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In recent years, experimental techniques have enabled the creation of ultracold optical lattices of
molecules and endofullerene peapod nanomolecular assemblies. It was previously suggested that the
rotor model resulting from the placement of dipolar linear rotors in one-dimensional lattices at low
temperature has a transition between ordered and disordered phases. We use the density matrix renor-
malization group (DMRG) to compute ground states of chains of up to 100 rotors and provide further
evidence of the phase transition in the form of a diverging entanglement entropy. We also propose two
methods and present some first steps toward rotational spectra of such molecular assemblies using
DMRG. The present work showcases the power of DMRG in this new context of interacting molecular
rotors and opens the door to the study of fundamental questions regarding criticality in systems with
continuous degrees of freedom. Published by AIP Publishing. https://doi.org/10.1063/1.5024403

. INTRODUCTION

The ability to produce endofullerenes by molecular
surgery' has resulted in a number of exciting results, both
experimental>? and theoretical.* The generation of carbon
nanotube “peapods” has also recently been shown to be possi-
ble.!%15 The combination of these ideas leads to endofullerene
peapods: carbon nanotubes which contain fullerene cages with
atoms or molecules trapped inside.!-22

By treating these nanomolecular assemblies (NMAs) as
fixed and rigid, we may study the motion of the atoms and
molecules enclosed therein. The resulting model is similar
in many respects to that obtained from placing ultracold
particles in an optical lattice’>?* and has previously been
studied in that context.?2% Nevertheless, there are some
fundamental differences: in an NMA, the imprisoned entities
may not move between sites as they do in an optical lattice,
so there cannot be double occupation of a site; the spacing
between adjacent sites is much smaller in an NMA (on the
order of 1 nm)"> than in a typical optical lattice (on the order
of 100 nm);>* and the carbon walls of the fullerene cages
shield the interactions between the captive particles.?

For an endofullerene peapod NMA model as described
above, one is in principle left with translational, vibrational,
and rotational degrees of freedom for the confined particles.
At very low temperatures, the translations and vibrations are
restricted to their respective ground states, and only the rota-
tional motion remains relevant, such that one can approxi-
mate the low-lying energy spectrum with an effective rotor
Hamiltonian. In the following, we therefore focus on the rota-
tional degrees of freedom of molecules arranged in a linear
chain. Specifically, we choose dipolar linear rotor molecules
(such as HF, LiCl, or CsI) which interact pairwise through the
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(dimensionless) dipole—dipole potential
Vij(ei, ej;r;) = e; - € — 3(e; - rj)(e; - ryj), ey

where e; and e; are unit vectors describing the orientation of
two rotors and r;; is the unit vector in the direction from one
rotor to the other.

In this article, we propose a method for the calcula-
tion of ground state energies and wavefunctions for long
one-dimensional systems of dipolar rotors using the density
matrix renormalization group (DMRG). Originally introduced
by White in 1992,%7 the approach of DMRG has proven fruit-
ful in a number of applications ranging from condensed matter
physics?®?” to quantum chemistry.’*3? Although it has been
extended to the study of two-dimensional systems, finite tem-
perature systems, and real-time evolution, DMRG excels at
finding ground states of strongly correlated one-dimensional
systems.33

For small systems of this kind (up to around 10 rotors),
sparse iterative methods for Hamiltonian diagonalization are
sufficient to obtain a handful of low-lying eigenstates.>* As
the systems grow, the size of the many-body basis increases
exponentially and the problem quickly becomes intractable.
Hence, we turn to DMRG in order to grow the rotor chain
under study to 100 rotors, which is made feasible by the matrix
product state (MPS) wavefunction ansatz inherent to DMRG.
We accomplish this with the ITensor package, which allows
us to efficiently formulate the Hamiltonian as a matrix prod-
uct operator (MPO) and which contains an implementation
of DMRG.*> While existing publications have also examined
many-body quantum systems with dipole—dipole interactions
using DMRG,?>3637 due to their use of different geometries
and focus on mapping to other model systems, they do not cap-
ture the full physics of interacting molecules under quantum
rotation.

This paper is organized as follows: in Sec. II, we pro-
vide a brief introduction to matrix product states; in Sec. III
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we derive an expression for the dipole—dipole interaction
potential in terms of angular momentum ladder operators; in
Sec. IV, we show the results of our DMRG calculations for
the rotor system; in Sec. V, we end with some concluding
remarks.

Il. MATRIX PRODUCT STATES

Despite originally being developed as a renormalization
group technique, DMRG is now typically understood in terms
of MPSs.”” When a wavefunction ly), which is an abstract
element of a Hilbert space H = H; ® H, ® -+ ® Hy, is
represented in a finite (perhaps truncated) basis, it may be
treated as a vector Cy, = (nly) of coefficients indexed by the
multi-index n = (ny, ny, . . ., ny). Such a vector may always be
expanded exactly into a product of matrices

nly) = A(l),mé@),nz L. A(N),HN. ?)

Even though they do not necessarily correspond to physical
sites on a lattice, the entities living in the N one-body Hilbert
spaces H; are referred to as “sites.” The collection {A(k)} of
rank-3 tensors forms an MPS representation of lyy), where ny
is the physical index for the site and the two matrix indices
(implied by the matrix multiplication) are bond indices with
“bond dimension” M. [Each A(l)’"l is treated as a row vector
and each ANV a5 a column vector, so that the product in
Eq. (2) results in a scalar.] In practice, this expansion will
not be made exact, as that leads to exponential scaling with
system size; instead, the matrices are truncated to keep the
bond dimension small.

We may arbitrarily group the sites into regions A and
B, and write the many-body Hilbert space as the product
H=Ha ® Hp. At the core of DMRG is the Schmidt decom-

position
) = D Nale!) e lep), 3)

where the A; are non-negative real numbers, and {|¢?>}
and {|¢?)} are orthonormal sets in H4 and Hp, respec-
tively. Truncation of the terms with the smallest coefficients
results in an optimal approximation |i) in the sense of the
2-norm: |||} — [}l is minimized compared to other trun-
cation schemes that retain the same number of terms. This
truncation is typically performed so that

Z i <€ “

where the sum is over the discarded values and € < 1.
Hence, this decomposition provides a systematic way to
generate an efficient MPS. DMRG makes repeated use of
this decomposition (along with iterative diagonalization, for
example using the Lanczos algorithm) by “sweeping” the
boundary between A and B from one end of the sys-
tem to the other in order to obtain the ground state of a
Hamiltonian.

The number of terms that remain in the sum dictates the
bond dimension and has a direct impact on the difficulty of
the calculation. The bond dimension also bounds the amount
of entanglement that may be present across the corresponding
boundary between the regions connected by the bond. The
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standard measure of bipartite entanglement for pure states is
the von Neumann entropy

SyN = =Tr(pa log pa), ®)
where P4 = Trply )| is the reduced density operator for
region A.’® The entanglement entropy cannot exceed log M,
where M is the dimension of the Hilbert space H4. When
the boundary is at bond k, the dimension of the subspaces
spanned by {|¢)} and {|¢%)} is My, so the maximum pos-
sible von Neumann entropy is Syn = logMj. Conversely,
the minimum bond dimension required to faithfully repre-
sent a state with entanglement entropy Syn across bond k is
My = 5N, As these bounds are saturated only for maximally
entangled states, the bond dimension will in general be larger
than e5W.

In one spatial dimension and away from criticality, ground
states of gapped Hamiltonians with short-range interactions
are known to obey an entanglement area law.>® That is, the
amount of entanglement between regions is proportional to
the size of the boundary between them and is independent of
the sizes of the regions themselves. Because a single boundary
in one dimension must always have a constant size, the entan-
glement entropy of such states cannot depend on the size of
the system and therefore the bond dimension will not increase
when the system is made larger.

For long-range interactions, the picture is less clear.
Recent work has shown that, under appropriate conditions,
ground states of one-dimensional Hamiltonians with interac-
tions that decay faster than 1/7* must satisfy an entanglement
area law.*’ For systems with even longer range interactions,
such as the 1/7 considered in the present work, we are not
aware of any proofs regarding entanglement area laws away
from criticality. However, near a critical point, where confor-
mal field theory takes over, the entanglement entropy scales
logarithmically with system size in one dimension,*' which
causes the bond dimension to grow linearly, increasing the
computational cost of DMRG.

lll. DIPOLAR ROTORS

For N identical rotors with rotational constant B and dipole
moment u, the general Hamiltonian is

N i-1 ¢

N B Vi

H== ) 0+ - 6
h2 " 71'6() Z 3 ()

—_

i=2 j= i

where r;; is the distance between rotors i and j. Since a pea-
pod NMA is inherently linear, without loss of generality, we
may place the rotors along the z axis and express the potential
operator compactly as

Vi) = iy + 919 - 224, )
Because of the regular structure of a peapod NMA, we space
the rotors evenly and write the Hamiltonian as

- N 52 N -1 (@
7 _ b + 1 Z u 8)
B hz R3 (. _ .)3 b
i=1 im =1
where 1
4regB\ 3
R=r[T22), ©)
2
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r is the distance between adjacent rotors (the lattice spacing),
and we have taken this opportunity to non-dimensionalize the
Hamiltonian. Since all the physical properties appear only in
R, the one-parameter form of the Hamiltonian allows us to
explore the entire realm of physical realizations of this model
by scanning a single parameter.

As the effective rotor Hamiltonian lacks the microscopic
details describing the confinement of the rotors, it is gen-
eral enough to apply to a variety of experimental situations
in addition to NMAs, such as molecules trapped in a suffi-
ciently deep optical lattice in which tunneling between minima
is suppressed. The specifics of the physical configuration are
encoded in R; for example, in an NMA, the dipole moment u
is screened by the fullerene cages,’ which causes an increase
inR.

A natural one-body basis for this problem is that of
the spherical harmonics I£;m;), in which the squared angular
momentum operator {? is diagonal

1t miy = B2 + 1)]E; my). (10)

Although in principle this basis is infinite, in order to carry out
any calculations, it will need to be truncated at a finite £, SO
that it is large enough to accurately represent the quantities in
question, but no larger.

Thanks to the form of the potential operator, the Hamil-
tonian in Eq. (8) conserves the total ¢ parity

N
6= & (mod 2)
i=1

(11a)
and the total m value
(11b)

In order to exploit the block-diagonal structure of the Hamil-
tonian in DMRG, we must make explicit use of these good
quantum numbers. That is, we need to express the potential
operator in terms of one-body operators that only change the
quantum numbers £, and m by a definite amount, termed the
“flux.” This makes it possible to construct both the wavefunc-
tion MPS and Hamiltonian MPO as sparse objects, reducing
the amount of storage required and significantly accelerating
the calculation.” Terms like %;&; do not suffice because the
position operators (X;, ¥;, Z;) do not have a well-defined flux.
The action of one of these operators on a state with definite £,
and m quantum numbers does not result in a state with definite
¢} and m’ values.

The ladder operators flf—' and 7", which raise and lower
¢; and m;, are obvious candidates for building blocks, as their
flux is immediately evident. The latter operators have the well-
known form

mE =l +il;, (12)
and they act as*?

ﬁzﬂé’,m,) =h\/({’iimi+1)(€i¢m,~)|€,~,mii 1> (13)

On the other hand, the ladder operators for ¢; do not appear to
have been as deeply analyzed. There exist the definitions*?

R, = i(kiliy - $ili) + % (h + 42+ h2)

(14a)
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and
1. = iGiliy — $i01) + % (h — 482+ h2) . (14b)

but unfortunately f?;z # (i.. We instead introduce the
operators

h
f%:—zi 1+

i =3 +i(iliy — Dilix)

/] h
_— —, (19)
A2 112 A0 + 12
which are intimately related to fi’i,Z and Qi,z, but satisfy
({’;“)T ={;.

From this definition, it follows that

. Uofoa ae e oo
5i = o [+ 8, Gt =) (162)
. Uofoa s e
$i = 5o [0+ 80, Ginf + )] (16b)
and 1
%= ﬁ(fj +07). (16¢)

The clean and concise form of these expressions suggests that
our choice of the ladder operators £ is an appropriate one.
The potential from Eq. (1) may then be written as

. c0no 1 - A
Vi =1 -3r2 )15:?15:1‘?—Z [(1=3r2 DB By +3r7 BT B;

U,z i,z ij,L ™0
+6r;11(B7B) + B)BY) +he ], (17)
where
Pt _ 1 P+ At p— At
Bt = iﬁ([ﬁl,mi]+ [67.mt]) (18a)
BY = —(fr+ 1)), (18b)
and
rijL = Fijx + l'r,:/',y. (19)

The simplified form for rotors aligned along the z axis is

5@ p0p0 . L [a-pt
Vi = —2B)B) + [B7 B +he]. (20)
When written in this form, the potential operator may be
constructed as a sparse MPO.

IV. RESULTS

In this section, we give some results for the ground state
properties of the rotor system, as well as transition dipole
moments (TDMs) for an excitation spectrum. The results were
computed using DMRG with the MPS truncation parameter €
from Eq. (4) set to 10717,

A. Ground state properties

The primary result of the DMRG routine is the ground
state energy Eo. As these energies are expected to decrease
with increasing system size N, we present them in the form
of chemical potentials in Fig. 1. It is evident that a smaller
value of R (stronger interactions) requires a larger £m,x (more
basis states), as expected. For sufficiently large systems, we
expect on physical grounds that the addition of a single
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FIG. 1. Chemical potential of rotor chains of length N. Several curves with
different £2x are shown to demonstrate the effect of basis truncation. The
chemical potential at R = 1 takes longer than the others to plateau.

particle will result in a constant decrease in the energy of
the system, regardless of the system size. In other words,
because a newly added rotor should only be substantially
correlated with finitely many rotors on the end of the sys-
tem, the chemical potential should tend to a constant in the
large N limit. For R = 0.5 and R = 2, this limit is reached
by 25 rotors, but for R = 1, the chemical potential contin-
ues to change even at 50 rotors, indicating longer ranged
correlations.

The maximum bond dimension My, shown in Fig. 2,
is the largest bond dimension across the entire MPS, and it
is indicative of the amount of long-range correlations in the
state. That M.« plateaus quickly for R = 0.5 and R = 2
implies the presence of only short-range correlations, but the
same cannot be said for R = 1. The von Neumann entan-
glement entropy Syn for the partitioning of the system into
halves behaves similar to the bond dimension, as shown in
Fig. 3. Indeed, we see what appears to be area law scaling
at R = 0.5 and R = 2, as the entanglement does not change
with system size once the system is large enough to make
finite size effects negligible. At R = 1, we instead notice what
looks like an area law violation, possibly signifying a phase
transition.
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FIG. 2. Maximum MPS bond dimension for rotor chains of length N. Several
curves with different £;,,x are shown to demonstrate the effect of basis trun-
cation. The bond dimension at R = 1 is larger than the others and not constant
by N =50.

The quantum rotor model, which resembles the model
used in the present article, but lacks the anisotropic term in
Eq. (1), is known to have no ordered phase in one dimen-
sion and therefore no phase transition.** In light of this, the
observed anomalies at R = 1 are peculiar, but it has been
suggested that the breaking of rotational symmetry in the
anisotropic model is responsible for a second-order phase
transition between ordered and disordered phases.”® This is
corroborated by the sudden change in both the expectation
value of the orientational correlation operator

o) N
N(N—l).Z

i=2 j=1

i-1
€ ¢, 21

and the von Neumann entanglement entropy Syn near R = 1,
as demonstrated in Fig. 4. Of the two, it seems that the latter is
a sharper indicator of the apparent phase transition. For larger
system sizes, the entropy even peaks at R = 1, clearly delin-
eating the boundary between strongly and weakly interacting
systems.

Though the maximum MPS bond dimension M,y is
not a physical parameter, it contains valuable information
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FIG. 3. von Neumann entanglement entropy of rotor chains of length N. Sev-
eral curves with different £,,x are shown to demonstrate the effect of basis
truncation. The entropy at R = 1 is still increasing by N = 50.

about the effectiveness of DMRG for the system in question.
As can be seen in Fig. 5, away from R = 1, the maximum
bond dimension converges very quickly, and we expect lin-
ear scaling of computational time. On the contrary, the peak
at R = 1 indicates that the scaling will not be as favorable,
which is to be expected for DMRG near a second-order phase
transition.

At such a phase transition, the spatial correlation length
should also diverge.*> Thus, in the near future we plan to exam-
ine the behavior of the correlation length around R = 1 to
confirm the existence of the transition and identify the value
of the critical parameter R.. We then hope to extract the cen-
tral charge of the relevant conformal field theory for the critical
system.41

B. Excitation spectrum

Because the Hamiltonian in Eq. (8) is block-diagonal, we
can also use DMRG to target the ground state of any symmetry
block. The ¢, = 0, m = 0 block contains the ground state of
the entire Hamiltonian, but the £, = 1, m = 0 and £, = 1,
m = 1 blocks are also of interest, because their states |ng, )
are reachable from the ground state |0z,-0,m=0) by application

J. Chem. Phys. 148, 134115 (2018)
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FIG. 4. Comparison of the orientational correlation (top panel) and the entan-
glement entropy (bottom panel) for rotor chains of size N across the apparent
phase transition around R = 1.

of the X; and Z; operators. That is, while most transition dipole
moments (TDMs) are forbidden by symmetry, the moments

N
1,
[ty=tm=ol 7 >, 2il0g0m=0) (22a)
i=1
and
1 N
Kty=tm=sil 5 > 104=0m=0)1 (22b)

i=1
do not necessarily vanish.
Computed energy differences AEy and TDMs for R =2 are
listed in Table 1. Despite this calculation providing only two
peaks of a dipole excitation spectrum for each system size,

200

<

§ 100

O T T T T
0.5 1.0 2.0 4.0

R

FIG. 5. Maximum MPS bond dimension for rotor chains of size N across
the apparent phase transition around R = 1. There is a clear divergence with
system size near R = 1.
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TABLE I. Energy differences and transition dipole moments for rotor chains
of length N at R = 2. Each value is computed between the ground state of the
entire Hamiltonian and the ground state of the specified block at £pax = 12
and with 30 DMRG sweeps.

N & m AEg TDM
s 1 0 1.856 5.935x% 1072
1 +1 1.950 3.117x1074
10 1 0 1.843 2.296 x 1072
1 +1 1.950 7.340 x 1070
s 1 0 1.824 1.611x 1072
1 +1 1.948 3.504x 1073

it lays the foundation for a series of more involved calcula-
tions which can reveal more information from the spectrum.
We propose two complementary approaches for this. The first
involves the direct calculation of excited states within the iden-
tified symmetry blocks. From these, more energy differences
and TDMs can be computed, gradually populating a stick
spectrum. The second requires time evolution of the ground
state to obtain a correlation function, followed by a Fourier
transform which yields a spectrum with finite resolution. Both
approaches are presently possible using standard extensions to
DMRG for excited states and real-time evolution.?

V. CONCLUSIONS

We have shown that DMRG can be applied to systems
of dipolar linear rigid rotors which are pinned to the sites of
a one-dimensional lattice. The method can be used to obtain
ground state properties, such as the energy and von Neumann
entanglement entropy. Excited states which are ground states
of their respective symmetry blocks may also be reached by
this method.

In order to perform the DMRG calculations efficiently, we
have expressed the dipole—dipole potential in terms of angular
momentum ladder operators fii and 7i2;". These operators have
a well-defined quantum number flux and they permit the use of
an algorithm that conserves the total quantum numbers of the
MPS. By making use of the symmetries of the Hamiltonian,
which conserve £, and m, we are able to apply our approach
to a chain of 100 rotors.

Away from R = 1, the computational time of the method
scales linearly with system size and ground states of much
longer chains with several hundred rotors may be com-
puted relatively quickly. However, near R = 1, the scaling
is worse than linear and computing properties of larger sys-
tems becomes challenging. We attribute the favorable growth
to area law scaling of the entanglement and its breakdown
to a violation of the area law that is expected for a critical
system.

An important extension to the above model is the addi-
tion of translational motion for the rotor molecules.® This
would take into account the interactions between the rotor
molecule and the fullerene cage and would greatly enhance the
applicability of the model to NMA experiments. The primary
difficulty in implementing this change is the dynamical nature
of the intermolecular separations: the classical parameter R

J. Chem. Phys. 148, 134115 (2018)

must be augmented by quantum mechanical operators which
describe the deviations from the cage centers. Although it is
not currently clear how such an implementation would look,
it is likely to involve a model for the rotation—translation cou-
pling which can be expressed in terms of raising and lowering
operators for the site-local translational states.
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