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Abstract

In this thesis, we present the exploration and evaluation of a gesture interaction
paradigm performed with arms at rest at the side of one’s body. This gesture stance is
informed persisting challenges in mid-air arm gesture interactions in relation to fatigue
and social acceptability. The proposed arms-down posture reduces physical effort by
minimizing the shoulder torque placed on the user. While this interaction posture has
been previously explored, the gesture vocabulary in previous research has been small and
limited. The design of this gesture interaction is motivated by the ability to provide rich
and expressive input; the user performs gestures by moving the whole arm at the side
of the body to create two-dimensional visual traces, as in hand-drawing in a bounded
plane parallel to the ground. Within this space, we present the results of two studies
that investigate the use of side-gesture input for interaction. First, we explore the users’
mental model for using this interaction by conducting an elicitation study on a set of
everyday tasks one would perform on a large display in public to semi-public contexts.
The takeaway from this study presents the need for a dynamic and expressive set of
gesture vocabulary including ideographic and alphanumeric gesture constructs that can
be combined or chained together.

We then explore the feasibility of designing such a gesture recognition system using
commodity hardware and recognition techniques, dubbed WatchTrace, which supports
alphanumeric gestures of up to length three, providing a vibrant, dynamic, and feasible
gestural vocabulary. Finally, we explore potential approaches to improve the recognition
through the use of adaptive thresholds, n-best lists, and changing reject rates among other
conventional techniques in the field of gesture classification.
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Chapter 1

Introduction

Free-space interactions, such as gestures, involve using kinematic movements of various
parts of the user’s body such as the arm or the hand to interact and manipulate computer
systems. Interaction with ubiquitous displays using free-space gestures has been an active
area of research [58, 59, 2]. Free-space gesture techniques allow users to quickly and
seamlessly interact with displays in their environment from a distance. Natural hand and
arm gestures are most commonly used as a form of free-space gestural interaction to
perform a natural movement as a metaphor for a task or an action. The technological
advancement of ubiquitous displays, especially with the growth and miniaturization of the
internet-of-things (IoT) devices [4, 48, 40] has also increased the space and complexity
of actions available to the user.

Motion tracking devices and sensors have continually advanced its capability to
identify gestural input both quickly and accurately. Commercial gesture recognition
systems take various approaches for tracking and identifying motion gestures: camera-
based computer vision techniques [45, 61], sensing electrical activity of the skeletal
muscles through electromyography (EMG) [26], and measuring arm and hand kinetic
force through the accelerometer and other sensors forming the inertial measurement unit
(IMU) [83, 60, 17].

1.1 Motivation

Researchers have long tried to quantify the effortful nature of gesture-based communica-
tion with metrics such as consumed endurance [27], characterizing the effort one must
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expend to support interaction. Noise is another challenge in free space interaction as
it is difficult to infer user motions and distinguish between intended and unintended
input in lieu of additional constraints placed in the system to guide or segment the input.
Finally, sensing technology is challenging. Large scale gestures are easy to sense from
afar, but small scale and subtle movements require spatial, size, or kinematic constraints.
Direct-touch input, as an alternative, is less desirable in public spaces, considering issues
such as occlusion and a reduced inclination to share the display at arm’s length [73]. It
also poses some of the same challenges involving effort; ubiquitous displays doubling as
an information panel and an interactive surface provide minimal rest surface area as many
of them are oriented perpendicular to the ground, at or above eye-level. The phenomena
associated with the fatiguing nature of such mid-air or touch-based interactions directly in
front of the user is termed the gorilla-arm syndrome [11]. Less fatiguing systems explore
the tracking of finger gestures and poses for command invocation, but assume the use of
supplementary finger and hand-tracking devices and cameras. Generally, gestural systems
or devices are single-function or proprietary such as an armband (Myo) or a camera
(Kinect, Leap Motion) as an external augmentation to the user or the environment. Finally,
Social acceptability is another open issue with mid-air gestural interactions; users consider
cultural appropriateness when performing gestures that are explicit and/or large in nature
[76, 50].

1.2 At-Your-Side Paradigm

This thesis explores the domain of gestural input for ubiquitous computing environments.
To address the aforementioned issues, we explore the space of at-your-side gestural input
where the user can perform complex two-dimensional gestures on a plane parallel to
the ground, with the arm resting at one’s side of the body. The underlying motivations
for this interaction modality include: reducing musculoskeletal fatigue involved with
prolonged interactions using an arms down posture, exploring a more socially considerate
and a subtle gesture space, and utilizing the capabilities provided by the smartwatch
and wearable devices platform in order to minimize the use of supplementary tracking
hardware and highly augmented environments. The at-your-side paradigm not only
encapsulate the physical arms down posture of the interaction but also the gesture space
using the smartwatch, a representation of a personalized, multi-purpose, and always-on
hardware worn by the user.

Specifically, the following research questions are explored:
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• How should we design gesture sets for at-one’s-side gestural input? What sort of
gestures make sense? What are the kinematic characteristics of side-gestures?

• Can users reproduce gestures with sufficient accuracy that the gestures can be
reliably interpreted? What error rate could be expected from custom gesture sets
with user-trained, user-specific gestures?

• How can we extend the vocabulary of gestures to produce large gesture sets that
remain memorable and reproducible for the user? Simultaneously, what is the cost
in accuracy as the space of allowable gestures gets larger?

1.3 Contributions

Overall, this thesis focuses on at-your-side gestural interaction that minimizes consumed
endurance by allowing users to interact with their arm at rest at their side. Alongside
this, we focus on user consensus both in form and performance for these gestures. We
explore whether there is a consensus set of gestures or, at least, a theme of consistency
among end-users. Informed by research contributions such as the Gunslinger system [45],
and the Legacy Bias observation [65], we hope to further aid interaction designers in
incorporating these highly subtle, low effort input gestures. We contribute:

• A gesture paradigm to address three specific issues: technical issues related to
movement capture, social acceptance of gestural interactions, and user fatigue for
prolonged interactions. Informed by all three constraints, we describe a design space
to allow for gesture input using an arms-down posture, allowing for temporal gesture
tracing on a two-dimensional plane, using on-board sensors to capture relative user
arm movement. These design characteristics constitute an “at-your-side” gesture
paradigm.

• A characterization of user behaviour and gesture design guidelines through a gesture
elicitation study. The elicitation study shows a relatively low level of consensus in
at-your-side interactions. Given the low-level of consensus, one question we had
was whether or not it would be practical for at-your-side gestures to be user-specific.

• A feasibility probe into implementing a functional system within this paradigm with
low training overhead to explore the effectiveness for the end-user. The larger issue
involved in in this exploration is whether, with two or three templates, a user can
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create a sufficiently large gesture vocabulary and then reliably expect recognition
from that vocabulary. This depends specifically on the relative precision (or lack of
precision) in multiple instances of any gesture, such as how much neurophysiological
and sensor noise is present in any captured signal and whether that noise it too high
to support reliable recognition. Using commodity hardware and a simple template-
based recognition algorithm, we demonstrate the feasibility of prototype systems
that can accurately recognize complex gestures. We also develop a technique for
multi-character gestures that allows users to leverage n-grams of gestures to create
more complex commands.

In addition, the work in this thesis answers each of the above research questions.
First, considering gesture set design, our elicitation study does show that gesture sets
that leverage both iconic forms and alphanumeric forms have value, in large part due to
low consensus on a standard gesture set. As well, pilot studies show that simple shapes
and alphanumeric gestures can be effectively recognized with over 90% accuracy with
common recognizer optimization and rejection techniques. Finally, we show that complex
gesture sets, dynamically created by combining one or more basic gesture templates, can
also achieve the same level of ‘online’ accuracy with continuous, noisy data input.

1.4 Outline

The rest of the thesis is organized as follows:

• Chapter two describes the previous work in the domain of arm gesture input, focus-
ing on various techniques for capturing arm movement, classification approaches,
and challenges with gesture-based input modalities such as the Midas touch problem
and the Gorilla-arm syndrome related to fatigue. We highlight existing research
when it comes to the size of the gesture sets in this domain and touch on research
for creating socially acceptable interactions.

• Chapter three describes an at-your-side gesture interaction paradigm, motivated by
interaction design challenges associated with fatigue and social acceptance. We also
discuss, in detail, how how the user can ‘trace’ a large variety of gestures using the
arm in a low-endurance at-rest posture. We then describe a prototype system using
readily-available hardware, with minimal augmentations and computationally-cheap
classification techniques.

4



• Chapter four describes the design of an elicitation study to understand the users’
behavior and preferences for gestures in this framework. We discuss the implications
from the elicitation study, especially the need for diverse and personalizeable gesture
sets with a preference for alphanumeric constructs that can easily be communicated.

• Chapter five describes the design and evaluation of the prototype system in a
laboratory setting. We show the results of an exploratory pilot-study to perform
offline recognition on the $1 and the Palm Graffiti unistroke gesture sets. We then
perform a more extensive evaluation of longer, dynamically generated bigram and
trigram gesture templates to stress-test the accuracy of the sytem.

• Chapter six concludes the thesis by summarizing the work and outlining the ways of
extending the research in the future and areas to explore.
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Chapter 2

Related Work

2.1 Overview

In this chapter, we review prior research into implementation techniques for free space
gestural interfaces. We survey the breadth of implementation approaches as per the
software and hardware requirements. We then discuss the real-world design tradeoffs
for physiological factors such as fatigue and limits to the vocabulary and the degree of
expression available to the user.

2.2 Implementation of Arm Gesture Input

In the domain of mid-air, arm-based gesture input, the system for collecting and processing
input data defines its efficacy in various environments and conditions. In this section, we
present the tradeoffs and challenges with building gesture interaction systems. Section
2.2.1 describes the diversity of hardware approaches to capture arm movement data
that later informs the design of the software for filtering and processing. Section 2.2.2
details the challenge to extract intended data from noisy and continuous input, something
common to all such systems. The rest of the section provides a brief overview of the
software design for classifying gestures, detailing the requirements to provide low-latency
and high precision feedback.
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2.2.1 Movement Capture

2.2.1.1 Optical Systems

Computer Vision (CV) based systems, similar to human visual systems, deal with under-
standing and recognizing the visual structure of images and videos. Through the use of a
camera, such systems are used to detect hand postures by analyzing its similarity to a set
of training images. Active gesture recognition sub-fields for vision-based systems include
sign language interpretation. Thang et al. [70] use camera-based position trackers to
capture hand movements and generate a dataset of 95 distinct American Sign Language
(ASL) signs.

Commercial products such as the Microsoft Kinect [48] and Leap Motion [40] perform
three-dimensional object tracking through a set of infrared sensors. Tang [68] uses the
Kinect hardware for gesture recognition by identifying the user hand in a given image,
classifying the hand into a set of predefined poses, and classifying a temporal sequence of
poses as a gesture.

While a plethora of vision-based hardware exists, some challenges remain with this
approach. For such interactions, existing display systems need to be augmented with
tracking hardware. Augmenting the environment may especially be challenging in public
spaces with rigid fixtures.

Occlusion is another issue for vision-based systems. For mid-air interactions, the user
arm always needs to be in a direct line-of-sight to the tracking hardware. While infrared
cameras can help with tracking objects in various lighting conditions, the camera field-
of-view limits tracking out-of-sight and multiple of objects. Liu et al. [45] have tried to
minimize the line-of-sight and occlusion issues by strapping the tracking system directly
on the user.

2.2.1.2 Non-optical and Inertial Systems

While approaches to measuring musculoskeletal activity for motion capture vary de-
pending on the sensors and instrumentation available at one’s disposal, the two primary
techniques include electromyography (EMG), and through the usage of inertial measure-
ment units (IMUs) due to its availability in commodity hardware.

2.2.1.2.1 Electromyography (EMG)
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Figure 2.1: Myo arm band recognizes five basic distinct gestures [67].

Electromyography (EMG) has recently gained prominence in the domain of gesture
recognition. This technique is used to record musculoskeletal activity by measuring the
electrical response produced by the skeletal muscles. Consumer products such as the Myo
armband device [69] use EMG sensors, combined with a gyroscope, accelerometer, and
magnetometer, as a mechanism for sensing electrical activity in the forearm sensors to
classify a set of five gestures. Figure 2.1 shows the gestures detected by the Myo armband.

Xiong et al. [81] use postures detected by EMG sensors to perform mouse actions and
use the inertial measurement sensors to perform mouse navigation. Similarly, Haque et al.
propose a pointing technique using the Myo armband, Myopoint, as an on-body alternative
to camera-based approaches [26]. This technique uses the coarse arm movements for
pointer navigation and fine finger movements for pointer actions such as clicks.

EMG techniques eliminate environment augmentation and avoid the problem of
occlusion and lighting in vision-based systems. However, EMG sensors are far from a
commodity; the users need to purchase specialized EMG devices such as the Myo armband
and equip them as needed given the limited battery life in both active and standby mode.

2.2.1.2.2 Intertial Measurement Unit (IMU)

The rapidly growing ubiquity of smartphones, smartwatches, and activity trackers has
had a direct implication in the gesture recognition domain. Such devices come equipped
with a variety of motion sensors, an accelerometer and a gyroscope at the very least,
comprising the inertial measurement unit (IMU). The IMU is used to detect the relative
inertial movement and absolute orientation changes in the device. While the primary
purpose for the IMU in such devices is for recognizing various motion-based activities
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such as walking, running, and exercising, recent work has explored in using the IMU for
mid-air gestures. Watchpoint by Katsuragawa et al. [31] and Smartcasting by Pietroszek
et al. [58] are examples of using the hardware IMU for exploration of the smartwatch
and the smartphone devices for distant pointing.

Porzi et al. use the IMU in the smartwatch for assisting persons with visual impairments
[60]. They evaluate the performance of the system through a set of eight abstract-shape,
two-dimensional gestures performed by user’s arm movement to demonstrate its viability.

Commodity hardware such as the smartwatch can be altered in software and hardware
to enhance sensing capabilities. Laput et al. stretch the built-in accelerometer by increasing
its sampling rate to 4000 Hz to analyze micro-vibrational patterns for bio-acoustic sensing
[39]. Additional sensor systems can be added on or around the device for detecting
microgestures and finger postures [82, 13].

The widespread availability of the IMU in commodity smartwatch hardware makes
it an opportunistic form factor to sense gestural input. The “always on” and “always
available” capabilities further makes the watch a convenient and inexpensive platform.
Research has leveraged these advantages through various interaction paradigms [14, 31]
and developed toolkits [28] for the ubiquity of smart embedded devices.

2.2.2 Segmentation of Gestures and the Midas Touch Effect

A major factor in the adoption of motion gestures is its usability in real-world applications:
a gesture system should be optimized to be resource- and power-conscious, and its ability
to filter unintended motions and noise to acquire clean, segmented gesture data. In
interaction design, this challenge is further exacerbated by the dichotomy between the
interpreting the user’s arm movement as an input modality or to navigate in the user
interface, termed the Midas touch effect [5].

A gesture delimiter helps in both such cases where a user can perform a pre-defined
delimiter, in the form of a gesture or other means to trigger or activate a resource-intensive
gesture recognition session. Within the session, a delimiter can also segment between two
distinct gesture tasks. Figure 2.2 illustrates this process of initiating gesture sessions and
segmenting gestures.

The implementation of a delimiter can vary in nature and comes with different
tradeoffs. An explicit delimiter, such as a pre-defined motion gesture, can increase the
confidence of a gesture system in identifying clean gesture segments. Ruiz and Li [63]
propose a “double flip” input delimiter for smartphones as being extremely resistant to

9



Session 
Inactive

Delimiter Session 
Active

Delimiter Segment 
+ 

Classify

Delimiter

Gesture

Figure 2.2: State machine for gesture session activation and segmentation within gestures.

false positives. The tradeoff for such explicit gesture delimiters are in degraded user
experience: the system expects that the user must remember to perform a pre-defined
gesture to segment input. Motion delimiters can also be difficult to generalize across a
variety of users with different physiological characteristics and handedness.

Automatic segmentation can eliminate the need for explicit motion delimiters by
putting the onus on the system to dynamically segment gestures. Kratz and Back explore,
through the use of machine learning based classification, detecting distinct phases of
gesture input [37]. Such classification approaches are not without drawbacks: generating
and annotating the initial training dataset can be time-consuming, and the model has to
adapt to ever-evolving user kinematics.

At the intersection of explicit and automatic approaches to segmenting everyday
movement from input gestures, researchers have also explored temporal delimitation.
Temporal delimitation can be used as a variation for implicit gesture delimiters: device
displacement within a threshold in a fixed time period can infer an input segment. Natural
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language processing [20] and vision-based systems [80] use temporal thresholding as
part of the segmentation heuristics.

2.2.3 Recognition Strategies

Arm gestures, commonly used as a mode of communication with other humans, have
naturally been adapted as a form of human-computer interaction. Yet, some limitations
remain in terms of sensing and categorizing gestures due to technological limitations.
Once a gesture have been sensed using equipment such as depth cameras or IMU devices,
a mathematical representation is used to describe its distinguishing features such as
joint locations, motion velocity, and shape parameters. The spatio-temporal nature of
arm gestures make it crucial for classification algorithms to account for both spatial
and temporal features in order to provide robust recognition. The high-level primary
approaches used for gesture classification can be broadly categorized into template-based
classifiers and machine learning-based classifiers.

2.2.3.1 Template Recognizers

The most significant challenge with motion gesture input, regardless of the sensing
technology used, is recognizer reliability [42, 54]. To address the issues of recognizer
reliability, many gestural input systems use relatively small gesture input languages
[55, 64, 78]. As an example, In studying reliability of recognition, Negulescu uses 4 input
gestures [55]; in their consensus set of motion gestures Ruiz et al. depict 12 gestures
(mapping onto 14 commands) [64]; and a frequent benchmark surface gesture set for
recognizer prototyping, the $1 gesture set, has 16 gestures [79]. Various technologies have
also been exploited to recognize more subtle wrist and finger gestures [19, 33, 34, 38, 47],
including IMU sensing [74], but, again, with dictionary sizes between four and fifteen
gestures. In practice, the human interface guidelines provided by Apple for smartwatch
applications design explicitly recommend against using IMU-sensor data as an input
modality due to its imprecise and noisy nature [6].

In template recognizers, the input data is matched against a set of reference templates
in order to find the “closest match”. Template gestures first need to be generated either
algorithmically or from the user to be matched with the data. A gesture template can
be comprised of a multi-dimensional temporal signal. Once a finite set of templates are
collected or generated, the test data sequence is compared with the entire template set. In
terms of a threshold, the input is either classified or rejected depending on its structural
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similarity with the most similar template. The larger the template set, the longer it will
take for the system to classify input. Techniques such as Dynamic Time Warping (DTW) are
used to template-match temporal sequences and more recently, gesture motion sequences
[16]. DTW, commonly used in speech processing to compensate for varying speeds in
speaking [66], can be conceptually applied to match motion gestures by compensating for
different speeds of arm motion. This type of a bottom-up pattern matching approach is
better suited to dealing with raw motion data in a limited dataset in contrast to abstract
geometric models extracted through machine learning techniques described in the next
section.

2.2.3.2 Learning-based Classifiers

To enhance classification accuracy in realtime conditions, classifiers are trained on a
dataset of gestures in order to extract the “best” features [18]. Learning algorithms such
as hidden markov models (HMMs) and AdaBoost can adaptively extract and concatenate
dataset features to strengthen the classifier in a given dataset. Such techniques have been
explored for hand and pose detection in real-world settings [61]. The training process for
these learning algorithms generally require a large training dataset and computational
power, often times performed in application-specific integrated circuits (ASICs).

2.2.4 Recognition Challenges – Balancing Precision and Recall

Even in the most optimial settings, there is uncertainty and noise inherent in any gesture
recognition task. As a result, errors and low-confidence classifications are unavoidable.
The rejection mechanism, thus, acts as a way to reject the classification instead of pro-
viding a false classification. Previous work by Chow explores the tradeoff inherent in
rejecting low-cofidence classifications, the reject rate, and finding a threshold that can
minimize the error rate [15]. Deriving an optimal rejection scheme is a known challenge
in gesture and handwriting classification [25]; the fault-tolerance of different situations
and environments can drive the error-reject tradeoff.

2.3 Usability Constraints on Gesture Input

Acceptance is the key usability aspect for designing gestural interfaces involving explicit
arm motion. The concept of social acceptance when designing gesture interfaces has
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not been explictly defined or quantified, in large part due to its intangible nature. The
next section details of social and cultural acceptance of gestural interfaces, especially in
public and semi-public contexts, to inform design considerations. The following chapter
discusses attempts to quantify physiological acceptance of gestural interfaces and ways to
measure fatigue.

2.3.1 Social Constraints on Arm Gestures

Environment and context highly shape the way people use gesture-based systems. Williamson
and Vennelakanti show the diversity and similarities in the selection of gestures and the
methods to perform them in different cultural settings [76]. Their work indicates that
the size and shape of gestures are important factors to consider when designing gestural
interactions to be used in social spaces.

In the same vein, Montero et al. present other factors that influence the social ac-
ceptance of gestures that include “culture, time, interaction type and the users position
on the innovation adoption curve.” [50]. This work puts forth the notion that the user’s
perceived interpretation of the gesture to a bystander is a crucial factor in determining
the gesture’s social acceptability.

Besides social perception of explicit mid-air gestures, the perceived physical space
available for interaction also changes the way people interact with systems in public spaces.
Azad et al. [7] explore the impact of social dynamics on display usage characteristics such
as positioning and orientation. Wallace et al. [73] explore the concept of a “personal space
bubble” that the users conceptualize as a personal space boundary when co-operatively
interacting with large public displays. Their work argues for consideration of personal
space as a design constraint with relation to the size of the screen when designing
interactions, especially with direct touch input.

2.3.2 Physiological Factors

Free space gestural input is an effortful form of communication, giving rise to terminology
such as the well-known gorilla-arm effect[11, 27] and metrics such as consumed endurance
[27], which characterize the effort one must expend to support interaction. This metric
provides a method to quantify arm fatigue via Kinect motion capture and has been used to
evaluate less fatiguing freehand gestures [45]. A key result of the evaluation by Hincapie-
Ramos et al. is that interactions requiring lower shoulder torque will be less fatiguing. The
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implications of arm fatigue are wide ranging from general discomfort when interacting
with systems, to systems going unused. Hincapie-Ramos et al. define CE as follows:

CE(T, TotalT ime) =
TotalT ime

E(T )
∗ 100

where

• CE is the ratio of the interaction time and the computed endurance time

• E(T) is the continuous time, in seconds, during which a user can interact before
resting their arm

E(T ), calculated as follows:

E(Tshoulder) =
1236.5

(Tshoulder

Tmax
∗ 100− 15)0.618

− 72.5

This equation is asymptotic at 15% of the maximum shoulder torque, meaning that
any interactions involving less than 15% of the shoulder torque can be sustained for
indefinitely long periods of time. The definition of torque, as ~T = ~Fd sin θ suggests that
the torque applied on the shoulder equals zero, to a close approximation. As a result,
E(Tshoulder) falls safely below the 15% asymptote. As a natural corollary, for subtle arm
movements on the side, the resulting CE value for such at-your-side interactions are
undefined and possibly sustainable for very longer periods of time, indicating further
exploration to validate and update existing metrics for this posture. For example, in a
recent study of freehand interaction in the living room, 68% of gestures were changed
over time, with researchers motivating these changes due to users experiencing fatigue
during interaction [41]. Researchers have also explored the use of finger-based gestures
for command invocation [13]. Such interaction techniques are potentially less fatiguing
but assume the use of supplementary finger and hand-tracking devices and cameras [45].

Recent work by Jang et al. [29] propose a fatigue estimation model using a vision-
based skeleton tracking system and estimating more subjective fatigue measures (e.g. the
Borg scale [10]).

Alongside effort, free space communication is also noisy; it is hard to exactly replicate
motions in free space unless significant constraints are placed on the form of input path.
Finally, sensing technology is challenging. Large-scale gestures are easy to sense from afar,
but small-scale and subtle movements require spatial, set size, or kinematic constraints.
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2.4 Gesture Set Design

Gesture-based input modalities involve designing motion gestures that are easy to perform,
intuitive, and serve as direct metaphors for task at hand. Designers of the gesture sets
must consider the many factors when choosing appropriate gestures ranging from its
naturalness to the ability for the classifier to accurately classify it. Gesture elicitation
studies have widely been used to inform the design of the gesture sets.

2.4.1 Elicitation Studies

One valuable tool for designers and researchers seeking to understand “naturalness”,
“mental models”, or “consensus” in terms of input (or cause) and invoked computational
behavior (or effect) is the elicitation study. Elicitation studies have been commonly used
in gestural input space to inform the design of gesture sets [79, 65, 64]. While the gesture
sets generated by elicitation studies are not necessarily the definitive gesture set for use
in an interaction paradigm, their value lies in adding to the understanding of the designer.
The designers role is to resolve real world constraints, including data from the elicitation
study, data on recognizer reliability, sensing capabilities, etc. to arrive at a gesture set that
effectively supports input.

A common rate of evaluation for such elicitation study is with agreement rate. An
agreement rate, AR is computed for each task as a single value between [0, 1] and
corresponds to the degree of consensus among all participants. Previous gesture elicitation
studies [79, 65, 64] used agreement score as initially calculated by by Wobbrock et al.
[79], which did not accurately de-emphasize gestures with zero agreement. Recent work
(e.g., [13]) has employed an updated agreement rate formula proposed by Vatavu and
Wobbrock [71]:

AR(r) =
|P |
|P | − 1

∑
Pi⊆P

(∣∣∣Pi

P

∣∣∣)2 − 1

|P | − 1

Where P is the set of participants sampled, and Pi represents a set of agreed upon
gestures. Importantly, Vatavu et al. [71] also provide guidance for interpreting AR, with
suggested levels of low (≤ .1), medium (.1 − .3), high (.3 − .5), and very high (≥ .5)
agreement; these bins were also used as a basis for classifying the elicited data in this
study.
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Dictionary Size
Device 1s 10s 100s – 1000s

Smartwatch [6, 35, 60] [17, 82] [49]

Smartphone [30, 36, 54] [43, 63, 78] [1]

Other [9, 26, 44, 45,
72]

[2, 12, 23, 51,
65, 77]

[24]

Table 2.1: Related research categorized by device and dictionary size.

In practice, few gestures may have high agreement but nonetheless provide valuable
insights into how the users think in given constraints and the characteristics of the gestures
they prefer. Research has shown such gestures to be more natural [52] and easy to recall
in multiple domains including mobile devices [64] and multimodal systems [51].

2.4.2 Challenges in Gesture Set Design

Creating gesture sets involves a two key considerations for the designers: transference –
gesture sets heavily influenced from other interaction domains, which may be applicable
to varying degrees; and long-term usage – the correlation between gesture sets and user
preferences to use them in public and social contexts.

Recent work identifies two aspects of interaction to address some of the challenges
associated with free space gestural input. Recent work by Ruiz and Vogel on Legacy Bias
[65] explore the issue of fatigue when using gestures to control an external display. They
show, through an elicitation study, that attaching simple weights onto the users’ arms
can prime them to consider fatigue-related issues when eliciting gestures. The second
piece of work that significantly influences us is work on the use of wearable devices
to support gestural sensing. These wearables take several forms – body mounted Leap
Motion devices [45], smartwatches [17, 31, 49, 82], special purpose input devices [26]
and permit gestural interaction with nearby computation via sensing technologies.
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2.5 Summarizing Arm Gesture Input Research

The focus of this thesis is arm gesture input, primarily in both the arms-in-front and
arms-down posture. This chapter explored related work in this domain, from approaches to
capture movement data to using different techniques to classify input. Different selections
in interaction design of gesture techniques comes with tradeoffs for the system: explicit
and coarse-grained input can be easy to recognize but fatiguing to perform while subtle
input can be more socially-inconspicuous but a challenge to capture.

Table 2.1 summarizes recent work in free-space gesture recognition, with a breakdown
of supported devices and dictionary sizes. When moving towards more general support
for the myriad devices available in ubiquitous or multi-device settings, it is difficult to
determine how large of a gestural language is practical. Are four to fifteen gestures
sufficient for real-world contexts? Given the ubiquity and variety of smart and embedded
devices [21], we suspect not. This, then, begs the question of how potential users might
handle larger gesture sets and whether recognizers of free-space gesture sets can function
given neurophysiological noise in input and noisy sensor data.

These challenges persist in any gesture paradigm involving arm-motion input. In the
following chapters, we detail an interaction paradigm designed around these systematic
and physiological challenges and describe the tradeoffs made in the process.
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Chapter 3

At-Your-Side Gesture Paradigm

3.1 Overview

The at-your-side interaction paradigm describes an arms-down, always-available, socially
conscious, gesture drawing technique using commodity hardware and sensors. In the
previous section, we described some of the challenges and tradeoffs with different ap-
proaches in designing gesture interactions. Considering these tradeoffs, we formed three
primary design principles to prioritize real-world usability in gestural interfaces:

• Minimize fatigue - The system should try to minimize the amount of endurance
placed on the user

• Always available - The system should use readily hardware readily available or
within reach and avoid additional setup of sensors and cameras

• Rich and socially acceptable - The system should support a large gestural vocabulary
that is sufficiently expressive and yet accommodating to public and social contexts
through subtlety

These design constraints drive the basis of at-your-side gesture input accounting for
real-world usability and user experience factors. the Always available criterion is satisfied
by using the built-in IMU from an Android smartwatch, LG G Watch R, as a prototyping
device. The smartwatch platform, in this case, provides an opportunity to leverage the
fact that it is always worn by the user and conveniently houses positional sensors. In turn,
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Figure 3.1: Left: Pointer manipulation in the rotation techniques, W1RR and P1RR, is
governed by the orientation changes of the control device. (a) For W1RR, the user must
sweep the entire forearm to cause changes orientation of the smartwatch. (b) For P1RR,
the user can use the wrist sweeps as a more subtle form of manipulation; Right: W1RR
can calibrate the center frame of reference from inactive state (a) to raising the arm in
front (b) to switch to manipulation mode. From this mode, a 45 wrist flick outwards and
back can be used to trigger a click action (c).

the IMU within the smartwatch can be sampled for relative positional measurement of
the user’s arm and can be used to draw gesture traces, much like handwriting, to provide
subtle, implicit input.

3.2 Formative Observations on Side-Gestures

Our work is motivated by the exploration into using the smart devices, without aug-
mentations, as a viable pointing device with Watchpoint by Katsuragawa et al. [31] and
Smartcasting by Pietroszek et al. [58]. The systems leverage the built-in IMU for the
cursor navigation and action tasks using mid-air arm rotation, as shown in Figure 3.1.

An arms-down posture was previously explored by Gunslinger [45] as a form of input
minimizes the torque applied to the shoulder, the primary source of user fatigue quantified
with Consumed Endurance [27]. In our research group, we have noted that problems of
fatigue during gesture input significant influence how users perform gestures. While users
may initially perform large gestures 3.2 (Left), over time we see them reduce the size and
force to limit fatigue 3.2 (Right). We have coined the term ‘the wiimote effect’ to describe
this phenomenon. This term is based on the similarity of user behaviour to behaviours
when using the Nintendo Wiimote. In particular, when users are beginning to use the
Wiimote for console games such as tennis, golf, and bowling, they perform large gestures
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Figure 3.2: The Wiimote effect: Fatigue causes the users to slowly retract the arm closer to
the body over time.

similar to real-life gestures in these sports. However, as they become proficient, they swing
less, realizing that a simple wrist flick can minimize fatigue and still provide exactly the
same effect – sometimes even an enhanced effect – with much less movement.

3.3 A Prototype System for At-Your-Side Gesture Input

Before embarking on a deep exploration of the at-your-side gesture input, we designeda
prototypesystem for use during design exploration. The experimental apparatus consisted
of an LG G Watch R running Android Wear platform version 1.3, a Bluetooth-connected LG
Nexus 5 smartphone with Android version 6.0.1, and a PC connected via TCP/IP. Sensor
data from the smartwatch was time-stamped and serialized into a JSON array before being
transferred to the recognizer application. Additionally, the converted two-dimensional
drawing plane data was recorded for each trial as a continuous stream including noise and
non-relevant motion. The recognizer then annotated each sample with the user’s detection
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state, the recognized gesture, test instance information, and whether the prediction was
successful or unsuccessful. This flow of data and its mapping at various points of the
communication pipeline is illustrated in Figure 3.4.

3.3.1 Mapping Sensor Input to a Two-Dimensional Trace

We map the changes in device orientation (∆ω) on the Yaw and Pitch axis (in radians) to
displacements of the cursor d, using the following function:

d = ∆ω ×G(v)

G(v) corresponds to the value returned by a piecewise linear CD gain function of the
form:

G(v) = min
(

max (s× v + i, Gmin) , Gmax

)
with v the five-sample average velocity change in orientation in radians per second. The
parameters Gmin, Gmax, i, and s are defined empirically for the range of sensor values
produced by the gravity sensor on Android. Changes in orientation around the Yaw
(respectively Pitch) axis are mapped to x (respectively y) displacements of the cursor. This
technique, in concept, is similar to Tiltcasting by Pietroszek et al. [59] but adapted to
draw two-dimensional gestural traces in an arms-down posture. The sensitivity is limited
to movements of the whole forearm as the wrist tilt is naturally not sufficient to cause
significant changes in the orientation of the watch. Figure 3.3 illustrates the arms-down
posture with a two dimensional tracing plane. The data is transferred over Bluetooth to
the companion phone using the platform messaging API. The data is then logged and
off-loaded to a PC for further filtering and recognition.

3.3.2 Recognition Strategy: Dynamic Time Warping

We used the Dynamic Time Warping (DTW) algorithm, a simple template-based pattern
matching technique widely used for speech recognition systems and other continuous
data streams [8]. Typically, DTW measures the similarity index between two temporal
signals that can vary in time or speed and computes the warping distance to match the
two signals by either stretching or compressing the time axis. The classifier then computes
the relative similarity of the sample with all the templates in the model and makes a
prediction based on the lowest DTW warp distance, a classification technique known as
‘nearest-neighbour classification’.
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Figure 3.3: The interaction design uses an arms-down posture to use draw two-
dimensional gesture traces at the side of the user. Gesture traces are created by detecting
the relative arm displacement in an imaginary bounding box to the side of the user.

We applied normalize the gesture size and position by uniformly scaling the bounding
box of the trace on the drawing plane. DTW was applied to the normalized sample traces
and normalized template traces. The classification was performed on clean, segmented
data in an offline setting.
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Figure 3.4: IMU data is sampled from the smartwatch and converted to relative device
orientation. This data is then packed and sent to the off-site PC for classification.

3.4 Pilot Study

To explore the potential of the smartwatch as a platform to detect motion gestures we
conducted a pilot study. One requirement that we noted in our elicitation study was
both ideographic and alphanumeric data were important to assess as input. We could,
conceivably, have allowed users to define their own gesture sets, but that would tell us
little about feasi- bility, as distinctiveness of gesture sets designed by different users would
impact feasibility.

To control for distinctiveness variation in gesture sets and to look more carefully
at reliability and training of single gesture input, we used the $1 gesture set [78] and
Palm Graffiti [23]. As a starting point for simple recognition, we use the $1 gesture set
because many researchers have assessed recognition accuracy against it and it represents
an ideographic gesture set of approximately the correct size. We use Palm Graffiti because
it is another instance of a unistroke gesture language, it is 60% larger than the $1 gesture
set (26 vs. 16 symbols), and its alphabetic correspondence means that if one wishes
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to extend the language, combining gestures into bigrams and trigrams has an intuitive
mapping onto linguistic constructs. Figure 5.1 illustrates the unistroke gesture sets used.

Participants performed an off-line recognition task without any visual feedback. Linear
acceleration, gyroscope, and orientation and rotation vectors were logged on a LG G
Watch R, running Android Wear at 200 Hz. We then examined the input stream and
ensured good segmentation of our input data. Finally, we ran the gestures through our
recognizer to assess accuracy readings for each gesture set. We did not optimize the
recognizer; our goal was simply to test the potential of recognition and the need for
training data. In total, 16 gestures × 10 repetitions × 8 participants = 1280 gestures
were collected for the $1 Gesture set and 26 × 10 × 8 = 2,080 gestures for Palm Graffiti.

3.4.1 Results

Recognizer accuracy using leave-n-out evaluation. Overall, the prototype achieved a
recognition rate of 94% (σ = 4.69) for $1 input and 89% (σ = 4.78) for Palm Graffiti input
with maximum recognition occurring using 9 templates for each gesture (leave-one-out).
The recognition rate for the $1 Gesture set and Palm Grafitti with one template per gesture
was 88.05% (σ = 5.3) and 82.3% (σ = 6.2%) respectively (Figure 3.5). Recognition rate
increases with the number of templates, but stabilizes with three templates.

Overall, while surface gesture error rates using prototyping recognizers are typically
above 95% [78]), a recognition rate in excess of 90% for an unoptimized recognizer using
only three training samples is promising. There are many ways that gesture recognizer
behavior can be optimized, including using n-best lists and confidence thresholds and
reject decisions [15].

3.5 Summary

This chapter described the at-your-side gesture paradigm, an effort-minimizing gestural
technique grounded with the Consumed Endurance (CE) metric to prolong mid-air interac-
tions. A natural corollary of the CE calculation is that, to prevent fatigue, gestures can
take place at a user’s side instead of in the air in front of them. For such movements,
the CE value is undefined when the arm is at-rest position due to a negligible amount of
shoulder torque, meaning the interaction can theoretically be performed for long periods
of time [27].
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Figure 3.5: DTW recognition rates with a user-dependent template for the $1 Gesture set
and Palm Graffiti, by number of templates per gesture.

We then presented a feasible prototype system as a feasibility measure adhering to
these design constraints by converting user arm movement to two-dimensional gesture
traces. Based on the pilot study to classify the $1 and the Palm Graffiti gesture set,
the system shows promise in accuracy using a relatively näıve implementation of DTW.
Our data indicate, first, that even with three templates, a user can expect to receive
reasonably high accuracy with at-the-side gestures. Furthermore, in analyzing data from
our recognizer, one of the attributes of the data that we noticed is that positional data,
particularly as the offset from gravity was most revealing in our input. Essentially, because
the participant’s arm was hanging at rest at his or her side, we could view side-gesture
input as a two-dimensional drawing on a plane, and we leverage this in the recognizer
design in the next study we describe.

Overall, while surface gesture error rates using prototyping recognizers are typically
above 95% [78]), a recognition rate of more than 90% for an unoptimized recognizer
using only three training samples can be further explored. There are many ways that
gesture recognizer behavior can be optimized, including using n-best lists and confidence
thresholds and reject decisions [15].
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Chapter 4

Elicitation

4.1 Overview

In this chapter, we describe a gesture elicitation study to understand the types of gestures
preferred by users. The study was conducted in order to understand the mental model
of the users interacting within the at-your-side interaction paradigm. The observations
corresponding to the nature of the gestures the participants create directly informed the
design space of the system.

We followed the protocol used in previous elicitation studies for free space gestures
[79, 65, 64], where participants were invited into a laboratory and asked to design and
enact gestures for a given task. The participant is then engaged in a participatory design
discussion involving their design process and evaluation of the design in terms of social
and physiological factors. The study provided an opportunity to elicit a gesture language
appropriate for the subtle, at-your-side motions we wished to develop. We analyzed
proposed gestures for general trends among participants: gesture length, type, complexity,
behaviour for forming gesture chains or sequences, and recall rate.

4.2 Task Taxonomy

Our scenarios also included commonly used semi-public applications like Google Maps,
Netflix, and Spotify (Figure 4.1). We mimic the set of action metaphors for a new set
of tasks in the context of familiar public displays: an airport departures screen, and a

26



Figure 4.1: Interface mock-ups as displayed on a large projector for participants to imagine
the task and elicit a gesture. From left to right: Google Maps, Netflix, Mall Display, Airport
Departures, Spotify.

shopping mall kiosk. These contexts are designed to be a mix of things one might interact
with in a public setting such as flight departures and mall directory navigation. More
private contexts such as controlling the Netflix application or Spotify represent interfaces
primarily used at home. The Maps context is a canonical application that applies well
across all both social and private settings.

Our study uses a set of tasks (Table 4.1) inspired from previous research in elicitation
tasks for mobile and whole-body interactions [65, 64]. Ruiz et al. [64] use ‘action’ and
‘navigation’ tasks as the high-level taxonomy for eliciting gestures. Recognizing that public
display interfaces are inherently more dense with information in tabular or graphical
layouts due to the real-estate available, we include an additional category of ‘filter’ tasks
to encapsulate information selection in tabular, graphical, and list formats. Emphasis
was placed on a fair representation of tasks across contexts and categories instead of
exhausting the feature set of a specific application.
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Type

Context Navigation Action Filter

Google Maps Zoom In/Out Toggle View Reset Location
Pan Up/Down Show Menu
Pan Left/Right Activate Search

Netflix Select Next/Previous Play Item Jump to Movie
Page Left/Right Activate Search

Exit to Home Screen

Mall Display Floor Up/Down Jump to Store
Jump to Floor Level

Airport Departures Jump to Flight
Filter Delayed Flights
Clear Filter

Spotify Next/Previous Song Play Item Jump to Menu Item
Pause Item
Replay Item
Volume Up/Down
Favorite Item

Table 4.1: The 34 tasks presented to participants during the elicitation study. Tasks were
categorized by type: Navigation, Action, or Filter.

4.3 Experiment Design

Images for each of the application interface were displayed on a 60” rear-projection
system for simulating large display interaction (Figure 4.1). The interface mock-up for the
interactive mall display application was retrieved from the personal website of a designer,
Ge Zhang1. All the participants were required to wear a LG Watch R to simulate a working
system. As the study was primarily constructed to be a participatory design excercise
focused on high-level discussions, raw sensor data was not recorded for the elicitations.

Twenty paid participants (10 female) between the ages of 21 and 55 (µ = 26.6, σ =

1gezhang.com
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Figure 4.2: Participants in the elicitation study designing gestures for various tasks using
a think-aloud approach.

7.6) were recruited. Participants were asked to use their dominant hand when eliciting
gestures for each task, with three of the participants being left-handed. Every participant
received $10 remuneration. Participants were mainly university students in a Science,
Technology, Engineering, or Mathematics field. We did not require or control for prior
experience using or developing gestural systems.

At the beginning of each experiment, we explained the study to the participant and
asked them to wear a smartwatch and imagine interacting with a large display in a public
setting (Figure 4.2).

We elicited gesture preference for the tasks (Table 4.1) using a think-aloud approach.
For each task, participants elicited one gesture and performed it 4-5 times before finalizing
their decision. Participants were instructed to choose any shape, symbol, movement or a
combination of shapes, symbols, or movements for each task. The tasks were grouped by
application and were presented one-by-one. We did provide some flexibility in ordering;
for example, for tasks such as Pan Up, participants were free to clarify and choose a set of
gestures for panning in the other three directions: Pan Down, Pan Left, and Pan Right at
the same time.

Throughout the study, we did not want the participants to think of the capability
of the gesture recognizers, and so we did not provide any feedback or confirmation to
participants to remove the gulf of execution [56]. Instead, participants were instructed to
only concern themselves with designing what they considered to be the most ‘natural’
interaction, assuming no limitations of such a gesture recognition system.

Once participants had selected a gesture, participants rated the gesture for its level
of fatigue, whether it was a good match for the task, and whether they felt comfortable
performing the gesture in public. These assessments were collected using a seven-point
Likert-scale.

Finally, at the end of the study, a recall test was performed by having the participants
try to enumerate the elicited gesture for each task in a randomized order. As a follow-up,
participants were asked to comment on general design issues for free space interaction,
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such as “What constitutes as good gesture for a given task?”, “What are some other
applications or use cases for a gesture-based input system?”, “Do you prefer alphanumeric
gestures or ideographic gestures and why?”. Participants’ responses were later manually
transcribed by the researcher. The video of the study was then transcribed to further
identify common themes and trends using inductive, bottom-up reasoning. Each session
took approximately one hour to complete.

4.3.1 Dataset

We collected, across 20 participants and 34 tasks, we collected a total of 680 gesture
samples and corresponding recall information as transcribed from the design interview. We
collected a total of 2,040 Likert-rating self-evaluation used for engaging the participants in
a design discussion about the social and physical challenges involved with the at-your-side
paradigm.

4.3.2 Diversity

We first grouped together gestures that were visually identical — gestures described by
participants with the same visual trace. For example, a ‘straight vertical line’ gesture trace
would be identical when drawn either up to down or down to up. The gesture elicitation
traces were roughly estimated from the design interview transcription and experimenter
logs. However, it would be different from a ‘horizontal line’ because the end trace of the
two gestures visibly differ if drawn on a piece of paper, as illustrated in figure 4.3. The
stroke-order is thus not considered to be the differentiating factor if the end visual trace of
the gestures is identical. This constraint is strictly used for estimating the diversity of the
gesture vocabulary; the participants were still able to use the same gesture in a different
stroke order for different tasks.

4.3.3 Consensus

From the gestures collected from participants, we grouped together identical gestures
to evaluate the degree of consensus. Using this reasoning, we evaluated the degree of
consensus among all the participants by using Vatavu et al.’s methodology [71]. An
agreement rate, AR is computed for each task as a single value between [0, 1] where
a high value means that many participants chose the same gesture, and a low value
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Candidate
Gesture

Not SameSame

Figure 4.3: A visual trace of the gesture is used for classification: gestures are classified as
identical if their visual trace is identical, regardless of the stroke-order.

means fewer participants chose the same gesture, hence more diversity in the gesture.
An agreement rate, AR is computed for each task as a single value between [0, 1] and
corresponds to the degree of consensus among all participants. Previous gesture elicitation
studies [63, 65, 79] used agreement score as calculated by by Wobbrock et al. [79], which
did not accurately de-emphasize gestures with zero agreement. Recent work (e.g., [13])
has employed an updated agreement rate formula proposed by Vatavu and Wobbrock
[71]:

AR(r) =
|P |
|P | − 1

∑
Pi⊆P

(∣∣∣Pi

P

∣∣∣)2 − 1

|P | − 1

Where P is the set of participants sampled, and Pi represents a set of agreed upon
gestures. Importantly, Vatavu and Wobbrock [71] also provide guidance for interpreting
AR, with suggested levels of low (≤ .1), medium (.1 − .3), high (.3 − .5), and very high
(≥ .5) agreement. AR for all tasks included in our study are shown in Figure 4.4.
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Figure 4.4: Agreement Rates (AR) for suggested gestures in terms of its visual trace, by
each of the 34 tasks included in our elicitation study. Gestures ranked by agreement rating,
with Vatavu and Wobbrock’s high, medium, and low agreement categories indicated by
color. Orange bars show agreement scores when gestures are placed within more general
groups of type and length.

4.3.4 Vocabulary

We also examined the gesture vocabulary of participants, i.e. how many unique gestures
were used within the set of gestures elicited from a participant. We define unique gestures
as follows: If the gestures elicited by the participants were to be drawn on a piece of
paper, two gestures would be considered unique if they are either: a) visually different,
b) oriented differently, or c) constructed in a different order of strokes. As an example, a
list of compound gestures: ‘M’, ‘MV’, ‘VV’, and ‘MM’ would only have two unique gesture
symbols in the dictionary, ‘M’ and ‘V’.

Alongside the gesture vocabulary size, we also examined the types of gesture used
by participants. Based on an initial analysis of our data set, we characterized gestures as
either ideographic (a shape or movement) or alphanumeric (a stylized letter or number).
On average, the number of unique ideographic symbols per participant was 19.6 (σ = 4.3)
across all 34 tasks. For all of the filter tasks, the participants naturally proposed either
completely alphanumeric or a mixture of ideographic-alphanumeric gesture sequences.
For example, the elicited gestures for the Jump to Movie task in the Netflix grid-based
layout proposed either writing out the letters of the movie title, or by specifying the row
and column number corresponding to its position in the grid. Overall, 65.6% of collected
gestures were classified as ideographic, 25.9% as alphanumeric, and 8.53% comprised a
combination of the two.
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4.4 Personalization

When considering gesture sets, one question is how a set of gestures (e.g. 19 on average)
can scale to support more than 30 different commands. Participants extended the vocabu-
lary through gesture symbol concatenation. More specifically, when eliciting gestures from
participants, participants would at times create a gesture command using one symbol
from the vocabulary. However, it was also quite common for participants to create two
and three gesture sequences for gesture input. We use the term ‘conceptual length’ to
describe the number of atomic shapes used to create a gesture. We defined the concept
of a shape as a series of curves and strokes being drawn in a specific order, at a specific
location. If either the location or the order of the strokes is independent of the preceding
stroke, then it marks as a natural delimiter among two atomic constructs. For example, if
a participant designed a gesture that was ‘a house shape’ comprised of a triangle on top of
a rectangle, the gesture would have a conceptual length of 1. This is because of the layout
constraint of the triangle and rectangle. In contrast, a gesture that consisted of a triangle
followed by a rectangle with no constraint on positioning would have conceptual length
2. As another example, a gesture sequence of ‘ZI’, contains two alphanumeric shapes that
are only dependent on the order and not the location of the trace. Thus, this gesture has
a conceptual length of 2. We binned every gesture as “Single”, “Double” or “Three+” to
denote the conceptual length of one, two, or more than three. Of the 34 tasks in our study,
only in two of the tasks (Zoom In/Zoom Out) did participants consistently use a single
symbols gesture. In all other cases, gestures elicited from participants were a mix of one-,
two-, and three+ symbols.

4.5 Design Implications

While the elicitation study provides a significant set of data points, the goal is to leverage
that data to provide guidelines for the design of at-the-side gesture sets. An overview of
the design implications from our elicitation study are as follows:

• Support a sufficiently large gesture set. Users used, on average, approximately 20
unique gestures over the 34 tasks provided in this study. Given the restricted context
of interacting with an external display, we believe that a sufficient gesture set can
be comprised with 25 to 100 symbols.

• Consider user-specific versus designer-specified gesture sets. Overall, we see rela-
tively low agreement scores across navigation, action, and filter task types. However,
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at the same time, we see high recall rates for users per their own gestures, despite
specifying gestures for over 30 tasks. We believe that the combination of low inter-
participant agreement and high recall rates is a key characteristic of domains that
can benefit from allowing users to create their own gesture libraries.

• Include both Ideographic and Alphanumeric gestures. We found a combination of
both ideographic or abstract gesture sets and alphanumeric characters as symbols
in participants’ elicited gesture dialects. This is perhaps unsurprising: language
is an important tool for expressing concepts, and, particularly in command-rich
environments, text is often the best way to filter command lists. Consider, for
example, invoking programs on modern operating systems, where short typed text
strings filter command lists to a manageable length before users select from a list.

• Support multi-glyph gestures. One way that users naturally expand a command
language is by combining symbols together into bigrams and trigrams; in our study,
one-third of the hundreds of input gestures collected from participants were multi-
symbol gestures. While support for bigrams and trigrams effectively expands the
input language, it introduces challenges for symbol segmentation.

• Finally, we see a need for organic and dynamic input sequences, gesture traces
semantically constructured for one-time use. In public contexts, one may only
infrequently, perhaps only once, invoke a specific command. As an example, locating
a specific datum on a high density information display might require filtering and
selecting, but that datum might only be relevant in the present interaction. Symbols
that can be effectively combined into novel, single-use commands have high value
in public contexts.
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Chapter 5

Evaluating Expanded Gesture Sets

5.1 Overview

In this chapter, we return to our prototype system and explore its ability to handle enlarged
gesture vocabularies. We place an added focus on alphabetic characters via the Palm
Graffiti gesture set as a means to provide an extensible set of long-form gestures for
boosting the vocabulary size to be arbitrarily long.

One open question we, as researchers, struggle with when presented with results of
elicitation studies that amount to design implications is an inability to discern whether
or not the observations are actionable. How well will the guidelines above work using
real-world gesture recognizers? Is user input sufficiently stable that user-elicited gesture
sets are practical (i.e., can users train a classifier quickly on a gesture set)? How can we
create multi-glyph gestures that can be reliably recognized? How much accuracy can we
generate from n-gram-based input gestures?

5.2 Online Realtime Study

To evaluate side gesture interaction in more ecologically valid settings and to evaluate
the potential of multi-glyph gesture recognition, we conducted a second laboratory study.
As a first set of multi-glyph gestures, we used the most common bigrams and trigrams in
English. Our system is designed specifically for contexts where gesture input is segmented

35



Figure 5.1: The Palm Graffiti (left) and $1 unistroke (right) gesture set containing 26
alphabet gestures. The bigram and trigram gesture sets, generated from the unistroke
models, contained 20 gestures each.

from the everyday movement of a device via a clutch [75] or delimiter[63]. In this follow-
up study, our system does not assume cleanly segmented data. Once data collection is
started, we initially performed analysis on all input, including gesture and positional
noise.

Sensor data was recorded for each individual trial as a continuous stream including
noise and non-relevant motion. We perform segmentation of gestures (regardless of
length) by detecting the idleness of the arm in the projected drawing plane. We use simple
threshold-based segmentation to denote the beginning and end of a particular gesture.
There are two components to the threshold, movement and time. We tuned our movement
threshold from user input data from informal pilot studies. We use a threshold of 4 cm of
arm movement in our horizontal plane, a displacement that seems to work well. From
our initial pilot study, we found a temporal threshold of 1500 ms to be a good threshold
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to distinguish short pauses between individual characters in a bigram or a trigram gesture
and longer pauses between gestures. In summary, less than 4cm arm movement within
1.5 seconds was detected as a gesture segment. One single gesture could be a unigram
character, a bigram character, or a trigram character.

Once the data was segmented and annotated as a gesture state, the recognizer per-
formed DTW on the segmented data. Each sample was then annotated by the recognizer
with the recognized gesture, trial instance information, and whether the prediction was
successful or unsuccessful.

We recruited 12 participants (5 female) from a local university for a 30-minute session.
All participants were right-handed, and were instructed to wear the smartwatch on their
non-dominant arm during the study.

The procedure was as follows:

1. Participants were welcomed, provided background information on the purpose of
the study, and signed an informed consent form. Next, participants were instructed on
how to perform gestures using the smartwatch, asked to put the smartwatch on and adjust
it for comfort.

2. Participants then trained the recognizer. During the training phase, each participant
was asked to repeat each of the single character Graffiti gestures (A to Z) 4 times, for a
total of 26 × 4 = 104 trials. To record clean sensor information for each motion gesture,
participants delimited the start and end of each gesture, and were instructed to keep
their arm idle when not performing a gesture. The collected data were used generate a
template for the recognizer’s dictionary as described in the previous section. All samples
provided as training data were, however, logged and preserved so that we could perform
post-hoc analysis of variations in recognizer behavior.

3. Next, participants completed the recognition phase of the experiment. The recog-
nition phase simulated a single gesture session where the user would perform gestures
segmented by idle arm movement. The recognition phase comprised three stages of
increasingly complex gestures: first unigram, then bigram, and trigram. We structured
the study this way so that participants could familiarize themselves with the initial un-
igram gesture set before attempting bigram and trigram gestures. During each stage,
the experimental software prompted participants to perform a random gesture of the
specified length. If the gesture was classified correctly, the system would provide on-screen
feedback by highlighting the gesture in green. If the gesture was not recognized, the user
was notified by red-colored feedback and was given one additional attempt to perform the
same gesture. If the gesture was not recognized in either attempt, the trial was marked as
an error and the participant proceeded to the next trial.
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Figure 5.2: A template for a bigram or a trigram sequence is generated dynamically
based on its individual unigram templates. The first three squares represent template for
unigrams ‘H’, ‘A’, ‘S’. The last square represents the generated template for the trigram
‘HAS’.

5.2.1 Generating the Template-based Model

During our experiment, we included a training phase to collect samples of the 26 unigram
gestures to seed the recognizer. The recognizer was trained by each participant so that
the gestures being recognized were participant specific. No gesture traces were shown to
the participants during both the training and the recognition phase as to not bias their
natural behavior for performing gestures.

To create a set of gesture templates, we leveraged the DTW algorithm to find the best
candidate input sample from every input gesture. For each training sample for a given
gesture, we calculated its warp distance to all other training samples and then selected
one single template to represent the gesture, the most representative of the candidate
gestures, given by computing the minimum accumulative warp distance between every
training sample collected for a single unigram.

To generate templates for the bigram and the trigram dictionary within our recognizer,
we concatenated multiple unigram templates in order of the letter sequence. For example,
to generate a template for the trigram ‘has’, we layered independent unigrams ‘h’, ‘a’,
and ‘s’ (Figure 5.2, right). We also interpolated data points between the end point of
one unigram and the start point of the next, thus creating a single unistroke template
that represented a multicharacter sequence, e.g. a bigram or trigram. The benefit of
this approach is that once the recognizer is trained on the 26-gesture unigram alphabet,
concatenation can yield an input language of up to 726 bigrams and of over 17,000
trigrams without additional training.
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5.2.2 Results

Using the unoptimized dynamic time warping recognition algorithm, we found a successful
gesture input rate of 63% for unigrams, 65% for bigrams, and 70% for trigrams as the
first attempt. The decrease in recognition accuracy from the pilot study can be attributed
to the difference in segmentation of data in online recognition systems to user-segmented
offline capture data.

Using fully logged input stream data, we performed a post hoc analysis of errors to
identify how the un-optimized classifier’s recognition rate might be improved. We found
that two of our twelve participants were outliers, with recognition rates below 50%, and
that these two users were significantly negatively impacting recognition rate. In some
instances, it may be appropriate to identify and eliminate outliers from analysis; however
we were interested in understanding why these participants were outliers and whether
our algorithm could be refined to better recognize their gestures.

An initial analysis of outlier data highlighted an alignment issue associated with data
points in template and candidate, a problem particularly acute for participants who
gestured quickly and less carefully. When captured motion data was sparse, template and
candidate data points would become shifted and the warp distance would be unusually
large between a candidate gesture and all templates. To address this issue, we refined
our classifier using the interpolation approach from the 1$ recognizer [78] to ensure an
identical number of data points in the gesture template and candidate gesture. Using our
archived training samples, we generated new normalized templates and then re-analyzed
character input as a raw input stream to ensure as accurate a re-play of recognizer
behavior as possible.

Overall, this change boosted recognition accuracy by approximately 20% for first
instance success. We suspect that success rates on second and third attempts may be
higher as well, but because this analysis was done post-hoc, it is impossible to determine
how second and third attempts would be affected.

However, to ensure that we were not over-optimizing on our test data and to assess
the potential of this improvement, we asked the poorest performing participant to repeat
our study with the optimized recognizer. This participant initially had recognition rates of
between 40% and 55% for each dictionary. In our follow-up test, the recognition rate for
this participant was 86% for unigrams, 91% for bigrams, and 85% for trigrams.

Alongside variations in motor performance, our initial analysis of recognizer behavior
specifically considers a single best recognition result. We also assume that, in every
candidate instance, participants attempted to make a specific gesture, i.e. they did not
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make an error (e.g., when prompted for ‘I’, they did not, accidentally, make an ‘L’).
However, during our observations of participants, we noted that due to the lack of
familiarity with graffiti, participants would, in approximately 10% of input cases, begin
an incorrect gesture. Once a participant realized their mistake, and knowing that they
had two attempts, they would shake their hand or perform some other nonsense gesture,
allow the classifier to misrecognize, and then try again. Obviously, this had an impact on
the first-attempt accuracy in recognition, but not on overall accuracy.

The common way to deal with input slips where a user begins an incorrect gesture is
to use thresholds that trade-off the cost of false positives versus false negatives to create
a “reject” category [15]. We did perform a thresholding analysis using a variable reject
threshold which allowed us to generate error rates of less than 4% with reject rates below
15%.

Finally, to optimize the recognition rate for gestures, one might improve accuracy by
selecting gestures for the dictionary that are maximally distinct [57], thus decreasing
the likelihood of collision. While these and other optimizations are possible, the goal of
this study was not to optimize our recognizer for real-world use, but instead to study the
feasibility of side-gesture input.

5.2.3 N-best Lists

We performed a post-hoc analysis of collected gesture data to understand whether the
recognition rates could be achieved without developing a special-purpose recognizer.
We processed the collected data streams by resampling data-points to correct for issues
such as jitter and repositioning movements. With minor data processing and the DTW-
based recognizer, mean recognition rates for the unigrams, bigrams, and trigrams were
82%(σ = 5.71%), 80% (σ = 3.63%), and 82%(σ = 13.8%), respectively. We were also
interested in the deviation of the incorrectly recognized gestures from the template model
in terms of the predicted gesture.

Taking the best two candidates from the recognizer classification, with the first can-
didate being the predicted, we saw an increase in accuracy of the unigrams to 92%
(σ = 3.92%), bigrams to 92% (σ = 5.95%), and the trigrams to 90% (σ = 10.15%). The
results are summarized in Figure 5.3. This means that even when the gesture was wrongly
classified, the right prediction was usually the second guess. In designing such a system for
real-world use, we therefore suggest that strategies such as n-best lists improve recogni-
tion rates by allowing user input to disambiguate between the top classification candidates
through a prompt. Additional techniques such as rejection sampling, confusion matrices,
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Figure 5.3: 1-best, 2-best, and 3-best recognition accuracy for unigrams, bigrams, and
trigrams with optimized classifier.

bi-level thresholding, and adaptive recognizers could be applied to further improve such
systems in practice. Figure 5.3 illustrates the accuracy rates using the n-best lists. This
provides in important insight into the kinematic characteristics of the templates; due to
the inherent nature of template-matching classifiers, the correct classification is highly
likely to be from the top few closest candidates. This result encourages further exploration
into techniques such as bi-level thresholding and feature extraction to further attenuate
confusion.

5.2.4 Confusion Matrices

For analyzing conflicts and cases of high error, we generate confusion matrices for the
alphanumeric $1 gesture set and the resulting bigram and trigram templates used for
the study. Naturally, we expect that characters sharing similar visual properties will be
primary candidates to cause confusion. In the following subsections, we explore the
confusion matrices for each vocabulary set and pinpoint specific gestures causing incorrect
classifications. Confusion matrices for unigram, bigram, and trigrams are shown in Table
5.2.4, Table 5.2.4, and Table 5.2.4 respectively.

For unigrams, we see minor classifier confusion for ‘A’ (‘M’), ‘D’ (‘P’), ‘I’ (‘T’), ‘O’
(‘U’), and ‘Q’ (‘G’), occasionally in both directions. The similarity in gesture movement
and issues of full closure sensing due to imperfect data segmentation were the primary
contributors to these errors. The distinctiveness of temporal data for these single-letter
gestures is also relatively limited as the sheer number of datapoints on which the classifier
operates causes a higher weight to be placed on the tail motion before and after the actual
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A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
A 23 0 0 0 0 0 0 2 2 0 0 0 5 0 0 0 0 1 0 2 0 0 0 0 1 0
B 0 29 0 0 0 0 0 1 1 0 0 0 1 0 0 3 0 1 0 0 0 0 0 0 0 0
C 0 0 31 0 1 0 1 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0
D 0 5 0 25 0 0 0 2 0 0 0 0 0 0 0 3 0 1 0 0 0 0 0 0 0 0
E 0 0 3 0 32 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
F 0 0 1 0 0 28 0 0 6 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
G 0 0 0 0 0 0 30 0 1 0 0 0 0 1 1 0 2 0 0 0 0 1 0 0 0 0
H 0 0 0 0 0 0 0 33 2 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
I 0 0 0 0 0 2 0 0 28 0 0 0 0 0 0 0 0 0 0 6 0 0 0 0 0 0
J 0 0 0 0 0 1 0 0 2 31 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0
K 0 0 0 0 0 2 0 0 0 0 33 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
L 0 0 6 0 2 0 1 0 0 0 0 26 0 0 0 0 1 0 0 0 0 0 0 0 0 0

M 0 0 0 0 0 0 0 3 1 0 2 0 30 0 0 0 0 0 0 0 0 0 0 0 0 0
N 0 0 0 0 0 0 0 0 0 0 0 0 0 33 0 0 0 0 0 0 1 0 2 0 0 0
O 0 0 0 0 0 0 1 0 0 0 0 0 0 0 25 0 2 0 0 0 8 0 0 0 0 0
P 0 1 0 8 0 0 0 1 0 0 0 0 0 0 0 25 0 1 0 0 0 0 0 0 0 0
Q 0 0 1 0 0 0 6 0 0 0 0 0 0 0 3 0 23 0 0 0 2 0 1 0 0 0
R 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 34 0 0 0 0 0 0 0 0
S 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 34 0 0 0 0 0 0 0
T 0 0 0 0 0 1 0 0 4 1 0 0 0 0 0 0 0 0 0 30 0 0 0 0 0 0
U 0 0 1 0 0 0 0 0 0 0 0 0 0 0 5 0 3 0 0 0 25 1 1 0 0 0
V 0 0 1 0 0 0 0 2 0 0 0 1 0 1 0 0 0 0 0 0 2 29 0 0 0 0

W 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 3 0 32 0 0 0
X 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 36 0 0
Y 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 34 0
Z 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 32

Table 5.1: Confusion matrix for unigrams

gesture.

AN AR AT EA ED EN HE IN IS ND NG NT ON OR RE SE ST TE TH TO
AN 24 0 0 0 0 0 2 7 1 0 0 1 0 0 0 0 0 0 1 0
AR 0 23 1 0 0 1 0 0 0 2 0 0 0 0 0 0 0 0 9 0
AT 0 0 21 0 1 0 0 0 1 0 0 10 0 0 0 0 2 0 1 0
EA 0 0 0 31 2 0 0 0 0 1 0 0 0 0 0 0 0 0 2 0
ED 0 0 0 0 32 0 0 0 0 2 0 0 0 0 0 0 0 0 2 0
EN 0 0 0 0 0 23 0 13 0 0 0 0 0 0 0 0 0 0 0 0
HE 0 0 0 0 0 0 32 0 0 0 0 1 0 0 2 0 1 0 0 0
IN 1 0 0 0 0 1 0 31 0 0 0 0 0 0 3 0 0 0 0 0
IS 0 0 0 0 0 0 1 4 26 1 0 0 0 0 1 0 2 0 1 0

ND 0 0 0 0 2 0 0 0 1 30 0 0 0 0 1 0 0 0 2 0
NG 0 0 0 0 0 1 0 1 0 0 31 0 0 0 0 0 0 0 0 3
NT 0 0 0 0 0 0 0 0 1 0 0 33 0 0 1 0 0 0 1 0
ON 0 0 0 0 0 2 0 0 0 0 0 0 34 0 0 0 0 0 0 0
OR 0 0 0 0 0 0 0 0 0 0 1 0 4 30 0 0 0 1 0 0
RE 0 0 0 0 0 0 9 1 0 0 1 0 0 0 25 0 0 0 0 0
SE 0 0 0 0 0 0 4 0 1 0 0 0 0 0 0 25 1 5 0 0
ST 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 33 0 0 0
TE 0 0 0 0 0 0 2 0 0 0 2 1 0 0 0 0 1 29 1 0
TH 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 35 0
TO 1 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 2 1 30

Table 5.2: Confusion matrix for bigrams

For bigrams and trigrams, the most commonly confused symbol was ‘EN’ (‘IN’)/‘ENT’
(‘INT’). This confusion is slightly harder to diagnose; we hypothesize that, because the
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ALL AND ATE ENT ERE EST FOR FTH HAS ING INT ION MEN NDE NTH ONT RES STH THE VER
ALL 20 0 3 0 0 0 0 1 0 0 3 0 0 1 0 0 0 1 7 0

AND 0 27 0 0 0 0 0 1 1 1 0 0 0 0 3 0 0 3 0 0
ATE 0 0 30 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 5 0
ENT 0 0 0 19 0 0 0 1 0 0 14 0 0 0 1 0 0 0 0 1
ERE 0 0 0 0 28 0 0 0 0 1 3 0 0 0 0 0 0 0 4 0
EST 0 0 0 1 0 29 0 2 0 0 1 2 0 0 0 0 1 0 0 0
FOR 0 0 0 0 0 0 30 0 0 0 0 3 0 0 0 0 0 0 0 3
FTH 0 0 0 1 0 0 0 28 0 0 1 0 0 0 5 0 0 1 0 0
HAS 0 0 0 0 0 0 0 2 29 0 4 0 0 0 1 0 0 0 0 0
ING 0 0 0 0 1 0 0 1 0 30 2 1 0 0 0 0 0 0 1 0
INT 0 0 0 0 1 0 0 1 0 0 33 0 0 0 0 0 0 0 0 1
ION 0 0 0 0 0 0 0 3 0 0 0 33 0 0 0 0 0 0 0 0

MEN 0 0 0 0 0 0 0 1 0 0 0 1 34 0 0 0 0 0 0 0
NDE 0 0 1 0 0 0 0 0 0 0 1 0 0 28 0 0 0 0 6 0
NTH 0 0 0 0 0 0 0 3 0 0 2 0 1 1 29 0 0 0 0 0
ONT 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 34 0 0 0 0
RES 0 1 0 0 0 0 0 2 1 0 0 0 0 0 1 0 30 0 0 1
STH 0 0 0 0 0 0 0 3 0 0 1 0 1 0 0 0 0 31 0 0
THE 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 35 0
VER 0 0 0 0 0 0 1 2 0 0 0 0 0 1 0 0 0 0 0 32

Table 5.3: Confusion matrix for trigrams

suffix of the gesture is identical, the temporal warping of points may push segmentation
to a higher match in some cases, particularly when the ‘E’ gesture is made quickly.

Overall, some of the classification inaccuracies visible in the confusion matrix can
be attributed to user variation in performing the gesture and the tendency to adjust or
‘clutch’ before initiating the gesture. Nonetheless, analyzing pair-wise similarity between
each gesture in the vocabulary helps improve recognition; if specific cases for confusion
are known well ahead of the recognition task, the system can choose to present the user
with a menu selection interface to disambiguate the gesture.

5.2.5 Increasing Vocabulary Size

Up to this point in our study, our focus has been on gesture vocabularies that are restricted
in size. However, as we note, the use of bigram and trigram gesture sets permits signifi-
cantly larger dictionaries of gestures. Bigrams support 676 unique gestures; trigrams in
excess of 17,000 unique gestures.

Because our classifier recognizes multistroke gestures by automatically generating
bigram and trigram templates through the concatenation of unigrams, we can easily
observe the effect of larger alphabets. Figure 5.4 shows how accuracy rate declines as
dictionary size increases. Bigram gestural languages, in particular, seem very resilient to
increases in the size of the gesture dictionary, especially when n-best lists are leveraged.
With a dictionary size of 80, bigram recognition still results in 3-best recognition accuracy
of over 80%.

It should also be noted that we performed no optimization on our dictionary of gestures
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Figure 5.4: Recognition accuracy decline as dictionary size increases, for both bigrams
and trigrams

to perform this analysis. In an ideal world, when designing a gesture language, one might
improve accuracy by selecting gestures for the dictionary that are maximally distinct, thus
decreasing the likelihood of collision.

5.2.6 Candidate Similarity

Adjustments in thresholds can optimize the error-reject tradeoff. The classifier picks
a candidate that has the minimum computed warping distance as computed by DTW.
However, confusion increases as the difference in computed warping distance for multiple
candidates becomes small. This informs our metric of similarity index: the ratio of raw
DTW warping distance for two gesture candidates. The reasoning for increasing rejection
rates with increased confusion is grounded with confidence intervals for pattern matching
algorithms; we estimate the level of confidence for the classifier based on the similarity
ratio of the top candidates. Having a high similarity ratio means the recognizer cannot
disambiguate between the top candidates and is unable to classify with high confidence.

To determine the effect of ambiguity on recognition, we explored a simple confidence
test. As a confidence value, we use the ratio of the warp distance between C and the closest
template, T1, and the warp distance between C and its second choice template, T2, i.e.,
Confidence = T1/T2. Because T1 always has the minimum warp distance, this confidence
interval will always be less than 1.0. However, the closer the two warp distances are to
each other, the closer this value will be to 1.0. We call this ratio the Similarity Measure
for a candidate gesture C, i.e. a measure of the similarity in proximity of its closest- and
second-closest template.
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Threshold 1.0 0.95 0.9 0.85 0.8 0.75 0.7

Unigram Accuracy 0.82 0.85 0.87 0.88 0.89 0.91 0.92
Reject rate 0.00 0.04 0.09 0.13 0.17 0.22 0.25

Bigram Accuracy 0.80 0.83 0.87 0.90 0.93 0.95 0.96
Reject rate 0.00 0.08 0.15 0.22 0.30 0.38 0.44

Trigram Accuracy 0.82 0.85 0.89 0.92 0.95 0.96 0.97
Reject rate 0.00 0.08 0.15 0.23 0.31 0.39 0.48

Table 5.4: The effect of thresholds on rejection rates and mean accuracy.

For the unigram, bigram, and trigram sets, Figure 5.5 plots similarity measures with
correct recognition results shaded in light blue and incorrect recognition results shaded
in red. The contrast in similarity scores is quite striking. Recognition errors are clustered
to the right, where the ratio of closest to second closes template approaches 1.0.The
similarity measure for each template can be used to threshold recognition and define a
third option for the classifier, a reject rate [15]. Table 5.4 shows the effect of thresholds on
reject rates and accuracy. As shown, as thresholds increase, we can boost recognition rates
significantly over 90%, but at the cost of significant rates of rejection or false negatives. An
optimal cut-off for thresholding depends on the relative cost of error versus false negative
and will vary from domain to domain.

5.2.7 Fully Generated Template Models

In our evaluation of gestural input accuracy, we included a training phase where partic-
ipants performed unigram gestures, and the system used the elicited unigram gestures
to generate a template library for the recognizer against which unigrams, bigrams, and
trigrams were matched. However, recognizer training can be tedious for users. One might
then ask whether recognizers can be trained with generic templates.

To estimate recognition accuracy without training for user adaptation, we have tested
each participant’s data against the model made out of the other participant’s data. Figure
5.6 shows recognition accuracy using leave-one-out cross-validation. Overall, there was
no significant difference between recognition accuracy using user-dependent model and
accuracy using general model.

45



Distribution of Similarity Measure for Unigrams

Similarity ratio between two best candidates

S
am

pl
e 

de
ns

ity

0.2 0.4 0.6 0.8 1.0

0
20

40
60

80 Correctly predicted
Incorrectly predicted

Distribution of Similarity Measure for Bigrams

Similarity ratio between two best candidates

S
am

pl
e 

de
ns

ity

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0
20

40
60

80 Correctly predicted
Incorrectly predicted

Similarity ratio between two best candidates

S
am

pl
e 

de
ns

ity

0.4 0.5 0.6 0.7 0.8 0.9 1.0

0
20

40
60

80 Correctly predicted
Incorrectly predicted

Figure 5.5: Candidate similarity ratios for unigram, bigram, and trigram template classifi-
cations
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Figure 5.6: 1-best, 2-best, and 3-best recognition accuracy for unigram, bigram, and
trigram template models generated through leave-one-out cross-validation where a partic-
ipant’s test data was tested against model data generated from 44 templates excluding
that participant’s data.

We also performed preliminary exploration into programmatically generated template
models, avoiding user training altogether. Given that our gestures are performed in
an [x, y] plane, and given that our unistroke unigrams have a pre-specified drawing
order, we can sample a two-dimensional static drawing of an input candidate, generate a
template from that data, and use that template within our library. Figure 5.8 shows the
training dataset generated from the fonts and the users. Figure 5.7 shows this accuracy
for unigrams, bigrams, and trigrams using 1-best, 2-best, and 3-best lists with off-line,
automatic template generation. Of note is that 3-best lists for generic templates generate
recognition accuracies of 84% for unigrams, 89% for bigrams, and 88% for trigrams
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Figure 5.7: 1-best, 2-best, and 3-best recognition rates for an automatically generated
unigram, bigram, and trigram template model.

Figure 5.8: Training dataset generated from vectorized unistroke fonts (left) and from the
user training samples (right).

without the need for user training. This accuracy could be boosted even higher using
reject rates: note that we are not performing any confidence thresholding in this analysis,
and, in our initial data set, approximately 10% of user actions were a result of slips.

Overall, there is a dropoff in accuracy as the generic templates do not perform as well
as user-specific templates elicited during training. However, in real-world deployments,
one could imagine these generic templates as a bootstrapping mechanism for gestural
input. New users to the system could perform reasonably – for example with 90% accuracy
using 3-best lists – until a user-tuned set of templates can be elicited from their input data
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to support higher recognition.

5.3 Discussion

One limitation of this system is that our recognition algorithm, dynamic time warping, has
well-known limitations of nearest neighbor classification on noisy input data compared
to techniques such as hidden markov models; nearest neighbor template classification
has more frequently been proposed as a recognition tool [78]. However, dynamic time
warping is a tractable, easily implemented algorithm, and so for prototyping and rapid
deployments, these results are invaluable to researchers and designers. For more sophisti-
cated deployments, more sophisticated recognition strategies and priors from context hold
the potential to attain the more accurate recognition rates required in tasks where both
errors and false negatives are inadvisable. From the perspective of bigram and trigram
generation, our creation of longer gestural sequences can be formalized further. More
sophisticated algorithms would incorporate real-world training on these more extensive
languages. However, as our interest is overall feasibility, we thought that an initial foray
that examined how gestures can be combined, segmented, and recognized even with
ambiguous segmentation was a worthwhile exploration given our desire for larger gestural
languages. Together, these limitations should highlight the fact that the evaluation results
are pessimistic estimates of the overall accuracies possible for a real-world system.

The implications for a system’s ability to recognize a linguistic vocabulary are huge;
users can form better associations with textual gestures similar to the way text-based
user interfaces (TUIs) such as the Windows command prompt provide a powerful list of
operations to the user. The area of making gesture-based interfaces more natural and
forgiving has been hugely underexplored. Current gesture-based systems are analogous
to automated telephone machines waiting for the user to provide highly specific input.
Allowing a gesture system to encapsulate a much larger vocabulary, and thus overload
one action with multiple gesture words, can go a long way in building gestural interfaces
and a potential substitute for modern voice-based assistants such as Siri.

We believe that the onus of usable gestural systems lies on both the designer and the
user: the designer must allow a framework of expressivity and creativity which the user
can take advantage of and personalize to suit their needs. The WatchTrace system serves
as an example of a prototype built under the at-your-side paradigm to allow for gesture
‘words’ to be formed by relatively subtle and quick arm motions. As the designer of the
gesture set provides a set of atomic template models, the system can then generate new
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vocabulary by learning the requirements of the end-user and improving its classification
over time. We also consider, within reach, the possibility of the users designing their very
own gesture templates and making systems even more expressive.
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Chapter 6

Conclusion and Future Work

In this chapter, we present a summary of the design and feasibility exploration of at-your-
side gestural interaction described in this thesis: the exploration of the design space of
arm-based motion gestures, the design motivations for developing an at-your-side gesture
paradigm, and feasibility of such a system. We then suggest areas where this work can be
extended in the future either by optimizing the current recognition system or by adopting
alternative techniques to improve the design and usability of this gesture space.

6.1 Conclusion

This thesis first described the design motivation of a fatigue-minimizing gesture paradigm
using an arms-down posture while providing a rich and extensive gesture vocabulary.
We surveyed the domain of arm gesture interaction to identify unexplored but prevalent
challenges for improving the usability of such systems. Informed by physical effort metrics
such as Consumed Endurance while performing mid-air gestures, moving the plane of
interaction from in-front to at-side of the user’s body can not only reduce the exertion but
also provides a form of socially acceptable gesture input.

Informed by the elicitation study to understand the users’ the mental model and level
of comfort in at-your-side gesture paradigm, there is a largely unsolved need for gesture
systems to be rich, supporting a high volume of abstract and alphanumeric gestures; and
personalizable, allowing for gesture concatenation and chaining of input for complex
workflows. Even though this work infers a low-to-moderate consensus for a standard
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gesture set, the study demonstrates promise with high user satisfaction and mnemonic
association.

The evaluation of a prototype system in this paradigm, using commodity hardware
and recognition schemes, show promise into the feasibility of expressive, conversational
gesture interfaces. With four training samples, an effective recognition of over 90% is
feasible, by incorporating standard error-thresholding techniques such as n-best lists, in
a real-time recognition system that users train themselves, and generic template sets
(collected from other users) also achieve high recognition accuracy. Alongside this, we
demonstrate a technique for concatenation of simple gestures into bigram and trigram
gestures and show high recognition accuracy for these more complex gestures. By pro-
viding a limited set of gesture models, these systems can be programmatically extended
to form gesture chains, such as bigrams and trigrams, and adopt different dictionaries,
abstract traces, geometric shapes, or alphanumeric characters, to match the context or
environment.

At-your-side gestural input presents significant advantages for many persisting chal-
lenges associated with such types of freehand gestures. It is low-effort, as the gestures
are performed in an arms-down posture. Delimiters can be leveraged to discriminate
input from everyday movement. It is easily sensed using commodity wearable devices,
simplifying deployment. The gesture dialect can is further extended thanks to the ability
to leverage bi-grams and tri-grams. It can easily be combined with pointing through
mode switches or by raising an arm to point at devices then lowering the arm to issue
commands. Users rate the input as consistently low-effort and low-embarrassment for
public use. Overall, we hope this exploration and evaluation of this paradigm can guide a
more usable and considerate design of gesture-based systems.

In summary, this thesis has demonstrated that at-your-side gesture interaction is a
viable, low-effort, expressive interaction paradigm for gesture-based input. The target of
input systems can include wearables such as smartwatches or head-mounted displays,
personal displays on smartphones and tablets owned by the user, and external displays
found in the environment. Beyond display-based interaction, due to the expressiveness
of large vocabulary input, side gestures merit consideration for control of an internet-of-
things world.
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6.2 Future Work

Through results and feedback from the study, we identify potential areas to explore and
improve both the at-your-side paradigm and the gesture interface design. We present
potential areas of further research worth investigating in the form of open questions:

1. Can we support the thousand most common verbs with reliable accuracy? As the
feasibility section shows promise for extended dictionary lengths, a probe aimed
at exploring the most common set of verbs in one or more languages could open
up the potential for gesture systems to replicate the functionality of voice-based
interfaces and reduce the system’s learning curve.

2. Can we resolve gesture errors through candidate analysis and other factors or
contexts? Highly similar gestures such as “I” and “J” are challenging for systems
to distinguish. However, a directed study could be performed to build dictionary
sets from different gesture combinations and estimate the level of confusion in a
given gesture set. The study can be extended by introducing additional dimensions
such as recently used gestures and frequently used gesture orders for practical
improvements to accuracy.

3. Can the recognizer move completely on the watch? A complete disconnection of the
watch with data processing systems, by performing both sensing and classification
on-site, can open up possibilities for complex interaction where other currently
internet-reliant techniques, such as voice recognition, are unavailable.

4. Can audio and vibrotactile feedback improve eyes-free communication? As a way
to communicate the system state to the user and aiding the recognizer, specific
on-site and off-site feedback mechanisms could be explored to shape and learn user
behavior.
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