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ABSTRACT 

 

Shallow-marine carbonates of the mid-Cretaceous Sarvak Formation are important 

reservoir rocks in southern Iran and the Persian Gulf region. These carbonates were 

deposited on the margin of the Arabian Plate and rest on the Kazhdumi Formation, 

which is one of the major hydrocarbon source rocks in the region. The top of the 

Sarvak Formation coincides with the regional Turonian unconformity. Most of the 

observed diagenetic features are genetically related to meteoric waters entering the 

Sarvak Formation during Cenomanian-Turonian and mid-Turonian uplift and the 

subsequent paleoexposure. 

 

Integration of field and petrographic studies and isotope geochemistry reveals the 

history of a variety of diagenetic processes, which include dissolution and 

development of secondary porosity which enhance reservoir properties of the Upper 

Sarvak carbonates. Various types of calcite cements were identified as the main cause 

for porosity loss in these carbonates. Their diagenetic environment is discussed using 

the geochemical data acquired as part of the present study. 

The δ18O and δ13C values (-12.3 to -0.6 ‰ and -5.8 to 3.6‰ VPDB, respectively) of 

the cements indicate precipitation from marine, meteoric and/or mixed meteoric-

marine fluids. Some drusy calcite cements exhibit δ18O and δ13C values (-5.1 and 0.8 
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‰ VPDB, respectively) and higher 87Sr/86Sr ratios, comparing to mid-Cretaceous 

carbonates, (i.e., 0.70747), which may indicate precipitation from meteoric waters. 

Lower δ18O and δ13C values (e.g. -5.1, 0.8‰ VPDB) combined with higher 87Sr/86Sr 

ratios (e.g., 0.70747) of some drusy calcite could confirm their precipitation from 

meteoric waters. 

Lower δ18O values of some blocky calcite cements (e.g., -12.3 ‰ VPDB) and matrix-

replacive compression-related dolomites (i.e., -7.3 to -3.4‰ VPDB) suggest their 

precipitation at rising temperatures during burial. 

 

The range of δ13C values (-5.8 to 3.6 ‰ VPDB) suggests that the main source of 

carbon in the calcite cements was primarily marine mixed with isotopically more 

negative carbon from atmospheric/soil-derived CO2.  

 

 

Keywords: Cenomanian-Turonian, Sarvak Formation, Iran, unconformity, carbonate 

diagenesis, stable isotopes 

 

INTRODUCTION 

 

The Sarvak Formation, the most prolific regional oil reservoir after the Asmari 

Formation, was deposited during the Cenomanian- Early Turonian on a carbonate 

platform located on the passive margin of the Arabian Plate (Setudehnia, 1978; 

Ziegler, 2001). It mainly consists of shallow water carbonates.  

The reservoir zone of these carbonates is located in the upper part of the succession 

and usually characterized by rudist-foraminifera bioherms (Motiei, 1993; 

Hajikazemiet al., 2010; Piryaeiet al., 2010).The formation is bounded on top by the 

regional Turonian unconformity, which is associated with widespread meteoric 

diagenesis (Hajikazemi et al., 2010). Multiple subaerial exposures of the Sarvak 

Formation during the Cenomanian-Turonian also caused development of extensive 

secondary porosity and permeability (Hajikazemiet al., 2010). The relationship 

between the depositional facies, their preservation and creation of porosity has been 

outlined by Hollis (2011). In spite of previous studies of the Sarvak Formation (e.g., 

Taghavi et al., 2006; Hajikazemi et al., 2002, 2010, 2012; Sharp et al., 2010; Hollis, 

2011; Vincent et al., 2015), due to their heterogeneity and complexity, the detailed 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 3

diagenetic history of the Sarvak carbonates in southern Iran remains unclear and 

warrants further investigations. In addition, little is known about geochemical 

characteristics and evolution of the diagenetic fluids. 

 

This paper presents the results of a detail diagenetic study of the Sarvak Formation 

based on data from different localities in southwestern Iran and the Persian Gulf. 

These include the type section at Bangestan Mountain and Shahneshin Mountain in 

Fars province, core samples from Rag-e Sefid and Bibi Hakimeh oilfields in 

southwestern Iran and also the Sirri offshore oilfield in the Persian Gulf (Fig.1). These 

sites were sampled and studied utilizing petrographic, trace element and stable isotope 

analyses, in order to evaluate the controls on reservoir characteristics.  

 

Regional Geological Setting 

During the mid-Cretaceous, the northeastern margin of the Arabian Plate was 

occupied by a platform characterized by substantial local variations in 

accommodation space creation and depositional environments. Thickness and facies 

variations of the Sarvak carbonates has been documented in southwestern Iran in 

many studies (e.g. Setudenia 1978 and Hajikazemi et al., 2010).These remarkable 

variations were mainly caused by relative sea level changes controlled by a 

combination of eustacy, local tectonics and salt movement during Cenomanian-

Turonian (Videtich et al., 1988; Farzadi and Hesthmer, 2007; Piryaei et al., 2010, 

2011; Vincent et al., 2015). Sedimentation rates varied considerably as indicated by 

isopach maps of the mid-Cretaceous time (Koop and Stoneley, 1982; Ghazban, 2007). 

Ghazban, 2007, suggesting local tectonic instability caused by salt tectonics and 

extensive uplift and erosion.The presence of basement highs also influenced basin 

configurations and sedimentation locally (Taghavi et al., 2006; Hajikazemi et al., 

2010). 

 

The Late Cenomanian was marked by the initiation of tectonic activity associated 

with the ongoing continental collision taking place in the region at this time. The 

Cenomanian-Campanian abduction of ocean crust along the southeastern and eastern 

margins of the Arabian plate caused re-activation of deep-seated regional faults and 

displacement of the Hormuz salt (Ghazban, 2007) which initiated episodes of regional 

uplift and erosion of the upper part of the Sarvak succession in the studied area. 
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Exposure features, varying from incipient microkarst to epikarst and deep channel 

incision, have been reported (see Droste, 2010; Hollis, 2011, Hajikazemi et al., 2010). 

Two main unconformities have been recognized in southern Iran and the Persian Gulf: 

a regional Turonian unconformity and a more local Cenomanian-Turonian break 

(Taghavi et al., 2006; Beiranvand et al., 2007; Hajikazemi et al., 2010). These 

unconformities are characterized by karstification, dissolution breccia and 

development of paleosols (Hajikazemi et al., 2010; 2012; Sharp et al., 2010).    

“The two unconformities display evidence of deep erosion and truncation of the 

underlying formations (Hajikazemi et al., 2010; 2012). Similar unconformities have 

been described in United Arab Emirates, Qatar and Khuzestan area (Harris and Frost, 

1984; Van Buchem, 2006; Hollis, 2011). 

 

Stratigraphy and Depositional Environment 

 

At the type section, the Sarvak Formation consists of several different carbonate 

facies with a total thickness of 821 m (Motiei, 1993). The formation conformably 

overlies the Kazhdumi Formation and is unconformably overlain by the marls of the 

Gurpi Formation of Maastrichtian age (Fig.2). 

 

The lower part of the formation is composed of argillaceous micritic limestone and 

thin beds of marl. The middle portion consists of massive chalky limestones with 

iron-rich siliceous nodules and rudist fragments. The upper part comprises massive 

limestones with the top most strata consisting of weathered, brecciated and 

ferruginous limestone. The unconformity at the top of the Sarvak Formation is 

marked by pedogenesis, brecciation, karstification, hematite and Fe/Mn nodule 

development (Hajikazemi et al., 2010; Mehrabi et al., 2015; Vincent et al., 2015).  

 

These carbonates were deposited on a low- angled platform on the margins of an 

intrashelf basin. The shallowing-upwards carbonates of the Sarvak Formation are 

composed of Oligostegina wackestone, bioclastic wacke/packstone, rudist floatstone, 

rudist grainstone, benthic foraminifera wacke/packestone, representing four main 

depositional environments of a ramp setting ( i.e. inner-ramp, mid-ramp, outer-ramp 

and open marine or basinal (Taghaviet al., 2006; Hajikazemiet al., 2010). 

Sedimentary features such as burrows and geopetal fabrics dominate the inner-ramp 
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setting the inner-ramp setting. Mid-ramp facies are mainly restricted to the Upper 

Sarvak Formation whereas outer-ramp facies occur in the Lower Sarvak Formation. 

Basinal facies which consist mainly of Oligostegina wackestone/packstone susually 

occur in the lower Sarvak Formation. Further description of sedimentary facies and 

their environmental interpretation can be found in Hajikazemi et al., 2010, Esrafili-

Dizaji, et al., 2015 and Vincent et al., 2015.   

 

MATERIALS AND METHODS 

The carbonate units from the surface and core sections were logged and sampled 

based on observed facies and/or diagenetic variations. Petrographic thin sections from 

both outcrop sections and cores were examined using transmitted light (see figure 1 

for locality of sampling).Cathodoluminescence microscopy of over 100 representative 

samples mainly from upper part of the Sarvak carbonates which usually shows 

reservoir properties and contain different type of calcite cements and dolomite,was 

performed using a Technosyn 8200 MKII model cold cathodoluminescence stage with 

a 12-15 kv beam and a current intensity of 420-430 µA on the unstained halves of the 

uncovered thin sections. Core samples were impregnated with an epoxy mixed with 

blue dye for porosity identification.  

 

Calcite cements, dolomites and their host calcite matrix were micro-sampled using a 

microscope-mounted dental drill assembly. Powdered samples were reacted with 

100% pure phosphoric acid at 25°C for calcite and 50°C for dolomite for 4 hours (Al-

Aasm et al., 1990) and the evolved CO2 gas was analyzed for stable oxygen and 

carbon isotopes utilising a Finnigan Mat Delta-Plus mass spectrometer.All analyses 

for oxygen and carbon isotopes are reported in per mil (‰) notation relative to the 

Vienna Pee Dee Belemnite (VPDB) standard. Replicate analyses using these 

procedures and comparisons with laboratory standards, give a precision better than 

0.05‰ for both δ18O and δ13C values.  

 

Major and trace element data were obtained using an ICP-MS at the Great Lake 

Environmental Research Institute at the University of Windsor. Each sample was 

weighed, reacted with 2 grams of 5% HNO3 and diluted with 3 millilitres of twice-

distilled water. Calibration of the ICP-MS was achieved using reference materials and 
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a procedural blank selected to cover the range of elemental concentrations expected in 

samples. Data are reported as weight percent. 

 

DIAGENETIC FEATURES AND RESERVOIR CHARACTERISTICS 

 

A variety of diagenetic features were recognized in the Sarvak carbonates. Calcite 

was the most abundant pore-filling cement. Other diagenetic constituents include 

dolomite and minor pyrite. A paragenetic sequence is presented in Figure3 based on 

standard petrographic and CL observations and geochemical considerations. The 

timing of diagenetic events was determined mainly from observed textural 

relationships and to a lesser extent on the results of geochemical analysis. Diagenetic 

events, which influenced the reservoir characteristics of these carbonates, include 

dissolution, compaction, recrystallization, fracturing, dolomitization, pyrite formation 

and calcite cementation. Dissolution and dolomitization are the most porosity-

enhancing diagenetic features in reservoir units. The major events are discussed in 

turn below. 

 

Pyrite Formation 

Two types of pyrite were observed in the Sarvak Formation:(1) microcrystalline 

framboidal pyrite, which is common below the unconformity surface(s); and (2) 

coarse crystalline pyrite which is more abundant in subsurface samples. Neither type 

of pyrite is widespread. Framboidal pyrite consists of numerous spheroidal clusters of 

small, discrete, equant microcrystals (Fig. 4a). Coarse crystalline pyrite occurs as 

euhedral crystals, which replace the calcite matrix or partially fill fractures, 

suggesting formation during later diagenesis. Their occurrence reduces the porosity of 

some fractures (Fig. 4b). 

 

Calcite Cementation  

Five types of calcite cement were observed in the Sarvak carbonates: 

1. Fine crystalline isopachous rim –cements(rare), surrounding some skeletal grains in 

grainstone/ packstons;  

2. Fine to medium crystalline equant calcite cement, filling interparticle pores in 

packstonesand grainstones (Fig. 4c);  

3. Syntaxial overgrowth calcite (rare), surrounding echinoid fragments in grainstones; 
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4. Drusy mosaic calcite, filling fractures, vugs and molds (Fig.4d); and  

5. Coarse blocky sparry calcite, partially filling the remaining voids in some fractures 

and the body cavities of rudists and vugs (Fig. 4e,f). 

 

The cement types were distinguished by their petrographic characteristicsand also 

their response to cathodoluminescence. Isopachous rim- cements and syntaxial 

overgrowth calcite cements are generally non-luminescent. Equant calcite cements 

consist of dark to non-luminescent crystals with thin, brightly luminescent rims (Fig. 

5a, b). Drusy mosaic calcite cement is composed of alternating dull to non-

luminescent and bright orange-to-yellow highly luminescent bands. 

 

Coarse blocky calcite was the latest cement phase, which partially or completely fills 

some vugs, resulting in porosity reduction and consequently affects the reservoir 

quality.This calcite phase is commonly ferroan and characterized by dull to non-

luminescent crystals (Fig. 5a, b). In core samples, this type of cement also appears 

along some stylolites with two- phase fluid inclusions in some of the larger crystals. 

The presence of two-phase fluid inclusions and cross-cutting relationships confirm 

that they must be a component of later precipitation of cement under higher ambient 

temperatures compared to earlier cements. It is important to note that an apparent 

consistency in the temperatures of cementation across the region with homogenization 

temperatures above 80oC has also been reported by other researchers (see Videtich et 

al., 1988; Sharp et al., 2010).  

 

Drusy mosaic and blocky calcite cements are volumetrically the most important 

calcite cements. These cements were selected for geochemical analyses because they 

could be sampled relatively easily without contamination by surrounding matrix. 

Obtaining samples from earlier cement types was not possible due to their small 

volume and crystal size. 

 

Dissolution 

Vuggy and moldic porosity are the dominant secondary porosity type; particularly in 

the Upper Sarvak Formation. Based on petrographic observations, log data and 

porosity measurements of core samples, porosity ranges from 5 to over 25 percent in 

some intervals. 
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In core specimen and surface sections, vugs are up to a few centimetres in dimension. 

Cavernous (man-size) porosity is present below the unconformity surface(s), 

especially in Shahneshin Mountain surface section (Fig. 6a). Some of the molds and 

vugs may be totally or partially filled with calcite cement or bitumen (Fig. 6b). 

However, many of them remain open (Fig.6c). 

Mechanical and Chemical Compaction  

Mechanical and chemical compaction has influenced the reservoir characteristics in 

the Sarvak Formation carbonates. Evidence for compactional modification is 

ubiquitous in the formation (Asghari and Adabi, 2014; Hollis, 2011). Mechanical 

compaction caused porosity reduction by fusing and/or breakage of the grains and 

decreasing the interparticle porosity in packstones. Dissolution seams and stylolites 

are the most common chemical compaction features, especially in mud-supported 

rock units (Fig. 5d). 

Recrystallization 

Partial recrystallization of the calcite matrix and bioclasts was observed in some 

intervals, especially below the unconformity surface(s), and also adjacent to some 

stylolites. Recrystallization reduced primary matrix porosity by forming larger 

crystals with a tight texture and no/less intercrystalline pore space in between. 

Fracturing  

Fractures, observed in subsurface samples and in larger scale in outcrops, constitute 

an important type of secondary porosity, particularly in the Upper Sarvak Formation. 

Fracture orientations vary from vertical to horizontal, and widths range from hairline 

up to a few centimetres across. The fractures are grouped into two main sets. The 

oldest set is predominant and includes vertical to sub-vertical fractures. These 

fractures have the apertures greater than 2 mm in some core samples and up to few 

centimetres in surface sections. These individual fractures are partially or completely 

filled with calcite cement .The second set is horizontal to sub- horizontal fractures. 

They cross-cut the earlier set; their apertures are not wide open (few micrometers in 

most samples)and most are devoid of any cementation. This second set of fractures 

cross cuts stylolites and dissolution seams (Fig.5e). 

 

Dolomitization 

Dolomite is uncommon in the studied wells and outcrops of the upper part of the 

Sarvak Formation, and when present constitutes less than 10% of the matrix. 
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Three types of dolomite were observed in studied sections: 

Dolomite I: finely crystalline dolomite cement (up to 20 µm in size) filling 

interparticle porosity in brecciated intervals underlying the unconformity surface (s); 

Dolomite II: subhedral- euhedral fine to medium-crystalline (40-60 µm) clear 

dolomite, replacing carbonate matrix in association with dissolution seams; and 

Dolomite III: euhedral, medium-crystalline, cloudy-centred clear-rimmed dolomite 

with crystal size reaching to 70 µm or greater. This type of dolomite partially replaces 

calcite matrix adjacent to stylolites in some argillaceous intervals. The latest 

generation of dolomite (i.e., Dolomite III), which commonly observed in core 

samples, creates intercrystalline porosity. Live oil fills the porosity between dolomite 

crystals (Fig. 5f). The intervals containing Dolomite III with the porosity over 15 

percent usually form good quality reservoir units in studied oilfields and elsewhere in 

the area. Only the latest dolomites (Dolomite III) were sufficiently abundant to be 

sampled for carbon and oxygen stable isotope analysis. 

Palaeosol Formation 

The upper part of the Sarvak Formation in outcrops and some subsurface sections 

(e.g. Sirri oil field) is composed of exposure-related features and products including 

palaeosols in the shape of bauxite and laterite or a mixture of ferroan pisoids and 

quartz grains in a clay matrix. 

 

ISOTOPE GEOCHEMISTRYAND ELEMENTAL ANALYSES  

The δ13C and δ18O values and the 87Sr/86Sr ratios in addition to concentrations of Ca, 

Mg, Mn and Sr, were determined in rudist shells, matrix material (i.e. micrite) and 

cement to determine diagenetic conditions in which the cements were precipitated.  

 

Calcite Matrix 

The δ13C and δ18O values for the samples analyzed are summarized in Tables 1, 2.1 

and 2.2 and illustrated in Figure (7).The δ13C and δ18O values of the calcite matrix 

range from -6.4 to +4.1‰ VPDB and -9.4 to -0.9‰ VPDB, respectively. Most of the 

δ
13C values from the Sarvak Formation (except the values obtained from the samples 

taken below the paleoexposure surfaces) are typical of Cenomanian-Turonian 

carbonates deposited in warm-water conditions in low latitudes (see Veizer et al., 

1999 for values) and are compatible with the values obtained by other workers for this 
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time interval (Immenhauser et al., 2005; Steuber, 1996; Arthur, et al., 1988; Scholle 

and Arthur, 1980).  

Rudist Shells 

Nineteen samples of rudist shells from cores and surface sections were analyzed for 

δ
13C, δ18O, and 87Sr/86Sr and major and trace element contents (Table 2.2). Rudist 

shells can potentially record marine water chemistry at the time they formed, because 

their outer layers originally consisted of diagenetically stable low-Mg calcite (Al-

Aasm and Veizer, 1986b). Based on their CL characteristics, the rudist shells have not 

been affected by later alteration and their isotopic values could be used as reference to 

compare other carbonate phases.  

The δ13C and δ18O values of the rudist shells range from 1.3 to 2.7‰ and -5.6 to 

-3.0‰ VPDB, respectively. 

Calcite Cements 

Drusy mosaic calcite cements have δ13C and δ18O values ranging from -5.8 ‰ to 

+3.6‰ and -9.3‰ to -0.6‰ VPDB, respectively. The δ13C and δ18O values for blocky 

calcite cement ranged from -2.4 to 3.6‰ and from -12.3 to -2.8‰, respectively (Fig. 

8). Calcite cements show a wider range of δ18O values compared to matrix material. 

Some blocky calcite cements have more negative δ18O values compared to matrix and 

drusy mosaic cements and their δ13C values show a significant overlap with other 

carbonate components.  

 

On a plot of δ13C versus δ18O, blocky calcite cements sampled from vugs and 

fractures fall into three distinct groups (Fig. 9). Group 1, comprising six samples of 

blocky calcite cement, shows the most negative values for and δ18O and δ13C (-12.3, -

5.4 ‰ and -2.4 and +0.3 ‰VPDB respectively). Group 2 exhibits the most positive 

values (δ18O between -3.8, -3.5‰ and δ13C between +2.4 and +3.5‰ VPDB), which 

are compatible with mid-Cretaceous marine carbonates. Group 3 contains the largest 

number of samples whose δ13C and δ18O have relatively narrow ranges of values 

(δ18O between -6.7, -4.2‰ and δ13C between +1.2 and +2.8‰VPDB).   

 

Dolomite 

Nine samples of dolomite III, the most abundant type of dolomite in the Upper Sarvak 

Formation in the studied wells, were analyzed for stable carbon and oxygen isotopes. 
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The δ13C values ranges from 1.5 to 5.0‰ VPDB and δ18O ranges from -7.3 to -3.4‰ 

VPDB (Table 1). A plot of δ13C vs. δ18O for these dolomites is presented in Figure 10. 

 

Palaeosol 

Five samples of palaeosol from below the unconformity surface in the Shahneshin 

Mountain surface section were analyzed for δ13C and δ18O values. They range from 

-5.7 to -2.9 ‰ VPDB and -6.1 to -4.2‰ VPDB, respectively (Table 1).  

 

DISCUSSION 

Diagenesis of depositional components 

Diagenetic processes in carbonates generally produce phases with depleted δ13C and 

δ
18O while preserved marine carbonates display positiveδ13C and δ18O (Veizer et al., 

1999).  

The most positive δ13C and δ18O values were measured in the non-luminescent rudist 

shells which considered to be the most pristine values and used as reference values for 

comparison with other carbonate phases. The range of δ13C values is similar to 

recorded ranges of mid-Cretaceous marine carbonates (e.g., Veizer et al., 1999). 

Small variations in δ13C values most likely reflect original differences in terms of the 

oxidation of organic matter incorporated into the marine carbonates during their 

precipitation. 

With eustatic sea level changes during the mid-Cretaceous, the δ13C also fluctuated in 

the same manner, and consequently the variations in δ13C values from analysed matrix 

samples could be an indication of eustatic sea-level changes (see Jenkyns, 1994; 

Hajikazemi et al., 2012). Such shifts in δ13C values have also been illustrated in 

studied sections of the Sarvak carbonates in other areas within southern Iran (Vincent 

et al., 2015).  Therefore, we conclude that the δ13Cof the Sarvak carbonates can be 

utilized as a constraining tool for stratigraphic correlation (see Hajikazemi et al., 

2012).  

The δ18O signature of the majority of the samples obtained from low Mg-calcite 

matrix represents original sea water signature. Based on cathodoluminescence 

petrography, most of the calcite matrix diagenetically remained unaltered except those 

sampled immediately below the unconformity surfaces (see Hajikazemi et al., 2010; 

2012). 
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Calcite matrix below the paleoexposure surfaces with depleted δ13C and δ18O values 

are often luminescent, activated by Mn (Marshall, 1992; Savard et al., 1995) show 

diagenetic alteration under the influence of meteoric waters. Considering Mn 

concentration as a proxy for alteration by meteoric water, a plot of δ18O vs. Mn 

concentrations for majority of the samples would show no correlation, implying that 

they have not considerably been altered (Fig. 11). Furthermore, the low Mn values 

obtained from calcite matrix (2-40 ppm in the majority of measured samples in this 

study and 1 - 35 ppm in Asghari and Adabi, 2014) are also consistent with little or no 

diagenetic alteration. 

 

Cement Diagenesis 

Meteoric diagenesis is characterized by depleted δ13Cand δ18O values (James and 

Choquette, 1990) while burial diagenesis could modify only the original δ18O. The 

δ
13C values remain essentially unchanged by diagenesis in sediments with low 

organic carbon content (Barrera and Keller, 1990).   

The more positive δ13C values in some of the drusy mosaic calcite (Fig. 8) and blocky 

calcite cements (i.e., Group 2 in Fig. 9 and Table 1), compared to other cements, 

suggest that the bicarbonate required for the cement precipitation was derived from a 

'marine' source. The δ13C values fall well within the range of δ13C values reported for 

the mid-Cretaceous marine carbonates (Arthur et al., 1988; Voigt, 2000). The calcite 

cement was derived mostly from marine carbonates with little or no modification in    

δ
13C values. The analyzed carbonate matrix and adjacent cements are isotopically 

different. Carbonate  matrix commonly show values similar to those of normal sea 

water while the cement in some cases displays  more positive δ13C values (Table 1, 

2.1 and 2.2). Such highly positive δ13C values (i.e., +3.6‰ VPDB) observed in the 

cements could indicate precipitation from marine fluids characterized by positive 

carbon isotope excursion related to the Oceanic Anoxic Event (OAE) 2 for 

Cenomanian-Turonian (Arthur, et al., 1988; Scholle and Arthur, 1980). 

Considering carbon as a major part of carbonate rocks and a minor component of 

basinal fluids, the δ13C signature of carbonates is much less susceptible to alteration 

during water-rock interaction than 87Sr/86Sr or δ18O. Consequently, carbonate 

successions that undergo diagenetic stabilization with low water-rock ratios are 

unlikely to have δ13C modified or homogenized. Magaritz (1983) found that δ13C 

values will not appreciably decrease until the water-rock ratio is raised to 1000 or 
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more. This characteristic of δ13C could explain the precipitation of most of the drusy 

mosaic calcite and Group 2 blocky calcite cement with δ13C values similar to marine 

calcite while more depleted δ18O values could indicate cement precipitation in mixed 

marine-meteoric realms.  

 

A likely mechanism causing δ13C depletion in Group 1 blocky and some drusy mosaic 

cements is meteoric diagenesis associated with sea level oscillations and episodic 

exposure of the Upper Sarvak platforms. The presence of paleoexposure surfaces and 

pedogenesis linked to the unconformity could have resulted in negative δ13C values. 

The δ13C values of carbonate cements precipitated under the influence of meteoric 

waters often are depleted due to influx of atmospheric-derived CO2 with its distinctive 

low δ13C values.  This is further supported by the CL examination and Sr 

concentrations results (see Table 1).  The zonation in drusy calcite cements also 

suggests their precipitation from fluids with varying concentrations of Mn and Fe (c.f. 

Veizer et al., 1999) and/or changes in the environmental conditions (see Machel et al., 

1991). 

The narrow range of δ13C values observed from each blocky calcite cement 

generation (Group 1-3) indicates their precipitation from fluids with minor isotopic 

variations without organic carbon as a source for carbon.   

 

The δ18O of calcite is dependent on the temperature of precipitation and isotopic 

composition of the parent fluids. Assuming a temperature range of 15 to 36°C 

calculated for Mean Sea Surface Temperature (MSST) for Cenomanian-Turonian and 

during the deposition of the Sarvak Formation ( Hajikazemi et al., 2010), the δ18O of 

the calcite precipitated at these temperatures was determined using the equation of 

O’Neil et al., (1969). 

 

1000 ln α = (δ18OCalcite – δ18Owater) = 2.78 (106 T-2)-2.87           [1] 
 

The marine calcite cements precipitated at the above temperatures, assuming seawater 

compositions for the mid-Cretaceous (no ice build-up) of -1.2 ‰ SMOW (White et 

al., 2001) would be characterized by δ18O values range  from -1.0 to -5.7‰ VPDB. It 

is important to note that the δ18O values of the  rudist shells  fall within this range 

(δ18O = -3‰ to -5.6‰).  As a result, the majority of the cements which show δ18O 
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values between -2‰ and -5.5‰ VPDB (Table 1 and Fig.8), indicate their 

precipitation from fluids having an approximate seawater signature.  87Sr/86Sr ratios 

measured in these carbonate cements also vary little and fall well within the 

Cenomanian-Turonian portion of the secular seawater curve of Veizer et al. (1999) 

(see Table 1 for values). 

 

More negative δ18O values obtained for some cements could be explained either by 

precipitation from a fluid with lighter δ18O values than coeval seawater or at higher 

temperature. δ18O-depleted meteoric water could conceivably infiltrated and 

diageneticaly modified Sarvak strata as a consequence of subaerial exposure due to 

sea-level fall combined with regional uplift. The 87Sr/86Sr ratios of some of the 

cements (87Sr/86Sr >0.7084) are considerably more radiogenic than mid-Cretaceous 

sea water values determined previously (e.g., Derry et al., 1984; Veizer et al., 1999).  

These cements are closely associated with paleoexposure surfaces and have negative 

δ
13C values.  Thus, the depleted δ18O values of these calcite cements indicate a 

meteoric water influence.  

 

During the mid-Cretaceous, the area was located in a warm equatorial region. The 

δ
18O of meteoric water existed at this time could not have been less than -6‰ (White 

et al., 2001), while the global average temperature ranged from 12 to 20.8 °C (Frakes 

et al, 1992; Donnadieu et al., 2006). Calcite cements precipitated in equilibrium with 

meteoric waters could have δ18O values around -6.0 ± 1‰. The δ18O of pedogenic 

carbonates ranging from  -5.2 to -3.7‰, which certainly indicates meteoric water 

influence also agree with such an interpretation. Additionally, the 87Sr/86Sr ratios of 

these pedogenic carbonates (87Sr/86Sr >0.70812 and 0.70817) are more radiogenic 

than the mid-Cretaceous marine values. The pore water at this time was probably an 

isotopically evolved mixture of marine and meteoric-derived waters; with a major 

contribution of meteoric- derived water close to the unconformity surface (s) and 

greater component of marine- derived pore water down section.  

 

Deposition of the Laffan shales and Ilam carbonates (in the Persian Gulf area) or the 

Gurpi Formation (at the type section), on top of the Sarvak Formation, following 

extensive uplift and subaerial exposure, indicates that the Sarvak Formation was 

flooded by marine water and additionally the platform may have been subjected to 
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burial diagenesis. Precipitation of calcite cements with δ18O as negative as -12‰, 

could be explained either by an increase in temperature, or by a progressive change in 

the isotopic composition of the pore waters, or by a combination of both.  Meteoric 

diagenesis of marine carbonates typically results in a shift towards more negative 

values of both δ18O and δ13C (Anderson and Arthur, 1983), whereas burial diagenesis 

produces larger shifts in δ18O values than meteoric diagenesis, with no significant 

changes in δ13C values (e.g. Choquette and James, 1987). Based on calculations 

utilising δ18O values of cements, the maximum possible temperature during 

precipitation of these depleted cements is between 50°C and 85°C. This is also in 

accordance with the presence of two-phase fluid inclusions in some of the blocky 

cements, indicating their formation under higher ambient temperatures compared to 

earlier generations of cements. Thus, we assume that the minimum temperatures for 

the calcite precipitation would be at least 50°C, corresponding to about 1 km depth of 

burial at the time of precipitation of these cements. Figure 12 illustrates the evolution 

of calcite cement from marine to meteoric and burial diagenetic environment. 

 

Dolomite   

Possible carbon sources for dolomite include dissolved bicarbonate from normal 

marine water or bicarbonate production related to the modification of organic matter. 

Considering the δ13C values of the dolomites (i.e., 2.0-5.0 ‰VPDB) a marine source 

can be suggested for their carbon.   

 

The δ18O values of dolomites are lower than values for mid-Cretaceous marine 

carbonates (Table 1).  Such low values are not expected for dolomite compared to 

calcite theoretically co-precipitated from the same parent fluids (Land, 1985). In such 

a case dolomite should be enriched in18O and have δ18O values about 4‰ more 

positive relative to calcite (Hoefs, 1987). Thus, based on the δ18O values obtained 

from calcite and dolomites, it can be concluded that they have been precipitated in 

different stages from different sources. 

 

The range of δ18O values for these dolomites probably reflects varying compositions 

or temperatures of the waters involved. Using the paleotemperature equation for 

dolomite (Land, 1985) [2], we can employ measured δ18O values (ranging from -

6.7‰ to -2.7‰ VPDB) to estimate the water’s δ18O. 
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ToC= 16.4- 4.3 ([δ18Odol - 3.8] - δ18OWater+0.14([δ18Odol - 3.8] - δ18OWater)2 [2] 

 

Where T is temperature (in ºC), δ18Odol is the oxygen isotope value in studied samples 

(in PDB), δ18OWateris the oxygen isotope value of marine water (in SMOW).  The 

calculations show temperature between 35- 80oC for the parent fluids of the 

dolomites. 

It is reasonable to assume that the dolomite formed from marine to mixed marine-

meteoric waters under relatively warm temperatures. Due to crystal shape and size of 

the dolomites and also above mentioned temperatures, it is unlikely that the dolomite 

precipitated directly from marine or meteoric waters. We conclude that dolomite was 

formed from mixed marine-meteoric pore water with temperatures ranging from 35 to 

80°C. Based on the obtained geochemistry data and occurrence of the examined 

dolomites after stylolite formation, it could be interpreted that they formed in a burial 

diagenetic environment. Assuming a 15°C mean annual surface temperature and a 

30°C /km geothermal gradient, a minimum of 2 km of sediments would need to have 

been deposited to satisfy the maximum temperatures (i.e., 80°C) proposed here, if 

burial heating alone were the mechanism responsible. This burial constraint 

suggesting 2 km or more of sediments are inconsistent with the known stratigraphy 

for the region. Since the sufficient depth of burial were not reached until Miocene 

time in southern Iran (Kamalee and Rezaei, 2003; Sharp et al., 2010) an upward 

migration of warm hydrothermal fluids to shallower depths can also be envisaged. 

Therefore, the proposed temperatures are not representative of heating because of 

burial alone, but instead are caused by increased local or regional geothermal gradient 

related to fluid flow and moving hot brines from greater depths upward into the 

Sarvak Formation.  

 

CONCLUSIONS 

Petrographic and geochemical study of shallow-water carbonates of the mid-

Cretaceous Sarvak Formation from southern Iran record a diagenetic history which 

can be summarized as follows: 

(1) Deposition of shallow-marine carbonates of the Upper Sarvak Formation during 

the Cenomanian- Turonian and early marine cementation; 
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(2) Tectonic uplift and salt diaprism in late Cenomanian causing subaerial exposure of 

the Sarvak Formation at Cenomanian-Turonian boundary, that allowed the influx of 

meteoric water into the carbonates causing vast dissolution and reservoir properties 

enhancement and also precipitation of some calcite cements; 

 

(3) Marine transgression and sea-level rise during the early Turonain and precipitation 

of later marine cements in pores and some fractures; 

 

(4) Sea-level fall during mid-Turonian resulting in the regional Turonian 

unconformity, which caused paleoexposure and deep erosion and removal of the 

carbonates and their dissolution and creation, enhancement and development of 

effective porosity and favourable reservoir characteristics. 

 

(5) Burial of the platform with circulating sea-water providing a site for 

dolomitization and also precipitation of the last generation of blocky calcite cement in 

some pore spaces.  

(6) Early diagenetic cements were formed at low to moderate temperatures (<50°C) 

during sediment compaction; late diagenetic cements (i.e., blocky calcite), dolomite 

and coarse crystalline pyrite precipitated at higher  temperatures (~50°–80°C) during 

deeper burial. 

(7) Dissolution due to invading of meteoric waters is the main reservoir property 

enhancement; and dolomitization can be considered as the other factor but in lesser 

extent. 
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Sample No. 43Ca 55Mn 86Sr 87Sr/86Sr  δ

13C δ
18O 

       
8700-C 363739 14 112  -1.6 -5.9 

9211-C      2.2 -2.2 

9447-C      2.1 -6.4 

9441.8-C 270744 15 202 0.70745 1.8 -5.9 

8955-C 281240 22 34  -0.3 -4.8 

8446-C 297866 17 59  -5.8 -6.5 

8447-C 283751 23 112  -3.5 -5.6 

8447-C      -3.8 -5.8 

8700-C 274763 10 102 0.70717 -2.4 -5.4 

9428-C 252884 8 169  2.0 -5.0 

9438-C 311404  70  3.1 -0.6 

8943-C      0.4 -3.9 

8961-C      2.2 -5.0 

8185-C 279219 17 86 0.70747 0.8 -5.1 

2517-C      2.1 -3.8 

7354-C      2.9 -2.3 

7423-C      2.9 -6.5 

7464-C      2.8 -5.7 

2520-C      1.7 -4.8 

167-C 254058 18 277  0.1 -6.2 

165-C 311181 14 166 0.70731 0.0 -4.4 

161-C 321049 18 169 0.70745 -1.1 -1.9 

160-C 278844 8 281  -1.0 -1.6 

159-C 287371 5 266  1.5 -1.8 

158-C      3.4 -3.7 

157-C      3.4 -3.7 

155-C 325269 9 213 0.70729 0.6 -2.3 

153-C 281752 18 146 0.70846 0.7 -2.2 

147-C     0.70746 1.8 -3.1 

143-C 223250 4 51 0.70771 2.8 -3.2 

140-C 600350 21 225 0.70766 3.0 -2.8 

139-C      2.4 -1.8 

134-C      2.4 -3.5 

132-C 312811 22 214 0.70762 2.9 -3.3 

129-C 290026 6 195 0.70732 3.5 -5.2 

     128-C          292198      3         55           2.9        -4.0 
 

120-C 278000 5 222 0.70731 2.5 -3.0 
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    114-C 276639      5 137  2.2 -1.2 

111-C 310488 6 213 0.70775 -0.6 -8.9 

109-C 203820 4 30 0.71015 3.3 -1.4 

108-C 317418 4 147 0.71016 1.4 -4.3 

102-C 287798 3 306 0.70728 2.0 -2.4 

99-C 347276 4 212 0.70746 2.3 -1.8 

97-C     0.70718 2.2 -2.5 

95-C 306083 3 136 0.70714 1.4 -2.1 

94-C 88971 2 118  3.1 -1.6 

88-C     0.70772 1.5 -4.7 

89-C     0.70756 0.8 -5.3 

71-C      1.9 -4.0 

57-C      3.2 -3.9 

RU-B 281592 33 101  2.1 -6.0 

BH-104-B 281028 44 56 0.70731 1.8 -5.3 

BH-104-B      0.8 -5.6 

BH-104-B      1.6 -5.9 

BH104-CB      2.0 -5.7 

BH105-CB      1.5 -6.0 

BH-4-B  252204 29 105 0.70752 1.9 -6.2 

BH106-B      0.9 -9.3 

BH-2-B      2.5 -4.9 

BH-12-B      2.1 -6.4 

BH101-B      1.3 -4.1 

BH-0-B      2.2 -6.7 

BH-4-B  281839 33 101  2.1 -6.6 

106-B      1.8 -4.6 

140-B      2.2 -5.9 

BH106-B      1.4 -12.3 

9211.5-B      1.9 -1.8 

8955-B 240743 21 168  -1.4 -5.9 

2514-B 296480 12 100 0.70743 3.0 -3.7 

10107-B 233474 11 85 0.70747 2.4 -3.0 

9214-B      0.0 -6.7 

8700-B 293239 10 117 0.70745 -2.4 -5.4 

7351-B      3.5 -3.5 

8943-B 292706 30 89  0.2 -3.4 
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Table 1 (Continued)       

       

8688-B 288118 18 72  0.3 -3.4 

110-B 177294 3 52  2.2 -4.7 

163-B 313373 6 484 0.70745 0.5 -8.0 

9442-B 393586 11 260 0.70745 1.7 -6.4 

8173-B 281557 11 680 0.70717 2.1 -4.8 

8951-B 298215 34 129  2.2 -5.0 

28-B 245837 30 138  2.1 -6.2 

8952-B      1.3 -5.4 

165-B      0.5 -8.0 

7465-B      3.6 -3.9 

BH-2-B      2.5 -5.7 

7348-dol         3.4 -3.5 

7468-dol         2.0 -6.7 

7465-dol         3.2 -3.4 

7253-dol         2.2 -5.7 

9809-dol         4.4 -4.2 

9791.2-dol         4.8 -3.7 

9799-dol         4.6 -3.8 

9815-dol         5.0 -4.2 

9441.8-dol         3.4 -3.1 

9425-dol         3.0 -2.7 

       

       

Table.1 Stable isotope values and elemental concentration of drusy mosaic (C), blocky calcite (B) cement and dolomite (dol) 
of the Sarvak Formation in the study area. C: Drusy mosaic calcite cement; B: Blocky calcite cement; dol: Dolomite 
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Table 2.1 

 
Sample No. 

 
δ

13C (PDB) 
 

δ
18O (PDB) 

 

87Sr/86Sr 
 

Sr (ppm) 
 

Mn (ppm) 
      

167-M -0.3 -4.5 0.70878 154 13 
166-M -0.3 -3.4 0.70731 114 15 
165-M 0.2 -2.1 0.70756 234 12 
164-M 1.5 -2.3 0.70753   
163-M 0.6 -3.4 0.70733 422 17 
162-M 1.7 -3.9    

161-M 2.3 -2.3  196 5 

159-M 1.7 -2.7  298 6 

157-M 1.5 -3.0    

155-M 0.2 -2.8 0.70751 303 9 

151-M -0.1 -3.1 0.70748 315 12 

150-M 2.0 -1.1  306 5 

143-M 2.1 -0.9 0.70755 235 4 

140-M 2.4 -1.7  356 10 

139-M 2.4 -1.6  280 20 

134-M 2.0 -3.7 0.70766 288 9 

132-M 2.6 -1.0    

129-M 2.4 -3.6 0.70755 252 7 

128-M 2.6 -3.9  244 8 

120-M 2.4 -1.2  117 2 
114-M 2.5 -3.4 0.70754 254 3 
111-M 2.3 -3.6 0.70741 213 5 
110-M 2.3 -3.1    
109-M 2.2 -2.5    
108-M 1.2 -5.9    
106-M 2.2 -2.9    
105-M 2.2 -2.0    
102-M 2.6 -1.7 0.70728 236 4 
97-M 1.9 -4.0 0.70755 377 4 
95-M 2.3 -3.7  293 5 
94-M 1.9 -3.6  327 11 
88-M 0.5 -5.6  215 8 
87-M 0.5 -4.5  159 3 
83-M 1.8 -3.7 0.70761 276 3 
80-M 3.3 -5.2  363 4 
74-M 0.8 -5.4  260 3 
71-M 1.5 -4.2 0.70745 242 2 
69-M 1.8 -4.4  340 6 
62-M 1.8 -4.4 0.70784   
58-M 2.2 -4.0    
54-M 0.3 -6.5  552 4 
51-M 1.7 -4.6    
49-M 1.0 -5.8 0.70745   
36-M -0.7 -9.4 0.70740 1298 16 
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Table 2.1(Continued) 

 
Sample No. 

 
δ

13C  (PDB) 
 

 δ18O (PDB) 
 

87Sr/86Sr 
 

Sr (ppm) 
 

Mn (ppm) 
      

32-M 1.4 -4.1    
27-M 1.2 -4.3    
21-M 0.9        -8.6 0.70743 1336 16 
16-M 1.7            -4.4 0.70745 800 21 

EH-2-M 2.6 -4.4    
EH-3-M 2.4 -5.2    
EH-4-M 2.1 -5.6    
EH-5-M 1.6 -4.3    
EH-6-M 1.5 -4.2    
EH-7-M 2.2 -5.3    
EH-9-M 2.5 -4.5  169 23 

EH-10-M -3.0 -4.2    
EH-11-M 0.8 -6.3    
EH-12-M 1.5 -4.2    
EH-13-M 2.5 -4.7    
SE-21-M -5.8 -4.6  127 170 
SE-22-M -1.6 -4.5    
SE-23-M 0.6 -5.6    
SE-28-M 2.7 -5.1    
SE-29-M 2.4 -6.2    
BH-0-M 2.6 -4.4  144 18 
BH-2-M 2.4 -4.8    
BH-3-M 1.6 -5.3    
BH-6-M 1.5 -4.2  164 35 

BH-12-M 2.5 -4.7    
BH-107-M 0.8 -6.3    
BH-106-M 2.9 -5.4    
BH-104-M 2.3 -5.2 0.70749   

SK1-M -3.4 -6.2    
SK2-M -3.0 -5.8    
SK3-M 3.1 -5.2    
BH-5-P -3.0 -4.2    
SS-1-P -5.4 -3.7 0.70813   
SS-2-P -1.6 -4.1    
SS-3-P -7.3 -4.7    
SS-5-P -9.1 -5.2    
SS-6-P   0.70818   

Table 2.1 Carbon, Oxygen and Sr isotopic values and elemental concentrations of calcite matrix and palaeosol from surface sections. 
M: Matrix, P: Palaeosol 
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Table  2.2 

Sample No. δ
13C (PDB) δ

18O(PDB) 
 

87Sr/86Sr 
 

Sr (ppm) Mn (ppm) 

      
Bibi Hakimeh      

1-M 2.0 -4.0 0.707454 463 13 
2-M 1.9 -3.8 0.707422   
3-M 2.2 -4.2    
4-M 2.1 -4.0 0.70777   
5-M 2.5 -4.2    
6-M 2.6 -4.6 0.70748   
7-M 2.3 -5.7 0.70742   
8-M 2.6 -4.7 0.70737   
9-M 3.6 -4.6  517 7 
10-M 3.3 -4.1    
11-M 1.8 -6.9    
12-M 2.8 -5.0    
13-M 1.5 -6.5    
14-M 1.5 -6.5    
15-M 3.5 -4.4    
16-M 3.4 -3.8 0.70728 479 21 

Sirri-D      

1-M 1.8 -5.1 0.70753 169 35 

2-M 1.7 -5.1 0.70747   

3-M 1.8 -5.3 0.70788   

4-M 2.0 -5.1    

5-M 2.1 -5.3 0.70744   
6-M 2.1 -5.0 0.70754   
7-M 1.7 -5.2    
8-M 2.6 -5.0    

      
Rag-e Sefid A      

1-M -4.8 -6.1 0.70732 197 28 
2-M -6.4 -6.1    
3-M -0.6 -5.8 0.70833   
4-M 1.9 -2.7    
5-M 1.7 -3.2    
6-M -1.0 -6.7  264 14 
7-M 1.5 -3.1    
8-M -0.6 -5.2    
9-M -0.4 -3.8 0.70740 314 38 
10-M 1.9 -3.7    
11-M 1.3 -3.7  254 21 
12-M 1.2 -4.2 0.70729   
13-M 1.0 -3.8    
14-M 1.4 -3.6    
15-M 3.9 -3.8  327 2 
16-M 1.4 -4.0  309 12 
17-M 2.3 -3.8  263 8 
18-M 1.9 -3.7    
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Table 2.2 (Continued) 

 
Sample No. 

 
δ

13C  (PDB) 
 

 δ18O (PDB) 
 

87Sr/86Sr 
 

Sr (ppm) 
 

Mn (ppm) 
      

19-M 1.9 -5.1    
20-M 2.1 -3.8  218 20 
21-M 2.2 -3.3    
22-M 2.2 -4.5 0.70743   
23-M 4.1 -3.8  338 3 
24-M 4.0 -4.0 0.70712 407 3 
25-M 3.7 -4.0    
26-M 3.8 -3.7  229 3 
27-M 2.5 -3.9 0.70723   

      
Rag-e Sefid B      

1-M 2.7 -3.8    
2-M 2.7 -4.4 0.70746   

3-M 2.8 -4.1    
4-M 3.0 -3.2 0.70754   
5-M 2.4 -5.3    
6-M 2.6 -4.2    
7-M 2.3 -3.7 0.70729   
8-M 2.4 -2.8    

9-M 2.2 -4.0    
10-M 2.9 -3.5    
11-M 2.6 -3.9    

      
Rudist Shell      

91-Sh 2.0 -3.7  340 10 
92-Sh 1.9 -3.3 0.70740 349 2 
98-Sh 1.8 -3.0 0.70736 319 4 

8154-Sh 1.3 -5.2 0.70748 197 14 

8217-Sh 2.4 -4.9 0.70717   

8173-Sh 1.7 -5.2 0.70714   

2514-Sh 2.7 -5.0 0.70750   

7404-Sh 2.6 -4.6    
8952.8 Sh 2.1 -3.6    

9438-Sh 1.8 -5.6    
9791-Sh 1.6 -5.3    

10102-Sh 2.4 -5.0    
10120-Sh 2.5 -5.2    
RV-1-Sh 2.0 -4.4 0.70750   
RV-2-Sh 2.1 -4.3    
RV-3-Sh 2.0 -4.5    
R-H-1-Sh 1.9 -4.9  354 37 
R-H-2-Sh 1.8 -5.3    
R-H-3-Sh 1.5 -5.3    

BH-104-Sh   0.70749   
      
      

Table 2.2  Carbon, Oxygen and Sr isotopic values and elemental concentrations of rudist shells and calcite matrix from core samples 

Sh: rudist shell    M: Calcite Matrix  
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Fig. 1 Location map of the study area 
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Figure 2 Stratigraphy column of the Sarvak Formation at the type section, Bangestan Mountain 

(modified from Motiei, 1993) 
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Fig.3 Paragenetic sequence of the most important diagenetic features of the Sarvak Formation 
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Figure 5. a) Cavernous porosity below the unconformity surface in Shahneshin Mountain, b) 

Mouldic porosity partially filled with calcite cement, c) Vuggy porosity below the unconformity 

surface in Shahneshin Mountain   d) Foraminifera packstone with stylolite which acted as a 

conduit for oil in subsurface sections, e) Two sets of fractures in Upper Sarvak Fm. The wider set 

is completely filled with calcite cement and the second set is deprived of any cement and filled 

with blue dye, e) Compaction-associated fine crystalline dolomite replacing the calcite matrix 
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Figure 4. a) Photomicrograph of pyrite crystals formed adjacent to blocky calcite cement in a 

vein, b) SEM picture of framboidal pyrite, c) Photomicrograph of equant calcite cement in a 

grainstone, d) Syntaxial overgrowth cement surrounding an Echinoderm in a grainstone, e) 

Blocky calcite cement and intercrystalline porosity filled with blue dye, f) Photomicrograph of 

two- phase fluid inclusion in blocky calcite cement (magnification x100)   



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

  

 Figure 6 a) Drusy (D) and Blocky (B) calcite cement cements filling a moldic porosity, b) the 

same view of those cements under CL showing bright rims of drusy calcite cement and dark/non 

luminescent blocky calcite cement 

  

 

 

 

 

 

 

 

Figure 7. Plot of carbon and oxygen isotopic data of all carbonate components of the Sarvak 

Formation. The isotopic values of most of the samples fall within the Cenomanian-Turonian 

calcite range defined by Veizer et al., 1999  
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Figure 8 Carbon and oxygen isotopic composition of drusy mosaic and blocky calcite cement of 

the Sarvak Formation in the study area showing some overlap of isotopic values that could imply 

their precipitation from fluids of the same origin.  
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Figure 9 Carbon and oxygen isotopic composition of blocky calcite cement of the Sarvak 

Formation showing three distinct groups implying their precipitation from fluids of different 

origin.  

                                          
                                          Figure 10 Carbon and oxygen isotope data of the compaction-related 

dolomite in the Upper Sarvak Formation  
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Figure 11. Plot of stable oxygen isotope values vs. manganese of the all carbonate component of 

the Sarvak Formation. Lack of distinct trend in carbonate matrix samples confirms that this 

marine carbonates have not been altered 
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Figure 12. History of calcite cementation. The earliest cement precipitated from marine water with δ18O 

ranging from -1.2 to 0‰. The shift in δ18O indicated by the arrow is interpreted as an effect of changes in 

isotopic composition of the pore water from marine to dominantly meteoric water (δ18O = -6±1‰) 

causing precipitation of some of the 18O-depleted calcite cement (dark grey box). The most 18O-depleted 

cement precipitated from heated mixed meteoric-marine waters.   
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As requested the followings are the five important items which I think are the major contribution to 

the geology of the Sarvak Formation;  

1. For the first time, the diagenetic history of the Upper Sarvak Formation as the second most 

important oil reservoir in southern Iran has been studied in detail.  

2. All aspects of diagenesis of the formation have been described and the mechanisms responsible 

for their formation have been explained.  

3. The effects of diagenesis on the reservoir characteristics are determined.  

4. Geochemical tools have been effectively applied to demonstrate the digenetic processes. 

5. Diagenetic processes and products investigated and correlated in a vast oil producing region in  

outcrops and subsurface equivalents.    


