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ABSTRACT: The intracellular Ca2+ concentration is an important regulator of many cellular functions. 

The small acidic protein Calmodulin (CaM) serves as a Ca2+ sensor and control element for many 

enzymes. Nitric oxide synthase (NOS) is one of the proteins that is activated by CaM and plays a major 

role in a number of key physiological and pathological processes. Previous studies have shown CaM to 

act like as a switch that causes a conformational change in NOS to allow for the electron transfer 

between the reductase and oxygenase domains through a process that is thought to be highly dynamic. 

We have analyzed the structure and dynamics of complexes formed by peptides based on inducible NOS 

(iNOS) and endothelial NOS (eNOS) with CaM at Ca2+ concentrations that mimic the physiological 

basal (17 and 100 nM) and elevated levels (225 nM) found in mammalian cells using fluorescence 

techniques and NMR spectroscopy. The results show the CaM-NOS complexes have similar structures 

at physiological and fully saturated Ca2+ levels, however, their dynamics are remarkably different. At 

225 nM Ca2+ concentrations the CaM-NOS complexes show overall an increase in backbone dynamics, 

when compared to the dynamics of the complexes under saturating Ca2+ concentrations. Specifically, the 

N-lobe of CaM in the CaM-iNOS complex displays lower internal mobility (higher S2) and higher 

exchange protection compared to that of the CaM-eNOS complex. In contrast, the C-lobe of CaM in the 

CaM-eNOS complex is less dynamic. These results illustrate that structures of CaM-NOS complexes 

determined at saturated Ca2+ concentrations cannot provide a complete picture because the differences in 

intramolecular dynamics only become visible at physiological Ca2+ levels.  
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Calmodulin (CaM) is a small cytosolic Ca2+-binding protein that is found in all eukaryotic cells. It is 

able to bind and regulate hundreds of different intracellular proteins.1 CaM consists of two globular 

domains connected by a flexible central linker region. Each globular domain contains two EF hand pairs 

that are capable of binding to Ca2+. Binding of Ca2+ to CaM causes conformational changes that expose 

hydrophobic patches that allow it to bind and activate its intracellular target proteins. The flexibility of 

CaM’s central linker separating the N- and C-domains allows it to adapt its conformation to optimally 

associate with its intracellular targets.2 There is considerable interest in obtaining a better understanding 

of the structural basis for CaM’s ability to recognize, bind and regulate its numerous target proteins. 

Nitric oxide synthase (NOS) enzymes (E.C. 1.14.13.39) are one of CaM’s target enzymes. These 

enzymes catalyze the production of nitric oxide (•NO) that acts as a secondary inter- and intracellular 

messenger involved in many physiological processes.3 Three NOS isozymes are found in mammals: 

neuronal NOS (nNOS, NOS I), endothelial NOS (eNOS, NOS III), and inducible NOS (iNOS, NOS II). 

NOS enzymes are homodimeric with each monomer containing an N-terminal oxygenase domain and a 

C-terminal reductase domain, connected by a CaM binding domain that is required for efficient electron 

transfer from the reductase to the oxygenase domain for •NO production. The oxygenase domain 

contains binding sites for the catalytic heme, tetrahydrobiopterin (H4B), and the substrates L-arginine 

and molecular oxygen; the reductase domain contains binding sites for the cofactors FMN, FAD, and 

NADPH.3,4 The CaM binding domains of NOS contain the classical 1-5-8-14 CaM-binding motif. CaM 

binds and activates the Ca2+- dependent constitutive NOS (cNOS) enzymes, eNOS and nNOS, at 

elevated cellular Ca2+ concentrations.5 In contrast, iNOS is controlled at the transcriptional level in vivo 

by cytokines and binds to CaM in a Ca2+-independent manner.6 A large conformational change that CaM 

induces in the reductase domain of the NOS enzymes allows for the FMN domain to interact with both 

the FAD and the heme to accept and pass on the electrons during catalysis.7,8  
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Understanding the structural basis of CaM’s target protein interactions and diverse regulatory 

functions is crucial for rationalizing the regulation pathways and for developing strategies for 

controlling them for medical purposes. It is well established that CaM is able to interact with its target 

enzymes in many different conformations. CaM’s interactions with the various NOS isozymes have 

previously been studied by NMR.9–13 In addition to 3D structures, NMR spectroscopy can also provide 

quantitative information on molecular dynamics of protein systems at a residue specific level. These 

studies provide direct evidence of structural changes and intramolecular dynamics associated with 

functions that are central to understanding the role of dynamics in protein function.14–18 By tracking 

chemical shift changes, NMR spectroscopy is able to characterize very weak interactions between 

proteins and ligands at atomic (or residue) levels.19,20  

Detailed information about fluctuations in protein structures and site-specific information on the 

stability of secondary structural elements can also be obtained from the measurement of amide proton 

(NH) hydrogen/deuterium exchange (H/D) rates using NMR spectroscopy.21–23 These fluctuations 

expose some of the NH to the D2O solvent, thus facilitating the NH/ND exchange process while other 

amide protons remain protected from exchange. The exchange rate of NHs in proteins is determined by 

a combination of their intrinsic exchange rate in the absence of secondary structure and the presence of 

secondary structure and solvent inaccessibility that protect from exchange.24,25 NH H/D exchange 

experiments are also useful for accessing the stability of specific structure elements within a protein or 

protein complex.26,27  

Most structural and dynamics studies on CaM-NOS interactions have been performed at non-

physiological conditions using either apo (Ca2+ free with EDTA present) or Ca2+ saturated (greater than 

1mM Ca2+) conditions. Here we present NMR structural and dynamics data of the CaM-NOS complexes 

at free Ca2+ concentrations that are in the resting intracellular Ca2+ concentration range of less than 100 
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nM,28,29 and at elevated intracellular Ca2+ concentrations of 225 nM as well as under saturation 

conditions (1mM). Our data highlights remarkable differences in the dynamic properties of CaM-NOS 

complexes at high millimolar Ca2+ concentrations when compared to nanomolar physiological Ca2+ 

concentrations in a residue specific manner. Although the CaM-NOS complexes have similar structures 

at these Ca2+ concentrations, our studies show that the complexes behave more dynamic at lower 

(physiological) concentrations.  

EXPERIMENTAL PROCEDURES 

CaM Protein Expression and Purification. Wild-type CaM protein was expressed and purified 

using phenyl sepharose chromatography, as previously described.30 Isolation of the CaM protein (148 

residues) was confirmed by ESI-MS and purity was judged to be > 95% by SDS-PAGE. The human 

iNOS (RREIPLKVLVKAVLFACMLMRK, 22 residues corresponding to residues 510-531 from the 

full length iNOS protein) and eNOS (TRKKTFKEVANAVKISASLMGT, 22 residues corresponding to 

residues 491-512 from the full length eNOS protein) peptides were synthesized and purchased from 

Sigma.   

Dansylation of CaM. Dansyl-CaM was prepared as previously described.31 CaM (1 mg/ml) was 

buffer exchanged into 10 mM NaHCO3, 1 mM EDTA, pH 10.0, at 4°C. 30 μl of 6 mM dansyl-chloride 

(1.5 mol/mol of CaM) in DMSO was added to 2 ml of CaM, with stirring. After incubation for 12 hr at 

4°C, the mixture was first exhaustively dialyzed against 500 volumes of 150 mM NaCl, 1 mM EDTA, 

20 mM Tris-HCl, pH 7.5, at 4°C, and then exhaustively dialyzed against 500 volumes of water. Labeling 

yields were determined from absorbance spectra using the ε320 of 3,400 M-1cm-1 and were compared to 

actual protein concentrations determined using the Bradford method with wild-type CaM used as the 

protein standard.32 ESI-MS was used to confirm successful dansyl-labeling of each CaM protein. The 

concentration of dansyl-CaM in all experiments was 2 μM.  
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Steady State Fluorescence. Fluorescence emission spectra were obtained using a PTI QuantaMaster 

spectrofluorimeter (London,ON). Fluorescence measurements were made on 50 μL samples consisting 

of dansyl-CaM (2 μM) alone or with eNOS or iNOS peptide in 30 mM MOPS, 100 mM KCl, 10 mM 

EGTA, pH 7.2 with an increasing concentration of free Ca2+. Free Ca2+ concentration was controlled 

using the suggested protocol from the calcium calibration buffer kit from Invitrogen. The excitation 

wavelength for all of the dansyl-CaMs was set at 340 nm and emission was monitored between 400 and 

600nm. Slit widths were set at 2 nm for excitation and 1 nm for emission. Relative fluorescence was 

calculated by the following equation: relative fluorescence = (F - F0)/(Fmax - F0), where F is the 

measured intensity, Fmax is the maximum intensity, and F0 is the intensity without added Ca2+. 

Sample Preparation for NMR Investigation. CaM for NMR experiments was expressed in E. coli in 

M9 media (11.03 g/L Na2HPO4·7H2O, 3.0 g/L KH2PO4, 0.5 g/L NaCl, 2 mM MgSO4, 0.1 mM CaCl2, 5 

mg/mL Thiamine, 100 μg/mL kanamycin) containing 2 g/L 13C-glucose and 1 g/L 15NH4Cl.10 13C-15N-

CaM was purified as described above. The Ca2+ saturated 13C-15N-CaM samples were prepared for 

NMR experiments via a buffer exchange into 100 mM KCl, 10 mM CaCl2, 0.2 mM NaN3, 90% 

H2O/10% 2H2O at pH 6.5 using a YM10 centrifugal filter device (Millipore Corp., Billerica, USA) and 

had a final concentration of 1 mM in a total volume of 500 μL. The 17 nM, 100 nM and 225 nM free 

[Ca2+] 13C-15N-CaM samples were prepared via a buffer exchange into 30 mM MOPS, 100 mM KCl, 

90% H2O/10% 2H2O, pH 7.2, and combinations of 10 mM EGTA and 10mM CaEGTA to obtain 17 nM, 

100 nM and 225 nM concentrations of free Ca2+. These samples had a final 13C-15N-CaM concentration 

of 200 μM in a total volume of 500 μL. The samples were transferred into 5 mm NMR sample tubes and 

stored at 4oC until required for NMR experiments. NMR experiments on the complexes were conducted 

on samples titrated with either iNOS or eNOS peptide to saturation in a 1:1 CaM:peptide ratio. Complex 

formation was monitored after each addition by acquisition of a 1H-15N heteronuclear single-quantum 
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coherence (HSQC) spectrum. For the proton-deuterium exchange studies, the CaM-peptide complex 

samples were lyophilized overnight. The samples were then resuspended in ~100% D2O to the same 

volume and immediately placed into the previously tuned and calibrated NMR spectrometer.  

NMR Spectroscopy and Data Analysis. NMR spectra were recorded at 25oC on Bruker 600 MHz 

DRX spectrometers equipped with XYZ-gradients triple-resonance probes (Bruker, Billerica, MA, 

USA). Spectra were analyzed using the program CARA (Computer Aided Resonance Assignment).33 

The amide resonances were assigned by using the previously obtained amide chemical shifts of Ca2+ 

saturated CaM with iNOS or eNOS peptide as reference.10 H/D exchange data was obtained by 

successive acquisition of 1H-15N HSQC spectra of each sample immediately after they were resuspended 

in D2O. Each 1H-15N HSQC experiment was acquired with 32 scans and 128 increments for a total 

acquisition time of 100 minutes. 15N T1 measurements were acquired for eight different durations of the 

T1 relaxation delay, T= 5, 100, 200, 300, 400, 500, 600, and 800ms. 15N T2 measurements were acquired 

for eight different durations of the T2 relaxation delay, T= 16.6, 33.2, 49.8, 66.4, 99.6, 116.2, 132.8, and 

149.4ms. 1H-15N NOE measurements were recorded with two spectra, one with the NOE effect and one 

without. The standard model free approach34 was used to determine order parameters (S2) for each of the 

CaM-peptide complexes. The order parameters were calculated using the TENSOR program (version 

2.0).35,36  

Model of CaM-eNOS Peptide at 225 nM [Ca2+]. In order to visualize the dynamics data a model of 

CaM-eNOS peptide at 225 nM [Ca2+] was prepared using CNSsolve version 1.2.37 The calculation used 

the structural constraints for the C-terminal residues from the solution structure of CaM with eNOS at 

saturated Ca2+ along with the inter-residue constraints of the C-terminal residues to the eNOS peptide. 

All N-terminal intra and inter-residue constraints were deleted and replaced with constraints for the N-

terminal residues from the apoCaM structure deposited in the PDB (1CFC). The structure calculation 
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was initiated with an extended conformation file. The calculation was run through several iterations of a 

standard simulated annealing protocol to minimize the energies. The average of the final 20 lowest 

energy structures was selected for the visualization model. 

RESULTS  

Fluorescence Spectroscopy of Dansyl-CaM Binding to NOS Peptides. The Ca2+ dependent binding 

properties of the CaM binding domains used in our study were first investigated using dansyl-labeled 

CaM proteins (Figure 1). Dansyl-CaM is a useful tool to detect conformational changes in CaM as a 

result of interactions with Ca2+, peptides or other proteins because the intensity of the fluorescence 

spectrum is enhanced and shifted when the dansyl moiety becomes embedded in a hydrophobic 

environment.31,38 Without peptides or Ca2+ present, dansyl-CaM exhibited a fluorescence maximum at 

510nm (Figure S1a of Supporting Information). When Ca2+ was titrated into the sample a blue shift (to 

490nm) and enhancement of dansyl fluorescence spectrum were observed in a Ca2+ concentration range 

of 0.65-2.86 μM (Figure 1). 

When iNOS peptide was added in the absence of Ca2+ the same blue shift and enhancement of dansyl 

fluorescence spectrum observed with addition of Ca2+ to CaM alone was seen, but not when eNOS 

peptide was added to the dansyl-CaM (Figure S1b, c of Supporting Information). The dansyl-CaM-

iNOS complex showed no Ca2+ dependency when Ca2+ was titrated into the sample, as indicated by the 

lack of fluorescence change (Figure S1b of Supporting Information) and little relative fluorescence 

difference over the whole range of free Ca2+ concentration additions (Figure 1).  With the addition of 

Ca2+, this blue shift and enhancement of the fluorescence spectrum seen with CaM alone was then also 

observed with the eNOS peptide. However, the fluorescence changes of the dansyl-CaM-eNOS complex 

occurred at a much lower Ca2+ concentration range, beginning at 225 nM. This is consistent with 

previous studies of eNOS that show the enzyme requires 200-300 nM concentrations of free Ca2+ to 
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achieve half maximal activity.39,40 Hence a concentration of 225 nM free Ca2+ was used for the NMR 

studies, corresponding to physiological Ca2+ concentrations above basal levels. 

NMR Spectroscopy at Physiological Ca2+ Concentrations. NMR experiments were performed at 

physiological free Ca2+ concentrations to provide further insights into the structural differences between 

the two CaM-NOS complexes. 1H-15N HSQC spectra show that the CaM-eNOS complex at a 

physiological free Ca2+ concentration of 225 nM has a C-terminal lobe that is structurally similar to the 

Ca2+-replete CaM-eNOS complex (Figure 2a, b), and an N-terminal lobe structurally similar to unbound, 

Ca2+ free apoCaM (Figure 2c, d). This can be visualized by overlaying the 15N-HSQC spectra of CaM-

eNOS at 225 nM free [Ca2+] with either Ca2+-replete CaM-eNOS or apoCaM.  Cross peaks for amides in 

the C-domain of CaM-eNOS at 225 nM [Ca2+] overlap with those of Ca2+-replete CaM-eNOS, but 

amides in the N-domain do not (Figure 2a). And vice versa, cross peaks for amides in the N-domain of 

CaM-eNOS at 225 nM [Ca2+] overlap with those of apoCaM, but amides in the C-domain do not (Figure 

2c). More specifically the cross peaks assigned to G25 (EF1), G61 (EF2), I27, I63 (the short antiparallel 

β-sheets between EF1 and EF2), G98 (EF3), G134 (EF4) and I100 and V136 (the short antiparallel β-

sheets between EF3 and EF4) have specific chemical shifts characteristic of Ca2+ binding to each EF 

hand and the conformation of the EF hand pairs. The cross peaks assigned to G98, G134, I100 and V136 

for CaM-eNOS at 255 nM Ca2+ have very similar chemical shifts to those assigned for Ca2+-replete 

CaM-eNOS, indicating that the C-lobe of CaM at 225 nM [Ca2+] is Ca2+ replete and bound to the eNOS 

peptide. On the other hand, the cross peaks assigned to G25, G61, I27 and I63 have very similar 

chemical shifts to those assigned for apoCaM, indicating that the N-lobe of CaM at 225 nM [Ca2+] is 

Ca2+ deplete and not bound to the eNOS peptide. 

This behavior is clearly shown by calculating the chemical shift difference between each set of 

amides. In the overlay of CaM-eNOS at 225 nM free [Ca2+] and Ca2+-replete CaM-eNOS the amide 
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chemical shifts show a difference for all the residues of the N-domain, whereas the amide chemical 

shifts of the C-domain have very small differences (Figure 2b). In the overlay of CaM-eNOS at 225 nM 

[Ca2+] and apoCaM the amide chemical shifts show a difference for all the residues of the C-domain, 

whereas the amide chemical shifts of the N-domain have very small differences (Figure 2d). 

Comparison of the 1H-15N HSQC spectrum of the eNOS-CaM complex under Ca2+ replete versus that at 

a Ca2+ concentration of 225nM clearly shows that the C-lobe of CaM is the first to bind to Ca2+ and the 

eNOS peptide. This is further supported by comparing the 1H-15N HSQC spectra in the presence of 

225nM [Ca2+] and the apo form of the CaM. These results are consistent with the known Ca2+ binding 

properties of the N and C lobes of free CaM in solution.41,42 

When a similar comparison is made using the CaM-iNOS complex, 1H-15N HSQC spectra indicate 

that the CaM-iNOS complex maintains structural integrity at all Ca2+ levels (Figure 3). This observation 

makes sense because CaM interacts with iNOS in a Ca2+-independent manner. Figure 3 shows 1H-15N 

HSQC spectra of CaM-iNOS at 17 nM, 100 nM and 225 nM free [Ca2+]. The spectra at all 3 of these 

low Ca2+ levels show the same chemical shift patterns for the amides (Figure 3a- c), indicating that the 

structure of this complex doesn’t change going from free Ca2+ levels representative of resting 

intracellular Ca2+ levels (17 and 100 nM Ca2+) to elevated Ca2+ levels (225 nM Ca2+). When these 

spectra are compared to the 1H-15N HSQC spectrum of CaM-iNOS complex at saturated [Ca2+] (10 mM 

Ca2+) we see that the spectra all overlay quite well. The few amide cross peaks that are slightly shifted 

are likely due to the different buffer and pH used for the low Ca2+ sample (pH 7.2) and saturated Ca2+ 

samples (pH 6.5). A comparison of the specific cross peaks characteristic of Ca2+ binding to each EF 

hand and the conformation of the EF hand pairs as done with CaM-eNOS for all the CaM-iNOS samples 

illustrates that the structure of CaM bound to the iNOS peptide is very similar at low and high free Ca2+ 

concentrations. This suggests that the CaM-iNOS complex binds Ca2+ at this low basal Ca2+ level. NMR 
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data could not be collected for the iNOS peptide interacting with apoCaM or CaM1234 (CaM that 

contains a mutation in each EF hand that disables Ca2+ binding) due to precipitation of the protein upon 

addition of the peptide. This behavior has also been seen in other studies at higher concentrations of 

CaM and iNOS peptide.43,44 This suggests that in the Ca2+ deplete form CaM-iNOS adopts a different 

conformation which may expose hydrophobic regions that leads to this aggregation, or that a larger 

portion of the iNOS enzyme is required for binding in apo conditions, as previously suggested.40  

Amide Exchange and Internal Protein Dynamics for CaM-eNOS Complexes at Low and 

Saturating Ca2+ Concentrations. H/D exchange patterns of amides were classified into three categories 

based on the length of time for which the amide peaks were observable in the spectra after D2O 

exposure: fast exchange (amide peaks disappear before first experiment); intermediate exchange (amide 

peaks disappear between 3 min and 100 min); and slow exchange (amide peaks remained longer than 

200 min). The criteria for slow exchange were based on the observation that little change occurs in the 

spectrum when additional 1H-15N HSQC spectra were obtained after 200 min (data not shown). An 

intermediate exchange lower limit of 3 min was determined by the amount of time elapsed prior to the 

acquisition of the first NMR spectrum. 

The amide exchange investigation of the CaM-eNOS complex under Ca2+ saturated conditions showed 

very little change over the period investigated (Figure 4a-c). Relatively few residues have undergone 

exchange with the D2O as evidenced by the lack of signal disappearance in the 1H-15N HSQC spectra. 

The few residues that have undergone exchange are found to be at the N and C termini, in the loop 

regions between the two EF hands in each lobe of CaM and in the linker region. These are residues that 

are exposed to the solvent and are not well protected by secondary structure elements, such as H-

bonding in α-helices, or by binding to the eNOS peptide. Figure 6a shows the H/D exchange data 

projected onto the previously determined structure of the Ca2+ replete CaM-eNOS complex.10,45 
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Residues that have undergone fast exchange were colored red, while residues that exhibit intermediate 

exchange have been colored light blue and residues exhibiting slow exchange colored blue. 

 When the same set of experiments were performed at 225 nM [Ca2+], after 100 min most amide 

protons exchanged with the D2O as shown by the lack of amide cross peaks in the 1H-15N HSQC 

spectrum. After 200 min only a very few amide resonances remained (Figure 4d-f). The amides that 

exhibited fast H/D exchange were mostly found to be from residues in the N-lobe of CaM, while those 

that were protected from exchange, and most of those exhibiting intermediate exchange, belonged to 

residues in the C-lobe of CaM. This amide H/D data was projected onto a model representative of the 

NMR data for the CaM-eNOS complex at 225 nM [Ca2+], using the same color scheme as above, with 

the side chains of the slow exchanging residues shown (Figure 6b). Note that this model has been 

prepared to better visualize the differences between the structure of the CaM-eNOS complex at the 225 

nM Ca2+ concentration compared to the structure at saturating Ca2+ concentrations. It does not represent 

a 3D solution structure of the complex under these conditions.  

As was described above, the 1H-15N HSQC data suggest that only the C-lobe of CaM is found to be 

Ca2+-replete and bound to the eNOS peptide, while the N-lobe would be Ca2+ free and not bound to the 

peptide. Since the N-lobe is not bound to the peptide it would be more exposed to the solvent, which 

could explain why almost all of the N-lobe residues undergo fast exchange. There are a few residues of 

the N-lobe that exhibit intermediate exchange, such as K30, M36, M51, M72 and M76. These residues 

are all part of α-helices and are found to directly interact with L509, one of the anchoring residues of 

eNOS, in the crystal and solution structures of the complex (Table S1 of Supporting Information).10,45,46 

This suggests that even though this lobe is Ca2+ free and not tightly bound to the peptide it is still 

maintaining its structural integrity and might also maintain some transient interactions with the peptide. 

The amides of the C-lobe residues that show intermediate or slow exchange have been previously shown 
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to interact with the 1-5-8-14 anchoring residues of the eNOS peptide.10,45 The four slow exchanging 

amides correspond to residues L105, L112, E140 and F141 which interact with the anchoring residues 

F496, A500 and V503 of the eNOS peptide in the structure of the Ca2+-replete CaM-eNOS complex. 

The amides that show intermediate exchange are found to either interact with these anchoring residues 

of the eNOS peptide or be a part of α-helices in this lobe.  

The internal dynamics of the CaM complexes at 225 nM [Ca2+] and saturating [Ca2+] were further 

investigated by measuring the relaxation properties of the backbone 15N nuclei in CaM. T1, T2, and 1H-

15N NOE values were measured (Figures S2 and S3 of Supporting Information). The standard model 

free approach34 was used to determine order parameters (S2) and internal correlation times (τi) for each 

of the CaM-peptide complexes (Figures 6, S2, S3 and Table S2 of Supporting Information). The 

comparison of the internal dynamics between the CaM-eNOS complex at 225 nM [Ca2+] and saturating 

[Ca2+] agrees well with the results found for the H/D exchange experiments. For the CaM-eNOS 

complex at saturating Ca2+ concentration low S2 and high τi values were found for the residues of the 

linker region and also in the loop regions between the EF hand pairs. The high degree of mobility 

observed in these regions agrees very nicely with the H/D exchange data, which is shown in figure 6a by 

the correlation between worm radius and structure color. S2 values for the rest of CaM were between 0.8 

and 1.0, indicating very little mobility, and agreeing very well with the high degree of exchange 

protection observed in the H/D exchange data. 

When the internal dynamics were analyzed for the CaM-eNOS complex at 225 nM [Ca2+], a 

significant increase of internal dynamics is found, especially in the N-lobe. The linker region shows the 

same high degree of mobility as observed at saturating [Ca2+]. However, an increase of mobility is 

observed for the loop regions between the EF hand pairs, which can be seen by comparing figures 6a 

and 6b. The average order parameter values for each structural element of the C-lobe are very similar at 
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225 nM and saturating [Ca2+] (Table S2 of Supporting Information), however, the CaM-eNOS complex 

at 225 nM [Ca2+] displays greater fluctuation in its S2 values, and also contains a greater number of 

residues that show an increased internal correlation time, τi (Figure S2 of Supporting Information). In 

contrast, the N-lobe of CaM with eNOS at 225 nM [Ca2+] displays an increased internal mobility across 

the whole domain compared to CaM-eNOS at saturated Ca2+. More specifically, EF hands 1 and 2 have 

average order parameter values of 0.75 and 0.72, respectively, compared to 0.92 and 0.89 for CaM-

eNOS at saturating [Ca2+] (Table S2 of Supporting Information). The N-terminal residues, EF hands and 

loop region between the EF hand pairs also show an increased τi compared to CaM-eNOS at saturating 

[Ca2+], indicating faster internal motions for these regions at 225 nM [Ca2+]. The observed increased 

mobility, shown by the lower S2 and increased τi, for the N-lobe of CaM indicates a more dynamic and 

less rigid structure for this lobe, which correlates well with the H/D exchange data.  

Amide Exchange and Internal Protein Dynamics for CaM-iNOS Complexes at Low and 

Saturating Ca2+ Concentrations. The amide exchange experiments of the CaM-iNOS complex under 

Ca2+ saturated conditions showed very little change over the time period investigated (Figure 5a-c), with 

the same location of residues undergoing H/D exchange as did in the CaM-eNOS complex. This H/D 

exchange data was projected onto the previously determined solution structure of the Ca2+-replete CaM-

iNOS complex10,46 using the same color scheme as described earlier (Figure 6c). However, in contrast to 

the CaM-eNOS complex at 225nM Ca2+ concentration, the C-lobe amides of the CaM-iNOS complex at 

225nM Ca2+ concentration had faster exchange rates than the N-terminal residues (Figure 5d-f). The 

amides that undergo slow and intermediate exchange correspond to residues that have been found to 

interact with the 1-5-8-14 anchor residues (L515, V519, V522, and L528) of the iNOS peptide (Figure 

5d-f, 6d and Table S1 of Supporting Information). The iNOS peptide contains hydrophobic residues 

(V522, L523, Met527, and L528) that interact with hydrophobic residues of the N-lobe of CaM (F16, 
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F19, M36, L39, Met71, Met72, and Met76).10,46 The slower exchange of these N-lobe CaM residues 

shows they are protected from the D2O solvent, indicating this is a tight hydrophobic interaction with the 

iNOS peptide. In contrast to the iNOS peptide, the eNOS peptide contains hydrophilic residues at these 

locations (with the exception of V503 and L509) that are exposed to the solvent and do not protect the 

CaM from exchange as shown in the H/D exchange data. The amides of the C-lobe residues of CaM 

display mostly fast exchange, indicating that there is less protection due to a weaker interaction with the 

iNOS peptide.  

Analyzing the internal dynamics between the CaM-iNOS complex at 225 nM [Ca2+] and saturating 

[Ca2+] shows them to agree well with the results found for the H/D exchange experiments. For the CaM-

iNOS complex at saturating [Ca2+] low S2 and high τi values were found for the residues of the linker 

region and also in the loop regions between the EF hand pairs, much like was observed in the CaM-

eNOS complex at saturating [Ca2+], which agrees very nicely with the H/D exchange data, (Figure 6c). 

S2 values for the rest of CaM were between 0.8 and 1.0, indicating very little mobility, and agreeing very 

well with the high degree of stability observed from the H/D exchange data. 

When the internal dynamics were analyzed for the CaM-iNOS complex at 225 nM [Ca2+], the same 

high degree of mobility observed for the linker region and for the loop regions between the EF hands at 

saturating [Ca2+] is shown (Figures 6c, d). The average order parameter values for each structural 

element of the complex are quite similar at 225 nM and saturating [Ca2+] (Table S2 of Supporting 

Information), however, the CaM-iNOS complex at 225 nM [Ca2+] displays greater fluctuation in its S2 

values, and also contains a greater number of residues that show an increased τi, The observed increase 

in τi for the EF hands and loop regions of CaM indicates that the residues in these regions exhibit faster 

internal motions at 225 nM [Ca2+] (Figure S3 of Supporting Information). Also Helix H of the CaM-

iNOS complex at 225 nM [Ca2+] is found to have an increased internal mobility (lower S2 values) 
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compared to CaM-iNOS at saturated [Ca2+]. This data indicates that the CaM-iNOS complex has 

increased internal mobility at lower [Ca2+], with a more dynamic C-lobe than N-lobe, which correlates 

well with the H/D exchange data.  

DISCUSSION 

CaM is able to fine-tune the orientation of its domain and residue contacts to accommodate its binding 

to a variety of target proteins. Mammalian NOS enzymes provide an ideal system for investigating the 

differences in Ca2+ dependent activation of target enzymes. The structures of CaM interacting with 

target peptides derived from the three enzymes have all been shown to be very similar and to consist of 

two EF hand pairs lined by a short connector wrapped around a helical peptide target. However, the 

three NOS enzymes show different Ca2+ dependent activation by CaM. The iNOS enzyme is fully active 

at basal levels of Ca2+ (<100 nM) in a cell, eNOS enzymes require 200-300 nM concentrations of free 

Ca2+ to achieve half maximal activity.39,40 Most investigations have focused on the Ca2+ dependent 

activation of NOS enzymes by CaM under non-physiological conditions. Experiments are generally 

performed in the presence of excess Ca2+ or excess Ca2+ chelator. In the present study, more 

physiological relevant free Ca2+ conditions were used to investigate the differential CaM Ca2+-dependent 

binding and activation of iNOS end eNOS enzymes. The dynamics of the binding were monitored using 

NMR H/D exchange and 15N relaxation experiments under different physiologically relevant free Ca2+ 

concentrations to provide a better understanding of the process. In addition, this approach identified the 

roles played by the N and C lobes of CaM in the binding and activation of the NOS enzymes. This is 

important since the binding of Ca2+ to CaM is cooperative within each lobe of CaM but not between the 

lobes, meaning that Ca2+-binding to N- and C-domains is exclusive from one another.41,42 On its own, 

the C-lobe of CaM binds Ca2+ with a higher affinity (Kd =10-6M) than the N-lobe (Kd = 10-5M).   
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The Ca2+ titration fluorescence experiments provide information about the conformational transitions 

of CaM during the binding of peptides and Ca2+. In the absence of peptides CaM undergoes a 

conformational transition from apo to Ca2+ bound at Ca2+ concentrations above 650 nM. When iNOS 

peptide is added to the dansyl-CaM a fluorescence maximum is seen at 490nm and no transition is 

observed during the Ca2+ titration, indicating CaM is bound to the iNOS peptide in both the absence and 

presence of Ca2+. In contrast, the eNOS peptide is not bound to CaM in the absence of Ca2+ but binds to 

CaM when the Ca2+ concentration is at least 225 nM, consistent with the results reported for holo eNOS 

enzymes.39,40  

At Low Ca2+ Concentrations CaM’s N-Lobe Dissociates From the eNOS Peptide. At resting 

intracellular Ca2+ concentrations CaM is unable to bind to the eNOS CaM binding domain peptide, 

whereas it can bind at an elevated free Ca2+ concentration of 225 nM. At 225 nM free [Ca2+] NMR data 

shows the CaM-eNOS complex displays a structure where the C-lobe is bound to the peptide, but the N-

lobe is not. In a previous investigation, we used gel mobility shift assays to monitor the binding of the 

eNOS peptide to different truncated half CaM constructs under Ca2+ replete conditions.30 No binding 

was observed between eNOS and nCaM, and weak binding occurred between the peptide and cCaM. 

These half CaMs also produced little or no activity of the eNOS enzyme. Our present results showing a 

closer association between the C-lobe of CaM and the eNOS peptide are consistent with our previous 

binding studies. 

CaM-iNOS Complex Has Similar Conformations at Physiological and Saturating Ca2+ Levels. 

Most studies analyzing this Ca2+-independent nature of CaM and iNOS use apoCaM, however the 

cellular environment is not fully deplete of Ca2+, with the basal intracellular Ca2+ concentration being on 

the order of 50-100 nM.28,29 In order to characterize the complex under these physiological conditions 

1H-15N HSQC experiments of the CaM-iNOS complex were performed at various free Ca2+ 
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concentrations ranging from resting intracellular Ca2+ levels to elevated Ca2+ levels and compared to 

fully saturated Ca2+-CaM conditions. The current study suggests that CaM adopts the same structure as 

observed in Ca2+-replete CaM-iNOS when bound to the iNOS peptide at both resting and elevated 

intracellular Ca2+ levels.   

Activity of the iNOS enzyme decreased to less than 25% when co-expressed with a mutant CaM1234 

used to emulate  apoCaM.47 In a study by Ruan et al40, iNOS was found to be  maximally active at Ca2+ 

concentrations as low as 0.1 nM in vitro and thus is probably maximally active in vivo at basal 

intracellular Ca2+ levels. This suggests that at the lowest Ca2+ level (17 nM) used in this study the CaM-

iNOS complex is Ca2+ replete, otherwise a decrease in iNOS activity at Ca2+ concentrations as low as 

0.1 nM would have been seen. 

CaM-eNOS and CaM-iNOS Complexes Show Different Dynamic Interactions at Low and 

Saturating Ca2+ Concentrations. The dynamic properties of these complexes were further investigated 

by performing amide H/D exchange time-course experiments and NMR 15N relaxation experiments. NH 

exchange experiments provide detailed information on the degree of protection of specific residues 

within a protein or protein complex. This information is useful for determining the stability of secondary 

structural elements and also identifying residues involved in co-operative binding of a lgand.26,48 The 

NMR 15N relaxation experiments can be interpreted by the model-free approach to characterize 

backbone mobility using an order parameter S2, which may be interpreted as the amplitude of the 

motion, and a correlation time, τi, which is the characteristic time constant of this motion.  

At the 225 nM free Ca2+ concentration CaM alone does not bind Ca2+, however, the presence of the 

eNOS peptide enhances the Ca2+ affinity of the C-lobe of CaM. The fast exchange of the C-lobe amides 

corresponding to the residues involved in coordinating the Ca2+ ions indicates that this isn’t a very stable 

or strong interaction at the 225 nM free Ca2+ concentration, when compared to the strong association at 
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saturating [Ca2+]. The few residues of the N-lobe that exhibit intermediate exchange at low [Ca2+] 

suggest that even though this lobe is likely Ca2+ deplete and not bound to the peptide, based on chemical 

shift comparison, it still maintains its structural integrity and remains folded. This data correlates well 

with our previous investigation that showed only full length CaM, and not the half CaMs, is able to fully 

activate eNOS.30 The internal dynamics for the CaM-eNOS complex at 225 nM [Ca2+] and saturating 

[Ca2+] also agrees with our H/D exchange data. The lower order parameters observed for the linker 

region and loop regions between the EF hand pairs at low and saturating [Ca2+] along with the fast 

exchange observed from the H/D exchange data show these regions have increased internal mobility and 

less stability. The increased mobility, shown by the lower S2 and increased τi, for the N-lobe of CaM 

indicates a more dynamic and less rigid structure, which correlates well with the H/D exchange data. 

The H/D exchange and internal mobility results show that the residues of CaM interacting with eNOS’ 

1-5-8-14 anchoring residues have a strong interaction at low Ca2+ concentrations, which keeps the 

complex bound, while the rest of the residues of the CaM protein are able to fluctuate or “breathe”. 

More specifically, the residues of the C-lobe have a lower degree of internal mobility (higher S2) and 

higher exchange protection, indicating stronger interaction with the eNOS peptide to hold the complex 

together, while the N-lobe is more dynamic. At saturating Ca2+ concentrations the entire CaM-eNOS 

complex has become more rigid, or structurally stable, than it is at physiological Ca2+ levels. 

In contrast, for the CaM-iNOS peptide complex at the 225 nM free Ca2+ concentration, the C-lobe 

shows faster exchange rates than the N-lobe of CaM. This supports our earlier studies using peptides 

bound to mutant half-CaM proteins indicating that the N-lobe of CaM may not fully dissociated from the 

iNOS peptide even at very low Ca2+ concentrations.30 Notably when compared to Ca2+-replete CaM co-

expression, iNOS showed significant 70% activity when co-expressed with only nCaM and only 12% 

activity when co-expressed with cCaM. These results show that the N-terminal domain of CaM contains 
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important binding and activating elements for iNOS.30,49 The internal dynamics for the CaM-iNOS 

complex also agrees with our H/D exchange data. As seen with the CaM-eNOS complex, the fast amide 

exchange and faster internal motions observed for the EF hands and loop regions of CaM at the 225 nM 

[Ca2+] indicates that the co-ordination of Ca2+ by these residues isn’t a very strong interaction when 

compared to saturating [Ca2+]. The H/D exchange and internal mobility results show that the residues of 

CaM interacting with iNOS’ 1-5-8-14 anchoring residues have a strong interaction at low [Ca2+], while 

the rest of the residues of CaM display more dynamics and have less exchange protection. More 

specifically residues of CaM’s N-lobe have a lower degree of internal mobility and higher exchange 

protection, indicating stronger interaction with the iNOS peptide, compared to the C-lobe. Taken 

together, this data indicates that the CaM-iNOS complex has increased internal mobility at lower [Ca2+], 

with a more dynamic C-lobe than N-lobe.  

At Low Ca2+ Concentrations CaM Has a Different Interaction With the eNOS and iNOS 

Peptides. Our H/D exchange and internal dynamics data show the CaM-iNOS and CaM-eNOS 

complexes exhibit similar dynamic differences between 225 nM and saturated [Ca2+], however, the 

interaction with the peptide is different with respect to the individual CaM lobes at low [Ca2+]. This is 

clearly shown by the lower degree of internal mobility (higher S2 and less residues with τi values) and 

higher exchange protection of the residues of the N-lobe of CaM in the CaM-iNOS complex compared 

to those of the CaM-eNOS complex, while the residues of the C-lobe of CaM in the CaM-eNOS 

complex display lower internal mobility (higher S2 and less residues with τi values) and higher exchange 

protection. Our results provide further evidence of stronger interactions of the N-lobe of CaM with the 

iNOS peptide compared to the eNOS peptide, contributing to the stronger binding of CaM with iNOS, as 

seen in previous studies.10,46,50  
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This is the first study to present NMR structural and dynamics data of the CaM-NOS complexes at 

free Ca2+ concentrations that are in the resting and elevated intracellular Ca2+ concentration range. These 

results demonstrate the importance of performing experiments on CaM-NOS interactions at Ca2+ 

concentrations that correspond to Ca2+ levels relevant to the regulation of NOS by CaM in vivo.  We 

show that when experiments are performed at Ca2+ concentrations that are typically used in the 

literature, i.e. saturating [Ca2+], the CaM-NOS systems are less dynamic than at Ca2+ concentrations 

corresponding to basal and elevated cellular levels. The studies of the CaM-NOS complexes that were 

carried out at saturated Ca2+ concentrations miss differences in dynamics that are only detectable at 

physiological Ca2+ levels. Thus, studies involving CaM interactions with NOS at saturating Ca2+ 

concentrations don’t allow the investigator to see the contributions of the dynamics present in the CaM-

NOS complexes. The structures at saturating Ca2+ concentrations don’t tell the whole story, one needs to 

look at the dynamics at the same time to obtain a complete picture of the molecular basis of NOS 

regulation by CaM. This illustrates the importance of analyzing these complexes at Ca2+ concentrations 

that are within the physiological range in order to fully understand how NOS is regulated by CaM 

interactions in vivo.  
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FIGURE CAPTIONS  

FIGURE 1. Ca2+ dependency of dansyl-CaM fluorescence with or without eNOS and iNOS peptides. 

Normalized fluorescence is shown for CaM, CM-eNOS complex, and CaM-iNOS complex. 

FIGURE 2. (a) Overlay of 1H-15N HSQC spectra of CaM-eNOS peptide complex at 10mM CaCl2 

(green) and 225 nM free [Ca2+] (red). (b) Chemical shift differences between CaM-eNOS peptide 

complex at 10mM CaCl2 and 225 nM free [Ca2+]. (c) Overlay of 1H-15N HSQC spectra of apoCaM 

(green) and CaM-eNOS peptide complex at 225nM free [Ca2+]  (red). (d) Chemical shift differences 

between apoCaM and CaM-eNOS peptide complex at 225nM free [Ca2+].  

FIGURE 3. (a,b,c) 1H-15N HSQC spectra of CaM-iNOS peptide complex at 17 nM, 100 nM and 225 nM 

free [Ca2+]. The spectra at all 3 of these low [Ca2+]  levels show the same amide chemical shift patterns. 

(d) Overlay of 1H-15N HSQC spectra of CaM-iNOS peptide complex at 10mM CaCl2 (green) and 

225nM free [Ca2+] (red). The 1H-15N HSQC spectra indicate that CaM-iNOS peptide complex maintains 

structural integrity at all Ca2+ levels.  

FIGURE 4. Selected spectra from the amide H2O/D2O exchange time-course. (a) 1H-15N HSQC 

spectrum of CaM-eNOS peptide complex at 10mM CaCl2 obtained in H2O. The amide peaks labeled in 

black indicate amides that have undergone fast exchange with D2O, amide peaks labeled grey indicate 

amides that have undergone intermediate exchange. (b,c) Spectra obtained 100 and 200 min after 

addition of D2O. (d) 1H-15N HSQC spectrum of CaM-eNOS peptide complex at 225nM free [Ca2+]  

obtained in H2O. (e,f) Spectra obtained 100 and 200 min after addition of D2O.  

FIGURE 5. Selected spectra from the amide H2O/D2O exchange time-course. (a) 1H-15N HSQC 

spectrum of CaM-iNOS peptide complex at 10mM CaCl2 obtained in H2O. The amide peaks labeled in 

black indicate amides that have undergone fast exchange with D2O, amide peaks labeled grey indicate 

amides that have undergone intermediate exchange.  (b,c) Spectra obtained 100 and 200 min after 
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addition of D2O. (d) 1H-15N HSQC spectrum of CaM-iNOS peptide complex at 225nM free [Ca2+]  

obtained in H2O. (e,f) Spectra obtained 100 and 200 min after addition of D2O. 

FIGURE 6.Worm models of CaM-eNOS peptide and CaM-iNOS peptide complexes at 225 nM [Ca2+]  

and saturated [Ca2+]  illustrating their internal dynamics and amide H2O/D2O exchange data. The worm 

models were prepared using UCSF Chimera with the render by attribute function. The worm radius 

ranges from 0.25, corresponding to a S2 value of 1, to 4, corresponding to a S2 value of 0.4. The color of 

the residue represents its amide H2O/D2O exchange data. Residues that display fast D2O exchange rates 

are colored red on the ribbon structure. Residues that display intermediate D2O exchange rates are 

colored light blue on the ribbon structure. Residues that display slow D2O exchange rates are colored 

blue on the ribbon structure with their side chain atoms shown. (a) Worm models and amide H2O/D2O 

exchange data for CaM-eNOS complex at 10mM CaCl2 projected onto previously determined solution 

structure of Ca2+-replete CaM-eNOS (PDB 2LL7). (b) Worm models and amide H2O/D2O exchange 

data for CaM-eNOS complex at 225nM free [Ca2+]  projected onto a model representative of the NMR 

data for the CaM-eNOS complex at 225 nM [Ca2+].  (c) Worm models and amide H2O/D2O exchange 

data for CaM-iNOS complex at 10mM CaCl2 projected onto previously determined structure of Ca2+-

replete CaM-iNOS (PDB 2LL6).  (d) Worm models and amide H2O/D2O exchange data for CaM-iNOS 

complex at 225nM free [Ca2+]  projected onto previously determined structure of Ca2+-replete CaM-

iNOS (PDB 2LL6). The bound peptide is colored black and shown in wire form. The CaM-peptide 

complexes are viewed along the bound peptide helix from its C-terminus (front view) in the left column 

and rotated 90° around the horizontal axis with the C-terminus of the bound peptide on the top (side 

view) in the right column. 
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