a set of measure zero when k = C), and secondly because if one wants to add points
belonging to Θ, one can pre- and post-compose with algebraic translations by [eT ] and −[eT ]
to bring both summands into a chart isomorphic to Z. In principle, one has to deal with
numerous edge cases corresponding to the various situations in which the translation and
group-law maps may not be defined, which can occur for instance when a group addition
or translation has its result in a different chart. The number and complexity of such edge
cases appears to grow with g, and the author is unaware of an easy way to resolve them
in general. For this reason, we will restrict our attention to describing the group law for
divisor classes belonging to a dense open subset of Z, and leave a discussion of these special
cases to future work.
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5.3 Special Classes of Polynomials
The derivation of the group law equations will involve two operations of interest: reduction
of one polynomial by another polynomial, and equating coefficients of various polynomial
expressions. The process of solving equations arising from these operations has a few general
features, which we develop here for use in the next section. In this section we work mainly
with formal power series for simplicity, although we emphasize that in the applications that
follow we will deal exclusively with polynomials. If L is a Laurent series, then [L]i denotes
its i’th coefficient.

For each n ≥ 1, denote by

Sn :=

{
σ = (σ1, . . . , σk) ∈ Zk≥1 :

k∑
i=1

σi = n, k ∈ Z≥0

}

the set of compositions of the integer n. When n = 0 we adopt the usual convention that
S0 contains a single empty composition. If σ ∈ Sn we denote by |σ| the length of σ, which
is the number of elements in the corresponding sum, or zero if n = 0. We have the following
Lemma:

Lemma 5.2. Suppose α =
∑
i αix

i and β =
∑
i βix

i are Laurent series over k. Define
the nth iterate of the dth order reduction of α by β at index k to be the Laurent series An
defined inductively as follows:

A−1 = α

An = An−1 − xd−n [An−1]k−nB

Then

[An]i = αi −
∑

0≤`≤m≤n

αk−`βi−d+m

 ∑
σ∈Sm−`

(−1)|σ|
|σ|∏
r=1

βk−d−σr

 .

Remark. The special case of Lemma 5.2 which will be of interest is when d ≥ 0, α is a
polynomial of degree k, and β is a monic polynomial of degree k − d, in which case Ad will
be the polynomial obtained by reducing α modulo β.

Proof. For the case n = 0, we have

[A0]i = [α− xdαkB]i = αi −
∑

0≤`≤m≤0

αk−`βi−d+m · 1,

where the factor of 1 can be viewed as coming from the empty product
∏|σ|
r=1 βk−d−σr

where σ is the unique element of S0. For the inductive case, we first observe that when
` ≤ m ≤ n−1, the elements of Sn−` are in bijection with the elements of

⋃n−1
m=` Sm−`, where

the bijection is obtained in the natural way by adding in the last summand of (n−m). We
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thus compute that

[An]i = [An−1]i − [xd−n[An−1]k−nB]i

=

αi − ∑
0≤`≤m≤n−1

αk−`βi−d+m

 ∑
σ∈Sm−`

(−1)|σ|
|σ|∏
r=1

βk−d−σr


−

αk−n − ∑
0≤`≤m≤n−1

αk−`βk−d−(n−m)

 ∑
σ∈Sm−`

(−1)|σ|
|σ|∏
r=1

βk−d−σr

βi−d+n

=

αi − ∑
0≤`≤m≤n−1

αk−`βi−d+m

 ∑
σ∈Sm−`

(−1)|σ|
|σ|∏
r=1

βk−d−σr


−

αk−nβi−d+n +
∑

0≤`≤n−1

αk−`βi−d+n

 ∑
`≤m≤n−1

∑
σ∈Sm−`

(−1)|σ|+1βk−d−(n−m)

|σ|∏
r=1

βk−d−σr


=

αi − ∑
0≤`≤m≤n−1

αk−`βi−d+m

 ∑
σ∈Sm−`

(−1)|σ|
|σ|∏
r=1

βk−d−σr


−

αk−nβi−d+n +
∑

0≤`≤n−1

αk−`βi−d+n

 ∑
σ∈Sn−`

(−1)|σ|
|σ|∏
r=1

βk−d−σr


= αi −

∑
0≤`≤m≤n

αk−`βi−d+m

 ∑
σ∈Sm−`

(−1)|σ|
|σ|∏
r=1

βk−d−σr

 .

The next special situation of interest arises when equating coefficients of two polynomials,
one of which arises from a product. We again work in the language of formal power series
for convenience.

Lemma 5.3. Suppose that α =
∑
i≥0 αix

i, β =
∑
i≥0 βix

i and γ =
∑
i≥0 γix

i are formal
power series over k, and that α = βγ. Suppose also that γ0 6= 0. Then we are in the
situation that αk =

∑k
j=0 βjγk−j, and so

βk =

k∑
j=0

αj
γ0

∑
σ∈Sk−j

(−1)|σ|

γ
|σ|
0

|σ|∏
r=1

γσr .

Proof. For k = 0 we have α0 = β0γ0, and so we may invert γ0 to get the desired equation.
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Considering the inductive case, we have that αk =
∑k−1
i=0 βiγk−i + βkγ0, and so

βk =
αk
γ0

+

k−1∑
i=0

(−1)

γ0
βiγk−i

=
αk
γ0

+

k−1∑
i=0

(−1)

γ0

 i∑
j=0

αj
γ0

∑
σ∈Si−j

(−1)|σ|

γ
|σ|
0

|σ|∏
r=1

γσr

 γk−i

=
αk
γ0

+

k−1∑
j=0

αj
γ0

∑
j≤i≤k−1

∑
σ∈Si−j

(−1)|σ|+1

γ
|σ|+1
0

γk−i

|σ|∏
r=1

γσr

=

k∑
j=0

αj
γ0

∑
σ∈Sk−j

(−1)|σ|

γ
|σ|
0

|σ|∏
r=1

γσr ,

where we have used the natural bijection between Sk−j and
⋃k−1
i=j Si−j obtained by adding

(k − i).

5.4 The Group Law
To compute the sum of two distinct points P and Q (representing the divisor classes [P −∞]
and [Q −∞]) on an elliptic curve, one intersects the curve C with a line ` through P and
Q which intersects the curve C at a third point R. The sum [P −∞] + [Q−∞] is then the
divisor class [ι(R) − ∞], and equations for the group law may be computed by explicitly
solving the curve equation for the coordinates of the point ι(R).

To generalize this strategy to a hyperelliptic curve of genus g, it is natural to try adding
[D1] = [P1 + · · ·+Pg− g∞] to [D2] = [Q1 + · · ·+Qg− g∞] by constructing an interpolating
function `(x) through the points P1, . . . , Pg, Q1, . . . , Qg which intersects the curve at g other
points R1, . . . , Rg. The sum [D1]+[D2] is then the divisor class [ι(R1)+ · · ·+ι(Rg)−g∞]. If
one then attempts to solve for the coordinates of the points ι(R1), . . . , ι(Rg), however, this
seems to require extracting roots, and so this strategy does not produce rational formulas
for the group law.

An alternative strategy, employed in the work of Costello and Lauter[1], is to instead
represent the divisors D1 and D2 using two pairs (u1, v1) and (u2, v2) as in Section 5.2. If
one does this, then the condition that the interpolation function ` intersect the curve C with
appropriate multiplicity at the various points Pi and Qi for 1 ≤ i ≤ g becomes equivalent to
the two modular conditions v1 ≡ ` (mod u1) and v2 ≡ ` (mod u2). Performing a modular
reduction, one gets a linear system of equations for the coefficients of `, and solves them to
find the interpolation function ` in terms of the coefficients of u1, v1, u2 and v2. Noting that
the function f − `2 vanishes on all the points Pi, Qi and any additional intersections Rj , one
can then derive linear relations for the coefficients of a polynomial u3 whose roots give the
x-coordinates of the points Rj by noting that u3|(f − `2); it is then a simple matter to find
an appropriate v3 to describe the sum.

Costello and Lauter carry out this strategy explicitly for g = 2, and sketch how it might
work in general, but their approach has an important drawback. Namely, the interpolation
functions they use are simply polynomials in x, and for g > 2 they do not give g additional
intersections R1, . . . , Rg but instead some number of intersections strictly between g and
2g. Therefore, their strategy requires carrying out multiple stages of calculations, the num-
ber of which depends on g, and appropriate formulas must be derived for each choice of g
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independently. Ideally, it would be possible to carry out a similar strategy with an inter-
polation function for which exactly g additional intersections R1, . . . , Rg are guaranteed in
the general case, and so do the computation “all at once”.

To achieve such an interpolation of the points P1, . . . , Pg, Q1, . . . , Qg, we use rational
functions of the form

p(x)

q(x)
=
pax

a + · · ·+ p1x+ p0

qbxb + · · ·+ q1x+ q0
, (2)

where a = (3g − ε)/2, b = (g − 2 + ε)/2, and ε is the parity of g. Since we have deg p +
deg q + 2 = 2g + 1 coefficients and only 2g points to interpolate, we have one additional
degree of freedom. The interpolation function is a polynomial of degree 1 (respectively
3) for the cases g = 1 (respectively g = 2). Such interpolation functions are considered
by Leitenberger in his paper[4], and were first considered by Jacobi[2] in connection with
Abel’s Theorem. Leitenberger uses these interpolation functions to derive equations for the
group law in the g = 2 case, but his methods do not appear to generalize. Our derivation,
which will be more in line with the polynomial division techniques used in the paper [1] of
Costello and Lauter, will achieve explicit formulas for all positive integers g.

5.4.1 Group Law on a Dense Open Set

Recall that, by the discussion in Section 5.2, we are working to describe the group law on the
open dense set Z described in Theorem 5.1. The points of Z are in bijection with unordered
tuples of g points on C1, none of which are conjugates of each other. The variety Z is
described by 2g + 1 equations in the coefficients of three polynomials u, v and w, however
the coefficients of w are entirely determined by those of u and v so we may ignore w and
simply use the polynomials u and v.

The derivation takes the form of a series of three lemmas. The first of these, Lemma
5.4, derives equations for the interpolation function p/q in terms of the coefficients of two
pairs (u, v) and (u′, v′) representing divisors D and D′. The second lemma, Lemma 5.5,
uses the relationship between p/q and f to find formulas for the coefficients of a degree g
monic polynomial u′′ representing the x-coordinates of a divisor D′′ which corresponds to
the sum [D] + [D′]. The third and final lemma solves for the coefficients of the polynomial
v′′ in terms of the coefficients of u′′ and p/q.

Lemma 5.4. Suppose that (u, v) and (u′, v′) describe divisors D =
∑g
i=1 Pi and D′ =∑g

i=1 P
′
i respectively, such that the 2g summands in D + D′ have distinct x-coordinates.

Let a = (3g − ε)/2 and b = (g − 2 + ε)/2 as before, and define d = (g − ε)/2. Define the
quantities:

κi,` =
∑

`≤m≤d

ui−d+m

 ∑
σ∈Sm−`

(−1)|σ|
|σ|∏
r=1

ug−σr


κ′i,` =

∑
`≤m≤d

u′i−d+m

 ∑
σ∈Sm−`

(−1)|σ|
|σ|∏
r=1

u′g−σr


λi,j = −vi−j +

∑
0≤`≤d

v(a−j)−`κi,`

λ′i,j = −v′i−j +
∑

0≤`≤d

v′(a−j)−`κ
′
i,`
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Then the requirement that a rational function of the form in (2) interpolates the divisors D
and D′ induces the following system of linear relations on the coefficients of p/q:



κ0,d − κ′0,d · · · κ0,0 − κ′0,0 λ′0,1 − λ0,1 · · · λ′0,b − λ0,b

κ1,d − κ′1,d · · · κ1,0 − κ′1,0 λ′1,1 − λ1,1 · · · λ′1,b − λ1,b

κ2,d − κ′2,d · · · κ2,0 − κ′2,0 λ′2,1 − λ2,1 · · · λ′2,b − λ2,b

...
. . .

...
...

. . .
...

κg−2,d − κ′g−2,d · · · κg−2,0 − κ′g−2,0 λ′g−2,1 − λg−2,1 · · · λ′g−2,b − λg−2,b

κg−1,d − κ′g−1,d · · · κg−1,0 − κ′g−1,0 λ′g−1,1 − λg−1,1 · · · λ′g−1,b − λg−1,b





pg/q0

...
pa/q0

q1/q0

...
qb/q0


=



λ0,0 − λ′0,0
λ1,0 − λ′1,0
λ2,0 − λ′2,0

...
λg−2,0 − λ′g−2,0

λg−1,0 − λ′g−1,0



pi =

d∑
`=0

pa−`κi,` −
b∑
j=1

qjλi,j − q0λi,0 0 ≤ i ≤ g − 1

Label the g × g matrix M , and let Mj denote the matrix obtained from M by replacing
the jth column with the solution vector on the right. Then on a dense open set of Z × Z
these relations determine an interpolation function p/q with the desired properties via the
equations

pg+i = det(M1+i) 0 ≤ i ≤ d+ 1

q0 = det(M)

qi = det(M1+d+i) 1 ≤ i ≤ b

pi =

d∑
`=0

det(M1+(d−`))κi,` −
b∑
j=1

det(M1+d+j)λi,j − det(M)λi,0 0 ≤ i ≤ g − 1

Proof. Label the points Pi = (xi, yi) and P ′i = (x′i, y
′
i). The requirement that p/q inter-

polates the points of D is equivalent to the condition that p/q ≡ v (mod u), and since we
require that q does not vanish at any xi, to the condition that p − qv ≡ 0 (mod u). By
expanding this relation, we see that this condition is equivalent to

∑
i≥0

αix
i :=

∑
i≥0

pi − b∑
j=0

qjvi−j

xi ≡ 0 (mod u).

To find appropriate linear relations for the coefficients of p/q, we apply Lemma 5.2 with
βi = ui, n = d = a − g = (g − ε)/2 and k = a. We therefore get for 0 ≤ i ≤ g − 1 the
relations

0 = αi −
d∑
`=0

αa−`κi,`

=

pi − b∑
j=0

qjvi−j

− d∑
`=0

pa−` − b∑
j=0

qjva−`−j

κi,`

= pi −
d∑
`=0

pa−`κi,` +

b∑
j=1

qj

(
−vi−j +

d∑
`=0

v(a−j)−`κi,`

)
+ q0

(
−vi +

d∑
`=0

va−`κi,`

)
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Using the notation defined in the statement of the Lemma, this reads

0 = pi −
d∑
`=0

pa−`κi,` +

b∑
j=1

qjλi,j + q0λi,0 0 ≤ i ≤ g − 1. (3)

The analogous process for the primed variables gives us the same equations with κ′i,` replac-
ing κi,` and λ′i,j replacing λi,j . Therefore, taking differences we see that in order for p/q to
have the desired form, we must have

0 =

d∑
`=0

pa−`(κi,` − κ′i,`) +

b∑
j=1

qj(λ
′
i,j − λi,j) + q0(λ′i,0 − λi,0) 0 ≤ i ≤ g − 1. (4)

Equation (4) gives the matrix equation after dividing through by q0, and equation (3) gives
the desired relation for pi for 0 ≤ i ≤ g − 1. The formulas for the coefficients of p/q then
follow by Cramer’s rule, assuming that the linear system is non-degenerate.

We now show that the matrix M is non-degenerate on a dense open set of Z × Z. Note
that because Z × Z is irreducible and det(M) 6= 0 is an open condition, it suffices to show
that the set of points for whichM is non-degenerate is non-empty. Note that the conditions
p/q ≡ v (mod u) and p/q ≡ v′ (mod u′) uniquely determine p/q up to a projective rescaling,
since if p̃/q̃ is another interpolation function satisfying the same conditions we have pq̃ ≡ p̃q
(mod uu′) and hence pq̃ = p̃q since deg(pq̃ − p̃q) = 2g − 1 < 2g = deg(uu′). Since the
derived linear system is equivalent to the condition that p/q is an interpolation function,
the statement that the system is solvable on an open dense set of Z × Z amounts to the
statement that at least one such interpolation function exists, which is clearly true.

Lemma 5.5. Continue with the notation and assumptions of Lemma 5.4. Define the quan-
tities:

ρ = p2
a(1− ε)− f2g+1q

2
bε

ωj =

j∑
i=0

uiu
′
j−i

ηk =

k∑
j=0

(
pjpk−j − fk−j

j∑
i=0

qiqj−i

)

Suppose the sum [D − g∞] + [D′ − g∞] is represented by a divisor D′′ − g∞ with D′′ =∑g
i=1 P

′′
i and P ′′i a point on C1 for 1 ≤ i ≤ g. Then if (u′′, v′′) is the pair of polynomials

representing D′′, the coordinates of u′′ are given by:

u′′j =

j∑
i=0

ηi
ρω0

∑
σ∈Sj−i

(−1)|σ|

ω
|σ|
0

|σ|∏
r=1

ωσr .

Proof. The polynomials p and q in Lemma 5.4 were computed to satisfy p−qv ≡ 0 (mod u).
Furthermore, the pair (u, v) satisfies f − v2 ≡ 0 (mod u). Together these two facts imply
that

p2 − fq2 ≡ p2 − v2q2 ≡ (p− qv)2 − 2qv(p− qv) ≡ 0 + 0 ≡ 0 (mod u).
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The analogous fact is true for u′. Since u and u′ have distinct roots, we see that uu′|(p2−fq2).
The polynomial p2 − fq2 has degree max{2a, 2(b+ g) + 1} = 3g with leading coefficient ρ,
and so we may write p2 − fq2 = ρuu′u′′ where u′′ is monic of degree g and the roots x′′i of
u′′ are such that there exists Q′′i = (x′′i , y

′′
i ) on C1 satisfying p(x′′i )− y′′i q(x′′i ) = 0.

Viewing p− yq as a function on C, it has zeros precisely at the roots of the polynomial
p2 − fq2, and so has 3g of them (with multiplicity) corresponding to the roots of the
polynomials u, u′ and u′′. As the number of zeros on C must equal the number of poles, the
function p− yq must then have a pole of order 3g at ∞, and so we find that

(D − g∞) + (D′ − g∞) ∼ −
g∑
i=1

Qi + g∞.

The relations Qi + ι(Qi) ∼ 2∞ then give us that

(D − g∞) + (D′ − g∞) ∼
g∑
i=1

ι(Qi)− g∞.

So we see that if we take P ′′i = (x′′i ,−y′′i ), then u′′ satisfies the hypotheses of the theorem.
To solve for the coefficients u′′j , we expand the relation p2 − fq2 = ρuu′u′′ and equate

coefficients. This gives us:

k∑
j=0

(
pjpk−j − fk−j

j∑
i=0

qiqj−i

)
= ρ

k∑
j=0

u′′j

(
k−j∑
i=0

uiu
′
(k−j)−i

)
,

or simply ηk/ρ =
∑k
j=0 u

′′
jωk−j . Applying Lemma 5.3 gives the result.

Remark. The formulas in Lemma 5.5 are defined provided that ω0 6= 0 and ρ 6= 0. The first
condition reduces to the statement that xi 6= 0 and x′i 6= 0 for all 1 ≤ i ≤ g, and the second
says that either pa 6= 0 or qb 6= 0 depending on the parity of g. This latter case again reduces
to the non-vanishing of a certain matrix determinant as defined in Lemma 5.4, which again
defines a dense open subset of Z × Z for similar reasons as before.

Lemma 5.6. Continue with the notation and assumptions in Lemmas 5.4 and 5.5. Define
the quantities:

κ′′i,` =
∑

`≤m≤d

u′′i−d+m

 ∑
σ∈Sm−`

(−1)|σ|
|σ|∏
r=1

u′′g−σr


τi,s = −

d+s∑
m=g+1−ε

qa−mκ
′′
i,m−s

µi = −pi +
∑

0≤`≤d

pa−`κ
′′
i,`

Then we have
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



q0 0 · · · 0 0 · · · 0
q1 q0 · · · 0 0 · · · 0
...

...
. . .

...
...

. . .
...

qb qb−1 · · · q0 0 · · · 0
0 qb · · · q1 q0 · · · 0
...

...
. . . . . . . . . . . .

...
0 0 · · · qb qb−1 · · · q0


+



0 · · · 0 τ0,d+1 · · · τ0,g−1

0 · · · 0 τ1,d+1 · · · τ1,g−1

0 · · · 0 τ2,d+1 · · · τ2,g−1

...
...

...
...

...
...

...
...

...
...

...
...

0 · · · 0 τg−2,d+1 · · · τg−2,g−1

0 · · · 0 τg−1,d+1 · · · τg−1,g−1







v′′0
v′′1
v′′2
...
...

v′′g−2

v′′g−1


=



µ0

µ1

µ2

...

...
µg−2

µg−1


and so

v′′i =
det(Q+ T )1+i

det(Q+ T )
,

where Q+ T is the sum of the two matrices between the square brackets, with Q denoting
the first matrix and T the second, and (Q+T )j is the matrix obtained by replacing the jth
column of Q+ T with the solution vector on the right.

Proof. As with the pairs (u, v) and (u′, v′) we have a relation p+qv′′ ≡ 0 (mod u′′), this time
with a sign change to account for the sign of the y-coordinate in the points P ′′i . Proceeding
as in Lemma 5.4, we have the equations

0 = pi −
d∑
`=0

pa−`κ
′′
i,` +

b∑
j=0

qj

(
v′′i−j −

d∑
`=0

v′′(a−j)−`κ
′′
i,`

)

= −µi +

g−1∑
j=0

v′′j qi−j

−
 b∑
j=0

d∑
`=0

v′′(a−j)−`qjκ
′′
i,`


To extract the coefficient of v′′(a−j)−` in the second summation on the last line, we use the
change of indices s = (a− j)− ` and m = a− j = s+ `. As s is the index of v′′ we have the
bound s ≤ g − 1, and from the equality s = (a− j)− ` we get s ≥ a− b− d = d+ 1. Then
for fixed s, we have m ≤ s+ d and m ≥ a− b = g + 1− ε. This gives us the equality

g−1∑
j=0

v′′j qi−j +

g−1∑
s=d+1

v′′s

(
−

s+d∑
m=g+1−ε

qa−mκ
′′
i,m−s

)
= µi,

from which the matrix equation follows. The formula for v′′i then follows from Cramer’s
rule.

Remark. To understand when the above formulas successfully determine v′′ (in particular,
when det(Q + T ) does not vanish), note that if the roots of u′′ are distinct and do not
coincide with the roots of q, then the relationship p + qv′′ ≡ 0 (mod u′′) determines the
value of the degree g − 1 polynomial v′′ at g distinct points, which suffices to determine it.
These conditions on u′′ and q may be expressed by asserting the non-vanishing of certain
discriminant and resultant polynomials, so we once again see that the desired relations hold
on some dense open set of Z × Z.

Theorem 5.7. There exist explicit polynomial and rational functions describing the group
law on an open dense set of Jac(C).

Proof. This is merely a summary of Lemmas 5.4, 5.5 and 5.6 and their associated remarks.
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5.5 Conclusion
The formulas we have described have some drawbacks compared to the usual methods for
computing the group law. For one, the use of inversions and the requirements on both Z and
the divisors represented by (u, v) and (u′, v′) limit the scope of the formulas somewhat, and
one might suspect that handling the various edge cases would make them difficult to use.
In fact, this is generally not so serious, since most applications of abelian variety arithmetic
in cryptography or computer science require the use of finite fields of exponentially large
prime characteristic r, and if one heuristically models each inequality defining the validity
of the group law as holding with probability (r−1)/r, then one concludes that encountering
most such edge cases is exponentially unlikely in practice.

Another objection is that the formulas do not extend to the important case of doubling.
This is already the case when g = 1, which as shown in Appendix A is really just a case of
the usual elliptic curve group law, where the chord-based addition formula only holds when
adding two distinct points and one must instead use a tangent line in the degenerate case.
A similar phenomenon holds here, in that when doubling points the relations in Lemma 5.4
are always dependent, and one must use additional relations which enforce a higher-order
agreement between the interpolation function p/q and the function y on C to determine
p/q. This is done for the case g = 2 in the work of Costello and Lauter, but we do not
pursue it here as the approach grows considerably in complexity with g. However we may
simply observe that one can circumvent this issue entirely by simply computing a scaling of
the form 2[D] as a sum of the form (([D] + [E]) + [D]) − [E], where [E] is an appropriate
“dummy” divisor class chosen at random.

Another objection is that the formulas use expressions that grow quickly in complex-
ity, requiring sums over compositions and matrix determinants, and so are unlikely to be
competitive with reduction-based approaches for large g. While this is certain to be true
asymptotically, the g = 1 and g = 2 cases (that of the elliptic curve group law and the
work of Costello and Lauter respectively) are quite efficient, and a heavily unoptimized im-
plementation by the author[14] was able to use the formulas for Jacobian arithmetic up to
g = 8 without much difficulty. We note that the general expressions that appear in Lemmas
5.4 and 5.6 obscure the fact that many of the terms that appear in these expressions are
often zero (either due to an abundance of zeros in the coefficients of f or because the indices
fall out of range), and so in practice the complexity may be overstated. The case where
g = 3 in particular may benefit from some hand-optimization.

We also wish to emphasize the inherent value in explicit constructions. The usual ap-
proach to constructing the Jacobian of a curve as an abelian variety uses the language of
schemes and representable functors, which is convenient for many theoretical purposes, but
carries with it associated baggage that can make it difficult to apply. For this reason, the
use of higher-dimensional abelian varieties in cryptography and computer science can often
be traced back to either the hyperelliptic Jacobian construction appearing in Mumford’s
Lectures on Theta, or the work of Flynn, even though it is unlikely those authors had any
particular computational application in mind. These constructions are messy, but they can
be made practical, whereas the author is unaware of any computational applications of the
usual scheme-theoretic approach.
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A The Elliptic Curve Case
As an illustrative example, we demonstrate that the above derivation gives the usual group
law in the case g = 1. The equation defining C1 is

y2 = f(x) = x3 + f2x
2 + f1x+ f0.

A pair representing the divisor D = P looks like (u, v) = (x + u0, v0). The open set Z is
then described by the equations (1), which are

f0 − v2
0 = u0w0

f1 = u0w1 + w0

f2 = u0 + w1.

Using the second equation we may eliminate w0, and using the third equation we may further
eliminate w1, resulting in a curve defined by

f0 − v2
0 = u0(f1 − u0(f2 − u0))

f0 − v2
0 = u0f1 − u2

0f2 + u3
0

v2
0 = (−u0)3 + f2(−u0)2 + f1(−u0) + f0,

which is evidently isomorphic to C1.
Now let D = P , D′ = P ′, (u, v) = (x + u0, v0) and (u′, v′) = (x + u′0, v

′
0). Following

the notation in Lemma 3 we have ε = 1 and so a = 1 and b = 0. Hence the interpolation
function p/q is of the form (p1/q0)x+ (p0/q0). The matrix in Lemma 3 is 1×1 with a single
entry

κ0,0 − κ′0,0 = u0 − u′0,

and the solution vector is also 1× 1 with a single entry

λ0,0 − λ′0,0 = v′0 − v0.

We therefore get, from the formulas in Lemma 5.4, that

p1 = v′0 − v0

q0 = u0 − u′0
p0 = (v′0 − v0)u0 − (u0 − u′0)(−v0),

and hence
p(x)

q(x)
=
v′0 − v0

u0 − u′0
x+

v′0 − v0

u0 − u′0
u0 + v0.

One easily checks that p/q is a line through the points (−u0, v0) and (−u′0, v′0).
Continuing with Lemma 5.5, we see that

u′′0 =
p2

0 − f0q
2
0

−q2
0u0u′0

A long but straightforward calculation shows that u′′0 = −λ2 + f2 − u0 − u1, where λ =
(v′0 − v0)/(u0 − u′0). This agrees with the usual formulas for the elliptic curve group law
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for a Weirstrass form elliptic curve. Note that u′′0 is the negative of the usual x-coordinate
here. Then, applying Lemma 5.6 we get that

v′′0 =
µ0

q0

=
−p0 + p1κ

′′
0,0

q0

= −λu0 + λu′′0 − v0,

which also agrees with the usual formulas.
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