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Abstract. Linearization is a useful tool for analyzing the stability of nonlinear differential equa-
tions. Unfortunately, the proof of the validity of this approach for ordinary differential equations
does not generalize to all nonlinear partial differential equations. General results giving conditions for
when stability (or instability) of the linearized equation implies the same for the nonlinear equation
are given here. These results are applied to stability and stabilization of the Kuramoto-Sivashinsky
equation, a nonlinear partial differential equation that models reaction-diffusion systems. The sta-
bility of the equilibrium solutions depends on the value of a positive parameter ν. It is shown that if
ν > 1, then the set of constant equilibrium solutions is globally asymptotically stable. If ν < 1 then
the equilibria are unstable. It is also shown that stabilizing the linearized equation implies local ex-
ponential stability of the equation. Stabilization of the Kuramoto-Sivashinsky equation using a single
distributed control is considered and it is described how to use a finite-dimensional approximation
to construct a stabilizing controller. The results are illustrated with simulations.
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1. Introduction. The Kuramoto-Sivashinsky (KS) equation was introduced by
Kuramoto [34] in one space dimension for the theoretical study of a turbulent state
in a distributed chemical reaction system. The KS equation is a mathematical model
of reaction-diffusion systems and is related to various pattern formation phenomena
where turbulence or chaos appear [4, 20, 24, 32, 37, 39, 47, 48].

Many researchers have studied the stability of the dynamics of the KS equation
numerically; see for instance, [5, 10, 14, 17, 21, 22, 25, 30]. Lyapunov’s indirect
method was used to analyze the stability of the KS equation in [4, 12, 23, 40, 45].
Analytical results using the linearization as well as numerical studies of the dynamics
of the KS equation have indicated that the KS equation is unstable for small values
of a parameter ν. In [56], it was shown that the zero equilibrium solution of the
KS equation, with periodic boundary conditions and odd initial condition, is globally
exponentially stable for certain values of the instability parameter ν. A more general
result will be obtained in this paper.

A number of papers on stabilization of the KS equation have been published.
Boundary control of the KS equation has been widely explored [20, 32, 38, 39, 47].
The basic idea is to choose the boundary conditions so that the energy of the nonlinear
system decays to zero exponentially. Distributed control of the KS equation has been
approached by stabilizing the corresponding linearized system [1, 4, 33, 37, 40, 49].

Use of Lyapunov’s indirect method for infinite-dimensional systems requires justi-
fication that the stability of the linearized systems reflects the stability of the nonlinear
system. The proof for finite-dimensional systems does not generalize, and in fact sta-
bility of a linearized PDE does not always imply the same for the original PDE. In
[16] it is shown that a nonlinear wave equation can fail to be exponentially stable
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even when the linearization is exponentially stable. Another counter-example, due to
Zwart [57], is given in this paper where the linearization is asymptotically stable but
the nonlinear system is not. A further example is given in [58, sect. 18.3].

In this paper general conditions for when Lyapunov’s indirect method can be
used for infinite-dimensional systems are provided. It is proven that the KS equations
satisfies these conditions. That is, it is proven that stabilizing the linearized KS
equation will stabilize the nonlinear infinite-dimensional KS equation.

There are some results justifying the use of a linearization to analyze the stability
of a nonlinear infinite-dimensional system. Most results assume that the nonlinear
part of the generator is continuous, and satisfies additional assumptions. In [50] the
following class of quasi-linear systems on a Banach space X is considered:

ż (t) = Az (t) + f (z (t)) ,
z (0) = z0,

where z (t) ∈ X is the state and z0 is the initial condition. The operator A : D (A) ⊂
X → X is a linear operator that generates a C0-semigroup in X and the nonlinear
operator f : X → X is Fréchet differentiable. These assumptions imply that the
nonlinear C0-semigroup corresponding to the nonlinear system is continuously Fréchet
differentiable [50, Theorem 11.18]. This was used to prove that if the system linearized
at an equilibrium solution is exponentially stable, then the nonlinear system is locally
exponentially stable [50, Theorem 11.22]. The conditions on f were relaxed in [28,
Cor. 2.2]. This is a special case of the general result [28, Thm. 2.1] for which
the conditions are difficult to check. In [51, Sect. VI.8] conditions for linearized
stability where the nonlinear part may be discontinuous and the linear part of the
generator is self-adjoint and non-negative are provided. However, the KS equation
has a discontinuous nonlinearity that does not satisfy the assumptions in [51].

In the next section, general results on linearized stability analysis for dynamical
systems on Banach spaces are presented. The key point is that the nonlinear semi-
group must be Fréchet differentiable with derivative corresponding to the semigroup
of the linearization. Also, the linearized system must be exponentially stable in order
for a prediction of local exponential stability of the nonlinear system to be obtained.
Earlier results justifying linearized stability analysis can be regarded as special cases
of this result. The KS equation is then described along with some properties of the
system. It is shown that if ν > 1, then the set of constant equilibrium solutions is
globally asymptotically stable. Fréchet differentiability of the C0-semigroup corre-
sponding to the controlled KS equation is proven in section 4. This is used to show
that if ν < 1 then the constant equilibria are unstable. In section 5, an approach to
design of stabilizing feedback controllers for the KS equation using finite-dimensional
approximations of the linearization is described. These results are illustrated in section
6 by a numerical example showing control of an unstable equation between different
states.

2. Linearized stability of partial differential equations. Since it is often
difficult to find a Lyapunov function, it is natural to use Lyapunov’s indirect method to
analyze the stability of nonlinear infinite-dimensional dynamical systems. However,
the proof for ordinary differential equations that stability of the linearized system
implies local stability of the original system relies on the finite-dimensionality of the
underlying state-space; see for instance [31]. For infinite-dimensional systems, the
asymptotic stability of the linearized system does not always imply the asymptotic
stability of the original nonlinear infinite-dimensional system; see for instance [16]
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where it is shown that a nonlinear wave equation can fail to be exponentially stable
even when the linearization is exponentially stable. This point is further illustrated
here by the following counter-example found by Hans Zwart [57] .

Example 2.1. [57] Consider the nonlinear system defined on the Hilbert space
l2 (C).

ż (t) = F (z (t)) , t ≥ 0
z (0) = z0.

(2.1)

where z = (z1, z2, · · · , zn, · · · ), z0 = (z01, z02, · · · , z0n, · · · ) for , n = 1, · · · ,∞ and

F (z (t)) = −


1 0 . . .

0
. . .

1
n

. . .

 z(t) +


z2

1 (t)
...

z2
n (t)

...

 . (2.2)

This system has infinitely many equilibrium solutions since F (z) = 0 if and only
if − 1

nzn + z2
n = 0 for n = 1, · · · ,∞. This implies that zn = 0 or zn = 1

n . The set of
equilibria is therefore

E =

{
z ∈ l2| zn ∈

{
0,

1

n

}
, n = 1, · · · ,∞

}
.

Linearize the system (2.1) around the zero element z = {0, 0, . . .} to obtain

ż (t) = Az (t) , t ≥ 0
z (0) = z0,

(2.3)

where

A = −


1 0 . . .

0
. . .

1
n

. . .

 . (2.4)

The C0-semigroup generated by the operator A is asymptotically stable.
Choose an equilibrium ze ∈ E with for some positive integer n, ze,n = n and all

other components of ze equal to zero; that is ze,m = 0, m 6= n. If z(0) = ze then for
all t

‖z (t)− ze‖ =
1

n
6= 0.

Hence, the zero equilibrium is not asymptotically stable.�
As mentioned in the introduction, further examples can be found in [16, 58]. Thus,

the Lyapunov Indirect method cannot always be used for infinite-dimensional systems.
Conditions for when the stability (or instability) of the linearized infinite-dimensional
system implies the same stability as for the nonlinear system are needed.

3



Definition 2.2. A family of operators S(t), t ≥ 0 on a Banach space X is said
to be a nonlinear C0-semigroup if

• For all z ∈ X, t, τ ≥ 0,

S(t+ τ)z = S(t)S(τ)z

• S is a continuous operator from X ×R+ into X.
Consider the general nonlinear infinite-dimensional system defined on a Banach

space X,

ż (t) = F (z (t)) ,
z (0) = z0,

(2.5)

where the nonlinear operator F : D (F ) ⊂ X → X generates a nonlinear C0-semigroup
S (t). Let ze be an equilibrium solution to the system. There are two basic definitions
of derivatives.

Definition 2.3. An operator F : X → X defined on a normed linear space X is
Fréchet differentiable at z0 if there exists a bounded linear operator DF (z0) : X → X
such that for all h

lim
h→0

‖F (z0 + h)− F (z0)−DF (z0)h‖
‖h‖

= 0. (2.6)

That is, there exists a function f(z), limz→0 f(z) = 0 such that

F (z0 + h)− F (z0) = DF (z0)h+ f(h)‖h‖.

The operator F is said to be Fréchet differentiable if it is Fréchet differentiable at
every z0 ∈ X.

Definition 2.4. Let F : D (F ) ⊂ X → X be an operator defined on a linear
space D (F ) contained in a Banach space X. The operator F is Gâteaux differentiable
at z0 ∈ D (F ) if there exists a linear operator F ′ : X → X such that for z0, h ∈ D (F ) ,

lim
ε→0

F (z0 + εh)− F (z0)

ε
= F ′h.

The Fréchet derivative is a very strong definition. The unbounded nature of
the generator in partial differential equations means that these generators are not
generally Fréchet differentiable. Hence, the Gâteaux derivative is used to linearize the
differential equation. However, even though the generator is not Fréchet differentiable,
the semigroup is generally Fréchet differentiable. The derivative of the semigroup
can be used to deduce local stability/instability. A similar approach was used in
[19, Proposition 2.1], [28, Thm. 2.1], [50, Theorem 11.22] but the assumptions are
weakened here.

Theorem 2.5. Let ze be an equilibrium point of the nonlinear system (2.5).
Assume that for all t ≥ 0, S (t) is Fréchet differentiable at ze with Fréchet derivative
Tze (t) . If Tze is an exponentially stable semigroup, then ze is a locally exponentially
stable equilibrium of (2.5).

Proof. To simplify the proof, set ze = 0 without loss of generality. Several steps
are required.

4



Step 1. Since ze = 0 is an exponentially stable equilibrium solution of the
linearized system, then there exists M ≥ 1 and γ > 0 such that for all z0 ∈ X

‖Tze (t) z0‖ ≤Me−γt‖z0‖, t ≥ 0. (2.7)

Using the definition of Fréchet derivative (Definition 2.3) there is an operator f(t, z0)
on X with f(t, 0) = 0 such that

S (t) z0 = Tze (t) z0 + f (t, z0) ‖z0‖

with lim‖z0‖→0 ‖f(t, z0) ‖ = 0. Choose t̄ = ln(4M)
γ > 0 and any δ > 0. Since the C0-

semigroups S (t) and Tze (t) are continuous in t and z, so is f and there is C1 > 0
such that ‖f(t, z)‖ ≤ C1 for t ∈ [0, t̄], ‖z0‖ ≤ δ. It follows that for τ ∈ [0, t̄],

‖S (τ) z0‖ ≤ ‖Tze (τ) z0‖+ C1‖z0‖

≤Me−γτ‖z0‖+ C1‖z0‖

=
(
Me−γτ + C1

)
‖z0‖

= (M + C1)︸ ︷︷ ︸
C

‖z0‖. (2.8)

Step 2. Using (2.7),

‖Tze (t̄) z0‖ ≤Me−γt̄‖z0‖,

≤ 1

4
‖z0‖. (2.9)

Using the definition of a Fréchet derivative (Definition 2.3), and the fact that ze = 0
is an equilibrium point

lim
‖z‖→0

‖S (t̄) z0 − Tze (t̄) z0‖
‖z0‖

= 0.

Thus, there exists δ > 0 such that if ‖z0‖ < δ, then

‖S (t̄) z0 − Tze (t̄) z0‖ ≤
1

4
‖z0‖. (2.10)

Using (2.9) and (2.10),

‖S (t̄) z0‖ = ‖S (t̄) z0 − Tze (t̄) z0 + Tze (t̄) z0‖
≤ ‖S (t̄) z0 − Tze (t̄) z0‖+ ‖Tze (t̄) z0‖

≤ 1

2
‖z0‖

= e− ln 2‖z0‖. (2.11)

For any positive integer k > 0 the semigroup property and (2.11) imply that

‖S (kt̄) z0‖ = ‖Sk (t̄) z0‖
≤ e−(ln 2)k‖z0‖. (2.12)
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It follows that the ball ‖z0‖ ≤ δ is invariant under S(t̄).

Step 3. For any t > 0 define k = b tt̄c and τ = t − kt̄. Then τ ∈ [0, t̄] and using
the semigroup property, (2.8) and (2.12),

‖S (t) z0‖ = ‖S (kt̄+ τ) z0‖
≤ Ce−(ln 2)k‖z0‖. (2.13)

Now,

C exp(− (ln 2) k) = C exp(− ln 2

t̄
(kt̄+ τ)) exp(

ln 2

t̄
τ)

≤ C exp(−
(

ln 2

t̄

)
t) exp(ln 2).

Defining C2 = 2C, β = ln 2
t̄ , (2.13) implies that there is δ > 0 such that if ‖z0‖ < δ,

‖S (t) z0‖ ≤ C2e
−βt.

Thus, the equilibrium solution ze to the nonlinear system is locally exponentially sta-
ble. �
It can similarly be shown that if the system linearized at an equilibrium point is un-
stable, then the nonlinear system is unstable at that equilibrium point. The following
result is [19, Prop. 2.2] except that the assumption of continuous Fréchet differentia-
bility is not needed, and the conclusion is slightly different. For completeness, the full
proof is provided.

Lemma 2.6. Let V be a nonlinear operator on X that is Fréchet differentiable at
a fixed point ze, with Fréchet derivative U. If X can be decomposed as X = X+⊕X−
where X+ and X− are each U−invariant and there exist real numbers 1 < θ < η such
that for all x+ ∈ X+, x− ∈ X−,

‖Ux+‖ ≥ η‖x+‖, ‖Ux−‖ ≤ θ‖x−‖

then there is ε0 > 0 and a sequence of zn ∈ X, zn → ze such that for each n there is
nk, ‖V nkzn − ze‖ ≥ ε0.

Proof. To simplify the proof, set ze = 0 without loss of generality. Let P+

denote the projection of X onto X+, and let P− similarly denote the projection onto
X−. Also, the norm

‖z‖ = ‖P+z‖+ ‖P−z‖

is equivalent to the original norm. From the definition of the Fréchet derivative, there
is ε0 > 0 such that if ‖z‖ ≤ ε0,

‖Uz − V z‖ ≤ η − θ
4
‖z‖.

Define the set

S = {z ∈ X, ‖P−z‖ ≤ ‖P+z‖}.
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For any z ∈ S, with ‖z‖ = ε where 0 < ε < ε0,

‖P+V z‖ ≥ ‖P+Uz‖ − ‖P+(V z − Uz)‖
≥ ‖UP+z‖ − ‖V z − Uz‖

≥ η‖P+z‖ − η − θ
4
‖z‖

≥ η‖P+z‖ − η − θ
2
‖P+z‖

=
η + θ

2
‖P+z‖.

Also,

‖P−V z‖ ≤ ‖P−Uz‖+ ‖P−(V z − Uz)‖
≤ ‖UP−z‖+ ‖(V z − Uz)‖

≤ θ‖P−z‖+
η − θ

4
‖z‖

≤ θ‖P+z‖+
η − θ

2
‖P+z‖

=
η + θ

2
‖P+z‖.

Thus, V z ∈ S.
Now, assume that for all positive integers k, and z ∈ S with ‖z‖ = ε < ε0, V

kz
satisfies ‖V kz‖ < ε0. Then by induction,

‖P+V kz‖ ≥
(
η + θ

2

)k
‖P+z‖ ≥

(
η + θ

2

)k
1

2
‖z‖.

Since 1 < θ < η, this approaches infinity . Thus, for at least one k, ‖V kz‖ ≥ ε0.
Choose a sequence of positive εn → 0, zn ∈ S with ‖zn‖ < εn. Then for each zn there
is nk so ‖V nkzn‖ ≥ ε0. The result follows. �

Theorem 2.7. Let ze be an equilibrium solution of the nonlinear system (2.5)
defined on a Hilbert space X. Assume that for t ≥ 0, S(t) is Fréchet differentiable
at ze with Fréchet derivative T (t) where T is a C0-semigroup with generator A. If X
can be split into X = X+ ⊕ X− where X+ is finite-dimensional, T (t) is invariant
with respect to each subspace, and

1. σ(A|X+) contains only eigenvalues, with supσ(A|X+) > 0,
2. the growth ω of T |X− satisfies ω < infλi∈σ(A|X+ ) Reλi,

then ze is an unstable equilibrium of (2.5).
Proof. Let T− , T+ indicate T restricted to X− and X+ respectively, and

indicate similarly A−, A+, σ−, σ+. Define α = infλi∈σ+ Reλi. Since the generator of
T+ is bounded, with spectrum that consists only of eigenvalues, ‖T+(t)z‖ ≥ eαt‖z‖
for all z ∈ X+. Also, ‖T−(t)z‖ ≤ Meωt‖z‖ for all z ∈ X−. Choose t0 > 0 such that
Meωt0 < eαt0 . Define η = eαt0 , V = S(t0), U = T (t0) and choose θ > 1 so that
Meωt0 ≤ θ < η. It follows that for all z+ ∈ X+, z− ∈ X−,

‖Uz+‖ ≥ η‖z+‖, ‖Uz−‖ ≤ θ‖z−‖.

From Lemma 2.6, there is ε0 > 0, and a sequence zn → ze, and integers nk such
that ‖V nkzn − ze‖ ≥ ε0. In other words, there is an ε0 such that for any ε > 0 there
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is zn ∈ X, ‖zn − ze‖ < ε such that for some time t > t0, ‖S(t)zn − ze‖ ≥ ε0. Thus,
the equilibrium point is unstable. �

Definition 2.8. A satisfies the spectrum decomposition assumption at α if σ(A)
is the union of two parts σ+ and σ− such that a a rectifiable, simple, closed curve
can be drawn so as to enclose an open set containing σ+ in its interior, σ− is in its
exterior and also

sup
λ∈σ−

σ(A) < α ≤ inf
λ∈σ+

σ(A).

Corollary 2.9. Let ze be an equilibrium solution of the nonlinear system (2.5)
defined on a Hilbert space X. Assume that for t ≥ 0, S(t) is Fréchet differentiable
at ze with Fréchet derivative T (t) where T is a C0-semigroup with generator A. If A
is a Riesz-spectral operator that satisfies the spectrum determined growth assumption
for some α > 0 then ze is an unstable equilibrium point of (2.5).

Proof. Since A satisfies the spectrum decomposition assumption for some α > 0,
X can be split into X = X+ ⊕X− where X+ is finite-dimensional, T is invariant on
each subspace and generator A+ of T+ = T |X+ has spectrum σ+ (see, for instance,
[18, Lem.2.5.7]). The restriction of A to X−, A−, has spectrum σ(A−) = σ−. Since
A is a Riesz-spectral operator, it and A− satisfy the spectrum determined growth
assumption and A− generates a semigroup T− satisfying ‖T−‖(t) ≤ Meωt) for some
M ≥ 1, ω < α. The conclusion then follows from Theorem 2.7. �

In summary, the Fréchet derivative of the nonlinear C0-semigroup corresponding
to the nonlinear system plays an important role in analyzing stability using Lya-
punov’s indirect method. If the equilibrium solution of the linearized system around
the equilibrium solution is exponentially stable, then the equilibrium solution to the
nonlinear system is locally exponentially stable. Furthermore, if the equilibrium solu-
tion to the linearized system is unstable, then the nonlinear system is also unstable.
If the linearized system is only asymptotically stable at the equilibrium point then no
conclusion about stability of the nonlinear system can be made.

Existing results for the linearized stability of quasilinear systems on a Banach
space X can be obtained as special cases of the above theorems. Consider quasi-
linear systems on a Banach space X

ż (t) = Az (t) + f (z (t))
z (0) = z0,

(2.14)

where z (t) ∈ X is the state and z0 is the initial condition. The operator A : D (A) ⊂
X → X is a linear operator that generates a C0-semigroup on X and the nonlinear
operator f : D (f) ⊂ X → X is Fréchet differentiable with Df(z) the Fréchet deriva-
tive of f at z. It is straightforward to show that A+Df(z) is the Gâteaux derivative
of Az + f(z) at z. The linearized system corresponding to (2.14) at the equilibrium
point ze ∈ Z is

dψ

dt
= Aψ +Df(ze)ψ. (2.15)

Suppose that for some r > 0 the Fréchet derivative of f in (2.14) satisfies

||Df(z1)−Df(z2)|| ≤ c(r)||z1 − z2||, (2.16)

for all ||z1|| ≤ r, ||z2|| ≤ r, where c : [0,∞) → [0,∞) is a continuous increasing
function. Let ze be an equilibrium point of (2.14). Section 3 of [28] can be used to show
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that these assumptions (in fact [28] has more general, but difficult to check, conditions)
imply that the nonlinear semigroup is Fréchet differentiable at any equilibrium ze, with
generator A + dF (ze). In [28, Cor. 2.2] it is then shown that exponential stability
of the linear semigroup implies local exponential stability of the original system, or
Theorem 2.5 can be used.

The assumptions on f in the following theorem are slightly different to those
above.

Theorem 2.10. [27] Let Z be a Hilbert space with norm || · ||Z and inner prod-
uct 〈·, ·〉Z . Consider the quasilinear equation in (2.14) and suppose it generates a
semigroup, S(t). For any p ∈ Z define

Np,r = {z ∈ Z : ||p− z||Z ≤ r}.

Assume Re〈Az, z〉Z ≤ 0 for all z ∈ Np,r. and suppose f is Fréchet differentiable on
Nz,r and its derivative, Df, is locally Lipschitz continuous on Np,r. Also, for some
positive constant Kp,r that depends on p and r, assume that

sup
η∈Np,r

||Df(η)||op = Kp,r <∞

where || · ||op is the operator norm. Then (2.15) generates the semigroup Tz(t) and
for some tf > 0,

Tz(t) = DS(z0)(t), 0 ≤ t ≤ tf
where DS(z0)(t) is the Fréchet derivative of S(t) at z(0) = z0 , z0 ∈ Np,r.

The approach in this section will now be used to analyze the local stability of the
Kuramoto-Sivashinsky equation, and also to obtain locally exponentially stabilizing
controllers.

3. The Kuramoto-Sivashinsky (KS) equation. Consider the controlled KS
equation with a single state-feedback control and periodic boundary conditions

∂z
∂t + ν ∂

4z
∂x4 + ∂2z

∂x2 + z ∂z∂x = b (x)u (t)
∂nz
∂xn (−π, t) = ∂nz

∂xn (π, t) , n = 0, 1, 2, 3
z (x, 0) = z0 (x)

(3.1)

where ν > 0 is the instability parameter, z ∈ L2(−π, π) is the state of the system,
the influence of the actuator is given by b (x) ∈ L2(−π, π) and u ∈ C is the controlled
input to the KS equation. State-feedback control

u (t) = Kz (t) , (3.2)

where K : L2(−π, π) → C is defined by Kz = 〈k, z〉 with k ∈ L2(−π, π) will be
considered.

For some b ∈ L2(−π, π) define the bounded linear operator B : C→ L2(−π, π)

Bu = b (x)u. (3.3)

Also define the linear operators on L2(−π, π)

Rz =
∂2z

∂x2
, D (R) = H2

per(−π, π) ⊂ H2[−π, π] (3.4)

Âz = ν
∂4z

∂x4
, D

(
Â
)

= H4
per(−π, π) ⊂ H4(−π, π) (3.5)

Az = −
(
Â+R

)
z, D (A) = D

(
Â
)

(3.6)
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and the nonlinear operator

F (z) = −z ∂z
∂x
, D (F ) = H1

per(−π, π) ⊂ H1(−π, π). (3.7)

The feedback controlled KS equation (3.1) can be written in the abstract form

ż = Az + F (z) +BKz
z (0) = z0.

(3.8)

The controlled KS equation (3.8) has a unique strong solution. This result is a
special case of [42, Theorem 1.1] where the Galerkin method is used. For the proof
see [2, Theorem 5.3.9].

Theorem 3.1. [2, Theorem 5.3.9]
The feedback controlled KS equation with periodic boundary conditions has a unique
strong solution z (t) = SB (t) z0, where SB (t) is a nonlinear C0-semigroup. For any
T > 0,

z ∈ C
(
[0, T ];L2(−π, π)

)
∩ L2

(
[0, T ];H2

per(−π, π)
)
.

The uncontrolled KS equation ((3.1) with b = 0) has an infinite number of equilib-
ria. In particular, any constant function is an equilibrium solution to the KS equation.
Define the closed set

Ze = {ze : ze is a constant function} (3.9)

to be the set of constant equilibria. It is straightforward to verify the conservation of
the space integral [13]

1

2π

∫ π

−π
z0dx =

1

2π

∫ π

−π
z(x, t)dx.

Thus, the particular equilibrium is determined by the initial condition z0: for initial
condition z0, the constant equilibrium ze = 1

2π

∫ π
−π z0dx.

A set of equilibrium points can also be characterized as stable.

Definition 3.2. [53, Definition 2.6] (Stable Equilibrium Set )
Let Ze be the set of all equilibria to (2.5). The set Ze is said to be stable if for every
ε > 0, there exists δ > 0 such that if distX (z0, Ze) < δ, then

distX (z (t) , Ze) < ε, t ≥ 0

where distX (z, Ze) = inf{‖z − y‖ : y ∈ Ze}.
Theorem 3.3. Consider the uncontrolled KS equation (3.1) with b (x) = 0. If the

instability parameter ν > 1, then the set of constant equilibrium solutions Ze defined
in (3.9) is globally asymptotically stable.

Proof. Define

V (z) =
1

2
‖z‖2. (3.10)

10



For smooth functions satisfying the periodic boundary conditions, the Lyapunov
derivative is

V̇ (z) = Re〈z, ż〉,

= −ν〈∂
2z

∂x2
,
∂2z

∂x2
〉+ 〈∂z

∂x
,
∂z

∂x
〉 − 0

= −ν‖∂
2z

∂x2
‖2 + ‖∂z

∂x
‖2. (3.11)

Using Poincaré’s inequality [46, Lemma 1.8]) then yields

V̇ (z) ≤ − (ν − 1) ‖∂z
∂x
‖2.

≤ 0, (3.12)

since ν > 1. If

− (ν − 1) ‖∂z
∂x
‖2 = 0,

then

∂z

∂x
= 0.

This implies that z equals some constant function C; that is z ∈ Ze. Since the C0-
semigroup generated by the uncontrolled KS equation is compact [48, Theorem 54.3],
then the orbit γ (z) is pre-compact for every z ∈ D (A). Therefore, by LaSalle’s
Invariance Principle, the solution of the KS equation converges to the invariant set
Ze. �

If the instability parameter ν = 1, then the Lyapunov derivative V̇ (z) defined in
(3.12) vanishes and therefore the equilibrium solution to the nonlinear KS equation
is stable [52, Theorem 3.6 & 3.7]. In [48, Theorem 5.4.3] it was shown that the zero
equilibrium is a global attractor.

Stability or instability of equilibria for the KS equation when the instability pa-
rameter ν < 1 needs to be determined. This will be done by linearization of the
KS equation around an equilibrium ze and then analyzing the stability of the lin-
earization. This approach can also be used to locally stabilize the system about an
equilibrium, or in fact at any point.

4. Linearization of the Kuramoto-Sivashinsky equation. The feedback
controlled KS equation (3.8) will be linearized at z0 ∈ D (A), where the operator A
and its domain is defined in (3.6). This is done by using the Gâteaux derivative [36,
Definition 3.1.2].

We find the Gâteaux derivative of the nonlinear operator F (z) defined in (3.7)
at z0 ∈ D (F ), F ′ : H1(−π, π) ⊂ L2(−π, π)→ L2(−π, π)

F ′z = lim
ε→0

F (z0 + εz)− F (z0)

ε
=

∂

∂x
(z0z) . (4.1)

11



Hence, the linearized controlled system of the KS equation around z0 is

ż(t) = Az(t)− ∂

∂x
(z0z( t)) +Bu (t)

= A′z(t) +BKz(t) (4.2)

where

A′z = Az − ∂

∂x
(z0z) (4.3)

with A defined in (3.6).
Theorem 4.1. [2, Theorem 5.2.1]

The operator A′ defined in (4.3), where z0 is a constant function that does not depend
on x, is a Riesz-spectral operator that has eigenvalues λn = −νn4 + n2 − ınz0, n ∈ Z
and the corresponding eigenvectors φn (x) = 1√

2π
einx.

It will now be shown that C0-semigroup SB (t) of the controlled nonlinear KS
equation (3.8) is Fréchet differentiable at any z0 ∈ L2(−π, π) and the Fréchet deriva-
tive equals the C0-semigroup corresponding to the linearized KS equation at z0. The
main result is Theorem 4.3. A series of lemmas, placed in Appendix A, are used.

In [51, Section VI.8], it is shown that if 〈z ∂y∂x , z〉 = 0, for every solution to the
KS equation z and y ∈ H2(−π, π), then the nonlinear C0-semigroup generated by
the uncontrolled KS equation ((3.1) with b (x) = 0) is Fréchet differentiable. This
assumption is not used here.

Note that the linear operator BK : L2(−π, π)→ L2(−π, π) is bounded. That is,
there exists M > 0 such that for all z ∈ L2(−π, π),

‖BKz‖ ≤M‖z‖.

Theorem 4.3 below is the key result of this section. It shows that the nonlinear
C0-semigroup corresponding to the open-loop controlled nonlinear KS equation (3.1)
is Fréchet differentiable at every z0 ∈ L2(−π, π) and the derivative is the linear C0-
semigroup corresponding to the linearized KS equation around z0. The following
lemma is needed.

Lemma 4.2. [2, Lem. 5.3.4] Consider the uncontrolled KS equation (3.1) with
u (t) = 0. Let S (t) be the C0-semigroup generated by the nonlinear uncontrolled KS
equation. Then,

‖S (t) z0‖ ≤ e
1√
2ν
t‖z0‖, z0 ∈ L2(−π, π).

Proof. The uncontrolled KS equation is well-posed [48, Theorem 54.3] and the
solution can be written

z (t) = S (t) z0,

where S (t) is a nonlinear C0-semigroup in L2(−π, π) and z0 is the initial condition.

It was shown above that (3.11)

1

2

d

dt
‖z‖2 + ν‖∂

2z

∂x2
‖2 = ‖∂z

∂x
‖2. (4.4)

12



Using the Cauchy-Schwarz inequality and Young’s inequality,

‖∂z
∂x
‖2 = 〈∂z

∂x
,
∂z

∂x
〉

= −〈z, ∂
2z

∂x2
〉 (Integration by parts)

≤ |〈z, ∂
2z

∂x2
〉|

≤ ‖z‖ · ‖∂
2z

∂x2
‖

≤ 1

4ν
‖z‖2 + ν‖∂

2z

∂x2
‖2. (4.5)

Using this inequality in equation (4.4) leads to

d

dt
‖z‖2 ≤ 1

2ν
‖z‖2. (4.6)

Using Gronwall’s lemma [55, Theorem 1.4.1] then implies that

‖z‖2 ≤ e 1
2ν t‖z0‖2, t ≥ 0,

and so since z (t) = S (t) z0, the result follows. �

Define the nonlinear operator G : H2
per(−π, π)→ L2(−π, π) by

G (z) = Rz + F (z)−BKz, (4.7)

where the operators R,F are defined in (3.5), (3.7), respectively.
Theorem 4.3. Consider the controlled KS equation (3.8). The nonlinear C0-

semigroup SB (t) is Fréchet differentiable at every z0 ∈ L2(−π, π) and the derivative
is the linear C0-semigroup generated by the linearized KS equation at z0.

Proof. Consider the nonlinear controlled KS equation given by (3.8) with initial
condition y0 ∈ L2(−π, π). Let M = ‖BK‖. Lemma 4.2 implies that for any T > 0,

for 0 ≤ t ≤ T , the L2-norm of the solution ‖y(t)‖ ≤ e(
1
2ν+M)T ‖y0‖. For any ε > 0,

define r = (‖y0‖+ ε) e(
1
2ν+M)T . Then, for any z0, ‖z0 − y0‖ < ε,

sup
t∈[0,T ]

‖z (t) ‖ ≤ r.

Subtracting the KS equation with initial condition y0 from the equation with
initial condition z0, and letting w (t) = z (t)− y (t) yields

ẇ (t) + Âw (t) = − (G (z (t))−G (y (t)))
w (0) = z0 − y0 := w0.

(4.8)

Use the Gâteaux derivative to linearize the KS equation (4.8) around y = SB (t) y0

ẇ (t) = −Âw (t)−Rw (t)− ∂
∂x (y (t)w (t)) +BKw (t)

w (0) = w0.
(4.9)

Using [51, Theorem II.3.4] and [18, Lemma 3.1.5], the controlled linearized KS
equation (4.9) has a unique strong solution

w (t) ∈ L2
(
0, T ;H2

per[−π, π]
)
∩ L∞

(
0, T ;L2[−π, π]

)
, for t ≤ T <∞.
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That is, the solution can be written as

w (t) = TB (t)w0, (4.10)

where TB (t) is a C0-semigroup on L2[−π, π].

The next step is to show that the nonlinear C0-semigroup SB (t) is Fréchet differ-
entiable at y0 and TB (t) is its Fréchet derivative. Set φ = w − w and use equations
(4.8) and (4.9) and Lemma A.3 to obtain

φ̇ (t) = ẇ (t)− ẇ (t)

= −Â (w (t)− w (t))− (G (z (t))−G (y (t))) +Rw (t) +
∂

∂x
(y (t)w (t))

−BKw (t)

= −Âφ (t)−Rφ (t)− ∂

∂x
(y (t)φ (t)) +BKφ (t)− F (w (t)) .

Thus,

φ̇ (t) + Âφ (t) = −Rφ (t)− ∂
∂x (y (t)φ (t)) +BKφ (t)− F (w (t))

φ (0) = 0.
(4.11)

Take the inner product of the above system (4.11) with φ to obtain

〈φ̇ (t) , φ (t)〉+ 〈Âφ (t) , φ (t)〉 = −〈Rφ (t) +
∂

∂x
(y (t)φ (t))−BKφ (t) , φ (t)〉

−〈F (w (t)) , φ (t)〉.

Thus,

1

2

d

dt
‖φ (t) ‖2 + ν‖∂

2φ

∂x2
(t) ‖2 = −〈Rφ (t) +

∂

∂x
(y (t)φ (t))−BKφ (t) , φ (t)〉

−〈F (w (t)) , φ (t)〉

≤ |〈Rφ (t) +
∂

∂x
(y (t)φ (t))−BKφ (t) , φ (t)〉|

+|〈F (w (t)) , φ (t)〉|. (4.12)

Moreover, using the Cauchy-Schwarz inequality, Lemma (A.1), Lemma (A.2) and
the Poincaré inequality leads to

|〈Rφ (t) +
∂

∂x
(y (t)φ (t))−BKφ (t) , φ (t)〉| ≤ |〈Rφ (t) , φ (t)〉|+ |〈BKφ (t) , φ (t)〉|

+|〈y (t)
∂φ

∂x
(t) , φ (t)〉|+ |〈φ (t)

∂y

∂x
(t) , φ (t)〉|.
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That is,

|〈Rφ (t) +
∂

∂x
(y (t)φ (t)) − BKφ (t) , φ (t)〉| ≤M‖φ (t) ‖2 + 3‖y (t) ‖∞‖φ (t) ‖ ·

‖∂φ
∂x

(t) ‖+ ‖φ (t) ‖ ‖∂
2φ

∂x2
(t) ‖

≤M‖φ (t) ‖2 + (1 + 3‖y (t) ‖∞) ‖φ (t) ‖ ‖∂
2φ

∂x2
(t) ‖

≤M‖φ‖2 + (1 + 3r) ‖φ (t) ‖ ‖∂
2φ

∂x2
(t) ‖

= M‖φ (t) ‖2 +Kr ‖φ (t) ‖ ‖∂
2φ

∂x2
(t) ‖,

where Kr = 1 + 3r.
With this result, the Cauchy-Schwarz inequality, Young’s inequality and Lemma

A.3, inequality (4.12) becomes

1

2

d

dt
‖φ (t) ‖2 + ν‖∂

2φ

∂x2
(t) ‖2 ≤ Kr ‖φ (t) ‖ ‖∂

2φ

∂x2
(t) ‖+M‖φ (t) ‖2 + ‖J (w (t)) ‖ · ‖φ (t) ‖

≤ ν

2
‖∂

2φ

∂x2
(t) ‖2 +

(
K2
r

2ν
+M

)
‖φ (t) ‖2 +

ν

2
‖J (w (t)) ‖2 +

1

2ν
‖φ (t) ‖2

and so

1

2

d

dt
‖φ (t) ‖2 + ν‖∂

2φ

∂x2
(t) ‖2 ≤ ν

2
‖∂

2φ

∂x2
(t) ‖2 +

(
K2
r + 1

2ν
+M

)
‖φ (t) ‖2 +

νc2

8

(
‖w (t) ‖2 + ‖∂

2w

∂x2
(t) ‖2

)2

≤ ν

2
‖∂

2φ

∂x2
(t) ‖2 +

(
K2
r + 1

2ν
+M

)
‖φ (t) ‖2 +

νc2

4

(
‖w (t) ‖4 + ‖∂

2w

∂x2
(t) ‖4

)
.

(4.13)

This implies that

d

dt
‖φ (t) ‖2 + ν‖∂

2φ

∂x2
(t) ‖2 ≤

(
K2
r + 1

ν
+ 2M

)
‖φ (t) ‖2 +

νc2

2

(
‖w (t) ‖4 +‖∂

2w

∂x2
(t) ‖4

)
,

and so

d

dt
‖φ (t) ‖2 ≤

(
K2
r + 1

ν
+ 2M

)
‖φ (t) ‖2 +

νc2

2

(
‖w (t) ‖4 + ‖∂

2w

∂x2
(t) ‖4

)
.(4.14)

Integrating with respect to t and using φ (0) = 0, Lemma A.4, leads to

‖φ (t) ‖2 ≤
(
K2
r + 1

ν
+ 2M

)∫ t

0

‖φ (s) ‖2ds+ M̃‖w0‖4e4Crt (4.15)

where M̃ = νc2

2

(
8Cr
ν2 + 1

4Cr

)
.

Using Gronwall’s lemma and φ (0) = 0,

‖φ (t) ‖2 ≤ C̄2‖w0‖4, (4.16)
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where

C̄2 = M̃e4CrT +
M̃ν

4Crν −K2
r + 1− 2Mν

e
4Crν−K2

r−1−2Mν

ν T ,

which implies that

‖φ (t) ‖ ≤ C̄‖w0‖2, t ∈ [0, T ].

Using the definitions of φ,w

‖φ (t) ‖ = ‖w (t)− w (t) ‖ = ‖z (t)− y (t)− w (t) ‖ ≤ C̄‖w0‖2 = C̄‖z0 − y0‖2, z0 6= y0.

That is,

‖z (t)− y (t)− w (t) ‖
‖z0 − y0‖

≤ C̄‖z0 − y0‖, (4.17)

or,

‖SB (t) z0 − SB (t) y0 − TB (t)w0‖
‖w0‖

≤ C̄‖w0‖. (4.18)

where z0 = y0+w0. Inequality (4.18) holds for every z0 ∈ L2(−π, π) with ‖z0−y0‖ ≤ ε
with ε > 0. Take the limit as ‖w0‖ → 0 to obtain

lim
‖w0‖→0

‖SB (t) (y0 + w0)− SB (t) y0 − TB (t)w0‖
‖w0‖

= lim
‖w0‖→0

C̄‖w0‖ = 0. (4.19)

Thus, the nonlinear C0-semigroup SB (t) generated by the controlled KS equation
is Fréchet differentiable. Moreover, the Fréchet derivative of SB(t) is the C0-semigroup
generated by the linearized KS equation, TB (t). �

Theorem 4.4. Consider the uncontrolled KS equation (3.1) with b (x) = 0 at
some constant equilibrium point ze. If the instability parameter ν < 1, then the equi-
librium is unstable.

Proof. Consider the KS equation linearized at a constant equilibrium point
zi ∈ Ze. The generator A′ (4.3) of the linearized semigroup is a Riesz-spectral opera-
tor with distinct eigenvalues λn = n2(1− νn2)− ızen, n ∈ Z (Theorem 4.1). If ν < 1,
then there are eigenvalues with positive real part and the linearized system is unsta-
ble. The assumptions of Corollary 2.9 are satisfied. It follows that the uncontrolled
nonlinear KS equation is unstable. �

The number of unstable eigenvalues depends on the value of the instability pa-
rameter ν which is a finite number. For a given 0 < ν < 1, let N be the smallest
integer such that

N >

√
1

ν
. (4.20)

The number of unstable eigenfunctions for the uncontrolled linearized KS equation at
the equilibrium solution ze is equal to N .

Stability of the equilibrium solutions to the uncontrolled KS equation ((3.1) with
b (x) = 0) depends on the value of the instability parameter ν. If ν > 1, it was
shown in Theorem 3.3 that the set of all constant equilibrium solutions is globally
asymptotically stable. If ν < 1 then the constant equilibria are not stable.

In the next section linearization will be used to construct a locally stablizing
feedback controller.
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5. Stabilization of the Kuramoto-Sivashinsky Equation. It was shown in
the previous sections that if ν < 1 any constant equilibrium solution is unstable. As
noted at the end of section 3, if ν = 1, then the zero equilibrium solution is Lyapunov
stable and not asymptotically stable. It is desired to design a feedback control to
drive the solution of the KS equation to a desired state and more generally from one
state to another.

If K is such that the controlled KS equation (3.1) is locally exponentially stable at
a given equilibrium point, then K is said to locally exponentially stabilize the nonlinear
KS equation. If such a K exists, the KS equation is said to be locally exponentially
stabilizable at that equilibrium point.

Since the nonlinear C0-semigroup corresponding to the controlled KS equation
is Fréchet differentiable (shown in Theorem 4.3), then using Theorem 2.5, if the
linearized controlled KS equation around a desired equilibrium solution generates an
exponentially stable C0-semigroup, then the same input-feedback control can be used
to locally exponentially stabilize the nonlinear KS equation and hence can steer the
solution of the KS equation to the desired state.

Note that this result is general and can be used to control the KS equation to any
state, not necessarily a constant state. However, only constant equilibrium solutions
are considered in this paper as it is easier to analyze the linearized KS equation around
a constant equilibrium solution.

There are many ways to design a state-feedback controller that stabilizes linear
infinite-dimensional partial differential equations; see for instance, [7, 9, 18, 35, 41, 44].
One approach is to design a linear quadratic controller [18, 54]. Another approach is
H∞-controller synthesis where the effect of the disturbance on the cost is considered
instead of the initial condition [8, 29]. However, most controller design approaches,
including these, cannot be implemented using the full partial differential equation.
An approximation needs to be used in controller design and in simulations.

Approximations of controller design for infinite-dimensional systems do not always
lead to reliable results; see for instance [11, 43, 44]. However, there are conditions for
linear systems that guarantee that approximations yield stabilizing controllers and
correctly predict closed-loop behaviour. Combined with Theorems 4.3 and 2.5, they
lead to a method to design stabilizing controllers for the KS equation.

Write Z = L2(−π, π) and define a sequence of finite-dimensional subspaces Zn ⊂
H1(−π, π) and the orthogonal projection Pn : Z → Zn. It is assumed that for all
z ∈ Z, limn→∞ ‖Pnz − z‖ = 0. This assumption is satisfied by typical approximation
methods, such as linear splines and also Fourier series expansions. The space Zn
is equipped with the norm inherited from Z. Define Bn = PnB, and define the
approximating generator An : Zn → Zn using some method. This leads to a sequence
of finite-dimensional approximations

dz

dt
= Anz(t) +Bnu(t), z(0) = Pnz0, (5.1)

Theorem 5.1. Assume that the sequence of approximations (An, Bn) is stabiliz-
able. Let Kn be a convergent sequence of controllers for the approximating systems
such that the limit K exponentially stabilizes (A′, B) defined in (4.2). Then for suffi-
ciently high order n, the controllers Kn stabilize the KS equation.

Proof.

A′ −BKn = A′ −BK +B(K −Kn).
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For any ε > 0 there is N so ‖B(K −Kn)‖ < ε for all n > N . Thus, since A′ − BK
generates an exponentially stable semigroup, there is N so A′ − BKn generates an
exponentially stable semigroup for all n > N . Theorem 2.5 then implies that the
controlled KS equation is locally exponentially stable. �

The key point in using the above theorem is to find a convergent sequence of
stabilizing controllers for the finite-dimensional linearizations (An, Bn). However,
there are a number of ways to do this. One possibility is Kn = B∗n, that is Kn =
〈Pnb, ·〉. Also, the approach in [6] was extended in [43] to show that linear quadratic
controller design yields such a sequence. An H∞-controller design approach also yields
a suitable sequence [26]. For a summary of this approach to controller design, see [44].

6. Example. Consider the nonlinear KS equation (3.1) with instability param-
eter ν = 1

2 and

b (x) =
1

0.3
· χ[r−0.15,r+0.15], (6.1)

where r ∈ (−Π + 0.15,Π − 0.15) and χ[a,b] indicates the characteristic function with
support on [a, b].

Since ν < 1, the uncontrolled system is unstable at any constant equilibrium
point.

Since the eigenfunctions of the generator of the linearized system form an or-
thonormal basis for L2(−π, π) (Theorem 4.1), a truncation of the Fourier series can be
used to approximate the solution. Let {φn, ψn}, where φ0 = 1√

2π
, φn (·) = 1√

π
cos (n·)

and ψn (·) = 1√
π

sin (n·) for n = 1, · · · ,∞ and define

b1n = 〈b, φn〉, for n = 0, 1, · · · ,∞.
b2n = 〈b, ψn〉, for n = 1, 2, · · · ,∞. (6.2)

Defining ZM to be the span of the first M functions: ZM = span{φ0, φi, ψi}Mi=1, and
the orthogonal projection PM : Z → ZM , limM→∞ ‖PMz− z‖ = 0 as discussed in the
previous section. A Galerkin method with the eigenfunctions of the linearization as a
basis for the approximating subspace will be used to approximate the solution to the
uncontrolled nonlinear KS equation. For any M > 0 define

zM (x, t) = a0(t)φ0(x) +

M∑
i=1

ai(t)φi(x) +

M∑
i=1

ci(t)ψ(x)

where ai (t) , ci (t) yields the solution of the ODE system resulting from the Galerkin
projection method. Note the approximation is of order 2M + 1. Write the vector of
coefficients

[z](t) = [a0(t), a1(t), . . . aM (t), c1(t), . . . cM (t)].

Figure 6.1 is a 3-D landscape of the approximated solution with M = 10 and initial
condition

z0 (x) = −1

2
x2 + 5x− 4. (6.3)

The first 5 eigenfunctions (that is M = 2) in the KS equation with ν = 1
2

correspond to eigenvalues with positive real parts; see [2] for the calculations. The
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Fig. 6.1. The response of the nonlinear KS equation with no control. The parameter ν = 1
2

and the initial condition z0 = − 1
2
x2 + 5x− 4 (6.3). The system is unstable with this value of ν.

controllers will be designed using only the corresponding eigenfunctions, that is the
approximation has M = 2. Stabilization to the equilibrium solution ze = 0 will be
considered first. Choose r = 0.05, then the actuator will have support at [-0.1,0.2].
Moreover, since b1n = 〈b, φn〉 6= 0 for n = 0, 1, 2 and b2n = 〈b, ψn〉 6= 0 for n = 1, 2,
the system is stabilizable. Linear-quadratic control is used here; that is the control u
minimizes the quadratic cost function

J (u) =

∫ ∞
0

(
[z]T (t) [z] (t) + uT (t)u (t)

)
dt

subject to (5.1). This yields the control u(t) = −K0[z](t) = −〈k0, [z](t)〉 where

k0 = [−1.0000 3.2134 0.0264 3.2134 0.0264] .

The system simulated with a 21st-order approximation (M = 10) and the controller
designed with only 5 eigenfunctions as shown in Figure 6.2. The number of eigen-
functions used in the simulations is larger than the number of eigenfunctions used to
design the controller, yet the feedback controller achieved the stabilization and there
was no spillover.

Now, consider another equilibrium solution ze = 1 and the control centred at r =
1. Again using LQ control with the same weights, the feedback control K1 = 〈k1, ·〉
where

k1 = [1.0000 5.2073 −0.0121 1.5929 0.0397].
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Fig. 6.2. The controlled KS equation when ν = 1
2

with the same initial condition (6.3) as in
Figure 6.1. The system is linearized at ze = 0 to design the controller. Controller design is done
using only the first 2 modes (M = 2) the simulations are with the first 10 modes for the equation
(M = 10). There is no spillover and the solution converges to the zero equilibrium solution. The
control causes the unstable equilibrium ze to become a stable equilibrium.

was calculated to stabilize the KS equation linearized around ze = 1. Figure 6.3 is a
3-D landscape of the approximated controlled KS equation to the equilibrium solution
ze = 1. The figure shows that the approximated solution of the KS equation converg-
ing towards the desired equilibrium solution ze = 1 illustrating that the controller
stabilizes the nonlinear KS equation.

This same approach is now used to move the KS equation from one equilibrium
state to another. Linearizing the KS equation at ze = 2, a third controller K3 = 〈k3, ·〉
is calculated as above. Figure 6.4 is a 3-D landscape of the controlled nonlinear KS
equation showing that applying the control K1 followed by K3 controls the state from
the given initial condition to ze = 1 and then from ze = 1 to ze = 2.

7. Summary. The Fréchet derivative of the semigroup corresponding to an
infinite-dimensional dynamical system plays a key role in using the linearization to
analyze stability and design controllers. If the semigroup is Fréchet differentiable, and
the derivative is exponentially stable then the original system is locally exponentially
stable. More particularly, if the spectrum-determined growth assumption holds, and
the spectrum of the generator lies in the open left half plane, then the original system
is locally exponentially stable. Similarly, if the derivative is unstable then the original
system is unstable. if the linear generator has spectrum with positive real part, then
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Fig. 6.3. The controlled KS equation when ν = 1
2

with the same initial condition (6.3) as
for Figures 6.1 and 6.2. Here the input-feedback control is designed using a linearization at the
equilibrium ze = 1 so that the solution converges to ze = 1. As in Figure 6.2, 2 modes (M = 2) are
used to design the controller, the simulations include 10 modes (M = 10). Again, the control causes
the unstable equilibrium ze to become a stable equilibrium.

the original system is unstable. If the derivative is only asymptotically stable, no
conclusion can be drawn.

Stability and stabilization of the KS equation with periodic boundary conditions
is considered in detail in this paper. The set of all constant equilibria is shown
to be asymptotically stable when the instability parameter ν > 1. This is done
using Lyapunov’s theorem and LaSalle’s invariance principle. It is shown that the
semigroup corresponding to the KS equation is Frèchet differentiable. Lyapunov’s
indirect method can be used to analyze the stability. Constant equilibria for the KS
equation are proven to be unstable when ν < 1. The approach in [15] or reformulation
of the state-space could be used to show that the set of constant equilibria is locally
exponentially stable if ν > 1.

Stabilization of the KS equation with a bounded control operator was then stud-
ied. The semigroup corresponding to the controlled KS equation is Frèchet differen-
tiable. Furthermore, the generator of the linearized semigroup is the Gateaux deriva-
tive of the original generator. The linearization can therefore be used in controller
design. It is proven further that finite-dimensional approximations of the linearized
system can be used for controller synthesis. This means that the wide body of tech-
niques available for linear finite-dimensional systems can be used. The effectiveness
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Fig. 6.4. The controlled KS equation when ν = 1
2

with the same initial condition (6.3) as in
Figures 6.1, 6.2, 6.3. The controller designed using the linearization at ze = 1 is followed by the
controller designed using the linearization at ze = 2. The solution converges to the first equilibrium
solution ze = 1, then to ze = 2.

of the approach was illustrated by stabilization of an example where ν = 1
2 . The state

of the KS equation is driven to several different constant equilibrium solutions and
from one equilibrium to another equilibrium.

Subsequent research has extended this approach to output feedback control of the
KS equation [3].

Appendix A. Lemmas used to prove Theorem 4.3.

Lemma A.1. For every z, w ∈ H1
per(−π, π),

|〈z ∂w
∂x

,w〉| ≤ ‖z‖∞ ‖w‖ ‖
∂w

∂x
‖. (A.1)

Proof. Let z, w ∈ H1
per(−π, π), then using Cauchy-Schwarz inequality [18, page
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576] leads to

|〈z ∂w
∂x

,w〉| =
∣∣∣∣∫ π

−π

∂w

∂x
zwdx

∣∣∣∣
≤ ‖z‖∞

∫ π

−π

∣∣∣∣w∂w∂x
∣∣∣∣ dx

≤ ‖z‖∞ ‖w‖ ‖
∂w

∂x
‖. �

Lemma A.2. For every y, w ∈ H1
per(−π, π),

|〈w∂y
∂x
,w〉| ≤ 2 ‖y‖∞ ‖w‖ ‖

∂w

∂x
‖. (A.2)

Proof. Let y, w ∈ H1
per(−π, π), then using integration by parts and the Cauchy-

Schwarz inequality,

|〈w∂y
∂x
,w〉| =

∣∣∣∣∫ π

−π
w
∂y

∂x
wdx

∣∣∣∣
=

∫ π

−π

∣∣∣∣y(w∂w∂x
)∣∣∣∣+

∣∣∣∣y(w∂w∂x
)∣∣∣∣ dx

≤ 2 ‖y‖∞ ‖w‖ ‖
∂w

∂x
‖. �

Lemma A.3. Define the nonlinear operator G : H2
per(−π, π)→ L2(−π, π)

G (z) = Rz + F (z)−BKz.

For each z, y ∈ H2
per(−π, π),

G (z)−G (y) =
∂

∂x
(y (z − y)) + (R−BK) (z − y) + F (z − y) . (A.3)

Furthermore, for some c > 0,

‖F (z − y) ‖ ≤ c

2
‖z − y‖H1 . (A.4)

Proof. Let z, y ∈ H2
per(−π, π). Define w = z − y and let M = ‖BK‖. Using the

definitions of G,F in (4.7) and (3.7) respectively leads to

G (z)−G (y) = w
∂y

∂x
+Rw −BKw + z

∂w

∂x

= y
∂w

∂x
+ w

∂y

∂x
+Rw −BKw + z

∂w

∂x
− y ∂w

∂x

= y
∂w

∂x
+ w

∂y

∂x
+Rw −BKw + w

∂w

∂x
.

Next, use Poincaré inequality [46, Lemma 1.8] and the multiplicative algebra
property [51, Page 51] to obtain

‖F (z − y) ‖ = ‖ (z − y)

(
∂z

∂x
− ∂y

∂x

)
‖

=
1

2
‖ ∂
∂x

(z − y)
2 ‖

≤ c

2
‖z − y‖2H1 ,
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as was to be shown. �
Lemma A.4. Consider the KS equation (3.8) with different initial conditions

z0, y0 ∈ L2(−π, π). Let w (t) = z (t)− y (t), where z (t) , y (t) are solutions to the KS
equation corresponding to different initial conditions z0, y0, respectively. Then∫ t

0

‖w (s) ‖4ds ≤ 1

4Cr
‖w0‖4e4Crt (A.5)

∫ t

0

‖∂
2w

∂x2
(s) ‖4ds ≤ 8Cr

ν2
‖w0‖4e4Crt . (A.6)

Moreover, ‖z‖∞ ≤ r and ‖y‖∞ ≤ r, where r = (‖y0‖+ ε) max{1, e(
1
2ν+M)T } > 0.

Proof. Consider the nonlinear controlled KS equation given by (3.8) with differ-
ent initial conditions z0, y0 ∈ L2(−π, π)

ż (t) = −Âz (t)−G (z (t)) , z (0) = z0

ẏ (t) = −Ây (t)−G (y (t)) , y (0) = y0,
(A.7)

where the operators Â and G are given in (3.5) and (4.7), respectively.

Since the operator BK is bounded, then there exists M > 0 such that ‖BKz‖ ≤
M‖z‖ for every z ∈ L2(−π, π). It can be shown that the L2-norm of the solution

‖z (t) ‖ ≤ e(
1
2ν+M)T ‖z0‖, where ν > 0 and t ∈ [0, T ]. Suppose ‖z0 − y0‖ ≤ ε for some

ε > 0. Choose r = (‖y0‖+ ε) e(
1
2ν+M)T . Then

‖y0‖ ≤ r − ε

sup
t∈[0,T ]

‖y (t) ‖ ≤ r

sup
t∈[0,T ]

‖z (t) ‖ ≤ sup
t∈[0,T ]

e(
1
2ν+M)t (‖z0 − y0‖+ ‖y0‖)

≤ r.

Note that r does not depend on z0. Subtracting the above two equations and
letting w (t) = z (t)− y (t),

ẇ (t) + Âw (t) = − (G (z (t))−G (y (t)))
w (0) = z0 − y0 =: w0.

(A.8)

Moreover, it was shown in Lemma (A.3) that

G (z (t))−G (y (t)) = Rw (t) + z (t)
∂w

∂x
(t) + w (t)

∂y

∂x
(t)−BKw (t) . (A.9)

Take the inner product of (A.8) with w to obtain

〈ẇ (t) , w (t)〉+ 〈Âw (t) , w (t)〉 = −〈(G (z (t))−G (y (t))) , w (t)〉.

That is,

1

2

d

dt
‖w (t) ‖2 + ν‖∂

2w

∂x2
(t) ‖2 = −〈(G (z (t))−G (y (t))) , w (t)〉

≤ |〈(G (z (t))−G (y (t))) , w (t)〉| . (A.10)
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Using (A.9), Triangle inequality, Cauchy-Schwarz inequality, Lemma A.1, Lemma
A.2 and the Poincaré inequality,

1

2

d

dt
‖w (t) ‖2 + ν‖∂

2w

∂x2
(t) ‖2 ≤ |〈Rw (t) , w (t)〉|+ |〈z (t)

∂w

∂x
(t) , w (t)〉|

+|〈w (t)
∂y

∂x
(t) , w (t)〉|+ |〈BKw (t) , w (t)〉|

≤ ‖∂
2w

∂x2
(t) ‖ ‖w (t) ‖+ ‖z (t) ‖∞ ‖w (t) ‖ ‖∂w

∂x
(t) ‖

+2‖y (t) ‖∞ ‖w (t) ‖ ‖∂w
∂x

(t) ‖+M‖w (t) ‖2

≤ (1 + 3r) ‖w (t) ‖ ‖∂
2w

∂x2
(t) ‖+M‖w (t) ‖2

= Kr ‖w (t) ‖ ‖∂
2w

∂x2
(t) ‖+M‖w (t) ‖2, (A.11)

where Kr = 1 + 3r.

Using Young’s inequality [46, Lemma 5.40],

1

2

d

dt
‖w (t) ‖2 + ν‖∂

2w

∂x2
(t) ‖2 ≤ ν

2
‖∂

2w

∂x2
(t) ‖2 +

(
K2
r

2ν
+M

)
‖w (t) ‖2. (A.12)

Multiply the above inequality by 2 and re-arrange the terms to obtain

d

dt
‖w (t) ‖2 + ν‖∂

2w

∂x2
(t) ‖2 ≤ 2Cr‖w (t) ‖2 (A.13)

where Cr =
K2
r

ν +M and so

d

dt
‖w (t) ‖2 ≤ 2Cr‖w (t) ‖2. (A.14)

This implies that

‖w (t) ‖2 ≤ ‖w0‖2e2Crt, t ≥ 0 (A.15)

and so ∫ t

0

‖w (s) ‖4ds ≤ 1

4Cr
‖w0‖4e4Crt . t ≥ 0.

Combine inequalities (A.14) and (A.15) to obtain

d

dt
‖w (t) ‖2 ≤ 2Cr‖w0‖2e2Crt.

Square the above inequality and integrate with respect to t to obtain∫ t

0

(
d

ds
‖w (s) ‖2

)2

ds ≤ 4C2
r‖w0‖4

∫ t

0

e4Crsds

≤ Cr‖w0‖4e4Crt. (A.16)
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Combine inequalities (A.13) and (A.15),

d

dt
‖w (t) ‖2 + ν‖∂

2w

∂x2
(t) ‖2 ≤ 2Cr‖w0‖2e2Crt. (A.17)

Integrate (A.17) with respect to t to obtain

‖w (t) ‖2 − ‖w0‖2 + ν

∫ t

0

‖∂
2w

∂x2
(s) ‖2ds ≤ ‖w0‖2e2Crt − ‖w0‖2

which implies that ∫ t

0

‖∂
2w

∂x2
(s) ‖2ds ≤ 1

ν
‖w0‖2e2Crt. (A.18)

Now, square inequality (A.17) and expand the perfect square on the left hand
side to obtain(

d

dt
‖w (t) ‖2

)2

+ 2ν‖∂
2w

∂x2
(t) ‖2 · d

dt
‖w (t) ‖2 + ν2‖∂

2w

∂x2
(t) ‖4 ≤ 4C2

r‖w0‖4e4Crt.

Re-arrange the terms and use Young’s inequality (|2a · b| ≤ 2a2 + 1
2b

2) to obtain

ν2‖∂
2w

∂x2
(t) ‖4 ≤ 4C2

r‖w0‖4e4Crt −
(
d

dt
‖w (t) ‖2

)2

− 2ν‖∂
2w

∂x2
(t) ‖2 · d

dt
‖w (t) ‖2.

That is,

ν2‖∂
2w

∂x2
(t) ‖4 ≤ 4C2

r‖w0‖4e4Crt +

(
d

dt
‖w (t) ‖2

)2

+ 2ν‖∂
2w

∂x2
(t) ‖2 ·

∣∣∣∣ ddt‖w (t) ‖2
∣∣∣∣

≤ 4C2
r‖w0‖4e4Crt +

(
d

dt
‖w (t) ‖2

)2

+ 2

(
d

dt
‖w (t) ‖2

)2

+
ν2

2
‖∂

2w

∂x2
(t) ‖4.

Re-arrange the terms to obtain

ν2

2
‖∂

2w

∂x2
(t) ‖4 ≤ 4C2

r‖w0‖4e4Crt + 3

(
d

dt
‖w (t) ‖2

)2

.

Finally, integrate with respect to t and use inequality (A.16) to obtain

ν2

2

∫ t

0

‖∂
2w

∂x2
(s) ‖4ds ≤ Cr‖w0‖4e4Crt + 3Cr‖w0‖4e4Crt

= 4Cr‖w0‖4e4Crt.

Hence, ∫ t

0

‖∂
2w

∂x2
(s) ‖4ds ≤ 8Cr

ν2
‖w0‖4e4Crt. �
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