
Physical Design for Non-relational
Data Systems

by

Michael J. Mior

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Doctor of Philosophy
in

Computer Science

Waterloo, Ontario, Canada, 2018

© Michael J. Mior 2018

Examining Committee Membership

The following served on the Examining Committee for this thesis. The decision of the
Examining Committee is by majority vote.

External Examiner: Paolo Atzeni
Professor, Dipartimento di Ingegneria
Università Roma Tre

Supervisor: Kenneth Salem
Professor, David R. Cheriton School of Computer Science
University of Waterloo

Internal Members: Grant Weddell
Professor, David R. Cheriton School of Computer Science
University of Waterloo

Bernard Wong
Associate Professor, David R. Cheriton School of Computer Science
University of Waterloo

Internal-External Member: Lin Tan
Associate Professor, Dept. of Electrical and Computer Engineering
University of Waterloo

ii

This thesis consists of material all of which I authored or co-authored: see Statement
of Contributions included in the thesis. This is a true copy of the thesis, including any
required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

iii

Statement of Contributions

I would like to acknowledge the names of my co-authors who contributed to the research
described in this dissertation. These include:

1. Kenneth Salem

2. Ashraf Aboulnaga

3. Rui Liu

Portions of this thesis are based on published or accepted peer-reviewed papers of which I
am the first author [95, 96, 94]. I was the primary contributor to this work, including the
conception and development of the ideas, the analysis, and the preparation of papers. The
collaborators listed above provided feedback and assisted with editing the text of these
papers.

iv

Abstract

Decades of research have gone into the optimization of physical designs, query execution,
and related tools for relational databases. These techniques and tools make it possible
for non-expert users to make effective use of relational database management systems.
However, the drive for flexible data models and increased scalability has spawned a new
generation of data management systems which largely eschew the relational model. These
include systems such as NoSQL databases and distributed analytics frameworks such as
Apache Spark which make use of a diverse set of data models. Optimization techniques
and tools developed for relational data do not directly apply in this setting. This leaves
developers making use of these systems with the need to become intimately familiar with
system details to obtain good performance.

We present techniques and tools for physical design for non-relational data systems.
We explore two settings: NoSQL database systems and distributed analytics frameworks.
While NoSQL databases often avoid explicit schema definitions, many choices on how to
structure data remain. These choices can have a significant impact on application perfor-
mance. The data structuring process normally requires expert knowledge of the underlying
database. We present the NoSQL Schema Evaluator (NoSE). Given a target workload,
NoSE provides an optimized physical design for NoSQL database applications which com-
pares favourably to schemas designed by expert users. To enable existing applications to
benefit from conceptual modeling, we also present an algorithm to recover a logical model
from a denormalized database instance.

Our second setting is distributed analytics frameworks such as Apache Spark. As is
the case for NoSQL databases, expert knowledge of Spark is often required to construct
efficient data pipelines. In NoSQL systems, a key challenge is how to structure stored
data, while in Spark, a key challenge is how to cache intermediate results. We examine a
particularly common scenario in Spark which involves performing iterative analysis on an
input dataset. We show that jobs written in an intuitive manner using existing Spark APIs
can have poor performance. We propose ReSpark, which automates caching decisions for
iterative Spark analyses. Like NoSE, ReSpark makes it possible for non-expert users to
obtain good performance from a non-relational data system.

v

Acknowledgements

I am thankful for the continued guidance provided by my advisor Dr. Ken Salem.
Without his patience and support through many years (and many drafts) I surely would
not have made it this far.

Thanks also to the rest of my committee, Dr. Paolo Atzeni, Dr. Lin Tan, Dr. Grant
Weddell, and Dr. Bernard Wong for their time invested in reviewing and providing feedback
on this thesis.

I am also grateful for my church family at Waterloo University Bible Fellowship. Their
support in countless ways over the years and their friendship has meant a great deal.
They and the other friends I have made during my time in Waterloo have enriched my life
significantly.

Finally, thank you to my family for their continued love and support through my many
years of study. Their encouragement has been invaluable to me.

vi

Dedication

This thesis is dedicated to my Lord and saviour Jesus Christ to whom I owe my life.

Whatever you do, in word or in deed, do all in the name of the Lord Jesus,
giving thanks to God the Father, through him. — Colossians 3:17

vii

Table of Contents

List of Tables xii

List of Figures xiii

1 Introduction 1

1.1 NoSQL Database Schemas . 1

1.2 Distributed Data Processing . 3

1.3 Thesis Organization and Research Contributions 4

2 Background and Related Work 5

2.1 NoSQL Client Interfaces . 5

2.1.1 Key-Value Stores . 6

2.1.2 Extensible Record Stores . 6

2.1.3 Document Stores . 7

2.2 Relational Database Physical Design . 7

2.2.1 Structure Enumeration . 8

2.2.2 What-If Analysis . 9

2.2.3 Design Optimality . 10

2.3 NoSQL Schema Design . 11

2.3.1 Design Principles . 11

2.3.2 Automated Approaches . 12

viii

2.4 Query Processing in NoSQL Systems . 13

2.4.1 Object-Oriented Data Access . 14

2.4.2 Higher Level Query Languages . 14

2.5 Conceptual Modeling . 15

2.6 Database Normalization . 17

2.7 Non-relational Data Processing . 18

3 Physical Schema Design Automation 20

3.1 Schema Design Example . 20

3.2 System Overview . 24

3.2.1 Database Conceptual Model . 24

3.2.2 Workload Description . 24

3.2.3 Extensible Record Stores . 26

3.2.4 The Schema Design Problem . 27

3.3 Schema Advisor . 28

3.3.1 Candidate Enumeration . 28

3.3.2 Query Planning . 35

3.4 Schema Optimization . 37

3.5 Cost Model . 39

3.5.1 Calibration . 40

3.6 Updates . 41

3.6.1 Update Language . 41

3.6.2 Update Plans . 41

3.6.3 Column family enumeration for updates 45

3.6.4 BIP Modifications . 47

3.7 Case Study . 47

3.8 Evaluation . 51

3.8.1 Schema Quality . 51

3.8.2 Advisor Runtime . 55

3.9 Summary of NoSE and Future Directions 56

ix

4 ESON:Schema Recovery from Denormalized Physical Designs 58

4.1 Renormalization Overview . 61

4.2 The Generic Physical Schema . 62

4.3 Dependency Input . 65

4.4 ESON Normalization Algorithm . 66

4.4.1 Dependency Inference . 67

4.4.2 BCNF Decomposition . 69

4.4.3 Folding . 70

4.4.4 Breaking IND Cycles . 72

4.4.5 IDNF . 74

4.5 Dependency Mining . 75

4.5.1 Mining for NoSQL Normalization 75

4.6 Applications of the Logical Model . 76

4.6.1 Ad-Hoc Query Execution . 77

4.6.2 View Definition Recovery . 78

4.7 Case Studies . 79

4.7.1 RUBiS . 80

4.7.2 MongoDB . 81

4.7.3 Twissandra . 83

4.8 Summary of ESON . 86

5 Cache Design for Data Processing Systems 87

5.1 Motivation . 87

5.2 The Problem . 88

5.2.1 Iterative Computation in Spark . 89

5.2.2 Caching . 91

5.3 ReSpark . 94

5.3.1 Explicit Iteration . 95

x

5.3.2 Lazy Unpersist . 100

5.4 Evaluation . 103

5.4.1 Spark-Bench . 103

5.4.2 Other Iterative Algorithms . 112

5.5 Summary of ReSpark . 115

6 Conclusion and Future Work 116

6.1 Future Work . 117

References 119

APPENDICES 131

A NoSE Workloads and Selected Schemas 132

A.1 Conceptual Model . 132

A.2 Workload . 133

A.3 Schemas . 136

A.3.1 NoSE Bidding . 136

A.3.2 Normalized . 140

A.3.3 Expert . 143

A.3.4 NoSE Browsing . 146

A.3.5 NoSE 10× . 148

A.3.6 NoSE 100× . 152

B ESON Proofs 157

B.1 All inference of dependencies is sound . 157

B.2 All transformations are lossless-join . 158

B.3 Inclusion dependencies in the final schema are key-based 159

C ESON RUBiS Example Input 161

xi

List of Tables

3.1 Example of query decomposition for candidate enumeration for the query in
Figure 3.3a . 32

5.1 Summary of evaluated Spark applications 104

xii

List of Figures

3.1 Entity graph for a hotel booking system. 21

3.2 Schema advisor overview . 23

3.3 Example query against the hotel booking system schema 25

3.4 Complete schema advisor architecture . 29

3.5 Materialized view column family generation 31

3.6 Column family enumeration . 34

3.7 Example query plan space . 36

3.8 Binary integer program for schema optimization 38

3.9 BIP constraints for the plan graph from Figure 3.7 39

3.10 Example NoSE update statements . 42

3.11 An example NoSE query, materialized view, and update 42

3.12 Support query generation . 44

3.13 Support queries for the update shown in Figure 3.11 44

3.14 Column family enumeration for workloads with updates 46

3.15 BIP modifications for updates . 47

3.16 Entities modeled in EasyAntiCheat . 48

3.17 Important queries in the EasyAntiCheat workload 49

3.18 Column families produced for the EasyAntiCheat workload 50

3.19 Response time of RUBiS request types using three different schemas. . . . 52

3.20 Execution plan performance for different request mixes. 54

xiii

3.21 Advisor runtime for varying workload scale factors 55

4.1 Schema example after renormalization . 60

4.2 NoSQL schema evolution lifecycle . 61

4.3 A CQL ItemBids table, and corresponding schema 63

4.4 An ItemBids table in HBase . 63

4.5 An ItemBids collection in MongoDB . 64

4.6 Algorithm for normalization to interaction-free IDNF 67

4.7 Example generic physical schema and dependencies. 68

4.8 Relations and dependencies after BCNF decomposition. 70

4.9 Relation folding based on INDs . 71

4.10 Breaking circular inclusion dependencies 73

4.11 Query rewriting against the logical schema 77

4.12 Physical relations from MongoDB schema 82

4.13 Dependencies on MongoDB physical relations 82

4.14 MongoDB example schema entities . 83

4.15 Twissandra physical relations . 84

4.16 Dependencies on Twissandra physical relations 85

4.17 Twissandra schema entities . 85

5.1 Three variants of a sample iterative Spark application 90

5.2 Runtime for the Spark application from Figure 5.1 91

5.3 Abridged version of PageRank in Spark . 93

5.4 PageRank runtime with and without materialization 94

5.5 A Spark program making use of ReSpark’s explicit iteration 96

5.6 Generated RDDs for the job in Figure 5.5 labeled with RDD ID 96

5.7 Simplified algorithms for tracking RDD usage information 99

5.8 Finding required stages for an RDD to be unpersisted 101

xiv

5.9 Check for RDDs which can possibly be unpersisted 102

5.10 Several iterations of the Spark PageRank algorithm 102

5.11 Structure of Spark’s Pregel implementation 105

5.12 Shortest paths benchmark results . 106

5.13 Structure of Spark’s PageRank implementation 107

5.14 PageRank benchmark results . 108

5.15 Structure of Spark’s K-means implementation 109

5.16 K-means clustering benchmark results . 110

5.17 Structure of Spark’s strongly connected components implementation 111

5.18 Strongly connected components benchmark results 112

5.19 Iterative Python code for LOPQ in Spark 113

5.20 LOPQ performance using ReSpark . 114

5.21 BigITQ performance using ReSpark . 114

5.22 Iterative Python code for ITQ in Spark . 115

A.1 Entity graph for the RUBiS benchmark . 133

xv

Chapter 1

Introduction

Physical design is an important consideration when building data systems. The appro-
priate choice of data structures and caching policies can have a significant impact on
performance. The problem of physical design has been studied extensively for relational
databases. However, there has been little work on physical design for newer non-relational
systems, despite physical design being an equally important concern. Unlike relational
data systems, non-relational data systems typically lack any design tools and automation
and instead rely on manual design and configuration, which demand expert knowledge of
the target system. In this thesis, we explore the problem of physical design in two types
of non-relational data systems: NoSQL databases and distributed data processing frame-
works. In both settings, we automate decisions which previously required expert input and
achieve either comparable or improved performance.

1.1 NoSQL Database Schemas

NoSQL systems have become a popular choice as database backends for applications be-
cause of the high performance, scalability, and availability that they provide. In Chapters 3
and 4 of this thesis, we focus on systems that Cattell termed extensible record stores in
his taxonomy of NoSQL systems [29]. In extensible record stores, applications can create
tables of records, with each record identified by a key. However, the application need not
define the set of columns in the records in advance. Instead, each record can have an
arbitrary collection of columns, each with an associated value. Because of this flexibility,
applications can encode their data in both the keys and column values. We refer to tables

1

in such systems as column families. Examples of extensible record stores that support this
column family model include Cassandra [79], HBase [1], and Bigtable [31].

Before a developer can build an extensible record store application, it is necessary to
define a schema for the underlying record store. Although the schema of an extensible
record store is flexible in the sense that the application does not need to define specific
columns in advance, it is still necessary to decide what column families will exist in the
record store, what information each column family will encode, and how it will be encoded.
That is, whether data will be stored as keys, column names, or column values. These
choices are important because the performance of the application depends strongly on the
underlying schema. For example, some schemas may allow the system to provide answers
to some queries with a single lookup while other queries may require multiple lookups.

Although it is important to choose a good schema, there are no tools or established
methodologies to guide and support this process. Instead, schema design for extensible
record stores is commonly based on general heuristics and rules of thumb. For example,
eBay [108] and Netflix [76] have shared examples and guidelines for designing schemas for
Cassandra. Specific recommendations include not designing column families as one would
design relational tables, ensuring that column families reflect the anticipated workload,
and denormalizing data to improve read performance. While such recommendations are
useful, they are necessarily vague and generic, and require adaptation to each application.

The first research contribution of this thesis is a tool that can recommend a specific
schema, optimized for a target application, so that it is not necessary to rely on general
rules of thumb. We propose a principled approach to the problem of schema design for
extensible record stores. Our tool, the NoSQL Schema Evaluator (NoSE) uses a cost-based
approach. By estimating the performance that candidate schemas would have for the tar-
get application, we recommend the schema that results in the best estimated performance.
We designed our tool for use early in the application development process; the tool rec-
ommends a schema and the application is then developed using that schema. In addition
to providing a schema definition, our tool also recommends a specific implementation of
the application’s queries against the proposed schema. NoSE is described in Chapter 3.
We show that the designs produced by NoSE can outperform those produced by expert
designers. Furthermore, the use of NoSE does not require the user to understand the
performance characteristics of the target database.

While NoSE is helpful for designing new applications, existing NoSQL applications
using denormalized data can also benefit from automated approaches to schema design.
NoSE, like many relational design tools, distinguishes between an abstract conceptual model
of the database and a physical design, which describes how the database should be stored

2

to provide good performance for a specific application workload and target NoSQL system.
Existing applications typically did not have the benefit of a tool such as NoSE and may
not have a well-defined conceptual database model. Without such a model, it can be
difficult for application developers to understand the database and to revise the physical
design as the application evolves. For example, to add a new type of information to the
database, an application developer must determine how to incorporate that information
into the existing denormalized schema, depending on how the new information will be
used. To add new queries or updates, the application developer must understand whether
they can be supported efficiently with the existing physical database design, or determine
how to change the design to support the new workload without hurting the performance
of existing parts of the application.

Since denormalization is done by the application developer, the database system is
unaware of it and cannot help. Unless the application developer maintains external doc-
umentation, the only knowledge of this denormalization is embedded within the source
code. We aim to surface this knowledge by generating a useful conceptual model of the
data from either an instance of the denormalized database or user-provided information
on the database structure. We refer to this surfacing task as schema renormalization. Our
solution to the renormalization problem is presented in Chapter 4. We present an algo-
rithm we call ESON which is provided a denormalized database schema and functional
and inclusion dependencies on that schema as input. We show both by construction and
by example that ESON is able to remove denormalization which exists in the schema to
produce a useful conceptual model.

1.2 Distributed Data Processing

Unlike NoSQL database systems, many distributed computing frameworks such as Apache
Spark do not rely heavily on workload-optimized physical design. This is because data
is commonly processed from a variety of external sources and the format of the data is
not under the control of the application developer. Nevertheless, for good performance,
the physical representation of intermediate results must be carefully chosen. In particular,
Spark relies on effective materialization and caching of these intermediate results.

Applications using Spark’s computation model have been constructed for a wide va-
riety of domains including machine learning and graph analytics. A common pattern in
applications is to iteratively evolve a dataset until reaching some user-specified convergence
condition. Unfortunately, the Spark runtime is unaware of the existence of iteration in the

3

application program. Furthermore, Spark’s execution model makes it difficult for develop-
ers unfamiliar with implementation-level details of Spark to write efficient programs.

In Spark applications, effective use of caching is necessary to avoid recomputing inter-
mediate results from previous iterations. However, we demonstrate that straightforward
use of Spark’s caching APIs can unintuitively result in poor performance. In Chapter 5,
we present ReSpark, a series of enhancements to the APIs provided by Spark to explicitly
expose information on iterative computation to the Spark runtime. This allows ReSpark to
automate caching decisions for iterative programs in a similar manner to how we automate
schema design for NoSQL systems. As is the case with NoSQL applications, these decisions
are often non-intuitive and would normally rely on expert knowledge of the Spark runtime.
Through an evaluation against real-world applications, we demonstrate that ReSpark’s
caching policy can achieve comparable performance to manually optimized workflows with-
out the need for deep understanding of Spark’s caching and execution mechanisms.

1.3 Thesis Organization and Research Contributions

Chapter 2 presents related work. Our contributions are presented in the following chapters:

� Chapter 3 describes the NoSQL Schema Evaluator (NoSE), our tool for schema design
automation for NoSQL databases. NoSE provides a fully automated tool for NoSQL
database design. We implemented NoSE as a prototype targeting the Apache Cas-
sandra wide column store. Our experimental results show that designs created by
NoSE outperform designs created by an expert user of Cassandra.

� Our algorithm, ESON, for recovering useful normalized models from denormalized
NoSQL schemas is given in Chapter 4. We demonstrate with examples that ESON
is able to recover useful models from a variety of denormalized database models, in
an automated or semi-automated fashion.

� In Chapter 5, we continue our exploration of automating design decisions in mod-
ern data processing systems. ReSpark automates caching for iterative workflows in
Apache Spark similar to how NoSE is able to optimize NoSQL systems. By exposing
iteration to the Spark runtime, ReSpark automatically decides when to cache inter-
mediate results. A performance evaluation on several workloads shows that ReSpark
can achieve performance similar to applications with manual caching annotations.

Finally Chapter 6, summarizes the thesis and provides some directions for future work.

4

Chapter 2

Background and Related Work

This chapter provides background on the physical design problems we consider in this
thesis, as well as the non-relational data systems we aim to optimize. Section 2.1 provides
an overview of different types of NoSQL databases. Solutions to physical design problems
in relational databases are outlined in Section 2.2. Existing solutions for schema design
for NoSQL systems as well as their shortcomings are described in Section 2.3. Sections 2.4
and 2.5 discuss work related to high-level models of data and queries relevant to our physical
design problem. In Section 2.6, we summarize existing approaches for normalization of
database schemas as they relate to our algorithm for schema renormalization. Finally,
Section 2.7 discusses existing solutions for distributed data processing in non-relational
data systems.

2.1 NoSQL Client Interfaces

The interface provided to clients by NoSQL databases is often much more restricted than
a relational database interface. For any fixed schema, the client interface determines the
class of queries which can be answered. Previous authors have discussed differences among
the interfaces presented by NoSQL databases [22, 71]. Below we summarize some points
of discussion and examine how this impacts queries which can be answered for a given
schema. It is difficult to cover the wide variety of interfaces available in NoSQL systems.
Our focus in the subsections below is according to the classification defined by Cattell [29].

5

2.1.1 Key-Value Stores

The primary interface to many key value stores consists of two operations: put and get [29].
put stores a value under a particular key and get retrieves a value given a key. This
implies that if an application wants a query to be directly answerable by a key-value store,
the answer to the query must be stored in the database and the application must have
the corresponding key. This severely limits the types of queries which can be performed
without significant denormalization by the application when keys are stored. It is common
for key-value stores to support atomic operations only on individual keys. This is a result
of the coordination overhead which is required for distributed transactions across multiple
keys.

Many key-value stores have expanded their interface to support other useful operations.
For example, Redis [9] is referred to as a “data structure server.” In addition to put and
get, it supports storing other data structures such as sets, hashes, and lists. HyperDex [51]
also offers similar interfaces for these structures.

2.1.2 Extensible Record Stores

The interface presented by extensible record stores is typically a superset of the put/get
interface of a key-value store. Apache Cassandra [79], Apache HBase [1], and Bigtable [31]
all present a similar interface. Groups of records are divided into “column families” which
are analogous to relational database tables. Each column family consists of a series of rows
with each row identified by some arbitrary key. Rows can contain an arbitrary number of
columns and data is often sparse (i.e. it is common for rows to have no values for most
columns).

Clients can retrieve data from extensible record stores by specifying some range of row
keys. However, in the case of the most common configuration of Cassandra, range queries
across row keys are disallowed and a single row key must be given. In either case, the choice
of row key is important for data locality. Data are placed on nodes in the distributed system
according to their row key. A range can also be given for columns, which allows only a
subset of the data corresponding to a row key to be returned.

In addition to specifying the locality and possible query patterns, the selection of row
key also impacts data modification. When updating data in an extensible record store,
many systems restrict the atomicity of updates to data under a single row key. This is
important when designing a schema for an application which requires atomic updates. If

6

a data item is explicitly denormalized under multiple row keys, it will not be possible to
perform atomic updates on that piece of data.

2.1.3 Document Stores

Records in a document store are referred to as “documents”. Documents allow arbitrary
nesting of values identified by some primary key. Documents are grouped into “collections”
which typically correspond to the type of entity being modeled. This basic model is shared
by many document stores such as MongoDB [8], CouchDB [5], and Amazon’s SimpleDB [3].
All of these document stores support retrieving a document from a collection by its key as
well as the definition of secondary indexes on properties of the document.

One feature typically lacking in document stores is joining documents between two
collections. Some document stores such as SimpleDB don’t provide any mechanism to
perform joins. One alternative is the map-reduce [47] interface presented by databases such
as MongoDB and CouchDB. This interface allows users to specify arbitrary map-reduce
programs which execute inside the database engine. By writing a map-reduce program it is
possible to perform joins and complex aggregations. However, map-reduce is not designed
to be used in real time and can produce unacceptably high latencies for some queries [39].

As with extensible record stores, a common restriction when updating documents in
a document store is that an update can only be performed atomically within a single
document. If it is necessary to update data atomically, then this data must be grouped
together under a single document.

2.2 Relational Database Physical Design

One formulation of the problem of physical database design is the index selection problem
(ISP) [40]. The goal of the index selection problem is to find an optimal or near-optimal set
of indexes for relations in a relational database given a particular workload. Exactly one
primary index per relation must be selected (although this is commonly fixed as correspond-
ing to the primary key of each relation). One or more secondary indexes which improve
performance of queries in the workload may be selected. This physical design problem has
also been extended to include other denormalized physical structures such as materialized
views [11]. Many design tools currently exist in commercial products such as Microsoft
AutoAdmin[11], DB2 Design Advisor[132], and Oracle Automatic SQL Tuning[44]. Badia
and Lemire [16] break down relational database modeling into three steps: 1) conceptual

7

modeling (which we further discuss in Section 2.5), 2) logical modeling, and 3) physical
modeling. They identify logical modeling as a well-defined process in relational schema
design, although this is not the case for NoSQL databases. The ISP for relational databases
(with the inclusion of materialized view selection) equates to step three above.

Vertica[80] consists of a SQL interface built on the C-Store column-oriented database[117].
It uses multiple encoding techniques to efficiently store denormalized views (called projec-
tions) to improve query performance. DBDesigner [124] is a tool for Vertica which is able
to automatically select projections. To make these selections, it makes use of Vertica’s
query optimizer and user-defined policies to iteratively propose projections which provide
some benefit to queries in the workload. While the selected schemas perform well, the
iterative approach may yield suboptimal results. Earlier work by Rasin and Zodnik[111]
also discusses automated schema design for C-Store. However, these techniques cannot be
easily generalized to apply to NoSQL database architectures. The rest of this section ana-
lyzes common techniques to solve the ISP in a relational database setting while identifying
shortcomings in translating these approaches to NoSQL databases.

2.2.1 Structure Enumeration

When performing physical schema design, it is necessary to determine which structures to
evaluate. Candidate enumeration is the process of constructing a candidate set of possi-
ble physical structures which may be useful in a final schema. Enumeration is normally
performed using simple heuristics such as constructing materialized views for queries in
the input workload [133]. The major challenge for the DB2 Design Advisor was the large
search space produced by interactions between various features (e.g. materialized views and
indexes). Design Advisor defines an algorithm called SAEFIS (Smart column Enumeration
for Index Scans) [115]. SAEFIS avoids enumerating all possible indexes for a query by ex-
amining various combinations of attributes used in equality and range predicates, ordering
clauses, and other columns in the query. This significantly reduces the number of sec-
ondary indexes which are examined. For constructing materialized views, more advanced
techniques can examine common subexpressions within queries in the input workload which
are used to construct views [41].

In the NoSQL setting, enumeration is still required in order to provide options on which
structures should be consider. However, due to the lack of a standard query language and
differences in physical data structures, existing techniques for enumeration in relational
databases do not apply directly.

8

2.2.2 What-If Analysis

After determining a set of candidate structures, physical schema design tools typically rely
on a “what-if” analysis [33]. These analyses may make use of the database query optimizer
to estimate the cost of executing queries using physical structures such as materialized views
or secondary indexes without the overhead of actually creating these structures. The use of
what-if analysis allows the design tool to obtain an estimated cost for using each candidate
physical structure. We note however, that this is generally not possible in schema design for
NoSQL databases as there is no optimizer for higher-level application queries. With a cost
estimate, a simple solution used by some advisors is to construct a variant of the knapsack
problem and to maximize the expected reduction in cost for a given storage budget [115].

Calls to the optimizer for query cost estimates can be the limiting factor in algorithm
performance due to the high latency of these calls. C-PQO [20] reduces the number of
calls to the optimizer to one per query in the input workload. This approach works by
instrumenting the optimizer to isolate rules which are relevant to access path selection.
This allows a single call to the optimizer to produce the possible access paths to use for a
query. When solving the optimization problem, it is then possible to simulate single-index
query execution plans based on the available access paths. Using these simulated plans,
the original index selection problem can be solved. INUM [104] also attempts to reduce
the number of calls to the optimizer by caching the results of optimizer calls. The INUM
approach can be used with any index selection algorithm to improve execution speed. After
calling the optimizer once for a query, INUM simply replaces the data access operators in
the query execution plans with operators using a different physical structure. It is possible
to estimate the cost of these operators relying only on the cost model used by the optimizer
without requiring the entire optimization procedure to be invoked.

Several alternative solutions have been developed with the goal of either producing
higher-quality results or producing results with a faster execution time. Bruno and Chaud-
huri [19] take a relaxation-based approach. The initial set of candidates is the union of the
optimal configurations for each query in the input workload. They then construct a search
space by defining several merge operators which can combine or remove physical struc-
tures from a set of candidates. The goal is to produce a new candidate physical schema
which requires less space without a significant loss of efficiency (in terms of expected query
execution time). Candidate schemas are then recursively “relaxed” by replacing physical
structures to produce new candidates until a time bound is exceeded. The recommended
physical design is then the one with the least expected cost among those which have been
discovered.

9

However, none of these solutions are directly applicable in the NoSQL database setting
since NoSQL databases typically have no cost model. This makes it impossible to estimate
query execution times. While we can develop a useful cost model for NoSQL databases,
any selection algorithm in a NoSQL setting will be required to select structures based
on a conceptual model. NoSQL database design requires selection of the entirety of the
structures to be stored in the database and cannot assume the existence of any structures
such as base tables which is common for relational database design tools. This differs
from the common case for relational databases described above where the goal is to select
secondary structures over an existing model.

2.2.3 Design Optimality

Many efforts in constructing design tools have also attempted to find globally optimal solu-
tions. One approach is to use genetic algorithms to mutate possible design decisions until
an acceptable solution is found. A desirable property of this approach is that continued
execution will lead to better solutions. Ko laczkowski and Rybiński propose an approach
which starts with the optimal execution plan for each query and then mutates operators in
the plan space [77]. Calle et al. take a similar approach but consider mutating a selection
of physical structures [25]. Both of these approaches show significant improvements when
compared to commercial database optimizer tools.

Other work has focused on formulating improved linear programming solutions to the
problem. CoPhy [45] uses an integer linear program (ILP) with constraints that each query
in the original workload must have exactly one valid plan. The objective function used
is the expected cost of executing queries in the workload under a particular selection of
physical structures. As with the genetic algorithm approach, the solver may be terminated
as soon as an acceptable solution is reached but may be run continually until optimality if
desired. Formulation as an ILP is also desirable since it enables the addition of additional
constraints desired by the database administrator. An example is that the update cost for
some physical structures should not exceed a particular threshold. We make use of a similar
ILP formulation in our automated NoSQL schema design tool described in Chapter 3.

Relational tools, as described above, rely on input from the database system’s query
optimizer. In many NoSQL systems, the simple data model and query language means
that an optimizer for higher level queries does not exist. This increases the importance of
effective schema design since there are fewer opportunities for optimization given a fixed
schema and a limited number of access paths.

10

2.3 NoSQL Schema Design

Although the problem of schema design for NoSQL databases is relatively new, there has
been some existing work exploring this problem. The remainder of this section discusses
existing solutions and highlights opportunities for improvement.

2.3.1 Design Principles

Users of NoSQL databases frequently rely on manually applied “rules of thumb” for schema
design. These approaches are generic and rely on the expertise of the application designer to
select a suitable schema. To illustrate this point further, one commonly cited piece of advice
for the Cassandra extensible store is to model physical structures to closely correspond to
the application workload [108, 76]. This frequently involves some level of denormalization.
For example, consider an e-commerce application which allows users to “like” items [108].
If an application frequently retrieves a list of users who like an item when the item is
displayed, then it is beneficial to denormalize and store user data partitioned by items.
On the other hand, if it is more common to retrieve a list of items a user has liked, then
item data should be denormalized and partitioned by user. While these rules of thumb
are helpful, they are often vague and self-contradictory. One recommendation given by
Patel [108] to denormalize and duplicate for read performance immediately followed with a
warning not to do so unless necessary. In fact, correct application of these rules can rely on
expert knowledge of performance of the backend database to know what denormalizations
will be beneficial in different scenarios. In the example above, the user must know that it
is inefficient to separately request information on users who like an item if that data is not
denormalized.

A similar problem exists with document store databases. For document store schema
design, a common design decision is embedding versus external references [2]. Documents
can be nested arbitrarily deep in a document store, so it is possible to embed one entity
within the document corresponding to another entity. Alternatively, a document can con-
tain a reference to the primary key of another document. Since joins cannot be performed
efficiently, the choice of embedding has a significant impact on performance. Kanade et
al. [69] studied the effects of this design choice for a simple data model and workload. They
observed a difference of several orders of magnitude in query execution time depending on
the level of embedding. Moreover, the performance differences vary dramatically for dif-
ferent queries suggesting that knowledge of the workload is critical in making the choice
of embedding.

11

2.3.2 Automated Approaches

NoSQL databases present several new issues which are not solved by relational schema
design tools. There is not a clear separation of the application data model and physical
schema in a NoSQL database. In many cases, the database has no awareness of the data
model actually used by applications since the database only sees a denormalized view of
the data. This leaves any mapping between the application data model and the physical
schema dependent on knowledge of the database administrator. This is evidenced by
various developers attempting to evaluate application changes when moving from relational
to NoSQL database backends. Project EPIC [114] found that significant changes from a
relational data model were required when moving to the Cassandra extensible record store.
The authors discovered that this required significant denormalization to efficiently service
different application queries. Their analysis was heavily dependent on knowledge of the
queries executed by the application and required the application to change in order to
make use of the denormalized data.

Scherzinger et al. [113] also identify the need for good schema design in NoSQL stores
by evaluating the high cost of poor schema design. Data items are frequently colocated
in order to reduce the number of distributed transactions. However, the more data is
grouped together, the higher the likelihood of concurrent writes to the same partition of
data. A näıve schema design can result in 20–35% of write transactions failing for a given
workload. This is a result of the high level of concurrent writes and the use of optimistic
currency control by the backend database. The problem is completely avoided by selecting
a better schema. Kanade et al. [69] examine a related problem in the MongoDB document
store. They identify multiple techniques for representing a data model in a document
store and show that the representation can have an order of magnitude impact on query
performance. Furthermore, the impact is highly dependent on the particular workload.
They use this observation as motivation for exploring workload-driven physical design for
document stores.

An existing tool, by Vajk et al.[123], also attempts to solve the problem of NoSQL
database design. Their system starts with a normalized schema and produces an optimized
schema based on the cost of executing a given set of queries. The authors identify a tradeoff
between query execution time and the storage cost of denormalization which is relevant to
development of our automated schema design tool which we introduce in Chapter 3. The
approach does not deal with updates, which we do address in our work.

Rule-based approaches have also been proposed for adapting relational [83] and OLAP [37,
36] schemas for NoSQL databases. Such transformations may be helpful when adapting an
existing application to use a NoSQL database. However, when designing a new application

12

from scratch, such an approach is unnecessarily restrictive since starting from an existing
schema for another database technology limits the possible schemas which can be explored.
A rule-based approach also makes it difficult to incorporate workload information which
is critical for schema design since data should be stored in a similar manner to how it will
be accessed [108, 76].

Some rule-based approaches focus on maintaining atomicity for transactions within the
original workload. As discussed further in Section 2.1, the choice of physical schema implic-
itly establishes boundaries for transactions. Data denormalized across these transaction
boundaries cannot be updated atomically. Bugiotti et al. [23] define NoAM, the NoSQL
Abstract Model. The schema design problem associated with NoAM is the partitioning of
“aggregates” or collections of related entries. Aggregate partitioning attempts to colocate
entries which are frequently accessed together while separating entries which are modified
independently to avoid contention. This aggregate approach does not consider denormal-
izing or duplicating data which may be necessary when different queries access data based
on distinct attributes.

Other approaches have attempted to target specific databases. SimpleSQL[24] provides
a relational layer on top of Amazon SimpleDB which automatically creates the necessary
schema to answer queries. However, SimpleSQL makes specific assumptions about the data
model and consistency properties of the underlying datastore. This makes the approach
difficult to generalize for other datastores.

SAGE [86] performs logical and physical design for “new SQL” systems. New SQL
systems aim to provide the scalability of NoSQL databases while retaining the consistency
and high-level query semantics of relational databases. SAGE attempts to create “entity
groups” by partitioning logical entities into hierarchies of related objects so related entities
can be accessed together (e.g. a customer along with all their orders). This approach works
well for the class of systems SAGE was designed for, but it is most similar to the relational
database techniques discussed in Section 2.2. However, the approach taken by SAGE does
not translate well to NoSQL schema design as it fails to deal with important issues such
as denormalization.

2.4 Query Processing in NoSQL Systems

In the following sections we examine different approaches to query processing in NoSQL
systems. As discussed in Section 2.1, NoSQL databases often present highly simplified
query interfaces to applications. This often requires applications using complex queries

13

to implement these queries manually against these interfaces. The following sections dis-
cuss how these different approaches relate to our goal of building a NoSQL design tool
which supports application developers in designing schemas suitable for executing high-
level queries.

2.4.1 Object-Oriented Data Access

A common abstraction layer over relational databases is object-relational mapping (ORM) [72].
ORM interfaces aim to take classes in an object-oriented programming language and add
methods which automatically fetch and mutate data from a backend database. This has
the desirable property of freeing application developers from the details of querying the
backend database. In addition, the ORM layer can abstract away differences between
backend database implementations.

ORM interfaces have also been proposed for abstracting the differences between NoSQL
systems. Atzeni et al. [15] created Save Our Systems (SOS) as a simple approach to ab-
stracting access to NoSQL systems. Their approach presents a simple interface to store
and retrieve objects from different types of NoSQL stores. Störl et al. [118] present many
other existing NoSQL ORM tools and show that they vary widely in their features and
backend database support. They also show that these ORMs approximately double ex-
ecution time over a number of different queries. One important point the authors note
is that the use of an ORM implicitly defines the schema used by the backend database.
This is critical to schema design as the choice of how objects are modeled also defines the
schema. Kundera [7], which is the most full-featured option discussed, provides minimal
support for exploiting materialized views and requires an external service to perform some
complex queries such as joins and aggregation. These tools cannot effectively make use of
the rule-based wisdom discussed in Section 2.3.1 of storing data of related entities together
in the backend database.

2.4.2 Higher Level Query Languages

NoSQL databases commonly provide a very restricted query interface in order to achieve
high performance. For example, many key-value stores, such as Riak [10], provide little
more than access to a blob of data given a key. In most cases, it is either not possible or
very expensive to query data by any attribute other than the key. This means that when
designing the schema, care must be taken when selecting the keys since this choice defines
which queries can be made efficiently in the future. Data stores following the Bigtable [31]

14

model offer richer semantics than simply querying by key, but still provide far fewer access
paths to data as compared to relational databases. Still other databases, such as Redis [9],
provide many alternative data structures such as sets and lists which can be accessed
and modified by a key. These features can be exploited to efficiently support application
workloads, but doing so requires strong support from the application side to compose the
simple structures provided by the database. This composition requires an effective use of
these data structures through a carefully-constructed application schema.

Many approaches exist for executing complex analytical queries over NoSQL databases.
A popular solution for databases such as HBase and Cassandra is Hive [121]. Hive takes
complex queries in a SQL-like language (HiveQL) as input and uses the MapReduce [47]
framework to execute these queries. Query execution in Hive consists of executing one or
more map-reduce jobs which compute values for each relevant row in the input tables and
then aggregating these results to provide the query response. MapReduce targets batch jobs
and as Hive queries can consist of multiple MapReduce jobs, the observed latency can be
quite high. QMapper [126] aims to translate SQL queries written for a relational database
into efficient and correct HiveQL queries. While QMapper uses a cost-based optimization
model to reduce latency, the queries being examined still have execution times on the order
of hundreds of seconds. Pig Latin [101] also attempts to provide a higher-level interface for
processing data using MapReduce, but does not attempt to perform any optimization and
formulates “queries” as query execution plans. These approaches are useful but typically
rely on non-standard query languages.

Gadkari et al.[55] and Apache Phoenix [6] aim to support low-latency queries in HBase
by compiling SQL queries into a series of HBase scans. While this can be effective, the
performance of queries is still dependent on how data is partitioned. These approaches also
currently fail to take advantage of data which is explicitly denormalized or pre-aggregated
by the application as these changes are not visible in the data model. However, executions
engines such as these would be useful for implementing query plans based on recommen-
dations from a schema design tool.

2.5 Conceptual Modeling

Before discussing how to construct queries, it is necessary to have a conceptual model
of underlying data which these queries can reference. A common data model used for
expressing conceptual queries is the enhanced entity-relationship diagram (EER) [49]. EER
diagrams specify a class hierarchy for entities to be stored in the database. Each possible
class has an associated set of attributes as well as relationships to other classes.

15

In addition, it is helpful to estimate statistics for the data to be stored in the database.
For example, such statistics may include the number each type of entity and the cardinality
of relationships and attributes. This information is commonly exploited by query optimiz-
ers to estimating the cost of a query execution plan. The same information is also relevant
to physical schema design which often makes use of the query optimizer, as discussed be-
low. A similar approach is to use unified modeling language (UML) [112] diagrams for
conceptual models. UML class diagrams are similar to EER diagrams in that they specify
classes in the data model as well as attributes associated with each class. UML has also
been successfully used a conceptual model when designing database schemas [100].

Many other approaches to conceptual modeling for data and queries already exist. One
example is GMAP [122], which was proposed as a technique for improving the physical
data independence of relational database systems. In GMAP, both application queries and
physical structures are described using a conceptual entity-relationship model. Queries
are mapped to one or more physical structures which can be used to produce answers to
the query. In the case of GMAP, this approach is used out of a desire to provide a more
thorough form of physical data independence.

Others have also proposed to write application queries directly against a conceptual
schema. For example, ERQL [81], is a conceptual query language over EER models. ERQL
is based around the concept of “path expressions”. A path expression follows links in the
EER schema to connect entity sets to either their associated attributes or to other entity
sets via relationships. Predicates can then be applied to these path expressions to restrict
the data returned to only contain entities matching these predicates. The authors also
discuss more advanced features such as quantification and aggregate functions. They also
define a view definition language which is useful for representing denormalized database
structures without a specific physical schema. Kifer et al. [73] also define a query language
based on path expressions, but for object-oriented databases. Similarly to ERQL, XSQL
queries specify path expressions over the object graph and use these expression both for
attributes and fields which are selected.

A different approach to conceptual modeling is demonstrated by query languages such
as LISA-D [120] and RIDL [92] which are instead based on object role modeling (ORM).
ORM simply considers the conceptual model as a set of objects playing various roles. These
languages were very complex, with others such as ConQuer [18] being developed with the
primary goal of being easily understood by end users. A transformation process allows
ConQuer queries to be translated into SQL queries for a given relational model.

Other related work exists in database reverse engineering (DBRE). The goal of DBRE
is to produce a greater understanding of the semantics of a database instance, commonly

16

through the construction of a higher level logical model of the data. Some approaches,
such of that of Andersson [12], depend heavily on information extracted from join queries
to determine related entity sets. Such queries do not exist in our setting since NoSQL
databases do not permit joins. Others, such as those proposed by Chiang et al. [38] and
Premerlani and Blaha [109], present only an informal process as opposed to a specific
algorithm. Markowitz and Makowsky [90] present a technique for converting relational
database schemas into enhanced entity relationship (EER) schemas [119]. Their algorithm
RmapR accepts a relational schema and a set of functional and inclusion dependencies and
produces an EER schema. However, their approach does not produce a schema normalized
according to the input functional dependencies.

Conceptual query languages, such as those defined above, present useful tools for schema
design. We can borrow concepts from these languages and adapt them for our purposes.
Our current approach most resembles GMAP with adaptations to make it more suitable
for use in Cassandra. Our schema design tool begins with a conceptual model and queries
are written against this conceptual model in a similar manner to ERQL. When performing
schema extraction, we aim to produce a conceptual model in a form similar to that of the
EER models used by ERQL. However, we restrict queries to those which we know can be
easily and efficiently answered using structures which fit into common NoSQL database
systems (we specifically focus on Apache Cassandra).

2.6 Database Normalization

Significant literature exists dealing with database normalization. Much of this existing
work revolves around eliminating redundancy in relational tables based on different forms
of data dependencies. Codd [42] defines normal forms of relations based on functional
dependencies. Eliminating redundancies based on functional dependencies is a necessary
but not sufficient condition for normalization in our setting. Codd’s normal forms focus
around decomposing relations to eliminate redundant information. However, they do not
deal with the case where the application duplicates data across multiple relations.

Inclusion dependencies are a natural way to express duplication of data in multiple re-
lations. Other researchers have established normal forms which aim to normalize relations
according to inclusion dependencies [88, 85, 82] in addition to functional dependencies.
These normal forms, specifically IDNF [82], provide the foundation of our approach to
renormalization discussed in Chapter 4. Although these normal forms are useful, there
has been little work in algorithms for normalization. Our approach borrows heavily from

17

Mannila and Räihä [88] who present a variant of a normal form involving inclusion de-
pendencies and an associated interactive normalization algorithm. However, it does not
produce useful schemas in the presence of heavily denormalized data which we established
as common in our setting. Specifically, their approach is not able to eliminate all data
duplicated in different relations.

Also related is the problem of schema matching [110] where the goal is to establish the
correspondence between two schemas. A solution to the schema matching problem would
allow lifting an application on a given logical schema, but is not useful for discovering
which logical schema to use, a nontrivial task which we address in this work.

There is significant existing work in automatically mining both functional [89] and
inclusion [70] dependencies from both database instances and queries. These approaches
are complementary to our techniques since we can provide the mined dependencies as
input into our algorithm. We can also take advantages of faster approaches to dependency
mining as they are developed. Papenbrock and Naumann [106] present a set of heuristics
for making use of mined dependencies to normalize a schema according to BCNF. We
leverage these heuristics to incorporate dependency mining into our algorithm as discussed
in Section 4.5.

2.7 Non-relational Data Processing

Opportunities for optimizing iterative computations in distributed computing frameworks
have been explored in the past with Hadoop and MapReduce [47]. HaLoop [21] modi-
fies the MapReduce programming model to allow developers to explicitly express iterative
computation. The runtime of these iterative jobs is then optimized by colocating tasks op-
erating on the same partition on the same physical nodes across iterations. Furthermore,
the data used by each of these tasks is cached on each node. While this provided signif-
icant speedup for MapReduce jobs, we note that the scheduling and caching policies of
Spark are able to provide a similar level of optimization without specific awareness of iter-
ation. In addition to scheduling optimizations, iMapReduce [131] allows map tasks to run
asynchronously within an iteration. Since computation in Spark is lazy by definition, this
explicit optimization is unnecessary. iHadoop [50] further exploits the potential of asyn-
chrony by also performing the loop termination check in parallel with speculative execution
of the following iteration. If the algorithm is deemed to have terminated, the additional
iteration is aborted. Since computations in Spark are lazy, we note that attempting the
same optimization may prove harmful. The results of the previous iteration may not be
materialized and performing the termination check in parallel may result in redundant

18

evaluation since the Spark scheduler does not attempt to avoid duplicate executions. We
leave further exploration of this technique to future work.

Several other pieces of existing work have attempted to optimize the use of the cache
in Spark. Neutrino [128] attempts to optimize the use of the cache in Spark by using
a dynamic programming algorithm to select the appropriate caching strategy for each
partition in an RDD. Neutrino requires a trace of the algorithm execution in order to make
these decisions, which we avoid in our solution (presented in Chapter 5). The authors claim
the trace can be obtained from running the same algorithm on a smaller dataset. However,
in some iterative Spark applications, the structure of a job is data-dependent since loop
termination conditions can depend on data values. RDDShare [32] aims to identify views
which can be cached in submitted Spark SQL queries to improve performance of future
queries. This does not allow for optimization within a single job and only works with SQL
queries. Quartet [48] has a goal similar to RDDShare of optimizing the sharing of data
across jobs and functions with any Spark job. However, Quartet only serves to optimize
the use of cached partitions of files and does not accelerate jobs using in-memory data.
LCS [57] is a new cache eviction strategy for Spark that attempts to make more efficient
use of the cache by keeping partitions which are expected to be more expensive to compute.
While this results in more effective use of RDDs which have been annotated by application
programmers, it does not help solve the problem of deciding what to put in the cache.
Furthermore, LCS still suffers from the unpersist issue discussed in Section 5.3.2.

Apache Flink [26] is designed to support batch and stream processing in a single ex-
ecution engine. Flink includes support for iteration steps, an operator which expresses
iteration explicitly to the runtime in a manner similar to the one we use in ReSpark.
When using Flink’s iteration steps, only data from the immediately preceding iteration
can be used. This is unlike Spark where each iteration can make use of arbitrary references
to previously computed data. For applications fitting this pattern, having a complete view
of the application structure including iteration enables Flink to determine when a dataset
used during iteration is constant. When this occurs, Flink automatically caches the data so
it is not recomputed on future iterations. Furthermore, Flink holds the incremental results
produced by iterative computations in memory. This allows the next iteration to read this
data multiple times without recomputation. While the approach to caching iteration steps
used by Flink is effective, the computation model is also more restrictive. In addition to
caching, Flink attempts to optimize job scheduling. Similar scheduling optimizations to
scheduling in Spark may prove beneficial.

19

Chapter 3

Physical Schema Design Automation

Our first avenue of exploring physical design for non-relational data systems is NoSQL
database systems. This chapter presents the following contributions. First, we formulate
the schema design problem for extensible record stores. Second, we propose a solution
to the schema design problem embodied in a schema design advisor we call NoSE, the
NoSQL Schema Evaluator. We start with a conceptual model of the data required by a
target application as well as a description of how the application will use the data. NoSE
then recommends both an extensible record store schema, i.e., a set of column family
definitions optimized for the target application, and guidelines for developing applications
using this schema. Finally, we present a case study and evaluation of NoSE, using two
application scenarios.

A conference submission based on this work was presented at the IEEE 2016 Interna-
tional Conference on Data Engineering [95]. An invited extended journal submission was
also published in IEEE Transactions on Knowledge and Data Engineering [96].

3.1 Schema Design Example

In this section we present a simple example to illustrate the schema design problem for
extensible record stores. Suppose we are building an application to manage hotel reser-
vations. The conceptual model in Figure 3.1, adapted from Hewitt [64], describes the
application’s data.

The schema design problem for extensible record stores is the problem of deciding
what column families to create and what information to store in each column family, for

20

Figure 3.1: Entity graph for a hotel booking system.

Each box represents an entity set, and edges between boxes represent relationships.

a given application. In general, this will depend on what the target application needs to
do. For example, suppose that the application will need to use the extensible record store
to obtain information about the points of interest (POIs) near hotels booked by a guest,
given the guest’s GuestID. The primary operations supported by an extensible record store
are retrieval (get) or update (put) of one or more columns from a record, given a record
key. Thus, an application could easily answer this query if the record store included a
column family with GuestIDs as record keys and columns corresponding to POIs. That
is, the column family would include one record for each guest. A guest’s record includes
one column for each POI associated with a hotel at which that guest has booked a room.
The column names are POIIDs, and each column stores a composite value consisting of
POIName and POIDescription. In general, each guest’s record in this column family may
have different columns. Furthermore, the application may add or remove columns from a
guest’s record when updating that guest’s hotel bookings in the record store. With such
a column family, the application can obtain point of interest information for a given guest
using a single get operation. This column family is effectively a materialized view which
stores the result of the application query for all guests.

21

In this thesis, we will describe such a column family using the following triple notation:

[GuestID][POIID][POIName, POIDescription]

The first element of the triple indicates the attribute values used as record keys in the
column family. The second element indicates the attribute values used as column names,
and the third indicates those used as column values. We refer to the first element as
the partitioning key, since extensible record stores typically horizontally partition column
families based on the record keys. We refer to the second element as the clustering key,
since extensible record stores typically physically cluster each record’s columns by column
name. We assume records in each partition are sorted according to the clustering key.
Both the second and third components of the triple can optionally be empty indicating
no fields in that component of the column family. The correspondence of these triples to
structures used in an extensible record store is described in Section 3.2.3.

Although this column family is ideal for executing the single application query we
have considered, it may not be ideal when we consider the application’s entire workload.
For example, if the application expects to be updating the names and descriptions of
points of interest frequently, the above column family may not be ideal because of the
denormalization of point of interest information, i.e., the name and description of a POI
may appear multiple times in the records for different guests. Instead, it may be better to
create two column families, as follows:

[GuestID][POIID][]

[POIID][][POIName, POIDescription]

This stores information about each point of interest once, in a separate column family,
making it easy to update. Similarly, if the application also needs to perform another query
that returns information about the points of interest near a given hotel, it may be better
to create three column families, such as these:

[GuestID][HotelID][]

[HotelID][POIID][]

[POIID][][POIName, POIDescription]

In this schema, which is more normalized, records in the third column family consist of
a key (a POIID) and a single column which stores the POIName and POIDescription as
a composite value. The second column family, which maps HotelIDs to POIIDs, will be
useful for both the original query and the new one.

22

The goal of our system, NoSE, is to explore this space of alternatives and recommend a
good set of column families, taking into account both the entire application workload and
the characteristics of the extensible record store.

NoSE solves a schema design problem similar to the problem of schema design for rela-
tional databases. However, there are also significant differences between the two problems.
Relational systems provide a clean separation between logical and physical schemas. Stan-
dard procedures exist for translating a conceptual model, as in Figure 3.1, to a normalized
logical relational schema, i.e., a set of table definitions, usable for defining the application’s
workload. The logical schema often determines a physical schema consisting of a set of
base tables. The physical layout of these base tables is then optimized and supplemented
with additional physical structures, such as indexes and materialized views, to tune the
physical design to the anticipated workload. There are many tools for recommending a
good set of physical structures for a given workload as discussed in Section 2.2.

Extensible record stores, in contrast, do not provide a clean separation between logical
and physical design. There is only a single schema, which is both logical and physical.
Thus, NoSE starts with the conceptual model, and produces both a recommended schema
and plans for implementing the application against the schema. Further, the schema
recommended by NoSE represents the entire schema, not a supplement to a fixed set of
base tables. Unlike most relational physical design tools, NoSE must ensure that the
workload is covered, i.e., that the column families it recommends are sufficient to allow for
the implementation of the entire workload.

Figure 3.2: Schema advisor overview

23

3.2 System Overview

Figure 3.2 gives a high level illustration of the NoSE schema advisor. We designed NoSE for
use early in the process of developing an extensible record store application. The advisor
produces two outputs. The first is a recommended schema, which describes the column
families used to store the application’s data. The second output is a set of plans, one plan
for each query and update in the workload. Each plan describes how the application should
use the column families in the recommended schema to implement a query or an update.
These plans serve as a guide for the application developer.

3.2.1 Database Conceptual Model

To recommend a schema for the target application, NoSE must have a conceptual model
describing the information to store in the record store. NoSE expects this conceptual model
in the form of an entity graph, such as the one shown in Figure 3.1. Entity graphs are
simply a slightly modified (restricted) type of entity-relationship (ER) model [34]. Each
box represents a type of entity, and each edge represents a relationship between entities and
describes the associated cardinality of the relationship (one-to-many, one-to-one, or many-
to-many). Entities have attributes, with one of these serving as a key (i.e., no composite
keys are permitted). For example, the model shown in Figure 3.1 indicates that each room
has a room number and rate. In addition, each room is associated with a hotel and set of
reservations.

3.2.2 Workload Description

The second input to NoSE is a set of parameterized queries and updates which describe
how the target application intends to use the database. Each query and update has an
associated weight indicating its relative frequency in the anticipated workload. We focus
here on the queries, and defer discussion of updates to Section 3.6.

NoSE expresses queries directly over the conceptual model. Each query in the workload
returns information about one or more entities in the entity graph. Figure 3.3a shows an
example of a NoSE query, expressed using an SQL-like syntax, which returns the names and
email addresses of guests who have reserved rooms with a particular amenity in given city at
a given minimum rate. In this example, ?city, ?amenity and ?rate are parameters. Each
query implies a query graph which is a subgraph of the entity graph. A path referenced
in the FROM clause defines a portion of this graph. A query can define branches in the

24

SELECT Guest.GuestName, Guest.GuestEmail FROM Guest.Reservation.Room.Hotel

WHERE Hotel.HotelCity = ?city AND Room.Amenity.AmenityName = ?amenity

AND Room.RoomRate > ?rate

(a) Query expressed in the language used by NoSE

Guest Reservation
1

Room

Amenity

 3

Hotel
2

(b) Query graph for the query above. We describe the edge labels in Section 3.3.1.

Figure 3.3: Example query against the hotel booking system schema

graph by specifying additional paths for attributes in the SELECT or WHERE clauses. The
current implementation of NoSE is restricted to acyclic query graphs. However, this is
not a fundamental limitation to our approach. Queries are required to have an equality
predicate on the first entity set in the FROM clause in order to construct a valid get request
to the underlying datastore. Figure 3.3b shows an example of a query graph.

To define the semantics of these queries, we must consider which tuples a query pro-
duces. Conceptually, we consider the tuples produced by the join of all the relations in
the query graph using the associated relationships between entity sets. These tuples are
then filtered using the predicates given in the query. This means that a query returns
data about a particular entity if there exists a series of related entities in the query graph
that together satisfy the predicate of the query. Query results retain any duplicates in the
resulting list of tuples.

We emphasize that the underlying extensible record store supports only simple get and
put operations on column families, and is unable to directly interpret or execute queries like
the one shown in Figure 3.3a. Instead, the application itself must implement such queries,
typically using a series of get operations, perhaps combined with application-implemented
filtering, sorting, or joining of results. Nonetheless, by describing the workload to NoSE
in this way, the application developer can convey the purpose of a sequence of low-level
operations, allowing NoSE to optimize over the scope of entire high-level queries, rather
than being restricted to individual low-level optimizations. Of course, another problem
with describing the application workload to NoSE in terms of get and put operations on

25

column families is that the column families are not known. Indeed, the purpose of NoSE
is to recommend a suitable set of column families for the target application.

Although it is not shown in Figure 3.3a, NoSE queries can also specify a desired ordering
on the query results, using an ORDER BY clause. This allows NoSE to recommend column
families which exploit the implicit ordering of clustering keys to produce results in the
desired order. A complete specification of the syntax of the query language is given below.
Bracketed components are optional.

SELECT Attr, [Attr, ...] FROM Path

WHERE Attr = ? [AND Attr (=|>|<|>=|<=) ?]

[ORDER BY Attr, ...] [LIMIT n]

The Path in the FROM clause of the query is a path through the entity graph in the con-
ceptual model. Each Attr referenced in the query references an attribute in the conceptual
model. These references specify a path in the entity graph whose root is an entity specified
in the Path in the FROM clause. As mentioned previously, the query graph constructed by
connecting the paths of all Attrs to the Path in the FROM clause must be acyclic. A final
additional restriction is that the Attr referenced in the first predicate in the WHERE clause
must be from the entity which is the first component of the Path in the FROM clause.

3.2.3 Extensible Record Stores

The target of our system is extensible record stores, such as Cassandra or HBase. These
systems store collections of keyed records in column families. Records in a collection need
not all have the same columns.

Given a domain K of partition keys, an ordered domain C of clustering keys, and a
domain V of column values, we model a column family as a table of the form

K 7→ (C 7→ V)

That is, a column family maps a partition key to a set of clustering keys, each of which maps
to a value. Clustering keys provide an order for records in a single partition. For example,
in Section 3.1, we used an example of a column family with GuestIDs as partition keys,
POIIDs as clustering keys, and POI names and descriptions as values. Such a column family
would have one record for each GuestID, with POI information for that guest’s records
clustered using the POIID. In short, K, C, and V correspond to the three components of
the triple previously discussed.

26

We assume that the extensible record store supports only put, get, and delete op-
erations on column families. To perform a get operation, the application must supply a
partition key and a range of clustering key values. The get operation returns all C 7→ V
pairs within the specified clustering key range, for the record identified by the partition
key. For example, the application could use a get operation to retrieve information about
the points of interest associated with a given GuestID. Similarly, a put/delete operation
can modify/delete the C 7→ V pairs associated with a single partition key.

Some extensible record stores provide additional capabilities beyond the three basic
operations we have described. For example, in HBase it is possible to get information
for a range of partition keys, since records are also sorted based on their partition key.
As another example, Cassandra provides a limited form of secondary indexing, allowing
applications to select records by something other than the partitioning key. However,
Cassandra applications rarely use secondary indexes for performance reasons [46]. For
simplicity, we restrict ourselves to the simple get/put model we have described, as it
captures common functionality.

3.2.4 The Schema Design Problem

A schema for an extensible record store consists of a set of column family definitions.
Each column family has a name as an identifier and its definition includes the domains of
partition keys, clustering keys, and column values used in that column family.

Given a conceptual model (optionally with statistics describing data distribution), an
application workload, and an optional space constraint, the schema design problem is to
recommend a schema such that (a) each query in the workload is answerable using one or
more get requests to column families in the schema, (b) the weighted total cost of answer-
ing the queries is minimized, and optionally (c) the aggregate size of the recommended
column families is within a given space constraint. Solving this optimization problem is
the objective of our schema advisor. In addition to the schema, for each query in the
workload, NoSE recommends a specific plan for obtaining an answer to that query using
the recommended schema. We discuss these plans further in Section 3.3.2.

27

3.3 Schema Advisor

Given an application’s conceptual model and workload, as shown in Figure 3.2, NoSE
proceeds through four steps:

1. Candidate Enumeration Generate a set of candidate column families, based on
the workload. By inspecting the workload, the advisor generates only candidates
which may be useful for answering the queries in the workload.

2. Query Planning Generate a space of possible implementation plans for each query.
These plans make use of the candidate column families produced in the first step.

3. Schema Optimization Generate a binary integer program (BIP) from the candi-
dates and plan spaces. The BIP is then given to an off-the-shelf solver (we have
chosen to use Gurobi [63]) which chooses a set of column families that minimizes the
cost of answering the queries.

4. Plan Recommendation Choose a single plan from the plan space of each query
to be the recommended implementation plan for that query based on the column
families selected by the optimizer.

Figure 3.4 illustrates this process. In the reminder of this section, we discuss candi-
date enumeration and query planning. Section 3.4 presents schema optimization and plan
recommendation.

3.3.1 Candidate Enumeration

One possible approach to candidate enumeration is to consider all possible column families
for a given set of entities. However, the number of possible column families is exponential
in the number of attributes, entities, and relationships in the conceptual model. Thus, this
approach does not scale well.

Instead, we enumerate candidates using a two-step process based on the application’s
workload. First, we independently enumerate a set of candidate column families for each
query in the application workload. The union of these sets is the initial candidate pool.
Second, we supplement this pool with additional column families constructed by combining
candidates from the initial pool. The goal of the second step is to add candidates which are
likely to be useful for answering more than one query while consuming less space than two

28

Figure 3.4: Complete schema advisor architecture

separate column families. We do not claim that NoSE’s candidate enumerator guarantees
the enumeration of column families which result in an optimal schema. However, the
optimization process we discuss in Section 3.4 chooses an optimal subset of the enumerated
candidates for the given cost model. NoSE’s candidate enumerator is pluggable and could
be replaced with any enumerator which produces valid column families capable of answering
queries in the given workload. We leave other heuristics to determine additional useful
column families as future work.

Candidate Column Families

Recall from Section 3.2.3 that a column family is a mapping of the form K 7→ (C 7→ V).
To define a specific column family, we need to determine K, C, and V . That is, we need to
specify what the partition keys, clustering keys, and values will be for the column family.

We consider column families in which component of a column family consists of one or
more attributes from the application’s conceptual model. We represent each column family
as a triple, consisting of a set of partition key attributes, an ordered list of clustering key
attributes, and a set of value attributes. For example, we can define a column family
useful for retrieving, for a given city and state, a list of hotel names, addresses, and phone
numbers, in order of hotel name. We represent this column family by the following triple:

29

[HotelCity, HotelState][HotelName, HotelID][HotelAddress, HotelPhone].

Column families are not limited to containing information on a single entity from the
conceptual model. For any query in our language, we can define a column family useful
for directly retrieving answers to that query, which we call a materialized view. Figure 3.5
describes how NoSE generates materialized views from queries. For example, the query
shown in Figure 3.3a, which returns the names and emails of guests who have reserved
rooms at hotels in a given city, at room rates above a given rate with a given amenity,
corresponds to the following materialized view:

[HotelCity, AmenityName]

[RoomRate, AmenityID, HotelID, RoomID, ResID, GuestID]

[GuestName, GuestEmail].

By supplying city and amenity names, and a minimum room rate, an application can use
this column family to retrieve a list of tuples, each of the form (RoomRate, AmenityID,

HotelID, RoomID, ResID, GuestID,GuestName,GuestEmail). Each tuple corresponds
to a distinct room reservation of a hotel room with the specified amenity and minimum
room rate. The query returns tuples in order of RoomRate.

Per-Query Candidate Enumeration

The schema optimizer requires flexibility in the choice of column families since its space
budget may not allow the recommendation of a materialized view for each query. In
addition, when we later consider updates, a column family for each query may become too
expensive to maintain. Therefore, in addition to the materialized view, the enumerator
also includes additional column families to provide partial answers for each query. The
application can use these to answer the query by combining the results of multiple get

requests to different column families.

To generate the full pool of candidate column families for a given query, we recursively
decompose the query at each possible edge in the query graph. Decomposing a query
at a specific edge in the query graph splits the query into two parts, which we call the
prefix query and the remainder query. Later, when constructing a query plan, the planner
joins these decomposed query graphs along the cut edges to produce a complete plan for a
query. Table 3.1 illustrates the first level of this recursive splitting process for the example
query from Figure 3.3a. We show the decomposition for just the three labelled edges in
(Figure 3.3b).

30

function: Materialize
input : A query q
output : A materialized view for the query

// first entity equality predicates

K ← [c.attr |c ∈ q.where ∧ c.op = '='

∧ c.attr.entity = q.from[0]];

// all other equality predicates

C ← [c.attr |c ∈ q.where ∧ c.op = '='

∧ c.entity 6= q.from[0]];

// add all other predicates

C ← C + [c.attr | c ∈ q.where ∧ c.attr /∈ K
⋃
C];

// add ordering attributes

C ← C + (q.order by \ C);
// end with IDs from all entities

C ← C + [e.id |e ∈ entities(q)
∧ e /∈ {a.entity | a ∈ C}];

// selected attributes as values

V ← q.select \ K \ C;
return K 7→ (C 7→ V);

Figure 3.5: Materialized view column family generation

31

Decomposition
Edge Prefix query Remainder query

1

SELECT Reservation.ResID FROM

Reservation.Room.Hotel

WHERE Hotel.HotelCity = ?

AND Room.Amenity.AmenityName = ?

AND Reservation.Room.RoomRate > ?

SELECT Guest.GuestName, Guest.GuestEmail

FROM Guest WHERE Guest.Reservation.ResID = ?

2
SELECT Hotel.HotelID FROM Hotel

WHERE Hotel.City = ?

SELECT Guest.GuestName, Guest.GuestEmail

FROM Guest.Reservation.Room.Hotel

WHERE Hotel.HotelID = ?

AND Room.RoomRate > ?

AND Room.Amenity.AmenityName = ?

3
SELECT Amenity.AmenityID FROM

Amenity WHERE Amenity.AmenityName = ?

SELECT Guest.GuestName, Guest.GuestEmail

FROM Guest.Reservation.Room.Hotel WHERE

Hotel.HotelCity = ?

AND Room.Amenity.AmenityID = ?

AND Room.RoomRate > ?

Table 3.1: Example of query decomposition for candidate enumeration for the query in
Figure 3.3a

For each of the generated prefix/remainder queries, NoSE first enumerates its materi-
alized view. If the SELECT clause of the prefix query includes non-key attributes, NoSE
enumerates two additional candidates: one that returns only the key attributes, and a
second that returns required non-key attributes given the key. For example, for the query
in Figure 3.3a, in addition to the materialized view, the enumerator will also generate the
following two candidates:

[HotelCity, AmenityName]

[RoomRate, AmenityID, HotelID, RoomID, ResID, GuestID][]

[GuestID][][GuestName,GuestEmail].

The former is useful for returning a set of GuestIDs, given a city, an amenity, and a room
rate, and the latter can then produce the guests’ names and email addresses.

32

Finally, the enumerator may generate additional candidates corresponding to relaxed
versions of the prefix query. Specifically, when the enumerator considers a query of the
form

SELECT attributes FROM path-prefix WHERE

path.attr op ? AND predicate2 AND ...

it also generates materialized views for relaxed queries of the form

SELECT attributes, attr FROM

path-prefix WHERE predicate2 AND

That is, the enumerator removes one or more predicates and adds the attributes involved
in the predicates to the SELECT clause.

Predicates are only considered for removal if the remaining query will have at least
one equality predicate remaining. (The application will require this to construct a valid
get request on the column family in the recommended plan.) NoSE also relaxes queries
involving ordering in the same way, by moving an attribute in an ORDER BY clause to the
SELECT list.

The full enumeration algorithm is given in Figure 3.6. For a query with k edges, this
algorithm will generate at least Nk = 1+k+

∑k−1
j=1 Nj = 2k+1−2 candidate column families,

ignoring any relaxed prefix queries. The number of relaxed prefix queries is exponential
in the number of attributes occurring in the WHERE and ORDER BY clauses, since Relax(p)
considers all subsets of those attributes. Thus, the number of candidates per query grows
exponentially with both the size of the query graph and the size of the WHERE and ORDER

BY clauses. However, as we see in Section 3.8.2, this is not a practical concern with the
size of several realistic workloads as we show with our runtime analysis in Section 3.8.2.

Candidate Combinations

Once the enumerator has produced candidates for each query in the workload, it then
generates additional candidates by combining the per-query candidates that are already
present in the pool. Specifically, the enumerator looks for pairs of column families for
which both have the same partition key (K), neither has a clustering key (C), and each has
different data attributes (V). For each such pair, the enumerator generates an additional
candidate that has the same partition keys and all the data attributes from both of the
column families it identified. Thus, the new candidate will be larger than either of the
original candidates but will be potentially useful for answering more than one query.

33

function: Enumerate
input : A query q
output : Enumerated column families for q
// create a materialized view

C ← {Materialize(q)};
foreach edge e in q.graph do

// split prefix and remainder

p, r ← Decompose(q, e);

// add relaxed prefix queries

C ← C
⋃
{Materialize(q′) | q′ ∈ Relax(p)};

// materialize prefix and recurse

C ← C
⋃
{Materialize(p)}

⋃
Enumerate(r);

return C ;

Figure 3.6: Column family enumeration

Decompose splits the query graph in two on the given edge.

Relax produces relaxed prefix queries as described in the text.

34

There are additional opportunities for creating new column families by combining can-
didates from the pool, but NoSE’s enumerator currently only exploits this one type of com-
bination. Increasing the number of candidates increases the opportunity for the schema
advisor to identify a high-quality schema (i.e. one with lower cost) but this also increases
the running time of the advisor. As future work, we intend to explore other opportuni-
ties for candidate generation in light of this tradeoff as well as heuristics to prune column
families which are unlikely to be useful.

3.3.2 Query Planning

One component of the output of NoSE is a query execution plan for each query in the input
workload. Query execution plans consist of a series of three possible steps: (a) a get or
put request to the underlying data store, (b) filtering of data fetched from the data store
by the application, or (c) sorting of data by the application. Each of these operations has
an associated cost, which we describe in Section 3.5. These plans describe to application
developers how each query should be implemented.

The task of the query planner is to enumerate all possible plans for evaluating a given
query, under the assumption that all candidate column families are available. Each plan
is a sequence of steps, using candidate column families, that will produce an answer to an
application query. We refer to the result of this process as the plan space for the given
query. Later, during schema optimization, the schema advisor will use the plan spaces for
each query to determine which candidate column families to recommend.

NoSE performs query planning as part of the same recursive decomposition process
that generates candidate column families. Consider the decomposition of the running
example query (Figure 3.3a) shown in Figure 3.1. For each prefix query, the query planner
generates a set of implementation plans, each of which starts by retrieving the results of
the prefix query, and finishes by joining those results to a (recursively calculated) plan for
the corresponding remainder query. When generating plans for a prefix query, the planner
will generate one set of plans for each candidate column family generated for that prefix
query, and for any other candidate column families that subsume a candidate for the prefix
query. In general, because query planning is based on the same recursive decomposition
used to enumerate candidate column families (Figure 3.6), the size of the plan space for a
query with k edges in its query graph grows exponentially with k.

35

CF1 [HotelCity][AmenityID, RoomRate, RoomID][]

CF2 [HotelCity][AmenityID, RoomID][]

CF3 [HotelCity][HotelID][]

CF4 [HotelID][AmenityID, RoomID][]

CF5 [RoomID][][RoomRate]

Figure 3.7: Example query plan space

Figure 3.7 shows the plan space for the query below:

SELECT Room.RoomID FROM Room WHERE

Room.Hotel.HotelCity = ?city AND

Room.Amenity.AmenityID = ?amenityID AND

Room.RoomRate > ?rate

There are three possible plans in the plan space assuming all the enumerated column
families are available. The first uses the materialized view CF1 to answer the query directly.
The second finds the HotelID for all hotels in a given HotelCity using CF3. The HotelID

is then used to find all the RoomIDs for the given hotel using CF4. Finally, application
discovers the RoomRates using CF5 and filters the RoomIDs to only contain those matching
the predicated on RoomRate. The final plan is similar, but goes directly from a HotelCity

to a list of RoomIDs using CF2.

When developing a query plan, it is necessary to select an order in which to execute
each individual query and join the values based on the IDs of each entity. Since we require
at least one equality predicate for each get request, we start with the equality predicate in
the query graph with the lowest cardinality. Entities in the query graph are then selected
based on those reachable from the currently joined entities and in order by increasing
cardinality. While this is not guaranteed to be optimal, choosing entities in this order

36

reduces the size of intermediate result sets. There are possible alternative heuristics [98]
but we use this for simplicity.

3.4 Schema Optimization

A näıve approach to schema optimization is to examine each element in the power set of
candidate column families and evaluate the cost of executing each workload query using a
plan that involves only the selected candidates. However, this approach scales poorly as it
is exponential in the total number of candidate column families.

Papadomanolakis and Ailamaki [103] present a more efficient approach to the related
problem of index selection in relational database systems. Their approach formulates the
index selection problem as a binary integer program (BIP) which selects an optimal set of
indices based on the index configurations that are useful for each query in the workload.
Their approach uses a set of decision variables for each query, with the number of variables
per query equal to the number of combinations of indices useful to that query. This is still
exponential, like the näıve approach, but only in the number of indices relevant to each
query, rather than the total number of candidate indices.

Like Papadomanolakis and Ailamaki, we have implemented schema optimization by
formulating the problem as a BIP. However, because of the simple structure of the query
implementation plans that our schema advisor considers, we are able to provide a simpler
formulation for our problem.

Our schema advisor uses the query plan spaces described in Section 3.3.2 to generate
a BIP. A binary decision variable, δij, exists for each combination of a candidate column
family and a workload query. The variable δij indicates whether the ith query will use the
jth column family in its implementation plan. The objective of the optimization program
is to minimize the quantity

∑
i

∑
j fiCijδij, where Cij represents the cost of using the jth

column family in the plan for the ith query and fi is the query frequency. However, after
solving this optimization problem, we run the solver again with an additional constraint
that the cost of the workload equals the minimum value which was just discovered, and
with the objective of minimizing the total number of column families in the recommended
schema. This allows NoSE to produce the schema with the smallest number of column
families out of the set of those which are most efficient.

In addition to the decision variables δij, our program formulation uses one other deci-
sion variable per candidate column family. These variables indicate whether the solution

37

minimize
∑
i

∑
j

fiCijδij

subject to

All used column families being present

δij ≤ δj,∀i, j
Maximum space usage S∑

j

sjδj ≤ S

Plus per-query plan graph constraints (see text)

Figure 3.8: Binary integer program for schema optimization

includes the corresponding column families in the set recommended by the schema advi-
sor. We use δj to represent this per-column-family decision variable for the jth candidate
column family. Our BIP includes constraints that ensure that

� the solution includes the jth column family in the recommendation if the solution
uses it in the plan for at least one query, and

� (optionally) that the total size of the recommended column families is less than the
specified space constraint.

To allow sorting to occur at any point in query execution, we also add a constraint that
results are properly sorted. Overall, this approach requires |Q||P | variables representing
the use of column families in query implementation plans, and |P | variables representing
candidate column families, where |Q| represents the number of queries and |P | is the
number of candidate column families (Section 3.3.1). We also allow an optional storage
constraint whereby the user can specify a limit S on the amount of storage occupied by all
column families. The estimated size of each column family sj is also given as a parameter
to the BIP. Figure 3.8 summarizes the binary integer program.

As noted in Figure 3.8, the BIP also requires a set of plan graph constraints, on the
variables δij, which ensure that the solver will choose a set of column families for each
query that correspond to one of the plans in the query plan space. These constraints
derive from the per-query plan spaces determined by the query planner. For example, in
Figure 3.7, the solution can select at most one of CF1, CF3, and CF2 to answer this query,

38

rlδ1,4 ≤ δ1,3

δ1,5 ≤ δ1,2 + δ1,4

δ1,j ≤ δj∀j ∈ {1, 2, 3, 4, 5}
δ1,1 + δ1,2 + δ1,3 = 1

δ1,1 + δ1,2 + δ1,4 = 1

δ1,1 + δ1,5 = 1

Figure 3.9: BIP constraints for the plan graph from Figure 3.7

since each is useful for different plans, and the solution selects only one plan per query.
In addition, if the solution selects CF3, then it must also select CF4 and CF5. The BIP
will include corresponding constraints on the decision variables δij that indicate whether
the solution will use those column families to answer this query. Figure 3.9 shows the plan
graph constraints for the example shown in Figure 3.7.

After solving the BIP, making the final plan recommendation is straightforward. There
is a unique plan with minimal cost based on the values of the decision variables in the BIP.

3.5 Cost Model

The BIP constants Cij represent the cost of using a particular column family in the plan for
a particular query. For the example shown in Figure 3.7, there will be five such constants,
one for each column family node in the plan graph. As it generates the BIP, NoSE uses
its cost model to determine values for these constants.

Each lookup node in the plan graph represents one or more get operations against
a particular column family. The corresponding BIP constant represents the total cost of
all such get operations. NoSE estimates each node’s total cost using a two-parameter
cost function T (n,w), where n represents the number of get operations that the plan will
perform against the column family, and w represents the “width” of each request, i.e., the
number of C 7→ V pairs that will be returned by each get.

NoSE’s plans involve only a single get from the first column family in each plan. Thus,
n = 1 for the first column family. The number of get operations for the next column family
depends on the number of results returned from the get on the first column family. Thus,

39

to estimate values of n for each column family in a plan, NoSE first estimates the result
cardinality of the preceding column family — much as in join size estimation in relational
databases. For these cardinality estimates, NoSE makes use of simple statistical metadata
that is described in terms of the conceptual model and provided as part of NoSE’s input.
Specifically, a user can provide the cardinality of each attribute in each entity set to NoSE.
NoSE also makes use of cardinality constraints from the conceptual model and simple
uniformity assumptions. NoSE also uses this same metadata, as well as the properties of
the query, to estimate the value of w for each column family. This is a simplistic approach
to cardinality estimation. However, cardinality estimation (and costing in general) is not
our focus and this approach could easily be replaced by a more sophisticated one.

NoSE’s query plans may also include application-side filtering and sorting operations,
in addition to column family access. Currently, NoSE’s cost module treats filter operations
as free. Since the query predicates are simple to evaluate and the application can perform
filtering “on the fly” as the underlying record store returns results, filtering adds little
to no overhead to the time required to retrieve the records. To account for the cost of
application-side sorting, NoSE adds a small constant sorting penalty to the estimated cost
of the preceding column family in the plan. A more sophisticated model could adjust
this penalty based on result size, and could more accurately account for the overlap of
application-side sorting time with retrieval time.

3.5.1 Calibration

The actual cost of performing a plan’s get operations on a column family depends on the
performance characteristics of the underlying extensible record store. Therefore, NoSE
learns the cost estimation function (T (n,w)) using an offline calibration process.

The calibration process uses a synthetic database consisting of set of column families
with differing widths. We performed a series of experiments, by choosing a column family
with a particular width w, performing n get requests against that column family, and
measuring the total time required for the requests. Each request retrieves all w columns
for a randomly chosen key. Thus, each such experiment provides a measured execution
time for a particular n and w. We performed many of these experiments, and used linear
regression over the results to determine T (n,w).

40

3.6 Updates

The previous sections described how NoSE functions on a read-only workload, but it is im-
portant to also consider updates in the workload description. Updates implicitly constrain
the amount of denormalization present in the generated schema. This effect results from
the maintenance required when the same attribute appears in multiple column families.
Each column family containing an attribute modified by an update is also modified, so
repetition of attributes increases update cost.

We first introduce extensions to our workload description to express updates. We
then describe the update execution plans that NoSE generates and recommends to the
application developer. Finally, we describe modifications required to the enumeration
algorithm and the BIP used by NoSE to support these updates.

3.6.1 Update Language

In order to support updates to the workload, we extend our query language with additional
statements which describe updates to data in terms of the conceptual model, as illustrated
in Figure 3.10. INSERT statements create new entities and result in insertions to column
families containing attributes from that entity. We assume that the INSERT statement
provides the primary key of each entity, but all other attributes are optional. UPDATE

statements modify attributes, resulting in updates to any corresponding column families
in the schema. DELETE statements remove all data about deleted entities from any associ-
ated column families. Both UPDATE and DELETE statements specify the entities to modify
using the same predicates available for queries. Finally, CONNECT and DISCONNECT state-
ments create or destroy relationships between entities. These statements simply specify
the primary key of each entity and the relationship to modify. We also allow the creation of
relationships on the insertion of a new entity by specifying foreign keys of related entities.

3.6.2 Update Plans

As with queries, NoSE must provide an implementation plan for each update, using the
get, put and delete operations supported by the extensible record store. Because NoSE
may denormalize attributes across multiple column families, it must first determine which
column families are affected by the update, and then generate a plan for modifying each
of those column families to reflect the changes.

41

INSERT INTO Reservation SET ResID = ?, ResStartDate = ?, ResEndDate = ?

DELETE FROM Guest WHERE Guest.GuestID = ?guestID

UPDATE Reservation FROM Reservation.Guest SET Reservation.ResEndDate = ?

WHERE Guest.GuestID = ?guestID

CONNECT User(?userID) TO Reservations(?resID)

DISCONNECT User(?userID) FROM Reservations(?resID)

Figure 3.10: Example NoSE update statements

Query
SELECT Room.RoomRate FROM Room.Hotel.PointsOfInterest

WHERE Room.RoomFloor = ?floor AND PointsOfInterest.POIID = ?poiID

Materialized View Column Family
[Room.RoomFloor][PointsOfInterest.POIID, Hotel.HotelID, Room.RoomID]

[Room.RoomRate]

Update
UPDATE Room FROM Room.Reservations.Guest SET RoomRate = ?rate1 WHERE

Guest.GuestID = ?id AND Room.RoomRate = ?rate2

Figure 3.11: An example NoSE query, materialized view, and update

42

In general, a NoSE update statement might not contain enough information to allow
NoSE to construct an update plan. To illustrate this problem, suppose that the schema
recommended by NoSE includes the materialized view shown in Figure 3.11. Suppose fur-
ther that the workload includes the UPDATE shown in the figure. Such an UPDATE may affect
the materialized view since the UPDATE changes the room rates stored in the view. Thus,
the recommended plan for this update should include making changes to the materialized
view, using put or delete operations. However, a plan cannot change room rates in this
view without knowing the RoomFloor, POIID, HotelID, and RoomID associated with the
room rates that need to change. This information is not provided by the UPDATE.

To resolve this problem, NoSE update plans may include support queries, which obtain
information that the plan requires in order to perform the update. NoSE generates such
support queries automatically, as needed, as part of its planning and optimization process.
Given an update from the workload and candidate column family, Figure 3.12 describes
how NoSE generates the support queries necessary to update the column family. If an
update includes all the information required to update a column family, then Figure 3.12
does not generate any support queries.

Plans for UPDATE

We will use the materialized view and UPDATE from Figure 3.11 to illustrate how NoSE
generates plans for updates. For this UPDATE and view, NoSE will generate two support
queries. The first will return RoomIDs for the rooms whose rates the UPDATE modifies.
NoSE executes the second query once for each RoomID returned by the first query. The
query returns the RoomFloor, HotelID, and POIIDs for the given RoomID. Figure 3.13
illustrates these two support queries. The results of this second query identify the record
keys (RoomFloors) and columns the UPDATE needs to modify RoomRate in the materialized
view. The plan recommended by NoSE can then perform each update using a put command
against the materialized view.

In general, NoSE may require more than two support queries to update a column
family, although two is sufficient in our example. The number of support queries that
NoSE generates depends on the structure of the materialized view’s query graph, and on
which entity NoSE is updating. Furthermore, applying the updates to the column family
once the necessary records and columns have been identified is not always as simple as our
example suggests. If an UPDATE modifies an attribute used as part of the column names or
part of the record key in the view, then NoSE cannot simply put the new value as it does
in our previous example. Instead, such updates delete the old record or column and then
insert a replacement.

43

function: Support
input : A modification u and a column family t
output : A set of support queries

// Get required attributes

A← Required(t, u);
if |A| == 0 then return ∅;
if u.type ∈ {Insert, Connect, Disconnect} then

// Split on relevant edges

E ← c | c ∈ u.connections ∧ c ∈ t.graph; G = Split(t.graph,E);

// Build a query for each subgraph

S ← ∅;
foreach subgraph g in G do

A′ ← {a | a ∈ A ∧ a.entity ∈ g}; w′ ← {c | c.attr.entity ∈ g};
if |A′|= 0 then continue;
S ← S

⋃
{(u.from,A′, w′, [])};

return S;

else return {(u.from,A, u.where, [])};

Required produces the necessary fields for the update. Split splits a graph on a given edge.

Figure 3.12: Support query generation

SELECT Room.RoomID FROM Room.Reservations.Guest

WHERE Guest.GuestID = ?id AND Room.RoomRate = ?rate2

SELECT Room.RoomFloor, Room.Hotel.HotelID, PointsOfInterest.POIID

FROM PointsOfInterest.Hotels.Rooms WHERE Room.RoomID = ?id

Figure 3.13: Support queries for the update shown in Figure 3.11

Plans for DELETE

Plans for DELETE statements are similar to those for UPDATEs, since both types of statement
affect a single type of entity in the conceptual model. Like an UPDATE, a DELETE may require
support queries to determine which records to remove from an affected column family.

44

Plans for INSERT

If an INSERT statement does not include any CONNECT clauses, then NoSE only needs to
update column families that contain attributes of the newly inserted entity. In this case,
the INSERT supplies all the necessary attribute values, and NoSE does not need to generate
any support queries.

If an INSERT does include CONNECT clauses, then NoSE may need to update column
families that include attributes from multiple types of entities, including the type of the
inserted entity. Since the INSERT statement only specifies values for the attributes of the
inserted entity, NoSE will construct one or more support queries to obtain the attribute
values for other entities that appear in the column family. Furthermore, since the new
entity’s attribute values may be denormalized in the column family, the support queries
determine how many new records or columns to add to the column family to reflect the
addition of the new entity. For example, an INSERT of a new POI, with a CONNECT to
a nearby hotel, may result in the addition of multiple columns in multiple records of
the materialized view shown in Figure 3.11. Specifically, there will be a new column for
each room in the hotel linked to the new POI. Support queries determine the RoomID,
RoomFloor, and RoomRate of these rooms, so that the INSERT plan can add the necessary
columns to the column family.

Plans for CONNECT and DISCONNECT

CONNECT and DISCONNECT may modify a column family if the column family’s underlying
query graph includes the edge that is being connected or disconnected. CONNECT statements
may cause new records or columns to be inserted, and support queries obtain the necessary
attribute values, much as was done for INSERT. Similarly, DISCONNECT may cause records or
columns to be removed, and support queries determine the affected records and columns.
When modeling the cost of CONNECT and DISCONNECT, we treat these as insertions or
deletions to column families involving the relevant edge.

3.6.3 Column family enumeration for updates

Additional column families may be necessary to answer support queries for updates in the
workload. When there are updates, the candidate enumerator uses the procedure shown
in Figure 3.14. This procedure extends the candidate enumeration procedure for query-
only workloads, which was originally described in Section 3.3.1. As shown in Figure 3.14,

45

function: UpdateEnumerate
input : A set of queries Q and updates U
output : A set of enumerated column families

// enumeration for workload queries

C ← {Enumerate(q) | q ∈ Q};
// enumeration for support queries

do twice
C ′ ← C;

foreach update u in U do
foreach column family c in C ′ do

if Modifies?(u, c) then
foreach query q in Support(u, c) do

C ← C
⋃

Enumerate(q);

return C
⋃
Combine(C);

The Enumerate and Combine functions represent the candidate enumeration and candidate
combination methods for query-only workloads from Section 3.3.1. Support is the support
query generation algorithm (Figure 3.12). Modifies? tests whether an update requires
modifications to a given column family.

Figure 3.14: Column family enumeration for workloads with updates

NoSE performs candidate enumeration for each query in the original workload, and twice
for support queries. This is because support queries generated on the first iteration may
cover new edges in the entity graph. Candidate column families for these support queries
may themselves be affected by workload updates, resulting in support queries for support
queries.

Update support queries increase the size of the application workload. For example,
suppose that the original workload includes a query Q with a query graph of length k, and
an update U that affects the first entity in Q’s query graph. This will result in the addition
of at least k + 1 support queries to the workload. This is because candidate enumeration
for Q will generate k+ 1 prefix queries involving the updated entity. Each of those queries
will have a materialized view which is affected by U , and for which a support query will
be required.

46

minimize
∑
i

∑
j

fiCijδij +
∑
m

∑
n

fmC
′
mnδn

subject to

All constraints from Figure 3.8

Additional constraints per support query (see text)

Figure 3.15: BIP modifications for updates

3.6.4 BIP Modifications

To incorporate updates into our BIP, we first add constraints for all support queries simi-
larly to those for queries in the original workload. In addition, we add constraints to ensure
that NoSE does not generate plans for support queries for a candidate column family unless
that column family is part of the recommended design. The objective function receives
an additional term,

∑
m

∑
n fmC

′
mnδn, to represent the cost of updating each column fam-

ily, which is contingent on the recommendation including this column family in the final
schema. C ′mn is the cost of updating column family n for update m (with frequency fm)
given that the column family appears in the final schema (δn). The cost of support queries
is also added using the same weight specified for the update in the workload. Figure 3.15
shows the modified BIP.

After solving this modified BIP, NoSE plans each update by first generating any nec-
essary support query plans in the same way as plans for queries in the original workload.
Each update plan then consists of a series of support query plans along with insertion or
deletion as necessary for the update.

3.7 Case Study

In this section, we present an analysis of a partial workload extracted from EasyAntiCheat
(EAC)1, a real-time cheat detection engine for multiplayer games. Our goals are to il-
lustrate the challenges of NoSQL schema design and to illustrate how NoSE works. In
Section 3.8, we present a more quantitative evaluation of NoSE.

1www.easyanticheat.net

47

Figure 3.16: Entities modeled in EasyAntiCheat

EAC receives large volumes of player behaviour data in real time. Their backend
systems pull in this data and analyze player behaviour to determine patterns indicative
of cheating. After hitting scalability limits with their relational database infrastructure,
EAC considered Cassandra as a possible backend. Figure 3.16 shows a simplified version of
the conceptual model for the application. Game servers have a number of player sessions
with servers continually collecting information on the state of players in each session.
The system stores data on millions of players and states, hundreds of thousands of player
sessions and thousands of servers. Players generate new states at rates of up to several
hundred thousand per second.

For this case study, we focus on a subset of the workload. Figure 3.17 shows the most
important queries in the workload. The workload also includes updates (not shown in
Figure 3.17) including the insertion of new player states, sessions, players, and servers.
EAC estimates their workload to be roughly 80% writes and 20% reads. The majority of
the writes come from the insertion of new states while most queries are instances of Q1

and Q2. We have assumed specific frequencies, fitting these constraints, for all queries and
updates. For simplicity, we assume these are the only queries and updates performed by
the system.

We used the EAC schema and workload as input to NoSE, and Figure 3.18 shows
the five recommended column families. The critical problem NoSE must resolve for this
workload is how to store player states, which are voluminous and frequently inserted, and
which are read by both Q1 and Q2. Furthermore, one of these queries retrieves states for
a single player session, while the second retrieves states for all players on a game server.
NoSE addresses this problem by recommending a single column family (CF1) to support

48

Q1 Get the latest state of a player
SELECT states.PosX, states.PosY, states.PosZ, states.ServerTimestamp

FROM Server.sessions.states WHERE Server.ServerID = ?

AND sessions.player.PlayerID = ? ORDER BY states.ServerTimestamp

Q2 Get the latest states for all players on a server
SELECT states.PosX, states.PosY, states.PosZ, states.ServerTimestamp,

sessions.player.PlayerID FROM Server.sessions.states WHERE

sessions.player.IsAdmin = 0 AND Server.ServerID = ?

AND states.ServerTimestamp > ? AND states.ServerTimestamp <= ?

ORDER BY states.ServerTimestamp

Q3 Get information on an individual server
SELECT Server.ServerName, Server.ServerIP

FROM Server WHERE Server.ServerID = ?

Q4 Check if a server exists
SELECT Server.ServerID FROM Server WHERE Server.ServerID = ?

Q5 Get sessions for a player
SELECT Session.SessionID FROM Session.player WHERE player.PlayerID = ?

Figure 3.17: Important queries in the EasyAntiCheat workload

49

CF1 [Server.ServerID]

[PlayerState.ServerTimestamp, Player.PlayerID, PlayerState.StateID,

Session.SessionID][Player.IsAdmin,

PlayerState.PosX, PlayerState.PosY, PlayerState.PosZ]

CF2 [Server.ServerID][][Server.ServerName, Server.ServerIP]

CF3 [Player.PlayerID][Session.SessionID][]

CF4 [Session.SessionID][Player.PlayerID, Server.ServerID, Player.IsAdmin][]

CF5 [Player.PlayerID][][Player.IsAdmin]

Figure 3.18: Column families produced for the EasyAntiCheat workload

both queries, so that state information is not denormalized and new states are only inserted
in one place. It chooses an organization for CF1 that can support both Q1 and Q2, with
the help of some application-side processing. Specifically, the schema partitions states
according to the game server they originate from and sorts them by timestamp. This
allows the extensible record store to directly support the timestamp range predicates in
Q2, and allows the application to avoid sorting by retrieving states in timestamp order.
NoSE’s recommended plan for Q1 is a single get from CF1 followed by application-side
filtering on PlayerID. Similarly, Q2’s plan is a single get followed by filtering on IsAdmin.
To support this filtering, NoSE has denormalized players’ IsAdmin attributes into CF1 to
avoid the need for additional lookups to retrieve that information.

Column families CF2 (Q3) and CF3 (Q4 and Q5) provide answers to the remaining
queries, which are less frequent. Column families CF4 and CF5 are examples of column
families that provide answers to support queries for updates, as discussed in Section 3.6.
To insert a new player state from a given session into CF1, the application must also know
the player and server associated with that session, as well as the player’s IsAdmin value,
since that information is denormalized into CF1 to support queries. Thus, NoSE’s plan
for insertions of new player states is a get from CF4 to obtain the necessary player and
server information for the new state’s session, followed by a put of a new record into CF1.
Similarly, when a new session in created, NoSE’s plan first obtains the IsAdmin value for
the session’s player from CF5 before inserting the new session into CF4.

50

NoSE’s schema recommendations are sensitive to workload and database properties,
such as the relative frequencies of the various queries and updates and the entity cardinal-
ities. For example, CF1 may become a poor way to support Q1 if the number of players
per game server gets too large. On the one hand, this sensitivity is a positive, as it reflects
the reality of the underlying NoSQL systems, and it allows an application developer to
explore the schema design space using NoSE, by simply tweaking workload parameters.
On the other hand, it suggests an interesting direction for future work, which is the recom-
mendation of schemas with performance that is robust across a range of workload changes,
though not necessarily optimal at any point within the range.

3.8 Evaluation

In this section we present an evaluation of NoSE designed to address two questions. First,
does NoSE produce good schemas (Section 3.8.1)? Second, how long does it take for NoSE
to generate schema recommendations (Section 3.8.2)? NoSE is available on GitHub [97].

3.8.1 Schema Quality

To evaluate the schemas recommended by NoSE, we used it to generate schema and plan
recommendations for a target application. We then implemented the recommended schema
in Cassandra along with the recommended application plans. While executing the plans
against Cassandra, we measured their execution times. Similarly, we also implemented
and executed the same workload against two baseline schemas for comparison. A full
description of the workload and the associated schemas is provided in Appendix A.

Although extensible record stores like Cassandra are in wide use, we are not aware of
open-source applications or benchmarks. One exception is YCSB [43], which is useful for
performance and scalability testing, but offers no flexibility in schema design. Instead,
we created a target application by adapting RUBiS [30], a Web application benchmark
originally backed by a relational database which simulates an online auction website.

To adapt RUBiS for Cassandra, we created a conceptual model based on the entities
managed by RUBiS. The resulting model contains seven entity sets, with ten relationships
among them. Using this model, we generated a NoSE workload description, with queries
and updates weighted according to the bidding workload defined by RUBiS. This workload
consists of one or more statements corresponding to each SQL statement used in the original
RUBiS workload.

51

 1

 10

 100

 1000

StoreComment

PutComment

RegisterItem

RegisterUser

StoreBuyNow

BuyNow

BidHistory

AboutMe

StoreBid

UserInfo

Regions

PutBid

SearchByRegion

Categories

ViewItem

SearchByCategory

A
v
e
ra

g
e
 r

e
s
p
o
n
s
e
 t

im
e
 (

m
s
)

request frequency

NoSE
Normalized

Expert

Figure 3.19: Response time of RUBiS request types using three different schemas.

Request types are ordered from least frequent to most frequent.

The first schema we examine, the NoSE schema, was recommended by NoSE using no
storage constraint. We chose not to evaluate the effect of storage constraints since updates
have a similar affect of reducing the amount of denormalization in the resulting schema.
This results in a highly denormalized, workload-specific schema, generally consistent with
the rules of thumb for NoSQL schema design. We compared this to two baseline schemas.
The first, which we refer to as the Normalized schema, is a manually created schema
which is highly normalized. For each entity set, it includes a column family for which the
partition key is the primary key of the entity and which stores all data associated with
the entity. The Normalized schema also includes column families which serve as secondary
indices for queries which do not specify entity primary keys. These column families use
the attributes given in query predicates as the partition keys and store the primary key of
the corresponding entities. A human designer who is familiar with Cassandra defined the
second baseline, which we refer to as the Expert schema, using the same workload that was
input to NoSE. The expert schema’s designer also defined an execution plan for each query.
The Normalized schema is ∼4.9GB on disk compared to ∼6.7GB for the expert schema
and ∼7.8GB for the schema produced by NoSE. Details of each schema and execution
plan are provided in Appendix A.

We implemented each schema in Cassandra, and populated each with data for a RUBiS
instance with 200,000 users. Rather than building a custom application to target each
schema, we developed a client-side execution engine which can interpret and execute the
query plans specified in the plan format used by NoSE. This engine executed the plans
created for all three schemas. Query and update plans for the two baselines were manually
developed, and the NoSE schema uses plans recommended by NoSE.

52

We used two servers for each experiment, one to execute the client-side query plans
and one running an instance of Cassandra 2.0.9. Each server has two six core Xeon E5-
2620 processors operating at 2.10 GHz and 64 GB of memory. A 7200 RPM SATA drive
stored the Cassandra data directory. The experiments ran with all Cassandra-level caching
disabled since we do not attempt to model the effects of caching in our cost model. NoSE
could incorporate a more elaborate cost model which captures the effects of caching, as its
cost model is pluggable.

The RUBiS workload consists of sixteen types of application-level requests called in-
teractions, each implemented using one or more queries or updates against the underlying
database. Figure 3.19 shows the mean response time for requests of each type, for each
of the schemas that we evaluated. Mean response times for the different types ranged
from 2.0–79.5 ms for the schema recommended by NoSE, 1.3–526.8 ms for the Normalized
schema, and 2.7–209.4 ms for the Expert schema. The weighted overall average response
times (over all request types) were 8.4ms, 87.0ms, and 41.6ms for the NoSE, Normalized,
and Expert schemas, respectively. Thus, NoSE’s schema results in speed-ups of 10.2× and
4.9× relative to the two baselines. Performance for individual requests using the NoSE
schema was not better than that of the baselines for all request types. However, overall
performance improves because NoSE’s cost-based optimizer allows it to exploit workload
information to provide good performance for the most frequent operations (those on the
right in Figure 3.19). In particular, the NoSE schema uses extensive denormalization to
support fast execution of frequent queries, at the expense of additional work during (less
frequent) updates.

In addition to the experiment shown in Figure 3.19, we also experimented with varia-
tions of the RUBiS workload that have different mixes of request frequencies. Figure 3.20
shows the results, for four different mixes arranged in order of increasing write intensity.
We also considered RUBiS’s Browsing workload mix and two variations of the Bidding
mix with the relative frequency of update interactions increased by factors of 10 and 100
relative to the original Bidding workload. The Browsing workload consists of 7 read-only
interactions and the Bidding workload adds 9 interactions involving updates. The total
frequency is approximately 23% update interactions for the Bidding workload. For each
mix, NoSE generated a schema and execution plans specific to that mix, which we com-
pared against the original Expert and Normalized schemas. Note that we only expect the
Expert schema to perform well against the Bidding workload used for its development.

NoSE is extremely effective on the Browsing mix since it is free to denormalize heavily
with no update penalty. As the workload becomes more write intensive, NoSE’s schema
recommendations become more normalized, and workload performance approaches that
achieved by the Normalized baseline. In the most update intensive mix, NoSE’s schema

53

 1

 10

 100

Browsing Bidding 10x 100xW
e
ig

h
te

d
 a

v
e
ra

g
e
 r

e
s
p
o
n
s
e
 t

im
e
 (

m
s
)

write frequency

NoSE Normalized Expert

Figure 3.20: Execution plan performance for different request mixes.

10× and 100× refer to the Bidding workload with update request frequencies increased by
10× and 100×.

54

 0

 50

 100

 150

 200

 250

 300

 350

1 2 3 4

A
v
e
ra

g
e
 e

x
e
c
u
ti

o
n
 t

im
e
 (

s
)

Workload scale factor

Enumeration
Cost calculaton
BIP Construction
BIP Solving
Other

Figure 3.21: Advisor runtime for varying workload scale factors

performs slightly worse than the baseline schemas. NoSE has no knowledge of the cor-
relation of queries in the input workload and cannot share the results of support query
execution. In contrast, the expert schema does exploit this knowledge and is thus able to
avoid unnecessary queries.

3.8.2 Advisor Runtime

Running NoSE for the RUBiS workload takes approximately 3.3 minutes. To evaluate the
advisor runtime for workloads larger than RUBiS, we generated random entity graphs and
queries to use as input to our tool. The entity graph generation uses the Watts-Strogatz
random graph model [127]. After generating the graph, we randomly assign a direction to
each edge and create a foreign key at the head node. We then add a random number of
attributes to each entity in the graph. Our generator uses a random walk through the graph
to identify the graph of each statement. For any statements involving a WHERE clause, we
randomly generate predicates in the graph. Queries and updates select or update randomly
chosen attributes in the graph.

Figure 3.21 shows the results of a simple experiment in which we started with a random
workload having similar properties to the RUBiS workload discussed in the previous section.
We then increased the size of the workload by multiplying the number of entities and
statements by a constant factor. The largest workload (4× scale factor) tested contains
120 queries, 12 updates, and 20 insertions over an entity graph with 28 entities. The

55

figure shows the time required for NoSE to recommend a schema and a set of execution
plans as a function of this factor. We ran all experiments using a machine with the
same specifications as in the previous section. The increase in runtime is a result of the
increased number column families enumerated, which also increases the number of support
queries NoSE considers. This interaction increases non-linearly with the workload size (e.g.,
increased numbers of queries and updates) since there are more ways that column families
recommended for queries interact with updates. There is likely room for optimization in
the NoSE code to significantly reduce the runtime. For example, any heuristics which can
exclude column families from enumeration will reduce the runtime at all further stages in
the process.

3.9 Summary of NoSE and Future Directions

Schema design for NoSQL databases is a complex problem with additional challenges
as compared to the analogous problem for relational databases. We have developed a
workload-driven approach for schema design for extensible record stores, which is able to
effectively explore tradeoffs in the design space. Our approach implicitly captures best
practices in NoSQL schema design without relying on general design rules-of-thumb, and
is thereby able to generate effective NoSQL schema designs. Our approach also allows ap-
plications to explicitly control the tradeoff between normalization and query performance
by varying a space constraint.

Currently, NoSE only targets Cassandra. However, we believe that with minimal effort,
the same approach could apply to other extensible record stores, such as HBase. We
also intend to explore the use of similar techniques for data stores with different data
models, such as key-value stores and document stores. Applying our approach to such
data stores may only require changing the cost model and the physical representation of
column families.

The same triple notation used to represent column families for Cassandra may also
be applicable for representing structures in other data models. For example, we have
experimented with adding support for the MongoDB [8] document store to NoSE. Suppose
we have the following triple constructed to store data for an application using the entity
graph in Figure 3.1:

[GuestID,ResID,RoomID][]

[GuestName,GuestEmail,ResStartDate,ResEndDate]

56

In this case, we can use the structure of the related entities in the entity graph to define
levels of nesting in a document collection. One example of this is a document like the one
below which has GuestID values as keys for each document. Reservations and rooms are
nested within each document. Since there is a one-to-many relationship between guests
and reservations, we can represent the reservations as an array inside the document. Each
reservation only has a single room, so the RoomID for each reservation can simply be stored
as a nested property.

{ "Guest1": {
"GuestName": "Alice", "GuestEmail": "alice@abc.com",

"Reservations: [

{"Res1": {"ResStartDate": "2018/08/21", "ResEndDate": "2018/08/24",

"Room": {"RoomID": "Room1"}}}
]}}

More investigation is required to consider what the structure of documents should look
like in the general case. In addition to this consideration, we believe NoSE may require
more significant changes to fully exploit capabilities present in different NoSQL databases
such as secondary indexes or more expressive query languages.

57

Chapter 4

ESON: Schema Recovery from
Denormalized Physical Designs

As discussed in the previous chapter, although NoSQL systems may not require applications
to define rigid schemas, application developers must still decide how to store information
in the database. These choices can have a significant impact on application performance
as well as the readability of application code [61]. For example, consider an application
using HBase to track requests to an on-line service. To store records of requests in an
HBase table, the application must decide how to represent the requests. Should there be
a record for each request, or perhaps one record for all the requests from a single client?
What column families will be present in the table, and what will they represent? The same
requests may be stored in multiple tables since the structure of tables determines which
queries can be asked. The choice of data representation depends on how the application
expects to use the table, i.e., what kinds of queries and updates it needs to perform. These
kinds of decisions are automated with NoSE, but many existing applications have manually
designed schemas. In this case, since the NoSQL system itself is unaware of any schema
design decisions, it can provide little to no help in understanding what is being represented
in the database.

In our on-line service example, request information might be stored twice, once grouped
and keyed by the customer that submitted the request, and a second time keyed by the
request subject or the request time. If the application updates a request, or changes the
information it tracks for each request, these changes should be reflected in both locations.
As discussed in Chapter 1.3, this denormalization (duplication of data) is done by the
application developer. The database system is unaware of this denormalization and unable
to help manage updates and queries over this denormalized data. We aim to recover

58

explicit knowledge of application-level denormalization through a task we refer to as schema
renormalization. This chapter addresses the schema renormalization problem through the
following technical contributions:

� We present a complete semi-automatic technique for extracting a normalized con-
ceptual schema from an existing denormalized NoSQL database. Our technique
works with different types of NoSQL systems (e.g., Cassandra, MongoDB) through
a common unifying relational representation of the physical structures in the NoSQL
database. It produces a normalized conceptual schema for the database, such as
the one represented graphically as an entity-relationship diagram, in Figure 4.1. In
addition, it produces a mapping from each NoSQL physical structure to the concep-
tual model. Connecting the physical and conceptual schemas this way increases their
utility, as discussed in Section 4.6.

� We develop an automatic normalization algorithm (Section 4.4), which forms the core
of our semi-automatic approach. This algorithm uses both functional and inclusion
dependencies to extract the conceptual model from the NoSQL system’s physical
structures. Our algorithm, which we call ESON, ensures that the resulting model
is in interaction-free inclusion dependency normal form, indicating the redundancy
implied by the input dependencies (both functional and inclusion) has been removed
from the schema. To the best of our knowledge, this is the first normalization algo-
rithm which does this.

� Our normalization algorithm requires functional and inclusion dependencies as input.
These may be provided by a knowledgeable user, or may be mined from an instance
of a NoSQL database. Our third contribution is a technique for adapting existing
relational dependency mining techniques to provide the dependencies required by the
normalization algorithm (Section 4.5).

� Finally, in Section 4.7, we present a series of case studies which show the full schema
renormalization process in action for several NoSQL applications. We use these
case studies to highlight both the advantages and the limitations of our approach to
renormalization.

A short paper based on the work in this chapter has been accepted for presentation at
the International Conference on Conceptual Modeling (ER 2018) [94].

The conceptual data model that our algorithm produces can serve as a simple reference,
or specification, of the information that has been denormalized across the workload-tuned

59

Project ProjIDProjName

WorkingOn

Employee EmpID

EmpName

DeptID

Department

DeptName

WorksIn

Manages

Figure 4.1: Schema example after renormalization

physical database structures. We view this model as a key component in a broader method-
ology for schema management for NoSQL applications. Current processes for managing
schema evolution in NoSQL datastores are entirely manual and error prone. If the applica-
tion workload changes, or if new types of data are added to the database, a developer must
evaluate how the physical schema must evolve to support the change. This process must
be repeated each time the application evolves, with the potential for errors each time.

We would like to support an alternative methodology for schema evolution, which is
illustrated in Figure 4.2. The first step is construction of a normalized conceptual data
model over the denormalized schema. This is the problem we address in this thesis. This
conceptual model enables several new use cases. Through the knowledge of the denor-
malization present in the existing physical structures, we can determine efficient plans for
executing ad-hoc queries over the denormalized data. In addition, the application developer
then can “lift” existing applications by describing the application’s existing queries and
updates against the conceptual model. Instead of directly changing the physical schema,
application developers can then evolve the application at the level of the conceptual model,
e.g., by adding additional data, or by adding or modifying (conceptual) queries. Once the
application has been evolved at the conceptual level, existing schema design tools and tech-
niques, such as NoSE and NoAM [14], can then be used to generate a new, workload-aware,
denormalized physical database design for the target NoSQL system.

60

logical

model

new logical

model

physical

model

new physical

model

renormalize redesign

evolve

Figure 4.2: NoSQL schema evolution lifecycle

4.1 Renormalization Overview

We renormalize NoSQL databases using a three step process. The first step is to produce
a generic physical schema that describes the physical structures that are present in the
NoSQL database. This step may be performed manually, although some tools exist to
aid in automation, which we discuss later. The generic physical schema serves to abstract
differences among the database models of different types of NoSQL systems. For example,
HBase uses tables with one or more column families, while MongoDB stores collections of
JSON documents. The generic physical schema hides these differences, providing a uniform
way to represent the physical structures that are present in the NoSQL store. It does not
capture all of the characteristics of these structures. In particular, it does not capture
how they can be used by applications, and it does not capture features of the structures
that affect performance. Rather, it focuses on describing the information that is present
in these structures, which is what is needed for renormalization. We describe the generic
physical model in more detail in Section 4.2, and illustrate how it can be produced for
different types of NoSQL systems.

The second step in the renormalization process is to identify dependencies among the
attributes of the generic physical model. The required dependencies can be provided by a
user with understanding of the NoSQL system’s application domain [91] or automatically
using existing dependency mining techniques, which we explore in Section 4.5. We discuss
the required dependencies further in Section 4.3.

61

The final step in the renormalization process is to normalize the generic physical schema
using the dependencies, resulting in a logical schema such as the one represented (as an
ER diagram) in Figure 4.1. This step is automated, using the procedure described in
Section 4.4. Our algorithm ensures that the normalized schema is in inclusion dependency
normal form (IDNF) which informally means that redundancy in the physical schema
captured by the provided functional and inclusion dependencies is removed.

Although we do not discuss this further in this thesis, it is also possible to apply this
three-step methodology iteratively, to incrementally renormalize a database. In particular,
one can start with a partial physical schema (e.g. a single table), renormalize it, and
then gradually add to the schema and renormalize until the full physical schema has been
renormalized.

4.2 The Generic Physical Schema

The first step in the renormalization process is to describe the NoSQL database using a
generic schema. The schemas we use are relational. Specifically, a generic physical schema
consists of a set of (flat) relation schemas. Each relation schema describes a physical
structure in the underlying NoSQL database. A relation schema, in turn, consists of a
unique relation name plus a fixed set of attribute names. Attribute names are unique
within each relation schema.

The procedure for doing this depends on the type of NoSQL database that is being
normalized. Here, we illustrate the process using examples based on three different types
of systems: Cassandra, HBase, and MongoDB. Our examples are based on RUBiS, an
online auction application which we describe in more detail later, in Section 4.7.1.

Cassandra: NoSQL systems differ in the amount of schema information that they
understand. In Cassandra, data is stored in tables, which applications can define using
CQL, an SQL-like language. CQL includes a CREATE TABLE statement, which allows the
application to define the structure of a table. Figure 4.3 shows an example of a CQL
definition of a single table from the RUBiS database. This table records the IDs of bids for
each item under auction. Information about the bids, such as the bid date, is denormalized
into this table so that an application can retrieve it without having to perform joins, which
Cassandra does not support.

If the NoSQL database includes a well-defined schema, as in this example, then de-
scribing the physical schema required for renormalization is a trivial task. Figure 4.3 also

62

CQL

CREATE TABLE ItemBids(itemID uuid, bid decimal,

bidID uuid, quantity int, date timestamp,

PRIMARY KEY(itemID,bid,bidID));

Generic schema

ItemBids(itemID, bid, bidID, quantity, date)

Figure 4.3: A CQL ItemBids table, and corresponding schema

2315
bids:25,b9734

16,2016-05-02
bids:24,b3267

6,2016-05-02
bids:22,b9907

8,2016-05-01

2416
bids:65,b7633

1,2016-04-09
bids:60,b9028

,2016-04-01

Figure 4.4: An ItemBids table in HBase

shows the generic relation schema for the CQL ItemBids table. The generic schema sim-
ply identifies the attributes that are present in the table, and gives names to both the
attributes and the table itself. In the case of Cassandra, these names can be taken directly
from the CQL table definition. The PRIMARY KEY declaration in the CQL table definition
also provides information about functional dependencies among the tables attributes. We
defer the further discussion of these dependencies to Section 4.3.

HBase: Like Cassandra, HBase stores data in tables. Each table contains one or more
column families. However, HBase understands only table names and the names of the
tables’ column families. Individual columns in each column family are not fixed. Different
rows in the same table may have different columns. Figure 4.4 shows two rows from an
HBase table that stores the same information (about bids for each item) that a Cassandra
application would store in the table from Figure 4.3. The table includes one row per item,
and a single column family called bids. In each row, there is a column for each bid for
that row’s item. Column names are composite values representing the bid amount and a
bid identifier (a reference to a row in another HBase table). Cells hold composite values
identifying the bid quantity and bid date.

The HBase ItemBids table can be modeled by the same generic schema that was
shown in Figure 4.3. In this case, each row in the HBase table results in multiple rows in

63

{ id: 2315, bids: [

{ id: b9734, amount: 25,

quantity: 16, date: "2016-05-02"},
{ id: b3267, amount: 24,

quantity: 6, date: "2016-05-02"},
{ id: b9907, amount: 22,

quantity: 8, date: "2016-05-01"}
]}
{ id: 2416, bids: [

{ id: b7633, amount: 65,

quantity: 1, date: "2016-04-09"},
{ id: b9028, amount: 60, date: "2016-04-01"}

]}

Figure 4.5: An ItemBids collection in MongoDB

the generic relation — one row per bid. To identify the underlying conceptual model, the
user must understand that column names are composites of bid values and bid identifiers,
and similarly that the cell values are composites. The user must also understand that row
keys are item identifiers. This interpretation is commonly imposed on data when it is read
from an HBase table by an application. Thus, a user with knowledge of the application can
identify attributes either directly from the database or through their application knowledge.

MongoDB: Unlike Cassandra and HBase, MongoDB stores data in collections of doc-
uments. Each document in a collection is a JSON object containing at minimum a primary
key. The only metadata available from MongoDB is the names of these collections. While
each document is permitted to contain arbitrary JSON data, in practice, documents within
the same collection have some common structure. Figure 4.5 shows how the same infor-
mation that is recorded in the HBase table from Figure 4.4 might be represented in a
MongoDB document collection, ItemBids. Each document contains an ID as well as an
array of bids for the item. The ID for each bid references another collection. The Item-
Bids collection could be modeled using the same generic relation schema that was used to
model the ItemBids table for HBase and Cassandra.

In general, we anticipate that the definition of a generic physical schema for an appli-
cation will require user involvement. However, there are tools that may assist with this
process. For example, several authors have proposed methods for extracting a schema
from JSON records in a document store, which could be applied to extract the generic
physical schema required for renormalization [66, 75, 125]. These methods generate nested

64

schemas, but nested properties can be flattened by concatenating their names. Similarly,
arrays can be flattened by including multiple rows for each document, as we have done in
this example.

4.3 Dependency Input

The second step of the renormalization process is to identify dependencies among the
attributes in the generic physical schema. Our normalization algorithm is able to use two
types of dependencies: functional dependencies and inclusion dependencies. These two
forms of dependencies are easy to express and are commonly used in database design [88].

These dependencies can be input manually, by a user who is familiar with the appli-
cation and its database. Alternatively, dependencies can be mined from an instance of
the underlying NoSQL database. In this section, we describe the types of dependencies
that our normalization algorithm expects. We defer discussion of dependency mining to
Section 4.5.

Functional dependencies (FDs) are of the form R : A → B, where R is a relation
from the physical schema and A and B are sets of attributes from R. For example, for the
ItemBids relation described in Section 4.2, the user might identify the following functional
dependencies:

itemID, bid, bidID→ quantity, date

bidID→ itemID, bid.

The first may be identified because itemID, bid, and bidID together form a row key for
the physical relation. The latter may be identified based on knowledge of the application
domain. We expect the functional dependencies provided as input to our algorithm are
given in the order they should be processed. That is, the schema will be normalized starting
with the first dependency in the list.

Inclusion dependencies (INDs) are of the form R (A) ⊆ S (B) where R and S are
physical relations, A is a set of attributes in R and B is a set of attributes in S. The
dependency states that for any tuple in R, there exists a tuple in S where the values of
attributes in B match the values of the attributes in A for the tuple in R. To represent
both the inclusion dependencies R (A) ⊆ S (B) and S (B) ⊆ R (A), we use the shorthand
R (A) = S (B). Inclusion dependencies are useful to determine when an application has
duplicated attributes across multiple physical structures.

65

For input to our algorithm, we require that all INDs are superkey-based. That is, for an
IND R (A) ⊆ S (B), B must be a superkey of S. We do not believe that this is a significant
restriction since we intend for inclusion dependencies to be used to indicate foreign key
relationships which exist in the denormalized data. Indeed, Mannila and Räihä [88] have
previously argued that only key-based dependencies are relevant to logical design.

4.4 ESON Normalization Algorithm

Levene and Vincent [82] define a normal form for database relations involving functional
and inclusion dependencies referred to as inclusion dependency normal form (IDNF). They
have shown that normalizing according to IDNF removes redundancy from a database
design implied by the set of dependencies. However, one of the necessary conditions for
this normal form is that the set of inclusion dependencies is non-circular. A set of inclusion
dependencies I1 : R1 (A1) ⊆ . . . ⊆ In : Rn (An) is circular if R1 = Rn. This excludes useful
schemas which express constraints such as one-to-one foreign key integrity. For example,
for the relations R (A,B) and S (B,C) we can think of the circular inclusion dependencies
R (A) = S (B) as expressing a one-to-one foreign key between R (A) and S (B).

Levene and Vincent also propose an extension to IDNF, termed interaction-free inclu-
sion dependency normal form which allows such circularities. The goal of our normalization
algorithm is to produce a schema that is in interaction-free IDNF. This normal form avoids
redundancy implied by functional and inclusion dependencies while still allowing the ex-
pression of useful information such as foreign keys. We provide more details on this normal
form in Section 4.4.5. As we show in Section 4.7, relation schemas in this normal form are
useful as logical models for several real-world examples.

Figure 4.6 provides an overview of our normalization algorithm, which consists of four
stages. In the reminder of this section, we discuss the normalization algorithm in more
detail. We will make use of a running example based on the simple generic (denormalized)
physical schema and dependencies shown in Figure 4.7.

Our normalization algorithm first applies dependency inference rules, as we discuss
in Section 4.4.1. Second, the BCNFDecompose algorithm implements BCNF decomposi-
tion. This removes any redundancy according to the set of FDs. Next, the Fold algo-
rithm removes redundant attributes and relations according to the set of INDs. Finally,
BreakCycles breaks any inclusion dependency cycles which are not proper circular, to
ensure that the resulting schema is in interaction-free IDNF.

66

Data: A set of relations R, FDs F, and INDs I
Result: A normalized set of relations R′′′

begin
// Perform dependency inference

F′, I+ ← Expand(F, I)

// Normalize according to BCNF

R′, I+
′ ← BCNFDecompose(R,F′,I+)

// Remove redundant attributes and relations

R′′, I+
′′ ← Fold(R′,F′, I+

′
)

// Break remaining circular INDs

R′′′, I+
′′′ ← BreakCycles(R′′, I+

′′
)

Figure 4.6: Algorithm for normalization to interaction-free IDNF

4.4.1 Dependency Inference

To minimize the effort required to provide input needed to create a useful normalized
schema, we aim to infer dependencies whenever possible. Armstrong [13] provides a well-
known set of axioms which can be used to infer FDs from those provided as input. Similarly,
Mitchell [99] presents a similar set of inference rules for INDs.

Mitchell further presents a set of inference rules for joint application to a set of FDs
and INDs. We adopt Mitchell’s pullback and collection rules to infer new functional de-
pendencies for inclusion dependencies and vice versa. As an example of the pullback rule,
consider the following dependencies for our example in Figure 4.7:

Employees : EmpID→ EmpName

EmpProjects (EmpID,EmpName) ⊆ Employees (EmpID,EmpName) .

In this case, we are able to infer an additional functional dependency:

EmpProjects : EmpID→ EmpName.

This case is equivalent to propagating primary keys of different logical entities (in this case,
employees) across different relations.

67

Physical Schema

EmpProjects(EmpID,EmpName,ProjID,ProjName)

Employees(EmpID,EmpName,DeptID,DeptName)

Managers(DeptID,EmpID)

Functional Dependencies

Employees : EmpID→ EmpName,DeptID

Employees : DeptID→ DeptName

EmpProjects : ProjID→ ProjName

Managers : DeptID→ EmpID

Inclusion Dependencies

EmpProjects (EmpID,EmpName) ⊆ Employees (. . .)

Managers (EmpID) ⊆ Employees (. . .)

Employees (DeptID) ⊆ Managers (. . .)

When attributes have the same names, we use . . . on the right.

Figure 4.7: Example generic physical schema and dependencies.

68

The collection rule allows the inference of new inclusion dependencies. Assume the
EmpProjects relation also contained the DeptID attribute. We could then express the
following dependencies:

EmpProjects (EmpID,DeptID) ⊆ Employees (. . .)

EmpProjects (EmpID,EmpName) ⊆ Employees (. . .)

Employees : EmpID→ DeptID

From this, we could infer the new inclusion dependency

EmpProjects (EmpID,EmpName,DeptID) ⊆ Employees (. . .) .

This can be seen as collecting all attributes corresponding to a single logical entity. As we
will see by example, this allows the elimination of attributes and relations via the Fold

algorithm to reduce the size of the resulting schema while maintaining the same semantic
information.

There is no finite complete axiomatization for FDs and INDs taken together [28, 99].
However, proofs presented in both the cited works rely on the existence of inclusion de-
pendencies which are not superkey-based. These types of dependencies are not permitted
by our algorithm. Thus we are uncertain of the completeness of our Expand procedure.
However, Expand, which uses Mitchell’s pullback and collection rules for combined infer-
ence from FDs and INDs, is sound. It also terminates, since the universe of dependencies
is finite and the inference process is purely additive. In practice Expand is able to infer
dependencies that are useful for schema design. As we noted earlier, INDs which are not
key-based are often not considered during schema design.

4.4.2 BCNF Decomposition

The second step, BCNFDecompose, is to perform a lossless join BCNF decomposition of the
physical schema using the expanded set of FDs. We use a procedure similar to the one
described by Garcia-Molina et al. [56].

When relations are decomposed, we project the FDs and INDs from the original relation
to each of the relations resulting from decomposition. In addition, we add new inclusion
dependencies which represent the correspondence of attributes between the decomposed re-
lations. For example, when performing the decomposition R (ABC)→ R′ (AB) , R′′ (BC)
we also add the INDs R′ (B) ⊆ R′′ (B) and R′′ (B) ⊆ R′ (B). In Appendix B.1, we prove
the soundness of these dependency inferences.

69

Physical Schema

Employees
(
EmpID,EmpName,DeptID

)
Departments

(
DeptID,DeptName

)
EmpProjects

(
EmpID,ProjID

)
EmpProjects′

(
EmpID,EmpName

)
Projects

(
ProjID,ProjName

)
Managers

(
DeptID,EmpID

)
Functional Dependencies

Employees : EmpID→ EmpName,DeptID Departments : DeptID→ DeptName

Managers : DeptID→ EmpID EmpProjects′ : EmpID→ EmpName

Projects : ProjID→ ProjName

Inclusion Dependencies

EmpProjects (EmpID) ⊆ Employees (. . .)

EmpProjects′ (EmpID,EmpName) ⊆ Employees (. . .)

EmpProjects′ (EmpID) = EmpProjects (. . .)

Projects (ProjID) = EmpProjects (. . .)

Employees (DeptID) ⊆ Departments (. . .)

Managers (DeptID) ⊆ Departments (. . .)

Figure 4.8: Relations and dependencies after BCNF decomposition.

Note that = is used to represent bidirectional inclusion dependencies.

In our running example, we are left with the relations and dependencies shown in
Figure 4.8 after the Expand and BCNFDecompose steps. The Employees relation has been
decomposed to add Departments. Also, the EmpProjects relation has been decomposed
to add EmpProjects′ and Projects. For illustrative purposes, we have manually given
new relations sensible names. In practice, the user would need to choose relation names
once the normalization process is complete.

4.4.3 Folding

Casanova and de Sa term the technique of removing redundant relations folding in the
context of conceptual schema design [27]. Our algorithm, Fold (Figure 4.9), identifies any

70

Function Fold(R, I) is
Data: A set of relations R, FDs F, and INDs I
Result: A new set R′ without redundant attributes/relations

R′ ← R

do
// Remove redundant attributes

foreach IND R (A) ⊆ S (B) in I do
// Find FDs implying attributes in R are redundant

foreach FD C → D | CD ⊆ A in F do
// Remove attributes which are in the RHS of the FD

R′ ← R′ \ {R}
⋃
{R (A \D)}

// Remove redundant relations

foreach IND pair R (A) = S (B) in I do
if R (A) = R then

// All attributes are also in the other relation

R′ ← R′ \R
if Pk (R (A)) = Pk (S (B)) then

// Merge R and S
T ← A

⋃
B

if R′ \ {R,S}
⋃
{T} is in BCNF then

R′ ← R′ \ {R,S}
⋃
{T}

until R′ is unchanged from the previous iteration;

Figure 4.9: Relation folding based on INDs

attributes or relations which are recoverable from other relations, based on the INDs. These
attributes and relations are redundant and the Fold algorithm removes them from the
schema. More abstractly, folding removes attributes which can be recovered by joining with
another relation and relations which are redundant because they are simply a projection
of other relations. Fold also identifies opportunities for merging relations that share a
common key.

It is not necessary to perform the Fold step to ensure that the resulting schema is in
interaction-free IDNF. However, if two schemas contain equivalent information, we believe
the smaller is more useful as it is a more concise representation of the application domain
and does not result in any loss of information. We do not make any claims that Fold

produces a minimal schema in interaction-free IDNF, but the opportunities for reduction
we have identified are useful in practice. For example, consider the EmpProjects′ relation

71

which contains the EmpName attribute. Since we have the inclusion dependency

EmpProjects′ (EmpID,EmpName) ⊆ Employees (. . .)

and the functional dependency

Employees : EmpID→ EmpName

we can infer that the EmpName attribute in EmpProjects′ is redundant since it can
be recovered by joining with the Employees relation. With the EmpName attribute
removed, we see that we have the inclusion dependency

EmpProjects′ (EmpID) = EmpProjects (. . .) .

Since EmpProjects′ is simply a projection of an attribute from EmpProjects, the
EmpProjects′ relation can be removed. It is important to note that the inclusion depen-
dencies are bidirectional so that the exact set of tuples represented by the relation being
removed is recoverable.

Finally, we consider an example of merging. Suppose the original schema contained
another relation storing the addresses of all employees, EmpAddress

(
EmpID,Address

)
.

Assuming we had an address for each employee, we can express the inclusion dependency

Employees (EmpID) = EmpAddress (. . .) .

We can then merge Employees and EmpAddress by adding the Address attribute to
the Employees relation since they share a common key.

Lemma 1. Fold does not introduce any BCNF violations.

Proof. When removing relations with Fold, clearly no BCNF violations are created. The
attributes removed by Fold are never keys of the relation, so they also do not introduce
BCNF violations. When attempting to merge relations via Fold we explicitly avoid merging
if a BCNF violation would be introduced.

4.4.4 Breaking IND Cycles

Mannila and Räihä [88] use a technique, which we call BreakCycles (Figure 4.10), to break
circular inclusion dependencies when performing logical database design. We adopt this
technique to break inclusion dependency cycles which are not proper circular.

72

Function BreakCycles(R, I) is
Data: A set of relations R and INDs I
Result: A set of relations R′ with cycles removed and new dependencies I+

R′ ← R

foreach Set of circular INDs R1 (X1) ⊆ R2 (Y2) · · · ⊆ Rn (Xn) ⊆ R1 (Y1) in I do
R′1 ← X1Y1
R′′1 ← Y1 + attr (R1)−X1Y1

R′ ← R′ \ {R1}
⋃
{R′1, R′′1}

I+ ← I+
⋃
R′1 (X1) ⊆ R2 (Y2)

I+ ← I+
⋃
R′1 (Y1) ⊆ R′′1 (Y1)

I+ ← I+
⋃
Rn (Xn) ⊆ R′′1 (Y1)

I+ ← I+ \ {R1 (X1) ⊆ R2 (Y2) ,⊆ Rn (Xn) ⊆ R1 (Y1)}

Figure 4.10: Breaking circular inclusion dependencies

In our running example, we have an inclusion dependency cycle which is not proper
circular created by the following two INDs:

Managers (EmpID) ⊆ Employees (. . .)

Employees (DeptID) ⊆ Managers (. . .) .

Applying the BreakCycles algorithm removes DeptID from the Employees relation
and adds a new relation WorksIn(EmpID,DeptID). We then add the following inclusion
dependencies to the WorksIn relation:

WorksIn (EmpID) ⊆ Employees (. . .)

WorksIn (DeptID) ⊆ Managers (. . .) .

The inclusion dependency Employees (DeptID) ⊆ Managers (. . .) is also removed, breaking
the cycle.

Lemma 2. BreakCycles does not introduce any BCNF violations.

Proof. BreakCycles decomposes a relation into two relations with the only functional
dependency defined establishing a primary key. The only new dependencies added are
inclusion dependencies between corresponding attributes in the decomposed relations. This
does not permit the inference of any new functional dependencies. Therefore, the final
schema is still in BCNF with respect to F′.

73

4.4.5 IDNF

The goal of our normalization algorithm is to produce a schema that is in interaction-free
IDNF with respect to the given dependencies. The following conditions are given by Levene
and Vincent [82] as the definition of interaction-free IDNF with respect to relations R and
a set of FDs F and INDs I:

1. R is in BCNF [42] with respect to F.

2. All the INDs in I are key-based or proper circular.

3. F and I do not interact (the notion of interaction is explained further below).

A set of INDs is proper circular if for each circular inclusion dependency over a unique set
of relations R1(X1) ⊆ R2(Y2), R2(X2) ⊆ R3(Y3), . . . , Rm(Xm) ⊆ R1(Y1), we have Xi = Yi
for all i.

Lemma 3. The schema produced by the normalization algorithm of Figure 4.6 is in
interaction-free IDNF with respect to the given sets of FDs and INDs.

Proof. Rule 1 is satisfied because BCNFDecompose produces a schema that is BCNF with
respect to F′, and therefore with respect to F. Furthermore, the subsequent Fold and
BreakCycles algorithms do not introduce any BCNF violations.

Rule 2 states that all remaining INDs must be key-based. The given set of INDs (I)
is superkey-based by assumption. We can show that all of the additional INDs created by
the algorithm are also key-based. Furthermore, none of the schema transformations can
result in non-key-based INDs. A complete proof of this is given in Appendix B.3.

To show that the final schema satisfies rule 3 (non-interaction of FDs and INDs), we
make use of a sufficient condition for non-interaction given by Levene and Vincent [82].
A set of FDs F and INDs I over a set of relations do not interact if the relations are in
BCNF with respect to F, I is proper circular, and F

⋃
I is reduced. As stated above, the

final schema is in BCNF. All inclusion dependencies are proper circular since we explicitly
break any cycles which are not via the BreakCycles algorithm. It remains to show that
the set of functional and inclusion dependencies are reduced.

A set of functional inclusion dependencies F and I is reduced if for every inclusion
dependency R (X) ⊆ S (Y), there are only trivial functional dependencies involving at-
tributes in the set Y . We have already shown that the final set of inclusion dependencies
is key-based, implying that Y is a key of S. Since the set Y is a key, F can only contain
trivial functional dependencies involving Y . Therefore, F

⋃
I is reduced and the schema is

in interaction-free IDNF.

74

4.5 Dependency Mining

As we noted in Section 4.3, the dependencies required by our algorithm can be directly
specified by a knowledgeable user, or mined from an instance of the underlying database.
In this section, we consider the latter option in more depth.

4.5.1 Mining for NoSQL Normalization

Dependency mining tools operate by examining a database instance to discover all depen-
dencies that hold on it. In order to mine dependencies, such tools collect statistics on the
distribution of values in each column in an attempt to discover relationships. We make use
of Apache Calcite [4] to provide an interface between NoSQL databases and dependency
mining tools, so that the tools can obtain the metadata and statistics they require. Calcite
is a data management framework which presents a SQL query interface on top of a variety
of database backends. We have used TANE [65] for mining functional dependencies and
BINDER [105] for mining inclusion dependencies. These algorithms both produce all valid
dependencies which hold on the given instance.

The problem with using mined dependencies is that many of them will be spurious. For
example, suppose in the employees relation of a company database we have the functional
dependency Department, Salary → FirstName. This expresses that all employees in a de-
partment with the same salary have the same first name. While this might hold for some
particular instance of the schema, it is unlikely to represent semantically meaningful infor-
mation. Another valid dependency on the same relation may be DeptID → Department.
We would prefer to perform BCNF decomposition using the second dependency since it
would result a table with a primary key of DeptID, which is likely to be more useful than
one with key (Department, Salary).

We use two techniques to reduce the impact of spurious dependencies: 1) ranking of
functional dependencies for the selection of primary keys for a relation and 2) ranking of
functional dependencies for the selection of a BCNF-violating dependency for decompo-
sition. Any time we generate a new relation, we use heuristics to select a primary key.
Functional dependencies representing other possible candidate keys are then ignored when
performing BCNF decomposition. Instead, we use heuristics to rank the remaining depen-
dencies to select the next violating functional dependency to use for decomposition. Note
that we still consider all valid functional dependencies which violate BCNF. However, by
selecting a good order for decomposition, some spurious functional dependencies no longer

75

apply when their attributes are split into separate relations. Avoiding decomposition based
on these dependencies results in a more logical schema as output.

We make use of three heuristics to identify functional dependencies which are likely to
represent keys:

1. Length: Keys with fewer attributes

2. Value: Keys with shorter values

3. Position: Keys occurring further left in the relation definition without non-key
attributes between key attributes.

We use these heuristics for both primary key and violating dependency selection. Since
we target NoSQL databases, we do not blindly apply the value length heuristic to all
columns. This is because data types exist which are explicitly intended to represent unique
identifiers. For example, Cassandra allows columns of type UUID and MongoDB docu-
ments can have values of type ObjectId. These are both long pseudorandom values intended
to allow concurrent creation without collision. Thus, although the values are long, we know
that these values are likely to represent key attributes. We assign such columns the highest
score according to the Value heuristic.

Papenbrock and Naumann [106] used similar heuristics in an algorithm for BCNF nor-
malization of a schema using mined functional dependencies. (They did not consider iden-
tifier types, since they did not target NoSQL databases.) They also propose an additional
heuristic which measures duplication across sets of column values in a dependency. We
did not use this heuristic since it increases complexity by requiring joint statistics across
multiple columns, and our algorithm produces positive results without this heuristic.

4.6 Applications of the Logical Model

The logical schema produced by the renormalization process is useful as a form of documen-
tation of the information that is embodied, in denormalized form, in a NoSQL database.
However, the logical schema has other applications as well. Our original motivation for this
work was to be able to provide a conceptual model of an existing NoSQL database as input
to a NoSQL schema design tool, such as NoSE. Given a conceptual model of the database,
as well as a description of the application workload, NoSE generates a physical schema

76

Logical schema query
SELECT EmpName, ProjID, ProjName FROM Projects

NATURAL JOIN Employees WHERE EmpName = ?

Physical schema query
SELECT EmpName, ProjID, ProjName FROM EmpProjects WHERE EmpName = ?

Figure 4.11: Query rewriting against the logical schema

optimized to support that workload. By combining renormalization with a schema design
tool, we can optimize the physical schema design of an existing NoSQL-based application.

It may also be useful to express application queries and updates directly against the
logical model. This can provide a means of executing new, ad-hoc queries over an existing
NoSQL database without the need to understand how the data is denormalized. In the
remainder of this section, we discuss how we can execute queries expressed over the logical
model using information gathered during the execution of our normalization algorithm.

4.6.1 Ad-Hoc Query Execution

One of the main advantages of using dependency information to construct the logical
schema is that we can use the same information to assist with executing queries written
against the logical schema. Because NoSQL databases often lack the ability to perform any
complex processing of queries, developers express queries directly in terms of structures
from the physical schema. This tightly couples the application to a particular schema
and makes changes in the schema difficult. With an appropriate logical schema for the
application, we can rewrite queries written against this logical schema to target specific
physical structures as in Figure 4.11. In this case, we can identify that the EmpProjects
relation materializes the join in the logical schema query and is therefore able to provide an
answer. Our aim is for this rewriting to happen transparently and to enable the possibility
of changing the rewriting as the physical schema changes.

As we show in the following section, we can produce queries on the logical schema which
correspond to data stored in the original structures in the physical schema. We can think of
these queries as defining materialized views over the logical schema which correspond to the
physical schema. The application developer can use these queries directly in cases where
the application directly used data from these structures without additional manipulation.
This simplifies rewriting existing application queries if a developer wishes to move to using
the logical model. For more complex queries, we can use existing techniques to rewrite the

77

queries to make use of the materialized views [60].

These queries can be translated on-the-fly to enable ad-hoc query execution. For ex-
ample, Apache Calcite [4] is a dynamic data management framework which connects to
different backends, including those for NoSQL datastores. We are currently exploring rules
for view-based query rewriting in Calcite to enable the necessary transformations. We
leave a full implementation of this approach as future work.

4.6.2 View Definition Recovery

In order to allow logical queries to execute against the existing physical schema, we must
have a way of understanding how the existing physical structures map to the logical schema.
Fortunately, we can use information saved from the normalization process to produce
this mapping. We simply think of each physical structure in the original schema as a
materialized view. We can recover a query which serves as the materialized view definition
by tracking a small amount of additional information during the normalization process.

For an example of view definition recovery, consider the EmpProjects relation from
Figure 4.7. Before performing normalization, our set of relations is equivalent to the input
so our view definition for EmpProjects is SELECT EmpID, EmpName, ProjID, ProjName

FROM EmpProjects. Considering only the EmpProjects relation, we have the following
functional dependencies:

EmpID→ EmpName and

ProjID→ ProjName.

When we perform BCNF decomposition, the normalization algorithm splits EmpPro-
jects into three relations. We call the relation with employee data EmpProjects′, the
relation with project data Projects, and keep the remaining relation expressing the asso-
ciation with the name EmpProjects. We can now write the view definition to include a
join based on the decomposition. Our view definition then appears as below:

SELECT EmpID, EmpName, ProjID, ProjName FROM EmpProjects JOIN EmpProjects’

ON EmpProjects.EmpID = EmpProjects’.EmpID

JOIN Projects ON EmpProjects.ProjID = Projects.ProjID.

A similar process of creating joins applies when running the BreakCycles algorithm.
The other transformation which affects the view definitions is Fold. When removing

78

relations, the transformation is a simple rename of the relation in the view definition.
For example, after the Fold step of our algorithm is performed on the EmpProjects′

relation, we see that it can be removed as was discussed in Section 4.4.3. This is because
the data in EmpProjects′ can be recovered from the Employees relation. We can simply
replace all instances of EmpProjects′ in the definition above with Employees. We do
not show an example, but a similar renaming applies when Fold removes an attribute with
the addition that a join is also created involving the relation which contains the removed
attribute.

For a relation R, we can recover the list of logical structures it references by recursively
visiting the list of relations decomposed to produce R until we reach physical structures
from the original schema. Since all of our inclusion dependencies are superkey-based, all
of the view definitions will consist of foreign key joins. More specifically, a materialized
view definition for the relation R will be of the form SELECT attr (R) FROM R1 JOIN R2 ON

R1.A = R2.B · · · JOIN Rn−1.X = Rn.Y where attr (R) is a list of the attributes in R and
R1 through Rn are the relations the query must join.

Using these materialized view definitions, we can answer queries written against the
logical schema using view-based query rewriting as discussed in the previous section. The
goal of view-based query rewriting is to answer a query using a set of materialized views,
which is exactly what we are trying to accomplish. We note that the view definitions we
described above are all conjunctive queries. It has recently been shown that conjunctive
query determinacy is undecidable in general [59]. However, there are useful subclasses of
conjunctive queries for which determinacy is decidable [107]. This suggests the possibility
that these rewriting techniques may be useful for answering queries written against logical
schemas produced by ESON.

4.7 Case Studies

This section presents case studies of several denormalized database schemas to show how
ESON is able to recover a useful schema. We discuss both cases where dependencies
were specified manually and where the dependencies were mined using an instance of the
denormalized schema.

79

4.7.1 RUBiS

RUBiS [30], a Web application for online auctions was introduced in Chapter 3 We pre-
sented a tool called NoSE, which performs automated schema design for NoSQL systems.
We used NoSE to generate two Cassandra schemas for RUBiS, each optimized for a differ-
ent workload (a full description is given in Appendix C). In each case, NoSE starts with
a conceptual model of the RUBiS database, The conceptual model includes six types of
entities (e.g., users, and items) with a variety of relationships between them. The first
physical design consists of 9 Cassandra column families, while the second, larger design
has 14 column families.

As our first case study, we used NoSE’s denormalized Cassandra schemas as input to our
normalization algorithm so that we can compare the normalized schemas that it produces
with the original conceptual schema that NoSE started with. For each physical schema, we
tested our algorithm with two different sets of dependencies: one set manually generated
from the physical schema, and a second set mined from an instance of that schema using
the mining technique discussed in Section 4.5. This resulted in a total of four tests.

For both schemas, renormalization using manually identified dependencies resulted in
a conceptual model that was identical (aside from names of relations and attributes) to
the original conceptual schema used by NoSE, as desired.

For the two tests with mined dependencies, the renormalization program produced the
original conceptual schema, as desired, in the case of the smaller (9 column family) Cas-
sandra schema, but not in the case of the larger (14 column family) Cassandra schema.
For the smaller schema, the mining process identified 61 functional dependencies and 314
inclusion dependencies. The dependency ranking heuristics were critical to this success.
Without them, spurious dependencies lead to undesirable entities in the output schema.
For example, one contains only the fields BidValue and BidQuantity, which is not a
semantically meaningful entity. For the larger schema, mining found 86 functional depen-
dencies and 600 inclusion dependencies, many of them spurious. In this case, the ranking
heuristics were not sufficient to eliminate undesirable decompositions during renormaliza-
tion. No set of ranking heuristics will be successful in all cases, but it is clear that this is
an important area for improvement in future work.

The large schema test with manually chosen dependencies provided a good example
of relation merging using Fold step of our algorithm. In the conceptual schema, there
is a Comments entity set which has relationships to the user sending and receiving the
comment. The denormalized schema has two separate relations which store the comments
according to the sending and receiving users.

80

After performing BCNF decomposition, we end up with relations similar to the following
(simplified for presentation):

CommentsSent (id, sending user, text)

CommentsReceived (id, receiving user) .

We also have inclusion dependencies which specify that the id attribute in both rela-
tions is equivalent, i.e. CommentsSent (id) = CommentsReceived (. . .). Since the key of
these relations is equivalent, the Fold algorithm will merge these two relations producing
Comments(id, receiving user, sending user, text).

These examples show that functional and inclusion dependencies are able to drive mean-
ingful denormalization. Runtime for the normalization step of our algorithm was less than
one second on a modest desktop workstation in all cases.

4.7.2 MongoDB

Stolfo [116] presents a case study of schema design in MongoDB to explore design alterna-
tives. We extract a design from the examples to show how our normalization process can
produce a suitable logical model. The system being designed is for library management
and deals with patrons, books, authors, and publishers. While the case study shows dif-
ferent possible schemas, we have selected one for demonstration purposes and we present
example documents for this schema below. This model contains a significant amount of
denormalized data inside the collection of patron documents.

As described in Section 4.2, we first manually defined a physical relational schema cap-
turing the information in the MongoDB database documents. This is shown in Figure 4.12.
The MongoDB patron documents included an array of book loans for each patron. To pro-
duce the physical schema, we flattened the loan attributes into the Patron relation, and
added the key of each array element as part of the superkey the Patron relation. We also
manually identified a (non-exhaustive) set of functional and inclusion dependencies over
these relations, as shown in Figure 4.13.

The denormalization in this schema consists of the duplication of patron, book, and
author information in the patron documents. For this application, the algorithm was able
to identify the denormalization and produce a logical model without duplication. The
logical schema produced by our normalization algorithm removes this denormalization.
We note that the dependencies in Figure 4.13 do not contain any functional dependencies
involving loans, which were nested in patron documents in MongoDB database. However,

81

Publishers(id, name, founded,book)

Books(id, title, author)

Patrons(id, name, address.city, address.state,

loans. id, loans.title,

loans.author. id, loans.author.name)

Authors(id, name)

Figure 4.12: Physical relations from MongoDB schema

Publishers : id→name, founded,book

Books : id→title, author

Patrons : id→name, address.city,

address.state, loans. id

Authors : id→name

Publishers(book) ⊆ Books (id)

Books(author) ⊆ Authors (id)

Patrons(loans.{ id, title,

author. id}) ⊆ Books (id, title, author)

Patrons(loans.author.

{ id, name}) ⊆ Authors (id,name)

Figure 4.13: Dependencies on MongoDB physical relations

82

Patronsid

address city

address state

LoanedTo Books

id

title
PublishedBy Publisher id

name founded

WrittenBy Author id

name

Figure 4.14: MongoDB example schema entities

the Expand step of our algorithm is able to infer such functional dependencies based on
the inclusion dependencies between Patrons and Authors/Books and the FDs on those
relations. The BCNFDecompose step separates the redundant title and author information
from the Patrons relation using these FDs. Finally, the Fold step removes this data
since it is duplicated in the Authors and Books relations. This removes all redundancy
which was present in the original schema in Figure 4.12. Relationships between publishers,
authors and their books were also recovered. The final schema represented as an ER
diagram is shown in Figure 4.14.

4.7.3 Twissandra

Twissandra [54] is a simple clone of the Twitter microblogging platform using Cassandra
as a database backend. The application stores data on only two different entities: users
and tweets. Each tweet has an associated user who created the tweet and each user can
“follow” any number of other users.

The Twissandra schema consists of six column families. There is one for both users
and tweets keyed by their respective IDs. Two additional column families store the users a
particular user is following and separately, their followers. Denormalizing this relationship
allows efficient retrieval of users in both directions. Finally, there is a column family storing
all data on tweets by user and a column family which stores tweets for all users a user is
following. Both of these final two column families contain denormalized data on tweets.
The relations corresponding to these column families are given in Figure 4.15. Note that
some of the keys identified are in fact superkeys of the associated relation.

83

users (uname, password)

following (uname, followed)

followers
(
uname, following

)
tweets (tweet id,uname,body)

userline (tweet id,uname,body)

timeline (uname, tweet id,posted by, body)

Figure 4.15: Twissandra physical relations

Figure 4.16 shows all the functional and inclusion dependencies which we can express
over the Twissandra schema. Note that we use = to denote a bidirectional inclusion
dependency and we omit attribute names from the right-hand side of inclusion dependencies
when the attribute names are the same as on the left-hand side.

Figure 4.17 shows a complete ER diagram for Twissandra, which represents the desired
result. However, the conceptual model produced by our normalization process includes one
additional relation aside from users and tweets. The conceptual schema produced by our
algorithm is still fully normalized in interaction-free IDNF. The additional relation occurs
because the normalization process is unable to remove the timeline column family, despite
the fact that the information contained in this column family is still redundant. We can
reconstruct the timeline relation with the query

SELECT f.uname, t.tweet id, t.uname AS posted by, t.body

FROM following f JOIN tweets t ON t.followed = t.uname.

This redundancy remains because the dependency defining the timeline table cannot be
expressed using functional or inclusion dependencies. Expressing this denormalization re-
quires a dependency language which can reference more than two relations. In this case,
the dependency is between timeline, followers, and tweets. Extending our dependency
language and normalization process to include additional dependencies such as join depen-
dencies [52] would enable us to resolve such issues.

84

tweets : tweet id→ uname, body

userline : tweet id→ uname, body

timeline : tweet id→ posted by, body

users : uname→ password

followers (uname, following) = following (followed, uname)

userline (uname) ⊆ users (. . .)

timeline (uname) ⊆ users (. . .)

timeline (posted by) ⊆ users (uname)

timeline (uname, posted by) ⊆ following (. . . , followed)

timeline (posted by, uname) ⊆ followers (following, . . .)

userline (tweet id, uname,body) = tweets (. . .)

Figure 4.16: Dependencies on Twissandra physical relations

Usersuname

password

Tweets tweet id

body

PostedByFollowing

Figure 4.17: Twissandra schema entities

85

4.8 Summary of ESON

We have developed a methodology for transforming a denormalized physical schema in a
NoSQL datastore into a normalized logical schema. Our method makes use of functional
and inclusion dependencies to remove redundancies commonly found in NoSQL database
designs. We further showed how we can make use of dependencies which were mined from
a database instance to reduce the input required from users. Our method has a variety
of applications, such as enabling query execution against the logical schema and guiding
schema evolution and database redesign as application requirements change.

There are additional opportunities for further automation of NoSQL schema manage-
ment tasks. One limitation of the logical schema produced by our algorithm is that the
relations are not necessarily given meaningful names. Some heuristics such as looking for
common prefixes in attribute names may be useful. Currently we also require developers
to modify applications manually after we produce the logical model. However, previous
work such as Query By Synthesis [35] has shown that it is possible to extract higher-level
query patterns from imperative application code. A similar approach could be applied to
extract queries from applications which could then be rewritten to use the logical model.
We also discussed the possibility of a query execution engine which could transparently
retarget these queries to operate on different physical models. We expect a combination of
these techniques to improve schema management for NoSQL databases.

86

Chapter 5

Cache Design for Data Processing
Systems

Chapters 3 and 4 dealt with problems surrounding physical design in NoSQL databases.
We now explore similar problems in the context of another class of non-relational data
systems: distributed data processing frameworks. Users of many of these systems face
similar challenges to those faced by users of NoSQL databases. Lack of mature design
processes and tools require users to become familiar with the details of individual systems in
order to extract high performance. Specifically, we explore physical design techniques that
enable non-expert users to write high performance iterative applications for Apache Spark.
The problems discussed in Chapters 3 and 4 are not directly applicable to Spark since
it does not directly store data. Instead we consider the problem of caching intermediate
results to minimize execution time.

5.1 Motivation

Apache Spark [129] is a data processing framework that programmatically constructs a
graph of transformations on input data. These transformations are lazy in the sense that
they are only evaluated when output must be produced. Each evaluation results in a single
Spark job which executes all the necessary transformations to produce the output. This
allows Spark to pipeline transformations and significantly increase overall efficiency. Each
dataset in a Spark pipeline is referred to as a resilient distributed dataset (RDD). RDDs
are partitioned to allow for distributed execution across multiple executor nodes. Spark

87

programs may keep references to any RDD and decide to reuse the same RDD multiple
times. To speed up such use cases, Spark allows programs to specify that an RDD should
be cached upon first use by annotating it with a persist directive (Spark uses persist as
a synonym for cache). Furthermore, when a program decides it is no longer going to use
an RDD it can specify that the RDD can be removed from the cache, with a separate
unpersist annotation.

Caching is important for performance, especially for applications making use of itera-
tion, which is a common feature of Spark programs. Unfortunately, caching annotations
are difficult to apply correctly, as we show in Section 5.2. Importantly, Spark has no under-
standing of high-level patterns such as iteration. This requires developers to pay attention
to patterns of reuse across iterations and make appropriate use of caching. Spark’s lack
of knowledge removes opportunities for optimization and results in additional programmer
effort required in order to maintain high performance for iterative Spark jobs. We pro-
pose an approach to expose the iterative nature of computations to the Spark runtime in
order to enable Spark to optimize use of the cache for common cases without developer
intervention.

Our work makes the following contributions:

� In Section 5.3.1, we introduce explicit iteration, a method of explicitly representing
iterative applications in Spark to automate the selection of intermediate results to
persist.

� Section 5.3.2 presents lazy unpersist, an alternative to the default mechanism of
unpersisting cache entries in Spark which ensures that cached results are fully utilized
before they are removed from the cache.

� Finally, in Section 5.4 we analyze the performance of our techniques and demonstrate
that explicit persist/unpersist annotations by Spark application developers are not
always required to achieve good performance.

5.2 The Problem

In the following section, we discuss the challenges faced by developers making use of Spark
for iterative computation. Section 5.2.1 describes the types of applications we are aiming
to optimize and the problems developers face with their implementation. In Section 5.2.2
we show how this problem is partially addressed via caching of intermediate results, but
we also show how simple approaches to caching fall short.

88

5.2.1 Iterative Computation in Spark

A simple example of a Spark application using iteration is given in Figure 5.1a. The
program consists of a series of map transformations followed by a count action (which
forces evaluation). Since Spark uses lazy evaluation and there are no actions within the
loop, Spark simply constructs a directed acyclic graph (DAG) of these transformations
while the loop runs. That is, Spark simply records metadata about how to compute the
RDD for one iteration from the previous iteration. This metadata defines the lineage of
the RDD. An action such as the count on the last line of the program schedules a job
which immediately evaluates and executes all of the pending transformations. Since the
example program consists of a single action and no aggregation, all transformations are
pipelined together. This results in consistently fast execution as shown in Figure 5.2. All
benchmarks in this figure were executed on a data set of 100 million randomly generated
points using the same hardware described in Section 5.4.1

Unfortunately, small changes to the application code can result in a significant degra-
dation of application performance. Consider Figure 5.1b, which shows a variant of the
sample program from Figure 5.1a. In this version, the developer wants a data-defined
termination condition: stopping when the size of the RDD drops below a specified value.
An action (count) is now executed for each iteration. Because of this, execution of the
application will result in one Spark job per iteration, rather than a single job as was the
case for variant V1. Computation of the current value of the data RDD will be scheduled
on each iteration of the loop. In addition to the transformations no longer being lazy,
Spark will also reevaluate all the transformations for the previous iteration. In general,
iteration i also evaluates the transformations for iteration i− 1, which requires evaluating
iteration i− 2, and so on.

The seemingly minor change from variant V1 to variant V2 leads to substantial change
in execution time as shown in Figure 5.2. The result is quadratic runtime instead of the
linear runtime that would be achieved without the intervening action. This can be resolved
through the use of Spark’s caching mechanisms, but this requires explicit programmer
annotation. In the following section, we show how performance issues can be resolved via
caching, which currently requires explicit programmer annotation in Spark.

1Spark was configured with 4 executors each with 16GB of memory and an additional 32GB of memory
allocated to the driver program.

89

1 // data refers to a Spark RDD

2 for (i <- 1 to iterations) {

3 data = data.map(...). filter(...)

4 }

5 data.count()

(a) Variant V1

1 // data refers to a Spark RDD

2 for (i <- 1 to iterations) {

3 data = data.map(...). filter(...)

4 if (data.count() < limit) break

5 }

6 data.count()

(b) Variant V2: With data-dependent termination

1 // data refers to a Spark RDD

2 for (i <- 1 to iterations) {

3 val oldData = data

4 data = data.map(...). filter(...)

5 data.persist()

6 if (data.count() < limit) break

7 oldData.unpersist()

8 }

9 data.count()

(c) Variant V3: With data-dependent termination and caching

Figure 5.1: Three variants of a sample iterative Spark application

90

Figure 5.2: Runtime for the Spark application from Figure 5.1

5.2.2 Caching

Spark programmers are expected to explicitly indicate when computed RDDs should be
persisted. When writing a Spark application, a developer can store a reference to any
RDD in a variable in the host programming language, such as the variable data in our
sample program. This enables datasets constructed from the same set of transformations
to be used multiple times with other additional transformations appended. By default,
Spark does not attempt to reuse computed RDDs even when their lineage is identical. A
persistence annotation in Spark specifies that the first time an RDD is computed, results
of the calculation should be stored for later reuse. When the RDD is first evaluated, it
is placed into an internal cache in either memory or disk as specified by the programmer.
If the same RDD is reused in a different job, the executor running the job will check its
local cache. If the RDD was previously computed and has not been evicted, the partition
associated with the RDD will be read from the cache instead of being recomputed.

Thus, to improve variant V2, a Spark developer could choose to persist the results
of each iteration as in Figure 5.1c. With this explicit call to persist, results of the
previous iteration will be stored in Spark’s in-memory cache. Therefore, when the next
iteration is computed, this data can be retrieved from the cache instead of recomputing

91

it. Information which is no longer required can be removed from the cache via an explicit
call to unpersist. The addition of these persistence annotations returns the application
to linear runtime (with some additional overhead required for the action to be computed
in each iteration compared to variant V1). The effect of enabling caching in the sample
program is shown in Figure 5.2.

Although persist and unpersist annotations are important to the performance of
iterative applications, they can be difficult for programmers to apply correctly. A developer
must understand the interaction between lazy evaluation, caching, and job scheduling in
order to make use of the cache effectively. These interactions can be complex and many
Spark users encounter performance bugs as a result of suboptimal use of caching. In
particular, the simple approach of caching before RDDs are reused and removing them
from the cache (via unpersist) when they are no longer needed is not always effective at
addressing performance issues.

Consider another simple example of an iterative program in Figure 5.3. This is an
abridged version of Spark’s PageRank implementation which starts with graph as input
and then iteratively refines it. (Note that the GraphX graph processing library in Spark
represents graphs as two separate RDDs. We treat them here as a single RDD for sim-
plicity.) At the start of an iteration on line 4, the graph from the previous iteration is
persisted since it is used both on line 5 and line 7. As in our previous example, when an
iteration has been completed, the graph from the previous iteration is unpersisted (line 9).

This pattern of caching is similar to the one from Figure 5.1c. However, we note
a significant difference on line 8 of Figure 5.3. The call to foreachPartition serves
to materialize rankGraph, that is, it forces the evaluation of the lazy transformations
which define this graph. The reason this materialization is required is subtle. Recall that
computation in Spark is lazy. In Figure 5.3 (unlike Figure 5.1c), there are no other actions
within the loop. This would cause Spark to delay execution until the application reaches
line 11. However, the persist annotations are not lazy, meaning the last annotation would
take effect before the Spark job runs. In this case, the result would be that no caching
takes place, which is certainly not what the developer intended. Our previous approach
of caching before reuse and unpersisting when no further reuse occurs is useless without
materialization!

The result of the action used to materialize the graph is not used by the application,
but forcing evaluation places the graph in the cache as a side effect. This requires more
knowledge of the details of Spark internals than should be necessary for an application
developer and unnecessarily complicates the program. To see the impact on application
performance we ran the Spark-Bench PageRank benchmark on a graph of 100,000 vertices

92

1 var rankGraph = graph.outerJoinVertices (...). map (...)

2 var iteration = 0

3 while (iteration < numIter) {

4 rankGraph.persist ()

5 val rankUpdates = rankGraph.aggregateMessages (...)

6 prevRankGraph = rankGraph

7 rankGraph = rankGraph.outerJoinVertices(rankUpdates)

.persist ()

// Materialize the current graph and

// unpersist the previous one

8 rankGraph.edges.foreachPartition(...)

9 prevRankGraph.unpersist ()

10 }

11 rankGraph.vertices.values.sum()

Figure 5.3: Abridged version of PageRank in Spark

with and without the materialization on line 8. The full experimental setup is described
in Section 5.4. The results are shown in Figure 5.4. With the materialization enabled, the
cache is correctly populated and runtime increased linearly with the number of iterations.
When materialization is disabled, the runtime grows quadratically since all previous iter-
ations must be evaluated on each loop iteration. We will further examine some of these
problems along with our automated solutions in the following sections.

93

Figure 5.4: PageRank runtime with and without materialization

5.3 ReSpark

The following sections describe ReSpark, which aims to provide predictable performance
to iterative Apache Spark programs with minimal effort on the part of the application
developer. In particular, ReSpark eliminates the need for application developers to make
manual persistence annotations in iterative applications. There are two main components
to using ReSpark for improving application performance:

1. Programmers using ReSpark explicitly mark iterative constructs in the application
program, exposing information about iteration to the ReSpark runtime.

2. At runtime, ReSpark makes use of the knowledge of the iterative program structure
to automatically determine which RDDs to persist and when they can be unpersisted.

Section 5.3.1 explains how allowing programs to explicitly expose iterative patterns
to the Spark runtime can improve application performance without the need to explicitly
employ Spark’s caching mechanisms. Section 5.3.2 describes how ReSpark automatically
unpersists RDDs which are no longer needed without suffering from the performance prob-
lems described at the end of the previous section.

94

5.3.1 Explicit Iteration

In the example in Figure 5.3, the Spark program uses iteration to repeatedly update the
RDD stored in the variable next. Because next is used twice in each iteration, it is
persisted at the beginning of the loop to avoid recomputing the result when it is used on
line 7. Caching is especially important for iterative computations since a cache miss could
necessitate also recomputing the results of one or more previous iterations. We observe
that if Spark were made aware of iteration inside application programs, it would be possible
to identify these patterns and remove the need for manual caching annotations.

We formulate the problem of making appropriate caching decisions as a prediction
problem. Specifically, we aim to enable Spark to learn what to persist given past application
behaviour. When a new RDD is defined, we want to decide if the new RDD should be
persisted. As we describe later, for each RDD we expose information on loops in the
application program to the Spark runtime. This provides information about the loop and
iteration in which each RDD was defined. One additional piece of information (which is
already maintained by Spark) that is useful for this analysis is the call site of each RDD.
The call site is simply a stack trace of the program which uniquely identifies the point
in the application where the RDD is defined. This is useful since we expect that RDDs
defined at the same call site will experience similar reuse patterns on successive iterations.
An identifier for each loop, the current loop counter, and the call site forms what we refer
to as the loop context of the RDD. In general, the input to this problem is a history of
prior RDDs, their loop context, and actions that have been performed on these RDDs at
the point a new RDD is defined.

Consider the sample Spark program in Figure 5.5. An outline of the dependency struc-
ture for RDDs in this program is given in Figure 5.6. Note that although call sites are
represented as a stack trace by Spark, we simply use line numbers here since they are
unambiguous for this example. RDD 1 represents the initial RDD on the first line of the
program.

95

1 var next = sc.parallelize (1 to 100). map(i => (i,i))

2 var prev: RDD[(Int , Int)] = null

3 var n = 0

// whileLoop below iterates from n=0.. numIter

// this is a macro defined by ReSpark

4 whileLoop(sc , {n += 1; n <= numIter}, {

5 val updates = next.map({ case (i, j) => (i, j + 1) })

6 prev = next

7 next = prev.join(updates)

8 .map({ case (i, (j, k)) => (i, j + k) })

9 })

10 next.count()

Figure 5.5: A Spark program making use of ReSpark’s explicit iteration

Call Site ↓ 1

Line 5 2 5 8

. . .

Line 7 3 6 9

Line 8 4 7 10

Iteration→ 1 2 3 n

Figure 5.6: Generated RDDs for the job in Figure 5.5 labeled with RDD ID

96

For any technique making use of these annotations to be effective, we need to collect
data on RDD reuse within the loop. On the first iteration of the loop, the call site infor-
mation is not always useful since some RDDs referenced may be from call sites outside the
loop when this may not be true on future iterations. Future iterations may instead make
use of RDDs defined at call sites within the loop. For example, consider RDDs 2 and 3
in iteration 1 of Figure 5.6. Both depend on RDD 1, which was created on line 1, outside
the loop. However, we see that RDDs 5 and 6 which are defined at the same call sites in
the second iteration make use of an RDD defined on line 8. When the second iteration
of the loop completes, we can examine all RDDs created in that iteration to determine
the number of times RDDs generated at each call site were used. For example, the RDD
generated on line 8 of Figure 5.5 of the first loop iteration will be used twice in the second
iteration. In this case, ReSpark will predict that RDDs generated at line 8 in subsequent
iterations will also be used twice. Thus, ReSpark will choose to persist those RDDs. For
example, ReSpark will persist RDD 10 when it is generated on the third iteration.

In general, to determine when caching may be beneficial, we note that the cache will
only be used if the RDD is used more than once. RDDs may be used in one of two ways:
as input to a transformation to produce another RDD or in an action to compute a value
from the RDD. By counting transformations and actions for an RDD, we can determine
when reuse occurs for RDDs with a given loop context. Since we also have loop context
information for each RDD, we can use this loop context to predict whether new RDDs
with similar loop contexts will be reused, and to decide whether they should be persisted.

The example program in Figure 5.5 contains a macro named whileLoop, which is
defined by ReSpark. The primary purpose of the whileLoop macro is to track what loop is
currently being executed as well as count the current iteration of the loop. This information
can be used to annotate RDDs with information describing which loop iteration generated
each RDD. As we show later, the caching annotations present in the similar program
described in Figure 5.3 are no longer necessary.

The macro requires three parameters. The first is a Spark “context” (distinct from
our notion of loop context) which is used by all Spark programs to track shared state.
The second is a test which determines when the loop will terminate. Finally, the macro
is provided with the loop body to execute on each iteration. While we do not show this
explicitly, we make use of iterators to implement similar functionality for the Spark Python
API. For Java programs, we currently have developers explicitly mark the start and end
of a loop as well as each iteration.

97

ReSpark uses a simple approach to solving the problem of predicting which RDDs will
be reused. We add four additional pieces of metadata to each RDD:

� unpersistPending which flags an RDD marked for lazy unpersistence,

� reuseCount which specifies how many times an RDD is expected to be reused,

� and finally loopId and loopIteration which contain information on the loop where
the RDD was defined (a unique reference to a specific invocation of ReSpark’s
whileLoop macro) and the value of the loop counter.

This additional data is set when ReSpark adds a persistence annotation to an RDD so that
ReSpark can decide when the RDD will no longer be needed. We record the number of
times an RDD is used from a single iteration as the reuseCount. An RDD is considered
used either when it is an ancestor of another RDD or when it is used in an action.

When reuseCount is greater than one and we decide to persist an RDD, the count is
treated as a hint for the number of times the RDD is expected to be used. That is, we
expect that the number of uses of an RDD with a particular call site during one iteration
is predictive of the number of uses RDDs defined at the same call site will have on future
iterations. This enables ReSpark to decide what RDDs should be persisted and also when
they are no longer needed and can be unpersisted (removed from the cache). Finally, we
also persist RDDs that are defined outside of the loop if they are reused and unpersist them
when the loop terminates. The full set of algorithms used to update usage information is
given in Figure 5.7.

This assumption of similar reuse counts across iterations is key to ReSpark. Specifically,
we currently assume that the uses of RDDs on the second iteration of a loop is predictive of
the number of uses of RDDs at the same call sites on future iterations. This is currently a
limitation of ReSpark that we intend to address in future work. However, this assumption
is sufficient for many useful algorithms which we analyze in Section 5.4. To enable ReSpark
to work with applications with changing reuse patterns, we expect to be able to use the
same usage information we are currently collecting in concert with more advanced machine
learning techniques to make more complex predictions.

98

loopRdds stores RDDs used in the current loop
outsideRdds stores RDDs used outside of all loops

Procedure OnRDDDefinition(rdd)

if rdd is inside a loop then
Store the current loop ID and iteration count to rdd

if the current loop iteration is 2 then
/* Record usage information */

foreach dependency dep of rdd do
if dep was created inside a loop then

Increment the use count for the call site of dep
else

Persist dep and store it in outsideRdds

else if call site of rdd has a use count greater than 1 then
Persist rdd
Set the flag rdd.unpersistPending

Store the use count for the call site of rdd in reuseCount

Procedure OnLoopEnd()

/* Unpersist any remaining RDDs outside the loop */

foreach rdd in outsideRdds do
Set the flag rdd.unpersistPending

Store the use count for the call site of rdd in reuseCount

Procedure OnRDDAction(rdd)

if the current loop has not been counted before then
Increment the use count for the call site of rdd

Figure 5.7: Simplified algorithms for tracking RDD usage information

99

5.3.2 Lazy Unpersist

In addition to automatically determining what to persist, ReSpark also automatically de-
termines when to unpersist RDDs which previously had persistence annotations added.
ReSpark unpersists RDDs lazily, during evaluation, once RDDs have been used the pre-
dicted number of times. To do this, we make use of the reuseCount associated with each
RDD. As mentioned previously, the reuseCount indicates how many times we expect an
RDD to be reused. To decide when an RDD should be unpersisted, we simply need to
track when each use occurs and decrement the reuseCount. When the reuseCount of an
RDD reaches zero, then it can be unpersisted since we do not expect future use to occur.
This approach avoids the need to explicitly materialize results as discussed in Section 5.2.2
since we ensure the Spark runtime does not unpersist an RDD when it is expected to be
reused.

To track each use of an RDD so ReSpark can decrement the reuseCount, we tie each
usage to an execution of a Spark stage. Stages are created by the Spark scheduler when an
action executes to compute the result of actions or repartition data for transformations such
as aggregation or joins. The algorithm used by ReSpark for discovering the association
between stages and uses of an RDD is called on each stage scheduled to compute the
result of evaluating an action on an RDD. ReSpark then traverses the lineage of the RDD
associated with that stage. During this traversal, ReSpark records RDDs marked with the
unpersistPending flag, which indicates RDDs previously received persistence annotations
from ReSpark. These are RDDs which should be unpersisted once their reuseCount reaches
zero.

The goal of this traversal algorithm is to discover which of these RDDs are used by each
stage Spark has scheduled. ReSpark maintains two data structures to store the association
between RDDs and stages: waitingStages and waitingRdds. waitingStages indicates
which stages make use of an RDD. These are the stages which must complete for the RDD
to be unpersisted. waitingRdds stores the reverse mapping: which RDDs are used by
each stage. This indicates which RDDs should have their reuseCount decremented when
a stage completes. Details of the algorithm used to populate these two structures given in
Figure 5.8.

As mentioned earlier, Spark may schedule multiple stages to repartition intermediate
results. These intermediate stages are referred to as shuffle stages. Since a shuffle stage
can be expensive to recompute, Spark stores the output of shuffle stages to disk. Storing
this output to disk means that if a descendant of an RDD which is reused is the result of a
shuffle, we only need to wait for the shuffle to complete. This is because Spark can use the
shuffle output stored on disk instead of recomputing the RDD. Exploiting this behaviour

100

Procedure OnResultStageScheduled(finalStage)
waiting ← [(finalStage.rdd, finalStage.id)]
Procedure visit(rdd, stageId)

/* Record rdd to be unpersisted later */

if rdd.unpersistPending then
Add stageId to waitingStages for rdd
Add rdd to waitingRdds for stageId

/* Mark ancestors of this RDD to be visited */

foreach dependency dep of rdd do
if dep is a shuffle dependency then

Add (dep, dep.stageId) to waiting

else
Add (dep, stageId) to waiting

/* Visit all stages following the lineage of each RDD */

visited ← ∅
do

Pop (rdd, stageId) from waiting

if (rdd, stageId) /∈ visited then
visit(rdd, stageId)
Add (rdd, stageId) to visited

until waiting is empty;

Figure 5.8: Finding required stages for an RDD to be unpersisted

of shuffle stages is an optimization which allows ReSpark to unpersist data which can be
provided by Spark’s shuffle output on disk.

Once the waitingStages and waitingRdds structures have been populated by the
algorithm in Figure 5.8, we can use this information during job execution to decide when
RDDs can be unpersisted. As each stage completes, the algorithm checks waitingRdds

to see if there are any RDDs that may be ready to be unpersisted. If the stage which
just completed corresponds to the last use of an RDD, then that RDD is unpersisted.
This approach ensures that RDDs are persisted when requested and allows them to be
unpersisted as soon when they are no longer needed. The full algorithm is shown in
Figure 5.9.

Consider again Spark’s PageRank implementation from Figure 5.3. Figure 5.10 shows
RDDs generated in several iterations of the algorithm. Since a join is used to define both
rankUpdates and rankGraph, each iteration results in two shuffle stages which repartition

101

Procedure OnStageFinish(stage)

/* Check for any RDDs which can now be unpersisted */

foreach rdd in waitingRdds for stage do
Remove stage from the list of stages for rdd in waitingStages

Decrement reuseCount for rdd
if waitingStages for rdd is empty and reuseCount is zero then

Unpersist rdd

Figure 5.9: Check for RDDs which can possibly be unpersisted

prevGraph rankUpdates rankGraph rankUpdates′ rankGraph′... ...

Stage 2n Stage 2n+1 Stage 2n+2 Stage 2n+3

Iteration n Iteration n+ 1Iteration n− 1

Figure 5.10: Several iterations of the Spark PageRank algorithm

data for these joins. The vertical lines in the diagram represent the division of each iteration
into stages. The first stage of iteration n computes rankUpdates and the second computes
rankGraph. Both of these stages depend on prevRankGraph which was persisted as shown
in line 4 in Figure 5.3. We must consider which stages will use prevRankGraph to decide
when it can be unpersisted.

The final stage of the program computes the result of the sum action on line 11. The
ancestors of the iteratively computed rankGraph will then be visited in turn by the visit

function in Figure 5.8. Consider what happens with this example program when the visit
algorithm reaches stage 2n + 2. Here the algorithm will visit rankGraph and see that the
unpersistPending flag is set. As a shuffle boundary was crossed to reach rankGraph from
rankUpdates, stage 2n + 2 is marked as requiring completion before rankGraph can be
unpersisted. Since rankGraph is also used by rankGraph′, it will be visited twice. Both
waitingRdds and waitingStages will be updated as shown below to reflect the fact that
stages 2n+ 2 and 2n+ 3 must complete before rankGraph can be unpersisted.

waitingRdds: {"Stage 2n+2" => [rankGraph],

"Stage 2n+3" => [rankGraph], ...}
waitingStages: {rankGraph: ["Stage 2n+2", "Stage 2n+3"], ...}

102

After stage 2n+ 2 completes, the structures will be as follows:

waitingRdds: {"Stage 2n+3" => [rankGraph], ...}
waitingStages: {rankGraph: ["Stage 2n+3"], ...}.

Finally, once stage 2n + 3 completes, the entry for rankGraph in waitingStages will
be empty and rankGraph can be unpersisted. Note that as shown in Figure 5.9, the
reuseCount of rankGraph will also be checked before it is unpersisted. In this example, this
has no effect on the outcome since reuseCount will initially be 2 and will be decremented
to zero after stage 2n+3. For applications with multiple actions, the check of reuseCount
ensures that all actions have completed before RDDs are unpersisted. Without this check,
stages which compute the results of these actions may not yet have been scheduled, which
could cause RDDs to be unpersisted prematurely.

5.4 Evaluation

To evaluate the performance of our optimizations, we consider two scenarios. First, we
examine Spark libraries which make use of iteration to show whether ReSpark is able to
achieve comparable performance to library code annotated by Spark experts. We also
consider two applications which make use of iterative jobs in Spark. A brief summary of
the benchmarks used is given in Table 5.1. In both of these cases, we examine the runtime
of the iterative jobs we identify both with and without our optimizations. When evaluating
the algorithm with our optimizations, we remove any explicit persistence annotations and
materialization added by the original application developer within the loop body.

We ran Spark on top of a cluster making use of the Hadoop distributed file system
(HDFS) and Hadoop’s YARN resource manager. We used three servers for each exper-
iment, one for the Spark and HDFS NameNode, YARN ResourceManager, and Spark
master. The other two hosted HDFS DataNodes, YARN NodeManagers and Spark ex-
ecutors. All experiments were performed with a pre-release of Spark 2.4.0 using YARN
running on Hadoop 2.7.3. Each server has two six core Xeon E5-2620 processors operating
at 2.10 GHz and 64 GB of memory. All figures report the average of three runs along with
the minimum and maximum values.

5.4.1 Spark-Bench

We considered four algorithms which are distributed with Spark: shortest paths, PageR-
ank, and strongly connected components (SCC), which are part of GraphX and K-means

103

Benchmark Data-dependent
termination

Loop Nesting Materialization Library

Shortest paths 3 3

PageRank 3 3

K-means 3 3

SCC 3 3 3

LOPQ 3

BigITQ

Table 5.1: Summary of evaluated Spark applications

clustering from MLlib. Benchmarks for each of these algorithms were obtained from version
2.0 of the Spark-Bench [84] benchmarking suite. The input data used for the benchmarks
was produced by the random data generation facilities of Spark-Bench. The same settings
for the Spark runtime were used for all the benchmarks run with Spark bench. Both the
driver and each of two executors were allocated 4GB of memory. These specific algorithms
were selected since they comprise all iterative algorithms within Spark-Bench. Note that
we expect these algorithms to be highly optimized since they are implemented by the same
team of developers working on the core of Spark.

We evaluated each Spark-Bench benchmark in against three versions of Spark:

1. Unmodified Spark with manual persistence annotations as well as explicit material-
ization of intermediate results.

2. ReSpark, which contains our modifications to support explicit iteration and lazy
unpersistence. We also remove persistence annotations and materialization which
exist inside iterative portions of the code.

3. Unmodified Spark, but with caching disabled. Note that we do not explicitly show
results with caching disabled, but for all of the Spark-Bench benchmarks, we saw
runtimes exceeding one hour.

We provide more a detailed performance evaluation for each algorithm in the following
subsections. Since the code for these algorithms is verbose, we simply use a graphical
representation that shows the structure of RDDs and iterations within the application

104

Joined

GraphInput Messages

Graph′

Messages′

Output

Loop

Figure 5.11: Structure of Spark’s Pregel implementation

program. Each box represents the call site of an RDD in the program, with solid edges
representing dependencies. RDDs surrounded by a dashed box represent the similarly-
named RDD from a previous loop iteration.

Shortest paths

The shortest paths algorithm in Spark is part of the GraphX graph processing library which
uses an approach similar to the Pregel [87] graph processing system. Spark-Bench searches
for the shortest path between two vertices of a graph with log-normal degree distribution
(µ = 4.0 and σ = 1.3). Details on the graph generation are given in the description of
the Pregel [87]. Spark’s Pregel implementation simply iterates sending messages between
vertices which update their local data. Only vertices which receive messages are permitted
to send messages in subsequent rounds. Execution stops when all vertices have stopped
sending messages. The shortest paths algorithm in Spark is formulated as a vertex program
using Pregel. A simple overview of the structure of the Pregel implementation in Spark
used by the shortest paths algorithm is given in Figure 5.11 Spark developers have decided
to cache all RDDs at the Graph and Messages call sites on each iteration.

105

Figure 5.12: Shortest paths benchmark results

Spark implements the shortest paths algorithm according to the Pregel model by main-
taining the length of the shortest path to the destination vertex. Each vertex sends a
message to its neighbours containing this length with one step added for the extra vertex.
Vertices will then update their local data to contain the minimum of the current length
and the lengths received in these messages. Eventually these distances will converge so the
source vertex contains the length of the shortest path to the destination. Figure 5.12 shows
the runtime of the ReSpark and manually annotated versions of the algorithm for a graph
with varying numbers of vertices. We see that ReSpark performs up to 116% slower than
unmodified Spark. Without caching, shortest paths requires more than an hour to run, so
ReSpark is able to obtain much of the potential benefit of caching. However, we found that
the ReSpark version was approximately twice as slow as the manually annotated version
in the worst case.

As expected, ReSpark does not persist RDDs generated on the first two iterations.
However, in this case, performance is not significantly impacted since the shortest paths
algorithm performs more than ten iterations with each iteration being relatively short.
ReSpark also performs some extra caching on top of what is done by the manually an-
notated version of the algorithm. There are several instances within the GraphX library

106

Rank GraphInput

Rank Updates Rank Graph′ Output

Loop

Figure 5.13: Structure of Spark’s PageRank implementation

where ReSpark falsely infers reuse. A class within the Spark library simply copies instance
variables (e.g. the value of manual persistence annotation) from an RDD rdd1 to rdd2.
ReSpark identifies this a second use of rdd1 and places it in the cache. However, the rdd2

does not depend on any of the data contained in rdd1. Therefore, caching rdd1 will not
will not reduce future computation time of rdd2. This caching is in fact harmful to per-
formance since there is additional overhead for managing the cache when no actual reuse
occurs.

PageRank

Spark’s GraphX library also includes an implementation of the PageRank [102] algorithm.
PageRank uses edges in a graph to calculate a rank for each node based on the incoming
edges. The implementation of PageRank in Spark repeatedly sends messages to adjacent
vertices and then performs a join of these messages with the current state of the graph to
update the rank for each node. This algorithm runs a fixed number of iterations before
terminating. An overview of the algorithm structure is given in Figure 5.13. Spark simply
computes updates to the rank on each iteration and joins these updates with the original
graph. To optimize this computation, GraphX in Spark persist RDDs generated during
each iteration. The graph with the current rank of each node is then materialized the
before the previous iteration is unpersisted to prevent the issues with unpersist discussed
in Section 5.3.2.

We evaluate PageRank on graphs with a varying number of vertices generated the same
way as the graphs for the shortest paths tests above. Without the explicit persistence anno-
tations from the original GraphX implementation, ReSpark is able to achieve comparable
performance, as shown in Figure 5.14. In the worst case (at 300 thousand points) ReSpark
is still less than 10% slower than the version of PageRank with manual persistence annota-

107

Figure 5.14: PageRank benchmark results

tions. Note that the widening performance gap for the 450 and 500 thousand point graphs
is due to a larger percentage of the total runtime spent on the first two iterations which
ReSpark does not cache.

K-means clustering

K-means in Spark is part of the MLlib machine learning package and uses the parallel
k-means clustering algorithm [17]. After initializing cluster centres, the algorithm iterates
over the dataset moving each cluster centre closer to its mean. Cluster centres are then
recomputed until they converge or a maximum number of iterations (5) is reached. The
structure of the algorithm is shown in Figure 5.15. RDDs generated at the Costs call site
during cluster initialization are persisted, but the cluster initialization is a small fraction
of the total run time. K-means clustering is a trivial example since reuse in the iterative
computation is the initial dataset which is explicitly persisted. As shown in Figure 5.16,
ReSpark achieves essentially identical performance to unmodified Spark, suggesting it in-
troduces minimal overhead in these scenarios.

108

Input Costs Initial Centers

Costs′Chosen

Initial Centers′Loop

Centers

Centers′ Output

Loop

Figure 5.15: Structure of Spark’s K-means implementation

109

Figure 5.16: K-means clustering benchmark results

Strongly Connected Components

The strongly connected components algorithm aims to partition a graph into components
in which there exists a path between every pair of vertices. Spark’s SCC implementation
first starts by assigning a unique component ID to each vertex and tagging each vertex as
pending. The iterative portion consists of three stages. First, the graph is joined with the
in and out degrees of each vertex to get all vertices which still have outgoing or incoming
edges. Those vertices with no outgoing or incoming edges are marked as final and the
component IDs are assigned in the final graph. The second stage uses Spark’s Pregel
implementation to collect the minimum component ID from all adjacent vertices. Finally,
the third stage again uses Pregel to mark new vertices as final if there is a neighbour
with the same colour which is marked as final. This continues until no unfinalized vertices
remain or the configured number of iterations is complete. The structure of the algorithm
including its connection with Pregel is shown in Figure 5.17. In addition to the caching
which takes place inside Spark’s Pregel implementation, RDDs generated at the Graph
call site are also persisted. After materializing this graph, the graph from the previous
iteration unpersisted.

110

Graph

Input

Work Graph

Out edges Joined

Graph′ Final Vertices

Subgraph

Pregel Pregel Work Graph′

Output

Outer Loop

Inner Loop

Figure 5.17: Structure of Spark’s strongly connected components implementation

(see Figure 5.11 for the Pregel implementation)

111

Figure 5.18: Strongly connected components benchmark results

We ran the SCC benchmark in Spark-Bench with its default of 3 iterations. The per-
formance of ReSpark shown in Figure 5.18 is somewhat worse than unmodified Spark since
ReSpark only obtains usage information for RDDs after two loop iterations have completed.
However, there are many more iterations of the inner loops and usage information can be
reused across iterations of the outer loop. ReSpark’s automatic caching decisions result
increase the runtime by less than 18% for the largest data set.

5.4.2 Other Iterative Algorithms

Approximate nearest neighbour

Nearest neighbour algorithms aim to provide the nearest vector in a given set to a query
vector. Locally optimized product quantization (LOPQ) [68] is an approximate nearest
neighbour algorithm which has been implemented by developers at Yahoo! using Spark [93].
LOPQ trains multiple K-means models on different splits of the data. The relevant code
is given in Figure 5.19. We apply our iterative optimizations to the underlying K-means
model as well as the iteration over the data splits. In addition, we remove all the provided

112

1 split_vecs.persist ()

2 for split in xrange(M):

3 data = split_vecs.map(lambda x: x[split])

4 data.persist ()

5 sub = KMeans.train(data , ...)

6 data.unpersist ()

7 subquantizers.append(sub)

Figure 5.19: Iterative Python code for LOPQ in Spark

caching annotations (lines 1, 4, and 6 in Figure 5.19). Figure 5.20 shows the performance
of ReSpark on the SIFT1M (2.3GB) and GIST1M (12GB) datasets [67]. ReSpark is able to
identify the dataset which needs to be persisted on line 4 and achieve less than 1% slowdown
compared to the original program with manual persistence allocations. In contrast, the
version of the program with the manual persistence annotation disabled is 3.7% on the
GIST1M dataset and 13.2% slower on the SIFT1M dataset. In this case, ReSpark was able
to obtain almost the full benefit of caching without any manual persistence annotations.

Iterative quantization

Iterative quantization (ITQ) [62] is an algorithm for producing similarity-preserving binary
codes for large image collections. The ITQ algorithm constructs a matrix representing these
codes which is iteratively updated to produce the final result. We analyze BigITQ [58],
a distributed Spark implementation of ITQ. A simplified excerpt of the code used for
the algorithm is given in Figure 5.22. Results for the CIFAR-10 [78] dataset are given in
Figure 5.21. In this case, we see that the algorithm actually benefits little from caching.
The usage tracking done by ReSpark introduces a small overhead of approximately 3.2%.

113

Figure 5.20: LOPQ performance using ReSpark

Figure 5.21: BigITQ performance using ReSpark

114

1 centered_data_idx.persist ()

2 for iter_id in range(NITER):

3 z = centered_data_idx.map(...)

4 z.persist ()

5 c = z.join(centered_data_idx)....collect ()

6 ub , _, ua = np.linalg.svd(c[0][1])

7 rot_matrix = np.array(ua.transpose ()

8 .dot(ub.transpose ()))

Figure 5.22: Iterative Python code for ITQ in Spark

5.5 Summary of ReSpark

We produced a set of modifications to the Apache Spark distributed computing framework
to enable Spark to automatically optimize caching of intermediate results for applications
using iteration. Our modifications, which refer to as ReSpark, allow programmers to expose
information on iterative computation to the Spark runtime. ReSpark then automatically
selects which intermediate results should be placed in the cache and when those results
can be removed. In comparing these automated decisions with manual decisions made by
expert Spark developers, we see that in many cases, ReSpark is able to obtain much of the
benefit of caching without the need for expert knowledge. The key reasons for this are the
simplicity of our prediction algorithm and the need for two iterations of a loop to complete
before receiving any benefit from caching.

We expect that there are several opportunities to further introduce automatic opti-
mizations for Spark. While ReSpark has demonstrated the effectiveness of automatically
inferring cache annotations, it is still subject to Spark’s least recently used cache eviction
policy. A cache eviction policy which considers the cost of recomputation may be more ef-
fective. In addition, values such as the number of partitions used in an RDD or the number
of executors also have an impact on the performance of Spark applications Like manual
caching annotations, these values currently must be determined via expert knowledge of
Spark and also trial and error. Unlike manual cache annotations, optimal values depend
on the runtime environment.

115

Chapter 6

Conclusion and Future Work

In this thesis, we tackled challenges related to physical design for non-relational data
systems. The tools and techniques presented aim to increase performance and usability for
novice users of these systems.

In Chapter 3, we discussed the problem of schema design in NoSQL database systems.
We showed that the current approaches rely on vague and self-contradictory rules of thumb.
Our approach was to design an automated tool to perform the design task. As input, a user
provides a conceptual model of data the applications wants to store along with expected
queries and updates. Using this information, coupled with a cost model of the target
system, our tool, the NoSQL Schema Evaluator (NoSE) produces a schema optimized for
the given workload. In an evaluation based on an application benchmark, NoSE produced
schemas outperformed manually designed schemas.

Chapter 4 presented an algorithm for producing a normalized logical model from a de-
normalized database design. This normalization removes redundancy implied by functional
and inclusion dependencies from the data model. The resulting schema is in interaction-free
inclusion dependency normal form. Our algorithm also produces a mapping between the
normalized and denormalized designs which treats the denormalized design as a material-
ized view. This enables standard view-based query rewriting algorithms to answer queries
written against the denormalized schema using the normalized schema. We showed how
our algorithm was able to produce useful normalized designs given denormalized schemas
from a variety of NoSQL database systems.

Finally, in Chapter 5 we furthered our efforts to increase the usability of non-relational
data systems by examining the caching mechanisms used by Apache Spark. Similar to our
examination of NoSQL systems, we found that there is no clear recommendation for when

116

data generated in Spark should be cached. Specifically, we studied the case of iterative pro-
grams where reuse is common and appropriate caching decisions have a significant impact
on application performance. To solve the program of what data to cache, we formulated a
prediction problem in which information from past loop iterations is used to predict future
reuse, which can facilitate caching decisions. We proposed ReSpark, a set of enhancements
to Spark which allow applications to explicitly express iterative computation. Using infor-
mation on iteration present in the application program, we modify Spark to automatically
make caching decisions. Experimental results show that our optimizations allow iterative
Spark applications rewritten without caching annotations to achieve comparable perfor-
mance to the original applications which contained caching decisions made by expert Spark
users.

6.1 Future Work

There are many opportunities to extend and adapt this work to support other systems
and use cases. Our schema design tool NoSE, has currently only been evaluated against
the Apache Cassandra wide column store. We expect that similar techniques will benefit
other NoSQL databases. NoSE coupled with our normalization algorithm presented in
Chapter 4 form the foundation of an automated approach to schema management for
NoSQL databases. We plan to explore how to use both of these tools in concert to enable
applications to evolve their denormalized schema as requirements change. One important
piece of this solution will be a method of efficiently migrating data from one design to
another.

When working with existing designs, there are also other forms of redundancy which
are not currently eliminated by our normalization algorithm. Furthermore, we would like
to explore applying this algorithm in a data lake setting where it may be useful to identify
relationships between data from multiple sources. We expect such an approach could be
useful for data integration tasks such as schema and record matching.

Our work with ReSpark to simplify the development of high performance Spark appli-
cations identified other possible areas for improvement. For example, PrIter [130] showed
a significant reduction in runtime for iterative MapReduce jobs by focusing computation
on data which is most likely to lead to convergence. In examining issues Spark users ex-
perienced with caching, we also uncovered other problems whose solutions we expected
can also be automated. For example, RDDs which have a long lineage in Spark should
be checkpointed to reduce the overhead from analyzing ancestry each time an RDD is
evaluated. Checkpointing stores the RDD to persistent storage and truncates its lineage.

117

Iterative jobs in Spark frequently generate RDDs with long lineages as the number of it-
erations increase, suggesting an automatic checkpointing mechanism would be useful here.
Spark’s default least recently used cache eviction policy may also not be optimal given that
some RDDs are more expensive to compute. An eviction policy which takes into account
the cost of recomputation may be more effective.

In addition, runtime parameters of Spark jobs must be carefully selected such as the
number of partitions for an input dataset and the number of executors. However, optimal
choices of these values can be difficult to determine and can vary depending on the dataset
used. Other non-relational data systems such as Apache Flink or Twitter’s Heron may also
benefit from similar optimizations. Adding support to the Spark runtime for automatically
tuning these values would provide similar benefits to those afforded by ReSpark.

118

References

[1] HBase: A distributed database for large datasets. Retrieved Jun. 14, 2018 from
https://hbase.apache.org.

[2] Thinking in documents, April 2015. Retrieved Jun. 14, 2018 from
https://www.mongodb.com/blog/post/thinking-documents-part-1.

[3] Amazon SimpleDB – Simple Database Service, 2018. Retrieved Jun. 14, 2018 from
https://aws.amazon.com/simpledb.

[4] Apache Calcite, 2018. Retrieved Jun. 14, 2018 from https://calcite.apache.org.

[5] Apache CouchDB, 2018. Retrieved Jun. 14, 2018 from http://couchdb.apache.org.

[6] Apache Phoenix, 2018. Retrieved Jun. 14, 2018 from https://phoenix.apache.org.

[7] Kundera, 2018. Retrieved Jun. 14, 2018 from https://github.com/impetus-
opensource/Kundera.

[8] MongoDB, 2018. Retrieved Jun. 14, 2018 from https://www.mongodb.com.

[9] Redis, 2018. Retrieved Jun. 14, 2018 from http://redis.io.

[10] Riak for Big Data Application Products, 2018. Retrieved Jun. 14, 2018 from
http://basho.com/products.

[11] Sanjay Agrawal, Surajit Chaudhuri, and Vivek R. Narasayya. Automated selection
of materialized views and indexes in SQL databases. In VLDB ’00, pages 496–505,
Cairo, Egypt, 2000.

[12] Martin Andersson. Extracting an entity relationship schema from a relational
database through reverse engineering. In ER ’94, Lecture Notes in Computer Science,
pages 403–419, Manchester, UK, Dec 1994.

119

https://hbase.apache.org
https://www.mongodb.com/blog/post/thinking-documents-part-1
https://aws.amazon.com/simpledb
https://calcite.apache.org
http://couchdb.apache.org
https://phoenix.apache.org
https://github.com/impetus-opensource/Kundera
https://github.com/impetus-opensource/Kundera
https://www.mongodb.com
http://redis.io
http://basho.com/products

[13] William Ward Armstrong. Dependency structures of data base relationships. In IFIP
Congress, pages 580–583, 1974.

[14] Paolo Atzeni, Francesca Bugiotti, Luca Cabibbo, and Riccardo Torlone. Data mod-
eling in the NoSQL world. Computer Standards & Interfaces, 2016.

[15] Paolo Atzeni, Francesca Bugiotti, and Luca Rossi. Uniform Access to Non-relational
Database Systems: The SOS Platform. In Advanced Information Systems Engineer-
ing, Lecture Notes in Computer Science, pages 160–174. Springer Berlin Heidelberg,
2012.

[16] Antonio Badia and Daniel Lemire. A Call to Arms: Revisiting Database Design.
SIGMOD Rec., 40(3):61–69, November 2011.

[17] Bahman Bahmani, Benjamin Moseley, Andrea Vattani, Ravi Kumar, and Sergei
Vassilvitskii. Scalable k-means++. In VLDB ’12, volume 5, pages 622–633, Istanbul,
Turkey, March 2012.

[18] A. C. Bloesch and T. A. Halpin. ConQuer: A conceptual query language. In Concep-
tual Modeling ER ’96, Lecture Notes in Computer Science, pages 121–133. Springer
Berlin Heidelberg, January 1996.

[19] Nicolas Bruno and Surajit Chaudhuri. Automatic Physical Database Tuning: A
Relaxation-based Approach. In SIGMOD ’05, Baltimore, MD, USA, 2005. Associa-
tion for Computing Machinery, Inc.

[20] Nicolas Bruno and Rimma V. Nehme. Configuration-parametric Query Optimiza-
tion for Physical Design Tuning. In SIGMOD ’08, pages 941–952, Vancouver, BC,
Canada, 2008.

[21] Yingyi Bu, Bill Howe, Magdalena Balazinska, and Michael D. Ernst. Haloop: Ef-
ficient iterative data processing on large clusters. In VLDB ’10, volume 3, pages
285–296, Singapore, Sep 2010.

[22] Francesca Bugiotti and Luca Cabibbo. A Comparison of Data Models and APIs of
NoSQL Datastores. Technical report, Dipartamento di Ingegneria della Università
di Roma Tre, 2013.

[23] Francesca Bugiotti, Luca Cabibbo, Paolo Atzeni, and Riccardo Torlone. Database
Design for NoSQL Systems. In Conceptual Modeling, Lecture Notes in Computer
Science, pages 223–231. Springer International Publishing, October 2014.

120

[24] Andre Calil and Ronaldo dos Santos Mello. SimpleSQL: A relational layer for Sim-
pleDB. In ADBIS ’12, pages 99–110, Berlin, Heidelberg, 2012. Springer-Verlag.

[25] J. Calle, Y. Saez, and D. Cuadra. An evolutionary approach to the index selection
problem. In NaBIC ’11, pages 485–490, October 2011.

[26] Paris Carbone, Asterios Katsifodimos, Stephan Ewen, Volker Markl, Seif Haridi, and
Kostas Tzoumas. Apache Flink�: Stream and batch processing in a single engine.
IEEE Data Eng. Bull., 38(4):28–38, 2015.

[27] Marco A. Casanova and Jose E. Amaral de Sa. Mapping uninterpreted schemes into
entity-relationship diagrams: Two applications to conceptual schema design. IBM
Journal of Research and Development, 28(1):82–94, Jan 1984.

[28] Marco A. Casanova, Ronald Fagin, and Christos H. Papadimitriou. Inclusion depen-
dencies and their interaction with functional dependencies. Journal of Computer and
System Sciences, 28(1):29–59, 1984.

[29] Rick Cattell. Scalable SQL and NoSQL Data Stores. SIGMOD Rec., 39(4):12–27,
May 2011.

[30] Emmanuel Cecchet et al. Performance and scalability of EJB applications. ACM
SIGPLAN Notices, 37(11):246–261, 2002.

[31] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A. Wallach,
Mike Burrows, Tushar Chandra, Andrew Fikes, and Robert E. Gruber. Bigtable:
A Distributed Storage System for Structured Data. ACM Trans. Comput. Syst.,
26(2):4:1–4:26, June 2008.

[32] H. Chao-Qiang, Y. Shu-Qiang, T. Jian-Chao, and Y. Zhou. Rddshare: Reusing
results of spark rdd. In IEEE DSC 2016, pages 370–375, Changsha, China, Jun
2016.

[33] Surajit Chaudhuri and Vivek Narasayya. AutoAdmin “What-if” Index Analysis
Utility. In SIGMOD ’98, pages 367–378, Seattle, WA, USA, 1998.

[34] Peter Pin-Shan Chen. The entity-relationship model - toward a unified view of data.
ACM TODS, 1(1):9–36, 1976.

[35] Alvin Cheung et al. Optimizing database-backed applications with query synthesis.
In PLDI ’13, pages 3–14, Seattle, WA, USA, 2013.

121

[36] M. Chevalier, M. El Malki, A. Kopliku, O. Teste, and R. Tournier. Implementation
of multidimensional databases with document-oriented NoSQL. In Big Data Analyt-
ics and Knowledge Discovery, Lecture Notes in Computer Science, pages 379–390.
Springer International Publishing, September 2015.

[37] Max Chevalier, Mohammed El Malki, Arlind Kopliku, Olivier Teste, and Ronan
Tournier. Implantation not only SQL des bases de donnes multidimensionnelles. In
VSST, Grenade, Espagne, 2015.

[38] Roger H. Chiang, Terence M. Barron, and Veda C. Storey. Reverse engineering of
relational databases: Extraction of an EER model from a relational database. Data
& Knowledge Engineering, 12(2):107–142, Mar 1994.

[39] Kristina Chodorow. MongoDB: The Definitive Guide. O’Reilly Media, May 2013.

[40] Sunil Choenni, Henk M. Blanken, and Thiel Chang. Index selection in relational
databases. In ICCI ’93, pages 491–496, Washington, DC, USA, 1993. IEEE Computer
Society.

[41] Bobbie Cochrane. fAST refresh using mass query optimization. In ICDE ’01, pages
391–, Heidelberg, Germany, 2001.

[42] Edgar F. Codd. Recent investigations into relational data base systems. Technical
Report RJ1385, IBM, Apr 1974.

[43] Brian F. Cooper et al. Benchmarking cloud serving systems with YCSB. In SOCC
’10, pages 143–154, Indianapolis, IN, USA, 2010.

[44] Benoit Dageville, Dinesh Das, Karl Dias, Khaled Yagoub, Mohamed Zait, and Mo-
hamed Ziauddin. Automatic SQL Tuning in Oracle 10g. In VLDB ’04, volume 30,
pages 1098–1109, Toronto, ON, Canada, 2004.

[45] Debabrata Dash, Neoklis Polyzotis, and Anastasia Ailamaki. CoPhy: A Scalable,
Portable, and Interactive Index Advisor for Large Workloads. In VLDB ’11, volume 4,
pages 362–372, Seattle, WA, USA, March 2011.

[46] DataStax. About indexes in Cassandra, 2018. Retrieved Jun. 14, 2018 from
https://docs.datastax.com/en/archived/cassandra/
1.1/docs/ddl/indexes.html.

[47] Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified Data Processing on
Large Clusters. Commun. ACM, 51(1):107–113, January 2008.

122

https://docs.datastax.com/en/archived/cassandra/\1.1/docs/ddl/indexes.html
https://docs.datastax.com/en/archived/cassandra/\1.1/docs/ddl/indexes.html

[48] Francis Deslauriers, Peter McCormick, George Amvrosiadis, Ashvin Goel, and An-
gela Demke Brown. Quartet: Harmonizing task scheduling and caching for cluster
computing. In HotStorage ’16, Santa Clara, CA, USA, 2016. USENIX Association.

[49] Ramez. Elmasri and Sham Navathe. Fundamentals of database systems. Addison-
Wesley, Reading, Mass., 3rd ed. edition, 2000.

[50] E. Elnikety, T. Elsayed, and H. E. Ramadan. iHadoop: Asynchronous iterations for
MapReduce. In CloudCom ’11, pages 81–90, Athens, Greece, Nov 2011.

[51] Robert Escriva, Bernard Wong, and Emin Gn Sirer. HyperDex: A distributed,
searchable key-value store. SIGCOMM Comput. Commun. Rev., 42(4):25–36, August
2012.

[52] Ronald Fagin. Multivalued dependencies and a new normal form for relational
databases. ACM TODS, 2(3):262–278, Sep 1977.

[53] Sheldon J. Finkelstein, Mario Schkolnick, and Paolo Tiberio. Physical database
design for relational databases. ACM Transactions on Database Systems, 13(1):91–
128, 1988.

[54] Eric Florenzano, Tyler Hobbs, Eric Evans, et al. Twissandra. Retrieved Jun. 14,
2018 from https://github.com/twissandra/twissandra.

[55] A. Gadkari, V.B. Nikam, and B.B. Meshram. Implementing Joins over HBase on
Cloud Platform. In CIT ’14, pages 547–554, September 2014.

[56] Hector Garcia-Molina et al. Database systems: the complete book. Pearson Prentice
Hall, Upper Saddle River, N.J., 2 edition, 2009.

[57] Yuanzhen Geng, Xuanhua Shi, Cheng Pei, Hai Jin, and Wenbin Jiang. Lcs: An effi-
cient data eviction strategy for spark. International Journal of Parallel Programming,
pages 1–13, Nov 2016.

[58] Rohit Girdhar. Retrieved Jun. 14, 2018 from
https://github.com/rohitgirdhar/BigITQ.

[59] Tomasz Gogacz and Jerzy Marcinkowski. The hunt for a red spider: Conjunctive
query determinacy is undecidable. In LICS ’15, pages 281–292, Kyoto, Japan, 2015.
IEEE Computer Society.

123

https://github.com/twissandra/twissandra
https://github.com/rohitgirdhar/BigITQ

[60] Jonathan Goldstein and Per-Åke Larson. Optimizing queries using materialized
views: A practical, scalable solution. SIGMOD Rec., 30(2):331–342, May 2001.

[61] Paola Gómez, Rubby Casallas, and Claudia Roncancio. Data schema does matter,
even in NoSQL systems! In RCIS ’16, Grenoble, France, June 2016.

[62] Y. Gong, S. Lazebnik, A. Gordo, and F. Perronnin. Iterative quantization: A pro-
crustean approach to learning binary codes for large-scale image retrieval. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 35(12):2916–2929, Dec
2013.

[63] Gurobi Optimization, Inc. Gurobi optimizer reference manual, 2018. Retrieved Jun.
14, 2018 from https://www.gurobi.com.

[64] Eben Hewitt. Cassandra: The Definitive Guide. O’Reilly Media, Sebastopol, CA,
2nd edition, 2011.

[65] Ykä Huhtala, Juha Kärkkäinen, Pasi Porkka, and Hannu Toivonen. TANE: An
efficient algorithm for discovering functional and approximate dependencies. The
Computer Journal, 42(2):100–111, 1999.

[66] Javier Luis Cánovas Izquierdo and Jordi Cabot. Discovering Implicit Schemas in
JSON Data, pages 68–83. Springer, Berlin, Heidelberg, Jul 2013.

[67] Hervé Jégou, Matthijs Douze, and Cordelia Schmid. Product quantization for nearest
neighbor search. IEEE Trans. Pattern Anal. Mach. Intell., 33(1):117–128, January
2011.

[68] Y. Kalantidis and Y. Avrithis. Locally optimized product quantization for approx-
imate nearest neighbor search. In 2014 IEEE Conference on Computer Vision and
Pattern Recognition, pages 2329–2336, June 2014.

[69] A. Kanade, A. Gopal, and S. Kanade. A study of normalization and embedding in
MongoDB. In IACC ’14, pages 416–421, Gurgaon, New Dehli, India, February 2014.

[70] Martti Kantola et al. Discovering functional and inclusion dependencies in relational
databases. Intl. Journal of Intelligent Systems, 7(7):591–607, 1992.

[71] K. Kaur and R. Rani. Modeling and querying data in NoSQL databases. In IEEE
BigData 2013, pages 1–7, Santa Clara, CA, USA, October 2013.

124

https://www.gurobi.com

[72] Arthur M. Keller, Richard Jensen, and Shailesh Agarwal. Persistence software:
Bridging object-oriented programming and relational databases. In SIGMOD ’93,
pages 523–528, Washington, DC, USA, 1993.

[73] Michael Kifer, Won Kim, and Yehoshua Sagiv. Querying object-oriented databases.
In SIGMOD ’92, pages 393–402, San Diego, CA, USA, 1992.

[74] H. Kimura et al. CORADD: Correlation aware database designer for materialized
views and indexes. In VLDB ’10, pages 1103–1113, Singapore, 2010.

[75] Meike Klettke, Stefanie Scherzinger, and Uta Störl. Schema extraction and structural
outlier detection for JSON-based NoSQL data stores. In BTW 2015, Hamburg,
Germany, 2015.

[76] Nitish Korla. Cassandra data modeling - practical considerations @ Netflix, 2013.
Retrieved Jun. 14, 2018 from https://www.slideshare.net/nkorla1share/cass-summit-
3.

[77] Piotr Koaczkowski and Henryk Rybiski. Automatic index selection in RDBMS by
exploring query execution plan space. In Advances in Data Management, Studies in
Computational Intelligence, pages 3–24. Springer Berlin Heidelberg, 2009.

[78] Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical
report, University of Toronto, 2009.

[79] Avinash Lakshman and Prashant Malik. Cassandra: a decentralized structured stor-
age system. ACM SIGOPS Operating Systems Review, 44(2):35–40, 2010.

[80] Andrew Lamb, Matt Fuller, Ramakrishna Varadarajan, Nga Tran, Ben Vandiver,
Lyric Doshi, and Chuck Bear. The Vertica analytic database: C-store 7 years later.
In VLDB ’12, volume 5, pages 1790–1801, Istanbul, Turkey, August 2012.

[81] Michael Lawley and Rodney Topor. A Query Language for EER Schemas. In ADC
’94, pages 292–304, 1994.

[82] M. Levene and M. W. Vincent. Justification for inclusion dependency normal form.
IEEE TKDE, 12(2):281–291, Mar 2000.

[83] Chongxin Li. Transforming relational database into HBase: A case study. In ICSESS
’10, pages 683–687, Beijing, China, July 2010.

125

https://www.slideshare.net/nkorla1share/cass-summit-3
https://www.slideshare.net/nkorla1share/cass-summit-3

[84] Min Li, Jian Tan, Yandong Wang, Li Zhang, and Valentina Salapura. Sparkbench: a
spark benchmarking suite characterizing large-scale in-memory data analytics. Clus-
ter Computing, 20(3):2575–2589, Sep 2017.

[85] Tok Wang Ling and Cheng Hian Goh. Logical database design with inclusion depen-
dencies. In ICDE ’92, pages 642–649, Tempe, AZ, USA, Feb 1992.

[86] Bin Liu, Wang-Pin Hsiung, J. Tatemura, and H. Hacigumus. SAGE: A logical and
physical design tool for entity-group based new SQL systems. In ICDE ’14, pages
1266–1269, Chicago, IL, USA, March 2014.

[87] Grzegorz Malewicz, Matthew H. Austern, Aart J.C Bik, James C. Dehnert, Ilan
Horn, Naty Leiser, and Grzegorz Czajkowski. Pregel: A system for large-scale graph
processing. In SIGMOD ’10, pages 135–146, Indianapolis, IN, USA, 2010.

[88] Heikki Mannila and Kari-Jouko Räihä. Inclusion dependencies in database design.
In ICDE ’86, pages 713–718, Los Angeles, CA, USA, Feb 1986.

[89] Heikki Mannila and Kari-Jouko Räihä. Algorithms for inferring functional depen-
dencies from relations. DKE, 12(1):83–99, 1994.

[90] V. M. Markowitz and J. A. Makowsky. Identifying extended entity-relationship object
structures in relational schemas. IEEE Trans. on Software Engineering, 16(8):777–
790, Aug 1990.

[91] Christopher J. Matheus et al. Systems for knowledge discovery in databases. IEEE
Transactions on knowledge and data engineering, 5(6):903–913, 1993.

[92] R Meersman. The RIDL conceptual language. Technical report, Research report,
International Centre for Information Analysis Services, Control Data Belgium, Inc.,
Brussels, Belgium, 1982.

[93] Clayton Mellina and Marcel Kurovski. Retrieved Jun. 14, 2018 from
https://github.com/yahoo/lopq.

[94] M. J. Mior and K. Salem. Renormalization of NoSQL database schemas. In ER ’18,
Xi’an, China, 2018. To appear.

[95] M. J. Mior, K. Salem, A. Aboulnaga, and R. Liu. NoSE: Schema design for NoSQL
applications. In ICDE ’16, pages 181–192, Helsinki, Finland, May 2016.

126

https://github.com/yahoo/lopq

[96] M. J. Mior, K. Salem, A. Aboulnaga, and R. Liu. NoSE: Schema design for NoSQL
applications. IEEE TKDE, 29(10):2275–2289, Oct 2017.

[97] Michael J. Mior. NoSE: Automated schema design for NoSQL applications, 2016.
Retrieved Jun. 14, 2018 from https://github.com/michaelmior/NoSE.

[98] Priti Mishra and Margaret H. Eich. Join processing in relational databases. ACM
Comput. Surv., 24(1):63–113, March 1992.

[99] John C. Mitchell. Inference Rules for Functional and Inclusion Dependencies, pages
58–69. PODS ’83. ACM, 1983.

[100] Eric J Naiburg and Robert A Maksimchuck. UML for database design. Addison-
Wesley Professional, 2001.

[101] Christopher Olston, Benjamin Reed, Utkarsh Srivastava, Ravi Kumar, and Andrew
Tomkins. Pig latin: A not-so-foreign language for data processing. In SIGMOD ’08,
pages 1099–1110, Vancouver, BC, USA, 2008.

[102] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The PageRank
citation ranking: Bringing order to the web. Technical Report 1999-66, Stanford
InfoLab, November 1999.

[103] Stratos Papadomanolakis and Anastassia Ailamaki. An integer linear programming
approach to database design. ICDEW, pages 442–449, 2007.

[104] Stratos Papadomanolakis, Debabrata Dash, and Anastasia Ailamaki. Efficient use of
the query optimizer for automated physical design. In VLDB ’07, pages 1093–1104,
Vienna, Austria, 2007.

[105] Thorsten Papenbrock, Sebastian Kruse, Jorge-Arnulfo Quiané-Ruiz, and Felix Nau-
mann. Divide & conquer-based inclusion dependency discovery. In VLDB ’15, vol-
ume 8, pages 774–785, Hawaii, USA, February 2015.

[106] Thorsten Papenbrock and Felix Naumann. Data-driven schema normalization. In
EDBT ’17, pages 342–353, 2017.

[107] Daniel Pasaila. Conjunctive queries determinacy and rewriting. In ICDT ’11, pages
220–231, Uppsala, Sweden, 2011.

127

https://github.com/michaelmior/NoSE

[108] Jay Patel. Cassandra data modeling best practices, part 1, 2012. Retrieved
Jun. 14, 2018 from https://www.ebayinc.com/stories/blogs/tech/cassandra-data-
modeling-best-practices-part-1/.

[109] William J. Premerlani and Michael R. Blaha. An approach for reverse engineering
of relational databases. Commun. ACM, 37(5):42–49, May 1994.

[110] Erhard Rahm and Philip A. Bernstein. A survey of approaches to automatic schema
matching. In VLDB ’01, volume 10, pages 334–350, Rome, Italy, Sep 2001.

[111] Alexander Rasin and Stan Zdonik. An Automatic Physical Design Tool for Clustered
Column-stores. In EDBT ’13, pages 203–214, Genoa, Italy, 2013. ACM.

[112] James Rumbaugh, Ivar Jacobson, and Grady Booch, editors. The Unified Modeling
Language Reference Manual. Addison-Wesley Longman Ltd., Essex, UK, UK, 1999.

[113] Stefanie Scherzinger, Eduardo Cunha De Almeida, Felipe Ickert, and Marcos Didonet
Del Fabro. On the necessity of model checking NoSQL database schemas when
building SaaS applications. In TTC 2013, pages 1–6, New York, NY, USA, 2013.
ACM.

[114] Aaron Schram and Kenneth M. Anderson. MySQL to NoSQL: Data modeling chal-
lenges in supporting scalability. In SPLASH ’12, pages 191–202, Tucson, AZ, USA,
2012. ACM.

[115] Alan Skelley. DB2 advisor: An optimizer smart enough to recommend its own
indexes. In ICDE ’00, pages 101–110, Long Beach, CA, USA, 2000.

[116] Emily Stolfo. MongoDB schema design, 2013. Retrieved Jun. 14, 2018 from
https://www.slideshare.net/mongodb/mongodb-schema-design-20356789.

[117] Mike Stonebraker, Daniel J. Abadi, Adam Batkin, Xuedong Chen, Mitch Cherniack,
Miguel Ferreira, Edmond Lau, Amerson Lin, Sam Madden, Elizabeth O’Neil, Pat
O’Neil, Alex Rasin, Nga Tran, and Stan Zdonik. C-store: A Column-oriented DBMS.
In VLDB ’05, pages 553–564, Trondheim, Norway, 2005.

[118] Uta Störl, Thomas Hauf, Meike Klettke, and Stefanie Scherzinger. Schemaless
NoSQL data stores–object-NoSQL mappers to the rescue? In Proc. BTW, vol-
ume 15, 2015.

128

https://www.ebayinc.com/stories/blogs/tech/cassandra-data-modeling-best-practices-part-1/
https://www.ebayinc.com/stories/blogs/tech/cassandra-data-modeling-best-practices-part-1/
https://www.slideshare.net/mongodb/mongodb-schema-design-20356789

[119] Toby J. Teorey, Dongqing Yang, and James P. Fry. A logical design methodology
for relational databases using the extended entity-relationship model. ACM Comput.
Surv., 18(2):197–222, Jun 1986.

[120] A. H. M. ter Hofstede, H. A. Proper, and Th. P. van der Weide. Formal definition of
a conceptual language for the description and manipulation of information models.
Information Systems, 18(7):489–523, October 1993.

[121] Ashish Thusoo, Joydeep Sen Sarma, Namit Jain, Zheng Shao, Prasad Chakka, Suresh
Anthony, Hao Liu, Pete Wyckoff, and Raghotham Murthy. Hive: A Warehousing
Solution over a Map-reduce Framework. In VLDB ’09, volume 2, pages 1626–1629,
Lyon, France, August 2009.

[122] Odysseas G. Tsatalos, Marvin H. Solomon, and Yannis E. Ioannidis. The GMAP: a
versatile tool for physical data independence. In VLDB ’96, volume 5, pages 101–118,
Bombay, India, April 1996.

[123] Tams Vajk, Lszl Dek, Krisztin Fekete, and Gergely Mezei. Automatic NoSQL schema
development: A case study. In Proceedings of the IASTED Multiconferences. ACTA-
PRESS, 2013.

[124] R. Varadarajan, V. Bharathan, A. Cary, J. Dave, and S. Bodagala. DBDesigner: A
customizable physical design tool for Vertica analytic database. In ICDE ’14, pages
1084–1095, Chicago, IL, USA, March 2014.

[125] Lanjun Wang et al. Schema management for document stores. In VLDB ’15, vol-
ume 8, pages 922–933, Hawaii, USA, May 2015.

[126] Yue Wang, Yingzhong Xu, Yue Liu, Jian Chen, and Songlin Hu. QMapper for smart
grid: Migrating SQL-based application to Hive. In SIGMOD ’15, pages 647–658,
Melbourne, Australia, 2015.

[127] Duncan J. Watts and Steven H. Strogatz. Collective dynamics of ‘small-world’ net-
works. Nature, 393(6684):440–442, 1998.

[128] Erci Xu, Mohit Saxena, and Lawrence Chiu. Neutrino: Revisiting memory caching
for iterative data analytics. In HotStorage 16. USENIX Association, 2016.

[129] Matei Zaharia, Mosharaf Chowdhury, Michael J Franklin, Scott Shenker, and Ion
Stoica. Spark: Cluster computing with working sets. HotCloud, 10(10-10):95, 2010.

129

[130] Yanfeng Zhang, Qixin Gao, Lixin Gao, and Cuirong Wang. Priter: A distributed
framework for prioritized iterative computations. In Proceedings of the 2nd ACM
Symposium on Cloud Computing, SOCC 11, pages 13:1–13:14, Cascais, Portugal,
2011. ACM.

[131] Yanfeng Zhang, Qixin Gao, Lixin Gao, and Cuirong Wang. iMapReduce: A dis-
tributed computing framework for iterative computation. Journal of Grid Comput-
ing, 10(1):47–68, Mar 2012.

[132] Daniel C. Zilio, Jun Rao, Sam Lightstone, Guy Lohman, Adam Storm, Christian
Garcia-Arellano, and Scott Fadden. DB2 design advisor: Integrated automatic phys-
ical database design. In VLDB ’04, pages 1087–1097, Toronto, ON, Canada, 2004.

[133] D.C. Zilio, C. Zuzarte, S. Lightstone, Wenbin Ma, G.M. Lohman, R.J. Cochrane,
H. Pirahesh, L. Colby, J. Gryz, E. Alton, and G. Valentin. Recommending ma-
terialized views and indexes with the IBM DB2 design advisor. In International
Conference on Autonomic Computing, pages 180–187, May 2004.

130

APPENDICES

131

Appendix A

NoSE Workloads and Selected
Schemas

This document contains a description of the workload and all the column families, query,
and update plans used in the evaluation of NoSE. For the column family descriptions,
underlined attributes denote attributes which are in the primary key of each column family.
Attributes which are italicized are the clustering key attributes, with other primary key
attributes forming the partition key. Any undecorated attributes are the values associated
with each set of primary key values.

A.1 Conceptual Model

The conceptual model for RUBiS is given in the form of an entity graph in Figure A.1.
Note that we have chosen to omit the labels for relationships.

132

Figure A.1: Entity graph for the RUBiS benchmark

A.2 Workload

Sets of statements in the workload are combined into interactions as described in 3.8. The
statements used as input to NoSE along with the interactions are given below. Specific
frequencies for each interaction are given in Section A.3 when the schemas are described.

BrowseCategories
SELECT users.nickname, users.password FROM users WHERE users.id = ?

SELECT categories.id, categories.name FROM categories WHERE categories.dummy

= 1

ViewBidHistory
SELECT items.name FROM items WHERE items.id = ?

SELECT users.id, users.nickname, bids.id, item.id, bids.qty, bids.bid, bids.date

FROM users.bids.item WHERE item.id = ? ORDER BY bids.date

ViewItem
SELECT items.* FROM items WHERE items.id = ?

SELECT bids.* FROM items.bids WHERE items.id = ?

133

SearchItemsByCategory
SELECT items.id, items.name, items.initial price, items.max bid, items.nb of -

bids, items.end date FROM items.category WHERE category.id = ? AND items.end -

date >= ? LIMIT 25

ViewUserInfo
SELECT users.* FROM users WHERE users.id = ?

SELECT comments.id, comments.rating, comments.date, comments.comment

FROM comments.to user WHERE to user.id = ?

RegisterItem
INSERT INTO items SET id=?, name=?, description=?, initial price=?, quantity=?,

reserve price=?, buy now=?, nb of bids=0, max bid=0, start date=?, end date=?

AND CONNECT TO category(?), seller(?)

RegisterUser
INSERT INTO users SET id=?, firstname=?, lastname=?, nickname=?, password=?,

email=?, rating=0, balance=0, creation date=? AND CONNECT TO region(?)

BuyNow
SELECT users.nickname FROM users WHERE users.id=?

SELECT items.* FROM items WHERE items.id=?

StoreBuyNow
SELECT items.quantity, items.nb of bids, items.end date FROM items WHERE items.id=?

UPDATE items SET quantity=?, nb of bids=?, end date=? WHERE items.id=?

INSERT INTO buynow SET id=?, qty=?, date=? AND CONNECT TO item(?), buyer(?)

PutBid
SELECT users.nickname, users.password FROM users WHERE users.id=?

SELECT items.* FROM items WHERE items.id=?

SELECT bids.qty, bids.date FROM bids.item WHERE item.id=? ORDER BY bids.bid

LIMIT 2

134

StoreBid
INSERT INTO bids SET id=?, qty=?, bid=?, date=? AND CONNECT TO item(?), user(?)

SELECT items.nb of bids, items.max bid FROM items WHERE items.id=?

UPDATE items SET nb of bids=?, max bid=? WHERE items.id=?

PutComment
SELECT users.nickname, users.password FROM users WHERE users.id=?

SELECT items.* FROM items WHERE items.id=?

SELECT users.* FROM users WHERE users.id=?

StoreComment
SELECT users.rating FROM users WHERE users.id=?

UPDATE users SET rating=? WHERE users.id=?

INSERT INTO comments SET id=?, rating=?, date=?, comment=? AND CONNECT TO to -

user(?), from user(?), item(?)

AboutMe
SELECT users.* FROM users WHERE users.id=?

SELECT comments received.* FROM users.comments received WHERE users.id = ?

SELECT from user.nickname FROM comments.from user WHERE comments.id = ?

SELECT bought now.*, items.* FROM items.bought now.buyer WHERE buyer.id = ?

AND bought now.date>=?

SELECT items.* FROM items.seller WHERE seller.id=? AND items.end date >=?

SELECT items.* FROM items.bids.user WHERE user.id=? AND items.end date>=?

SearchItemsByRegion
SELECT items.id, items.name, items.initial price, items.max bid, items.nb of -

bids, items.end date FROM items.seller WHERE seller.region.id = ?

AND items.category.id = ? AND items.end date >= ? LIMIT 25

BrowseRegions
SELECT regions.id, regions.name FROM regions WHERE regions.dummy = 1

135

A.3 Schemas

A.3.1 NoSE Bidding

Interaction frequencies

7.65 BrowseCategories
1.54 ViewBidHistory
14.17 ViewItem
15.94 SearchItemsByCategory
2.48 ViewUserInfo
0.53 RegisterItem
1.07 RegisterUser
1.16 BuyNow
1.10 StoreBuyNow
5.40 PutBid
3.74 StoreBid
0.46 PutComment
0.45 StoreComment
1.71 AboutMe
6.34 SearchItemsByRegion
5.39 BrowseRegions

Column Families

i3722443462
categories.dummy, categories.id , categories.name

i193173044
items.id, bids.date, bids.id , users.id , users.nickname, bids.qty, bids.bid

i1888493477
items.id, items.name, items.description, items.initial price, items.quantity,
items.reserve price, items.buy now, items.nb of bids, items.max bid, items.start date,
items.end date

i3264766123
items.id, categories.id

136

i3392968797
categories.id, items.end date, items.id , items.name, items.initial price, items.max bid,
items.nb of bids

i2906147889
users.id, users.firstname, users.lastname, users.nickname, users.password, users.email,
users.rating, users.balance, users.creation date

i3157175159
users.id, comments.id , comments.rating, comments.date, comments.comment

i3563903410
items.id, bids.bid , bids.id , bids.qty, bids.date

i915430138
comments.id, users.id , users.nickname

i2578518014
items.id, buynow.id , buynow.date, users.id

i2653317939
users.id, buynow.date, buynow.id , items.id , buynow.qty, items.name, items.description,
items.initial price, items.quantity, items.reserve price, items.buy now, items.nb of bids,
items.max bid, items.start date, items.end date

i578710568
items.id, users.id

i2337785568
users.id, items.id , items.name, items.description, items.initial price, items.quantity,
items.reserve price, items.buy now, items.nb of bids, items.max bid, items.start date,
items.end date

i3553045793
users.id, items.end date, bids.id , items.id

i3639792234
regions.id, categories.id , users.id , items.id , items.name, items.initial price,
items.max bid, items.nb of bids, items.end date

i1683742356
users.id, regions.id

i1912786220
items.id, users.id , regions.id

137

i590232953
regions.dummy, regions.id , regions.name

Plans

BrowseCategories
Get i2906147889
Get i3722443462

ViewBidHistory
Get i1888493477
Get i193173044

ViewItem
Get i1888493477
Get i3563903410

SearchItemsByCategory
Get i3392968797

ViewUserInfo
Get i2906147889
Get i3157175159

BuyNow
Get i2906147889
Get i1888493477

StoreBuyNow
Get i1888493477
Insert into i1888493477
Get i1888493477, Get i3264766123, Delete from i3392968797, Insert into
i3392968797
Get i2578518014, Insert into i2653317939
Get i578710568, Insert into i2337785568
Get i193173044, Delete from i3553045793, Insert into i3553045793
Get i1912786220, Get i3264766123, Insert into i3639792234
Insert into i2578518014
Get i1888493477, Insert into i2653317939

138

PutBid
Get i2906147889
Get i1888493477
Get i3563903410

StoreBid
Get i1888493477
Get i2906147889, Insert into i193173044
Insert into i3563903410
Get i1888493477, Insert into i3553045793
Insert into i1888493477
Get i1888493477, Get i3264766123, Insert into i3392968797
Get i2578518014, Insert into i2653317939
Get i578710568, Insert into i2337785568
Get i1912786220, Get i3264766123, Insert into i3639792234

PutComment
Get i2906147889
Get i1888493477
Get i2906147889

StoreComment
Get i2906147889
Insert into i2906147889
Insert into i3157175159
Get i2906147889, Insert into i915430138

AboutMe
Get i2906147889
Get i3157175159
Get i915430138
Get i2653317939
Get i2337785568, Filter by items.end date
Get i3553045793, Get i1888493477

SearchItemsByRegion
Get i3639792234, Filter by items.end date

BrowseRegions
Get i590232953

139

RegisterItem
Insert into i1888493477
Insert into i3264766123
Insert into i3392968797
Insert into i578710568
Insert into i2337785568
Get i1683742356, Insert into i3639792234
Get i1683742356, Insert into i1912786220

RegisterUser
Insert into i2906147889
Insert into i1683742356

A.3.2 Normalized

Column Families

categories
categories.id, categories.name, categories.dummy

regions
regions.id, regions.name, regions.dummy

items
items.id, items.name, items.description, items.initial price, items.quantity,
items.reserve price, items.buy now, items.nb of bids, items.max bid, items.start date,
items.end date

comments
comments.id, comments.rating, comments.date, comments.comment

users by region
regions.id, users.id , users.nickname

users
users.id, regions.id , users.firstname, users.lastname, users.nickname, users.password,
users.email, users.rating, users.balance, users.creation date

bids
bids.id, users.id , items.id , bids.qty, bids.bid, bids.date

140

buynow
buynow.id, items.id , buynow.qty, buynow.date

all categories
categories.dummy, categories.id

all regions
regions.dummy, regions.id

bids by item
items.id, bids.id

items by category
categories.id, items.end date, items.id

items by region
regions.id, categories.id , items.end date, items.id , users.id

comments by user
users.id, comments.id

user items sold
users.id, items.end date, items.id

buynow by user
users.id, buynow.date, buynow.id

bids by user
users.id, bids.date, bids.id

Plans

BrowseCategories
Get users
Get all categories, Get categories

ViewBidHistory
Get items
Get bids by item, Get bids, Get users

ViewItem
Get items
Get bids by item, Get bids

141

SearchItemsByCategory
Get items by category, Get items

SearchItemsByRegion
Get items by region, Get items

BrowseRegions
Get all regions, Get regions

ViewUserInfo
Get users, Get regions
Get comments by user, Get comments

BuyNow
Get users
Get items

PutBid
Get users
Get items
Get bids by item, Get bids

PutComment
Get users
Get items
Get users

AboutMe
Get users
Get comments by user, Get comments
Get buynow by user, Get buynow, Get items
Get user items sold, Get items
Get bids by user, Get bids, Get items

RegisterItem
Insert into items
Insert into user items sold
Insert into items by category
Get users, Insert into items by region

RegisterUser
Get regions, Insert into users
Insert into users by region

142

StoreBuyNow
Get items, Insert into items
Insert into buynow
Insert into buynow by user

StoreBid
Get items, Insert into items
Insert into bids
Insert into bids by item
Insert into bids by user

StoreComment
Get users, Insert into users
Insert into comments
Insert into comments by user

A.3.3 Expert

Column Families

users by region
regions.id, users.id , users.nickname

user data
users.id, regions.id , users.firstname, users.lastname, users.nickname, users.password,
users.email, users.rating, users.balance, users.creation date, regions.name

user buynow
users.id, buynow.date, buynow.id , items.id , buynow.qty

user items bid on
users.id, items.end date, bids.id , items.id , bids.qty

user items sold
users.id, items.end date, items.id

user comments received
users.id, comments.id , items.id , comments.rating, comments.date, comments.comment

commenter
comments.id, users.id , users.nickname

143

items with category
items.id, categories.id , items.name, items.description, items.initial price, items.quantity,
items.reserve price, items.buy now, items.nb of bids, items.max bid, items.start date,
items.end date

item bids
items.id, bids.id , users.id , items.max bid, users.nickname, bids.qty, bids.bid, bids.date

items by category
categories.id, items.end date, items.id

category list
categories.dummy, categories.id , categories.name

region list
regions.dummy, regions.id , regions.name

regions
regions.id, regions.name

Plans

BrowseCategories
Get user data
Get category list

ViewBidHistory
Get items with category
Get item bids

ViewItem
Get items with category
Get item bids

SearchItemsByCategory
Get items by category, Get items with category

SearchItemsByRegion
Get users by region
Get items by category, Get items with category

BrowseRegions
Get region list, Get regions

144

ViewUserInfo
Get user data
Get user comments received, Get commenter

BuyNow
Get user data
Get items with category

PutBid
Get user data
Get items with category
Get item bids

PutComment
Get user data
Get items with category
Get user data

AboutMe
Get user data
Get user comments received, Get commenter
Get user buynow, Get items with category
Get user items sold, Get items with category
Get user items bid on, Get items with category

RegisterItem
Insert into items with category
Insert into user items sold
Insert into items by category

RegisterUser
Get regions, Insert into user data
Insert into users by region

StoreBuyNow
Get items with category, Insert into items with category, Delete from
items by category, Insert into items by category
Insert into user buynow

StoreBid
Get item bids, Insert into item bids
Get items with category, Insert into items with category
Insert into user items bid on

145

StoreComment
Get user data, Insert into user data
Insert into user comments received

A.3.4 NoSE Browsing

Interaction frequencies

4.44 BrowseCategories
0 ViewBidHistory
22.95 ViewItem
27.77 SearchItemsByCategory
4.41 ViewUserInfo
0 RegisterItem
0 RegisterUser
0 BuyNow
0 StoreBuyNow
0 PutBid
0 StoreBid
0 PutComment
0 StoreComment
0 AboutMe
8.26 SearchItemsByRegion
3.21 BrowseRegions

Column Families

i3722443462
categories.dummy, categories.id , categories.name

i193173044
items.id, bids.date, bids.id , users.id , users.nickname, bids.qty, bids.bid

i1888493477
items.id, items.name, items.description, items.initial price, items.quantity,
items.reserve price, items.buy now, items.nb of bids, items.max bid, items.start date,
items.end date

146

i3220017915
items.id, bids.id , bids.qty, bids.bid, bids.date

i3392968797
categories.id, items.end date, items.id , items.name, items.initial price, items.max bid,
items.nb of bids

i2906147889
users.id, users.firstname, users.lastname, users.nickname, users.password, users.email,
users.rating, users.balance, users.creation date

i3157175159
users.id, comments.id , comments.rating, comments.date, comments.comment

i4047225742
regions.id, categories.id , items.end date, items.id , users.id , items.name,
items.initial price, items.max bid, items.nb of bids

i590232953
regions.dummy, regions.id , regions.name

Plans

BrowseCategories
Get i2906147889
Get i3722443462

ViewBidHistory
Get i1888493477
Get i193173044

ViewItem
Get i1888493477
Get i3220017915

SearchItemsByCategory
Get i3392968797

ViewUserInfo
Get i2906147889
Get i3157175159

SearchItemsByRegion
Get i4047225742

147

BrowseRegions
Get i590232953

A.3.5 NoSE 10×

Interaction frequencies

7.65 BrowseCategories
1.54 ViewBidHistory
14.17 ViewItem
15.94 SearchItemsByCategory
2.48 ViewUserInfo
5.3 RegisterItem
10.7 RegisterUser
1.16 BuyNow
11.0 StoreBuyNow
5.40 PutBid
37.4 StoreBid
0.46 PutComment
4.5 StoreComment
1.71 AboutMe
6.34 SearchItemsByRegion
5.39 BrowseRegions

Column Families

i3722443462
categories.dummy, categories.id , categories.name

i193173044
items.id, bids.date, bids.id , users.id , users.nickname, bids.qty, bids.bid

i1888493477
items.id, items.name, items.description, items.initial price, items.quantity,
items.reserve price, items.buy now, items.nb of bids, items.max bid, items.start date,
items.end date

i3264766123
items.id, categories.id

148

i1175133162
categories.id, items.end date, items.id

i2906147889
users.id, users.firstname, users.lastname, users.nickname, users.password, users.email,
users.rating, users.balance, users.creation date

i3157175159
users.id, comments.id , comments.rating, comments.date, comments.comment

i3563903410
items.id, bids.bid , bids.id , bids.qty, bids.date

i3128537325
comments.id, users.id

i2578518014
items.id, buynow.id , buynow.date, users.id

i2653317939
users.id, buynow.date, buynow.id , items.id , buynow.qty, items.name, items.description,
items.initial price, items.quantity, items.reserve price, items.buy now, items.nb of bids,
items.max bid, items.start date, items.end date

i578710568
items.id, users.id

i2337785568
users.id, items.id , items.name, items.description, items.initial price, items.quantity,
items.reserve price, items.buy now, items.nb of bids, items.max bid, items.start date,
items.end date

i3553045793
users.id, items.end date, bids.id , items.id

i184475158
categories.id, regions.id , users.id , items.id , items.name, items.initial price,
items.max bid, items.nb of bids, items.end date

i1683742356
users.id, regions.id

i101364659
items.id, regions.id , users.id

149

i590232953
regions.dummy, regions.id , regions.name

Plans

BrowseCategories
Get i2906147889
Get i3722443462

ViewBidHistory
Get i1888493477
Get i193173044

ViewItem
Get i1888493477
Get i3563903410

SearchItemsByCategory
Get i1175133162, Get i1888493477

ViewUserInfo
Get i2906147889
Get i3157175159

BuyNow
Get i2906147889
Get i1888493477

StoreBuyNow
Get i1888493477
Insert into i1888493477
Get i3264766123, Delete from i1175133162, Insert into i1175133162
Get i2578518014, Insert into i2653317939
Get i578710568, Insert into i2337785568
Get i193173044, Delete from i3553045793, Insert into i3553045793
Get i101364659, Get i3264766123, Insert into i184475158
Insert into i2578518014
Get i1888493477, Insert into i2653317939

150

PutBid
Get i2906147889
Get i1888493477
Get i3563903410

StoreBid
Get i1888493477
Get i2906147889, Insert into i193173044
Insert into i3563903410
Get i1888493477, Insert into i3553045793
Insert into i1888493477
Get i2578518014, Insert into i2653317939
Get i578710568, Insert into i2337785568
Get i101364659, Get i3264766123, Insert into i184475158

PutComment
Get i2906147889
Get i1888493477
Get i2906147889

StoreComment
Get i2906147889
Insert into i2906147889
Insert into i3157175159
Insert into i3128537325

AboutMe
Get i2906147889
Get i3157175159
Get i3128537325, Get i2906147889
Get i2653317939
Get i2337785568, Filter by items.end date
Get i3553045793, Get i1888493477

SearchItemsByRegion
Get i184475158, Filter by items.end date

BrowseRegions
Get i590232953

151

RegisterItem
Insert into i1888493477
Insert into i3264766123
Insert into i1175133162
Insert into i578710568
Insert into i2337785568
Get i1683742356, Insert into i184475158
Get i1683742356, Insert into i101364659

RegisterUser
Insert into i2906147889
Insert into i1683742356

A.3.6 NoSE 100×

Interaction frequencies

7.65 BrowseCategories
1.54 ViewBidHistory
14.17 ViewItem
15.94 SearchItemsByCategory
2.48 ViewUserInfo
53 RegisterItem
107 RegisterUser
1.16 BuyNow
110 StoreBuyNow
5.40 PutBid
374 StoreBid
0.46 PutComment
45 StoreComment
1.71 AboutMe
6.34 SearchItemsByRegion
5.39 BrowseRegions

152

Column Families

i3722443462
categories.dummy, categories.id , categories.name

i193173044
items.id, bids.date, bids.id , users.id , users.nickname, bids.qty, bids.bid

i1888493477
items.id, items.name, items.description, items.initial price, items.quantity,
items.reserve price, items.buy now, items.nb of bids, items.max bid, items.start date,
items.end date

i3264766123
items.id, categories.id

i1175133162
categories.id, items.end date, items.id

i2906147889
users.id, users.firstname, users.lastname, users.nickname, users.password, users.email,
users.rating, users.balance, users.creation date

i3157175159
users.id, comments.id , comments.rating, comments.date, comments.comment

i3563903410
items.id, bids.bid , bids.id , bids.qty, bids.date

i3128537325
comments.id, users.id

i2578518014
items.id, buynow.id , buynow.date, users.id

i2653317939
users.id, buynow.date, buynow.id , items.id , buynow.qty, items.name, items.description,
items.initial price, items.quantity, items.reserve price, items.buy now, items.nb of bids,
items.max bid, items.start date, items.end date

i578710568
items.id, users.id

153

i2337785568
users.id, items.id , items.name, items.description, items.initial price, items.quantity,
items.reserve price, items.buy now, items.nb of bids, items.max bid, items.start date,
items.end date

i3553045793
users.id, items.end date, bids.id , items.id

i2817567804
regions.id, categories.id , items.id , users.id , items.name, items.initial price,
items.max bid, items.nb of bids, items.end date

i1683742356
users.id, regions.id

i1912786220
items.id, users.id , regions.id

i590232953
regions.dummy, regions.id , regions.name

Plans

BrowseCategories
Get i2906147889
Get i3722443462

ViewBidHistory
Get i1888493477
Get i193173044

ViewItem
Get i1888493477
Get i3563903410

SearchItemsByCategory
Get i1175133162, Get i1888493477

ViewUserInfo
Get i2906147889
Get i3157175159

154

BuyNow
Get i2906147889
Get i1888493477

StoreBuyNow
Get i1888493477
Insert into i1888493477
Get i3264766123, Delete from i1175133162, Insert into i1175133162
Get i2578518014, Insert into i2653317939
Get i578710568, Insert into i2337785568
Get i193173044, Delete from i3553045793, Insert into i3553045793
Get i1912786220, Get i3264766123, Insert into i2817567804
Insert into i2578518014
Get i1888493477, Insert into i2653317939

PutBid
Get i2906147889
Get i1888493477
Get i3563903410

StoreBid
Get i1888493477
Get i2906147889, Insert into i193173044
Insert into i3563903410
Get i1888493477, Insert into i3553045793
Insert into i1888493477
Get i2578518014, Insert into i2653317939
Get i578710568, Insert into i2337785568
Get i1912786220, Get i3264766123, Insert into i2817567804

PutComment
Get i2906147889
Get i1888493477
Get i2906147889

StoreComment
Get i2906147889
Insert into i2906147889
Insert into i3157175159
Insert into i3128537325

155

AboutMe
Get i2906147889
Get i3157175159
Get i3128537325, Get i2906147889
Get i2653317939
Get i2337785568, Filter by items.end date
Get i3553045793, Get i1888493477

SearchItemsByRegion
Get i2817567804, Filter by items.end date

BrowseRegions
Get i590232953

RegisterItem
Insert into i1888493477
Insert into i3264766123
Insert into i1175133162
Insert into i578710568
Insert into i2337785568
Get i1683742356, Insert into i2817567804
Get i1683742356, Insert into i1912786220

RegisterUser
Insert into i2906147889
Insert into i1683742356

156

Appendix B

ESON Proofs

Each of the proofs in the section below consists of a claim about the normalization algorithm
in Figure 4.6. The steps are the proof are given according to each step in the algorithm.

B.1 All inference of dependencies is sound

Expand

When expanding F and I we use axioms presented by Mitchell [99] which are shown to
be sound.

BCNFDecompose

When performing BCNF decomposition, we add two new inclusion dependencies which
state the equivalence of attributes in the decomposed relations. For example, if we decom-
pose R (A,B,C) into S (A,B) and T (B,C) then we would add the inclusion dependencies
S (B) ⊆ T (B) and T (B) ⊆ S (B). These inclusion dependencies hold by construction.

We also project any FDs and INDs onto the new tables. Any projected FDs are already
contained in F′ as a result of the axiom of reflexivity. Similarly, the projected INDs are
already contained in I′ aside from a simple renaming of relations to the new names after
decomposition. For example, if we decompose R (A,B,C) into R′ (A,B) and R′′ (B,C)
then we consider inclusion dependencies involving R using the attributes A and B and
change them to reference R′. These hold since R′ contains exactly the same (A,B) tuples

157

as R. A similar argument holds for inclusion dependencies on R containing the attributes
B and C.

Fold

When removing attributes, all relevant dependencies are already contained in F′ and
I+

′
since they are projections of other dependencies. When removing relations, there is

no need for any new dependencies and we simply remove any dependencies referencing
the removed relation from I+

′
. Finally, when merging relations we simply rename existing

inclusion dependencies to reference the merged relation. If we merge R (A,B) and S (A,C)
into RS (A,B,C) then we consider separately inclusion dependencies on R involving A
and B and inclusion dependencies on S involving A and C. RS contains exactly the same
(A,B) tuples as R so any inclusion dependencies involving R will also hold on RS. A
similar argument applies for inclusion dependencies involving S and the attributes A and
C.

BreakCycles

Our technique for breaking cycles is taken from Mannila and Räihä [88]. Suppose
we have a cycle R1 (X1) ⊆ R2 (Y2) · · · ⊆ Rn (Xn) ⊆ R1 (Y1). R1 is decomposed into
R′1 (X1

⋃
Y1) and R′′1 (Y1 \ (attr (R1) \X1Y1)). Three inclusion dependencies are added.

R′1 (X1) ⊆ R2 (Y2) which is derived be renaming R to R1 which is sound since these
relations contain the same tuples when X1 is projected. The same argument holds for
the inclusion dependency Rn (Xn) ⊆ R′′1 (Y1). Finally, the transformation also adds the
inclusion dependency R′1 (Y1) ⊆ R′′1 (Y1). Since R′1 and R′′1 both contain values for Y1
decomposed from R, this dependency also holds. The original authors also show that the
transformation is information-preserving.

B.2 All transformations are lossless-join

BCNFDecompose

We use a known algorithm for lossless-join BCNF decomposition.

Fold

When Fold removes an attribute B from a relation R (A,B) it is because there exists
a relation S (C,D) with an inclusion dependency R (A,B) ⊆ S (C,D). In this case, we
would add the relation R′ (A) to the schema and remove R. Note that R can be recon-
structed by joining R with S on A = C and projecting A and D (renamed to B), that is
ρB/D (ΠA,D (R ./ S)).

158

If a relation R is removed by Fold, it is because there is a bidirectional dependency
with a relation S indicating that there is a one-to-one mapping between records in R and
records in S. Therefore, we can remove R since it can be recovered by a simple projection
of S.

Finally, Fold can merge two relations with a common key. If we merge R (A,B) and
S (A,C) to form T (A,B,C) we can recover R and S by simply projecting the appropriate
fields from T .

BreakCycles

When breaking an inclusion dependency cycle, each of the new relations contains a
key of the decomposed relation. Therefore, we can perform a natural join on this key to
produce the original relation.

B.3 Inclusion dependencies in the final schema are

key-based

Expand

Two inference rules can generate new INDs. The first is implication via transitivity.
If we have functional dependencies R (X) ⊆ S (Y) and S (Y) ⊆ T (Z) then we can infer
R (X) ⊆ T (Z). Since we assume existing INDs are superkey-based, Z must be a superkey
of T and the new IND introduces no violations. We can also infer new INDs by exploiting
the set of functional and inclusion dependencies together. Suppose we have the INDs
R (X1) ⊆ S (Y1) and R (X2) ⊆ S (Y2) as well as the functional dependency R : X1 → X2.
Then we can infer the IND R (X1X2) ⊆ S (Y1Y2). Since Y1 and Y2 are both superkeys
of Y , this new IND is also superkey-based. The second is the collection rule. Since the
right-hand side of INDs created by the collection rule is a superset of an existing IND, the
new IND is also superkey-based.

BCNFDecompose

Assume we have a relation R (XY Z) where X is the key of R and also the functional
dependency R : Y → Z. We would then decompose R into R′ (XY) and R′′ (Y Z). Suppose
we had another relation S with an IND S (A) ⊆ R (X). After decomposing R we would
create the IND S (A) ⊆ R′ (X) which by construction is also superkey-based since X is the
key of R′. The situation is slightly more complicated if we had an IND S (UV) ⊆ R (XZ).
After decomposition X and Z are in separate relations. We then have the INDs S (U) ⊆

159

R′ (X) and S (V) ⊆ R′′ (Z). However, Z is not a superkey of R′′. When this situation
occurs, we drop the inclusion dependency S (V) ⊆ R′′ (Z). Note that these inclusion
dependencies are not necessary to satisfy IDNF but they are useful to identify possible
foreign keys in the final schema.

Fold

Fold converts INDs which are superkey-based into key-based INDs. Assume we have an
IND R (AB) ⊆ S (CD) where C is the key of S. Then this IND is not key-based. However,
since C is a key of S, we must have the functional dependency C → D. Therefore, the
Fold algorithm will identify the attribute B as redundant and remove it from R. This
changes the inclusion dependency to R (A) ⊆ S (C) which is now key-based.

BreakCycles

Suppose we have a cycle of the form R1 (X1) ⊆ R2 (Y2) · · · ⊆ Rn (Xn) ⊆ R1 (Y1). As
discussed in 4.4.1, breaking this circularity will result in new relations R′1 and R′′1. There
are also new INDs R′1 (X1) ⊆ R2 (Y2), R

′
1 (Y1) ⊆ R′′1 (Y1), and Rn (Xn) ⊆ R′′1 (Y1). Given

that the given dependencies (resulting from the Fold step) are key-based, we note that Y2
is a key of R2. In addition, since we construct R′1 and R′′1 such that Y1 is a key, all new
INDs are also key-based.

160

Appendix C

ESON RUBiS Example Input

Physical relations used as input for both examples are given here. Relation names are
shown in bold an attributes which are keys are underlined.

Schema One

i154863668(categories id, items end date, items id, regions id, users id,
items initial price, items max bid, items name, items nb of bids)
i1888493477(items id, items buy now, items description, items end date,
items initial price, items max bid, items name, items nb of bids, items quantity,
items reserve price, items start date)
i193173044(bids date, bids id, items id, users id, bids bid, bids qty, users nickname)
i2906147889(users id, users balance, users creation date, users email, users firstname,
users lastname, users nickname, users password, users rating)
i3157175159(comments id, users id, comments comment, comments date,
comments rating)
i3220017915(bids id, items id, bids bid, bids date, bids qty)
i3722443462(categories id, categories name)
i546546186(categories id, items end date, items id, items initial price, items max bid,
items name, items nb of bids)
i590232953(regions id, regions name)

161

Schema Two

i1177375268(buynow id, buynow date, items id)
i1557291277(users id, comments id, comments comment, comments date,
comments rating)
i1879743023(comments id, users id, users nickname)
i2049737091(items id, bids id, users id, items end date)
i2087519603(items id, categories id)
i210798434(items id, bids date, bids id, users id, bids bid, bids qty, users nickname)
i2269844981(items id, users id, items end date)
i2366332486(users id, buynow date, buynow id, buynow qty)
i2594090645(items id, items buy now, items description, items end date,
items initial price, items max bid, items name, items nb of bids, items quantity,
items reserve price, items start date)
i262196338(items id, bids bid, bids id, bids date, bids qty)
i3050485475(categories id, categories name)
i3116489164(users id, users balance, users creation date, users email, users firstname,
users lastname, users nickname, users password, users rating)
i409321726(users id, items end date, bids id, items id)
i920605840(categories id, items id, items end date, items initial price, items max bid,
items name, items nb of bids)
i941409494(users id, items end date, items id)

162

	List of Tables
	List of Figures
	Introduction
	NoSQL Database Schemas
	Distributed Data Processing
	Thesis Organization and Research Contributions

	Background and Related Work
	NoSQL Client Interfaces
	Key-Value Stores
	Extensible Record Stores
	Document Stores

	Relational Database Physical Design
	Structure Enumeration
	What-If Analysis
	Design Optimality

	NoSQL Schema Design
	Design Principles
	Automated Approaches

	Query Processing in NoSQL Systems
	Object-Oriented Data Access
	Higher Level Query Languages

	Conceptual Modeling
	Database Normalization
	Non-relational Data Processing

	Physical Schema Design Automation
	Schema Design Example
	System Overview
	Database Conceptual Model
	Workload Description
	Extensible Record Stores
	The Schema Design Problem

	Schema Advisor
	Candidate Enumeration
	Query Planning

	Schema Optimization
	Cost Model
	Calibration

	Updates
	Update Language
	Update Plans
	Column family enumeration for updates
	BIP Modifications

	Case Study
	Evaluation
	Schema Quality
	Advisor Runtime

	Summary of NoSE and Future Directions

	ESON: Schema Recovery from Denormalized Physical Designs
	Renormalization Overview
	The Generic Physical Schema
	Dependency Input
	ESON Normalization Algorithm
	Dependency Inference
	BCNF Decomposition
	Folding
	Breaking IND Cycles
	IDNF

	Dependency Mining
	Mining for NoSQL Normalization

	Applications of the Logical Model
	Ad-Hoc Query Execution
	View Definition Recovery

	Case Studies
	RUBiS
	MongoDB
	Twissandra

	Summary of ESON

	Cache Design for Data Processing Systems
	Motivation
	The Problem
	Iterative Computation in Spark
	Caching

	ReSpark
	Explicit Iteration
	Lazy Unpersist

	Evaluation
	Spark-Bench
	Other Iterative Algorithms

	Summary of ReSpark

	Conclusion and Future Work
	Future Work

	References
	APPENDICES
	NoSE Workloads and Selected Schemas
	Conceptual Model
	Workload
	Schemas
	NoSE Bidding
	Normalized
	Expert
	NoSE Browsing
	NoSE 10
	NoSE 100

	ESON Proofs
	All inference of dependencies is sound
	All transformations are lossless-join
	Inclusion dependencies in the final schema are key-based

	ESON RUBiS Example Input

