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Abstract

The goal of this thesis is to provide efficient and provably convergent numerical methods
for solving partial differential equations (PDEs) coming from impulse control problems
motivated by finance. Impulses, which are controlled jumps in a stochastic process, are
used to model realistic features in financial problems which cannot be captured by ordinary
stochastic controls. In this thesis, we consider two distinct cases of impulse control: one in
which impulses can occur at any time and one in which they occur only at “fixed” (i.e.,
nonrandom and noncontrollable) times.

The first case is used to model features in finance such as fixed transaction costs,
liquidity risk, execution delay, etc. In this case, the corresponding PDEs are Hamilton-
Jacobi-Bellman quasi-variational inequalities (HJBQVIs). Other than in certain special
cases, the numerical schemes that come from the discretization of HJBQVIs take the form
of complicated nonlinear matrix equations also known as Bellman problems. We prove
that a policy iteration algorithm can be used to compute their solutions. In order to do
so, we employ the theory of weakly chained diagonally dominant (w.c.d.d.) matrices. As
a byproduct of our analysis, we obtain some new results regarding a particular family
of Markov decision processes which can be thought of as impulse control problems on a
discrete state space and the relationship between w.c.d.d. matrices and M-matrices. Since
HJBQVIs are nonlocal PDEs, we are unable to directly use the seminal result of Barles
and Souganidis (concerning the convergence of monotone, stable, and consistent numerical
schemes to the viscosity solution) to prove the convergence of our schemes. We address this
issue by extending the work of Barles and Souganidis to nonlocal PDEs in a manner general
enough to apply to HJBQVIs. We apply our schemes to compute the solutions of various
classical problems from finance concerning optimal control of the exchange rate, optimal
consumption with fixed and proportional transaction costs, and guaranteed minimum
withdrawal benefits in variable annuities.

The second case of impulse control, involving impulses occurring at fixed times, is
frequently used in pricing and hedging insurance contracts. In this case, the impulses
correspond to regular anniversaries (e.g., monthly, yearly, etc.) at which the holder of the
contract can perform certain actions (e.g., lapse the contract). The corresponding pricing
equations are a sequence of linear PDEs coupled by nonlinear constraints corresponding to
the impulses. For these problems, our focus is on speeding up the computation associated
with the nonlinear constraints by means of a control reduction. We apply our results to
price guaranteed lifelong withdrawal benefits in variable annuities.
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Chapter 1

Introduction

time

Fig. 1.1: Sample path of process
driven by Brownian motion plotted
alongside its mean

Financial problems and stochastic processes have a
long, symbiotic history. The first known use of Brown-
ian motion to evaluate stock options appears in Louis
Bachelier’s doctoral thesis, “Théorie de la spécula-
tion”, defended in 1900 [Bac95]. In this document,
Bachelier reasoned that increments of stock prices
should be independent and normally distributed.
Though a rigorous construction of Brownian motion
only appeared in 1923 due to Wiener, Bachelier was
able to (at least intuitively) connect the price of an
option to a heat equation, which he solved using a
Green’s function.

In 1931, Kolmogorov proved that a continuous random process not depending on its
past information (i.e., a Markov process) is wholly characterized by two parameters: the
drift, describing the speed of its deterministic evolution, and the diffusion, describing the
speed of its random evolution [Kol92]. In 1944, Itô introduced a particular class of such
processes described by the stochastic differential equation (SDE) [Itô44]

dXt = a(Xt)︸ ︷︷ ︸
drift

dt+ b(Xt)︸ ︷︷ ︸
diffusion

dBt (1.1)

where B is a Brownian motion. Given a twice differentiable function f , Itô characterized
the rate of change of f(Xt) by means of what is now known as Itô’s formula [Itô51]:

df(Xt) = f ′(Xt)dXt + 1
2f
′′(Xt)dX2

t .
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In 1965, Samuelson, having rediscovered the work of Bachelier, published two revo-
lutionary works [Sam65a; Sam65b]. The first gives economic basis for Bachelier’s belief
that prices fluctuate randomly and suggests that discounted future prices should follow a
martingale, laying out the theory of rational option pricing. The second suggests that a
good model for options pricing is geometric Brownian motion (i.e., a(x) = rx and b(x) = σx
in (1.1)). Therein, he also derived prices for European and American options. However,
these ideas only gained widespread popularity when Black and Scholes gave derivations
using Itô’s formula along with replicating portfolio arguments to show that the value of a
European option is obtained by solving the partial differential equation (PDE) [BS73]

Vt + 1
2σ

2x2Vxx + rxVx − rV = 0,

now known as the Black-Scholes PDE. The above is a linear (degenerate) parabolic PDE,
and as such, is well-understood.

As the field of finance matured, there came a need to solve problems more complicated
than European options pricing. As an example, the price of a European option when the
volatility is uncertain but is known to lie within the interval [σmin, σmax] is obtained by
solving the nonlinear PDE [ALP95; Lyo95]

Vt + sup
σ∈[σmin,σmax]

{1
2σ

2x2Vxx + rxVx − rV
}

= 0. (1.2)

Since nonlinear PDEs do not generally admit smooth solutions, a notion of weak solution
is required to study them. The appropriate notion of weak solution in the setting of finance
(and more generally, optimal control) is that of a viscosity solution, introduced for first
order equations by Crandall and Lions [CL83] and extended to second order equations by
Jensen [Jen88]. Following these works, Barles and Souganidis gave very general criteria for
a numerical method to converge to the viscosity solution of a second order equation [BS91].
This provided a theoretical backing for employing numerical PDE methods to compute
solutions of complicated financial problems such as (1.2). This brings us to the goal of this
thesis: to study numerically one such class of problems, impulse control problems.

1.1 Motivation and contributions

The goal of this thesis is to provide efficient and provably convergent numerical methods
for solving PDEs coming from impulse control problems motivated by finance. Impulse

2
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Fig. 1.2: Sample path of stochastic process with impulses

control problems involve a stochastic process X with dynamics

dXt = a(t,Xt, wt)dt+ b(t,Xt, wt)dBt for t 6= ξ1, ξ2, . . . (1.3a)
Xξ` = Γ(ξ`, Xξ`−, z`) for ` = 1, 2, . . . (1.3b)

where Xt− = lims↑tXs is a limit from the left and θ = (w; ξ1, z1; ξ2, z2; . . .) is a so-called
combined stochastic and impulse control. Aside from influencing the process X continuously
via the stochastic control w, the controller is also able to induce jumps in the process by
choosing “intervention times” ξ` and “impulses” z` (Fig. 1.2). The size and direction of
these jumps is determined by the function Γ.

Remark 1.1.1. In this thesis, probabilistic “objects” such as the process X are used only
to motivate, heuristically, several PDE problems (the rigorous link can be established by
various arguments; see the discussion in Section 4.1). As such, we ignore issues related to
the existence of solutions X to the SDE (1.3). Nevertheless, it is understood that B is a
Brownian motion generating the (completed and right-continuous) filtration (Ft)t>0, w is
progressively measurable, (ξ`)` is an increasing sequence of stopping times, and each z` is
an Fξ` measurable random variable.

Our interest in the SDE (1.3) in lieu of the simpler (1.1) lies in its ability to capture
realistic features in financial decision-making including, for example, fixed transaction costs,
liquidity risk, or execution delay. Problems where such features appear include optimal
consumption, optimal portfolio selection, hedging and pricing insurance contracts, and
optimal liquidation [ØS02; LMP07; CF08; BP09; KP10; DF14; GL14; Che+16]. Of course,
this list is far from exhaustive.

3



1.1.1 Hamilton-Jacobi-Bellman quasi-variational inequalities

The general form of an optimal control problem involving impulse control is to maximize,
over all controls θ, the quantity

J(t, x; θ) = E

∫ T

t
f(u,Xu, wu)du+

∑
t6ξ`6T

K(ξ`, Xξ`−, z`) + g(XT )

∣∣∣∣∣∣Xt− = x

 . (1.4)

Here, the terms
∫
f , ∑K, and g represent cash flows obtained continuously, from impulses,

and at the terminal time, respectively. Directly computing V (t, x) = supθ J(t, x; θ) is not
an easy, nor even feasible, task. As such, we use an equivalent PDE formulation of the
problem which can then be solved via numerical methods.

If we assume that wt and z` take values in the control setsW and Z(ξ`, Xξ`−) respectively,
then using dynamic programming arguments [Sey09], we obtain the PDE (restricting our
attention to the case in which X is a one-dimensional process for simplicity)

min
{
−Vt − sup

w∈W

{1
2b(·, w)2Vxx+a(·, w)Vx+f(·, w)

}
, V −MV

}
= 0 on [0, T )×D (1.5a)

min {V (T, ·)− g, V (T, ·)−MV (T, ·)} = 0 on D (1.5b)

where
MV (t, x) = sup

z∈Z(t,x)
{V (t,Γ(t, x, z)) +K(t, x, z)} (1.6)

is a so-called “intervention operator” and D is a closed and connected subset of R determined
by the support of the process X. The PDE (1.5) is called a Hamilton-Jacobi-Bellman
quasi-variational inequality1 (HJBQVI).

We consider three numerical schemes for tackling the HJBQVI (1.5): the direct control,
penalty, and explicit-impulse schemes. The first two schemes require the solution of
complicated nonlinear matrix equations. We can use policy iteration to solve these equations.
However, in the case of the direct control scheme, the corresponding nonlinear matrix
equations involve singular matrices, and as a result, convergence of policy iteration is not
immediate. In our work, we solve the convergence problem by making use of the theory of
weakly chained diagonally dominant (w.c.d.d.) matrices. As a byproduct of our analysis, we
obtain some new results regarding a particular family of Markov decision processes which
can be thought of as impulse control problems on a discrete state space and the relationship

1While the term “inequality” may seem out of place in describing the PDE (1.5), we point out that the
equation min{a, b} = 0 is equivalent to 0 6 a ⊥ b > 0.
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between w.c.d.d. matrices and M-matrices. On the other hand, the explicit-impulse scheme
involves solving a linear system at each timestep and hence no policy iteration is necessary.
However, it can only be used when the diffusion coefficient b does not depend on the control
(i.e., b(t, x, w) = b(t, x)) and the time horizon is finite (i.e., T <∞).

Since our PDEs are nonlinear, we cannot expect to obtain unique smooth solutions.
Rather, we seek viscosity solutions, the relevant notion of weak solution for optimal control.
The typical method for showing convergence of a numerical scheme to a viscosity solution is
via the classical work of Barles and Souganidis which proves the convergence of a monotone,
stable, and consistent numerical scheme to the unique viscosity solution of a local PDE
satisfying a comparison principle [BS91]. However, the intervention operatorM appearing
in the HJBQVI is nonlocal: the value ofMV (t, x) depends on the value of V at points other
than (t, x) (see (1.6)). Therefore, the results of [BS91] do not immediately apply. Instead,
we extend the work of Barles and Souganidis to allow for such nonlocal operators, with
the main feature being the introduction of the notion of nonlocal consistency. We are then
able to prove convergence of our three schemes to the viscosity solution by showing that
they are all monotone, stable, and nonlocally consistent. In order to illustrate convergence
and compare the schemes, we apply them to obtain numerical solutions of various classical
problems from finance.

1.1.2 Example: optimal control of the foreign exchange rate

To make matters concrete, we introduce below an impulse control problem involving a
government interested in controlling the foreign exchange (FEX) rate of its currency (i.e.,
the number of domestic monetary units it takes to buy one foreign monetary unit). This
problem, which will serve as a running example for a majority of the thesis, is perhaps one
of the oldest and simplest financial applications of impulse control [MØ98; CZ99; CZ00].

Example 1.1.2. Consider a government with two ways of influencing the FEX rate of its
own currency:

• At all times, the government picks the domestic interest rate.

• The government picks specific times at which to intervene in the FEX market by
buying or selling foreign currency in large quantities.

Let wt denote the difference between the domestic and foreign interest rate at time
t. Let ξ1 6 ξ2 6 · · · 6 ∞ be the times at which the government intervenes in the FEX

5



market, with corresponding amounts z1, z2, . . . A positive value for z` indicates the purchase
of foreign currency at time ξ`, while a negative value indicates the sale of foreign currency.

Subject to the above, the FEX rate X (in log space) evolves according to

dXt = −µwtdt+ σdBt for t 6= ξ1, ξ2, . . .

Xξ` = Xξ`− + z` for ` = 1, 2, . . .

where µ and σ are nonnegative constants representing the drift speed and variability of X.
To prevent the domestic government from choosing an arbitrarily large interest rate, we

assume that wt takes values in the set W = [−wmax, wmax] where wmax > 0. We assume
that z` takes values in R (i.e., no restrictions are imposed on the amounts that the domestic
government can buy or sell in the FEX market).

The government’s objective is to keep X as close as possible to some target rate m.
Letting θ = (w; ξ1, z1; ξ2, z2; . . .) denote a control, the government’s costs are captured by
the objective function (compare with (1.4))

J(t, x; θ) = E

− ∫ T

t
e−βu

(
(Xu −m)2 + γwu

2
)
du−

∑
t6ξ`6T

e−βξ` (κ |z`|+ c)

∣∣∣∣∣∣Xt− = x


where β is a nonnegative discount factor. The term (Xu −m)2 penalizes the government
for straying from the target rate m. The term γwu

2, where γ > 0, penalizes the government
for choosing an interest rate that is either too low or too high with respect to the foreign
interest rate. The term κ |z`|+ c, where κ > 0 and c > 0, captures the fixed and proportional
transaction costs paid by the government for intervening in the FEX market.

Standard dynamic programming arguments (cf. [ØS05, Example 8.2]) are used to
transform the optimization problem V (t, x) = supθ J(t, x; θ) into the equivalent HJBQVI

min
{
−Vt − sup

w∈W

{
σ2

2 Vxx − µwVx − e
−βt

(
(x−m)2 + γw2

)}
, V −MV

}
= 0 on [0, T )× R

min {V (T, ·), V (T, ·)−MV (T, ·)} = 0 on R (1.7)

where
MV (t, x) = sup

z∈R

{
V (t, x+ z)− e−βt (κ |z|+ c)

}
. (1.8)

Note that the above is just a special case of the HJBQVI (1.5).
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1.1.3 Fixed intervention times

We also consider a type of impulse control problem arising from the pricing and hedging of
insurance contracts. In this context, we restrict impulses in (1.4) to occur at the “fixed”
(i.e., nonrandom and noncontrollable) times ξ` satisfying

0 < ξ1 < ξ2 < · · · < ξL < T.

These intervention times correspond to regular anniversaries (e.g., monthly, yearly, etc.)
on which the holder of the insurance contract can perform certain actions (e.g., lapse
the contract). Away from these times, the holder has no control over the contract. This
corresponds to the functions a and b in (1.3) and f in (1.4) being independent of the control
w. This setting appears in, for example, [BKR08; CVF08; CF08; Bac+11; FV14; HK16;
HZK17]. In this case, a standard dynamic programming argument gives the pricing problem
as finding a function V (t, x) which satisfies (once again restricting our attention to the case
in which X is a one-dimensional process for simplicity)

Vt(t, x) = −1
2b(t, x)2Vxx(t, x)− a(t, x)Vx(t, x)− f(t, x) for t 6= ξ1, . . . , ξL (1.9a)

V (t−, x) =MV (t, x) for t = ξ1, . . . , ξL (1.9b)
V (T, x) = g(x) (1.9c)

where V (t−, ·) = lims↑t V (s, ·) is a limit from the left,M is the intervention operator (1.6),
and it is understood that the equations (1.9a) to (1.9c) hold at each x in the domain. Under
reasonable conditions discussed in the sequel, problem (1.9) admits a solution V that is
smooth everywhere except possibly at t = ξ1, . . . , ξL. As such, viscosity arguments are not
required to ensure convergence of numerical methods for the problem. In this case, we
focus our attention on the numerical discretization of the intervention operatorM, as it is
the main computational bottleneck. In particular, since the control set Z(t, x) appearing
in (1.6) is generally infinite, the numerical method needs to resort to a linear search over
a discretization of the control set Z(t, x) to approximate the supremum. Convergence
to a desired tolerance is obtained by refining this discretization. Since the cost of linear
search is proportional to the level of refinement, we identify practical scenarios in which
the refinement step can be skipped while retaining a convergent method.
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The main research contributions in this thesis are:

• Creating the explicit-impulse scheme and generalizing the direct control and penalty
schemes.

• Ensuring that a policy iteration algorithm can be applied to solve the direct control
scheme by using (and contributing to) the theory of w.c.d.d. matrices.

• Of the three different schemes – direct control, penalty, and explicit-impulse – we
show that the second and third are the methods of choice for the HJBQVI.

• Developing the concept of nonlocal consistency for handling convergence proofs for
nonlocal PDEs and using this to prove the convergence of the three schemes.

• Finding sufficient conditions under which impulse control problems with fixed inter-
vention times can be solved without needing to successively refine a discretization of
the control set, resulting in a faster numerical method.

Our results appear in the following articles (in chronological order):

(1) P. Azimzadeh and P. A. Forsyth. “The existence of optimal bang-bang controls for
GMxB contracts”. In: SIAM J. Financial Math. 6.1 (2015), pp. 117–139

(2) P. Azimzadeh and P. A. Forsyth. “Weakly chained matrices, policy iteration, and
impulse control”. In: SIAM J. Numer. Anal. 54.3 (2016), pp. 1341–1364

(3) P. Azimzadeh. “A zero-sum stochastic differential game with impulses, precom-
mitment, and unrestricted cost functions”. In: Appl. Math. Optim. (2017). To
appear.

(4) P. Azimzadeh. “A fast and stable test to check if a weakly diagonally dominant
matrix is an M-matrix”. In: arXiv preprint arXiv:1701.06951 (2017)

(5) P. Azimzadeh, E. Bayraktar, and G. Labahn. “Convergence of approximation schemes
for weakly nonlocal second order equations”. In: arXiv preprint arXiv:1705.02922
(2017)
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1.2 Outline

This thesis is organized as follows:

• In Chapter 2, we describe three numerical schemes for the HJBQVI: the direct control,
penalty, and explicit-impulse schemes. These schemes are derived using heuristic
arguments, with rigorous proofs of convergence deferred to a later chapter.

• In Chapter 3, we consider solving the nonlinear matrix equations associated with
the direct control and penalty schemes by policy iteration. In the case of the direct
control scheme, the nonlinear matrix equations involve singular matrices, and new
techniques involving w.c.d.d. matrices are introduced to handle this case.

• In Chapter 4, we introduce the notion of nonlocal consistency in order to extend the
results of Barles and Souganidis to viscosity solutions of nonlocal PDEs. We apply
our findings to prove that the schemes of Chapter 2 converge to the viscosity solution
of the HJBQVI.

• In Chapter 5, we apply the schemes of Chapter 2 to compute numerical solutions of
three impulse control problems from finance. We use our numerical results to compare
the relative efficiency of the schemes.

• In Chapter 6, we consider the impulse control problem involving fixed (i.e., nonrandom
and noncontrollable) intervention times. We show that computing solutions of such
a problem can often be sped up by skipping the control set refinement step (while
retaining provable convergence) and apply our result to obtain a fast numerical pricer
for a particular insurance contract.

• In Chapter 7, we summarize our findings and discuss possible avenues for future
research.
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Chapter 2

Numerical schemes for the HJBQVI

In this chapter, we introduce three “implicit” numerical schemes for HJBQVIs: the direct
control, penalty, and explicit-impulse schemes. By implicit, we mean that each scheme
requires the solution of a nontrivial (and possibly nonlinear) system of equations at each
timestep. Our motivation for considering such schemes is to avoid the usual timestep
restrictions of “explicit” schemes.

To simplify presentation, we restrict our attention to the one dimensional HJBQVI (1.5),
repeated below for the reader’s convenience:

min
{
−Vt − sup

w∈W

{1
2b(·, w)2Vxx+a(·, w)Vx+f(·, w)

}
, V −MV

}
= 0 on [0, T )×D (1.5a)

min {V (T, ·)− g, V (T, ·)−MV (T, ·)} = 0 on D (1.5b)

where
MV (t, x) = sup

z∈Z(t,x)
{V (t,Γ(t, x, z)) +K(t, x, z)} . (1.6)

Modifications required to extend the schemes of this chapter to solve HJBQVIs of higher
dimension are discussed in Chapter 4. Chapter 4 also includes the rigorous convergence
arguments used to justify the heuristic derivations in this chapter.
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2.1 Preliminaries

2.1.1 Terminal condition

The terminal condition (1.5b) can be written equivalently as
V (T, ·) = max {MV (T, ·), g} . (2.1)

Unlike most problems in finance, which involve an explicit terminal condition of the form
V (T, ·) = g, (2.1) is an implicit terminal condition: V (T, ·) appears on both sides of the
equation. For a function g whose only input is the space variable x (i.e., g(x)), define

Mg(x) = sup
z∈Z(T,x)

{g(Γ(T, x, z)) +K(T, x, z)}

(compare with (1.6)). If we assume the pointwise inequality
Mg 6 g, (2.2)

then V (T, ·) = g is a solution of (2.1), returning us to an explicit terminal condi-
tion.Assumption (2.2) has the interpretation that performing an impulse at the final
time T never increases the value of the payoff [BC16; BCS17]. This assumption is satisfied
by most reasonable impulse control problems, including those in this thesis.

2.1.2 Numerical grid

Since the terminal condition (2.1) occurs at time t = T , the numerical method proceeds
“backwards in time” to obtain a solution at time t = 0. Therefore, it is natural to refer to
the procedure which evolves a numerical solution from time t = T to some earlier time
t = T − ∆τ as the first timestep, that which evolves the numerical solution from time
t = T −∆τ to t = T − 2∆τ as the second timestep, etc.

In light of this, we denote by V n
i ≈ V (τn, xi) the numerical solution at time τn = T−n∆τ

and point xi in space where 0 6 i 6 M and ∆τ = T/N (Fig. 2.1). We denote by
V n = (V n

0 , . . . , V
n
M)ᵀ the numerical solution vector at the n-th timestep. For brevity, we

use the shorthand ani (w) = a(τn, xi, w) with bni and fni defined similarly.
Example 2.1.1. The HJBQVI (1.7) of Example 1.1.2 is posed on the unbounded set
[0, T ] × R. A numerical grid is obtained by “truncating” this set to a bounded region
[0, T ]× [−R,R] and taking {x0, . . . , xM} to be a partition1 of the interval [−R,R].

1A partition of an interval [a, b] is understood to be a set of points {x0, . . . , xM} satisfying a = x0 <
x1 < · · · < xM = b.
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first timestep

second timestep

N -th timestep

x0 x1 x2 xM−1 xM· · ·0 = τN

∆τ = τN−1

T − 2∆τ = τ 2

T −∆τ = τ 1

T = τ 0

...

Fig. 2.1: Numerical grid

Following the discussion of the previous section, all schemes in this chapter satisfy

V 0
i = g(xi)

corresponding to the terminal condition V (T, ·) = g. Therefore, in describing a scheme, we
specify only the equations required to determine V n

i for n > 0.

2.1.3 Standard stencils

Unless otherwise specified, we discretize the time derivative Vt appearing in (1.5a) by

Vt(τn, xi) ≈
V (τn + ∆τ, xi)− V (τn, xi)

∆τ = V (τn−1, xi)− V (τn, xi)
∆τ ≈ V n−1

i − V n
i

∆τ .

We use D2 to denote a three point discretization of the second spatial derivative so that
Vxx(τn, xi) ≈ (D2V

n)i. Precisely, for each vector U = (U0, . . . , UM)ᵀ, we define

(D2U)i =


Ui+1 − Ui

(xi+1 − xi) (xi+1 − xi−1) −
Ui − Ui−1

(xi − xi−1) (xi+1 − xi−1) if 0 < i < M

0 otherwise.
(2.3)

To make matters concrete, we have set (D2U)i to be zero at the boundary points x0 and xM ,
corresponding to the artificial Neumann boundary condition Vxx(t, x0) = Vxx(t, xM) = 0
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(we mention, however, that the techniques in this thesis are not specific to this choice of
boundary condition). Note that when the grid points {x0, . . . , xM} are uniformly spaced
(i.e., xi+1 − xi = ∆x), (D2U)i takes the familiar form

(D2U)i = Ui+1 − 2Ui + Ui−1

(∆x)2 if 0 < i < M.

Similarly, we use D± to denote forward (+) and backward (−) discretizations of the
first spatial derivative so that Vx(τn, xi) ≈ (D±V n)i. In particular,

(D+U)i =


Ui+1 − Ui
xi+1 − xi

if 0 < i < M

0 otherwise
and (D−U)i =


Ui − Ui−1

xi − xi−1
if 0 < i < M

0 otherwise.
(2.4)

As usual, to make matters concrete, we have set (D±U)i to be zero at the boundary
points x0 and xM , corresponding to the artificial Neumann boundary condition Vx(t, x0) =
Vx(t, xM) = 0. With a slight abuse of notation, we define the “upwind” discretization

ani (w)(DU)i =

ani (w)(D+U)i if ani (w) > 0
ani (w)(D−U)i otherwise

(2.5)

which employs a forward difference when the coefficient of the first derivative is positive
and a backward difference otherwise. The choice of upwinding will be useful in the sequel
to ensure the convergence of our schemes.

Remark 2.1.2. It is often convenient to view D2 (resp. D±) as a matrix mapping each
vector U to the vector D2U (resp. D±U) with entries given by (2.3) (resp. (2.4)).

2.1.4 Intervention operator

The point Γ(t, x, z) appearing in the intervention operator M defined in (1.6) is not
necessarily a point on the numerical grid, hence a discretization ofM requires interpolation.
We use interp(V n, x) to denote the value of the numerical solution at (τn, x) as approximated
by a standard monotone linear interpolant. That is, for each vector U = (U0, . . . , UM )ᵀ and
point x contained in the grid (i.e., x0 < x < xM), we define

interp(U, x) = αUk+1 + (1− α)Uk (2.6)
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•

•

•

xk xk+1x
Uk

Uk+1

interp(U, x)

Fig. 2.2: Linear interpolation

where k is the unique integer satisfying xk 6 x < xk+1 and α = (x − xk)/(xk+1 − xk)
(Fig. 2.2). Though we have suppressed this in the notation, the quantities α and k depend
on x. If x is not contained in the grid (i.e., x 6 x0 or x > xM), we define

interp(U, x) =

U0 if x 6 x0

UM if x > xM ,

so that no extrapolation is performed. We can now discretize the intervention operator
according to

(MnU)i = sup
zi∈Zh(τn,xi)

{interp(U,Γ(τn, xi, zi)) +K(τn, xi, zi)} (2.7)

Using the notation above,MV (τn, xi) ≈ (MnV
n)i.

Since the control set Z(t, x) appearing in (1.6) is not, in general, a finite set, we have
introduced into (2.7) a subset Zh(τn, xi) of Z(τn, xi) to serve as an approximation of
Z(τn, xi). We are purposely vague in our use of the term “approximation” (the convergence
proofs of Chapter 4 will require us to attach a rigorous meaning to the term). For the time
being, we assume only that Zh(t, x) is finite and nonempty. The finitude of Zh(t, x) ensures
that the supremum in (2.7) can be computed by performing a linear search over finitely
many elements. To make matters concrete, an example is given below.

Example 2.1.3. Recall the intervention operator (1.8) of Example 1.1.2:

MV (t, x) = sup
z∈R

{
V (t, x+ z)− e−βt (κ |z|+ c)

}
. (1.8)
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The control set Z(t, x) = R is infinite. We take Zh(t, x) = {x0 − x, . . . , xM − x} so that

(MnU)i = max
zi∈{x0−xi,...,xM−xi}

{
interp(U, xi + zi)− e−βτ

n (κ |zi|+ c)
}

= max
06j6M

{
interp(U, xj)− e−βτ

n (κ |xj − xi|+ c)
}

= max
06j6M

{
Uj − e−βτ

n (κ |xj − xi|+ c)
}
.

2.2 The direct control scheme

We are now ready to introduce our first scheme, the direct control scheme. We first introduce
an “auxiliary” control d in order to rewrite (1.5a) without the outer minimum:

sup
d∈{0,1}
w∈W

{
(1− d)

(
Vt + 1

2b(·, w)2Vxx + a(·, w)Vx + f(·, w)
)

+ d (MV − V )
}

= 0.

From this point on, we will use the shorthand d = 1− d for brevity. To obtain the direct
control scheme, we then replace all operators in the above by their discretized versions (i.e.,
D2, D,Mn, etc.):

sup
di∈{0,1}
wi∈Wh

{
di

(
V n−1
i − V n

i

∆τ + 1
2b

n
i (wi)2(D2V

n)i + ani (wi)(DV n)i + fni (wi)
)

+ di ((MnV
n)i − V n

i )
}

= 0. (2.8)

It is understood that equation (2.8) holds for all n = 1, . . . , N and i = 0, . . . ,M .
In (2.8), we have introduced a finite nonempty subset W h of W to serve as an approx-

imation of W , analogously to the approximation of Z(t, x) by Zh(t, x). For example, in
the case of the control set W = [−wmax, wmax] of Example 1.1.2, we can take W h to be a
partition of W .

The direct control scheme was suggested in [CMS07] to solve a particular problem
involving optimal consumption. In that paper, the authors focused on solving the nonlinear
matrix equations associated with the direct control scheme by policy iteration. No proofs
of convergence (in the viscosity sense) or an implementation are given in that paper.
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2.3 The penalty scheme

In [BL84, Chapter 5, Section 1.6], the authors study the HJBQVI (1.5) in its variational
form. In order to show existence of a solution, they introduce what they refer to as the
“penalized” form of (1.5):

−V ε
t − sup

w∈W

{1
2b(·, w)2V ε

xx+a(·, w)V ε
x+f(·, w)

}
− 1
ε

max {MV ε − V ε, 0} = 0 on [0, T )×D

(2.9a)
V ε(T, ·)− g = 0 on D. (2.9b)

The authors of [BL84] then show, subject to some technical conditions, that the solution V
of the original HJBQVI (1.5) is the pointwise limit of the solution V ε of (2.9) as ε ↓ 0.

The basic idea behind the penalty scheme is to discretize (2.9a). In particular, we first
rewrite (2.9a) using the auxiliary control d to get, omitting the superscript ε in V ε,

sup
d∈{0,1}
w∈W

{
Vt + 1

2b(·, w)2Vxx + a(·, w)Vx + f(·, w) + 1
ε
d (MV − V )

}
= 0.

We then replace all operators by their discretized versions (i.e., D2, D,Mn, etc.) to obtain
the penalty scheme:

sup
di∈{0,1}
wi∈Wh

{
V n−1
i − V n

i

∆τ + 1
2b

n
i (wi)2(D2V

n)i + ani (wi)(DV n)i + fni (wi)

+ 1
ε
di ((MnV

n)i − V n
i )
}

= 0. (2.10)

It is understood that equation (2.10) holds for all n = 1, . . . , N and i = 0, . . . ,M .
An alternate (and perhaps easier) way to motivate the penalty scheme (2.10) is to note

that it is an approximation of the direct control scheme (2.8). In particular, after some
simplification, (2.10) is equivalent to

sup
di∈{0,1}
wi∈Wh

{
diγ

n
i (V,wi) + di ((MnV

n)i − V n
i + εγni (V,wi))

}
= 0 (2.11)

where

γni (V,wi) = V n−1
i − V n

i

∆τ + 1
2b

n
i (wi)2(D2V

n)i + ani (wi)(DV n)i + fni (wi). (2.12)
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Aside from the term εγni (V,wi) = O(ε), (2.8) and (2.11) are identical. Hence, as the positive
parameter ε vanishes, we expect the penalty scheme to behave like the direct control scheme.

A penalty scheme was first applied to an HJBQVI in [BFL09]. The authors in [BFL09]
consider a very specific form for the intervention operatorM motivated by the application
problem studied therein. This specific form is exploited in the convergence proofs, which
do not generalize. To the best of our knowledge, the penalty scheme was first considered in
full generality (i.e., with a general form forM) in our own work [AF16; ABL17].

2.4 The infinite horizon (steady state) case

Assume now that the functions a, b, f , Z, Γ, and K do not depend on time (i.e., a(t, x, w) =
a(0, x, w), b(t, x, w) = b(0, x, w), etc.). Then, the infinite horizon analogue of (1.5) is given
by

min
{
βV − sup

w∈W

{1
2b(0, ·, w)2Vxx + a(0, ·, w)Vx + f(0, ·, w)

}
, V −MV

}
= 0 on D (2.13)

where β > 0 is a positive discount factor. Note that in the above, V is no longer a function
of time and space but rather a function of space alone (i.e., V (x)).

Recall that in the context of impulse control, the finite horizon HJBQVI (1.5) was
related to picking a control θ to maximize the quantity (1.4). Similarly, the infinite horizon
HJBQVI (2.13) is related to picking a control θ to maximize the quantity [Sey09]

J∞(t, x; θ) = E

∫ ∞
t

e−βuf(u,Xu, wu)du+
∑
t6ξ`

e−βξ`K(ξ`, Xξ`−, z`)

∣∣∣∣∣∣Xt− = x

 . (2.14)

We will see an example of such a problem involving an investor whose goal it is to consume
optimally in a market consisting of a risky investment and bank account in Chapter 5.

Dropping the term corresponding to the discretization of the time derivative and
introducing a term for the discount factor in (2.8), we obtain an extension of the direct
control scheme for the infinite horizon problem:

sup
di∈{0,1}
wi∈Wh

{
di

(
−βVi + 1

2b
0
i (wi)2(D2~V )i + a0

i (wi)(D~V )i + f 0
i (wi)

)
+ di

(
(M0~V )i − Vi

)}
= 0.

(2.15)
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In the above, the numerical solution ~V = (V0, . . . , VM)ᵀ is a vector of M + 1 points (one
per grid point xi) since there is no time dependency. It is understood that equation (2.15)
holds for all n = 1, . . . , N and i = 0, . . . ,M . An identical exercise can be performed to
extend the penalty scheme (2.10) to the infinite horizon case:

sup
di∈{0,1}
wi∈Wh

{
−βVi + 1

2b
0
i (wi)2(D2~V )i + a0

i (wi)(D~V )i + f 0
i (wi) + 1

ε
di
(
(M0~V )i − Vi

)}
= 0.

(2.16)

2.5 The explicit-impulse scheme

The direct control and penalty schemes of the previous sections are versatile in the sense that
they are able to handle both finite and infinite horizon problems with minimal restrictions
on the coefficients of the HJBQVI. However, as we will see later in Chapter 3, the equations
associated with these schemes are nonlinear in V n and as such, require the use of an
expensive iterative method at each timestep.

If the horizon is finite (i.e., T < ∞) and the second derivative coefficient does not
depend on the control w (i.e., b(t, x, w) = b(t, x)), then we can produce a scheme whose
associated equations are linear in V n, thereby requiring only a single linear system be solved
at each timestep. The idea is to rewrite (1.5a) as

min
{
− sup

w∈W

{
(Vt + a(·, w)Vx) + 1

2b(·)
2Vxx + f(·, w)

}
, V −MV

}
= 0 on (0, T ]×D

(2.17)
and approximate the term Vt + a(·, w)Vx by

Vt(τn, xi) + a(τn, xi, w)Vx(τn, xi) ≈
interp(V n−1, xi + ani (w)∆τ)− V n

i

∆τ . (2.18)

This approximation can be derived in two ways: by a Lagrangian argument involving
tracing the path of a particle [Che08, Section 2.3.1], or by a Taylor series (see Section 2.6).
As usual, the second derivative is approximated by D2 and the intervention operator by
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Mn. Substituting these approximations into (2.17):

sup
di∈{0,1}
wi∈Wh

{
di

(
interp(V n−1, xi + ani (wi)∆τ)− V n

i

∆τ + 1
2(bni )2(D2V

n)i + fni (wi)
)

+ di
(
(MnV

n−1)i − V n
i

)}
= 0

where bni = b(τn, xi). Note that unlike the previous schemes, we have not used V n but
rather V n−1 as an argument to the discretized intervention operatorMn, hence the name
“explicit-impulse”. Next, an O(∆τ) term is added to the equation:

sup
di∈{0,1}
wi∈Wh

{
di

(
interp(V n−1, xi + ani (wi)∆τ)− V n

i

∆τ + 1
2(bni )2(D2V

n)i + fni (wi)
)

+ di

(
(MnV

n−1)i − V n
i + 1

2(bni )2(D2V
n)i∆τ

)}
= 0. (2.19)

After some simplification, we can isolate all V n terms to one side of the equation, arriving
at the explicit-impulse scheme:

V n
i −

1
2(bni )2(D2V

n)i∆τ

= sup
di∈{0,1}
wi∈Wh

{
di
(
interp(V n−1, xi + ani (wi)∆τ) + fni (wi)∆τ

)
+ di(MnV

n−1)i
}
. (2.20)

It is understood that equation (2.20) holds for all n = 1, . . . , N and i = 0, . . . ,M . As we
will see below, adding the O(∆τ) term allows us to express the scheme as a linear system of
equations at each timestep. However, adding this term does not come for free: it introduces
an additional source of discretization error.

Equation (2.20) is the i-th row of the linear system

AV n = y (2.21)

where y is the vector whose i-th component is the right hand side of (2.20):

yi = sup
di∈{0,1}
wi∈Wh

{
di
(
interp(V n−1, xi + ani (wi)∆τ) + fni (wi)∆τ

)
+ di(MnV

n−1)i
}
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and
A = I − ∆τ

2 diag((bn0 )2, . . . , (bnM)2)D2.

For example, if the grid points {x0, . . . , xM} are uniformly spaced (i.e., xi+1 − xi = ∆x),
the matrix A simplifies to

A = I + ∆τ
2(∆x)2



0
−(bn1 )2 2(bn1 )2 −(bn1 )2

−(bn2 )2 2(bn2 )2 −(bn2 )2

. . . . . . . . .
−(bnM−1)2 2(bnM−1)2 −(bnM−1)2

0


, (2.22)

which is strictly diagonally dominant (in fact, A is also strictly diagonally dominant if
the grid is not uniform). Since strict diagonal dominance implies nonsingularity [Var00,
Theorem 1.21], the linear system (2.21) has a unique solution.
Remark 2.5.1. If the coefficient of the second spatial derivative does not depend on time
(i.e., b(t, x) = b(0, x)), then the matrix A does not depend on the timestep n. In this case,
we can speed up computation by factoring (or preconditioning) the matrix A exactly once
instead of at each timestep.

The explicit-impulse scheme was first introduced in our own work [AF16].

2.6 Convergence rates

We close this chapter with a study of convergence rates. Doing so will help our understanding
of the convergence rates witnessed in experiments appearing in the sequel.

To simplify notation, we assume temporarily that the grid points {x0, . . . , xM} are
uniformly spaced (i.e., xi+1 − xi = ∆x). Now, let ϕ be a smooth function (of time and
space) and ϕn = (ϕ(τn, x0), . . . , ϕ(τn, xM ))ᵀ be a vector whose components are obtained by
evaluating ϕ(τn, ·) on the spatial grid. Using Taylor series, it follows that
(D2ϕ

n)i = ϕxx(τn, xi) +O((∆x)2) and (D±ϕn)i = ϕx(τn, xi) +O(∆x) if 0 < i < M

Similarly,2
interp(ϕn, x) = ϕ(τn, x) +O((∆x)2). (2.23)

2We are, for the time being, ignoring “overstepping” error that occurs in (2.23) when the point x does
not lie between two grid points. This issue is handled rigorously in the sequel (see, in particular, the text
preceding Lemma 4.3.18 of Chapter 4).
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Assuming Γ is a bounded function, it follows from the above that

(Mnϕ
n)i ≈ sup

zi∈Z(τn,xi)
{interp(ϕn,Γ(τn, xi, zi)) +K(τn, xi, zi)} =Mϕ(τn, xi) +O((∆x)2).

Moreover, substituting ϕ into the right hand side of (2.18),

interp(ϕn−1, xi + ani (w)∆τ)− ϕ(τn, xi)
∆τ

= ϕ(τn−1, xi + ani (w)∆τ)− ϕ(τn, xi)
∆τ +O

(
(∆x)2

∆τ

)

= ϕt(τn, xi) + a(τn, xi, w)ϕx(τn, xi) +O

(
(∆x)2

∆τ + ∆τ
)
.

Assuming that the timestep and spatial grid size are of the same order (i.e., ∆τ = const. h
and ∆x = const. h), the above approximations suggest that the schemes of this chapter are
all first order accurate. Obtaining higher order accuracy requires a higher order discretization
of, for example, the first order spatial derivative. However, as we will see in Chapter 4,
the use of higher order approximations violates a key requirement known as monotonicity,
which is used to ensure the theoretical convergence of our schemes (nonmonotone schemes
may fail to converge in the viscosity sense; see [Obe06, Section 1.3] for a simple example).
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Chapter 3

Convergence of policy iteration

We saw in Chapter 2 that a numerical solution of the HJBQVI (1.5) can be obtained by
the explicit-impulse scheme if the time horizon is finite and the second derivative coefficient
is independent of the control. If either of these assumptions are violated, then we should
use the direct control or penalty scheme. As we will see in this chapter, solutions of these
schemes are obtained by solving nonlinear matrix equations of the form

find U ∈ RM+1 such that sup
P∈P
{−A(P )U + y(P )} = 0 (3.1)

where A(P ) is a real square matrix, y(P ) is a real vector, and P is a set.
Problem (3.1) is commonly referred to as a Bellman problem and is usually solved by

one of two procedures. The first is value iteration, which – in the context of numerical
schemes for PDEs – exhibits slow convergence as the grid is refined [FL07, Section 6.1].
The second is Howard’s policy iteration, which is celebrated for its superlinear convergence
[BMZ09, Section 3]. We consider only the latter. The policy iteration procedure given
in this thesis is our own extension of Howard’s original policy iteration that makes no
assumptions about the compactness of the set P or continuity of the functions A and y
(compare with, e.g., the standard setting in [BMZ09]).

In the case of the penalty scheme, convergence of policy iteration is a consequence of
the strict diagonal dominance of the matrices A(P ). The direct control scheme, however,
involves matrices that are singular and as such, more delicate arguments are required to
ensure convergence.

The paper [CMS07] gives sufficient conditions for the convergence of policy iteration as
applied to the direct control scheme. In that paper, the authors consider a more general
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version of the direct control scheme involving nonlinear operators in lieu of matrices. As a
result of this, the sufficient conditions given therein are too conservative to be applied to
the problems appearing in this thesis. In addition, convergence in [CMS07] depends on the
choice of initial guess. Our goal is to give more lenient sufficient conditions for convergence
that are also independent of the choice of initial guess. We also apply our findings to obtain
some new results for infinite horizon Markov decision processes (MDPs).

In order to do so, we use weakly chained diagonally dominant (w.c.d.d.) matrices.
As a byproduct of our analysis, we prove that w.c.d.d. matrices give a graph-theoretic
characterization of weakly diagonally dominant M-matrices. This generalizes some well-
known results regarding M-matrices. M-matrices are common in the scientific computing
community since they arise naturally in discretizations of elliptic operators (e.g., the
Laplacian ∆), Markov decision processes, linear complementarity problems, etc.

Our contributions in this chapter are:

• Extending Howard’s original policy iteration to a setting in which no assumptions are
made about the compactness of P or continuity of A and y (Theorem 3.1.3).

• Providing a graph-theoretic characterization of weakly diagonally dominant M-
matrices (Theorem 3.2.5).

• Showing that policy iteration applied to the penalty scheme always converges.

• Showing that a naïve application of policy iteration to the direct control scheme can
(and often does) fail.

• Using the theory of w.c.d.d. matrices to provide a provably convergent modification
of policy iteration for the direct control scheme.

• Applying our findings to obtain new results for infinite horizon MDPs.

The results of this chapter appear in our articles
P. Azimzadeh and P. A. Forsyth. “Weakly chained matrices, policy iteration, and

impulse control”. In: SIAM J. Numer. Anal. 54.3 (2016), pp. 1341–1364
P. Azimzadeh. “A fast and stable test to check if a weakly diagonally dominant matrix

is an M-matrix”. In: arXiv preprint arXiv:1701.06951 (2017)
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3.1 Policy iteration

In this section, we give some results regarding policy iteration. In order to simplify notation,
we work with the general form of the Bellman problem (3.1), for which it is understood that

(i) P = P0 × · · · × PM is a product of nonempty sets.

(ii) Controls are “row-decoupled” (cf. [BMZ09]). That is, using the notation P =
(P0, . . . , PM) to denote a control in P ,

[A(P )]ij and [y(P )]i depend only on Pi ∈ Pi.

In other words, the i-th row of A(P ) and y(P ) are determined solely by the i-th
coordinate of the control P .

(iii) The order on RM+1 (and R(M+1)×(M+1)) is element-wise:

for x, y ∈ RM+1, x > y if and only if xi > yi for all i.

(iv) The supremum in (3.1) is with respect to the element-wise order:

for {y(P )}P∈P ⊂ RM+1, x = sup
P∈P

y(P ) is a vector with components xi = sup
P∈P

[y(P )]i.

We recall Howard’s policy iteration procedure [BMZ09, Algorithm Ho-1] to solve problem
(3.1) below.
1: procedure Policy-Iteration(P)
2: Pick an initial guess U0 ∈ RM+1

3: for `← 1, 2, . . . until convergence (or max iteration count reached)
4: Pick P ` such that −A(P `)U `−1 + y(P `) = supP∈P{−A(P )U `−1 + y(P )}
5: Solve the linear system A(P `)U ` = y(P `) to obtain U `

6: end for
7: return U `

8: end procedure

We have purposely not specified a convergence criterion since the results of this chapter
characterize convergence of the iterates U ` as ` → ∞. In a practical implementation,
the iteration should be terminated when the relative error between subsequent iterates is
desirably small (see (5.1) in Chapter 5).

Before continuing, we recall a definition from linear algebra.
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Definition 3.1.1 ([Col66, Section II.23]). A real square matrix A is monotone if it is
nonsingular and A−1 > 0 (i.e., the entries of A−1 are nonnegative).

We can now state sufficient conditions for the convergence of Policy-Iteration.

Proposition 3.1.2 ([BMZ09] Theorem 2.1). Suppose that P is a compact topological space,
A and y are continuous functions, and that A(P ) is monotone for each P ∈ P. Then, the
sequence (U `)`>1 defined by Policy-Iteration(P) converges from below to the unique
solution of (3.1). Moreover, if P is finite, convergence occurs in at most |P| iterations (i.e.,
U |P| = U |P|+1 = · · · ).

The compactness and continuity assumptions in Proposition 3.1.2 ensure that the
supremum on Line 4 of Policy-Iteration is attained at a point in P . To remove these
assumptions (specifically in order to strengthen our results in our study of MDPs), we
introduce below an extension of Howard’s policy iteration. In the pseudocode description
of the procedure, we use ~e = (1, . . . , 1)ᵀ to denote the vector whose entries are one.
1: procedure ε-Policy-Iteration(P)
2: Pick an initial guess U0 ∈ RM+1

3: Pick a sequence (εk)k>1 of positive numbers satisfying ∑k ε
k <∞ // e.g., εk = 1/k2

4: for `← 1, 2, . . . until convergence (or max iteration count reached)
5: Pick P ` such that −A(P `)U `−1 + y(P `) + ε`~e > supP∈P{−A(P )U `−1 + y(P )}
6: Solve the linear system A(P `)U ` = y(P `) to obtain U `

7: end for
8: return U `

9: end procedure

We can think of the parameter ε` in the above as the maximum error allowed in
approximating the supremum on Line 5 at each step `.

To establish convergence of ε-Policy-Iteration, we require some assumptions:

(H1) The function P 7→ A(P )−1 is bounded on the set {P ∈ P : A(P ) is nonsingular}.

(H2) The functions A and y are bounded.

Note that the boundedness in assumptions (H1) and (H2) is stated without reference to
a particular norm (all norms on a finite dimensional vector space are equivalent). We are
now ready to state the convergence result.
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Theorem 3.1.3. Suppose (H1), (H2), and that A(P ) is monotone for each P ∈ P. Then,
the sequence (U `)` defined by ε-Policy-Iteration(P) converges to the unique solution of
(3.1).

To prove the result, we require a few lemmas. The first is just a general form of the
results [BMZ09, Eq. (5.8)] and [HFL12, Proposition 3.1].

Lemma 3.1.4. Let (x`)`>0 be a sequence of real numbers that is bounded from above.
Suppose there exists a sequence (ε`)`>1 of positive numbers such that ∑` ε

` < ∞ and
x` − x`−1 > −ε` for ` > 1. Then, the sequence (x`)`>0 converges to a real number.

Proof. Note that

xq − xp =
(
xq − xq−1

)
+ · · ·+

(
xp+1 − xp

)
> −

q∑
`=p+1

ε` > −
∑
`>p

ε` (3.2)

for any integers q and p satisfying q > p > 0. Picking p = 0 in (3.2), we get xq > x0−∑` ε
`,

establishing that the sequence (x`)` is also bounded from below. Taking limits in (3.2),
we get lim infq xq − lim supp xp > 0. Since lim infq xq − lim supp xp 6 0 by definition, this
implies that lim infq xq = lim supp xp, and hence the sequence (x`)` has a limit.

Lemma 3.1.5. The function H defined by H(U) = supP∈P{−A(P )U + y(P )} is Lipschitz
continuous.

Proof. The claim follows from the fact that for any two vectors U and Û ,∥∥∥H(U)−H(Û)
∥∥∥
∞

6 sup
P∈P

∥∥∥−A(P )(U − Û) + y(P )− y(P )
∥∥∥
∞

= sup
P∈P

∥∥∥A(P )(U − Û)
∥∥∥
∞

6

(
sup
P∈P
‖A(P )‖∞

)∥∥∥U − Û∥∥∥
∞

= const.
∥∥∥U − Û∥∥∥

∞
.

The last equality follows from the boundedness of the function A in (H2).

Lemma 3.1.6. Let U be a solution of (3.1) and Û be a vector. Suppose we can find a
sequence (P `)` such that A(P `) is monotone for each ` and

− A(P `)Û + y(P `)→ 0. (3.3)

Then, U − Û > 0.
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Proof. By (3.3), we can find a sequence (δ`)` of vectors converging to zero such that

− A(P `)Û + y(P `) + δ` = 0. (3.4)

Moreover, since U is a solution of (3.1),

0 = sup
P∈P
{−A(P )U + y(P )} > −A(P `)U + y(P `). (3.5)

Combining (3.4) and (3.5),

U − Û > A(P `)−1(−δ`) > − const. δ`. (3.6)

In the above, we have used the monotonicity of A(P `) (which implies A(P `)−1 > 0) along
with (H1). Taking limits in (3.6), we find that U − Û > 0.

We can now prove Theorem 3.1.3:

Proof of Theorem 3.1.3. By Lines 5 and 6 of ε-Policy-Iteration,

A(P `)
(
U ` − U `−1

)
= −A(P `)U `−1 + y(P `) > sup

P∈P

{
−A(P )U `−1 + y(P )

}
− ε`~e (3.7)

and, for ` > 1,

sup
P∈P

{
−A(P )U `−1 + y(P )

}
> −A(P `−1)U `−1 + y(P `−1) = 0. (3.8)

Combining (3.7) and (3.8), we find that for ` > 1,

A(P `)
(
U ` − U `−1

)
+ ε`~e > sup

P∈P

{
−A(P )U `−1 + y(P )

}
> 0 (3.9)

and hence, similarly to the proof of Lemma 3.1.6,

U ` − U `−1 > A(P `)−1(−ε`~e ) > − const. ε`~e .

Note also that since U ` = A(P `)−1y(P `) for ` > 1, the sequence (U `)` is bounded by (H1)
and (H2). Therefore, we can apply Lemma 3.1.4 to conclude that the sequence (U `)`
converges to some real vector U . Now, since U ` → U and ε` → 0,

lim
`→∞

{
A(P `)

(
U ` − U `−1

)
+ ε`~e

}
= 0. (3.10)
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Taking limits in (3.9) and applying (3.10),

0 = lim
`→∞

{
A(P `)

(
U ` − U `−1

)
+ ε`~e

}
> lim

`→∞
sup
P∈P

{
−A(P )U `−1 + y(P )

}
> 0

and hence
lim
`→∞

sup
P∈P

{
−A(P )U `−1 + y(P )

}
= 0.

Using the notation of Lemma 3.1.5, we can rewrite the above as

lim
`→∞

H(U `−1) = 0 (3.11)

Since limits and continuous functions commute, Lemma 3.1.5 implies

lim
`→∞

H(U `−1) = H( lim
`→∞

U `−1) = H(U)

and hence H(U) = 0 by (3.11). Equivalently, substituting in the definition of H,

sup
P∈P
{−A(P )U + y(P )} = 0.

That is, U is a solution of (3.1).
It remains only to prove uniqueness. Let U and Û be solutions of (3.1). It follows that

we can find a sequence (P `)` such that

−A(P `)Û + y(P `)→ 0.

Therefore, by Lemma 3.1.6, U − Û > 0. Switching the roles of U and Û in the above gives
Û − U > 0. Therefore, U = Û .

We close this section by pointing out that it is sometimes advantageous to scale the
inputs to policy iteration in order to obtain faster convergence. While this was observed
in [HFL13] for a specific instance of problem (3.1), we give a general result which codifies
precisely when this scaling can be performed without changing the set of solutions to (3.1).
This will be used in the sequel to speed up computations.

Lemma 3.1.7. Let s : P → RM+1 be a vector-valued function such that

inf
P∈P

min
i

[s(P )]i > 0 and sup
P∈P

max
i

[s(P )]i <∞. (3.12)

Then, U is a solution of (3.1) if and only if

sup
P∈P
{diag(s(P )) (−A(P )U + y(P ))} = 0. (3.13)
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Proof. First, we prove that if U is a solution of (3.1) then (3.13) holds. Indeed, if U is a
solution of (3.1), there exists a sequence (P `)` such that

−A(P `)U + y(P `) ↑ 0

where we have used the symbol ↑ to mean that the limit approaches zero monotonically
from below so that −A(P `)U + y(P `) 6 0 for each `. Since s is bounded above by (3.12),

lim sup
`→∞

{
diag(s(P `))

(
−A(P `)U + y(P `)

)}
> const. lim

`→∞

{
−A(P `)U + y(P `)

}
= 0,

and so
sup
P∈P
{diag(s(P )) (−A(P )U + y(P ))} > 0.

Note that if the above holds with equality, we have established (3.13), as desired. Therefore,
in order to arrive at a contradiction, suppose the above holds with strict inequality. In this
case, we can find some P0 for which

diag(s(P0)) (−A(P0)U + y(P0)) > 0.

Since s is bounded below by (3.12), s(P0) > 0 and hence we can multiply both sides of the
above inequality by the inverse of diag(s(P0)) to obtain

−A(P0)U + y(P0) > 0,

contradicting the assumption that U is a solution of (3.1).
The converse is handled by symmetry. In particular, suppose that U satisfies (3.13).

Defining A0(P ) = diag(s(P ))A(P ) and y0(P ) = diag(s(P ))y(P ), (3.13) is equivalent to

sup
P∈P
{−A0(P )U + y0(P )} = 0.

The arguments of the previous paragraph imply that

sup
P∈P
{−A(P )U + y(P )} = sup

P∈P

{
diag(s(P ))−1 (−A0(P )U + y0(P ))

}
= 0,

as desired.

30



A =



+1
−1 +1

−1 +1
. . . . . .
−1 +1


(a) An (M + 1)× (M + 1) matrix

0 1 · · · M

(b) Directed adjacency graph of A (vertices cor-
responding to s.d.d. vertices are highlighted )

Fig. 3.1: An example of a w.c.d.d. matrix and its adjacency graph

3.2 Weakly chained diagonally dominant matrices

In this section, we describe weakly chained diagonally dominant (w.c.d.d.) matrices [SC74]
and give some new results relating them to M-matrices. We will ultimately apply the theory
developed in this section to the Bellman problem (3.1). We first recall a few definitions
from linear algebra.

Definition 3.2.1. Let A = (aij) be a complex matrix. Row i of A is strictly diagonally
dominant (s.d.d.) if |aii| >

∑
j 6=i |aij|. The matrix A is s.d.d. if all of its rows are s.d.d.

Similarly, row i of A is weakly diagonally dominant (w.d.d.) if |aii| >
∑
j 6=i |aij|. The

matrix A is w.d.d. if all of its rows are w.d.d.

Definition 3.2.2. Let A = (aij)i,j∈{0,...,M} be an (M + 1)× (M + 1) complex matrix. The
(directed) adjacency graph of A is given by the vertices {0, . . . ,M} and edges defined as
follows: there exists an edge from i to j if and only if aij 6= 0.

In light of the above, we use the terms “row” and “vertex” interchangeably. To simplify
notation, we write i→ j to denote an edge from i to j. Similarly, we write i1 → · · · → ik
to denote a walk from vertex i1 to vertex ik passing through vertices i2, i3, etc.

We are now ready to define w.c.d.d. matrices.

Definition 3.2.3 ([SC74]). A square complex matrix A is w.c.d.d. if it is w.d.d. and for
each row i1 that is not s.d.d., there exists a walk i1 → · · · → ik in the adjacency graph of A
such that ik is s.d.d. (Fig. 3.1).

Below, we recall the definition of Z-matrices and M-matrices.

Definition 3.2.4 ([Ple77]). A Z-matrix is a real matrix with nonpositive off-diagonals. An
M-matrix is a monotone Z-matrix.
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The main result of this section is given below.

Theorem 3.2.5. If A is a square w.d.d. Z-matrix with nonnegative diagonals, then the
following are equivalent:

(i) A is an M-matrix.

(ii) A is a nonsingular matrix.

(iii) A is a w.c.d.d. matrix.

Proof. (i) implies (ii) is true since M-matrices are monotone by definition and monotone
matrices are nonsingular by definition. (iii) implies (i) is proven in [BH64].1 Therefore, it
remains to prove that (ii) implies (iii).

To this end, let A be an (M + 1)× (M + 1) w.d.d. Z-matrix with nonnegative diagonals
that is not w.c.d.d. We will prove that A is singular, thereby establishing (ii) implies (iii) by
contrapositive. Let J be the set of all s.d.d. rows (of A). Let W be the set of all non-s.d.d.
rows i1 satisfying Definition 3.2.3. Specifically,

W = {i1 /∈ J : there exists a walk i1 → · · · → ik such that ik ∈ J}

Let R = {0, . . . ,M} \ (J ∪W ). Since A is not w.c.d.d., R is nonempty. Without loss
of generality, we may assume R = {0, . . . , r} where 0 6 r 6 M since otherwise, we can
relabel the rows and columns of A (this corresponds to replacing A by PAP ᵀ where P is
an appropriately chosen permutation matrix).

If r = M , it follows that J is empty, and hence every row of A is not s.d.d. In this case,
since A is a w.d.d. Z-matrix with nonnegative diagonals, we have aii = −∑j 6=i aij for each
row i. In other words, the row sums of A are zero so that A~e = 0 and hence A is singular.

If r < M , the adjacency graph of A has the structure shown in Fig. 3.2. In particular,
there are no edges from a vertex i ∈ R to a vertex j ∈ J ∪W since if there were, i would
not be a member of R by definition. This implies that A has the block structure

A =
(
B 0
C D

)
where B ∈ R(r+1)×(r+1).

where the zero in the top right quadrant corresponds to the absence of edges from vertices
in R to vertices in J ∪W . Moreover, the partition above guarantees that D is w.c.d.d.

1[BH64] refers to w.c.d.d. Z-matrices with nonnegative diagonals as matrices of positive type.
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0

...

r

r + 1

...

M

R J ∪W

Fig. 3.2: “Block” adjacency graph of the w.c.d.d. matrix in the proof of Theorem 3.2.5

since i /∈ R for all i > r. Since w.c.d.d. matrices are nonsingular [SC74], the linear system
Dx = −C~e has a unique solution x. Similarly to the case of r = M , since every row of B is
not s.d.d., the row sums of B are zero so that B~e = 0. It follows that

A

(
~e
x

)
=
(

B~e
C~e+Dx

)
= 0,

and hence A is singular.

The result above was first proven in our own work [AF16; Azi17a] and immediately
strengthens some existing results from linear algebra. For example, due to the above, well-
known bounds on the minimum eigenvalue and infinity-norm of the inverse of an arbitrary
w.c.d.d. M-matrix [Shi+96; CH07; Li08; Wan09; HZ10] apply to w.d.d. M-matrices.

3.3 Application to the HJBQVI

In this section, we revisit the direct control and penalty schemes of Chapter 2. Our goal is
to see if given the solution V n−1 of one of these schemes at the (n− 1)-th timestep, we can
use policy iteration to compute the solution V n at the n-th timestep.

Recall the discretized control sets W h and Zh(t, x) introduced in Chapter 2. For the
remainder of this section, we let

Pi = W h × Zh(τn, xi)× {0, 1} .
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Intuitively, each Pi = (wi, zi, di) ∈ Pi is a tuple that contains control information for some
grid point xi. Therefore, letting P = P0 × · · · × PM , each P = (wi, zi, di)Mi=0 ∈ P is a tuple
that contains control information for all grid points xi. Since W h and Zh(τn, xi) are finite
sets by definition, P is also finite and hence trivially compact.

3.3.1 The penalty scheme

We begin with the penalty scheme (2.10). To write the penalty scheme in the form of (3.1),
we define the matrix-valued function A and vector-valued function y such that for each
vector U = (U0, . . . , UM)ᵀ and integer i satisfying 0 6 i 6M ,

[A(P )U ]i = Ui
∆τ −

1
2b

n
i (wi)2(D2U)i − ani (wi)(DU)i + 1

ε
di (Ui − interp(U,Γ(τn, xi, zi)))

[y(P )]i = V n−1
i

∆τ + fni (wi) + 1
ε
diK(τn, xi, zi). (3.14)

With the above choices of A and y, V n is a solution of (3.1). This is seen immediately by
noting that

[−A(P )U + y(P )]i = V n−1
i − Ui

∆τ + 1
2b

n
i (wi)2(D2U)i + ani (wi)(DU)i + fni (wi)

+ 1
ε
di (interp(U,Γ(τn, xi, zi)) +K(τn, xi, zi)− Ui) (3.15)

(compare with (2.10)). The lemma below ensures that in this case, the conditions of
Proposition 3.1.2 are satisfied, so that we may compute V n by Policy-Iteration.
Lemma 3.3.1. A(P ) given by (3.14) is an M-matrix.

Proof. We will prove that A(P ) is an s.d.d. Z-matrix with positive diagonals so that by
Theorem 3.2.5, it is an M-matrix.

To simplify notation, we will assume the grid points {x0, . . . , xM} are uniformly spaced
(i.e., xi+1 − xi = ∆x) (the same arguments can also be applied in the case of a nonuniform
grid). Letting U be an arbitrary vector, (2.3), (2.5), and (3.14) imply

[A(P )U ]i =
(

1
∆τ + bni (wi)2

(∆x)2 + |a
n
i (wi)|
∆x + 1

ε
di

)
Ui

−
(

1
2
bni (wi)2

(∆x)2 + |a
n
i (wi)|
∆x 1{ani (wi)>0}

)
Ui+1 −

(
1
2
bni (wi)2

(∆x)2 + |a
n
i (wi)|
∆x 1{ani (wi)<0}

)
Ui−1

− 1
ε
diαUk+1 −

1
ε
di (1− α)Uk if 0 < i < M (3.16)
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where k and α depend on i and satisfy 0 6 k < M and 0 6 α 6 1 (recall (2.6)). The
indicator functions 1{ani (wi)>0} and 1{ani (wi)<0} are used to capture the fact that due to the
upwind discretization, the choice of stencil depends on the sign of the coefficient of the first
derivative. Similarly,

[A(P )U ]0 =
(

1
∆τ + |a

n
0 (w0)|
∆x 1{an0 (w0)>0} + 1

ε
d0

)
U0

−
(
|an0 (w0)|

∆x 1{an0 (w0)>0}

)
U1 −

1
ε
d0αUk+1 −

1
ε
d0 (1− α)Uk (3.17)

and

[A(P )U ]M =
(

1
∆τ + |a

n
M(wM)|

∆x 1{anM (wM )<0} + 1
ε
dM

)
UM

−
(
|anM(wM)|

∆x 1{anM (wM )<0}

)
UM−1 −

1
ε
dMαUk+1 −

1
ε
dM (1− α)Uk. (3.18)

By (3.16) to (3.18), the matrix A(P ) has nonpositive off-diagonals and as such, is a Z-matrix.
Setting U = ~e in (3.16) to (3.18), we find that for all i,

∑
j

[A(P )]ij = [A(P )~e ]i = 1
∆τ > 0, (3.19)

from which it follows that A(P ) is s.d.d. with positive diagonals since

[A(P )]ii > −
∑
j 6=i

[A(P )]ij =
∑
j 6=i
|[A(P )]ij| > 0.

3.3.2 The direct control scheme

We now consider the direct control scheme (2.8). To write the direct control scheme in the
form of (3.1), we define the matrix-valued function A and the vector-valued function y such
that for each vector U = (U0, . . . , UM)ᵀ and integer i satisfying 0 6 i 6M ,

[A(P )U ]i = di

(
Ui
∆τ −

1
2b

n
i (wi)2(D2U)i − ani (wi)(DU)i

)
+ di (Ui − interp(U,Γ(τn, xi, zi)))

[y(P )]i = di

(
V n−1
i

∆τ + fni (wi)
)

+ diK(τn, xi, zi). (3.20)
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With the above choices of A and y, V n is a solution of (3.1). This is seen immediately by
noting that

[−A(P )U + y(P )]i = di

(
V n−1
i − Ui

∆τ + 1
2b

n
i (wi)2(D2U)i + ani (wi)(DU)i + fni (wi)

)
+ di (interp(U,Γ(τn, xi, zi)) +K(τn, xi, zi)− Ui) (3.21)

(compare with (2.8)).

Remark 3.3.2. Note that the quantities

V n−1
i − Ui

∆τ + 1
2b

n
i (wi)2(D2U)i + ani (wi)(DU)i + fni (wi)

and
interp(U,Γ(τn, xi, zi)) +K(τn, xi, zi)− Ui

appearing in (3.21) have different units: the former is a rate of change while the latter is
a unit amount. A similar situation is encountered in [HFL13], in which the authors find
that policy iteration performs better after scaling the problem to normalize the units. In the
context of Lemma 3.1.7, this corresponds to the scaling factor s(P ) with entries given by

[s(P )]i = di + di
1

δ∆τ

where δ is some positive constant. By Lemma 3.1.7, the unscaled problem (3.1) has the same
set of solutions as the scaled problem (3.13), for which the units are all rates of change:

[diag(s(P ))(−A(P )U + y(P ))]i

= di

(
V n−1
i − Ui

∆τ + 1
2b

n
i (wi)2(D2U)i + ani (wi)(DU)i + fni (wi)

)

+ 1
δ
di

(
interp(U,Γ(τn, xi, zi)) +K(τn, xi, zi)− Ui

∆τ

)
.

While a similar issue occurs for the penalty scheme (see (3.15)), taking ε to be a multiple of
∆τ immediately normalizes the units.

Next, we give an analogue of Lemma 3.3.1 for the direct control setting.

Lemma 3.3.3. A(P ) given by (3.20) is a w.d.d. Z-matrix with nonnegative diagonals.
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Proof. As in the proof of Lemma 3.3.1, we have

[A(P )U ]i =
(
di

(
1

∆τ + bni (wi)2

(∆x)2 + |a
n
i (wi)|
∆x

)
+ di

)
Ui

− di
(

1
2
bni (wi)2

(∆x)2 + |a
n
i (wi)|
∆x 1{ani (wi)>0}

)
Ui+1 − di

(
1
2
bni (wi)2

(∆x)2 + |a
n
i (wi)|
∆x 1{ani (wi)<0}

)
Ui−1

− diαUk+1 − di (1− α)Uk if 0 < i < M (3.22)

along with

[A(P )U ]0 =
(
d0

(
1

∆τ + |a
n
0 (w0)|
∆x 1{an0 (w0)>0}

)
+ d0

)
U0

− d0

(
|an0 (w0)|

∆x 1{an0 (w0)>0}

)
U1 − d0αUk+1 − d0 (1− α)Uk (3.23)

and

[A(P )U ]M =
(
dM

(
1

∆τ + |a
n
M(wM)|

∆x 1{anM (wM )<0}

)
+ dM

)
UM

− dM
(
|anM(wM)|

∆x 1{anM (wM )<0}

)
UM−1 − dMαUk+1 − dM (1− α)Uk (3.24)

from which one sees that A(P ) has nonpositive off-diagonals and as such, is a Z-matrix.
Setting U = ~e in (3.22) to (3.24), we find that for all i,∑

j

[A(P )]ij = [A(P )~e ]i = di
1

∆τ = (1− di)
1

∆τ > 0, (3.25)

from which it follows that A(P ) is w.d.d. with nonnegative diagonals since

[A(P )]ii > −
∑
j 6=i

[A(P )]ij =
∑
j 6=i
|[A(P )]ij| > 0.

Unfortunately, Lemma 3.3.3 does not guarantee the nonsingularity of A(P ). For example,
if di = 1 for all i, (3.25) implies A(P )~e = 0 and hence A(P ) is singular. This is a serious
issue for Policy-Iteration since if any of the matrices in the set {A(P )}P∈P are singular,
the iterates U ` may not even be well-defined. To see why, consider the linear system on
Line 6 of the pseudocode. If A(P `) is singular, the vector y(P `) is not guaranteed to lie
in the range of A(P `) and hence the linear system may not have any solutions. We will
resolve this issue in the next section.

We close this subsection by stating a result that we will use in the sequel.
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Lemma 3.3.4. Let A(P ) be given by (3.20). Then, row i of A(P ) is not s.d.d. if and only
if di = 1. Moreover, [A(P )]ii 6 1 whenever di = 1.

Proof. The first claim is made immediately obvious by rewriting (3.25) as

|[A(P )]ii| = [A(P )]ii = −
∑
j 6=i

[A(P )]ij + (1− di)
1

∆τ =
∑
j 6=i
|[A(P )]ij|+ (1− di)

1
∆τ .

Now, suppose that di = 1 for some fixed row i. Then by (3.20), we have

[A(P )U ]i = Ui − interp(U,Γ(τn, xi, zi)) = Ui − αUk+1 − (1− α)Uk

where 0 6 α 6 1 and 0 6 k < M . Letting ~x be the i-th standard basis vector (i.e., the
vector with entries ~xj = δij where δij is the Kronecker delta), we have

[A(P )]ii = [A(P )~x ]i = δii − αδi,k+1 − (1− α) δik = 1− αδi,k+1 − (1− α) δik 6 1,

establishing the second claim in the lemma statement.

3.4 Singularity in the Bellman problem

In the previous section, we saw that the direct control scheme may involve singular (and
hence nonmonotone) matrices A(P ). Motivated by this issue, we now revisit the Bellman
problem (3.1), relaxing the assumption that the matrices A(P ) are monotone. Throughout
this section, we call upon the assumption below.

(H3) For each P ∈ P, A(P ) is a w.d.d. Z-matrix with nonnegative diagonals satisfying
[A(P )]ii 6 1 whenever its i-th row is not s.d.d.

We mention that (H3) is satisfied by all problems of interest in this chapter (see, e.g.,
Lemmas 3.3.3 and 3.3.4), including the MDPs studied in the sequel.
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3.4.1 Uniqueness

We now establish that solutions of (3.1) are unique independent of the nonsingularity of
A(P ). The idea behind our technique is to restrict attention to rows of A(P ) that are not
s.d.d., as these are the “problem” rows that can cause A(P ) to be singular.

In light of this, it is convenient to define

[ŷ(P )]i =

[y(P )]i if row i of A(P ) is not s.d.d.
−∞ otherwise

and the (nonlinear) operator A by

AU = sup
P∈P
{−A(P )U + ŷ(P )}

(compare with (3.1)). We also define M = I +A. It is understood that if [AU ]i = −∞, then
[MU ]i = [(I +A)U ]i = Ui + [AU ]i = −∞. We use superscripts to indicate composition. For
example, M0 = I and Mk = (Mk−1) ◦M for any positive integer k.

Example 3.4.1. Suppose A and y are given by (3.20), corresponding to the direct control
scheme. By Lemma 3.3.4, row i of A(P ) is not s.d.d. if and only if di = 1. Therefore,

[ŷ(P )]i =

K(τn, xi, zi) if di = 1
−∞ otherwise

and hence

[MU ]i = Ui + [AU ]i
= Ui + sup

zi∈Zh(τn,xi)
{interp(U,Γ(τn, xi, zi)) +K(τn, xi, zi)− Ui}

= (MnU)i

whereMn is defined in (2.7). More succinctly, we write M =Mn.

The following assumption, justified momentarily, is used in the proof of uniqueness:

(H4) For each U ∈ RM+1 and integer i satisfying 0 6 i 6M , there exist integers m1 and
m2 satisfying 0 6 m1 < m2 and [Mm1U ]i > [Mm2U ]i.
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Example 3.4.2. The discretized intervention operatorMn of Example 2.1.3 satisfies

(M2
nU)i = (Mn(MnU))i = max

06j6M

{
(MnU)j − e−βτ

n (κ |xj − xi|+ c)
}

= max
06j,k6M

{
Uk − e−βτ

n (κ |xj − xi|+ κ |xk − xj|+ 2c)
}
.

Therefore, an application of the triangle inequality yields

(M2
nU)i 6 max

06j6M

{
Uj − e−βτ

n (κ |xj − xi|+ 2c)
}

= (MnU)i − e−βτ
n

c < (MnU)i.

Since M =Mn by Example 3.4.1, (H4) is satisfied (with m1 = 1 and m2 = 2).

The above example highlights the intuition behind (H4), which attempts to capture the
suboptimality of consecutive applications of the operator M. In the example,M2

n represents
the controller performing two consecutive impulses: the first changes the state from xi to
xj while the second changes it from xj to xk. This is suboptimal, since the controller can
directly change the state from xi to xk, paying only the fixed cost of c instead of 2c.

We can now state our uniqueness result, which is independent of any assumptions
regarding nonsingularity.

Theorem 3.4.3. Suppose (H1), (H3), and (H4). Then, solutions of (3.1) are unique.

To prove the result, we require a lemma.

Lemma 3.4.4. Let U be a solution of (3.1). Then, we can find a sequence (P `)` such that

− A(P `)U + y(P `)→ 0 (3.26)

and A(P `) is an M-matrix for each `.

Proof. Throughout the proof, we call upon the following facts:

(i) By (H3) and Theorem 3.2.5, A(P ) being an M-matrix is equivalent to it being w.c.d.d.

(ii) Since U is a solution of (3.1),

AU = sup
P∈P
{−A(P )U + ŷ(P )} 6 sup

P∈P
{−A(P )U + y(P )} = 0 (3.27)

and hence MU = (I + A)U = U + AU 6 U .
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(iii) M is a monotone operator (i.e., if X 6 Y , then MX 6 MY ). To see this, note that
[MX]i = [(I + A)X]i

= Xi + supP∈P [−A(P )X + ŷ(P )]i
= supP∈P{(1− [A(P )]ii)Xi −

∑
j 6=i[A(P )]ijXj + [ŷ(P )]i}

6 supP∈P{(1− [A(P )]ii)Yi −
∑
j 6=i[A(P )]ijYj + [ŷ(P )]i}

= [MY ]i
where the inequality above follows from the fact that if [ŷ(P )]i 6= −∞, then 1 −
[A(P )]ii > 0 and [A(P )]ij 6 0 for j 6= i by (H3).

First, we consider the case where P is a finite set. In this case, the supremum in (3.1)
is attained at a point P :

− A(P )U + y(P ) = 0. (3.28)
We seek to show that A(P ) is w.c.d.d. since in this case, the constant sequence (P `)`
defined by P ` = P satisfies (3.26). Let G be the (directed) adjacency graph of A(P ), J be
the set of all s.d.d. rows of A(P ), and R = {0, . . . ,M} \ (J ∪W ) where

W = {i1 /∈ J : there exists a walk i1 → · · · → ik in G such that ik ∈ J}
(compare with J , R, and W defined in the proof of Theorem 3.2.5). Suppose A(P ) is
not w.c.d.d. By Definition 3.2.3, it follows that R is nonempty. Since R ∩ J = ∅ and
[ŷ(P )]j = [y(P )]j for any j /∈ J , (3.28) implies

[AU ]r > [−A(P )U + ŷ(P )]r = [−A(P )U + y(P )]r = 0 for r ∈ R. (3.29)
By (3.27), AU 6 0, and hence the inequality in (3.29) must hold with equality. In particular,
we can conclude

[AU ]r = 0 for r ∈ R.
Equivalently, in terms of the operator M = I + A,

[MU ]r = Ur for r ∈ R. (3.30)
Now, note that

[M2U ]r = [M(MU)]r
= [(I + A)(MU)]r
= [MU ]r + [A(MU)]r
> [MU ]r + [−A(P )(MU) + y(P )]r
= [MU ]r −

∑
j∈R

[A(P )]rj[MU ]j + [y(P )]r for r ∈ R (3.31)
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where the last equality follows since [A(P )]rj = 0 if j /∈ R (recall, as in Fig. 3.2, that there
are no edges from vertices in R to vertices in J ∪W ). Applying (3.30) to (3.31) and using
the fact that (3.29) holds with equality yields

[M2U ]r > Ur −
∑
j∈R

[A(P )]rjUj + [y(P )]r

= Ur + [−A(P )U + y(P )]r
= Ur + [AU ]r
= [(I + A)U ]r
= [MU ]r for r ∈ R.

By the monotonicity of M and the inequality MU 6 U (recall (3.27)), M2U 6 MU , and
hence [M2U ]r = [MU ]r for r ∈ R. Continuing this procedure, we establish

Ur = [MU ]r = [M2U ]r = [M3U ]r = · · · for r ∈ R,

contradicting (H4).
If P is infinite, the supremum in (3.1), while not necessarily attained at a point, can be

approximated by some sequence (P `)`:

lim
`→∞

{
−A(P `)U + y(P `)

}
= 0. (3.32)

It is sufficient to show that for ` sufficiently large, A(P `) is w.c.d.d. since we can always
drop the first finitely many terms from a sequence without changing its limit. In order
to arrive at a contradiction, suppose that we can find a subsequence of (P `)` indexed by
(`s)s such that for each s, A(P `s) is not w.c.d.d. Let Gs be the directed adjacency graph of
A(P `s), Js be the set of s.d.d. rows of A(P `s), and Rs = {0, . . . ,M} \ (Js ∪W s) where

W s = {i1 /∈ Js : there exists a walk i1 → · · · → ik in Gs such that ik ∈ Js} .

Since the sequence of triplets ((Gs, Js,W s))s takes on at most finitely many values, we can
use the pigeonhole principle to find a constant subsequence of ((Gs, Js,W s))s indexed by
(st)t. By constant, we mean that

Gs1 = Gs2 = · · · , Js1 = Js2 = · · · , and W s1 = W s2 = · · ·

In light of this, it is convenient to define G = Gs1 , J = Js1 , W = W s1 , and R = Rs1 .
For brevity, we also define A(t) = A(P `st ), y(t) = y(P `st ), and ŷ(t) = ŷ(P `st ). Since a
subsequence of a convergent sequence has the same limit, (3.32) implies

lim
t→∞

{
−A(t)U + y(t)

}
= 0. (3.33)
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Since R ∩ J = ∅ and [ŷ(P )]j = [y(P )]j for any j /∈ J , (3.33) implies

[AU ]r > lim
t→∞

[−A(t)U + ŷ(t)]r = lim
t→∞

[−A(t)U + y(t)]r = 0 for r ∈ R.

Again, by (3.27), AU 6 0 and hence it must be the case that the above holds with equality.
As in the previous paragraph, this implies (3.30). Similarly to (3.31),

[M2U ]r > [MU ]r + lim
t→∞

[−A(t)(MU) + y(t)]r
> [MU ]r + lim

t→∞
−
∑
j∈R

[−A(t)]rj[MU ]j + [y(t)]r for r ∈ R.

Applying (3.30) to the above

[M2U ]r > Ur + lim
t→∞
−
∑
j∈R

[A(t)]rjUj + [y(t)]r

= Ur + lim
t→∞

[−A(t)U + y(t)]r
= Ur + [AU ]r
= [MU ]r for r ∈ R.

Again, by the monotonicity of M and the inequality MU 6 U (recall (3.27)), M2U 6 MU ,
and hence [M2U ]r = [MU ]r for r ∈ R. Continuing this procedure, we establish

Ur = [MU ]r = [M2U ]r = [M3U ]r = · · · for r ∈ R,

contradicting (H4).

We can now prove Theorem 3.4.3:

Proof of Theorem 3.4.3. Let U and Û be solutions of (3.1). By Lemma 3.4.4, it follows
that we can find a sequence (P `)` such that A(P `) is an M-matrix for each ` and

−A(P `)Û + y(P `)→ 0.

Therefore, by Lemma 3.1.6, U − Û > 0. Switching the roles of U and Û in the above gives
Û − U > 0. Hence U = Û .
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P ′

P

A(P ′)

nonsingular

R(M+1)×(M+1)

A

Fig. 3.3: Restriction to a subset of controls that preclude singularity

3.4.2 Policy iteration on a subset of controls

Recall that policy iteration may fail upon encountering a singular matrix iterate A(P `) (see
the discussion at the end of Section 3.3.2). To avoid singular matrix iterates, we perform
policy iteration on a subset P ′ of P obtained by removing certain controls P for which
A(P ) is singular (Fig. 3.3), employing Theorem 3.4.3 to ensure uniqueness of the solution.
Below, we state this idea precisely.

Theorem 3.4.5. For each i, let P ′i be a nonempty subset of Pi and define P ′ = P ′0×· · ·×P ′M .
Suppose (H1)–(H4), A(P ) is nonsingular for each P ∈ P ′, and for all U ∈ RM+1,

H(U ;P) 6 0 whenever H(U ;P ′) = 0 (3.34)

where H(U ;P) = supP∈P{−A(P )U+y(P )}. Then, the sequence (U `)` defined by ε-Policy-
Iteration(P ′) converges to the unique solution of (3.1).

Proof. By (H3) and Theorem 3.2.5, A(P ) is an M-matrix for each P ∈ P ′. Therefore, by
Theorem 3.1.3, (U `)` converges to a vector U satisfying H(U ;P ′) = 0. Since P ′ ⊂ P, it
follows that H(U ;P) > H(U ;P ′) = 0. Therefore, by (3.34), H(U ;P) = 0 and hence U is a
solution of (3.1). Moreover, by Theorem 3.4.3, it is the unique solution.

Remark 3.4.6. If, in addition to the requirements of Theorem 3.4.5, P ′ is a compact
topological space and the restrictions of the functions A and y to the set P ′ are continuous,
we can use Policy-Iteration(P ′) (instead of ε-Policy-Iteration(P ′)) to compute the
unique solution of (3.1).

The drawback of the approach suggested by Theorem 3.4.5 is that it is not clear how to
select the subset P ′ in general. This set must be chosen on a problem-by-problem basis (an
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example is given below). In this sense, the penalty scheme, which requires no additional
effort to ensure convergence, is more robust than the direct control scheme. This begs
the following natural question: if both schemes converge to the same solution, is there an
advantage to using the direct control scheme? (e.g., could it, at least empirically, exhibit
faster convergence?) This question is answered in Chapter 5.

Example 3.4.7. Consider the HJBQVI (1.7) of Example 1.1.2. To simplify notation,
assume the target FEX rate m is zero.

Let {x0, . . . , xM} be a uniform partition of the interval [−R,R] (i.e., xi = (i−M/2)∆x
where ∆x = 2R/M) and Zh(t, x) = {x0 − x, . . . , xM − x} be chosen as per Example 2.1.3.
To simplify notation, assume M is even so that xM/2 = m = 0.

The direct control scheme applied to the HJBQVI (1.7) is given by the matrix-valued
function A and vector-valued function y specified by (compare with (3.20))

[A(P )U ]i = di

(
Ui
∆τ −

1
2σ

2(D2U)i + µwi(D−U)i
)

+ di (Ui − interp(U, xi + zi))

[y(P )]i = di

(
V n−1
i

∆τ − e
−βτn

(
(xi −m)2 + γwi

2
))
− die−βτ

n (κ |zi|+ c) .

As discussed in Section 3.3.2, we cannot apply policy iteration to the above parame-
terization of the Bellman problem since we have no guarantees on the nonsingularity of
the matrices A(P ). In order to surmount this issue, we seek to construct a subset P ′ on
which to apply policy iteration. In particular, we choose P ′ to be the subset of controls
P = (wi, zi, di)Mi=0 ∈ P satisfying

dM/2 = 0, zi > 0 if xi < m, and zi < 0 if xi > m. (3.35)

In Appendix A, we verify that P ′ satisfies the conditions of Theorem 3.4.5, so that we may
apply Policy-Iteration(P ′) to compute the solution of the direct control scheme at the
n-th timestep.

3.5 Application to Markov decision processes

Undiscounted infinite horizon Markov decision processes (MDPs) were first considered in
[Bla65; DS65; Str66] and more recently, for example, in [ÇR14; Ohn+16]. Unlike their
discounted counterparts, computing solutions of these MDPs is known to be a difficult task
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(see Remark 3.5.2), often amounting to solving a nonconvex optimization problem (with
no known efficient general purpose solver). In this section, we use our results regarding
singularity in the Bellman problem to show that we can often apply policy iteration to
solve these MDPs.

We repeat here the standard setting of an infinite horizon MDP from [Ber01]. A
controlled Markov chain (Xk)k>0 is a sequence of random variables taking values in the
finite state space {0, . . . ,M} determined by transition probabilities

P(Xk+1 = j | Xk = i) = T (i, j, θk(i)) (3.36)

where θ = (θk)k>0, the control, is a sequence of functions such that θk(i) ∈ Pi. To simplify
matters, we assume that the control set Pi is a countable set.2 The controller’s objective is
to choose a control to maximize the total reward

J(i; θ) = E

∑
k>0

R(Xk, θk(Xk))
k−1∏
`=0

D(X`, θ`(X`))

∣∣∣∣∣∣X0 = i

 . (3.37)

We denote by Vi = supθ J(i; θ) the maximum total reward. The function R determines
the reward obtained at each “step” k, while the function D – which takes values in [0, 1] –
determines the discount factor. [CMS07, Lemma 5] establishes that if the entries of the
vector V = (V0, . . . , VM)ᵀ are finite (i.e., |Vi| < ∞), then V is a solution of the Bellman
problem (3.1) with

[A(P )]ij = δij − T (i, j, Pi)D(i, Pi) and [y(P )]i = R(i, Pi)

where δij is the Kronecker delta and as usual, P = (P0, . . . , PM) ∈ P0 × · · · × PM .

Remark 3.5.1. (3.36) and the laws of probability imply that T > 0 and ∑j T (·, j, ·) = 1.
Since D > 0, it follows that for i 6= j, [A(P )]ij = −T (i, j, Pi)D(i, Pi) 6 0, and hence A(P )
is a Z-matrix. Using the fact that D 6 1,∑

j

[A(P )]ij =
∑
j

δij −D(i, Pi)
∑
j

T (i, j, Pi) = 1−D(i, Pi) > 0,

and hence A(P ) is w.d.d. In particular, row i of A(P ) is not s.d.d. if and only if D(i, Pi) = 1.

2The assumption that Pi is countable is required to avoid any measure theoretic issues. More generally,
Pi can be an arbitrary Polish space [Ber05, Section 1.5].
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Remark 3.5.2. It has long been known that in the undiscounted setting, V cannot be
obtained by a naïve application of policy iteration [Ber01, Page 149]. However, if one
assumes the nonnegativity of the reward function R, V can instead be obtained by solving a
related linear program [Ber01, Page 150]. A similar result holds if the reward function is
assumed to be negative (corresponding to costs), though the resulting program is not linear
(or even convex) and hence hard to solve in general [Ber01, Page 150]. Using the ideas
developed in this chapter, we are able to consider the much more general case in which no
assumptions are made about the sign of the reward function R.

Remark 3.5.3. We are careful not to refer to the index k in (3.37) as “time” since this
analogy only works in the discounted setting. In particular, if D(Xk, θk(Xk)) < 1, the
indices k and k + 1 can be interpreted as times t and t + ∆t, since a reward obtained
at index k + 1 is worth less than the same reward obtained at index k. Conversely, if
D(Xk, θk(Xk)) = 1, the indices k and k + 1 should be interpreted as referring to the same
time t, since no discounting is applied. This is analogous to impulse control, for which the
left hand limit t− and the right hand limit t are used to refer to the instant before and after
an impulse occurs (see, e.g., (1.3b)). In this sense, undiscounted MDPs can be interpreted
as impulse control problems where the time horizon and state space are discrete.

3.6 Summary

Motivated by the direct control scheme, this chapter resolved the issue of singularity in
the Bellman problem. In doing so, some new results for MDPs and w.c.d.d. matrices were
obtained. We saw that unlike the penalty scheme, policy iteration applied to the direct
control scheme requires additional effort to ensure convergence.
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Chapter 4

Convergence of schemes for weakly nonlocal
second order equations

Consider the fully nonlinear second-order local PDE

G(x, V (x), DV (x), D2V (x)) = 0 for x ∈ Ω (4.1)

where Ω is an open1 subset of Rd, G : R×R×Rd×Sd → R is a locally bounded function, and
Sd is the set of d× d symmetric matrices. In (4.1), DV and D2V are the (formal) gradient
vector and Hessian matrix of V . It is established in [BS91] that if a numerical scheme for
the PDE (4.1) is monotone, stable, and consistent, then it converges to a viscosity solution of
(4.1) provided that a comparison principle, guaranteeing the uniqueness of solutions, holds.
This result is referred to as the Barles-Souganidis framework, named after its authors.

The term “local” above is used to capture the fact that to determine if a function V
satisfies the PDE (4.1) at a particular point x in the domain, it is necessary only to examine
the values of V and its partial derivatives evaluated at that point x (at points where V is
not smooth, derivatives of particular test functions are considered instead). However, the
HJBQVI (1.5) is not a local PDE due to the intervention operatorM.

As such, we must broaden the class of PDEs which we consider. In particular, we
consider in this chapter PDEs having the form

F (x, V (x), DV (x), D2V (x), [IV ](x)) = 0 for x ∈ Ω (4.2)
1The assumption that Ω is open is used to simplify presentation, being stronger than what is generally

required for the theory of viscosity solutions (see, e.g., [CIL92, Theorem 3.2]).
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where F : R× R× Rd × Sd × R→ R is a locally bounded function and I is an operator
mapping from a space of functions to itself. The purpose of I is to capture the nonlocal
features of a PDE (e.g., in the case of the HJBQVI, I =M). Since this nonlocality does not
extend to the derivatives DiV , we refer to equations of the form (4.2) as weakly nonlocal.

It is well-known that for certain nonlocal operators I (e.g., integro-differential operators),
the Barles-Souganidis framework can be applied to (4.2) without running into any major
issues [CV05]. However, if I = M is an intervention operator, this approach fails (see
Appendix B for a detailed discussion of why it fails). To overcome this issue, we extend the
Barles-Souganidis framework to nonlocal PDEs of the form (4.2) in a very general manner.
This results in a consistency requirement that is stronger than what is typically used in the
local case. We use these results to prove the convergence of the schemes from Chapter 2 to
the unique viscosity solution of the HJBQVI (1.5).

Our contributions in this chapter are:

• Extending the Barles-Souganidis framework to nonlocal PDEs in a general manner.

• Proving the convergence of the direct control, penalty, and explicit-impulse schemes
to the viscosity solution of the HJBQVI.

The results of this chapter appear in our articles
P. Azimzadeh, E. Bayraktar, and G. Labahn. “Convergence of approximation schemes

for weakly nonlocal second order equations”. In: arXiv preprint arXiv:1705.02922 (2017)
P. Azimzadeh. “A zero-sum stochastic differential game with impulses, precommitment,

and unrestricted cost functions”. In: Appl. Math. Optim. (2017). To appear.

4.1 Viscosity solutions

Recall that in the classical (i.e., differentiable) setting, establishing a maximum principle
is the usual technique for obtaining uniqueness of solutions to second order PDEs [Fri64,
Chapter 2]. However, for many interesting (e.g., nonlinear) PDEs, it is unreasonable to
expect to find differentiable solutions.

Viscosity solutions generalize the classical notion of a solution to a PDE. In particular,
viscosity solutions are “weak enough” to be applicable to functions that are only semicon-
tinuous (i.e., neither differentiable nor even a priori continuous) but “strong enough” to

50



allow the user to derive maximum principles which, in the viscosity setting, are referred to
as comparison principles [CIL92].

Moreover, viscosity solutions are well-known to be the relevant notion of solution for
optimal control problems, making them the relevant solution for problems arising from
finance. While being out of the scope of this thesis, we provide the reader with some
references to various modern arguments establishing this fact. One such argument is
weak dynamic programming [BT11; Tou13] which, unlike strong dynamic programming
[Lio83], does not require sophisticated tools from measure theory (e.g., measurable selection).
Another argument is stochastic Perron’s method [BS12; BS13; BS14], which is arguably
even more flexible as it does not rely on any dynamic programming style arguments.

In this section, we introduce the appropriate definition of viscosity solution for the PDEs
in this thesis. In order to do so, we first recall the notion of semicontinuity:

Definition 4.1.1. Let Y be a metric space and u : Y → R be a locally bounded function.
We define the upper and lower semicontinuous envelopes u∗ and u∗ of u by

u∗(x) = lim sup
y→x

u(y) and u∗(x) = lim inf
y→x

u(y).

The function u is said to be upper (resp. lower) semicontinuous if u = u∗ (resp. u = u∗)
pointwise (Fig. 4.1).

We are now ready to give the definition of viscosity solution for (4.2).

Definition 4.1.2. An upper (resp. lower) semicontinuous function V : Ω→ R is a viscosity
subsolution (resp. supersolution) of (4.2) if for all ϕ ∈ C2(Ω) and x ∈ Ω such that V − ϕ
has a local maximum (resp. minimum) at x (Fig. 4.2), we have

F∗(x, V (x), Dϕ(x), D2ϕ(x), [IV ](x)) 6 0
(resp. F ∗(x, V (x), Dϕ(x), D2ϕ(x), [IV ](x)) > 0).

We say V is a viscosity solution if it is both a subsolution and a supersolution. Since
viscosity solutions are the only solution concept used in this chapter, we will often omit the
prefix “viscosity” and simply write “subsolution”, “supersolution”, or “solution”.

If F is continuous, the definition above agrees with the common definition for nonlocal
problems given in [BI08]. We have, however, allowed F to be discontinuous so that we
may write both the partial differential equation and its boundary conditions as a single
expression as in [BS91]. This is demonstrated in the example below.
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(a) An upper semicontinuous function
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(b) A lower semicontinuous function

Fig. 4.1: Examples of semicontinuous functions

ϕ

V

x

(a) Local maximum

ϕ

V

x

(b) Local minimum

Fig. 4.2: Role of test functions in the definition of viscosity solution
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Example 4.1.3. Consider the Dirichlet problem
V (xd) = yd

−1
2σ

2x2Vxx + λκxVx + λV − λ
∫ xu/x

xd/x
V (ηx)ψ(η)dη − λf = 0 on (xd, xu)

V (xu) = yu

where 0 < xd < xu, σ and λ are positive constants, ψ is a lognormal probability density,
κ =

∫∞
0 ηψ(η)dη − 1 > 0, and

f(x) = yd

∫ xd/x

0
ψ(η)dη + yu

∫ ∞
xu/x

ψ(η)dη.

In a market where the riskless rate of return is zero, this Dirichlet problem corresponds to
the price of an infinite horizon barrier option which pays off yd if the price of the asset,
which follows a geometric Brownian motion with lognormally distributed jumps, drops below
the barrier xd and pays off yu if it goes above the barrier xu [Sep04].

We can rewrite this problem in the form (4.2) by defining Ω = (xd, xu),

[IV ](x) =
∫ xu/x

xd/x
V (ηx)ψ(η)dη, (4.3)

and

F (x, r, p, A, `) =


r − yd if x = xd

H(x, r, p, A, `) if x ∈ Ω
r − yu if x = xu

where H(x, r, p, A, `) = −1
2σ

2x2A+ λκxp+ λr − λ`− λf(x). In view of Definition 4.1.2,
note that

F∗(x, V (x), ϕ′(x), ϕ′′(x), [IV ](x))

=


min{H(x, V (x), ϕ′(x), ϕ′′(x), [IV ](x)), V (x)− yd} if x = xd

H(x, V (x), ϕ′(x), ϕ′′(x), [IV ](x)) if x ∈ Ω
min{H(x, V (x), ϕ′(x), ϕ′′(x), [IV ](x)), V (x)− yu} if x = xu

and similarly,

F ∗(x, V (x), ϕ′(x), ϕ′′(x), [IV ](x))

=


max{H(x, V (x), ϕ′(x), ϕ′′(x), [IV ](x)), V (x)− yd} if x = xd

H(x, V (x), ϕ′(x), ϕ′′(x), [IV ](x)) if x ∈ Ω
max{H(x, V (x), ϕ′(x), ϕ′′(x), [IV ](x)), V (x)− yu} if x = xu.
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In the above, we see a “mixing” of the boundary conditions and the PDE operator H(·) at
x = xd and x = xu. This phenomenon, which we will encounter again in this chapter, is
referred to as a boundary layer [FTW11, Remark 3.2].

4.2 Numerical schemes

In [BS91], the authors find sufficient conditions under which one can approximate the
solution V of the local PDE (4.1) using an “approximate solution” V h that converges to V
as h goes to zero. Intuitively, V h is obtained by a numerical method (e.g., finite differences)
and h is a parameter that controls, roughly speaking, the accuracy of the method (e.g., a
smaller value of h corresponds to a finer grid).

We follow a similar approach, approximating a solution V of the nonlocal PDE (4.2)
using an approximate solution V h : Ω → R. Precisely, V h is a function whose range is a
finite set2 and satisfies

S(h, x, V h, [IhV h](x)) = 0 for x ∈ Ω (4.4)

(in the time-dependent case, x is replaced by t, x). Together, the pair (S, Ih) are meant
be an abstract representation of a numerical scheme with Ih being an approximation to
the operator I. Precisely, letting B(Ω) denote the set of bounded real-valued functions
mapping from Ω, S is a real-valued function mapping from (0,∞)×Ω×B(Ω)×R and the
operator Ih is a map from B(Ω) to itself. The idea behind the abstract representation of a
numerical scheme (4.4) is made clear in the example below.

Example 4.2.1. Consider the Dirichlet problem described in Example 4.1.3. Let {x0, . . . , xM}
be a partition of the interval [xd, xu] and, for convenience, define x−1 = x0 and xM+1 = xM .
The change of variables ζ = log(ηx) in the integral in (4.3) yields

[IV ](x) =
∫ log xu

log xd
(eζ/x)V (eζ)ψ(eζ/x)dζ =

∑
06j6M

∫ (log xj+log xj+1)/2

(log xj−1+log xj)/2
(eζ/x)V (eζ)ψ(eζ/x)dζ.

The above suggests the numerical scheme (S, Ih) given by

[IhV ](xi) =
∑

06j6M
V (xj)

∫ (log xj+log xj+1)/2

(log xj−1+log xj)/2
(eζ/xi)ψ(eζ/xi)dζ

2The assumption of finite range (i.e., | range(V h) | <∞) can be removed using standard ideas (see, e.g.,
our preprint [ABL17]), but doing so complicates the notation. In the case of finite difference schemes, this
assumption is trivially satisfied (see Remark 4.2.2).
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and, using the shorthand Vi = V (xi) and V = (V0, . . . , VM)ᵀ,

S(h, xi, V, `) =


Vi − yd if i = 0
H(xi, Vi, (D−V )i, (D2V )i, `) if 0 < i < M

Vi − yu if i = M

where H is defined in Example 4.1.3 and D2 and D− are defined in (2.3) and (2.4).

Remark 4.2.2. For fixed h > 0, the scheme in the above example only defines the numerical
solution V h at grid points xi. Following [BS91, Example 3], we extend the numerical solution
to points not on the grid by assuming that it is piecewise constant:

V h(x) = V h(xi) if x ∈
[
xi−1 + xi

2 ,
xi + xi+1

2

)
where we have used the convention x−1 = x0 and xM+1 = xM (note, in particular, that V h

has finite range). This extension to points not on the grid can be enforced “indirectly” by
defining [Ih ·](x) and S(h, x, ·, ·) for x 6= xi appropriately.

4.3 Application to the HJBQVI

In this section, we revisit the schemes of Chapter 2. Our goal is to show that the solutions
of these schemes converge to the viscosity solution of the HJBQVI (1.5).

For the purposes of demonstration, we take the domain D in (1.5) to be the real line R.
To simplify notation, we assume that the grid points {x0, . . . , xM} are uniformly spaced.
In particular, we take xi = (i−M/2)∆x so that the approximate solution is computed on
the “numerical domain” [0, T ]× [−(M/2)∆x, (M/2)∆x]. To ensure that the numerical grid
“approximates” the original domain [0, T ]× R as h→ 0, we assume

∆τ = const. h, ∆x = const. h, and M∆x→∞ as h→ 0. (4.5)

While the assumption M∆x → ∞ simplifies the presentation, it is computationally
intractable to implement in practice as it requires “enlarging” the numerical domain
whenever the spatial grid is refined (e.g., by taking M = const.dh−1−αe for some α > 0
where d·e is the ceiling function). Fortunately, for elliptic PDEs, truncating the domain to
a bounded region and introducing “artificial” boundary conditions is expected to lead to
small errors on the interior [Bar97, Section 5]. In Appendix C, we truncate the domain of
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the HJBQVI to a bounded set, introducing artificial boundary conditions and modifying
our schemes accordingly. Therein, we also give the necessary modifications required for our
convergence proofs to work in the truncated setting. Since these arguments are somewhat
standard, we confine them to the appendix so that we may, in this chapter, focus on the
main difficulties arising from discretizing the HJBQVI.

To write the HJBQVI (1.5) in the form (4.2), we take Ω = [0, T )× R,3 I =M, and

F ((t, x), r, (q, p), A, `)

=

min
{
−q − supw∈W

{
1
2b(t, x, w)2A+ a(t, x, w)p+ f(t, x, w)

}
, r − `

}
if t < T

min {r − g(x), r − `} if t = T
(4.6)

where we have used the notation (q, p) to distinguish between the time and spatial derivatives
(i.e., q = Vt(t, x) and p = Vx(t, x)) and, with a slight abuse of notation, A to refer only to
the second spatial derivative (i.e., A = Vxx(t, x)) since no second time derivatives appear.
Throughout this section, when we refer to “the HJBQVI”, it is understood that we mean
the above.

In order to perform our analysis, we must first rewrite the direct control scheme (2.8),
the penalty scheme (2.11), and the explicit-impulse scheme (2.19) in the form (4.4) by
defining S and Ih appropriately. We do so below, using the usual shorthand V n

i = V (τn, xi)
and V n = (V n

0 , . . . , V
n
M)ᵀ.

For the direct control scheme, we define Ih by

[IhV ](τn, xi) = (MnV
n)i (4.7)

whereMn is defined in (2.7) and S by

S(h, (τn, xi), V, `) = V n
i − g(xi) if n = 0 and 0 6 i 6M (4.8)

and

S(h, (τn, xi), V, `)

= − sup
di∈{0,1}
wi∈Wh

{
di

(
V n−1
i − V n

i

∆τ + 1
2b

n
i (wi)2(D2V

n)i + ani (wi)(DV n)i + fni (wi)
)

+ di (`− V n
i )
}

if n > 0 and 0 6 i 6M. (4.9)
3Though Ω = [0, T )× R is not an open set, this poses no issues in our analyses since the coefficient of

the time derivative q = Vt(t, x) in the HJBQVI is negative (cf. [Tou13, Remark 7.1]).
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For the penalty scheme, we define Ih by (4.7) and S by (4.8) and

S(h, (τn, xi), V, `) = − sup
di∈{0,1}
wi∈Wh

{
diγ

n
i (V,wi) + di (`− V n

i + εγni (V,wi))
}

if n > 0 and 0 6 i 6M (4.10)

where γni (V,wi) is defined in (2.12). It is understood that the parameter ε > 0 in the above
vanishes as the grid is made finer. Precisely, we mean that

ε→ 0 as h→ 0. (4.11)

Lastly, for the explicit-impulse scheme, we define Ih by

[IhV ](τn, xi) = (MnV
n−1)i (4.12)

(compare with (4.7)) and S by (4.8) and

S(h, (τn, xi), V, `)

= − sup
di∈{0,1}
wi∈Wh

{
di

(
interp(V n−1, xi + ani (wi)∆τ)− V n

i

∆τ + 1
2(bni )2(D2V

n)i + fni (wi)
)

+ di

(
`− V n

i + 1
2(bni )2(D2V

n)i∆τ
)}

if n > 0 and 0 6 i 6M. (4.13)

In order to prove convergence, we make the following assumptions about the quantities
appearing in the HJBQVI and intervention operatorM:

(H1) f , g, a, b, Γ, and K are continuous functions with f and g bounded andMg 6 g.

(H2) W is a nonempty compact metric space and there exists a metric space Y such that
Z(t, x) is a nonempty compact subset of Y for each (t, x).

(H3) supt,x,zK(t, x, z) < 0.

The assumption (H3), to be used in the stability proofs, can be interpreted as the
controller paying a cost for the right to perform an impulse. Remark 4.3.7 discusses how
this assumption can be relaxed.
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4.3.1 Monotonicity

In this subsection, we prove the monotonicity of our schemes. A scheme (S, Ih) is monotone
(cf. [BS91, Eq. (2.2)]) if for all h ∈ (0,∞), x ∈ Ω, ` ∈ R, and V, V̂ ∈ B(Ω),

S(h, x, V, `) 6 S(h, x, V̂ , `) whenever V > V̂ and V (x) = V̂ (x).

Note that the monotonicity requirement above does not involve the operator Ih and as
such, the reader may be tempted to guess that high order discretizations of the nonlocal
operator I are possible. Unfortunately, this is not the case: high order discretizations
are generally precluded by the stronger consistency requirement of our framework (see
Remark 4.3.15 for further explanation).

Due to our choice of upwind discretization (2.5) and first order interpolation in (2.18),
all the schemes of Chapter 2 are monotone by construction. We establish this below in a
series of lemmas.

Lemma 4.3.1. The direct control scheme is monotone.

Proof. It is sufficient to check the monotonicity condition at grid points (see Remark 4.2.2).
In light of this, let (τn, xi) be an arbitrary grid point and let V and V̂ be two functions
satisfying V > V̂ and V n

i = V̂ n
i where we have, as usual, employed the shorthand V n

i =
V (τn, xi) and V̂ n

i = V̂ (τn, xi). By (4.8), if n = 0,

S(h, (τn, xi), V, `)− S(h, (τn, xi), V̂ , `) = V n
i − V̂ n

i = 0.

By (4.9), if n > 0,

S(h, (τn, xi), V, `)− S(h, (τn, xi), V̂ , `)

6 sup
di∈{0,1}
wi∈Wh

{
di

(
V̂ n−1
i − V n−1

i

∆τ + 1
2b

n
i (wi)2(D2U)i + |ani (wi)| (D+U)i1{ani (wi)>0}

− |ani (wi)| (D−U)i1{ani (wi)<0}

)}
(4.14)

where, in the above, we have defined the vector U = V̂ n − V n = (V̂ n
0 − V n

0 , . . . , V̂
n
M − V n

M )ᵀ
and treated D2 and D± (defined in (2.3) and (2.4)) as matrices. The indicator functions
1{ani (wi)>0} and 1{ani (wi)<0} are used to capture the fact that due to the upwind discretization,
the choice of stencil (D+ or D−) depends on the sign of the coefficient of the first derivative.
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Using the fact that the vector U has nonpositive entries and Ui = V n
i − V̂ n

i = 0, the
inequalities (D2U)i 6 0, (D+U)i 6 0, and (D−U)i > 0 follow immediately from (2.3)
and (2.4). Along with the fact that V̂ n−1

i − V n−1
i 6 0, this implies that the right hand side

of (4.14) is nonpositive, as desired.

Lemma 4.3.2. The penalty scheme is monotone.

Proof. The proof is identical to that of Lemma 4.3.1 except that instead of (4.14), we have,
by (4.10),

S(h, (τn, xi), V, `)− S(h, (τn, xi), V̂ , `) 6 sup
di∈{0,1}
wi∈Wh

{(
di + εdi

) (
γni (V̂ , wi)− γni (V,wi)

)}

= sup
di∈{0,1}
wi∈Wh

{(
di + εdi

)( V̂ n−1
i − V n−1

i

∆τ + 1
2b

n
i (wi)2(D2U)i + |ani (wi)| (D+U)i1{ani (wi)>0}

− |ani (wi)| (D−U)i1{ani (wi)<0}

)}
6 0.

Lemma 4.3.3. The explicit-impulse scheme is monotone.

Proof. The proof is identical to that of Lemma 4.3.1 except that instead of (4.14), we have,
by (4.13),

S(h, (τn, xi), V, `)− S(h, (τn, xi), V̂ , `) 6 sup
di∈{0,1}
wi∈Wh

{(
di + ∆τdi

) 1
2(bni )2(D2U)i

+ di

(
interp(V̂ n−1, xi + ani (wi)∆τ)− interp(V n−1, xi + ani (wi)∆τ)

∆τ

)}
. (4.15)

By (2.6),

interp(V̂ n−1, xi + ani (wi)∆τ)− interp(V n−1, xi + ani (wi)∆τ)
= α

(
V̂ n−1
k+1 − V n−1

k+1

)
+ (1− α)

(
V̂ n−1
k − V n−1

k

)
6 0

where 0 6 α 6 1 and 0 6 k < M . Therefore, the right hand side of (4.15) is nonpositive,
as desired.
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4.3.2 Stability

In this subsection, we prove the stability of our schemes. A scheme (S, Ih) is stable (cf.
[BS91, Eq. (2.3)]) if there exists a constant C such that for each solution V h of (4.4),
‖V h‖∞ 6 C.

To establish stability, we prove that the solutions of each scheme are bounded by
C = ‖f‖∞T + ‖g‖∞. Recalling the original optimal control problem defined by (1.4), this
bound has the intuitive interpretation of being the sum of the maximum possible continuous
reward and the maximum possible reward obtained at the final time:∫ T

t
f(u,Xu, wu)du+ g(XT ) 6 ‖f‖∞T + ‖g‖∞. (4.16)

We establish this below in a series of lemmas.

Lemma 4.3.4. The direct control scheme is stable.

Proof. Let V = V h be a solution of the direct control scheme. First, note that by (4.8),

0 = S(h, (τ 0, xi), V, ·) = V 0
i − g(xi)

from which it follows that
− ‖g‖∞ 6 V 0

i 6 ‖g‖∞. (4.17)

Letting n > 0, (4.9) implies

0 = −S(h, (τn, xi), V, ·)

> sup
wi∈Wh

{
V n−1
i − V n

i

∆τ + 1
2b

n
i (wi)2(D2V

n)i + ani (wi)(DV n)i + fni (wi)
}
. (4.18)

Now, pick j such that V n
j = mini V n

i . It follows that V n
j±1 − V n

j > 0 so that by (2.3),

(D2V
n)j =

V n
j+1 − 2V n

j + V n
j−1

(∆x)2 1{0<j<M} =
V n
j+1 − V n

j + V n
j−1 − V n

j

(∆x)2 1{0<j<M} > 0.

Similarly, by (2.4),

(D+V
n)j =

V n
j+1 − V n

j

∆x 1{j<M} > 0 and (D−V n)j =
V n
j − V n

j−1

∆x 1{j>0} 6 0.
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Therefore, by (2.5),

anj (wj)(DV n)j = |anj (wj)|(D+V
n)j1{anj (wj)>0} − |anj (wj)|(D−V n)j1{anj (wj)<0} > 0.

We summarize the above findings by writing

(D2V
n)j > 0 and anj (wj)(DV n)j > 0. (4.19)

Setting i = j in (4.18) and applying (4.19),

0 >
V n−1
j − V n

j

∆τ − ‖f‖∞

and hence
V n
j > min

i
V n−1
i − ‖f‖∞∆τ. (4.20)

By (4.17) and (4.20), it follows by induction on n that

min
i
V n
i > −‖f‖∞n∆τ − ‖g‖∞ > −‖f‖∞T − ‖g‖∞ for all n,

establishing a lower bound on the solution.
It remains to establish an upper bound. Let n > 0 and pick j such that V n

j = maxi V n
i .

By (4.7) and (4.9),

0 = −S(h, (τn, xj), V, [IhV ](τn, xj))

= sup
dj∈{0,1}
wj∈Wh

{
dj

(
V n−1
j − V n

j

∆τ + 1
2b

n
j (wj)2(D2V

n)j + anj (wj)(DV n)j + fnj (wj)
)

+ dj
(
(MnV

n)j − V n
j

)}

and hence at least one of

0 = sup
wj∈Wh

{
V n−1
j − V n

j

∆τ + 1
2b

n
j (wj)2(D2V

n)j + anj (wj)(DV n)j + fnj (wj)
}

(4.21)

or
0 = (MnV

n)j − V n
j (4.22)
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has to hold. Note that (4.22) cannot be true since by (H3),

(MnV
n)j = sup

zj∈Zh(τn,xj)
{interp(V n,Γ(τn, xj, zj)) +K(τn, xj, zj)}

< sup
zj∈Zh(τn,xj)

interp(V n,Γ(τn, xj, zj)) 6 V n
j . (4.23)

Our choice of j implies V n
j±1 − V n

j 6 0 which, similarly to (4.19), we can use to establish
(D2V

n)j 6 0 and anj (wj)(DV n)j 6 0. (4.24)
Applying (4.24) to (4.21),

0 6
V n−1
j − V n

j

∆τ + ‖f‖∞ (4.25)

and hence
V n
j 6 max

i
V n−1
i + ‖f‖∞∆τ. (4.26)

By (4.17) and (4.26), it follows by induction on n that
max
i
V n
i 6 ‖f‖∞n∆τ + ‖g‖∞ 6 ‖f‖∞T + ‖g‖∞ for all n,

establishing an upper bound on the solution.
Lemma 4.3.5. The penalty scheme is stable.

Proof. Let V = V h be a solution of the penalty scheme. Since this proof is very similar to
that of Lemma 4.3.4, we point out only parts in which it differs.

Letting n > 0, (4.7) and (4.10) imply

0 = −S(h, (τn, xi), V, [IhV ](τn, xi))
= sup

di∈{0,1}
wi∈Wh

{
diγ

n
i (V,wi) + di ((MnV

n)i − V n
i + εγni (V,wi))

}
.

Performing some algebra and substituting in the definition of γni (V,wi) from (2.12), the
above equality becomes

0 = sup
di∈{0,1}
wi∈Wh

{
γni (V,wi) + 1

ε
di ((MnV

n)i − V n
i )
}

= sup
di∈{0,1}
wi∈Wh

{
V n−1
i − V n

i

∆τ +1
2b

n
i (wi)2(D2V

n)i+ani (wi)(DV n)i+fni (wi)+
1
ε
di ((MnV

n)i − V n
i )
}
.

(4.27)
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By (4.27),

0 > sup
wi∈Wh

{
V n−1
i − V n

i

∆τ + 1
2b

n
i (wi)2(D2V

n)i + ani (wi)(DV n)i + fni (wi)
}
. (4.28)

Noting that the inequalities (4.18) and (4.28) are identical, we can proceed as in the proof
of Lemma 4.3.4 to obtain a lower bound on V .

To obtain the upper bound, pick j such that V n
j = maxi V n

i . By (4.23), (MnV
n)j−Vj 6

0. Applying this fact to (4.27),

0 6 sup
wj∈Wh

{
V n−1
j − V n

j

∆τ + 1
2b

n
j (wj)2(D2V

n)j + anj (wj)(DV n)j + fnj (wj)
}
. (4.29)

As in the proof of Lemma 4.3.4 (see, in particular, (4.24)), our choice of j implies (D2V
n)j 6 0

and anj (wj)(DV n)j 6 0. Applying these facts to (4.29), we get

0 6
V n−1
j − V n

j

∆τ + ‖f‖∞. (4.30)

Noting that the inequalities (4.25) and (4.30) are identical, we can proceed as in the proof
of Lemma 4.3.4 to obtain an upper bound on V .
Lemma 4.3.6. The explicit-impulse scheme is stable.

Proof. Let V = V h be a solution of the explicit-impulse scheme. As usual, we proceed by
establishing a lower bound and upper bound separately.

Letting n > 0, (4.12) and (4.13) imply

0 = −S(h, (τn, xi), V, [IV ](τn, xi))

= sup
di∈{0,1}
wi∈Wh

{
di

(
interp(V n−1, xi + ani (wi)∆τ)− V n

i

∆τ + 1
2(bni )2(D2V

n)i + fni (wi)
)

+ di

(
(MnV

n−1)i − V n
i + 1

2(bni )2(D2V
n)i∆τ

)}
. (4.31)

By (4.31),

0 > sup
wi∈Wh

{
interp(V n−1, xi + ani (wi)∆τ)− V n

i

∆τ + 1
2(bni )2(D2V

n)i + fni (wi)
}

>
mink V n−1

k − V n
i

∆τ + 1
2(bni )2(D2V

n)i − ‖f‖∞. (4.32)
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Now, pick j such that V n
j = min V n

i . As in the proof of Lemma 4.3.4 (see, in particular
(4.19)), this choice of j implies (D2V

n)j > 0. Setting i = j and substituting this inequality
into (4.32), we obtain, after some simplification,

V n
j > min

k
V n−1
k − ‖f‖∞∆τ. (4.33)

Noting that the inequalities (4.20) and (4.33) are identical, we can proceed as in the proof
of Lemma 4.3.4 to obtain a lower bound on V .

It remains to establish an upper bound. (H3) implies that

(MnV
n−1)i = sup

zi∈Zh(τn,xi)

{
interp(V n−1,Γ(τn, xi, zi)) +K(τn, xi, zi)

}
< sup

zi∈Zh(τn,xi)
interp(V n−1,Γ(τn, xi, zi)) 6 max

k
V n−1
k . (4.34)

Now, pick j such that V n
j = max V n

i . As in the proof of Lemma 4.3.4 (see, in particular,
(4.24)), this choice of j implies (D2V

n)j 6 0. Applying this fact and (4.34) to equation
(4.31) with i = j yields

0 6 sup
dj∈{0,1}

{
dj

(
maxk V n−1

k − V n
j

∆τ + ‖f‖∞
)

+ dj

(
max
k

V n−1
k − V n

j

)}
.

Equivalently,

0 6 sup
dj∈{0,1}

{
dj

(
max
k

V n−1
k − V n

j + ‖f‖∞∆τ
)

+ dj

(
max
k

V n−1
k − V n

j

)}
= max

k
V n−1
k − V n

j + ‖f‖∞∆τ. (4.35)

Noting that the inequalities (4.26) and (4.35) are equivalent, we can proceed as in the proof
of Lemma 4.3.4 to obtain an upper bound on V .
Remark 4.3.7. A close examination of the proof of direct control stability reveals that if
we redefineMn by

(MnU)i = sup
zi∈Zh(τn,xi)

{interp(U,Γ(τn, xi, zi)) +K(τn, xi, zi)} − ν

where ν > 0 and ν → 0 as h→ 0, we can relax the requirement (H3) from strict inequality to
weak inequality (i.e., supt,x,zK(t, x, z) 6 0) without losing the stability of the direct control
scheme. Since ν vanishes as the grid is made finer, this has no bearing on the consistency
proofs of the next section.

Similarly, a close examination of the proofs of penalty and explicit-impulse stability
reveals that, as in the previous paragraph, we can relax the requirement (H3) from strict
inequality to weak inequality. In this case, it is not necessary even to redefineMn.
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Fig. 4.3: An example of a half-relaxed limit

4.3.3 Nonlocal consistency

As mentioned at the beginning of this chapter, our notion of consistency differs from the
usual notion defined in [BS91, Eq. (2.4)]. Before we can introduce our notion of consistency,
we review half-relaxed limits, which appear frequently in the theory of viscosity solutions.

Definition 4.3.8 ([BP87]). For a family (uh)h>0 of real-valued maps from a metric space
such that (h, x) 7→ uh(x) is locally bounded, we define the upper and lower half-relaxed limits
u and u by

u(x) = lim sup
h→0
y→x

uh(y) and u(x) = lim inf
h→0
y→x

uh(y).

Half-relaxed limits are a generalization of semicontinuous envelopes. To see this, note
that if we fix a function u and take uh = u for all h, u = u∗ and u = u∗. See also Fig. 4.3
for an example of a family of functions along with its upper half-relaxed limit.

We are now ready to define nonlocal consistency. A scheme (S, Ih) is nonlocally consistent
if for each family (uh)h>0 of uniformly bounded real-valued maps from Ω, ϕ ∈ C2(Ω), and
x ∈ Ω, we have

lim inf
h→0
y→x
ξ→0

S(h, y, ϕ+ ξ, [Ihuh](y)) > F∗(x, ϕ(x), Dϕ(x), D2ϕ(x), [Iu](x)) (4.36)
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and

lim sup
h→0
y→x
ξ→0

S(h, y, ϕ+ ξ, [Ihuh](y)) 6 F ∗(x, ϕ(x), Dϕ(x), D2ϕ(x), [Iu](x)) (4.37)

where u and u are the half-relaxed limits from Definition 4.3.8.
In the absence of the nonlocal operator (i.e., I = Ih = 0), nonlocal consistency is

equivalent to the usual notion of consistency [BS91, Eq (2.4)]. In other words, the only
difference between nonlocal consistency and the usual notion of consistency is the explicit
handling of the nonlocal operator by half-relaxed limits.

In Chapter 2, we replaced the (possibly infinite) control sets W by a finite subset W h.
A similar exercise was performed to obtain Zh(t, x). To prove the nonlocal consistency of
our schemes, we will need to ensure that these finite subsets converge, in some sense, to the
original sets which they approximate. The appropriate notion of convergence, in this case,
is with respect to the Hausdorff metric. We recall below the definition of the Hausdorff
metric.

Definition 4.3.9 ([Mun75, Pg. 281]). The Hausdorff metric dH between two nonempty
compact subsets X and Y of a metric space (M,d) is given by

dH(X, Y ) = max
{

sup
x∈X

inf
y∈Y

d(x, y), sup
y∈Y

inf
x∈X

d(x, y)
}
.

If X ⊂ Y as in Fig. 4.4, then supx∈X infy∈Y d(x, y) = 0 so that the above simplifies to

dH(X, Y ) = sup
y∈Y

inf
x∈X

d(x, y).

A short example illustrating convergence in the Hausdorff metric is given below.

Example 4.3.10. Consider the partition Xm = {0, 1
m
, 2
m
, . . . , 1} of the unit interval Y =

[0, 1]. Since Xm ⊂ Y ,
dH(Xm, Y ) = sup

y∈Y
inf
x∈Xm

|x− y| = 1
2m

and hence dH(Xm, Y )→ 0 as m→∞. In other words, the partition Xm converges (in the
Hausdorff metric) to the unit interval Y .
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Fig. 4.4: Hausdorff distance between a set and another set containing it (modified from
https://commons.wikimedia.org/wiki/File:Hausdorff_distance_sample.svg)

In the context of discretizations of controlled PDEs, we can think of the unit interval in
the above example as the control set (e.g., W ) and the partition as an approximation of
that control set (e.g., W h).

We are now able to state the last assumption in this chapter, concerning the convergence
of the approximate control sets W h and Zh(t, x).

(H4) As h → 0, W h converges (in the Hausdorff metric) to W and Zh converges locally
uniformly (in the Hausdorff metric) to Z. Moreover, (t, x) 7→ Zh(t, x) is continuous
(in the Hausdorff metric) for each h.

Remark 4.3.11. By the uniform limit theorem (which states that a uniformly convergent
sequence of continuous functions has a continuous limit [Mun75, Theorem 21.6]) and (H4),
the function (t, x) 7→ Z(t, x) is also continuous (in the Hausdorff metric).

Using (H4), we will establish the nonlocal consistency of our schemes. Before we can do
so, we require a few lemmas.

Lemma 4.3.12. Let (am)m, (bm)m, and (cm)m be real sequences with cm > min{am, bm}
(resp. cm 6 min{am, bm}) for each m. Then,

lim inf
m→∞

cm > min{lim inf
m→∞

am, lim inf
m→∞

bm} (4.38)

(resp. lim sup
m→∞

cm 6 min{lim sup
m→∞

am, lim sup
m→∞

bm}). (4.39)
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Proof. If cm > min{am, bm} for each m,

inf
k>m

ck > inf
k>m

min{ak, bk} = min{ inf
k>m

ak, inf
k>m

bk}.

Taking limits in the above yields

lim
m→∞

inf
k>m

ck > lim
m→∞

min{ inf
k>m

ak, inf
k>m

bk} = min{ lim
m→∞

inf
k>m

ak, lim
m→∞

inf
k>m

bk}

where the last equality follows from the continuity of the function (x, y) 7→ min{x, y}. Since
limm→∞ infk>m xk = lim infm→∞ xm by definition, this establishes (4.38).

Similarly, if cm 6 min{am, bm} for each m,

sup
k>m

ck 6 sup
k>m

min{ak, bk} 6 min{sup
k>m

ak, sup
k>m

bk}.

As in the previous paragraph, taking limits establishes (4.39).

The next lemma ensures us that we can approximate the term supw∈W{·} appearing in
(4.6) using the approximate control set W h.

Lemma 4.3.13. Let Y be a compact metric space and ρ : Y ×W → R be a continuous
function. Let (hm)m be a sequence of positive real numbers converging to zero and (ym)m be
a sequence in Y converging to some ŷ ∈ Y . Then,

sup
w∈Whm

ρ(ym, w)→ sup
w∈W

ρ(ŷ, w).

Proof. Let ρm = supw∈Whm ρ(ym, w). Since ‖ρ‖∞ < ∞ (Y × W is compact and ρ is
continuous), the sequence (ρm)m is bounded. Therefore, it is sufficient to show that every
convergent subsequence of (ρm)m converges to supw∈W ρ(ŷ, w).

In light of this, consider an arbitrary convergent subsequence of (ρm)m, and relabel it,
with a slight abuse of notation, (ρm)m. Since W is compact, we can find ŵ ∈ W such that

ρ(ŷ, ŵ) = sup
w∈W

ρ(ŷ, w).

Moreover, since W hm → W by (H4), we can find a sequence (wm)m such that wm ∈ W hm

for each m and wm → ŵ ∈ W . Therefore,

lim
m→∞

ρm = lim
m→∞

sup
w∈Whm

ρ(ym, w) > lim
m→∞

ρ(ym, wm) = ρ(ŷ, ŵ) = sup
w∈W

ρ(ŷ, w). (4.40)
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Furthermore, since W hm ⊂ W by definition,

lim
m→∞

ρm = lim
m→∞

sup
w∈Whm

ρ(ym, w) 6 lim
m→∞

sup
w∈W

ρ(ym, w) = sup
w∈W

ρ( lim
m→∞

ym, w) = sup
w∈W

ρ(ŷ, w)

(4.41)
where we have obtained the second last equality in (4.41) by using the continuity of
y 7→ supw∈W ρ(y, w). Combining (4.40) and (4.41), we obtain

lim
m→∞

ρm = sup
w∈W

ρ(ŷ, w),

as desired.
In the previous paragraph, we claimed that y 7→ supw∈W ρ(y, w) is continuous. To see

that this is indeed true, let y0 ∈ Y and ε > 0 be arbitrary. Since ρ is defined on a compact
set and thereby uniformly continuous, we can pick δ > 0 such that for all w ∈ W and
y1 ∈ Y with d(y0, y1) < δ, |ρ(y0, w)− ρ(y1, w)| < ε and hence∣∣∣∣∣ sup

w∈W
ρ(y0, w)− sup

w∈W
ρ(y1, w)

∣∣∣∣∣ 6 sup
w∈W
|ρ(y0, w)− ρ(y1, w)| < ε.

The next lemma ensures us that we can approximate the intervention operatorM using
its discretizationMn given in (2.7).

Lemma 4.3.14. Let (uh)h>0 be a family of uniformly bounded real-valued maps from [0, T ]×
R with half-relaxed limits u and u. For brevity, let un,h = (uh(τn, x0), . . . , uh(τn, xM ))ᵀ be a
vector whose components are obtained by evaluating the function uh(τn, ·) on the spatial
grid. Then, for any (t, x) ∈ [0, T ]× R,

Mu(t, x) 6 lim inf
h→0

(τn,xi)→(t,x)

(Mnu
n,h)i 6 lim sup

h→0
(τn,xi)→(t,x)

(Mnu
n,h)i 6Mu(t, x).

Proof. We first prove the leftmost inequality. Let (hm, sm, ym)m be a sequence satisfying

hm → 0 and (sm, ym)→ (t, x) as m→∞

chosen such that sm = τnm = T − nm∆τ and ym = xim are grid points (though not explicit
in the notation, both ∆τ = const. hm and ∆x = const. hm depend on m through hm). Now,
let δ > 0 and choose zδ ∈ Z(t, x) such that

Mu(t, x) = sup
z∈Z(t,x)

{u(t,Γ(t, x, z)) +K(t, x, z)} 6 u(t,Γ(t, x, zδ)) +K(t, x, zδ) + δ.
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By (H4), we can pick a sequence (zm)m such that zm → zδ and zm ∈ Zhm(sm, ym) for each
m. For brevity, we write umi for the quantity uhm(sm, xi). Note that since sm = τnm , umi is
the i-th entry of the vector unm,hm defined in the lemma statement. Using this notation,

(Mnmu
nm,hm)im = sup

z∈Zhm (sm,ym)

{
interp(unm,hm ,Γ(sm, ym, z)) +K(sm, ym, z)

}
> interp(unm,hm ,Γ(sm, ym, zm)) +K(sm, ym, zm)
= αmu

m
km+1 + (1− αm)umkm +K(sm, ym, zm)

where 0 6 αm 6 1 and km satisfies

xkm → Γ(t, x, zδ) as m→∞ (4.42)

(recall (2.6)). Therefore, by Lemma 4.3.12,

lim inf
m→∞

(Mnmu
nm,hm)im > lim inf

m→∞
{min{umkm+1, u

m
km}+K(sm, ym, zm)}

> min{lim inf
m→∞

umkm+1, lim inf
m→∞

umkm}+K(t, x, zδ). (4.43)

Now, by (4.42), (sm, xkm)→ (t,Γ(t, x, zδ)) as m→∞. Therefore, by the definition of the
half-relaxed limit u,

lim inf
m→∞

umkm = lim inf
m→∞

uhm(sm, xkm) > lim inf
h→0

(s,y)→(t,Γ(t,x,zδ))

uh(s, y) = u(t,Γ(t, x, zδ)). (4.44)

Similarly, since xkm+1 − xkm = ∆x = const. hm,

lim inf
m→∞

umkm+1 > u(t,Γ(t, x, zδ)). (4.45)

Applying (4.44) and (4.45) to (4.43),

lim inf
m→∞

(Mnmu
nm,hm)im > u(t,Γ(t, x, zδ)) +K(t, x, zδ) >Mu(t, x)− δ. (4.46)

Since δ is arbitrary, the desired result follows.
We now handle the rightmost inequality. Let (hm, sm, ym)m be a sequence as in the

previous paragraph. Since Zhm(sm, ym) is by definition a finite set (and hence compact),
for each m, there exists a zm ∈ Zhm(sm, ym) such that

(Mnmu
nm,hm)im = sup

z∈Zhm (sm,ym)

{
interp(unm,hm ,Γ(sm, ym, z)) +K(sm, ym, z)

}
= interp(unm,hm ,Γ(sm, ym, zm)) +K(sm, ym, zm)
= αmu

m
km+1 + (1− αm)umkm +K(sm, ym, zm)
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where 0 6 αm 6 1 and km satisfies (4.42). By (H4), (zm)m is contained in a compact set
and hence has a convergent subsequence (zmj)j with limit ẑ. By another application of
(H4), the right hand side of the inequality

d(ẑ, Z(t, x)) 6 d(ẑ, zmj) + d(zmj , Z(t, x))

approaches zero as j →∞ and hence ẑ ∈ Z(t, x). Therefore, similarly to how we established
(4.43) and (4.46) in the previous paragraph,

lim sup
m→∞

(Mnmu
nm,hm)im 6 lim sup

m→∞
{max{umkm+1, u

m
km}+K(sm, ym, zm)}

6 max{lim sup
m→∞

umkm+1, lim sup
m→∞

umkm}+K(t, x, ẑ)

6 u(t,Γ(t, x, ẑ)) +K(t, x, ẑ)
6Mu(t, x).

Remark 4.3.15. The proof above relies heavily on the fact that interp is a linear interpolant
and hence the “interpolation weights” α and (1− α) in (2.6) are nonnegative. A quadratic
interpolant, for example, takes the form

quad-interp(U, x) = αUk−1 + (1− α− β)Uk + βUk+1

where it is not necessarily the case that the coefficients α, (1−α−β), and β are nonnegative.
This suggests that higher order discretizations ofM are generally precluded by the nonlocal
consistency requirement.

We are now ready to prove the nonlocal consistency of our schemes.

Lemma 4.3.16. The direct control scheme is nonlocally consistent.

Proof. Let Ω = [0, T )× R and ϕ ∈ C1,2(Ω). Let (uh)h>0 be a family of uniformly bounded
real-valued maps from Ω with half-relaxed limits u and u. Let (hm, sm, ym, ξm)m be an
arbitrary sequence satisfying

hm → 0, (sm, ym)→ (t, x), and ξm → 0 as m→∞. (4.47)

Without loss of generality (see Remark 4.2.2), we will assume that the sequence is chosen such
that sm = τnm = T − nm∆τ and ym = xim are grid points (as usual, both ∆τ = const. hm
and ∆x = const. hm depend on m through hm). For brevity, let ϕni denote ϕ(τn, xi) and
ϕn = (ϕn0 , . . . , ϕnM)ᵀ.
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By (4.7) to (4.9),

S(hm, (sm, ym), ϕ+ ξm, [Ihmuhm ](sm, ym)) =

min{S(1)
m , S(2)

m } if nm > 0
S(3)
m if nm = 0

(4.48)

where

S(1)
m = − sup

w∈Whm

{
ϕnm−1
im − ϕnmim

∆τ + 1
2b

nm
im (w)2(D2ϕ

nm)im + anmim (w)(Dϕnm)im + fnmim (w)
}

S(2)
m = ϕnmim + ξm − (Mnmu

nm,hm)im
S(3)
m = ϕnmim + ξm − g(ym). (4.49)

Note that in the above, we have used the notation un,h introduced in Lemma 4.3.14. Now,
by Lemma 4.3.13,

lim
m→∞

S(1)
m

= − lim
m→∞

sup
w∈Whm

{
ϕt(t, x) + 1

2b
nm
im (w)2ϕxx(t, x) + anmim (w)ϕx(t, x) + fnmim (w) +O(hm)

}
= −ϕt(t, x)− sup

w∈W

{1
2b(t, x, w)2ϕxx(t, x) + a(t, x, w)ϕx(t, x) + f(t, x, w)

}
. (4.50)

Moreover, by Lemma 4.3.14,

lim inf
m→∞

S(2)
m > ϕ(t, x)− lim sup

m→∞
(Mnmu

nm,hm)im > ϕ(t, x)−Mu(t, x) (4.51)

and

lim sup
m→∞

S(2)
m 6 ϕ(t, x)− lim inf

m→∞
(Mnmu

nm,hm)im 6 ϕ(t, x)−Mu(t, x). (4.52)

Suppose now that t < T . Since sm → T , we may assume that sm < T (or, equivalently,
nm > 0) for each m. In this case, taking limit inferiors of both sides of (4.48) and applying
Lemma 4.3.12 yields

lim inf
m→∞

S(hm, (sm, ym), ϕ+ ξm, [Ihmuhm ](sm, ym))

= lim inf
m→∞

min
{
S(1)
m , S(2)

m

}
> min

{
lim inf
m→∞

S(1)
m , lim inf

m→∞
S(2)
m

}
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Applying (4.50) and (4.51) to the above,

lim inf
m→∞

S(hm, (sm, ym), ϕ+ ξm, [Ihmuhm ](sm, ym))

> min
{
−ϕt(t, x)− sup

w∈W

{1
2b(t, x, w)2ϕxx(t, x) + a(t, x, w)ϕx(t, x) + f(t, x, w)

}
,

ϕ(t, x)−Mu(t, x)
}

= F∗((t, x), ϕ(t, x), Dϕ(t, x), D2ϕ(t, x),Mu(t, x)) (4.53)

where D2ϕ = ϕxx, Dϕ = (ϕt, ϕx), and F is given by (4.6). In establishing the last equality
in the above, we have used the fact that F = F∗ since F is continuous away from t = T .
Now, since (hm, sm, ym, ξm)m is an arbitrary sequence satisfying (4.47), (4.53) implies

lim inf
h→0

(s,y)→(t,x)
ξ→0

S(h, (s, y), ϕ+ ξ, [Ihuh](s, y)) > F∗((t, x), ϕ(t, x), Dϕ(t, x), D2ϕ(t, x),Mu(t, x)),

(4.54)
which is exactly the nonlocal consistency inequality (4.36) in the time-dependent case with
I =M. Symmetrically, we can establish the inequality

lim sup
h→0

(s,y)→(t,x)
ξ→0

S(h, (s, y), ϕ+ ξ, [Ihuh](s, y)) 6 F ∗((t, x), ϕ(t, x), Dϕ(t, x), D2ϕ(t, x),Mu(t, x)),

(4.55)
which corresponds to the nonlocal consistency inequality (4.37).

Suppose now that t = T . Since sm → t, it is possible that sm = T (or, equivalently,
nm = 0) for one more indices m in the sequence. Therefore, by (4.48),

S(hm, (sm, ym), ϕ+ ξm, [Ihmuhm ](sm, ym)) > min
{
S(1)
m , S(2)

m , S(3)
m

}
= min

(
min

{
S(1)
m , S(2)

m

}
, S(3)

m

)
. (4.56)

An immediate consequence of the definition of S(3)
m in (4.49) is that

lim
m→∞

S(3)
m = ϕ(t, x)− g(x) > min {ϕ(t, x)− g(x), ϕ(t, x)−Mu(t, x)} . (4.57)

Taking limit inferiors of both sides of (4.56) and applying Lemma 4.3.12 and (4.50), (4.51),
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and (4.57),

lim inf
m→∞

S(hm, (sm, ym), ϕ+ ξm, [Ihmuhm ](sm, ym))

> min
(

min
{
−ϕt(t, x)− sup

w∈W

{1
2b(t, x, w)2ϕxx(t, x) + a(t, x, w)ϕx(t, x) + f(t, x, w)

}
,

ϕ(t, x)−Mu(t, x)
}
, min

{
ϕ(t, x)− g(x), ϕ(t, x)−Mu(t, x)

})
= F∗((t, x), ϕ(t, x), Dϕ(t, x), D2ϕ(t, x),Mu(t, x)).

As in the previous paragraph, the above implies the nonlocal consistency inequality (4.54).
It remains to establish (4.55) in the case of t = T . SinceMg 6 g by assumption (H1),

it follows that g(ym) = max{g(ym),Mg(ym)} for each m. Therefore,

S(3)
m = ϕnmim + ξm −max{g(ym),Mg(ym)}

= min
{
ϕnmim + ξm − g(ym), ϕnmim + ξm −Mg(ym)

}
= min

{
ϕnmim + ξm − g(ym), ϕnmim + ξm − (M0~g )im +O((∆x)2)

}
where in the last equality, in which we have used ~g to denote the vector ~g = (g0, . . . , gM)ᵀ,
we have employed the fact that there is O((∆x)2) error in approximating the intervention
operatorM by the discretized intervention operatorM0 due to the linear interpolant. By
Remark 4.4.2, we can, without loss of generality, assume that uh is a solution of the scheme
so that u0,h

i = V h(τ 0, xi) = g(xi) for all i, corresponding to the terminal condition. It
follows that, letting

S(4)
m = min

{
ϕnmim + ξm − g(ym), ϕnmim + ξm − (Mnmu

nm,hm)im +O((∆x)2)
}
,

we have S(3)
m = S(4)

m whenever nm = 0. Therefore, by (4.48)

S(hm, (sm, ym), ϕ+ ξm, [Ihmuhm ](sm, ym)) 6 max
(
min

{
S(1)
m , S(2)

m

}
, S(4)

m

)
. (4.58)

Moreover, by Lemmas 4.3.12 and 4.3.14

lim sup
m→∞

S(4)
m 6 min {ϕ(t, x)− g(x), ϕ(t, x)−Mu(t, x)} . (4.59)

Taking limit superiors of both sides of (4.58) and applying Lemma 4.3.12 and (4.50), (4.52),
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and (4.59),

lim sup
m→∞

S(hm, (sm, ym), ϕ+ ξm, [Ihmuhm ](sm, ym))

6 max
(

min
{
−ϕt(t, x)− sup

w∈W

{1
2b(t, x, w)2ϕxx(t, x) + a(t, x, w)ϕx(t, x) + f(t, x, w)

}
,

ϕ(t, x)−Mu(t, x)
}
, min

{
ϕ(t, x)− g(x), ϕ(t, x)−Mu(t, x)

})
= F ∗((t, x), ϕ(t, x), Dϕ(t, x), D2ϕ(t, x),Mu(t, x)),

which establishes (4.55), as desired.

Lemma 4.3.17. The penalty scheme is nonlocally consistent.

Proof. Recalling that the penalty scheme can be viewed as an approximation of the direct
control scheme (see (2.11) and (2.12) and the text following these equations), it is no
surprise that the proof of nonlocal consistency for the penalty scheme is nearly identical to
the proof of Lemma 4.3.16. Namely, to obtain the proof for the penalty scheme, we need
only replace the definition of S(2)

m in (4.49) by

Ŝ(2)
m = ϕnmim + ξm − (Mnmu

nm,hm)im + εS(1)
m (4.60)

where we have used the hat symbol ·̂ to distinguish the new definition from the old. Since
εS(1)

m → 0 as m→∞ by (4.11), it follows that

lim inf
m→∞

Ŝ(2)
m = lim inf

m→∞
S(2)
m and lim sup

m→∞
Ŝ(2)
m = lim sup

m→∞
S(2)
m

so that no other changes to the proof of Lemma 4.3.16 are necessary.

Next, we establish the nonlocal consistency of the explicit-impulse scheme. The argu-
ments in the proof will exploit heavily the fact that M∆x → ∞ (see (4.5)) in order to
ensure that no overstepping error is made in the approximation (2.18). In Appendix C, we
consider the explicit-impulse scheme on a truncated domain, in which case we cannot rely
on arguments involving M∆x→∞. We will see, in Appendix C, that to establish nonlocal
consistency in the truncated case requires us to modify the spatial grid so that the distance
between the first and last two grid points (x1−x0 and xM−xM−1) vanishes sublinearly with
respect to h. In practice, this is not a grave issue since we are not interested in obtaining
high accuracy at the boundaries.
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Lemma 4.3.18. The explicit-impulse scheme is nonlocally consistent.

Proof. Let Ω = [0, T )× R and ϕ ∈ C1,2(Ω). For brevity, let ϕni denote ϕ(τn, xi) and ϕn =
(ϕn0 , . . . , ϕnM )ᵀ. Let (hm, sm, ym, ξm)m be a sequence chosen as in the proof of Lemma 4.3.16
so that sm = τnm and ym = xim are grid points. Then,

interp(ϕnm−1 + ξm, ym + anmim (w)∆τ)− ϕ(τnm , ym)− ξm
∆τ

= ϕ(sm + ∆τ, ym + anmim (w)∆τ)− ϕ(sm, ym) + ξm − ξm
∆τ +O

(
(∆x)2

∆τ

)

= ϕt(t, x) + a(t, x, w)ϕx(t, x) +O

(
(∆x)2

∆τ + ∆τ
)

= ϕt(t, x) + a(t, x, w)ϕx(t, x) +O (hm)

(4.61)

by a Taylor expansion (compare with Section 2.6). As mentioned in the text preceding
the lemma statement, we have exploited (4.5) to ensure that the point ym + anmim (w)∆τ
is contained in the interval [−(M/2)∆x, (M/2)∆x] for m sufficiently large (recall that
M∆x→∞ as hm → 0).

As with the penalty scheme, only a minor modification of the proof of Lemma 4.3.16
is required to obtain the proof of nonlocal consistency of the explicit-impulse scheme. In
particular, we need only replace the definitions of S(1)

m and S(2)
m in (4.49) by

Ŝ(1)
m = − sup

w∈Whm

{
interp(ϕnm−1 + ξm, ym + anmim (w)∆τ)− ϕ(τnm , ym)− ξm

∆τ

+ 1
2b

nm
im (w)2(D2ϕ

nm)im + fnmim (w)
}

and
Ŝ(2)
m = ϕnmim + ξm − (Mnmu

nm−1,hm)im .

As usual, we have used the hat symbol ·̂ to distinguish the new definitions from the old.
Note that by (4.61),

lim
m→∞

Ŝ(1)
m = lim

m→∞
S(1)
m .

Moreover, by Lemma 4.3.14,

lim inf
m→∞

Ŝ(2)
m > ϕ(t, x)− lim sup

m→∞
(Mnmu

nm−1,hm)im > ϕ(t, x)−Mu(t, x)
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and
lim sup
m→∞

Ŝ(2)
m 6 ϕ(t, x)− lim inf

m→∞
(Mnmu

nm−1,hm)im 6 ϕ(t, x)−Mu(t, x)

(compare with (4.51) and (4.52)) so that no other changes to the proof of Lemma 4.3.16
are necessary.

4.3.4 Convergence result

In this subsection, we give the convergence result for our schemes. First, we recall what
it means for (4.2) to satisfy a comparison principle. In particular, we say that PDE (4.2)
satisfies a comparison principle if the following condition is met:

if U, V ∈ B(Ω) are a subsolution and supersolution, respectively, of (4.2), then U 6 V.
(4.62)

We can now state our convergence result.

Theorem 4.3.19. Suppose (H1)–(H4) and that the HJBQVI satisfies a comparison princi-
ple. Then, as h→ 0, solutions of the direct control, penalty, and explicit-impulse schemes
converge locally uniformly to the unique bounded solution of the HJBQVI.

The above is an immediate corollary of a more general convergence result for the nonlocal
PDE (4.2) given in the next section.

Note that Theorem 4.3.19 depends on the HJBQVI satisfying a comparison principle.
Below, we establish that a comparison principle holds for the HJBQVI if the coefficients a
and b do not depend on time and are Lipschitz in space. This result appears in our article
[Azi17b]. The proof, being somewhat technical, is deferred to Appendix D.

Theorem 4.3.20. Suppose (H1)–(H4) and that the functions a and b are independent of
time (i.e., a(t, x, w) = a(x,w) and similarly for b) and satisfy the Lipschitz condition

|a(x,w)− a(y, w)|+ |b(x,w)− b(y, w)| 6 const. |x− y|

where const. does not depend on w. Then, the HJBQVI satisfies a comparison principle.

4.4 General convergence result

In this section, we show that any monotone, stable, and nonlocally consistent scheme for a
nonlocal PDE satisfying a comparison principle converges to the unique solution of that
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PDE. As an immediate corollary, we obtain Theorem 4.3.19 of the previous section. No
assumptions are made about the set Ω, other than that it is a subset of d-dimensional
Euclidean space.

Theorem 4.4.1. Suppose the PDE (4.2) satisfies a comparison principle. Let (S, Ih) be
a monotone, stable, and nonlocally consistent scheme for (4.2). Then, as h → 0, V h (a
solution of (4.4)) converges locally uniformly to the unique bounded solution of (4.2).

Proof of Theorem 4.4.1. The proof follows closely that of [BS91, Theorem 2.1], differing
mainly in its use of the nonlocal consistency requirement.

Let V and V denote the half-relaxed limits of the family (V h)h>0. We seek to show
that V is a subsolution and V is a supersolution of (4.2). In this case, (4.62) yields V 6 V ,
while the reverse inequality is a trivial consequence of the definition of V and V . Therefore,
V = V = V is a (continuous) solution of (4.2). It follows that

lim
h→0
y→x

V h(y) = V (x) for x ∈ Ω,

from which we obtain that convergence is locally uniform.
Returning to our previous claim, we prove that V is a subsolution (that V is a superso-

lution is proved similarly). To this end, let x ∈ Ω be a local maximum point of V −ϕ where
ϕ ∈ C2(Ω). By definition, we can find a neighbourhood (relative to Ω) U of x whose closure
is compact and on which x is a global maximum point of V − ϕ. Without loss of generality,
we may assume that this maximum is strict, V (x) = ϕ(x), and ϕ > 1 + suph ‖V h‖∞ outside
U (cf. proof of [BS91, Theorem 2.1]). By the definition of V , we can find a sequence
(hm, xm)m such that hm → 0, xm → x, and V hm(xm) → V (x). Now, for each m, pick
ym ∈ U such that

V hm(ym)− ϕ(ym) = sup
y∈U

{
V hm(y)− ϕ(y)

}
.

That the supremum is attained is made possible by the assumption that V h has finite range
(see Section 4.2). Due to the compactness of U , we can pick a subsequence of (hm, xm, ym)m
such that its last argument converges to some point ŷ ∈ U . With a slight abuse of notation,
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relabel this subsequence (hm, xm, ym)m. It follows that

0 = V (x)− ϕ(x) = lim
m→∞

{
V hm(xm)− ϕ(xm)

}
6 lim sup

m→∞

{
V hm(ym)− ϕ(ym)

}
6 lim sup

h→0
y→ŷ

{
V h(y)− ϕ(y)

}
6 V (ŷ)− ϕ(ŷ).

Because x was assumed to be a strict maximum point, the above inequality implies ŷ = x.
Letting ξm = V hm(ym)−ϕ(ym), we have ξm → 0 and V hm 6 ϕ+ ξm for m sufficiently large
(recall that outside of U , ϕ+ ξm > 1 + suph>0 ‖V h‖∞ + ξm). Now, the definition of V h and
the monotonicity of S yield

0 = S(hm, ym, V hm , [IhmV hm ](ym)) > S(hm, ym, ϕ+ ξm, [IhmV hm ](ym))

for m sufficiently large. Taking limit inferiors and employing nonlocal consistency,

0 > lim inf
m→∞

S(hm, ym, ϕ+ ξm, [IhmV hm ](ym))

> lim inf
h→0
y→x
ξ→0

S(h, y, ϕ+ ξ, [IhV h](y))

> F∗(x, ϕ(x), Dϕ(x), D2ϕ(x), [IV ](x)),

which is the desired inequality, since V (x) = ϕ(x).

Remark 4.4.2. Recall that the functions (uh)h>0 appearing in the nonlocal consistency
inequalities (4.36) and (4.37) are an arbitrary family of uniformly bounded real-valued maps.
However, a close inspection of the above proof reveals that we only use these inequalities
with uh = V h where V h is a solution of the scheme (4.4). Therefore, in establishing nonlocal
consistency we can, without loss of generality, assume that uh is a solution of the scheme.

We close this section by mentioning an extension of Theorem 4.4.1 that allows us to
approximate solutions that are not necessarily bounded (the proof is identical to that of
Theorem 4.4.1, save for minor modifications). This is of practical importance, since many
problems in finance do not have bounded solutions. Let Bd(Ω) be the set of all functions
V : Ω→ R satisfying the polynomial growth condition

|V (x)| 6 const.(1 + |x|d) for all x ∈ Ω.

79



Now, relax (i) the stability condition to read

there exists a unique solution V h ∈ Bd(Ω) of (4.4) for each h > 0,

(ii) the consistency condition by requiring (4.36) and (4.37) to hold more generally for
families (uh)h>0 ⊂ Bd(Ω) not necessarily uniformly bounded, and (iii) the comparison
principle (4.62) by replacing instances of B(Ω) by Bd(Ω). Then, we obtain a relaxation of
Theorem 4.4.1 which allows for solutions of polynomial growth.

4.5 Extensions

4.5.1 The infinite horizon (steady state) case

Recall that in Chapter 2, we gave versions of the direct control and penalty schemes for
the infinite horizon HJBQVI (2.13). The arguments for these infinite horizon schemes are
nearly identical to those in Section 4.3, save that we obtain the stability bound ‖f‖∞β−1

instead of ‖f‖∞T + ‖g‖∞. Similarly to (4.16), this bound has the intuitive interpretation
of being the maximum possible continuous reward in (2.14):∫ ∞

t
e−βuf(u,Xu, wu)du 6 ‖f‖∞

∫ ∞
t

e−βudu 6 ‖f‖∞
∫ ∞

0
e−βudu = ‖f‖∞β−1.

4.5.2 Higher dimensions

The HJBQVI (1.5) is a special case of the following higher dimensional HJBQVI [ØS05,
Chapter 8]:

min
{
−Vt − sup

w∈W
{LwV (t, x) + f(·, w)} , V −MV

}
= 0 on [0, T )×D

min {V (T, ·)− g, V (T, ·)−MV (T, ·)} = 0 on D (4.63)

where
LwV (t, x) = 1

2 trace(b(·, w)b(·, w)ᵀD2V ) + 〈a(·, w), DV 〉 .

In the above, DV and D2V are the gradient vector and Hessian matrix of V (with respect
to the spatial coordinate x = (x1, . . . , xd)) and D ⊂ Rd. Note that in the above, a and b are
no longer real-valued functions but rather d× 1 vector and d× d matrix valued functions.
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If no cross-derivatives appear in (4.63) (i.e., if b is a diagonal matrix at each point in its
domain), the direct control, penalty, and explicit-impulse schemes can be made to handle
the higher-dimensional case by extending the finite difference approximations D2 and D
to higher dimensions in the obvious way. An analogous claim can be made for a higher
dimensional relaxation of the infinite horizon HJBQVI (2.13).

However, in the general case involving cross-derivatives, special care must be taken to
ensure that the schemes are monotone, either by employing wide-stencils [Obe08; CW16;
CW17; MF17] or by techniques involving interpolation [DJ13]. We do not handle the
cross-derivative case in this thesis, leaving it for future work.

4.6 Summary

In this chapter, we extended the Barles-Souganidis framework to nonlocal PDEs in a general
manner. We used our results to prove the convergence of the direct control, penalty, and
explicit-impulse schemes to the viscosity solution of the HJBQVI.
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Chapter 5

Numerical results

In this chapter, we apply the findings of the previous chapters to compute numerical
solutions of the following impulse control problems from finance:

(A) Optimal control of the foreign exchange (FEX) rate.

(B) Optimal consumption with fixed and proportional transaction costs.

(C) Guaranteed minimum withdrawal benefits (GMWBs) in variable annuities.

Each of these three problems is a special case of the general impulse control problem
involving (1.4). As a result of our numerical tests, we also gain a sense of the relative
efficiency of the direct control, penalty, and explicit-impulse schemes.

Our work is the first to give a numerical implementation of problem (A) in the finite
horizon setting (i.e., T <∞). Previously, only “semi-analytic” solutions had been considered
in the infinite horizon setting (i.e., T =∞) in [CZ99, Section 5] and [CZ00, Section 4]. We
are also the first to give a numerical implementation of problem (B) in the finite horizon
setting. Though an infinite horizon implementation of this problem was given in [CØS02],
the technique used therein is iterated optimal stopping, which is well-known to have a
high space complexity and prohibitively slow convergence rate when extended to the finite
horizon setting [BFL14].1

1We mention also the related works [MRS16; ARS17], which employ a penalty-like scheme for infinite
horizon consumption problems.
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We have seen in Chapter 3 that for the direct control scheme, policy iteration must be
performed on a subset P ′ of the original control set P. Unfortunately, this subset has to
be picked on a problem-by-problem basis, making the direct control scheme less robust
than the penalty scheme, for which no additional effort is required to ensure convergence
of the corresponding policy iteration. As such, in this chapter, we seek to answer the
following natural question: if both schemes converge to the same solution, is there an
advantage to using the direct control scheme? (e.g., could it, at least empirically, exhibit
faster convergence?)

Our contributions in this chapter are:

• Applying the direct control, penalty, and explicit-impulse schemes to three classical
impulse control problems from finance (as mentioned above, some of these problems
had not been previously considered numerically).

• Comparing the performance of the three schemes.

The results of this chapter appear in our article
P. Azimzadeh and P. A. Forsyth. “Weakly chained matrices, policy iteration, and

impulse control”. In: SIAM J. Numer. Anal. 54.3 (2016), pp. 1341–1364

5.1 Optimal control of the foreign exchange (FEX) rate

In this section, we study the problem described in Example 1.1.2, in which a government is
interested in influencing the FEX rate of its currency.

5.1.1 Artificial boundary conditions

As discussed in Section 4.3, it is computationally intractable to solve the HJBQVI (1.7) of
Example 1.1.2 since it is posed on the unbounded domain [0, T ]× R. In light of this, we
truncate the domain to a bounded set [0, T ]× [−R,R]. To ensure that that impulses do
not leave the truncated domain, we similarly truncate the control set Z(t, x) = R in (1.8)
to [−R− x,R− x]. Artificial boundary conditions are introduced as per Appendix C.
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Parameter Value

Maximum interest rate differential wmax 0.07
Drift speed µ 0.25
Volatility σ 0.3

Target m 0
Effect of interest rate differential γ 3

Proportional transaction cost κ 1
Fixed transaction cost c 0.1

Discount factor β 0.02
Horizon T 10

Truncated domain boundary R 2

Table 5.1: Parameters for FEX rate problem

5.1.2 Implementation details

Unless otherwise specified, we use BiCGSTAB with an ILUT preconditioner [Saa03, Section
10.4] to solve all linear systems. Policy-Iteration, used to obtain solutions of the direct
control and penalty schemes, is terminated at the `-th iteration if the error tolerance

max
i

{
|U `

i − U `−1
i |

max{|U `
i |, scale}

}
< tolerance (5.1)

is met. The parameter scale is used to ensure that unrealistic levels of accuracy are not
imposed if the solution is close to zero. We use scale = 1 and tolerance = 10−6 for all
experiments. For the penalty scheme, we use the penalty parameter (recall (4.11)) ε =
10−2∆τ . For the direct control scheme, we use the scaling factor described in Remark 3.3.2
with δ = 10−2. The explicit-impulse scheme is optimized as per Remark 2.5.1 whenever
possible. Since these implementation details are the same for all problems considered in
this chapter, we do not repeat them.

5.1.3 Convergence tests

For the numerical tests in this section, we use the parameters in Table 5.1. Table 5.2 reports
the size of the numerical grid. In particular, we report the number of timesteps τn, spatial
points xi, stochastic control points wi, and impulse control points zi. The value of R is
chosen large enough to ensure high accuracy within a region of interest (in this case, at the
point x = m).
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h Timesteps x points w points z points

1 16 32 8 16
1/2 32 64 16 32
...

...
...

...
...

Table 5.2: Numerical grid for FEX rate problem

h Value V h(t = 0, x = m) Avg. policy its. Avg. BiCGSTAB its. Ratio Norm. time

1 -1.59470667276 2.50 1.65 1.24e+01
1/2 -1.60161214854 2.53 1.82 4.30e+01
1/4 -1.60009885637 2.33 2.80 -4.56 2.53e+02
1/8 -1.59882094629 2.33 2.96 1.18 1.88e+03
1/16 -1.59796763572 2.36 2.97 1.50 1.73e+04
1/32 -1.59753341756 2.34 2.95 1.97 1.42e+05
1/64 -1.59730416122 2.34 2.90 1.89 1.04e+06

(a) Direct control scheme

h Value V h(t = 0, x = m) Avg. policy its. Avg. BiCGSTAB its. Ratio Norm. time

1 -1.59542996288 2.56 1.95 1.23e+01
1/2 -1.60176266672 2.53 2.13 4.70e+01
1/4 -1.60012316809 2.34 2.08 -3.86 2.87e+02
1/8 -1.59883787204 2.33 3.08 1.28 2.09e+03
1/16 -1.59796948734 2.36 3.19 1.48 1.83e+04
1/32 -1.59753376608 2.35 3.17 1.99 1.42e+05
1/64 -1.59730437362 2.34 3.18 1.90 1.04e+06

(b) Penalty scheme

h Value V h(t = 0, x = m) Ratio Norm. time

1 -1.21009825238 1.00e+00
1/2 -1.40343492151 7.14e+00
1/4 -1.50140778899 1.97 5.69e+01
1/8 -1.54909952448 2.05 4.44e+02
1/16 -1.57273173354 2.02 3.33e+03
1/32 -1.58474899304 1.97 2.84e+04
1/64 -1.59084952538 1.97 2.34e+05

(c) Explicit-impulse scheme

Table 5.3: Convergence tests for FEX rate problem
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Fig. 5.1: Numerical solution of FEX rate problem

Convergence tests are shown in Table 5.3. Times are normalized to the fastest explicit-
impulse solve. The ratio of successive changes in the solution is reported. The average
number of policy iterations and BiCGSTAB iterations per timestep are also reported.
For the explicit-impulse scheme applied to the exchange rate problem, we note that the
linear system solved at each timestep n involves a tridiagonal matrix A (see (2.22) and
Remark 2.5.1). Therefore, in this special case, we use a direct solver. As such, no iteration
counts are reported for the explicit-impulse scheme.

Recall that the explicit-impulse requires only a single linear system solve per timestep.
The direct control and penalty schemes, on the other hand, require the use of policy
iteration at each timestep. Policy iteration can, in the worst case, require |P| linear
system solves [BFS16], where P is the set of controls (recall Section 3.3). If the discretized
control sets W h and Zh(t, x) are each of size O(1/h), this corresponds to a total of
O(|P|) = O(1/h2 · 1/(∆x)d) = O(1/hd+2) iterations, where d is the dimension of the
problem (in the case of the FEX rate problem, d = 1). However, this worst case bound is
much more pessimistic than what is observed in practice since in Table 5.3, we see roughly
a constant number of policy iterations per timestep.

We close this subsection with a few more observations. The direct control and penalty
schemes are nearly identical in performance and accuracy. Compared to the explicit-impulse
scheme, these two schemes require more execution time but produce solutions that are more
accurate even for large values of h. As h approaches zero, we see that all three schemes
tend to linear convergence rates (i.e., Ratio ≈ 2).
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5.1.4 Optimal control

Consider the optimal control in Fig. 5.1a. If the FEX rate is sufficiently close to the target
m = 0, the government does not intervene in the FEX market. That is, no impulses occur
in the region (−η, η) for some η. In this region, the government influences the FEX rate
by choosing the interest rate differential w (depicted by the smooth curve in Fig. 5.1a).
However, if the FEX rate lies outside of this region, the government intervenes by selling
large amounts of foreign currency to bring the FEX rate back to some acceptable level
±η0 satisfying m < η0 < η. For example, at the point x = η, the government performs the
impulse z = η0−η (depicted by the rightmost arrow in Fig. 5.1a) in order to instantaneously
change the FEX rate to x+ z = η + (η0 − η) = η0.

The above suggests that the solution V satisfies

V (t, x) = V (t, η0(t))− κ (|x| − η0(t))− c if |x| > η(t)

where, as reflected in the notation, η and η0 are allowed to depend on time t. In other
words, V is asymptotically linear in space. This is reflected in Fig. 5.1b.

5.2 Optimal consumption with fixed and proportional costs

The problem of an investor consuming optimally was first studied in the celebrated article
[Mer71]. To incorporate both fixed and proportional transaction costs, the model was
extended to the impulse control setting in [ØS02]. In that paper, the authors consider an
investor that, at any point in time, has two investment opportunities: a risky investment
and a safe bank account.

• At all times, the investor picks the rate at which they consume capital from the bank
account.

• The investor picks specific times at which to transfer money from the bank to the
risky investment or vice versa.

Let wt denote the investor’s rate of consumption at time t. Let ξ1 6 ξ2 6 · · · 6∞ be
the times at which the investor transfers money between the accounts, with corresponding
amounts z1, z2, . . . A positive value for z` indicates that money is moved from the bank
account to the risky investment at time ξ`, while a negative value indicates flow of money
in the opposite direction.
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Subject to the above, the risky investment S and bank account Q evolve according to

dSt = µStdt+ σStdBt for t 6= ξ1, ξ2, . . .

dQt = (rQt − wt1{Qt>0})dt for t 6= ξ1, ξ2, . . .

Sξ` = Sξ`− + z` for ` = 1, 2, . . .
Qξ` = Qξ`− − z` − κ |z`| − c for ` = 1, 2, . . .

where µ, σ, and r are nonnegative constants representing the drift, volatility, and interest
rate. The term rQt in the above corresponds to the riskless return from the bank account,
which is reduced by the rate of consumption wt. The indicator function 1{Qt>0} is used to
ensure that the bank account cannot become negative. The constants c > 0 and 0 6 κ 6 1
parameterize the fixed and proportional costs of moving money to/from the bank account.

To prevent the investor from consuming too quickly, we impose the restriction |wt| 6
wmax. We assume that the control z` must be chosen such that the portfolio remains solvent
(i.e., the risky investment and bank account must remain nonnegative at all times).

The investor’s objective is to maximize their utility by consuming optimally. Letting
x = (s, q) and θ = (w; ξ1, z1; ξ2, z2; . . .) denote a control, the investor’s utility is captured by
the objective function

J(t, x; θ) = E
[∫ T

t
e−βu

wγu
γ

1{Qu>0}du+ e−βT
max {QT + (1− κ)ST − c, 0}γ

γ

∣∣∣∣∣(St−, Qt−) = x

]

where 0 < γ 6 1 captures the investor’s aversion to risk and β is a nonnegative discount
factor. The term wγu/γ corresponds to the utility gained from consumption. The term
max {QT + (1− κ)ST − c, 0}γ /γ corresponds to the investor consuming their net worth at
the final time (modeling, for example, retirement).

In [ØS05, Example 8.3], standard dynamic programming arguments are used to transform
the optimization problem V (t, x) = supθ J(t, x; θ) into the equivalent HJBQVI

min
{
−Vt − sup

w∈[0,wmax]

{
LwV + e−βt

wγ

γ
1{q>0}

}
, V −MV

}
= 0 on [0, T )× [0,∞)2

min {V (T, ·)− g, V (T, ·)−MV (T, ·)} = 0 on [0,∞)2 (5.2)
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where

LwV (t, s, q) = 1
2σ

2s2Vss(t, s, q) + µsVs(t, s, q) +
(
rq − w1{q>0}

)
Vq(t, s, q)

MV (t, s, q) = sup
z∈Z(s,q)

V (t, s+ z, q − z − κ |z| − c)

Z(s, q) = {z : s+ z > 0} ∩ {z : q − z − κ |z| − c > 0}

g(s, q) = e−βT
max {q + (1− κ) s− c, 0}γ

γ
. (5.3)

Note that the above is a two dimensional HJBQVI with no cross-derivatives and can hence
be handled by obvious extensions of the direct control, penalty, and explicit-impulse schemes
discussed in the previous chapter (see Section 4.5.2).

5.2.1 Artificial boundary conditions

As usual, we do not solve the HJBQVI (5.2) directly but rather truncate the domain and
introduce artificial boundary conditions. In particular, letting Rs and Rq be large positive
numbers, we work on the truncated domain [0, T ]× [0, Rs]× [0, Rq].

In [CØS02], the authors solve an infinite horizon version of the optimal consumption
problem. In that paper, they use the artificial Neumann boundary conditions Vss(t, Rs, q) =
Vs(t, Rs, q) = 0 and Vq(t, s, Rq) = 0. We follow the approach of [CØS02] here, defining the
operator LwR by

LwRV (t, s, q) =
(1

2σ
2s2Vss(t, s, q) + µsVs(t, s, q)

)
1{s<Rs} +

(
rq − w1{q>0}

)
Vq(t, s, q)1{q<Rq}

(5.4)
(compare with Lw in (5.3)). For convenience, we also define the sets

Ω = [0, T )× [0, Rs]× [0, Rq] and ∂+
T Ω = Ω \ Ω = {T} × [0, Rs]× [0, Rq].

Instead of the HJBQVI (5.2), we solve numerically the “truncated HJBQVI”

min
{
−Vt − sup

w∈[0,wmax]

{
LwRV + e−βt

wγ

γ
1{q>0}

}
, V −MRV

}
= 0 on Ω

min {V − g, V −MRV } = 0 on ∂+
T Ω

where LwR is given by (5.4), g is given by (5.3), and
MRV (t, s, q) = sup

z∈ZR(s,q)
V (t, s+ z, q − z − κ |z| − c)

ZR(s, q) = {z : 0 6 s+ z 6 Rs} ∩ {z : 0 6 q − z − κ |z| − c 6 Rq}
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Parameter Value

Maximum withdrawal rate wmax 100
Drift µ 0.11

Volatility σ 0.3
Interest rate r 0.07

Proportional transaction cost κ 0.1
Fixed transaction cost c 0.05
Relative risk aversion 1− γ 0.7

Discount factor β 0.1
Horizon T 40

Initial risky investment value s0 45.20
Initial bank account value q0 45.20

Truncated domain boundaries (Rs, Rq) (200, 200)

Table 5.4: Parameters for optimal consumption problem from [CØS02]

h Timesteps s points q points w points z points

1 32 20 20 15 15
1/2 64 40 40 30 30
...

...
...

...
...

...

Table 5.5: Numerical grid for optimal consumption problem

Note thatMR restricts controls to lie in the set ZR(s, q) to ensure that impulses do not
leave the truncated domain (compare withM in (5.3)).

5.2.2 Convergence tests

For the numerical tests in this section, we use the parameters in Table 5.4. Table 5.5 reports
the size of the numerical grid. Convergence tests are shown in Table 5.6.

As in the FEX rate problem, the direct control and penalty schemes are nearly identical
in accuracy and exhibit linear convergence. Unlike the FEX rate problem, the average
number of BiCGSTAB iterations per timestep increases much faster for the direct control
scheme than the penalty scheme, resulting in larger execution times. This is due to the
matrices associated with the penalty scheme being generally better conditioned than those
associated with the direct control scheme, a claim which we have verified numerically. A
possible explanation for this phenomenon is to recall that by (3.19) and an application of
the Gershgorin circle theorem, the matrix A(P ) associated with the penalty scheme has
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h Value V h(t = 0, s0, q0) Avg. policy its. Avg. BiCGSTAB its. Ratio Norm. time

1 56.0621229141 7.63 9.77 1.63e+01
1/2 58.7392240395 8.80 16.7 2.93e+02
1/4 59.4201246475 10.4 23.7 3.93 5.66e+03
1/8 59.6584129364 11.8 38.7 2.86 1.03e+05
1/16 59.7547798553 13.3 59.2 2.47 1.85e+06
1/32 59.7972061330 14.2 92.3 2.27 3.05e+07

(a) Direct control scheme

h Value V h(t = 0, s0, q0) Avg. policy its. Avg. BiCGSTAB its. Ratio Norm. time

1 56.0584963190 4.09 5.85 1.03e+01
1/2 58.7390408653 3.95 6.99 1.47e+02
1/4 59.4200754123 3.40 7.99 3.94 1.99e+03
1/8 59.6583990235 3.04 11.2 2.86 2.69e+04
1/16 59.7547779953 2.80 15.4 2.47 4.02e+05
1/32 59.7972150004 2.58 15.4 2.27 5.86e+06

(b) Penalty scheme

h Value V h(t = 0, s0, q0) Avg. BiCGSTAB its. Ratio Norm. time

1 55.6216321734 1.00 1.00e+00
1/2 58.7820641022 2.00 1.55e+01
1/4 59.4045764001 3.00 5.08 2.60e+02
1/8 59.5693702945 4.00 3.78 4.05e+03
1/16 59.6511861506 6.00 2.01 6.68e+04
1/32 59.7053148416 8.00 1.51 1.11e+06
1/64 59.7483254658 10.8 1.26 1.85e+07

(c) Explicit-impulse scheme

Table 5.6: Convergence tests for optimal consumption problem
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Fig. 5.2: The i-th Gershgorin disc (in the complex plane) for the penalty scheme

eigenvalues bounded away from zero by a distance of 1/∆τ (Fig. 5.2). In the case of the
direct control scheme, no such guarantees can be made (see (3.25)).

For the explicit-impulse scheme, we note that the average number of BiCGSTAB
iterations per timestep are nearly integer, suggesting that the number of BiCGSTAB
iterations is roughly a constant independent of the timestep n. A possible explanation for
this phenomenon is to recall that at each timestep n, the explicit-impulse scheme involves
solving, for the vector V n, a linear system of the form

AV n = yn

(see (2.21) and Remark 2.5.1). In the above, we have made explicit the dependence of the
right hand side on the timestep n by writing yn. Since the matrix A does not depend on the
timestep n, we expect BiCGSTAB to have similar performance from timestep to timestep.

5.2.3 Optimal control

Consider the optimal control in Fig. 5.3a. As in [CØS02], three regions are observed in an
optimal control: the buy (B), sell (S), and no transaction (NT) regions. In the B and S
regions, the controller performs an impulse to jump to the closest of the two lines marked
∆1 and ∆2. In NT, the controller consumes capital.

5.3 Guaranteed minimum withdrawal benefits (GMWBs)

A variable annuity is a contract between an individual and an insurance company that
provides a guaranteed stream of cash flows. The contract is bootstrapped by an up-front
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Fig. 5.3: Numerical solution of optimal consumption problem

premium from the individual to the insurance company, which is immediately invested
in a diversified portfolio (e.g., an exchange-traded or mutual fund). While the contract
guarantees a minimum stream of cash flows, these flows may exceed the guaranteed amount
if the portfolio performs well.

A particularly popular variable annuity, the GMWB, was first studied as a singular
control problem in [DKZ08]. Shortly thereafter, it was recast as an impulse control problem
in [CF08] and solved numerically therein. Roughly speaking, impulse control is more general
than singular control: when the fixed cost of an impulse approaches zero, a solution of an
impulse control problem tends to that of a corresponding singular control problem; see, e.g.,
[MR83a; MR83b; Øks99].

A GMWB is composed of a risky investment S and a guarantee account Q. It is
bootstrapped by an up-front payment s0 to an insurer, placed in the risky investment
(i.e., S0 = s0). A GMWB promises to pay back at least the lump sum s0, assuming that
the holder does not withdraw above a certain contract-specified rate. This is captured
by setting Q0 = s0 and reducing both the risky investment and guarantee account on a
dollar-for-dollar basis upon withdrawals. The holder can continue to withdraw as long as
the guarantee account remains positive. In particular:

• At all times, the holder picks the rate at which they withdraw capital continuously.

• The holder picks specific times at which to withdraw a finite amount subject to a
penalty imposed by the insurer.
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Let wt denote the withdrawal rate at time t. Let ξ1 6 ξ2 6 · · · 6 ∞ be the times at
which the holder withdraws amounts z1, z2, . . . Subject to the above, the risky investment
S and guarantee account Q evolve according to

dSt = ((r − η)St − wt1{St,Qt>0})dt+ σStdBt for t 6= ξ1, ξ2, . . .

dQt = −wt1{Qt>0}dt for t 6= ξ1, ξ2, . . .

Sξ` = max{Sξ`− − z`, 0} for ` = 1, 2, . . .
Qξ` = Qξ`− − z` for ` = 1, 2, . . . (5.5)

where r and σ are nonnegative constants representing the interest rate and volatility and
η 6 r corresponds to a proportional management fee paid to the insurer. As is usually
the case in risk-neutral options pricing, the “real” drift µ of the stock does not make an
appearance in (5.5).

To prevent the holder from withdrawing too quickly, we impose the restriction |wt| 6
wmax. We also assume the holder cannot deposit into or withdraw more than the value of
the guarantee account, captured by the restriction 0 6 z` 6 Qξ`−.

Letting x = (s, q) and θ = (w; ξ1, z1; ξ2, z2; . . .) denote a control, the value of the GMWB
is captured by the objective function

J(t, x; θ) = E
[∫ T

t
e−ruwu1{Qu>0}du+

∑
t6ξ`6T

e−rξ` ((1− κ) z` − c)

+ e−rT max {ST , (1− κ)QT − c}
∣∣∣∣∣ (St−, Qt−) = x

]
(5.6)

where c > 0 and 0 6 κ 6 1 are fixed and proportional penalties paid for withdrawing.
The term max{ST , (1− κ)QT − c} corresponds to the holder receiving the greater of the
risky investment or a full withdrawal of the guarantee account subject to any withdrawal
penalties.

In [Che08, Appendix G], standard dynamic programming arguments are used to trans-
form the optimization problem V (t, x) = supθ J(t, x; θ) into the equivalent HJBQVI2

min
{
−Vt − sup

w∈[0,wmax]

{
LwV + e−rtw1{q>0}

}
, V −MV

}
= 0 on [0, T )× [0,∞)2

min {V (T, ·)− g, V (T, ·)−MV (T, ·)} = 0 on [0,∞)2 (5.7)
2[Che08] considers instead the function V0(t, x) = ert supθ J(t, x; θ). As such, the HJBQVI (5.7) and

the HJBQVI in [Che08] are equivalent up to the change of variables V0 = ertV .
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where

LwV (t, s, q) = 1
2σ

2s2Vss(t, s, q) +
(
(r − η) s− w1{s,q>0}

)
Vs(t, s, q)− w1{q>0}Vq(t, s, q)

MV (t, s, q) = sup
z∈[0,q]

{
V (t,max {s− z, 0} , q − z) + e−rt ((1− κ) z − c)

}
g(s, q) = e−rT max {s, (1− κ) q − c} . (5.8)

5.3.1 Artificial boundary conditions

As usual, we do not solve the HJBQVI (5.7) directly but rather truncate the domain and
introduce artificial boundary conditions. In particular, letting Rs and Rq be large positive
numbers, we work on the truncated domain [0, T ]× [0, Rs]× [0, Rq].

As remarked in [CF08; DKZ08], an artificial boundary condition is not needed at q = Rq.
This is due to the fact that the coefficient of Vq in (5.8) is nonpositive, and hence the
characteristics of the PDE are outgoing in the q direction at q = Rq.

To derive an appropriate artificial boundary condition at s = Rs, we assume as per
[CF08; DKZ08] that V is asymptotically linear in s. That is, we assume the existence of a
smooth function A such that

V (t, s, q) ∼ A(t, q)s as s→∞

which implies

Vt(t, s, q) ∼ At(t, q)s, Vs(t, s, q) ∼ A(t, q), and Vss(t, s, q) ∼ 0 as s→∞.

Substituting the above into LwV (t, s, q) defined in (5.8), we find that

LwV (t, s, q) =
(
(r − η) s− w1{s,q>0}

)
V (t, s, q)/s− w1{q>0}Vq(t, s, q) as s→∞.

This leads us to define the operator LwR by

LwRV (t, s, q) = −w1{q>0}Vq(t, s, q)

+


1
2σ

2s2Vss(t, s, q) +
(
(r − η) s− w1{s,q>0}

)
Vs(t, s, q) if s < Rs(

(r − η) s− w1{s,q>0}
)
V (t, s, q)/s if s = Rs.

(5.9)

For convenience, we also define the sets

Ω = [0, T )× [0, Rs]× [0, Rq] and ∂+
T Ω = Ω \ Ω = {T} × [0, Rs]× [0, Rq].
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Parameter Value

Maximum withdrawal rate wmax 10
Risk-free interest rate r 0.05

Management fee η 0
Volatility σ 0.3

Excess withdrawal penalty κ 0.1
Fixed transaction cost c 10−6

Horizon T 10
Truncated domain boundaries (Rs, Rq) (1000, 100)

Table 5.7: Parameters for GMWB problem from [CF08]

h Timesteps s points q points w points z points

1 32 64 50 2 2
1/2 64 128 100 2 4
...

...
...

...
...

...

Table 5.8: Numerical grid for optimal consumption problem

Instead of the HJBQVI (5.7), we solve numerically the “truncated HJBQVI”

min
{
−Vt − sup

w∈[0,wmax]

{
LwRV + e−rtw1{q>0}

}
, V −MV

}
= 0 on Ω

min {V − g, V −MV } = 0 on ∂+
T Ω

where LwR is given by (5.9) and g andM are given by (5.8).

Remark 5.3.1. The particular form of the intervention operatorM in the GMWB problem
does not satisfy assumption (H3) of Chapter 4, so that the stability arguments of that chapter
do not apply. However, the stability of the various schemes in this thesis applied to the
GMWB problem can be handled by minor modifications of the arguments in [CF08, Lemma
5.1] for the explicit-impulse scheme and [HF12, Lemma 5.1] for the direct control and
penalty schemes.

5.3.2 Convergence tests

For the numerical tests in this section, we use the parameters in Table 5.7. We point out
that it is sufficient to take W h = {0, wmax} as the discretization of the control set [0, wmax]
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h V h(t = 0, s = 100, q = 100) Avg. policy its. Avg. BiCGSTAB its. Ratio Norm. time

1 107.683417498 3.47 1.47 1.71e+01
1/2 107.706787394 4.25 1.64 2.03e+02
1/4 107.718780318 4.34 1.85 1.95 2.60e+03
1/8 107.725782831 4.43 2.22 1.71 3.46e+04
1/16 107.729641357 4.31 2.71 1.81 4.75e+05
1/32 107.731755456 4.15 3.40 1.83 7.55e+06

(a) Direct control scheme

h V h(t = 0, s = 100, q = 100) Avg. policy its. Avg. BiCGSTAB its. Ratio Norm. time

1 107.682425551 3.47 1.58 1.80e+01
1/2 107.706388904 4.08 1.65 2.06e+02
1/4 107.718700668 3.95 1.76 1.95 2.45e+03
1/8 107.725763667 3.98 1.97 1.74 3.22e+04
1/16 107.729637421 3.71 2.39 1.82 4.34e+05
1/32 107.731754559 3.32 3.01 1.83 6.62e+06

(b) Penalty scheme

h V h(t = 0, s = 100, q = 100) Avg. BiCGSTAB its. Ratio Norm. time

1 107.423506170 1.00 1.00e+00
1/2 107.684431768 1.00 1.02e+01
1/4 107.708405901 1.00 10.9 1.39e+02
1/8 107.722569027 1.00 1.70 2.03e+03
1/16 107.730146084 1.00 1.87 3.31e+04
1/32 107.732241020 1.98 3.62 6.10e+05
1/64 107.733372937 2.90 1.85 1.13e+07

(c) Explicit-impulse scheme

Table 5.9: Convergence tests for GMWB problem
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(a) Optimal control at the initial time t = 0 with param-
eter η = 0.03126 chosen as in [CF08]
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(b) Value at the initial time t = 0

Fig. 5.4: Numerical solution of GMWB problem

since the argument appearing in the supremum of the HJBQVI is linear in w. Table 5.8
reports the size of the numerical grid. Convergence tests are shown in Table 5.9. Our
results agree closely with [CF08], which computes the value as 107.7313.

As in the FEX rate problem, the direct control and penalty schemes are nearly identical
in performance and accuracy. The explicit-impulse scheme, which seems to produce
comparably accurate solutions for the GMWB problem, executes much faster than its
counterparts.

5.3.3 Optimal control

Fig. 5.4a shows an optimal control for a GMWB. Three regions are witnessed. In two of
the three regions, the contract holder performs an impulse to withdraw a finite amount
instantaneously. In the remaining region, the controller withdraws at the constant rate
wmax. A more detailed explanation of these regions is given in [CF08].

5.4 Infinite horizon

So far, we have only considered finite horizon problems. As a proof of concept, we solve
in this section the optimal consumption problem over an infinite horizon by the penalty
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h Value V h(t = 0, s0, q0) Tot. policy its. Tot. BiCGSTAB its. Ratio Norm. time

1 56.2664380074 8 21 1.00e+00
1/2 59.1841989658 9 36 4.41e+00
1/4 59.8299121028 9 58 4.52 3.19e+01
1/8 60.0469132389 9 82 2.98 2.43e+02
1/16 60.1330774909 9 121 2.52 1.93e+03
1/32 60.1706514583 8 185 2.29 1.40e+04
1/64 60.1881729190 8 328 2.14 1.30e+05

Table 5.10: Convergence tests for infinite horizon optimal consumption problem

scheme (2.16). This problem was previously considered using iterated optimal stopping in
[CØS02]. The setting is identical to Section 5.2, with the exception that T =∞. In this
case, the corresponding HJBQVI is [CØS02, Eq. (2.31)]

min
{
βV − sup

w∈[0,wmax]

{
LwV + wγ

γ
1{q>0}

}
, V −MV

}
= 0 on [0, T )× [0,∞)2

where Lw andM are defined in (5.3).
Similarly to Section 5.2.1, we can introduce artificial boundary conditions into the above

HJBQVI to make it computationally tractable (we omit the details). Convergence results are
shown in Table 5.10 with times normalized to the fastest solve. We note that the computed
values agree roughly with those shown in [CØS02, Fig. 5.2]. The results are obtained by
invoking policy iteration exactly once (there are no timesteps in the infinite horizon case) to
solve (2.16). The total number of policy iterations and BiCGSTAB iterations per timestep
are also reported.

5.5 Summary

In this chapter, we applied the direct control, penalty, and explicit-impulse schemes to
three classical impulse control problems from finance. As mentioned in the introduction,
some of these problems had not been previously considered numerically.

The explicit-impulse scheme, which requires no policy iteration whatsoever, is much
faster than its counterparts. However, as pointed out in Chapter 2, the explicit-impulse
scheme can only be used if the horizon is finite and the second derivative coefficient is
independent of the control. Moreover, our results indicate that the direct control and
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penalty schemes produce nearly identical results and often require roughly the same amount
of computation. In the specific case of the optimal consumption problem, the penalty
scheme even outperforms the direct control scheme, requiring far fewer policy iterations per
timestep. Due to the additional effort required to ensure convergence of the direct control
scheme as discussed in the introduction of this chapter, we advise against using this scheme
altogether.
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Chapter 6

Efficient computation of problems with fixed
intervention times

In the previous chapters, we dealt with problems involving impulses that are allowed to
occur at any point in time. However, in practice, many contracts specify that the holder
can exercise their contract rights at only a finite number of fixed (i.e., nonrandom and
noncontrollable) times1

0 < ξ1 < ξ2 < · · · < ξL < T. (6.1)

As we will see shortly, the pricing equations in this case consist of a linear PDE which
holds at any time t not equal to an intervention time (i.e., t 6= ξ`) and a collection of
optimization problems at each intervention time (i.e., t = ξ`). The linear PDE describes
the evolution of the contract away from the intervention times, while the collection of
optimization problems determine an optimal control at each intervention time. This type of
problem appears frequently in the insurance literature, in the context of pricing and hedging
variable annuities (see, e.g., [BKR08; CVF08; CF08; Bac+11; FV14; HK16; HZK17]).

Computationally, there are various ways to handle this type of problem. One approach
is to use a least squares Monte Carlo algorithm [Bac+11]. However, least squares Monte
Carlo (first introduced for American options in [LS01]) is tractable only when the control
set at each intervention time is finite (e.g., in the case of American options, there are only
two controls: “exercise” or “hold”). Unfortunately, in the context of variable annuities, it is
not usually the case that the control set is finite.

1Rigorously, in the previous chapters, the intervention times ξ` were stopping times. In this chapter,
each ξ` is simply a constant positive number corresponding to a “fixed” point in time.
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Another approach is to discretize the problem on a numerical grid, substituting finite
difference approximations of various derivatives into the linear PDE [CF08, Section 4].
In this case, the method needs to resort to a linear search over a discretization of the
control set. Convergence to a desired tolerance is achieved by refining this discretization.
In practice, the linear search is often the bottleneck of this method.

In this chapter, we provide the reader with sufficient conditions under which the control
set can be reduced to a finite set, with the motivation being obtaining efficient numerical
methods. This control set reduction is established using results from convex analysis and
the theory of parabolic PDEs.

We apply our control set reduction to the guaranteed lifelong withdrawal benefits
(GLWB), a popular variable annuity. We show that the holder can maximize the value of
this contract by only ever performing one of three actions at each intervention time:

• Nonwithdrawal to receive a bonus.

• Withdrawing a contract-specified amount.

• Lapsing the contract.

We use this result to create a fast numerical pricer for the GLWB. We also point the reader
to the articles [HK16; HZK17] for applications of our control set reduction result by other
authors.

In this chapter, we also consider the related guaranteed minimum withdrawal benefits
(GMWB) contract. In order to apply a least squares Monte Carlo approach to price this
contract, it is a common assumption in the literature that the holder can only ever perform
one of a finite number of actions [BKR08; Bac+11]. Using our analysis, we demonstrate
that this approach may lead to incorrect pricing and hedging strategies.

Our contributions in this chapter are:

• Giving sufficient conditions under which a control set reduction is possible for an
impulse control problem involving fixed intervention times.

• Applying these results to obtain a fast numerical pricer for GLWBs.

• Demonstrating that a control set reduction may not be attainable for GMWBs.

The results of this chapter appear in our article:
P. Azimzadeh and P. A. Forsyth. “The existence of optimal bang-bang controls for

GMxB contracts”. In: SIAM J. Financial Math. 6.1 (2015), pp. 117–139
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6.1 Variable annuities

We introduce in this section two variable annuity contracts modeled as impulse control
problems with fixed intervention times (i.e., (6.1)). These intervention times correspond
to regular anniversaries (e.g., monthly, yearly, etc.) on which the holder of the variable
annuity can perform certain actions (e.g., withdraw from an account).

6.1.1 Guaranteed minimum withdrawal benefits (GMWB)

For ease of exposition, we begin with the simpler of the two variable annuities: the
guaranteed minimum withdrawal benefits (GMWB) contract. This contract was previously
studied in Chapter 5, but therein, we followed the formulation of [CF08, Section 3.2],
allowing the holder of the contract to perform a withdrawal at any point in time. In this
subsection, we give instead the formulation of [DKZ08, Section 2.2], in which the holder of
the GMWB can only withdraw at the regular anniversaries ξ1, . . . , ξL specified by (6.1).

A GMWB is composed of a risky investment S and a guarantee account Q. It is
bootstrapped by an up-front payment s0 to an insurer, placed in the risky investment
(i.e., S0 = s0). A GMWB promises to pay back at least the lump sum s0, assuming that
the holder does not withdraw above a certain contract-specified amount G > 0. This is
captured by setting Q0 = s0 and reducing both the risky investment and guarantee account
on a dollar-for-dollar basis upon withdrawals. The holder can continue to withdraw as long
as the guarantee account remains positive.

The risky investment S and guarantee account Q evolve according to

dSt = (r − η)Stdt+ σStdBt for t 6= ξ1, . . . , ξL

dQt = 0 for t 6= ξ1, . . . , ξL (6.2)

where r and σ > 0 are constants representing the interest rate and volatility, and η 6 r
corresponds to a proportional management fee paid to the insurer.

To simplify notation, we assume that impulses, which correspond to withdrawals, occur
yearly (i.e., ξ1 = 1, ξ2 = 2, etc.). At the intervention time ξ` = `, the holder withdraws
the amount z`, in which case the risky investment and guarantee account are reduced on a
dollar-for-dollar basis:

S` = max{S`− − z`, 0} for ` = 1, . . . , L
Q` = Q`− − z` for ` = 1, . . . , L.
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It is assumed that the holder cannot deposit into or withdraw more than the value of
the guarantee account, captured by the restriction 0 6 z` 6 Q`−. In actuality, the holder
does not necessarily receive the full amount z` upon withdrawal. Instead, they receive the
amount f̂(z`) where

f̂(z) =

z if z 6 G

G+ (1− κ) (z −G) if z > G
(6.3)

(cf. [DKZ08, Eq. (2.4)]) and 0 6 κ 6 1 is a proportional penalty charged by the insurer for
withdrawing more than the contract-specified amount G.

Letting x = (s, q) ∈ [0,∞)2 and θ = (z1, . . . , zL) denote a control, the value of the
GMWB is captured by the objective function

J(t, x; θ) = E

 L∑
`=dte

e−r`f̂(z`) + e−rT max{ST , f̂(QT )}
∣∣∣∣∣ (St−, Qt−) = x


(compare with (5.6)). The term max{ST , f̂(QT )} corresponds to the holder receiving the
greater of the risky investment or a full withdrawal of the guarantee account subject to any
withdrawal penalties.

In [Che08, Appendix I], standard arguments are used to transform the optimization
problem V (t, x) = supθ J(t, x; θ) into the equivalent formulation

Vt(t, x) = −LV (t, x) t 6= 1, . . . , L (6.4a)
V (t−, x) = sup

z∈[0,q]

{
V (t,max{s− z, 0}, q − z) + e−rtf̂(z)

}
t = 1, . . . , L (6.4b)

V (T, x) = e−rT max{s, f̂(q)} (6.4c)

where
LV = 1

2σ
2s2Vss + rsVs. (6.5)

The notation t 6= 1, . . . , L is meant to signify that the PDE (6.4a) does not necessarily
hold at the intervention times ξ1 = 1, . . . , ξL = L. The notation V (t−, ·) = lims↑t V (s, ·)
signifies a limit from the left. Note that (6.4a) suggests that between intervention times,
the GMWB contract behaves like a European option.

Note that no derivatives with respect to q appear in the operator (6.5). This is because
between intervention times, the process Q is constant (recall dQt = 0 in (6.2)). The process
Q, updated only when the calendar time t sweeps across an intervention time (as reflected
by equation (6.4b)), is called a “path dependent” variable.
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We close this subsection by pointing out that (6.4b) can be written equivalently as

V (t−, x) = sup
λ∈[0,1]

{
V (t, max{s− λq, 0}, q − λq) + e−rtf̂(λq)

}
t = 1, . . . , L. (6.6)

We use this fact in the sequel.

6.1.2 Guaranteed lifelong withdrawal benefits (GLWB)

Next, we introduce the guaranteed lifelong withdrawal benefits (GLWB) contract, using the
formulation from [FV14]. In the landscape of variable annuities, the GLWB was designed
with the purpose of serving as a substitute for defined benefit pension plans [Iam+09],
allowing the buyer to replicate the security of such a plan via a substitute.

A GLWB is composed of a risky investment S and a guarantee account Q. It is
bootstrapped by an up-front payment s0 to an insurer, placed in the risky investment (i.e.,
S0 = s0). A GLWB promises guaranteed cash flows at each anniversary date (e.g., yearly)
until the holder’s death, even if the risky investment diminishes to zero. The amount
received at each anniversary date is a contract-specified fraction 0 6 G 6 1 of the guarantee
account. The value of the guarantee account is not reduced unless the holder violates the
terms of the contract by withdrawing more than this contract-specified fraction. This is
captured by setting Q0 = s0 and reducing the risky investment account on a dollar-for-dollar
basis upon withdrawals, reducing the guarantee account only upon withdrawals over the
contract-specified fraction.

As with the GMWB, the risky investment S and guarantee account Q evolve according
to (6.2). As usual, we simplify notation by assuming that impulses occur yearly (i.e., ξ1 = 1,
ξ2 = 2, etc.). At the intervention time ξ` = `, the holder employs the control λ` ∈ [0, 2].
There are three distinct cases we need to consider:

• λ` = 0 corresponds to the holder not withdrawing. In this case, the guarantee account
is amplified by a “bonus factor” β > 0:

S` = S`−

Q` = (1 + β)Q`−.

The bonus factor is meant to incentivize the holder not to withdraw.
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• λ` ∈ (0, 1] corresponds to the holder withdrawing no more than the contract-specified
fraction G of the guarantee account. In this case,

S` = max {S`− − λ`GQ`−, 0}
Q` = Q`−.

• λ` ∈ (1, 2] corresponds to the holder withdrawing over the contract-specified fraction.
In this case,

S` = (2− λ`) max {S`− −GQ`−, 0}
Q` = (2− λ`)Q`−.

Applying the control λ` = 2, after which both risky investment and guarantee account
become zero, corresponds to the holder lapsing (i.e., forfeiting) the contract.

We can succinctly summarize the three cases above by defining the functions

Γ(s)(s, q, λ) =

max {s− λGq, 0} if 0 6 λ 6 1
(2− λ) max {s−Gq, 0} if 1 < λ 6 2

(6.7)

and

Γ(q)(q, λ) =


(1 + β) q if λ = 0
q if 0 < λ 6 1
(2− λ) q if 1 < λ 6 2

(6.8)

and writing

S` = Γ(s)(S`−, Q`−, λ`) for ` = 1, . . . , L
Q` = Γ(q)(Q`−, λ`) for ` = 1, . . . , L.

As with the GMWB, the holder does not necessarily receive the full amount λ` upon
withdrawal. Instead, they receive the amount f̂(S`−, Q`−, λ`) where

f̂(s, q, λ) =

λGq if 0 6 λ 6 1
Gq + (λ− 1) (1− κ) max {s−Gq, 0} if 1 < λ 6 2

(6.9)

(cf. [HK16, Eq. (2.3)]) and 0 6 κ 6 1 is a proportional penalty charged by the insurer for
withdrawing over the contract-specified fraction G.
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Unlike the GMWB, to price the GLWB, the insurer has to take into account mortality
risk. In particular, let Y(t) be the mortality rate at time t (i.e.,

∫ t2
t1
Y(t)dt is the fraction

of holders who pass away in the interval (t1, t2)) so that R(t), defined as the fraction of
holders alive at time t, is related to Y by

R(t) = 1−
∫ t

0
Y(u)du.

We assume Y is continuous2 and that both Y and R are nonnegative. We also assume the
existence of a time T > 0 such that R(T ) = 0 (i.e., survival beyond T is impossible).

Letting x = (s, q) ∈ [0,∞)2 and θ = (λ1, . . . , λL) denote a control, the value of the
GLWB is captured by the objective function

J(t, x; θ) = E

∫ T

t
e−ruY(u)Sudu+

L∑
`=dte

e−r`R(`)f̂(S`−, Q`−, λ`)
∣∣∣∣∣ (St−, Qt−) = x

 .
The term e−ruY(u)Su corresponds to (discounted) cash flows obtained by the holder’s estate
due to mortality.

In [FV14], standard arguments are used to transform the optimization problem V (t, x) =
supθ J(t, x; θ) into the equivalent formulation

Vt(t, x) = −LV (t, x)− e−rtY(t)s t 6= 1, . . . , L (6.10a)
V (t−, x) = sup

λ∈[0,2]

{
V (t,Γ(s)(s, q, λ),Γ(q)(q, λ)) + e−rtR(t)f̂(s, q, λ)

}
t = 1, . . . , L (6.10b)

V (T, x) = 0. (6.10c)

where L is defined in (6.5).

6.2 General formulation

Both GMWB and GLWB involve a linear PDE ((6.4a) and (6.10a)) and a collection of
optimization problems ((6.6) and (6.10b)). In order to simplify notation, we write these
problems in a more general form. Letting x = (s, q) ∈ [0,∞)2, this general form is

Vt(t, x) = −LV (t, x)− f(t, x) t 6= ξ1, . . . , ξL (6.11a)
V (t−, x) =MV (t, x) t = ξ1, . . . , ξL (6.11b)
V (T, x) = g(x) (6.11c)

2Technically, we only require Y to be continuous between intervention times
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where
LV (t, x) = 1

2b(t)
2s2Vss(t, x) + a(t)sVs(t, x)

and
MV (t, x) = sup

λ∈Λ(t)
{V (t,Γ(t, x, λ)) +K(t, x, λ)} . (6.12)

Note that (6.12) is an intervention operator (compare with (1.6)). Unlike (1.6), in which
the control set is allowed to depend on time and space (i.e., Z(t, x) 3 z), the control set in
(6.12) depends only on time. This assumption is crucial to our analysis (see Remark 6.2.14).

Example 6.2.1. The GMWB problem (6.4) can be cast in the form (6.11) by defining

a(t) = r − η > 0
b(t) = σ > 0

f(t, x) = 0
g(x) = e−rT max{s, f̂(q)}
Λ(t) = [0, 1]

Γ(t, x, λ) = (max{s− λq, 0}, q − λq)
K(t, x, λ) = e−rtf̂(λq) (6.13)

where f̂ is defined in (6.3).

Example 6.2.2. The GLWB problem (6.10) can be cast in the form (6.11) by defining

a(t) = r − η > 0
b(t) = σ > 0

f(t, x) = e−rtY(t)s
g(x) = 0
Λ(t) = [0, 2]

Γ(t, x, λ) = (Γ(s)(s, q, λ), Γ(q)(q, λ))
K(t, x, λ) = e−rtR(t)f̂(s, q, λ) (6.14)

where Y is the (continuous and nonnegative) mortality rate, Γ(s) and Γ(q) are defined in
(6.7) and (6.8), and f̂ is defined in (6.9).

Note that for both the GMWB and GLWB, the control set Λ(t) is a continuum. As
mentioned in the introduction, this poses an issue for numerical methods (both least squares
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Monte Carlo and methods involving discretization). As such, our goal is to obtain sufficient
conditions under which we can perform a “control set reduction” to obtain an equivalent
formulation of problem (6.11) involving a finite control set.

Remark 6.2.3. We have focused on the two dimensional case (i.e., x = (s, q)) for ease
of exposition. The s axis is related to a process driven by a geometric Brownian motion
while the q axis models a path dependent variable (i.e., a process with no drift or diffusion).
Our ideas can be extended in a straightforward manner to the case of an n-dimensional
geometric Brownian motion with m path dependent variables.

6.2.1 Preliminaries

In an effort to remain self-contained, we provide the reader with several elementary facts
used in our analysis. Throughout this chapter, it is understood that the order on Euclidean
space is element-wise:

for x, y ∈ Rn, x 6 y if and only if xi 6 yi for all i.

Given a function F mapping between subsets of Euclidean spaces, the above gives an
unambiguous meaning to the phrases “F is nondecreasing” and “F is convex”. Subject to
this convention, we recall the following elementary fact:

Proposition 6.2.4 ([BV04, Pg. 84]). Let A, B, and C be subsets of Euclidean space with
A and B being convex. Let F1 : A→ B and F2 : B → C. Then, F2 ◦F1 is a convex function
whenever F1 is convex and F2 is convex and nondecreasing.

We will also use the fact that the maximum of a convex function on a polytope is
attained at the vertices:

Definition 6.2.5 ([Roc70, Pg. 12]). A polytope X is a convex set in Euclidean space
with finitely many extreme points x1, . . . , xm (more commonly referred to as the polytope’s
vertices). We use vert(X) = {x1, . . . , xm} to denote the set of vertices of X.

Proposition 6.2.6 ([Roc70, Theorem 32.2]). Let F be a real-valued convex function
mapping from a polytope X. Then, supx∈X F (x) = maxx∈vert(X) F (x).

6.2.2 Control set reduction

In this subsection, we present our control set reduction. First, we require an assumption:
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(H1) For each t, the set Λ(t) can be written as the union of finitely many polytopes:
Λ(t) = Λ1(t) ∪ · · · ∪ ΛJ(t). Moreover, for each x, the restriction of the functions
λ 7→ Γ(t, x, λ) and λ 7→ K(t, x, λ) to each polytope Λj(t) are convex.

We are now ready to state the control set reduction:

Theorem 6.2.7. Let V : [0, T ] × [0,∞)2 → R and t be a given time. Suppose (H1) and
that x 7→ V (t, x) is convex and nondecreasing. Then, for each point x, the supremum in

MV (t, x) = sup
λ∈Λ(t)

{V (t,Γ(t, x, λ)) +K(t, x, λ)}

is attained at one of the (finitely many) points in vert(Λ1(t)) ∪ · · · ∪ vert(ΛJ(t)).

Proof of Theorem 6.2.7. Since Λ(t) = Λ1(t) ∪ · · · ∪ ΛJ(t),

MV (t, x) = max
16j6J

sup
λ∈Λj(t)

{V (t,Γ(t, x, λ)) +K(t, x, λ)} .

By Proposition 6.2.4 and (H1) along with the assumption that V is convex and nondecreasing,
the restriction of the function

λ 7→ V (t,Γ(t, x, λ)) +K(t, x, λ)

to each set of the form Λj(t) is convex. Therefore, by Proposition 6.2.6,

MV (t, x) = max
16j6J

max
λ∈vert(Λj(t))

{V (t,Γ(t, x, λ)) +K(t, x, λ)} ,

as desired.

Intuitively, Theorem 6.2.7 allows us to “reduce” the control set Λ(t) to the finite control
set vert(Λ1(t)) ∪ · · · ∪ vert(ΛJ(t)). For the purposes of illustration, we verify (H1) for the
GLWB below.

Example 6.2.8. Consider the GLWB, so that Λ, Γ, and K are specified by (6.14). Let
Λ1(t) = [0, 1] and Λ2(t) = [1, 2] so that

Λ1(t) ∪ Λ2(t) = [0, 1] ∪ [1, 2] = [0, 2] = Λ(t).
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Moreover, note that

K(t, x, λ) = e−rtR(t)f̂(x, λ)

= e−rtR(t) ·

λGq if λ ∈ Λ1(t)
Gq + (λ− 1) (1− κ) max {s−Gq, 0} if λ ∈ Λ2(t).

In particular, the restriction of λ 7→ K(t, x, λ) to Λj(t) is linear (and hence convex) for
each j = 1, 2. Similarly, note that

Γ(t, x, λ) =


(s, (1 + β)q) if λ ∈ {0}
(max{s− λGq, 0}, q) if λ ∈ Λ1(t) \ {0}
((2− λ) max{s− λGq, 0}, (2− λ)q) if λ ∈ Λ2(t),

from which it is verified that the restriction of λ 7→ Γ(t, x, λ) to Λj(t) is also convex for each
j = 1, 2. By Theorem 6.2.7, we conclude that if x 7→ V (t, x) is convex and nondecreasing,
the supremum in (6.10b) is attained at a point in

vert(Λ1(t)) ∪ vert(Λ2(t)) = vert([0, 1]) ∪ vert([1, 2]) = {0, 1} ∪ {1, 2} = {0, 1, 2}.

Recalling Section 6.1.2, these controls correspond to nonwithdrawal to receive a bonus
(λ = 0), withdrawing precisely the contract-specified fraction of the guarantee account
(λ = 1), and lapsing the contract (λ = 2).

Note that Theorem 6.2.7 can only be applied if V is convex and nondecreasing (in the
space variable x). In light of this, the coming subsections establish sufficient conditions for
solutions V of problem (6.11) to be convex and nondecreasing.

6.2.3 Green’s function representation

To establish that solutions to problem (6.11) are convex and nondecreasing, we make use of
a Green’s function representation of solutions. In order to ensure that we can use a Green’s
function representation, we require some assumptions:

(H2) The real-valued functions a, b, f , and g are continuous. Moreover, a and b are
bounded, inft b(t) > 0, and f satisfies the Lipschitz condition

|f(t, s1, q)− f(t, s2, q)| 6 C(q) |s1 − s2|
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along with the polynomial growth condition

|f(t, s, q)| 6 C(q) (1 + |s|d)

where d is a positive integer and C(q) is a positive constant allowed to depend on q.

(H3) For each time t, if x 7→ V (t, x) is continuous, then x 7→ MV (t, x) is also continuous
(i.e., the operatorM maps continuous functions to continuous functions).

We verify below these assumptions for the GLWB.

Example 6.2.9. Consider the GLWB, so that a, b, f , g, Λ, Γ, and K are specified by
(6.14). By inspection, the functions a, b, f , and g satisfy (H2). To establish (H3), note
first that the function

Γ(t, x, λ) =


(s, (1 + β)q) if λ = 0
(max{s− λGq, 0}, q) if 0 < λ 6 1
((2− λ) max{s− λGq, 0}, (2− λ)q) if 1 < λ 6 2

is continuous everywhere except for at λ = 0. As such, we can define

Γ(t, x, λ) =

limλ′↓λ Γ(t, x, λ′) if λ = 0
Γ(t, x, λ) if 0 < λ 6 2

as a continuous “extension” of Γ. Now, we can writeMV (t, x) as

MV (t, x) = sup
λ∈[0,2]

{V (t,Γ(t, x, λ)) +K(t, x, λ)}

= max
{
V (t,Γ(t, x, 0)) +K(t, x, 0), sup

λ∈[0,2]

{
V (t,Γ(t, x, λ)) +K(t, x, λ)

}}
.

Therefore,

|MV (t, x)−MV (t, y)|
6 |V (t,Γ(t, x, 0))− V (t,Γ(t, y, 0))|+ |K(t, x, 0)−K(t, y, 0)|
+ sup

λ∈[0,2]

∣∣∣V (t,Γ(t, x, λ))− V (t,Γ(t, y, λ))
∣∣∣+ sup

λ∈[0,2]
|K(t, x, λ)−K(t, y, λ)| .

Suppose now that V (t, ·) is a continuous function and x is some given point. Since Λ(t) =
[0, 2] is a compact set and Γ and K are continuous functions (and hence uniformly continuous
on compact sets), we can make the right hand side of the above inequality arbitrarily small
by choosing y sufficiently close to x. Therefore,MV (t, ·) is continuous, establishing (H3).
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We now return to the matter of obtaining a Green’s function representation of solutions
to (6.11). For the remainder of this chapter, we define ξ0 = 0 and ξL+1 = T to simplify
notation.

Recall that parabolic PDEs such as (6.11a) are known to admit “spurious” solutions
of exponential growth which do not correspond to solutions of optimal control problems
[Fri64; Fri75]. As such, to obtain a Green’s function representation, we have to restrict our
attention to a set of functions that precludes such rapid exponential growth. In particular,
we say that the function V : [0, T ]× [0,∞)2 → R has polynomial growth in s if it satisfies

|V (t, s, q)| 6 C(q) (1 + |s|d)

where d is a positive integer and C(q) is a positive constant allowed to depend on q. We
are now ready to define what it means for a function V to be a solution of problem (6.11).

Definition 6.2.10. We say V : [0, T ]× [0,∞)2 → R is a solution of (6.11) if

1. V has polynomial growth in s.

2. The restriction of V onto each set of the form [ξ`, ξ`+1) × [0,∞) × {q} is once
continuously differentiable in t and twice in s. Moreover, for each x, V (T−, x) = g(x).

3. V satisfies equations (6.11a) to (6.11c).

Note that the above notion of solution is classical (i.e., differentiable). While differen-
tiable solutions were inappropriate for the nonlinear HJBQVIs of the previous chapters,
they are an appropriate choice for problem (6.11), which involves the linear PDE (6.11a).
We are now finally ready to state the Green’s function representation.

Lemma 6.2.11. If V is a solution of (6.11), it has the representation

V (t, s, q) =
∫ ∞

0
Ψ(ξ`+1 − t, 0, log s′)V (ξ`+1−, ss′, q)

1
s′
ds′

+
∫ ξ`+1−t

0

∫ ∞
0

Ψ(ξ`+1 − t, τ ′, log s′)f(ξ`+1 − τ ′, ss′, q)
1
s′
dτ ′ds′

for 0 6 ` 6 L, ξ` 6 t < ξ`+1, and s > 0 (6.15)

where Ψ is a nonnegative function (referred to as a Green’s function).

The proof of the above result, being somewhat technical, is given in Appendix E. An
immediate corollary of the above is that solutions (in the sense of Definition 6.2.10) are
unique.

115



6.2.4 Convexity and monotonicity

We now return to our goal of establishing that solutions of (6.11) are convex and nonde-
creasing. We require the following assumptions, which we will establish for the GLWB at
the end of this section.

(H4) For each t, x 7→ f(t, x) and g are convex and nondecreasing functions. Moreover, for
each t and λ ∈ Λ(t), x 7→ Γ(t, x, λ) and x 7→ K(t, x, λ) are convex functions.

(H5) For each t, points x1, x2 ∈ [0,∞)2 satisfying x1 6 x2, and λ1 ∈ Λ(t), we can find
λ2 ∈ Λ(t) such that Γ(t, x1, λ1) 6 Γ(t, x2, λ2) and K(t, x1, λ1) 6 K(t, x2, λ2).

Theorem 6.2.12. Suppose (H2)–(H5) and let V be a solution of (6.11). Then, V is convex
and nondecreasing.

To establish the above, we require a lemma:

Lemma 6.2.13. For each time t, if x 7→ V (t, x) is continuous, convex, and nondecreasing,
then x 7→ MV (t, x) is also continuous, convex, and nondecreasing.

Proof. Suppose the function x 7→ V (t, x) is continuous, convex, and nondecreasing. Note
that by (H3), we immediately obtain the continuity of x 7→ MV (t, x).

Recalling that f1 ◦ f2 is convex whenever f1 is a convex and nondecreasing function and
f2 is a convex function [BV04, Pg. 84], it follows by (H4) that

x 7→ V (t,Γ(t, x, λ)) is a convex function. (6.16)

Now, let x1, x2 ∈ [0,∞)2 be arbitrary points and α be a constant between zero and one.
By (H4) and (6.16),

MV (t, αx1 + (1− α)x2)
= sup

λ∈Λ(t)
{V (t,Γ(t, αx1 + (1− α)x2, λ)) +K(t, αx1 + (1− α)x2, λ)}

6 α sup
λ∈Λ(t)

{V (t,Γ(t, x1, λ)) +K(t, x1, λ)}+ (1− α) sup
λ∈Λ(t)

{V (t,Γ(t, x2, λ)) +K(t, x2, λ)}

= αMV (t, x1) + (1− α)MV (t, x2), (6.17)

establishing the convexity of x 7→ MV (t, x).
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It remains to establish the nondecreasing property. Let x1, x2 ∈ [0,∞)2 be points
satisfying x1 6 x2. Since x 7→ MV (t, x) is continuous, it follows that MV (t, x1) < ∞.
Therefore, letting ε > 0, we can pick λ1 ∈ Λ(t) such that

MV (t, x1) 6 V (t,Γ(t, x1, λ1)) +K(t, x1, λ1) + ε.

By (H5) along with the assumption that x 7→ V (t, x) is nondecreasing, we can pick λ2 ∈ Λ(t)
such that

V (t,Γ(t, x1, λ1)) +K(t, x1, λ1) 6 V (t,Γ(t, x2, λ2)) +K(t, x2, λ2) 6MV (t, x2).

Combining these inequalities, MV (t, x1) 6 MV (t, x2) + ε. Since ε was arbitrary, the
desired result follows.

Remark 6.2.14. The above proof sheds light on why we defined the intervention operator
using a control set Λ that does not depend on the space variable x. If Λ was allowed to
depend on x (i.e., Λ(t, x)), we would only be able to establish the inequality in (6.17) if we
made the additional assumption Λ(t, x1),Λ(t, x2) ⊃ Λ(t, αx1 + (1− α)x2).

We are now ready to prove Theorem 6.2.12:

Proof of Theorem 6.2.12. Suppose that x 7→ V (ξ`+1−, x) is convex and nondecreasing for
some ` satisfying 0 6 ` 6 L. It follows that for each s′ > 0,

(s, q) 7→ V (ξ`+1−, ss′, q) is convex and nondecreasing. (6.18)

Similarly, by (H4), for each s′ > 0,

(s, q) 7→ f(ξ`+1 − τ ′, ss′, q) is convex and nondecreasing. (6.19)

Applying (6.18) and (6.19) to the Green’s function representation (6.15), it follows that for
each t satisfying ξ` 6 t < ξ`+1,

(s, q) 7→ V (t, s, q) is convex and nondecreasing on (0,∞)× [0,∞). (6.20)

Using the continuity of V (see Definition 6.2.10), we can extend (6.20) to the closure
of (0,∞) × [0,∞). Now, if ` > 0, then x 7→ V (ξ`−, x) is convex and nondecreasing by
Lemma 6.2.13 (recall that V (ξ`−, x) =MV (ξ`, x) by (6.11b)).

Since the terminal condition g is convex and nondecreasing, the desired result follows
by induction (recall that V (T−, x) = g(x) and ξL+1 = T by Definition 6.2.10).
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We close this subsection by verifying (H4) and (H5) for the GLWB.

Example 6.2.15. Consider the GLWB, so that f , g, Λ, Γ, and K are specified by (6.14).
By inspection, the functions Γ, K, f , and g satisfy (H4). We give the arguments to establish
(H5) below. Albeit tedious, these arguments are elementary.

Let x1 = (s1, q1) and x2 = (s2, q2) be points in [0,∞) satisfying x1 6 x2, and λ1 ∈ [0, 2].
Note that Γ(t, x1, λ1) 6 Γ(t, x1, λ2) for any λ2 ∈ [0, λ1]. Therefore, it is sufficient to find
λ2 ∈ [0, λ1] such that f̂(x1, λ1) 6 f̂(x2, λ2) since in this case,

K(t, x1, λ1) = e−rtR(t)f̂(x1, λ1) 6 e−rtR(t)f̂(x2, λ2) = K(t, x2, λ2).

We proceed by cases:

• Suppose λ1 6 1. Let λ2 = λ1q1/q2. Then,

f̂(x1, λ1) = λ1q1 = λ2q2 = f̂(x2, λ2).

• Suppose λ1 > 1. If s1 6 Gq1, we can take λ2 = 1 to obtain

f̂(x1, λ1) = Gq1 6 Gq2 = f̂(x2, λ2).

Therefore, we proceed assuming s1 > Gq1 so that

f̂(x1, λ1) = Gq1 + (1− λ1) (1− κ) (s1 −Gq1) 6 Gq1 + (1− λ1) (s1 −Gq1)
= λ1Gq1 + (1− λ1) s1 < s1.

Now, if s2 6 Gq2, choosing λ2 = 1 yields

f̂(x1, λ1) < s1 6 s2 6 Gq2 = f̂(x2, λ2).

If on the other hand s2 > Gq2, choosing λ2 = λ1 yields

f̂(x1, λ1) = f̂(x1, λ2) = Gq1 + (1− λ2) (1− κ) (s1 −Gq1)
6 Gq2 + (1− λ2) (1− κ) (s2 −Gq2) = f̂(x2, λ2).
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6.2.5 Positive homogeneity

We close this section by giving sufficient conditions for solutions of (6.11) to be positive
homogeneous, a property that allows us to remove a “redundant” dimension from the
problem, leading to more efficient numerical methods. We recall the definition of positive
homogeneity below.
Definition 6.2.16. Let F be a function mapping between Euclidean spaces. F is positive
homogeneous (of order one) if for all points x in its domain and positive numbers α,

αF (x) = F (αx)

To establish the homogeneity of solutions, we require the following assumption:

(H6) For each t and λ ∈ Λ(t), the functions x 7→ f(t, x), g, x 7→ Γ(t, x, λ), and x 7→
K(t, x, λ) are positive homogeneous.

Example 6.2.17. Consider the GLWB, so that f , g, Λ, Γ, and K are specified by (6.14).
By inspection, these functions satisfy (H6).
Theorem 6.2.18. Suppose (H2), (H3), and (H6) and let V be a solution of (6.11). Then,
for each t, x 7→ V (t, x) is positive homogeneous.

Before we give a proof, we discuss why homogeneity affords us a reduction in dimen-
sionality. Let q1 > 0 be a constant and note that if x 7→ V (t, x) is positive homogeneous,

V (t, s, q) = V (t, αs, q1)/α where α = q1/q.

In other words, the solution is wholly determined by two cross-sections of the q axis:
{(t, s, q) : q = 0} and {(t, s, q) : q = q1}.

Returning to our goal of proving Theorem 6.2.18, we give first a lemma:
Lemma 6.2.19. For each time t, if x 7→ V (t, x) is positive homogeneous, then x 7→
MV (t, x) is also positive homogeneous.

Proof. This follows immediately from the presumed homogeneity of Γ and K in (H6) since

αMV (t, x) = sup
λ∈Λ(t)

{αV (t,Γ(t, x, λ)) + αK(t, x, λ)}

= sup
λ∈Λ(t)

{V (t,Γ(t, αx, λ)) +K(t, αx, λ)} =MV (t, αx).

Proof of Theorem 6.2.18. The proof is identical to that of Theorem 6.2.12, replacing any
instance of “convex and nondecreasing” with “positive homogeneous” and “Lemma 6.2.13”
with “Lemma 6.2.19”.
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6.3 An efficient numerical method for the GLWB

In this section, we use the theory established in the previous section to create an efficient
numerical method for the GLWB. For the remainder of this section, we use V to denote
the solution of the GLWB pricing problem (6.10).

6.3.1 Applying the control set and dimensionality reductions

By Examples 6.2.8, 6.2.9, 6.2.15 and 6.2.17, the GLWB pricing problem (6.10) satisfies
(H1)–(H6). This implies that x 7→ V (t, x) is positive homogeneous for each time t, and that
the supremum in (6.10b) is attained at a point in vert(Λ1(t)) ∪ vert(Λ2(t)) = {0, 1, 2}.

Now, let q1 > 0 be a constant and define

W (t, s) = V (t, s, q1)

corresponding to a cross-section of the solution V at q = q1. By (6.10a), it follows that

Wt(t, s) = −LW (t, s)− e−rtY(t)s for t 6= 1, . . . , L. (6.21)

Moreover, since the supremum in (6.10b) is attained at a point in {0, 1, 2},

W (t−, s) = max
λ∈{0,1,2}

{
V (t, Γ(s)(s, q1, λ), Γ(q)(q1, λ)) + e−rtR(t)f̂(s, q1, λ)

}
= max

λ∈{0,1,2}
Wλ(t, s) for t = 1, . . . , L

(6.22)

where we have defined W0, W1, and W2 by

W0(t, s) = V (t, s, (1 + β) q1) = (1 + β)W (t, s/(1 + β))
W1(t, s) = V (t,max{s−Gq1, 0}, q1) +Gq1 = W (t,max{s−Gq1, 0}) +Gq1

W2(t, s) = V (t, 0, 0) +Gq1 + (1− κ) max {s−Gq1, 0} = Gq1 + (1− κ) max {s−Gq1, 0} .

Lastly, by (6.10c),
W (T, x) = 0. (6.23)
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6.3.2 Asymptotics

The domain of W is [0, T ]× [0,∞) 3 (t, s). In order to compute an approximation of W ,
we truncate the domain to a bounded set [0, T ]× [0, R], introducing an artificial boundary
condition at s = R. To derive this artificial boundary condition, we follow the approach of
[WFV04], assuming that W is asymptotically linear. That is, we assume the existence of a
function A such that

W (t, s) ∼ A(t)s as s→∞

and A is continuously differentiable everywhere but possibly at the intervention times t = ξ`.
Therefore, for t 6= ξ`,

Wt(t, s) ∼ A′(t)s, Ws(t, s) ∼ A(t), and Wss(t, s) ∼ 0 as s→∞.

Substituting these derivatives into (6.21), we find that for t 6= ξ`,

Wt(t, s) ∼ − (r − η)W (t, s)− e−rtY(t)s as s→∞ (6.24)

6.3.3 Numerical method

We use the numerical grid introduced in Chapter 2, with τn = T − n∆τ and {x0, . . . , xM}
being a partition3 of [0, R]. We denote by W n

i ≈ W (τn, xi) the numerical solution at time
τn and point xi and by W n = (W n

0 , . . . ,W
n
M)ᵀ the numerical solution vector at the n-th

timestep. To simplify notation, we assume that the terminal time T is an integer and the
step size ∆τ divides 1, so that each intervention time ξ` = ` corresponds to a particular
timestep τn.

Using the definitions of D2, D+, and interp from (2.3), (2.4), and (2.6), equations (6.21)
to (6.24) suggest the numerical method described by the following discrete equations:

Ŵ n−1
i −W n

i

∆τ = −(LhW n)i − erτ
nY(τn)xi for n = 1, . . . , N and i = 0, . . . ,M − 1

Ŵ n−1
M −W n

M

∆τ = − (r − η)W n
M − erτ

nY(τn)xM for n = 1, . . . , N

W 0
i = 0 for i = 0, . . . ,M

3A partition of an interval [a, b] is understood to be a set of points {x0, . . . , xM} satisfying a = x0 <
x1 < · · · < xM = b.
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Parameter Value

Interest rate r 0.04
Volatility σ 0.2

Management fee η 0.015
Contract-specified fraction G 0.05

Bonus rate β 0.06
Mortality data R Appendix F

Time t Penalty parameter κ(t)

1 0.03
2 0.02
3 0.01

> 4 0

Table 6.1: Parameters for GLWB pricing problem

where
(LhW n)i = 1

2σ
2x2

i (D2W
n)i + (r − η)xi(D+W

n)i
and

Ŵ n
i =

W n
i if τn 6= 1, . . . , L

maxλ∈{0,1,2} Ŵ n
i,λ if τn = 1, . . . , L

Ŵ n
i,0 = interp(W n, xi/(1 + β))

Ŵ n
i,1 = interp(W n,max{xi −Gq1, 0}) +Gq1

Ŵ n
i,2 = Gq1 + (1− κ) max{xi −Gq1, 0}.

The discrete equations at each timestep n = 1, . . . , N can be written as a linear system.
The details, being rather standard, are omitted.

6.3.4 Numerical results

We use the numerical method of the previous subsection to compute prices and optimal
controls for the GLWB. All tests are run on an AMD FX-6100 processor with a clock-speed
of 3.6 GHz. Since the linear system corresponding to the discrete equations is tridiagonal,
a direct solver is used.

We use the parameters in Table 6.1. Note that we have allowed the penalty parameter
κ to depend on time t (cf. [FV14]). Table 6.2 displays convergence tests. We see that the
numerical method tends to a linear convergence rate (i.e., Ratio ≈ 2). Even at the highest
level of refinement, where the solution is accurate up to four significant digits, the method
takes only a few seconds.

Since the GLWB pricing problem admits a smooth solution, viscosity arguments are not
required to ensure convergence of the numerical method. As such, we may use nonmonotone
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Grid points Timesteps Value V (t = 0, s = 100, q = 100) Ratio Time (secs)

256 96 9.974424e+01 4.38e−02
512 192 9.977326e+01 3.91e−02
1024 384 9.978973e+01 1.76 7.81e−02
2048 768 9.979875e+01 1.82 1.80e−01
4096 1536 9.980331e+01 1.98 4.68e−01
8192 3072 9.980568e+01 1.93 1.35e+00
16384 6144 9.980686e+01 2.00 4.41e+00

Table 6.2: Convergence tests for GLWB pricing problem

Grid points Timesteps Value V (t = 0, s = 100, q = 100) Ratio Time (secs)

256 96 9.975727e+01 3.42e−02
512 192 9.979275e+01 4.97e−02
1024 384 9.980418e+01 3.10 1.06e−01
2048 768 9.980709e+01 3.93 2.38e−01
4096 1536 9.980781e+01 4.04 5.89e−01
8192 3072 9.980799e+01 4.06 1.62e+00
16384 6144 9.980803e+01 4.01 5.03e+00

Table 6.3: Higher order convergence tests for GLWB pricing problem

discretizations to achieve higher order convergence rates. We can modify the numerical
method of the previous subsection to use a Crank-Nicolson discretization in time with a
centred difference for the first spatial derivative. This yields quadratic convergence rates
(i.e., Ratio ≈ 4), as seen in Table 6.3.

Optimal controls at the first and eighth intervention times ξ1 = 1 and ξ8 = 8 are
displayed in Fig. 6.1. These impulses correspond to the holder being aged 58 and 65 years
old, respectively. We see that due to increased mortality risk, the holder is much more
willing to perform a full withdrawal at the age of 65. When the guarantee account is much
larger than the investment account, the optimal strategy is withdrawal of the predetermined
fraction. Conversely, when the investment account is much larger than the guarantee
account, the optimal strategy is to perform a full withdrawal (the guarantee is out of the
money). Otherwise, the optimal strategy includes nonwithdrawal (to receive a bonus) or
withdrawal at the contract rate. Note that the strategy is constant along any straight line
through the origin due to the homogeneity of the solution.
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Fig. 6.1: Optimal control for GLWB pricing problem

6.4 Nonconvexity of the GMWB

In order to apply a least squares Monte Carlo approach to price this contract, it is a common
assumption in the literature [BKR08; Bac+11] that the holder of a GMWB can only ever
perform one of two actions:

• Withdrawing the contract-specified amount (i.e., z = G in (6.4b)).

• Lapsing the contract (i.e., z = q in (6.4b)).

In this section, we demonstrate why this assumption fails in general.
For the GMWB, the function K is given by (recall (6.13))

K(t, x, λ) = e−rtf̂(λq) = e−rt ·

λq if λq 6 G

G+ (1− κ) (λq −G) if λq > G.

If κ = 0, then x 7→ K(t, x, λ) is a linear function (and hence convex). Otherwise, if
0 < κ 6 1, x 7→ K(t, x, λ) is concave, so that (H4) is violated. In this case, we expect the
solution of the GMWB to be nonconvex.
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Parameter Value

Interest rate r 0.05
Volatility σ 0.15

Management fee η 0.01
Contract-specified amount G 10

Terminal time T 10

Time t Penalty parameter κ(t)

1 0.08
2 0.07
3 0.06
4 0.05
5 0.04
6 0.03

> 7 0

Table 6.4: Parameters for GMWB pricing problem from [CVF08]

We verify this numerically for the parameters in Table 6.4. To compute the value of the
GMWB, we use the numerical method described in [CF08, Section 4]. Since this method
is nearly identical to the method described in Section 6.3.3, a detailed description is not
given here. Fig. 6.2 demonstrates that at time t = 6, when κ becomes nonzero, convexity is
violated. Fig. 6.3 shows the optimal withdrawal amount z at the first intervention time.
Note, in particular, that the optimal withdrawal amount takes values other than G and q.
As such, the least squares Monte Carlo approach of [BKR08; Bac+11] may lead to incorrect
pricing and hedging strategies.

6.5 Summary

In this chapter, we determined sufficient conditions to obtain a control set reduction
for impulse control problems with fixed intervention times, a common setting in pricing
and hedging insurance contracts. Our control set reduction exploited the convexity and
monotonicity of the solution, which has been studied extensively in various non-impulse
settings [Gig+91; JT04; LM06; ET07a; ET07b; BG08] and also appears in the context of
finance in super-replication, bubbles, etc. [EJT05; ET08; ET09; DRR12]. We applied our
theory to obtain a fast numerical method for pricing GLWBs. We also demonstrated that
the GMWB pricing problem does not in general admit a convex solution, so that a control
set reduction may not be attainable.
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Fig. 6.3: Optimal control for GMWB pricing problem (taken from [CVF08, Fig. 1])
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Chapter 7

Summary and future work

This thesis explored the numerical aspects of impulse control. The bulk of the thesis
focused on HJBQVIs arising from impulse control, for which various schemes (some new)
were considered. Some of these schemes took the form of nonlinear matrix equations
(a.k.a. Bellman problems) suitable for policy iteration. To ensure that policy iteration
could be applied to these schemes required existing and new results from the theory of
w.c.d.d. matrices. To prove the convergence of these schemes to the viscosity solution,
classical results of Barles and Souganidis were extended to the nonlocal setting and applied
to the schemes, which were shown to be monotone, stable, and nonlocally consistent. The
schemes were then applied to numerically compute solutions of various classical problems
from finance, from which it was determined that the direct control scheme (proposed in
[CØS02]) is dominated by the penalty scheme.

The remainder of the thesis focused on PDEs arising from impulse control with fixed
impulse times. In this case, sufficient conditions were found under which it is possible to
perform a control reduction, thereby leading to faster numerical methods. These results
were applied to price GLWB contracts.

In terms of future work, there are several avenues of research that remain to be explored:

• In Section 4.5.2, we mentioned that extending the direct control, penalty, and explicit-
impulse schemes to higher dimensions is a nontrivial matter if cross-derivatives are
present. One possible avenue for future research is to resolve this by incorporating
wide-stencils [Obe08; CW16; MF17] or the interpolation techniques in [DJ13].

• In Appendix C, we introduced a truncated approximation to the HJBQVI. However,
we gave no rigorous bounds on the error between the solutions of the truncated
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HJBQVI and the original HJBQVI (1.5). Obtaining such a result would rigorously
justify the use of the truncated approximation, and may also suggest how large to
pick our truncated domain in practice.

• In Chapter 6, we were able to optimize the cost of approximating the intervention
operator in a problem involving fixed impulse times. It would be interesting to extend
this analysis to the setting of the HJBQVI. Such an extension would undoubtedly
require us to establish convexity and monotonicity properties of solutions to HJBQVIs.

• In [Kha+10], the authors obtain an alternate representation of the HJBQVI by
backwards stochastic differential equations (BSDEs). Very recently, researchers have
used deep neural networks to implement fast BSDE solvers [H+17]. Though such
methods are not provably convergent, they are extremely fast and can handle high-
dimensional (e.g., 100 dimensions) problems. One possible avenue for future research
is to combine the results of [Kha+10] and [H+17] to obtain a fast high-dimensional
HJBQVI solver.

• In the series of works [LL06a; LL06b; LL07a; LL07b], Lasry and Lions created
the study of mean field games, concerning strategic decision making in very large
populations of small interacting agents. At the time of writing, no analytic or
numeric work exists incorporating impulses into the mean field game setting. This is
a promising avenue for future research.
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Appendix A

Supplementary material for Chapter 3

In this appendix, we take the setting of Example 3.4.7 in order to prove that the assumptions
of Theorem 3.4.5 are satisfied. We first establish the w.c.d.d. condition:

Lemma A.0.1. A(P ) is w.c.d.d. for each P ∈ P ′.

Proof. Let P be an arbitrary control in P ′. It is sufficient to show that for each row i1 of
A(P ) that is not s.d.d., we can find a walk i1 → · · · → ik to an s.d.d. row ik. As such, let
i1 be a row that is not s.d.d. Since the i-th row of A(P ) is not s.d.d. if and only if di = 1
(recall Lemma 3.3.4), it follows that di1 = 1.

By symmetry, it is sufficient to consider the case of i1 < M/2. In this case, zi1 = xi2−xi1
for some row i1 < i2 6M/2 by (3.35). If i2 is an s.d.d. row, then i1 → i2 is a walk to an
s.d.d. row. Otherwise, we can repeat this procedure to produce i3, i4, . . . until arriving at
an s.d.d. row ik. In this case, i1 → · · · → ik is a walk to an s.d.d. row. We are guaranteed
that this procedure terminates since row M/2 is s.d.d. due to dM/2 = 0 (see (3.35)).

We now establish (3.34). The proof, albeit elementary, is somewhat arduous. As such,
we simply sketch the ideas below.

Proof sketch for (3.34). Fix n and suppose that V n−1 = (V n−1
0 , . . . , V n−1

M )ᵀ satisfies V n
M/2−i =

V n
M/2+i for all i. Now, let U = (U0, . . . , UM)ᵀ be the unique vector satisfying H(U ;P ′) = 0.

By some straightforward yet arduous algebra, one can establish that UM/2−i = UM/2+i for
all i and

· · · 6 UM/2−2 6 UM/2−1 6 UM/2 > UM/2+1 > UM/2+2 > · · ·
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Using these two facts, it is straightforward to establish (3.34). Now, by Theorem 3.4.5, it
follows that U is the unique vector satisfying H(U ;P) = 0, and hence V n = U .

Now, since V 0 is the zero vector (recall that the terminal condition in Example 1.1.2
is g(x) = 0), it trivially satisfies V 0

M/2−i = V 0
M/2+i for all i. Therefore, (3.34) is established

(for all n) by induction.
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Appendix B

Barles-Souganidis framework and the HJBQVI

In this appendix, we discuss why it is not possible to naïvely apply the Barles-Souganidis
framework [BS91] to prove the convergence of the direct control, penalty, and explicit-
impulse schemes for the HJBQVI. We recommend reading this appendix after Section 4.4.

Adapting the notation to match the notation of this thesis, recall that in [BS91], the
authors consider numerical schemes of the form

S(h, x, V h) = 0 for x ∈ Ω. (B.1)

Compared to our notion of numerical scheme (4.4), the above does not have an explicit
treatment of the nonlocal operator I.

Consider now the following alternate definition of viscosity solution for (4.2).

Definition B.0.1. An upper (resp. lower) semicontinuous function V : Ω → R is a
viscosity subsolution (resp. supersolution) of (4.2) if for all ϕ ∈ C2(Ω) and x ∈ Ω such that
V (x)− ϕ(x) = 0 is a local maximum (resp. minimum) of V − ϕ, we have

F∗(x, ϕ(x), Dϕ(x), D2ϕ(x), [Iϕ](x)) 6 0
(resp. F ∗(x, ϕ(x), Dϕ(x), D2ϕ(x), [Iϕ](x)) > 0). (B.2)

We say V is a viscosity solution if it is both a subsolution and a supersolution.

Compared to Definition 4.1.2, which is the relevant definition for impulse control
problems [ØS05; Sey09], the above alternate definition uses Iϕ instead of IV in (B.2). As
such, Definitions 4.1.2 and B.0.1 are not equivalent in general.
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In [CV05] it is demonstrated that one can use schemes of the form (B.1) to approximate
the solution of (4.2) when working under the alternate notion of solution specified by
Definition B.0.1. In this case, the relevant notion of consistency is as follows [CV05, Eq.
(4.1)]: a scheme S is consistent if for each ϕ ∈ C2(Ω) and x ∈ Ω

lim inf
h→0
y→x
ξ→0

S(h, y, ϕ+ ξ) > F∗(x, ϕ(x), Dϕ(x), D2ϕ(x), [Iϕ](x))

and
lim sup
h→0
y→x
ξ→0

S(h, y, ϕ+ ξ) 6 F ∗(x, ϕ(x), Dϕ(x), D2ϕ(x), [Iϕ](x)).

Compared to our notion of nonlocal consistency given by (4.36) and (4.37), the above
does not require the use of half-relaxed limits. At least intuitively, half-relaxed limits
are not needed in this case since the alternate notion of viscosity solution specified by
Definition B.0.1 uses Iϕ instead of IV in (B.2), as discussed in the previous paragraph.

For the HJBQVI, we have the following result, which appears in [GW09, Theorem 3.1],
[DGW10, Section 4], and [Bar85, Proposition 1.2].

Proposition B.0.2. Let F be given by (4.6) and I =M, corresponding to the HJBQVI.
Let V : Ω→ R be uniformly continuous. Then, V is a subsolution (resp. supersolution)
in the sense of Definition 4.1.2 if and only if it is a subsolution (resp. supersolution) in the
sense of Definition B.0.1.

The need for uniform continuity is summarized succinctly in [GW09]:

“However, note that the operatorM is nonlocal; i.e.,Mϕ(t, x) is not determined
by values of ϕ in a neighborhood of (t, x), andMϕ(t, x) might be very small if
ϕ is small away from (t, x). Therefore, one has no control over Mϕ(t, x) by
simply requiring that u− ϕ have a local maximum (resp. minimum) at (t, x).”

Since the Barles-Souganidis framework operates by constructing a subsolution and
supersolution pair that are only semicontinuous (see the details of the proof in [BS91,
Pg. 276]), the continuity requirement in Proposition B.0.2 is too strong for us to apply
the Barles-Souganidis framework to obtain a solution of the HJBQVI in the sense of
Definition 4.1.2. It is this theoretical issue that ultimately led us to the notion of nonlocal
consistency as a means to obtain the provable convergence of our schemes.
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It is worthwhile to mention that one way to sidestep the above issue is by using a
technique called iterated optimal stopping, in which a solution of the HJBQVI is obtained
by considering a sequence of local PDEs. This approach is described and analyzed in
[BMZ07] for the case of infinite horizon (i.e., T =∞) HJBQVIs such as (2.13). However,
it is well-known that when extended to the finite horizon (i.e., T < ∞) setting, iterated
optimal stopping has a high space complexity and prohibitively slow convergence rate
[BFL14], making it unsuitable for the problems considered in this thesis.

147





Appendix C

Truncated domain approximation

As discussed in Chapter 4 (see, in particular, the text below (4.5)), computing the numerical
solution of the HJBQVI as posed on an unbounded domain is computationally intractable.
In light of this, we restrict the HJBQVI to a truncated domain, introducing “artificial”
boundary conditions posed on the boundary of that domain.

In Subsection C.1, we introduce the truncated HJBQVI. In Subsection C.2, we modify
the convergence arguments of Chapter 4 to ensure convergence to the solution of the
truncated HJBQVI.

C.1 Truncated HJBQVI

The truncated HJBQVI is

min
{
−Vt − sup

w∈W

{1
2b(·, w)2Vxx + a(·, w)Vx + f(·, w)

}
, V −MV

}
= 0 on Ω (C.1a)

min
{
−Vt − sup

w∈W
{f(·, w)} , V −MV

}
= 0 on ∂+

RΩ (C.1b)

min {V − g, V −MV } = 0 on ∂+
T Ω (C.1c)

where

Ω = [0, T )× (−R,R), ∂+
RΩ = [0, T )× {−R,R}, and ∂+

T Ω = {T} × [−R,R].
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Fig. C.1: Possible realizations of the first escape time

Remark C.1.1. (C.1b) corresponds to imposing artificial Neumann boundary conditions
Vxx(t,±R) = Vx(t,±R) = 0 for all t ∈ [0, T ). The techniques in this appendix can be used
to handle other boundary conditions, such as replacing (C.1b) by

min {V − g, V −MV } = 0 on ∂+
RΩ.

With the above choice of boundary condition, the truncated HJBQVI is related to maximizing,
over all controls θ, the objective function (compare with (1.4))

JR(t, x; θ) = E

∫ π

t
f(u,Xu, wu)du+

∑
t6ξ`6T

K(ξ`, Xξ`−, z`) + g(Xπ)

∣∣∣∣∣∣Xt− = x


where π is the minimum of the terminal time T and the first time the process X “escapes”
the interval (−R,R) (Fig. C.1), defined as

π = min {T, π0} where π0 = inf {s > t : |Xs| > R} .

Throughout this appendix, we assume (H1)–(H4) of Chapter 4 hold. To ensure that
impulses do not leave the truncated domain, we also assume the following:

(H5) (t,Γ(t, x, z)) ∈ Ω for all (t, x) ∈ Ω and z ∈ Z(t, x).
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Lastly, we mention that in order to write (C.1) in the form (4.2), we take I =M and

F ((t, x), r, (q, p), A, `)

=


min

{
−q − supw∈W

{
1
2b(t, x, w)2A+ a(t, x, w)p+ f(t, x, w)

}
, r − `

}
if (t, x) ∈ Ω

min {−q − supw∈W {f(t, x, w)} , r − `} if (t, x) ∈ ∂+
RΩ

min {r − g(x), r − `} if (t, x) ∈ ∂+
T Ω
(C.2)

(compare with (4.6)).
Remark C.1.2. If, in addition to the requirements of Theorem 4.3.20, a(·,±R, ·) =
b(·,±R, ·) = 0, a trivial modification of the arguments in Appendix D yield a comparison
principle for the truncated HJBQVI.

C.2 Modifying the convergence arguments

In this subsection, we discuss how to modify the convergence arguments in order to ensure
convergence to the solution of the truncated HJBQVI (C.1).

Instead of the uniform spacing condition xi+1 − xi = ∆x and the condition on M in
(4.5), we work under the assumption that {x0, . . . , xM} is a partition of the interval [−R,R]
which satisfies (using Bachmann-Landau notation),

xi+1 − xi = Θ(h). (C.3)
Therefore, while the number of points on the spatial grid increases as h→ 0, the location
of the boundary points x0 = −R and xM = R remains fixed.

The monotonicity and stability of the direct control, penalty, and explicit-impulse
schemes are not affected by the modified grid described above. In light of this, it is sufficient
only to show that these schemes are nonlocally consistent (with respect to (C.2)).
Lemma C.2.1. The direct control scheme is nonlocally consistent (with respect to (C.2)).

Proof. Let Ω = [0, T )×(−R,R) and ϕ ∈ C1,2(Ω). Let ϕni and ϕn, (uh)h>0, and (hm, sm, ym, ξm)m
be defined as in the proof of Lemma 4.3.16. By the definition of the scheme,

S(hm, (sm, ym), ϕ+ ξm, [Ihmuhm ](sm, ym)) =


min{S(1)

m , S(2)
m } if nm > 0 and 0 < i < M

min{S(5)
m , S(2)

m } if nm > 0 and i = 0,M
S(3)
m if nm = 0

(C.4)
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(compare with (4.48)) where S(1)
m , S(2)

m , and S(3)
m are defined in (4.49) and

S(5)
m = − sup

w∈Whm

{
ϕnm−1
im − ϕnmim

∆τ + fnmim (w)
}
.

Similarly to Lemma 4.3.12, we have

lim
m→∞

S(5)
m = −ϕt(t, x)− sup

w∈W
{f(t, x, w)} . (C.5)

Suppose that (sm, ym)→ (t, x) where t < T and x = ±R, corresponding to the artificial
boundary condition (the other cases can be handled as in the proof of Lemma 4.3.16). Due
to symmetry, we will focus only on the case of x = +R.

Since sm → t, we may assume that sm < T (or, equivalently, nm > 0) for each m. In
this case, by (C.4),

S(hm, (sm, ym), ϕ+ ξm, [Ihmuhm ](sm, ym)) > min
(
min{S(1)

m , S(2)
m },min{S(5)

m , S(2)
m }

)
.

Taking limit inferiors of both sides of the above inequality and applying Lemma 4.3.12
and (4.50), (4.57), and (C.5),

lim inf
m→∞

S(hm, (sm, ym), ϕ+ ξm, [Ihmuhm ](sm, ym))

> min
(

min
{
−ϕt(t, x)− sup

w∈W

{1
2b(t, x, w)2ϕxx(t, x) + a(t, x, w)ϕx(t, x) + f(t, x, w)

}
,

ϕ(t, x)−Mu(t, x)
}
, min

{
−ϕt(t, x)− sup

w∈W
{f(t, x, w)} , ϕ(t, x)−Mu(t, x)

})
= F∗((t, x), ϕ(t, x), Dϕ(t, x), D2ϕ(t, x),Mu(t, x), )

where F is defined in (C.2). As in the proof of Lemma 4.3.16, this implies (4.54). (4.55) is
established similarly.

Recall that in the case of an unbounded domain, nonlocal consistency of the (untruncated)
penalty scheme in Lemma 4.3.17 was obtained by a simple modification of the proof of
nonlocal consistency of the (untruncated) direct control scheme in Lemma 4.3.16. The
situation is analogous here. Namely, to obtain the nonlocal consistency of the truncated
penalty scheme, we need only replace the definition of S(2)

m by (4.60). We summarize below.

Lemma C.2.2. The penalty scheme is nonlocally consistent (with respect to (C.2)).
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Unlike the truncated direct control and truncated penalty schemes, we cannot immedi-
ately prove the nonlocal consistency of the truncated explicit-impulse scheme. In particular,
due to the fact that the point xi + ani (w)∆τ appearing in (2.18) may be outside of the
truncated domain [−R,R], the approximation (2.18) may introduce overstepping error. In
order to get around this issue, we will have to modify the spatial grid so that the distance
between the first and last two grid points vanishes sublinearly:

Lemma C.2.3. Suppose that, instead of (C.3), the points {x0, . . . , xM} are a partition of
[−R,R] which satisfies (using Bachmann-Landau notation)

xi+1 − xi = Θ(h) for 0 < i < M − 1
xi+1 − xi = o(

√
h) ∩ ω(h) for i = 0,M − 1.

Then, the explicit-impulse scheme is nonlocally consistent (with respect to (C.2)).

Before giving the proof, recall that a function is in ω(h) if it vanishes (as h→ 0) strictly
slower than h (i.e., sublinearly) while a function is in o(

√
h) if it vanishes strictly faster

than the function
√
h. A function is in o(

√
h) ∩ ω(h) if it satisfies both these requirements.

Proof. Let Ω = [0, T ) × (−R,R) and ϕ ∈ C1,2(Ω). Let ϕni and ϕn and (hm, sm, ym, ξm)m
be defined as in the proof of Lemma 4.3.16.

Now, suppose −R < ym < R (or, equivalently, 0 < im < M). Let

‖a‖Ω×W = sup
(t,x,w)∈Ω×W

a(t, x, w) <∞.

Then,

ym + anmim (w)∆τ 6 xM−1 + ‖a‖Ω×W∆τ
= xM − (xM − xM−1) + const. ‖a‖Ω×Whm

= R− (xM − xM−1) + const. hm

so that for m sufficiently large, ym + anmim (w)∆τ 6 R since xM − xM−1 = ω(hm). By a
symmetric argument, we also have that ym+anmim (w)∆τ > −R (i.e., there is no overstepping
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error for m sufficiently large). Therefore,

interp(ϕnm−1 + ξm, ym + anmim (w)∆τ)− ϕ(τnm , ym)− ξm
∆τ

= ϕ(sm + ∆τ, ym + anmim (w)∆τ)− ϕ(sm, ym) + ξm − ξm
∆τ +O

(
(xkm+1 − xkm)2

∆τ

)

= ϕt(t, x) + a(t, x, w)ϕx(t, x) +O

(
(xkm+1 − xkm)2

∆τ + ∆τ
)

= ϕt(t, x) + a(t, x, w)ϕx(t, x) +O

(
(xkm+1 − xkm)2

∆τ + ∆τ
)
.

Now, by the o(
√
h) requirement,

O

(
(xkm+1 − xkm)2

∆τ + ∆τ
)

= o

(
(
√
hm)2

hm

)
+O(hm)→ 0 as m→∞.

The remainder of the proof follows the usual arguments as in Lemma 4.3.18.

Remark C.2.4. If a(·, R, ·) 6 0, the condition xM − xM−1 = o(
√
h) ∩ ω(h) is not needed,

since no overstepping can occur. A symmetric claim is true for the left boundary in the
case of a(·,−R, ·) > 0.
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Appendix D

Comparison principle proof

In this appendix, we prove the comparison principle in Theorem 4.3.20. Throughout this
appendix, we assume (H1)–(H4) of Chapter 4 along with the conditions on the coefficients a
and b in the statement of Theorem 4.3.20. Furthermore, we use the notation Ω = [0, T )×R,
D2ϕ = ϕxx, and Dϕ = (ϕt, ϕx).

Our first order of business is to perform a change of variables to introduce a discount
factor β > 0 into the HJBQVI. In particular, we defineMβ by

MβV (t, x) = sup
z∈Z(t,x)

{V (t,Γ(t, x, z)) +Kβ(t, x, z)}

and consider the discounted HJBQVI

min
{
−Vt + βV − sup

w∈W

{1
2b(·, w)2Vxx+a(·, w)Vx+fβ(·, w)

}
, V −MβV

}
= 0 on [0, T )× R

min {V (T, ·)− gβ, V (T, ·)−MβV (T, ·)} = 0 on R

where Kβ(t, x) = eβtK(t, x), fβ(t, x) = eβtf(t, x), and gβ(x) = eβTg(x). To write the
discounted HJBQVI in the form (4.2), we take I =Mβ and

F ((t, x), r, (q, p), A, `)

=

min
{
−q + βr − supw∈W

{
1
2b(x,w)2A+ a(x,w)p+ fβ(t, x, w)

}
, r − `

}
if t > 0

min {r − gβ(x), r − `} if t = 0.
(D.1)
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Note that setting β = 0 returns to the undiscounted HJBQVI specified by (4.6). Now,
note that if V is a viscosity subsolution of the undiscounted HJBQVI, then the function
(t, x) 7→ eβtV (t, x) is a viscosity subsolution (resp. supersolution) of the discounted HJBQVI.
Therefore, it is sufficient to prove the comparison principle for the discounted HJBQVI.

We now repeat two results regarding the intervention operator, taken from [Sey09].

Lemma D.0.1 ([Sey09, Lemma 4.3]). Let U, V ∈ B(Ω). If U > V , then MβU >
MβV (i.e., Mβ is monotone). Moreover, MβU∗ (resp. MβU

∗) is lower (resp. upper)
semicontinuous andMβU∗ 6 (MβU)∗ (resp. (MβU)∗ 6MβU

∗).

Lemma D.0.2 ([Sey09, Lemma 5.5]). Let U, V ∈ B(Ω). Then,

Mβ(λU + (1− λ)V ) 6 λMβU + (1− λ)MβV for 0 6 λ 6 1

(i.e.,Mβ is convex).

The following, also to be used in the proof of comparison, is a well-known result from
real analysis:

Proposition D.0.3 ([KN00, Problem 2.4.17]). Let (an)n and (bn)n be sequences of nonneg-
ative numbers. If an converges to a positive number a, lim supn→∞ anbn = a lim supn→∞ bn.

We now give a result that describes the regularity of the “non-impulse” part of the
discounted HJBQVI. Below, we use � to denote the positive semidefinite order.

Lemma D.0.4. Let H be given by

H(t, x, p, A) = − sup
w∈W

{1
2b(x,w)2A+ a(x,w)p+ fβ(t, x, w)

}

(compare with (D.1)). Then, there exists a positive constant C such that for each compact
set D ⊂ R, there exists a modulus of continuity $ such that for all (t, x,X), (s, y, Y ) ∈
[0, T ]×D × R satisfying (

X
−Y

)
� 3α

(
1 −1
−1 1

)
and all positive constants α and ε,

H(s, y, α (x− y)− εy, Y − ε)−H(t, x, α (x− y) + εx,X + ε)
6 C (α |x− y|2 + ε (1 + |x|2 + |y|2)) +$(|(t, x)− (s, y)|).
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Proof. First, note that

H(s, y, α (x− y)− εy, Y − ε)−H(t, x, α (x− y) + εx,X + ε)

6 sup
w∈W


1
2
(
b(x,w)2X − b(y, w)2Y

)
+ ε

2
(
b(x,w)2 + b(y, w)2

)
+α (a(x,w)− a(y, w)) (x− y) + ε (a(x,w)x+ a(y, w)y)

+$(|(t, x)− (s, y)|)

(D.2)
where we have used the fact that since [0, T ]×D ×W is compact and f is continuous, we
can find a modulus of continuity $ satisfying
fβ(t, x, w)− fβ(s, y, w) 6 $(|(t, x)− (s, y)|) for (t, x), (s, y) ∈ [0, T ]×D and w ∈ W.

Omitting the dependence on w for brevity, we can write the argument in the supremum in
(D.2) as

1
2
(
b(x)2X − b(y)2Y

)
+ ε

2
(
b(x)2 + b(y)2

)
+ α (a(x)− a(y)) (x− y) + ε (a(x)x+ a(y)y) .

(D.3)
Now, recall that any Lipschitz function `(·) satisfies

|`(x)− `(y)| 6 const. |x− y| and |`(x)| 6 const. (1 + |x|) .
Therefore, since a is Lipschitz, we have

(a(x)− a(y)) (x− y) 6 |a(x)− a(y)| |x− y| 6 const. |x− y|2 .
and

a(x)x+ a(y)y 6 |a(x)| |x|+ |a(y)| |y| 6 const. ((1 + |x|) |x|+ (1 + |y|) |y|)
6 const. (1 + |x|2 + |y|2).

Similarly, since b is Lipschitz, we have
b(x)2 + b(y)2 6 const. ((1 + |x|)2 + (1 + |y|)2) 6 const. (1 + |x|2 + |y|2).

and

b(x)2X − b(y)2Y = trace
((

b(x)2 b(x)b(y)
b(y)b(x) b(y)2

)(
X
−Y

))

6 3α trace
((

b(x)2 b(x)b(y)
b(y)b(x) b(y)2

)(
1 −1
−1 1

))
= 3α (b(x)− b(y))2

6 3α const. (1 + |x|2 + |y|2).
Now, the desired result follows by applying the above inequalities to (D.3).
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The next result establish that the discounted HJBQVI has no boundary layer (recall
Example 4.1.3) at time t = T . The proof follows closely [FTW11, Remark 3.2], which
establishes the absence of a boundary layer for a Hamilton-Jacobi-Bellman (HJB) equation.
Lemma D.0.5. Let V be a subsolution (resp. supersolution) of the discounted HJBQVI.
Then, for all x ∈ R,

min {V (T, x)− gβ(x), V (T, x)−MβV (T, x)} 6 0
(resp. min {V (T, x)− gβ(x), V (T, x)−MβV (T, x)} > 0).

Proof. Let V be a subsolution. Let ϕ ∈ C1,2(Ω) and (T, x) be a maximum point of V − ϕ.
Define ψ(t, ·) = ϕ(t, ·) + c(T − t) where c is a positive constant, to be chosen later. Since
c(T −t) is nonnegative, the point (T, x) is also a maximum point of V −ψ. Since ψt = ϕt−c,
it follows that

F∗((T, x), V (T, x), Dψ(T, x), D2ψ(T, x), [IV ](T, x)) = min
{
−ϕt(T, x) + βV (T, x)

−H(T, x, ψx(T, x), ψxx(T, x)) + c, V (T, x)− gβ(x), V (T, x)−MβV (T, x)
}
6 0

where F is given by (D.1), I =Mβ, and H is defined in Lemma D.0.4. By picking c large
enough,

min {V (T, x)− gβ(x), V (T, x)−MβV (T, x)} 6 0,
as desired. The supersolution case is handled symmetrically.

The next lemma allows us to construct a family of “strict” supersolutions {Vλ}λ∈(0,1) of
the discounted HJBQVI by taking combinations of an ordinary supersolution and a specific
constant. A similar technique is used for a related problem in [Ish93, Lemma 3.2].
Lemma D.0.6. Let V be a supersolution of the discounted HJBQVI. Define

c = max{(‖fβ‖∞ + 1)/β, ‖gβ‖∞ + 1}

and ξ = min{1, K0} where K0 = − supt,x,zK(t, x, z) > 0. Let Vλ = (1 − λ)V + λc where
0 < λ < 1. Then, for all ϕ ∈ C1,2(Ω) and (t, x) ∈ Ω such that Vλ − ϕ has a local maximum
(resp. minimum) at (t, x), we have

F ((t, x), Vλ(t, x), Dϕ(t, x), D2ϕ(t, x), [IVλ](t, x)) > λξ (D.4)

where F is given by (D.1) and I =Mβ. Moreover, for all x ∈ R,

min {Vλ(T, x)− gβ(x), Vλ(T, x)−MβVλ(T, x)} > λξ. (D.5)
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Proof. Let (t, x, ψ) ∈ Ω×C1,2(Ω) be such that Vλ(t, x)− ψ(t, x) = 0 is a local minimum of
Vλ − ψ. Letting λ′ = 1− λ for brevity and ϕ = (ψ − λc)/λ′, it follows that (t, x) is also a
local minimum point of V − ϕ since

λ′ (V − ϕ) = λ′ (V − (ψ − λc) /λ′) = λ′V + λc− ψ = Vλ − ψ.

Since V is a supersolution, we can find w ∈ W such that

0 > λ′
(
ϕt(t, x)− βV (t, x) + 1

2b(x,w)2ϕxx(t, x) + a(x,w)ϕx(t, x) + fβ(t, x, w)
)

= ψt(t, x)− β (Vλ(t, x)− λc) + 1
2b(x,w)2ψxx(t, x) + a(x,w)ψx(t, x) + λ′fβ(t, x, w)

= ψt(t, x)− βVλ(t, x) + 1
2b(x,w)2ψxx(t, x) + a(x,w)ψx(t, x) + fβ(t, x, w)

+ λ (βc− fβ(t, x, w))

> ψt(t, x)− βVλ(t, x) + 1
2b(x,w)2ψxx(t, x) + a(x,w)ψx(t, x) + fβ(t, x, w) + λξ (D.6)

where the last inequality follows from

βc− fβ(t, x, w) > β (‖fβ‖∞ + 1) /β − ‖fβ‖∞ = 1 > ξ.

Now, note that the convexity ofMβ (Lemma D.0.2) yields

Vλ −MβVλ = Vλ −Mβ(λ′V + λc) > Vλ − λ′MβV − λMβc

where we have, with a slight abuse of notation, used c in the above to denote a constant
function (i.e., c(t, x) = c). Note also that, for each point (t, x),

c−Mβc(t, x) = c− sup
z∈Z(t,x)

{c+K(t, x, z)} > K0 > ξ.

Now, using once again the fact that V is a supersolution along with Lemma D.0.5, we have
that V >MβV . Therefore,

Vλ −MβVλ > Vλ − λ′V − λMβc > λ (c−Mβc) > λξ. (D.7)

Now, let x ∈ R be arbitrary. Using once again the fact that V is a supersolution along
with Lemma D.0.5, we have that V (T, x) > gβ(x). Therefore,

Vλ(T, x)− gβ(x) = λ′ (V (x)− gβ(x)) + λ (c− gβ(x)) > λ (c− gβ(x)) > λξ (D.8)
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where the last inequality follows from

c− gβ(x) > ‖gβ‖+ 1− ‖gβ‖∞ = 1 > ξ.

The proof is concluded by noting that inequalities (D.6) and (D.7) imply (D.4) while
inequalities (D.7) and (D.8) imply (D.5).

We are finally ready to prove the comparison principle. The main tool that we use is
the Crandall-Ishii lemma, for which we refer to the “User’s Guide to Viscosity Solutions”
[CIL92, Theorem 3.2]. In the proof, we use the notation P2,±

Ω and P
2,±
Ω to denote the

parabolic semijets defined in [CIL92, Section 8].

Proof of Theorem 4.3.20. Let U be a bounded subsolution and V be a bounded super-
solution of the discounted HJBQVI. Let c be given as in Lemma D.0.6 and define
Vm = (1− 1/m)V + c/m for all integers m > 1. Note that

sup
Ω
{U − Vm} = sup

Ω
{U − V + (V − c) /m} > sup

Ω
{U − V } − (‖V ‖∞ + c) /m.

Therefore, to prove the comparison principle, it is sufficient to show that U − Vm 6 0 along
a subsequence of (Vm)m We establish it for all m.

To that end, fix m and suppose δ = supΩ{U − Vm} > 0. Letting ν > 0, we can find
(tν , xν) ∈ Ω such that U(tν , xν)− V (tν , xν) > δ − ν. Let

ϕ(t, x, s, y) = α

2
(
|t− s|2 + |x− y|2

)
+ ε

2
(
|x|2 + |y|2

)
be a smooth function parameterized by constants α > 0 and 0 < ε 6 1. Further let
Φ(t, x, s, y) = U(t, x)− Vm(s, y)− ϕ(t, x, s, y) and note that

sup
(t,x,s,y)∈Ω2

Φ(t, x, s, y) > sup
(t,x)∈Ω

Φ(t, x, t, x)

= sup
(t,x)∈Ω

{
U(t, x)− Vm(t, x)− ε |x|2

}
> U(tν , xν)− Vm(tν , xν)− ε |xν |2

> δ − ν − ε |xν |2 .

We henceforth assume ν and ε are small enough (e.g., pick ν 6 δ/4 and ε 6 δ/(4|xν |2)) to
ensure that δ − ν − ε|xν |2 is positive.
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Since U and Vm are bounded (and thus trivially of subquadratic growth), it follows that
Φ admits a maximum at (tα, xα, sα, yα) ∈ Ω2 such that

‖U‖∞ + ‖Vm‖∞ > U(tα, xα)− Vm(sα, yα) > δ − ν − ε|xν |2 + ϕ(tα, xα, sα, yα) (D.9)

Since −ε|xν |2 > −|xν |2, the above inequality implies that

α
(
|tα − sα|2 + |xα − yα|2

)
+ ε

(
|xα|2 + |yα|2

)
is bounded independently of α and ε (but not of ν since |xν | may be arbitrarily large).

Now, for fixed ε, consider some sequence of increasing α, say (αn)n, such that αn →∞.
To each αn is associated a maximum point (tn, xn, sn, yn) = (tαn , xαn , sαn , yαn). By the dis-
cussion above, {(tn, xn, sn, yn)}n is contained in a compact set. Therefore, (αn, tn, xn, sn, yn)n
admits a subsequence whose four last components converge to some point (t̂, x̂, ŝ, ŷ). With
a slight abuse of notation, we relabel this subsequence (αn, tn, xn, sn, yn)n, forgetting the
original sequence. It follows that x̂ = ŷ since otherwise |x̂− ŷ| > 0 and Proposition D.0.3
implies

lim sup
n→∞

{
αn|xn − yn|2

}
= lim sup

n→∞
αn |x̂− ŷ|2 =∞,

contradicting the boundedness discussed in the previous paragraph. The same exact
argument yields t̂ = ŝ. Moreover, letting ϕn = ϕ(tn, xn, sn, yn;αn),

0 6 lim sup
n→∞

ϕn 6 lim sup
n→∞

{U(tn, xn)− Vm(sn, yn)} − δ + ν + ε|xν |2

6 U(t̂, x̂)− Vm(t̂, x̂)− δ + ν + ε|xν |2 (D.10)

and hence
0 < δ − ν − ε|xν |2 6 U(t̂, x̂)− Vm(t̂, x̂). (D.11)

By Lemma D.0.6, Vm(sn, yn)−MβVm(sn, yn) > ξ/m. Suppose, in order to arrive at a con-
tradiction, (αn, tn, xn, sn, yn)n admits a subsequence along which U(tn, xn)−MβU(tn, xn) 6
0. As usual, we abuse slightly the notation and temporarily refer to this subsequence as
(αn, tn, xn, sn, yn)n. Combining the inequalities Vm(sn, yn) −MβVm(sn, yn) > ξ/m and
U(tn, xn)−MβU(tn, xn) 6 0, we get

−ξ/m > U(tn, xn)− Vm(sn, yn)− (MβU(tn, xn)−MβVm(sn, yn))
> δ − ν − ε|xν |2 +MβVm(sn, yn)−MβU(tn, xn).

Taking limit inferiors with respect to n → ∞ of both sides of the above inequality and
using the semicontinuity established in Lemma D.0.1 yields

−ξ/m > δ − ν − ε|xν |2 +MβVm(t̂, x̂)−MβU(t̂, x̂).
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It follows, by the upper semicontinuity of U , that the supremum inMβU(t̂, x̂) is achieved
at some ẑ ∈ Z(t̂, x̂). Therefore,

−ξ/m > δ − ν − ε|xν |2 + Vm(t̂,Γ(t̂, x̂, ẑ))− U(t̂,Γ(t̂, x̂, ẑ)) > −ν − ε|xν |2.

Taking ν and ε small enough yields a contradiction. By virtue of the above, we may
assume that our original sequence (αn, tn, xn, sn, yn)n whose four last components converge
to (t̂, x̂, ŝ, ŷ) satisfies U(tn, xn)−MβU(tn, xn) > 0 for all n.

Now, suppose t̂ = T . By Lemma D.0.6, Vm(T, x̂)−MβVm(T, x̂) > ξ/m and Vm(T, x̂)−
gβ(x̂) > 0. If U(T, x̂) −MβU(T, x̂) 6 0, we arrive at a contradiction by an argument
similar to the argument in the previous paragraph. It follows that U(T, x̂)− gβ(x̂) 6 0 and
hence U(T, x̂)− Vm(T, x̂) 6 0, contradicting (D.11). We conclude that t̂ < T so that we
may safely assume (tn, xn, sn, yn) ∈ Ω for all n.

Define the shorthand derivative notation

∂tϕn = ∂ϕ

∂t
(tn, xn, sn, yn;αn)

and ∂xϕn, ∂sϕn, and ∂yϕn similarly. We are now in a position to apply the Crandall-Ishii
lemma [CIL92, Theorem 3.2], which implies the existence of Xn, Yn ∈ R satisfying

(∂tϕn, ∂xϕn, Xn + ε) ∈P
2,+
Ω U(tn, xn), (∂sϕn, ∂yϕn, Yn − ε) ∈P

2,−
Ω Vm(sn, yn),

and
−3αn

(
1

1

)
�
(
Xn

−Yn

)
� 3αn

(
1 −1
−1 1

)
.

Due to our choice of ϕ, we get

∂tϕn = αn (tn − sn) = −∂sϕn

along with

∂xϕn = αn(xn − yn) + εxn and ∂yϕn = −αn(xn − yn) + εyn.

Therefore, since U(tn, xn)−MβU(tn, xn) > 0,

−∂tϕn + βU(tn, xn) +H(tn, xn, αn(xn − yn) + εxn, Xn + ε) 6 0
−∂tϕn + βVm(sn, yn) +H(sn, yn, αn(xn − yn)− εyn, Yn − ε) > 0 (D.12)
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where H is defined in Lemma D.0.4. We can combine the inequalities in (D.12) and apply
Lemma D.0.4 to get

0 6 H(sn, yn, αn(xn − yn)− εyn, Yn − ε)−H(tn, xn, αn(xn − yn) + εxn, Xn + ε)
+ β (Vm(sn, yn)− U(tn, xn))

6 C (αn|xn − yn|2 + ε(1 + |xn|2 + |yn|2)) +$(|(tn, xn)− (sn, yn)|)
+ β (Vm(sn, yn)− U(tn, xn))

6 2C (ϕn + ε) +$(|(tn, xn)− (sn, yn)|) + β (Vm(sn, yn)− U(tn, xn)) (D.13)

where $ is a modulus of continuity. Moreover, by (D.9),

Vm(sn, yn)− U(tn, xn) 6 −δ + ν + ε|xν |2, (D.14)

and by (D.10),
lim sup
n→∞

ϕn 6 ν + ε|xν |2. (D.15)

Applying (D.14) to (D.13), taking the limit superior as n→∞ of both sides, and finally
applying (D.15) to the resulting expression yields

δ 6 const.
(
ν + ε+ ε|xν |2

)
(const. above depends on β and C). Since δ is positive, picking ν small enough and taking
ε→ 0 in the above inequality yields the desired contradiction.
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Appendix E

Green’s function representation proof

In this appendix, we prove the Green’s function representation in Lemma 6.2.11.

Proof of Lemma 6.2.11. We proceed by a backwards induction argument on `.
Suppose that V (ξ`+1−, ·) is continuous for some ` satisfying 0 6 ` 6 L. Now, fix q > 0

and define the functions

ã(τ) = a(ξ`+1 − τ)
b̃(τ) = b(ξ`+1 − τ)

f̃(τ, y) = f(ξ`+1 − τ, exp y, q)
ũ(y) = V (ξ`+1−, exp y, q).

Now, let ∆ = ξ`+1 − ξ` and define the function u : [0,∆]× R→ R by

u(τ, y) =

V (ξ`+1 − τ, exp y, q) if τ > 0
ũ(y) if τ = 0.

(E.1)

By performing a change of variables in the linear PDE (6.11a), we find that u satisfies the
initial value problem

uτ −
1
2 b̃

2uyy −
(
ã− 1

2 b̃
2
)
uy − f1 = 0 on (0,∆]× R (E.2a)

u(0, ·)− ũ = 0 on R. (E.2b)
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Since V satisfies a polynomial growth condition (recall Definition 6.2.10), u satisfies an
exponential growth condition:

|u(τ, y)| = |V (ξ`+1 − τ, exp y, q)| 6 C(q)(1 + | exp y |d) 6 C(q)(1 + exp(d|y|))
6 2C(q) exp(d|y|).

Therefore, by [Fri64, Chapter 1, Theorems 12 and 16], u can be written as a sum of
convolutions involving the Green’s function Ψ of the PDE (E.2a):

u(τ, y) =
∫
R

Ψ(τ, 0, y, y′)ũ(y′)dy′ +
∫ τ

0

∫
R

Ψ(τ, τ ′, y, y′)f̃(τ ′, y′)dτ ′dy′ for τ > 0. (E.3)

Since the coefficients ã and b̃ do not depend on the space variable y, the Green’s function
has the special form [Fri64, Chapter 9, Theorem 1]

Ψ(τ, τ ′, y, y′) = Ψ(τ, τ ′, y′ − y). (E.4)

We can employ (E.3) and (E.4) to obtain

u(τ, y) =
∫
R

Ψ(τ, 0, y′ − y)ũ(y′)dy′ +
∫ τ

0

∫
R

Ψ(τ, τ ′, y′ − y)f̃(τ ′, y′)dτ ′dy′ for τ > 0.

Now, perform the change of variables y′ = y + log s′ to get

u(τ, y) =
∫ ∞

0
Ψ(τ, 0, log s′)ũ(y + log s′) 1

s′
ds′

+
∫ τ

0

∫ ∞
0

Ψ(τ, τ ′, log s′)f̃(τ ′, y + log s′) 1
s′
dτ ′ds′ for τ > 0.

By the relation (E.1), we can rewrite the above equation in terms of V :

V (t, s, q) =
∫ ∞

0
Ψ(ξ`+1 − t, 0, log s′)ũ(log(ss′)) 1

s′
ds′

+
∫ ξ`+1−t

0

∫ ∞
0

Ψ(ξ`+1 − t, τ ′, log s′)f̃(τ ′, log(ss′)) 1
s′
dτ ′ds′ for ξ` 6 t < ξ`+1 and s > 0.

We can simplify this expression even further by replacing ũ and f̃ by their definitions to
obtain (6.15). Lastly, if ` > 0, then V (ξ`−, ·) =MV (ξ`, ·) is continuous by (H3).

The desired result now follows by induction since V (T−, ·) = g is presumed to be
continuous.
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Appendix F

Mortality data

The mortality data used in the numerical results of Chapter 6 is obtained from [Pas+05].
The mortality table, reproduced below, is specified in terms of 1qx: the probability that a
person aged x will die within 1 year.

x 1qx x 1qx x 1qx x 1qx x 1qx

65 0.008886 66 0.009938 67 0.011253 68 0.012687 69 0.014231
70 0.015887 71 0.017663 72 0.019598 73 0.021698 74 0.023990
75 0.026610 76 0.029533 77 0.032873 78 0.036696 79 0.041106
80 0.046239 81 0.052094 82 0.058742 83 0.066209 84 0.074583
85 0.083899 86 0.094103 87 0.105171 88 0.116929 89 0.129206
90 0.141850 91 0.154860 92 0.168157 93 0.181737 94 0.195567
95 0.209614 96 0.223854 97 0.238280 98 0.252858 99 0.267526
100 0.278816 101 0.293701 102 0.308850 103 0.324261 104 0.339936
105 0.355873 106 0.372069 107 0.388523 108 0.405229 109 0.422180
110 0.439368 111 0.456782 112 0.474411 113 0.492237 114 0.510241
115 0.528401 116 0.546689 117 0.565074 118 0.583517 119 0.601976
120 0.620400 121 1.000000

Table F.1: DAV 2004R mortality table for a 65 year old German male

Assuming that the holder of a GLWB is 65 years old at contract inception (i.e., t = 0),
the initial condition R(0) = 1 and recurrence

R(n) = R(n− 1) (1− 1q65+n−1) if n > 0

specify the value of R at integer times. R is extended to noninteger times by assuming it
is piecewise linear.
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