
Animating Coupling between Inviscid
Free-Surface Liquids and Elastic

Deformable Bodies

by

Omar Zarifi

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Computer Science

Waterloo, Ontario, Canada, 2017

c© Omar Zarifi 2017

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Driven by demand for high-fidelity computer-generated imagery, physics-based anima-
tion has become an exciting frontier of research in computer science. Simulations of fluids
and their interactions with other objects in the environment have particularly enjoyed
much attention and investigation. Consequently, effective techniques have been developed
to efficiently simulate two-way coupling between fluids and rigid bodies, allowing for con-
vincing animation of, for instance, ships on the ocean. On the other hand, accurately
capturing interactions between fluids and deformable solids has proven to be much more
elusive. In particular, satisfaction of boundary conditions poses a significant difficulty, as
the straightforward voxelized treatment suffers from visible grid artefacts, whereas use of
a conforming mesh greatly increases the computational overhead of a simulation.

This thesis investigates the problem of animating two-way coupling effects between
free-surface liquids and linearly elastic solids. Aside from presenting simulation techniques
for such liquids and solids separately, we introduce a new approach to simulating their
interactions that exhibits several notable advantages over previous techniques. By fully
incorporating the dynamics of the solid into pressure projection, we simultaneously handle
fluid incompressibility and solid elasticity and damping. Thanks to this strong coupling,
our method does not suffer from instability, even in very taxing scenarios. Furthermore,
use of a cut-cell discretization methodology allows us to accurately apply proper free-
slip boundary conditions at the exact solid-fluid interface. Consequently, our method is
capable of correctly simulating inviscid tangential flow, devoid of grid artefacts or artificial
sticking. Lastly, we present an efficient algebraic transformation to convert the indefinite
coupled pressure projection system into positive-definite form. The thesis also contains
an evaluation of our proposed method, including several animation scenarios, as well as
comparisons to previous techniques.

iii

Acknowledgments

I would like to thank my supervisor Christopher Batty for his excellent advice and
support throughout the course my Master’s program: my success in this endeavor is largely
due to his patience and guidance. I would also like to thank my committee members,
Gladimir Baranoski and Jeff Orchard, for taking the time to read my thesis and evaluate
my work.

Residents of the Scientific Computing lab deserve considerable credit for making our
office a pleasant and enjoyable workplace. Special thanks go to Parsiad, Eddie, and Colleen
for introducing me to the Math Coffee and Donut shop and allowing me to partake in our
refreshing coffee breaks.

I would also like to thank my colleagues at the Computational Motion Group: Jumyung,
Ryan, Jade, Yipeng, Egor, and Dustin. Their colourful characters and our common inter-
ests ensured that our discussions were always amusing and insightful.

I am very grateful to all of the friends I have made in Waterloo and Toronto, especially
Amit, Camila, Sajin, Savio, Raisa, and Nupur. I would be hopelessly bored outside of
work hours without their companionship.

Finally, I would like to thank my family: my mother Nasrin, my father Abdul Hai, my
sisters Nargis, Zohal, and Zarifa, and my beautiful nieces Sumaya, Leay, and Lily. Their
unconditional love and support have fuelled me, not only during the course of this Master’s
program, but throughout my entire life. From the bottom of my heart—thank you...

iv

Dedication

To my parents, Abdul Hai and Nasrin.

v

Table of Contents

List of Tables ix

List of Figures x

List of Algorithms xii

1 Introduction 1

1.1 Contributions . 4

1.2 Outline . 4

2 Related Works 5

2.1 Liquid Animation . 5

2.2 Solid Animation . 6

2.3 Coupling Fluids to Rigid Bodies . 6

2.4 Coupling Fluids to Lagrangian Deformables 7

2.5 Coupling Fluids to Eulerian Deformables 9

2.6 Smoothed Particle Hydrodynamics Methods 10

3 Solid Dynamics 11

3.1 Deformations . 12

3.2 Strain and Stress . 14

3.2.1 Strain . 14

vi

3.2.2 Stress . 15

3.2.3 Material Model . 18

3.3 Equations of Motion . 19

3.4 Variational Treatment of Elasticity . 20

3.5 Spatial Discretization . 22

3.5.1 Mass Matrix . 22

3.5.2 Deformation Gradient . 23

3.5.3 Stiffness Matrix . 24

3.5.4 Discrete Equations . 26

3.5.5 Rayleigh Damping . 27

3.6 Corotational Model . 27

3.6.1 Elemental Rotations . 28

3.7 Algorithm Summary . 29

4 Fluid Dynamics 32

4.1 Equations of Motion . 34

4.1.1 Material Derivative . 35

4.1.2 Conservation of Mass . 35

4.1.3 Conservation of Momentum . 36

4.1.4 Incompressible Euler Equations . 38

4.2 Discretization . 38

4.3 Semi-Lagrangian Advection . 40

4.4 Cut-Cell Pressure Projection . 41

4.4.1 Enforcing Incompressibility . 42

4.4.2 Free Surface Condition . 44

4.5 Tracking Geometry . 45

4.6 Algorithm Summary . 46

vii

5 Solid-Fluid Coupling 48

5.1 Coupled Pressure Projection . 49

5.1.1 Modification to Fluid Equations . 49

5.1.2 Modification to Solid Equations . 50

5.1.3 Coupled System . 51

5.2 Positive-Definite Transformation . 52

5.2.1 Algebraic Transformation . 52

5.2.2 Choice of Summand Matrices . 53

5.2.3 Connection to the Schur Complement 54

5.2.4 Proof of Positive-Definiteness . 54

5.2.5 Matrix Scaling . 55

5.3 Comparison with Changing to Stress-Like Variables 55

5.4 Algorithm Summary . 57

6 Results 59

6.1 Animation Examples . 59

6.1.1 Dam Break . 59

6.1.2 Buoyancy Example . 60

6.1.3 Solid Compressibility Example . 61

6.1.4 Liquid Supported by a Solid . 61

6.1.5 Fluid in a Sphere . 62

6.1.6 Light Dino . 63

6.2 SPD System Conditioning . 63

6.3 Stability Assessment . 65

6.4 Accuracy Assessment . 66

7 Conclusions 70

7.1 Future Work . 70

References 72

viii

List of Tables

6.1 Table of simulation resolutions. 60

6.2 Comparison of coefficient matrices for the indefinite and SPD formulations
(all entries in this table are averaged over 100 simulation steps); c stands
for the condition number. 66

6.3 Running time in seconds (total frame time averaged over 100 frames) com-
parison of our SPD transformation method (data in blue and on the left) to
the factored formulation (data in red and on the right). 67

6.4 Matrix nonzeros (averaged over 100 frames) comparison of our SPD trans-
formation method (data in blue and on the left) to the factored formulation
(data in red and on the right). 67

6.5 First accuracy assessment (µ = 20, λ = 10, L = τ0 = 0.4, α = 0.9, y1 =
0.205, y2 = 0.595). 68

6.6 Second accuracy assessment (µ = 100, λ = 100, L = τ0 = 0.4, α = 1.1, y1 =
0.18, y2 = 0.62). 69

ix

List of Figures

1.1 A typical (inviscid) fluid animation pipeline. Arrows indicate data flow. . . 2

3.1 Evolution of a solid; it is impossible to tell if the object was deformed or
rotated by comparing occupied regions. 13

3.2 Two different configurations of a solid with the same shape. Note how
relative positions of particles changed in Ω2, signalling deformation. 14

3.3 Transformation of a planar patch (generated by hypothetically cutting the
solid with a plane). 17

3.4 Comparison of pure linear (left) and corotational (right) models. Notice
how the former suffers from unrealistic volume growth in rotated triangles. 27

4.1 Two layers of a fluid moving in opposite directions. Blue arrows indicate
velocities, while the red arrow is a force experienced by Σ. 33

4.2 Two layers of a fluid moving in the same manner; note that no net force is
now generated at Σ. 33

4.3 Normal (FB · n) and shearing (Fs
B) components of traction force. 34

4.4 A two-dimensional MAC grid; pressure, x and y components of velocity are
sampled at blue circles, red squares, and blue squares, respectively. 39

4.5 Three-dimensional MAC cell; x, y, z components of velocity are sampled at
blue, red, black squares, respectively. Pressure sample is at the cell’s centre. 39

4.6 Simplified semi-Lagrangian advection on a MAC grid. Objective is to find
the x-component of the current velocity field at x (ux(x)). 41

4.7 A sample configuration within a cell. Ω is shaded, ∂ΩF = P−x ∪P−y ∪Py is
in blue. 42

x

4.8 A sample configuration for the free surface, depicted by the blue line. . . . 44

5.1 A sample configuration within a cell. Ω is shaded, ∂ΩS = Q1∪Q2∪Q3∪Q4

is in red. 49

5.2 The six possible configurations for a face, with the approximate solid region
shaded in each. 57

6.1 A deformable beam pinned at its top acting as an obstacle in a dam break
animation. 60

6.2 A compressed solid is submerged underwater; upon being released, it ex-
pands and floats to the surface. 61

6.3 A light ball is dropped into a pool of water; as expected, the ball is pushed
upwards by buoyancy forces. 62

6.4 Demonstration of free slip: liquid falls atop a sloped deformable platform
and flows down. 62

6.5 Distribution of the fluid within a spherical shell affects the direction of its
bounce. 62

6.6 A volume of liquid moving within a thick-walled spherical shell affects its
overall motion, forcing it to collide with the right wall and bounce. 63

6.7 A low density elastic dinosaur toy deforming and interacting with liquid
under our cut-cell coupling scheme. 64

6.8 Stability assessment; from left to right: decoupled approach, only damping
coupled, our method with damping, our method without damping. 64

6.9 A volume of liquid falls onto and comes to rest atop a deformable platform. 65

6.10 Setup for the accuracy assessment. 66

6.11 Refinement of the computational grid increases the distance between pres-
sure samples (given by ×) and solid boundary (nodes given by ◦). 69

xi

List of Algorithms

1 Solid Initialization Stage . 29
2 Solid Simulation Stage . 30
3 Fluid Simulation Loop . 46
4 Coupled Simulation Step . 58

xii

Chapter 1

Introduction

Fluids are an integral part of our everyday lives: from massive tidal waves crashing against
eroding cliffs and thick plumes of smoke rising out of our chimneys to hot water slowly flow-
ing past tiny solid particles and dripping through a porous filter into a coffee pot. Indeed,
so familiar are we with how fluids behave that even relatively minor inaccuracies in their
animation can be immersion-breaking. Consequently, artists must take great care when
creating computer-generated scenes involving fluids. While early physics-based approaches
effectively streamlined the animation process, they relied on simplified and idealized mod-
els that did not fully capture reality. In search of better simulation techniques, results from
computational fluid dynamics have historically been applied for animation purposes. How-
ever, much of the research in the aforementioned field is aimed at engineering applications,
where the primary objective is not visual fidelity, but accurate calculation of physical quan-
tities (such as forces and stresses). In other words, simulation of fluids with the relatively
new objective of high-quality visualization is a distinct and challenging problem, requiring
and deserving thorough investigation. It is therefore not surprising that a vast amount of
resources is dedicated to developing methods for realistic and efficient animation of fluids
within the computer graphics community.

While the full dynamics of a fluid are governed by the famous Navier-Stokes equations,
the simpler incompressible Euler equations can adequately capture the behaviour of many
fluids in typical scenarios. In particular, these equations are sufficient for incompressible
materials in cases where the viscous and thermal effects on the flow can be safely neglected.
Note that many fluids do not exhibit noticeable viscosity effects and are macroscopically
incompressible under ordinary conditions (e.g., water at room temperature). As a result,
this simpler formulation can be used to convincingly animate a wide variety of scenarios,
from ocean waves and flowing rivers to spilling milk and splashing rain.

1

Physics Simulation

Velocity Tracking

Geometry
Tracking

Advection
Pressure
Projection

Rendering

Figure 1.1: A typical (inviscid) fluid animation pipeline. Arrows indicate data flow.

In this thesis, we consider animation of inviscid free-surface liquids. Such fluids are
characterized by the presence of the free-surface boundary, against which the liquid is
allowed to push freely without experiencing any resistance. In essence, this assumption
entails that the flow takes place within a vacuum; however, the free-surface also roughly
models the interface between the liquid and air, which is present in a large proportion of
animation scenarios. Although air itself is a fluid, it possesses a much lower density than
common liquids (air and water densities, for instance, are three orders of magnitude apart).
The tremendous difference in densities greatly limits the degree to which air can impact
the liquid’s behaviour. On the other hand, simulating two-phase flow with air treated as
another fluid significantly raises computational cost and produces largely similar results
(notable exception being preservation of bubbles, which rapidly collapse under free-surface
conditions). These facts further justify the free-surface approximation and explain its
prevalence in animation packages.

The fluid animation process is comprised of two decoupled components, namely the
physics simulation and rendering (see Figure 1.1). The latter concerns itself with gener-
ating images to visualize the simulated data and is not within the scope of this thesis;
instead, we are interested in simulation of the continuum mechanics. Many methods exist
for tracking the liquid volume and surface for rendering purposes, offering various levels
of simplicity, accuracy, speed, and robustness, and one may generally choose an algorithm
freely. In order to track the liquid geometry, the simulator must also evolve the fluid’s
velocity field through time. Since liquids are macroscopically incompressible, our previous
observations suggest that behaviour of inviscid free-surface liquids can be reasonably cap-
tured by the incompressible Euler equations. However, mathematical complexity of these

2

partial differential equations does not permit an analytic solution, requiring deployment of
numerical methods. A common way to solve them in this manner relies on splitting the
time step into two sequential stages: advection (which carries the velocity field along with
the flow) and pressure projection (which enforces incompressibility and boundary condi-
tions). The various components of a free-surface liquid simulator shall be discussed in more
detail in Chapter 4; for now, we merely mention the importance of the pressure projection
step in facilitating momentum exchange between the fluid and objects in contact with it.
As such, this step plays a key role in solving the tackled problem of simulating interactions
between fluids and deformable solids.

Although fluids and solids are similarly modelled as continuum matter, and their gov-
erning equations of motions are derived from Newton’s laws of classical mechanics, their
reaction to applied forces and deformations are nonetheless very different. An elastic solid,
for example, will seek to undo any applied deformations to its shape. Consequently, one
can define a rest configuration for such a solid; points that are disturbed from their ref-
erence location will then be subjected to internal forces as the body attempts to regain
its rest form. This observation motivates the Lagrangian treatment of solids, where the
points on the body are followed as the solid traces its trajectory through space. Note that
following fluid particles in a similar fashion does not yield the same advantage, as a fluid’s
response to forces is not related to any rest state. In other words, knowing the location
of a fluid point at a previous time reveals no information about the current mechanisms
driving it. Hence, it is more natural to treat fluids in an Eulerian manner instead: the flow
is analyzed with respect to a fixed frame of reference.

The focus of this thesis is coupling between inviscid free-surface liquids and linearly
elastic deformable solids. The objective is reproduction of two-way coupling effects. That
is, the liquid should be able to affect the motion of the solid through application of pressure
forces, and, conversely, solid’s presence should realistically deflect the flow. Since the liquid
is not viscous, the free-slip condition must be enforced at the boundary separating these two
entities. This condition prevents the liquid from entering the solid, but enables tangential
flow to the surface. Lastly, a simulation algorithm must possess certain properties to be
considered useful; based on animation-specific demands, we chose to prioritize stability,
efficiency, and simplicity.

We have developed a novel coupling method to simulate interactions between free-
surface liquids and linearly elastic deformable solids. The features of our coupling approach
are outlined in Section 1.1, where we also reveal the degree to which the listed specifications
are met. Our work is set to appear at the 2017 Symposium on Computer Animation [66],
and much of the material that appears in this thesis draws from this publication.

3

1.1 Contributions

The subsequent chapters discuss the details of our coupling scheme; below, we outline its
main features.

• Excellent Stability. Our simulation loop utilizes semi-Lagrangian advection in
conjunction with backward Euler time integration, and, as a result, is extremely
stable.

• Boundary Condition Enforcement at the True Interface. Use of cut-cell
discretization allows us to apply the boundary conditions at their exact location,
even if the solid does not line up with the fluid grid.

• Tangential Free-Slip without Grid Artefacts. Our coupling method constrains
only the normal component of fluid velocity at the boundary. Thus, the liquid may
move tangentially to the solid, as required of inviscid flow.

• A Symmetric Positive-Definite Linear System. The described pressure pro-
jection scheme requires the solution of a symmetric positive-definite system, without
requiring factorization of the solid damping or stiffness matrices.

• No Extra Constraints or Degrees of Freedom. As opposed to some previous
methods, we do not introduce any Lagrange multipliers in order to satisfy boundary
conditions. That is, the number of variables in the linear system is exactly equal
to the number of relevant fluid pressure samples plus the number of solid degrees of
freedom.

1.2 Outline

The purpose of the present chapter was to describe and motivate the problem of two-way
solid-fluid coupling and explicitly list our contributions. The remainder of the thesis is
organized as follows. Chapter 2 provides a brief survey of previous works that are relevant
to the problem at hand. Chapters 3 and 4 introduce the governing equations of motion for
solids and fluids, respectively; computational techniques to simulate objects of each type
are also included. Our novel contribution, the solid-fluid coupling scheme, is described in
Chapter 5. Chapter 6 is dedicated to evaluation of our method, while concluding remarks
and possible avenues for future research are contained in Chapter 7.

4

Chapter 2

Related Works

This project is naturally built upon and motivated by a myriad of previous works; this
chapter is dedicated to summarizing these relevant parts of the literature. Historical tech-
niques for separate animation of liquids and solids are first briefly outlined, followed by a
more in-depth survey of approaches to couple these entities.

2.1 Liquid Animation

We begin with a review of early literature pertaining to animation of liquids. Prevalence of
fluids in everyday life makes them an important target for visual effects, and, despite the
state of computer hardware in 1980’s, this problem was already being considered. Yet the
computational limitations could not be practically ignored; as such, earlier methods did
not aim to solve the physical dynamics equations, but opted for imitating realistic surface
behaviour through blending of waves [24, 39]. Another popular approach involved the
use of height field representation to approximately solve the shallow water equations [33].
This technique was subsequently improved by Chen and Lobo [12], who considered the
two-dimensional Navier-Stokes equations instead. A full three-dimensional treatment of
these governing equations was provided by Foster and Metaxas [23], whose work also
popularized use of the marker-and-cell grid for animation of fluids, three decades after this
discretization scheme was first proposed by Harlow and Welch [30]. Stam [58] proposed an
improvement to this simulation technique for smoke in the form of unconditionally stable
semi-Lagrangian advection scheme. This approach was finally adopted for the purpose
of liquid simulations by Foster and Fedkiw [22]. In addition, Foster and Fedkiw [22]
pioneered the use of level set surface tracking, which has since been commonly used in

5

conjunction with particles for efficient re-creation of dynamic liquid behaviour, such as
splashing [17, 18, 19].

2.2 Solid Animation

The groundwork for physics-based animation of elastic solids was laid by Terzopoulos et
al. [63], who defined deformation potential energy functions and used a finite difference
methodology for their discrete formulation. Terzopoulos and Fleischer [62] subsequently
modified the discretization scheme to instead utilize a volumetric finite element mesh,
while keeping the core strategy unchanged. Although these seminal papers made use of
a semi-implicit integration scheme to solve the dynamics equations, much of the following
work relied on simpler, but less stable, explicit methods (for example, [8, 44]). Citing
stiffness of the arising differential equations, Baraff and Witkin [3] advocated for use of
implicit schemes, deploying linearization of the forces to simplify integration. A similar
strategy is to perform linearization at the model level to allow for fully implicit treatment
of the discrete equations; however, the straightforward way to do so suffers from rotational
artefacts. This issue was effectively avoided by Etzmuß et al. [20] in cloth simulation with
use of a corotational model; subsequently, Müller and Gross [42] applied this technique
to simulate volumetric solids. Noting its advantages, we also used this model to animate
linearly elastic solids for the purpose of this project.

2.3 Coupling Fluids to Rigid Bodies

We now proceed to survey techniques for the related problem of animating interactions
between fluids and rigid bodies. Since a typical fluid simulation often involves an enclosing
container, the problem of rigid boundaries and objects has been considered from the earliest
days of fluid animation. Use of the now-ubiquitous marker-and-cell discretization was
introduced to the computer graphics community by Foster and Metaxas [23]. In this
seminal paper, grid-aligned solid boundaries were readily handled; however, significant
voxelization artefacts unavoidably cropped up in the presence of sloped or curved geometry.
Furthermore, only a limited discussion of dynamic rigid bodies was included, with the
authors remarking that a more sophisticated method is necessary to properly capture two-
way coupling.

Handling of solid boundary conditions, particularly for advection, was subsequently
improved by Foster and Fedkiw [22], Houston et al. [32], and Rasmussen et al. [46]. How-

6

ever, issues could still surface due to the voxelized pressure solve. For instance, none of
the aforementioned methods can adequately simulate a body of water in hydrostatic equi-
librium within a spherical container. Feldman et al. [21] circumvented this problem by
using conforming volumetric meshes in order to accurately capture the fluid region (and,
hence, its boundaries), and Klingner et al. [34] adapted this approach for the purpose of
two-way coupling with dynamic rigid bodies. Unfortunately, both of these works relied
on the use of conforming unstructured tetrahedral meshes and frequent remeshing of the
fluid domain, adding computational overhead. Another approach to two-way coupling is
the “rigid fluid” method proposed by Carlson et al. [11], which handles interactions by
temporarily treating the rigid body as a fluid region, but this approach can lead to severe
leakage through objects.

A widely adopted solution to the problem of irregular solids is the use of cut-cell meth-
ods, which essentially clip the object geometry against a regular background grid. Their
use in computer graphics was first suggested by Roble et al. [50], who proposed a sim-
ple modification to regular pressure projection that allows for more accurate enforcement
of static solid boundary conditions. The variational formulation of Batty et al. [5] sim-
ilarly treated two-way rigid body interactions by casting the coupled pressure solve in
an energy minimization form that accounts for partial cell volumes in three dimensions.
Subsequently, Ng et al. [43] used a finite volume cut-cell discretization to derive a more
accurate scheme for kinematically scripted solids, involving the same stencils with a differ-
ent choice of weighting terms. This thread of research culminated in work by Gibou and
Min [27], who presented further accuracy improvements to the method of Ng et al. [43]
and extended it to two-way coupling with dynamic rigid bodies.

Such cut-cell discretizations have become increasingly common in fluid animation,
for example in the context of spatial adaptivity [6], multigrid methods [64], detailed
splashes [16], and thin solids [2]. This trend can be attributed to the simplicity of cut-cells
(both conceptual and with respect to implementation) as well as their expressive power:
fluxes across small geometrical details can be mathematically captured without refining
or re-orienting the computational grid. Observing these properties, our coupling scheme
makes use of cut-cell discretization to accurately enforce coupling conditions at the inter-
face between a fluid and a deformable body.

2.4 Coupling Fluids to Lagrangian Deformables

The fluid nature of liquids and gases results in immense shape changes throughout the
course of a simulation. Consequently, despite various advantages possessed by Lagrangian

7

mesh-based approaches to fluid simulation [14, 40], such as a unified physical model for
solids and fluids, better volume preservation, and straightforward support for implicit
surface tension, they are less common because they necessitate continuous and expensive
remeshing of the fluid region. Many solids, on the other hand, are not ordinarily subject
to such extreme distortion and permanent deformation. As a result, Lagrangian mesh
methods have predominantly been used to animate elastic deformable objects. A typical
example of such a scheme is given by Teran et al. [61]: the solid domain is partitioned into
volumetric elements, allowing for a simple calculation of per-element strains, which can be
used to obtain material stresses and internal forces.

This discrepancy in representation of fluids and solids introduces a challenge in their dy-
namic coupling: because velocity samples for the two entities are not collocated, it becomes
harder to accurately enforce boundary conditions at the regions of contact. To bypass the
inherent difficulty in simultaneous satisfaction of boundary conditions, early attempts at
animating solid-fluid interactions took a weakly coupled approach that alternates solving
for solid and fluid motions. For example, Genevaux et al. [26] devised a simple simulation
scheme that integrates fluid and solid dynamics separately, with interactions facilitated by
interfacial forces. Guendelman et al. [28] took a similar approach, but used solid velocities
as prescribed boundary conditions for pressure projection. Effects of the fluid on the solid
are then captured through application of forces induced by the computed pressure field.
We observe that the simplicity of weakly coupled schemes generally comes at the cost of
accuracy, stability, or efficiency: it is often necessary to take restrictively small time steps
in order to prevent unphysical behavior or even catastrophic simulation failure.

The problem of instability was largely mitigated by Chentanez et al. [13], whose im-
plicit, strongly coupled formulation is demonstrably robust, even with relatively large time
steps. The tetrahedral mesh variant of this method naturally requires continuous remesh-
ing, while the regular grid variant does not correctly apply the free-slip condition at the
exact interface, since it inaccurately treats the solid as voxelized; as a result, visible vox-
elization artefacts appear at the solid-fluid boundary. Furthermore, the linear system for
pressure projection is non-symmetric, rendering it more difficult to solve numerically. The
formulation of Robinson-Mosher et al. [49], on the other hand, instead requires the solution
of a symmetric indefinite matrix. While such systems are generally easier to solve numer-
ically than non-symmetric ones, working with positive-definite matrices is still preferred.
The effects of the underlying voxelization are present in this method as well; in particular,
lumping of fluid and solid momenta within computational cells forces the fluid to inherit
the solid’s velocity at the boundaries. In essence, despite the use of an inviscid fluid model,
this method violates the desired free-slip condition, causing the fluid to stick unnaturally
to objects.

8

In subsequent follow-up work, Robinson-Mosher et al. [47] incorporated tangential free-
slip boundary conditions into their coupled pressure projection scheme via Lagrange multi-
pliers that explicitly constrain only the interpolated normal component of relative velocity
to be zero. However, these boundary conditions are once again applied at regular grid
faces as opposed to the true contact interface, and the resultant linear system remains
symmetric indefinite. A positive-definite formulation of the same problem was finally pre-
sented by Robinson-Mosher et al. [48] through linear algebraic manipulations that rely on
construction of a symmetric factorization of the solid’s damping matrix; our method is
more general in avoiding this requirement. In addition to our use of a cut-cell approach
that better accounts for solid geometry, our work is also distinguished from the preceding
three approaches by our use of corotational linear elasticity which allows us to incorporate
the full implicit solid dynamics into the coupled pressure projection; Robinson-Mosher et
al. include only the solid damping.

An important determinant of computational cost of a deformable simulation is the
node count for the mesh. In certain cases, it is not possible to coarsen a mesh without
significantly affecting its shape. In these scenarios, one can still improve running time by
utilizing a reduced model, whose deformations are restricted to a smaller subset (e.g., [53]).
Building on the aforementioned algorithm of Robinson-Mosher et al. [48], Lu et al. [37]
developed a method to capture interactions of fluids and reduced deformable bodies. Since
our goal is high-fidelity simulation with accurate boundary condition handling, we do not
consider reduced models; however, we anticipate that our coupling strategy could similarly
be adapted to work with reduced models.

Sotiropoulos and Yang [57] provide a review of a wide variety of approaches to fluid-
structure interaction in computational physics. While various flavors of immersed boundary
and cut-cell methodologies are common, we are not aware of any method that offers the
specific advantages provided by our scheme. As an example, Pasquariello et al. [45] use a
cut-cell finite difference/volume strategy in a manner broadly similar to our work and that
of Ng et al. [43]. In contrast to our work though, they consider compressible flow, handle
the boundary interactions via a mortar method based on explicit Lagrange multiplier
constraints, and employ a weak/partitioned coupling strategy.

2.5 Coupling Fluids to Eulerian Deformables

Although still not as popular as the ubiquitous Lagrangian schemes, Eulerian and hybrid
solid simulation approaches have recently gained traction; the Eulerian solids approach [35]

9

and the material point method [59] are representative examples. Most relevant to our re-
search is the Eulerian two-way solid-fluid coupling method of Teng et al. [60]. While a
fully Eulerian scheme is in many ways very natural, this method exhibits several practi-
cal drawbacks. First, the underlying Eulerian solid model suffers from strong numerical
damping. More importantly, this unified model necessarily implies a no-slip condition at
the boundaries, and the described method is limited to simulating fully immersed, strictly
incompressible objects. By contrast, we are interested in coupling of potentially com-
pressible solids to inviscid free-surface liquids, for which the free-slip condition yields more
realistic results for animation scenarios.

2.6 Smoothed Particle Hydrodynamics Methods

Smoothed particle hydrodynamics (SPH) methods provide an alternate way to simulate
fluids, by distributing mass to particles and using interactions between these constituents
to determine the dynamics of the aggregate fluid [7, 15, 41]. Several algorithms to simulate
two-way coupling of deformable solids to SPH fluids have been previously proposed (e.g., [1,
56]). These methods are outside the scope of this thesis, which focuses on Eulerian fluid
representations.

10

Chapter 3

Solid Dynamics

Imagine a solid object at rest in a total vacuum, without any nearby agents that may
influence its motion. In such a rest state, the object occupies some space (say Ω), and,
as governed by Newton’s first law of motion, it shall remain in this rest state until acted
upon by an external force.

Suppose now that a force is applied to some region R of Ω. According to Newton’s
second law of motion, an acceleration is induced on R, proportional to the magnitude of the
force. But R cannot move independently, since it is coupled to its neighbours in Ω. That
is, despite local action of the force, all parts of the solid are affected. To determine how
the aggregate body, initially occupying Ω, evolves in time, a model is needed to describe
the internal coupling within the solid.

The simplest such model treats solids as ideal rigid bodies. The underlying assump-
tion of this model is that the distance between any two points within the object remains
constant, regardless of what happens to the solid. Accepting this axiom, one can show
that the state of the object at any given time can be captured by two quantities: its posi-
tion and its orientation. In three dimensions, both of these properties can be represented
by three-dimensional vectors. Hence, the configuration of a three-dimensional rigid body
can be summarized by a mere six numbers. In many situations, the described model is
an excellent approximation and its simplicity makes it an attractive choice for simulation
purposes. For instance, a billiard ball will maintain its spherical shape after impact with
the cue stick and collisions with other balls. Likewise, a steel ball bearing will not dent or
crack under any amount of pressure a human may manually subject it to.

However, the rigid body model is admittedly inadequate for capturing the behaviour
of softer solids, like a rubber ball or a jellied dessert. We return to our example of local

11

force application to illustrate the conceptual difference in dynamics. For a rigid body, the
resultant acceleration at R immediately affects the entire object, since any delay in reaction
will inflict a change in distances between points of the solid. If the solid is not rigid, on
the other hand, then the portion within R will start to move independently, modifying
the object’s shape. In response to this deformation, internal forces will be generated; it is
these forces that gradually cause the rest of the body to move.

It is clear that a general three-dimensional solid possesses many more degrees of free-
dom than a rigid body. This fact raises the question: how can the configuration of a
deformable body be described? Furthermore, how can we measure the deviation of an
arbitrary configuration from a more stable rest state? Finally, given this deviation, what
kinds of internal forces are generated by the material in a drive towards a more stable
configuration? This chapter is dedicated to mathematically answering these questions in a
continuous framework, as well as providing a discretization scheme for simulation purposes.
We note that much of this material can be found within standard sources on the subject,
such as the book by Segel and Handelman [52] and course notes by Sifakis and Barbic [54].

3.1 Deformations

Recall the previous example of an isolated, stationary object. It is said that this solid
is in a rest state, since its configuration does not cause internal forces to be generated.
If we freeze the object at a later time t, after it has been influenced by external stimuli
and undergone motion and deformation, we find that it occupies a different region, Ωt.
Although Ωt contains some information about the solid, it is not an adequate description
of the object’s physical state. For instance, consider the scenario depicted in Figure 3.1;
it is impossible to deduce from Ωt whether the solid was deformed or simply rotated. Yet
these two circumstances clearly differ: internal forces will arise only in the former case, as
the solid is still in a rest state if it merely undergoes a rotation.

A much more expressive description of physical configuration is the deformation map.
Towards defining this notion, we follow the trajectory of a specific solid “particle”, initially
at X ∈ Ω, as the body undergoes its motion; in the current configuration, we find that this
particle has moved to some position x ∈ Ωt. If we track the motion of every solid constituent
in this manner, we can clearly obtain the shape of the entire object. In addition to the
shape, however, this scheme for describing configuration also reveals the change in internal
structure of the solid. Revisiting the previously ambiguous example of an ellipse, Figure
3.2 illustrates the expressive power of particle tracking: we can effortlessly distinguish

12

Ω Ωt

Figure 3.1: Evolution of a solid; it is impossible to tell if the object was deformed or rotated
by comparing occupied regions.

between a deformation from a rotation by comparing relative particle locations to the
reference configuration.

The deformation map is a mathematical construct that allows us to capture the change
in distribution of matter within a solid. Formally, it is a function φ : Ω → Ωt, such
that φ(X) is the current location of the particle that was at X in the rest state. For
example, if the solid is simply translated, then its deformation map will have the closed
form φ(X) = X + t for some vector t; similarly, if the solid is stretched uniformly in
every direction by a factor of a, then its deformation map can be expressed as φ(X) = aX.
Thus, the deformation map captures the state of every material particle in a mathematically
succinct manner; but what is a “particle”? For simulation purposes, a particle could simply
represent a small chunk of the object. In the physical limit, it could denote a molecule
or an atom of the comprising matter. In both of these cases, Ω and Ωt would be finite
sets of positions, equal in cardinality to the number of particles in the solid. However,
it is more mathematically convenient to consider these sets as connected regions in R3

(and, consequently, particles to be points in space), allowing use of vector calculus as an
analytic tool. For example, this perspective enables us to differentiate the deformation
map in space to obtain the deformation gradient, an important indicator of type and
severity of shape change. By treating solids in this manner, we adopt the viewpoint that
all of the space inside the object is continuously filled with matter; this is the underlying
assumption of continuum mechanics. Although this is fundamentally at odds with reality,

13

Ω

Ω1 Ω2

Figure 3.2: Two different configurations of a solid with the same shape. Note how relative
positions of particles changed in Ω2, signalling deformation.

it is nevertheless an excellent approximation at macroscopic scales.

3.2 Strain and Stress

This section explains the physical consequences of induced shape changes. We begin with
discussion of strain, which quantifies the extent of deformation for a given state, then
continue on to define stress, which summarizes the internal forces that arise in reaction
to strain. Link between stress and strain is provided by the constitutive model for the
considered materials, description of which concludes this section.

3.2.1 Strain

For a given configuration of the solid, strain is a measure of its deviation from a rest state.
As such, it can be considered a function of the deformation map; since different parts of the
body can experience different degrees of distortion, it must also be a function of location.
Thus, we can denote it by S(φ,X). Towards simplifying the dependence on the deformation
map, we can note that strain at a material point X0 within the solid is contingent on the
configuration of its local neighbourhood; within such a local neighbourhood, linearization
of the deformation map yields a good approximation:

φ(X) ≈ φ(X0) +
∂φ

∂X

∣∣∣∣
X=X0

(X−X0) =
∂φ

∂X

∣∣∣∣
X=X0

X +

(
φ(X0)− ∂φ

∂X

∣∣∣∣
X=X0

X0

)
. (3.1)

14

Letting F denote the spatial derivative of φ and t(X0) denote the vector in the parentheses,
we can write the above expression as φ(X) ≈ F (X0)X+ t(X0). With respect to describing
local deformation in the neighbourhood of X0, the vector t(X0) holds no value, as it corre-
sponds to a rigid translation. Consequently, we conclude that strain is simply a function of
the spatial derivative of φ; for its importance in determining strain, this derivative deserves
its own name: the deformation gradient.

Having argued that strain depends on the deformation gradient, we now investigate
this relationship more closely. As remarked previously, differentiation of the deformation
map already filters out translations of the solid; a reasonable strain measure must likewise
be invariant under the second type of rigid transformation, namely rotation. Suppose
that the solid is rotated about the point Y; then its deformation map will be of the form
φ(X) = R(X − Y) + Y for some rotation matrix R. Clearly the resultant deformation
gradient is simply F = R. Observing that rotation matrices are orthogonal, we can state
that F TF = I, where I denotes the identity matrix. Thus, we may consider it reasonable
to take deviation of F TF from the identity matrix into account when measuring strain; in
fact, the Green strain tensor does exactly this:

G(F) =
1

2

(
F TF − I

)
. (3.2)

Although Green strain is a powerful determinant of deformation severity, it is quadratic
in the deformation gradient. As a result, combining use of Green strain with an implicit
time integrator necessitates solution of a nonlinear system of equations at each time step.
To alleviate this issue, linearization of the Green strain tensor (known as the small strain
tensor) is often employed:

ε(F) =
1

2

(
F + F T

)
− I. (3.3)

Use of this strain measure may give rise to unrealistic behaviour if the simulated solid
undergoes large deformations. For instance, even rotations yield non-zero small strain
tensors. However, (3.3) is a good approximation to the Green strain for small deformations,
and its linearity makes it an appealing choice for animation purposes. Furthermore, it is
not difficult to eliminate the effect of rotations on internal dynamics, though we delay the
discussion of such a scheme to Section 3.6.

3.2.2 Stress

Although strain allows us to assess the deviation of a configuration from a rest state, it
does not directly reveal the nature of internal forces generated by the material. For this
purpose, stress is defined.

15

As mentioned previously, effects of an externally applied force are propagated through-
out the solid “sequentially”. That is, the parts that experience the force directly begin to
move; in turn, these parts influence their neighbours and so on. Transfer of momentum
within the solid in this manner is modelled through contact forces between neighbouring
chunks. To study these forces, we consider two neighbouring parts of a solid, denoted by
C1 and C2. Effects of a deformation experienced by C1 are transferred to C2 via a force
applied at their common interface; call this interface Γ and the force F. It is clear that F
is a function of how C1 is pushing on C2, as well as the area of contact. In particular, if
we define T(x) to be force field per unit area exerted by C1 on C2 at the interface, then

F =

∫∫
Γ

T(x)dA. (3.4)

As such, to complete our model of the solid’s internal forces, we need only to describe the
field T(x).

Contact force per unit area (the vector T) is known as traction in solid dynamics.
The mathematical nature of tractions is described by two results: Cauchy’s postulate and
Cauchy’s stress theorem. The former asserts that traction at a point x depends only on
the normal direction to the interface; thus, traction is a function of location within the
solid, as well as the normal direction to the considered boundary: T(x,n). Cauchy’s stress
theorem states that this function is linear in n for a fixed x. Therefore, for each location
within the solid, there exists a matrix σ(x) such that T(x,n) = σ(x)n. Assuming n is
the normal in the deformed configuration, σ is known as the Cauchy stress tensor. It
effectively summarizes the state of internal forces within the object and, unsurprisingly, is
an important part of solid simulation.

As an example, we may conceptually divide a virtual solid into tetrahedra P1, . . . , Pn;
the four faces of Pi will be denoted by f 1

i , f
2
i , f

3
i , f

4
i . Assuming that the Cauchy stress

tensor field can be computed, the net effect of internal forces on each part Pi is

Fi =

∫∫
∂Pi

σndA ≈
4∑
j=1

A(f ji)σ(c(f ji))n(f ji), (3.5)

where A(f), c(f),n(f) are the area, centre, and outward unit normal of face f . A simple
simulation scheme can then be devised that uses these forces to alter the momentum of
each tetrahedron. But this method requires recalculation of the face areas, centres, and
normal vectors at each simulation step. The simulation scheme could be simplified if the
forces on a part could be related to its state in the static undeformed configuration. To
this end, the first Piola-Kirchoff stress tensor is defined.

16

X

Γ0

N

x

Γ1

n

Figure 3.3: Transformation of a planar patch (generated by hypothetically cutting the solid
with a plane).

The first Piola-Kirchoff stress tensor is written as P and its relationship to the Cauchy
stress tensor is given by

P = det(F)σF−T . (3.6)

Utility of this stress measure lies in its ability to connect tractions within a body in the
deformed state to normals in the rest configuration. Suppose that the body is cut in its
rest state by a plane perpendicular to N going through X (see Figure 3.3). Let Γ0 be
some neighbourhood of X on the cut surface. After the (uncut) body has undergone some
deformation (described by φ), the point at X has moved to x, and Γ0 has evolved into
Γ1. Letting A1 be the area of Γ1, internal force at this neighbourhood is approximately
A1σ(x)n. On the other hand, the first Piola-Kirchoff stress tensor allows us to express this
force as A0P (X)N, where A0 is area of Γ0. In continuous terms, we have∫∫

Γ1

σdn =

∫∫
Γ0

PdN. (3.7)

It is not difficult to see how this stress measure simplifies simulation schemes: assuming
the first Piola-Kirchoff stress tensor can be calculated for a given state of the solid, the
resultant internal forces are obtainable from geometry in the reference configuration. No
need to track the evolution of normals and areas!

17

3.2.3 Material Model

Having explained the stress tensor conceptually, we next provide the final link between a
body’s configuration and the resultant internal forces: the stress-strain relationship. Note
that different objects of the same shape can react differently to the same deformation (and,
hence, the same strain). For instance, a stretched rubber sheet will rapidly spring back
to its original configuration, but a distorted metal plate will happily maintain its newly-
endowed shape. Some objects (such as a carbon fibre sheet) may even react differently to
the same amount of induced deformation in different directions. Assuming that the same
laws of motion apply to all these objects, we are forced to conclude that the relationship
between stress and strain is governed by the material; as such, a material model is required.

In this thesis, we consider only isotropic linear hyperelastic objects. A material is said to
be isotropic if it reacts the same way to deformations in every direction; so, a homogeneous
rubber ball would be considered isotropic, whereas the aforementioned carbon fibre sheet is
clearly not. Hyperelasticity implies that the body’s internal forces always drive it towards
its original rest state, devoid of hysteresis. Lastly, linearity of the model refers to the
relationship between generated forces and the deformation gradient. Despite its seemingly
limiting simplifying assumptions, this material model can be used to convincingly animate
a large class of deformables, including inflatable toys, elastic bands, and even human
muscles.

To satisfy linearity, we use the linearization of Green strain from (3.3). Given the
assumptions about the simulation subject, it turns out that the simplest physically-sound
constitutive equation is

P = 2µε+ λ tr(ε)I, (3.8)

where I is the identity matrix. As such, an isotropic linear hyperelastic material is char-
acterized by two numbers: the constants λ and µ are known as the first and second Lamé
parameters, respectively (note that the second Lamé parameter is also referred to as the
shear modulus). They are physical properties of the material, related to Young’s modulus
(E, which measures forces that arise as a result of stretching) and Poisson’s ratio (ν, which
describes the degree of compressibility for the material) via

λ =
Eν

(1 + ν)(1− 2ν)
, (3.9)

µ =
E

2(1 + ν)
. (3.10)

Recall that hyperelasticity implies that shape changes of the solid give rise to internal
forces that work to undo them, regardless of how the shape changes came about. Equiva-

18

lently, a hyperelastic material conservatively stores the effects of deformation as potential
energy, and internal forces are generated to push the solid into a state that minimizes this
energy. Since it is not necessary for the entire body to undergo uniform deformation, not
all parts of the solid will have the same amount of accumulated potential energy. As such,
it is more natural to work with energy density, which is allowed to vary throughout the
domain, depending on the severity of local deformation; we will denote this density field
by Ψ(F). Then the amount of potential energy stored in a part of the solid that initially
occupied Σ is given by

E(Σ) =

∫∫∫
Σ

Ψ(F)dV. (3.11)

For the constitutive relationship given in (3.8), the potential density function is

Ψ = µ tr(εT ε) +
λ

2
tr2(ε). (3.12)

A hyperelastic material has the additional useful property that the first Piola-Kirchoff
stress tensor is simply the derivative of the potential density function with respect to the
deformation gradient:

P =
∂Ψ

∂F
. (3.13)

We will exploit these facts about hyperelasticity during discretization.

3.3 Equations of Motion

Stress within a solid is governed by its configuration; in turn, the configuration evolves
based on the stresses within the solid. The manner by which these quantities simultane-
ously evolve is governed by a set of partial differential equations. Towards deriving these
equations, consider a small part of the solid, occupying Σ in the rest state. In the current
configuration, this part is assumed to be subject to gravity, as well as internal forces; so,
total force experienced by this part is

fΣ =

∫∫∫
Σ

ρgdV +

∫∫
∂Σ

TdA =

∫∫∫
Σ

ρgdV +

∫∫
∂Σ

PdN, (3.14)

where g is acceleration due to gravity and ρ is the mass density field of the solid (with
respect to the reference configuration). Invoking the divergence theorem, these forces can
be expressed as

fΣ =

∫∫∫
Σ

ρgdV +

∫∫∫
Σ

∇ · P TdV =

∫∫∫
Σ

(
ρg +∇ · P T

)
dV. (3.15)

19

On the other hand, Newton’s second law states that rate of change of momentum with
respect to time is equal to force. Thus, if we let v denote the Lagrangian velocity field,
then

d

dt

∫∫∫
Σ

ρvdV = fΣ. (3.16)

Equivalently, we have ∫∫∫
Σ

ρ
∂v

∂t
dV =

∫∫∫
Σ

(
ρg +∇ · P T

)
dV. (3.17)

Since this equality holds for all Σ, we can conclude that

ρv̇ = ρg +∇ · P T . (3.18)

These are the equations of motion that we wish to solve. To avoid confusion, we emphasize
that matrix divergence is applied to the columns, and the derivatives are taken with respect
to the reference coordinates.

3.4 Variational Treatment of Elasticity

We split discretization of the partial differential equations into two parts: time and spatial.
We will discuss the latter in Section 3.5; for now we focus on discretizing time by casting
the problem as an optimization.

Consider a solid, initially occupying Ω. We claim that solving

arg min
v

∫∫∫
Ω

(
1

2
ρ(v − v∗) · (v − v∗) + Ψ(F ∗ + ∆t∇v)

)
dV (3.19)

is equivalent to discretely advancing the velocity field by a time step of ∆t. In this ex-
pression, v is the velocity field, and asterisks denote quantities before the time step; to
simplify our analysis, we assume without a loss of generality that effects of gravity are
already incorporated into v∗.

In order to justify the claim, we let F(v) denote the functional that is optimized
in (3.19). Suppose that it achieves its minimum for some velocity field v and consider
h(δ) = F(v + δw), where δ ∈ R and w is some smooth function:

h(δ) =

∫∫∫
Ω

1

2
ρ
(
(v − v∗) · (v − v∗) + 2δ(v − v∗) ·w + δ2w ·w

)
dV

+

∫∫∫
Ω

Ψ(F ∗ + ∆t∇v + δ∆t∇w)dV.

(3.20)

20

Recall that F has a minimum at v; it follows that h has a minimum at δ = 0, so that
h′(0) = 0. Therefore,

0 =

∫∫∫
Ω

(
ρ(v − v∗) ·w +

dΨ(F ∗ + ∆t∇v + δ∆t∇w)

dδ

∣∣∣∣
δ=0

)
dV

=

∫∫∫
Ω

(
ρ(v − v∗) ·w + tr

((
∂Ψ

∂F
(F ∗ + ∆t∇v)

)T
(∆t∇w)

))
dV.

(3.21)

We will proceed to analyze the trace integral.

Note that trace is a linear function and the trace of a product is invariant under cyclic
permutations. These facts, in conjunction with (3.13), allow us to write∫∫∫

Ω

tr

((
∂Ψ

∂F
(F ∗ + ∆t∇v)

)T
(∆t∇w)

)
dV = ∆t

∫∫∫
Ω

tr
(
∇wP T

)
dV, (3.22)

where we suppress the fact that the first Piola-Kirchoff stress tensor is evaluated at F ∗ +
∆t∇v. Write w = (w1, w2, w3)T , and let P(i) denote the i-th row of P . Then integration
by parts yields ∫∫∫

Ω

tr
(
∇wP T

)
dV =

3∑
i=1

∫∫∫
Ω

∇wi ·P(i)dV

=
3∑
i=1

(∫∫
∂Ω

wiP(i)dN−
∫∫∫

Ω

wi∇ ·P(i)dV

)
=

∫∫
∂Ω

wTPdN−
∫∫∫

Ω

(
∇ · P T

)
·wdV.

(3.23)

Substituting this expression back into (3.21) yields∫∫∫
Ω

(
ρ(v − v∗)−∆t∇ · P T

)
·wdV −∆t

∫∫
∂Ω

wTPdN = 0. (3.24)

Note that this equality must hold for all w; therefore, we may conclude that

ρ(v − v∗)−∆t∇ · P T = 0 (3.25)

holds everywhere in Ω, or, equivalently,

v = v∗ +
∆t

ρ
∇ · P T (F ∗ + ∆t∇v). (3.26)

21

That is, by minimizing F , we obtain a velocity field that results from applying a single step
of backward Euler (in time, of size ∆t) to the dynamics equation (3.18) (recall that effects
of gravity are already accounted for in v∗). Additionally, we must have PN = 0 on ∂Ω
from (3.24), so that there is no traction on the boundary; this agrees with Newton’s third
law of motion, since there is nothing beyond the solid’s boundary to supply a reactionary
force if PN 6= 0. Ergo, our claim is proved.

We note that Gast and Schroeder [25] proposed use of the optimization form of back-
ward Euler in the discrete setting, and this technique is commonly used in animation.

3.5 Spatial Discretization

Besides elegantly dealing with time stepping, the presented variational point of view also
simplifies spatial discretization of the dynamics equation. In particular, if we sample only
a finite set of points within the domain for velocity, we find that the objective functional
in the minimization problem (3.19) can be expressed as a quadratic. Setting its gradient
to zero then yields a linear system of equations that can be efficiently solved by a standard
scheme. In this section, we discuss the details of this strategy.

Before delving into spatial discretization, we first describe our notation. Following a
finite element methodology, we begin by dividing the solid in its rest configuration into
tetrahedra. The vertices in this mesh are called nodes, whereas the tetrahedra are referred
to as elements. We let N and T be the set of all nodes and elements in the mesh, respec-
tively, and, for a tetrahedron t ∈ T , we use the notation i ∈ t to enumerate its nodes. The
velocity field of the solid is sampled at the nodes, and can be used to evolve the mesh in
time. The position and velocity of node i ∈ N are represented by xi and vi, respectively.
Lastly, the remainder of this chapter uses x and v to denote the stacked vectors of nodal
positions and velocities, respectively.

3.5.1 Mass Matrix

The objective functional from (3.19) shall be discretized in two parts, corresponding to the
summands of the integrand. The first portion, which we call kinetic, will be discussed in
the present section; the potential part is discretized in Section 3.5.3.

Towards discretizing the kinetic integral, we distribute the solid’s mass among its nodes.
This is done by equally distributing the mass of each tetrahedron among its four nodes.

22

For a node i ∈ N , the assigned mass is denoted by mi. Then the kinetic integral can be
approximated by ∑

i∈N

mi

2
(vi − v∗i) · (vi − v∗i). (3.27)

Let M be the diagonal matrix consisting of the masses mi, each repeated thrice. Then the
above expression can be written as

1

2
(v − v∗)TM(v − v∗). (3.28)

M can be used to compute the kinetic energy of the object with respect to the discretization,
and, as such, is known as the mass matrix. More specifically, it is referred to as the lumped
mass matrix, because it is diagonal. Although one can obtain a better approximation of
the kinetic integral by interpolating velocities within each element, this strategy yields a
denser mass matrix. As we shall describe in Chapter 5, our solid-fluid coupling scheme
relies on inversion of the solid mass matrix; this foresight motivates lumping of the masses
for each node.

3.5.2 Deformation Gradient

In the same vein as Teran et al. [61], we make the assumption that the deformation map
is linear within each element (and piecewise linear throughout the entire domain). Thus,
inside each tetrahedron t, the deformation map is given by

φ(X) = FtX + bt, (3.29)

so that the deformation gradient in t is simply Ft. Suppose that the nodes of t are at
Y0,Y1,Y2,Y3 in the rest state; we let y0,y1,y2,y3 denote the locations of the corre-
sponding nodes in the current configuration. For i ∈ {1, 2, 3}, we define the undeformed
and deformed edge vectors:

dmi = Yi −Y0, (3.30)

dsi = yi − y0. (3.31)

It follows that
dsi = φ(Yi)− φ(Y0) = Ft(Yi −Y0) = Ftd

m
i . (3.32)

If we define

Dm =
(

dm1 dm2 dm3
)
, (3.33)

Ds =
(

ds1 ds2 ds3
)
, (3.34)

23

then we must have Ds = FtDm. Assuming that tetrahedron t is initially not degenerate,
Dm must be invertible, so that Ft = DsD

−1
m . Note that the edge matrix Dm depends only

on the reference configuration; thus, its inverse can be precomputed, allowing us to rapidly
acquire the deformation gradient in the element simply by forming the edge matrix for the
current configuration.

3.5.3 Stiffness Matrix

We are now ready to discretize the potential part of the continuous variational objective
function. Note that the integrand must be constant within each element, so that the
integral is equal to ∑

t∈T

VtΨ(Ft), (3.35)

where Vt is volume of t (in the reference configuration), and Ft is the deformation gradient
after the time step. With the help of the approximation scheme presented in Section
3.5.2, the total amount of stored elastic potential energy for a provided configuration is
not difficult to calculate.

Recounting our discrete optimization strategy, however, we are interested in differenti-
ating (3.35). To this end, consider the stored energy in a single tetrahedron with vertex
locations y0,y1,y2,y3. Stacking these vectors into y, the element’s potential energy can
be expressed as

E = VΨ(ε(F (Ds(y)))). (3.36)

Vectorizing all matrix intermediate functions column-wise, it is straightforward to differ-
entiate the energy using the chain rule. Ds would then be considered a mapping from R12

to R9:

Ds(y) =

 y1 − y0

y2 − y0

y3 − y0

 =

 −I I 0 0
−I 0 I 0
−I 0 0 I

y := ADy, (3.37)

where I is the 3× 3 identity matrix. Assuming that the elements of the rest edge matrix
(D−1

m) for this tetrahedron are dij, we can view write the expression for F : R9 → R9:

F (Ds) = AFDs, (3.38)

where

AF =

 d11I d21I d31I
d12I d22I d32I
d13I d23I d33I

 . (3.39)

24

Note that the linearized strain tensor is symmetric; thus, ε can be viewed as a function
between R9 and R6. In this way, we can write

ε(F) = AεF−w, (3.40)

with

Aε =
1

2

2 0 0 0 0 0 0 0 0
0 0 0 0 2 0 0 0 0
0 0 0 0 0 0 0 0 2
0 1 0 1 0 0 0 0 0
0 0 1 0 0 0 1 0 0
0 0 0 0 0 1 0 1 0

 , w =

1
1
1
0
0
0

 . (3.41)

Lastly, the function Ψ : R6 → R is

Ψ

a1

a2

a3

a4

a5

a6

 = µ(a2
1 + a2

2 + a2
3 + 2a2

4 + 2a2
5 + 2a2

6) +
λ

2
(a1 + a2 + a3)2, (3.42)

so that

∂Ψ

∂a
=

2µa1 + λ(a1 + a2 + a3)
2µa2 + λ(a1 + a2 + a3)
2µa3 + λ(a1 + a2 + a3)

4µa4

4µa5

4µa6

T

= aT

2µ+ λ λ λ 0 0 0
λ 2µ+ λ λ 0 0 0
λ λ 2µ+ λ 0 0 0
0 0 0 4µ 0 0
0 0 0 0 4µ 0
0 0 0 0 0 4µ

 := aTAΨ.

(3.43)

With these observations, the potential energy function for the tetrahedron can be dif-
ferentiated:

∂E

∂y
= V ε(F (Ds(y)))TAΨAεAFAD = V (AεAFADy −w)TAΨAεAFAD

= V yTATDA
T
FA

T
ε AΨAεAFAD − VwTAΨAεAFAD := yTKt −wLt.

(3.44)

25

The matrix Kt is called the local stiffness matrix for the element t. If we look at potential
energy as a function of all nodal positions, then the total energy for the entire solid can be
differentiated to obtain the derivative:∑

t∈T

(xTKt −wTLt) := xTK − bT . (3.45)

K is known as the solid’s stiffness matrix. Note that the matrix AΨ is positive-definite,
since it is symmetric and diagonally dominant. Hence, we can write it as BTB for some
B; in turn, this allows us to express each local stiffness matrix in the form CTC, where
C = BAεAFAD. Since it is a sum of positive-semidefinite matrices, the global stiffness
matrix must itself be positive-semidefinite. This important fact allows for application
of specialized linear solvers for numerical integration, and will be exploited for efficient
positive-definite transformation of the coupled solid and fluid system.

3.5.4 Discrete Equations

Discretized versions of the kinetic and potential parts of the continuous objective function
can be added to obtain an optimization-based integrator for the solid. Thanks to the
simplicity of the objective function, we can solve the optimization problem simply by
setting the gradient to zero. Differentiating the discrete objective function yields

(v − v∗)TM + ∆t(x∗ + ∆tv)TK − bT . (3.46)

We transpose this formula and equate it to zero, obtaining

M(v − v∗) + ∆t(K(x∗ + ∆tv)− b) = 0, (3.47)

or, equivalently, (
1

∆t
M + ∆tK

)
v =

1

∆t
Mv∗ − (Kx∗ − b). (3.48)

Let x0 be the nodal coordinates in the rest state; consider applying the above equation
to a stationary solid in the rest state, in the absence of external forces. Then v∗ and v
must both be zero, implying b = Kx0. In addition, we remark that external forces can
simply be added to the right hand side of the expression. Thus, the discrete equations of
motion for the solid are(

1

∆t
M + ∆tK

)
v =

1

∆t
Mv∗ −K(x∗ − x0) + f , (3.49)

where f is the stacked vector of externally-applied nodal forces.

26

Figure 3.4: Comparison of pure linear (left) and corotational (right) models. Notice how
the former suffers from unrealistic volume growth in rotated triangles.

3.5.5 Rayleigh Damping

The presented hyperelastic material model is fully conservative; to introduce energy dissi-
pation to this system, we use the Rayleigh model. In mathematical terms, the damping
matrix for this linear damping model is defined as

D = τMM + τKK, (3.50)

where τM , τK are non-negative constants. The former parameter controls the degree to
which the object’s absolute velocity decays, whereas the latter constant governs the amount
of damping on the stiffness modes of relative velocities. With this damping model incor-
porated, the solid equations of motion become(

1

∆t
M +D + ∆tK

)
v =

1

∆t
Mv∗ −K(x∗ − x0) + f . (3.51)

3.6 Corotational Model

Recall our motivation for using the described linearization of Green strain: its implicit
integration yields a linear system of equations. Yet the resultant model suffers from a

27

serious deficiency: it is not rotationally invariant. As a result, simulations using this
method often exhibit strange artefacts; in particular, non-physical volume growth due to
rotations is a recurring issue (see Figure 3.4: the beam, whose initial configuration is given
in red, is pinned on the left and allowed to fall under gravity). Fortunately, it is not very
difficult to fix this problem, by compensating for rotations on a per-element basis according
to the corotational model described by Müller and Gross [42].

For the purpose of explaining the overall idea of this model, we consider a single tetra-
hedron t. Suppose that we know the manner by which this element has rotated from the
rest state; let Rt denote its rotation matrix. As argued in Section 3.5.3, elastic forces ex-
perienced by the four nodes of this tetrahedron are given by ft = Kt(x−x0). The effect of
elemental rotation on the dynamics can be nullified by applying the inverse transformation
to the current configuration of the tetrahedron and re-rotating the resultant internal forces.
Mathematically,

f = R̃tKt(R̃
T
t x− x0) = R̃tKtR̃

T
t x− R̃tKtx0, (3.52)

where R̃t is a block diagonal matrix formed by repetition of Rt. The overall effect of this
corotational model on the described system is augmentation of the global stiffness matrix
with the elemental rotations; if we define

K =
∑
t∈T

R̃tKtR̃
T
t , (3.53)

b =
∑
t∈T

R̃tKtx0, (3.54)

then the modified equations of motion are(
1

∆t
M +D + ∆tK

)
v =

1

∆t
Mv∗ −Kx∗ + b + f . (3.55)

3.6.1 Elemental Rotations

It remains only to explain how to extract an element’s rotation. Observe that the deforma-
tion gradient within a tetrahedron captures not only its shape change, but also its rotation.
These two parts of the transformation can be decoupled by computing the polar decom-
position for the gradient. In particular, we desire to express the deformation gradient as
F = RU , where R is a rotation matrix, and U is symmetric and positive-semidefinite. The
procedure to do so, as presented in by Etzmuß et al. [20], is described below.

First, we note that
F TF = UTRTRU = UTU = U2. (3.56)

28

Algorithm 1 Solid Initialization Stage

Input:
list of tetrahedra T
rest node locations x0

Lamé parameters λ, µ
Output:

mass matrix M
lists of D−1

m,t, Kt,bt for t ∈ T

1: initialize nodal masses to 0
2: for each element t ∈ T do
3: compute volume Vt of t
4: distribute mass ρVt/4 to each of the four nodes of t
5: compute D−1

m,t for t (Section 3.5.2)
6: compute Kt for t (Section 3.5.3)
7: compute bt = Ktx0

8: end for
9: assemble diagonal mass matrix M from nodal masses

Let V TΛV be the eigendecomposition of U2. Then its square root is easy to calculate:

U = V T
√

ΛV, (3.57)

where square root of a diagonal matrix can be computed element-wise. Finally, the ele-
mental rotation matrix can be obtained by removing the effect of U :

R = FU−1 = FV T
√

Λ−1V, (3.58)

where inversion of Λ is trivial, because it is diagonal.

3.7 Algorithm Summary

We conclude this chapter by providing an overview of the simulation procedure. There are
two stages to algorithm: initialization and simulation. The first of these steps is used to
analyze the solid structure and pre-compute required matrices; pseudocode for this stage
is given in Algorithm 1. The simulation stage consists of a loop to repeatedly integrate
the system forward in time (see Algorithm 2). Note that gravity forces are integrated

29

Algorithm 2 Solid Simulation Stage

Input:
initial nodal positions and velocities (x0,v0)
acceleration due to gravity g
time step size ∆t
simulation stop time tf
output of Algorithm 1

Output:
nodal positions and velocities x,v at tf

1: set x = x0, v = v0

2: set t = 0
3:

4: while t < tf do
5: set K = 0, b = 0
6: for each element t ∈ T do
7: compute the deformation gradient, Ft, in t (Section 3.5.2)
8: compute elemental rotation matrix, Rt, from Ft (Section 3.6.1)
9: add R̃tKtR̃

T
t to K

10: add R̃tbt to b
11: end for
12:

13: set v∗ = v + ∆tg, x∗ = x
14: form and solve the dynamics equation (3.55) for v
15: set x = x∗ + ∆tv
16: handle contact with walls
17: increment t by ∆t
18: end while

into the velocities before solution of the dynamics equations; as a result, in the absence
of other external forces, the force vector in (3.55) is 0. This mathematically-equivalent
formulation is more consistent with the manner in which fluids are treated, and, as our
goal is simulation of interactions between deformables and fluids, it is appropriate that we
adopt it for solids as well.

To handle contact with walls, we use a simple explicit correction. After the solid is
moved with updated velocities, nodes that have wandered into a wall are identified and
projected out. In addition, the normal component of velocity for a penetrating node is

30

eliminated, simulating an inelastic collision.

31

Chapter 4

Fluid Dynamics

In many ways, fluids and solids are very much alike. On a smaller scale, both are forms of
matter, consisting of the same atoms and molecules. Macroscopically, they can similarly
be manipulated through application of forces, and fluids and solids both seem to obey the
same laws of conservation of mass, energy, and momentum. Critically, one must allow for
arbitrary changes to regions occupied by matter when studying entities of each type. It is
fitting, then, that both are modelled as continuum matter, obliging us to to concede that
fluid motion is governed by the same set of equations that apply to solids (as presented in
Chapter 3).

By the same token, there is a perceptible difference in physical behaviour between solids
and fluids. An elastic solid, for instance, will always attempt to revert experienced shape
changes, whereas a liquid is happy to accept the form of its enclosure, whatever it may
be. As one might expect, this contrasting behaviour is managed through use of different
constitutive equations; that is, the conditions that induce stress within a fluid are not the
same as a solid’s. We will attempt to determine these conditions, and, consequently, the
appropriate constitutive laws for the fluids relevant to this thesis: inviscid, incompressible
liquids.

Imagine stirring a pot filled with a liquid. The difficulty of this task strongly depends on
the type of the liquid: water, for example, is quite easy to stir, while honey requires much
more effort. The resistance of fluid matter to being stirred is a consequence of viscosity
and is caused by internal shearing forces that arise due to relative motion within the fluid.
We use the scenario depicted in Figure 4.2 to illustrate this point. In this diagram, two
infinite layers of liquid (L1 and L2) are moving in opposite directions. We consider the
forces acting on a small square region within the fluid, denoted by Σ, whose four sides are

32

L1

L2

Σ

γT

γB
γL γR

F

Figure 4.1: Two layers of a fluid moving in opposite directions. Blue arrows indicate
velocities, while the red arrow is a force experienced by Σ.

L1

L2

Σ

γT

γB
γL γR

Figure 4.2: Two layers of a fluid moving in the same manner; note that no net force is now
generated at Σ.

defined as γL, γR, γT , γB (note that γB is located on the boundary separating L1 and L2).
If this liquid is viscous, then Σ will experience an internal force F in the opposite direction
of its motion (resisting the relative flow); we are interested in determining the manner in
which this force arises.

To contrast, consider the case where both layers are moving in the same direction, as
portrayed in Figure 4.2, so that Σ does not experience any forces slowing it down. In this
scenario, the conditions within the fluid domain are identical along any vertical cut; in
particular, the Cauchy stress tensor, σ̃, must be independent of the vertical coordinate.
Therefore, since internal force can be obtained by integrating tractions along the boundary,
we have

0 =

∫
∂Σ

σ̃dn =

∫
γL

σ̃dn +

∫
γR

σ̃dn +

∫
γT

σ̃dn +

∫
γB

σ̃dn

=

∫
γL

σ̃dn +

∫
γR

σ̃dn +

∫
γT

σ̃dn−
∫
γT

σ̃dn =

∫
γL

σ̃dn +

∫
γR

σ̃dn,

(4.1)

33

where we used the fact that the normals along γT and γB are opposite. Let σ be the
Cauchy stress tensor for the non-uniform flow (case in Figure 4.1). Since the stress tensor
at a point depends on the state of matter in an infinitesimal neighbourhood around it, we
may conclude that σ = σ̃ on γL, γT , γB (for conditions in L1 are identical in both scenarios).
As such,

F =

∫
γL

σ̃dn +

∫
γR

σ̃dn +

∫
γT

σdn +

∫
γB

σdn =

∫
γT

σdn +

∫
γB

σdn := FT + FB. (4.2)

Σ

FB

FB · n

Fs
B

Figure 4.3: Normal (FB · n) and
shearing (Fs

B) components of trac-
tion force.

Denoting the normal to γB by n, we see that

Fs
B := FB − FB · n 6= 0. (4.3)

This force component acts in the tangent plane of the
interface and is called the shearing force (see Figure
4.3). Note that, by symmetry, this component is non-
existent in the case for uniform flow. This fact is a
defining characteristic of fluids: no internal shearing
forces arise for a fluid under uniform motion. An in-
viscid fluid is defined such that shearing forces never
arise; that is, tractions are always normal to the sur-
face: σn = −pn for some p. It follows that σ = −pI;
p is known as the pressure field, and it plays a critical
role in ensuring that our inviscid liquids remain in-
compressible. In this chapter, we will mathematically
describe the nature of the pressure field within a liq-
uid, then proceed with discretization of the equations
to obtain a numerical simulation scheme. Once again, the material we are presenting is
contained within standard sources, such as the books by Lin et al. [36] and Bridson [9].

4.1 Equations of Motion

Aside from necessitating use of different constitutive equations, the unique behaviour of
liquids has further repercussions in the way they are normally treated. In contrast to the
Lagrangian representation of solids, fluids are generally treated in an Eulerian manner,
so that the relevant quantities are measured with respect to a frame of reference fixed
in space. Consequently, before introducing the Eulerian equations of motion for fluids,

34

we must introduce a construct to help us reconcile this viewpoint with the Lagrangian
perspective. This construct is called the material derivative and it facilitates prediction of
time-evolution of moving quantities, as perceived by a fixed observer.

4.1.1 Material Derivative

Let X be a material point inside the initial fluid domain. Suppose that this point has
some property, say B(X), and assume for simplicity that this property does not change
in time. For example, the fluid might be dyed, and B could denote the amount of dye
the point carries. We are interested in measuring this quantity with respect to a different
frame of reference, one that is not attached to the particle, but rather fixed in space. To
this end, consider a fixed location in space, say x = (x, y, z). Although the property B for
a specific particle is constant, its observed value at x changes with time due to the flow
(the dyed points, for instance, could disperse throughout the fluid domain). Let b(t,x) be
the measured value at time t and location x; similarly, define u(t,x) = (ux, uy, uz) to be
the fluid velocity. Then we can use the chain rule to deduce that the total time derivative
is

∂b

∂t
+
∂b

∂x
ux +

∂b

∂y
uy +

∂b

∂z
uz =

∂b

∂t
+ u · ∇b. (4.4)

On the other hand, the total derivative is 0, as B is independent of time; thus, we have

∂b

∂t
+ u · ∇b = 0. (4.5)

This expression defines the advection equation; it summarizes time evolution of an Eulerian
quantity that is constant in the Lagrangian perspective. The left hand side of the equation
is known as the material derivative of b and it is commonly denoted by D/Dt. The property
can also be vector-valued (b = (b1, . . . , bk)), in which case its material derivative is given
by

Db

Dt
=
∂b

∂t
+ u · ∇b. (4.6)

To be explicit, u · ∇b is a vector, whose i-th element is given by u · ∇bi.

4.1.2 Conservation of Mass

The material derivative is an indispensable tool that allows us to track the time-evolution
of quantities that are carried along with the flow, from an Eulerian perspective. In the

35

following sections, we shall utilize it in order to acquire the equations of motion governing
inviscid, incompressible fluid flow.

We begin with conservation of mass. Consider a fixed region in space, say Σ; the fluid
mass within Σ is given by

m =

∫∫∫
Σ

ρdV, (4.7)

where ρ is the Eulerian density field. Since mass cannot be created or destroyed, changes
in m must result from fluid entering and leaving the domain. Defining u to be the Eulerian
velocity field, our observation leads us to conclude that

dm

dt
=

∫∫
∂Σ

ρ(−u)dn = −
∫∫

∂Σ

ρudn = −
∫∫∫

Σ

∇ · (ρu)dV, (4.8)

where we used the divergence theorem for conversion to a volume integral. On the other
hand, (4.7) yields

dm

dt
=

d

dt

∫∫∫
Σ

ρdV =

∫∫∫
Σ

∂ρ

∂t
dV. (4.9)

Since the above equations hold for all Σ, we are forced to conclude that

0 =
∂ρ

∂t
+∇ · (ρu) =

∂ρ

∂t
+∇ρ · u + ρ∇ · u (4.10)

holds everywhere. But the fluid is incompressible, implying that the Lagrangian density
field must remain constant; that is,

0 =
Dρ

Dt
=
∂ρ

∂t
+ u · ∇ρ. (4.11)

Subtracting equation (4.11) from equation (4.10) gives ρ∇ · u = 0, or, equivalently, the
incompressibility condition:

∇ · u = 0. (4.12)

4.1.3 Conservation of Momentum

We now seek to enforce conservation of momentum in Σ (denoted by p). Note that its time
evolution can be summarized by

dp

dt
=

d

dt

∫∫∫
Σ

ρudV =

∫∫∫
Σ

∂(ρu)

∂t
dV =

∫∫∫
Σ

(
∂ρ

∂t
u + ρ

∂u

∂t

)
dV. (4.13)

36

Change in momentum can be attributed to three mechanisms: transport as a result of
flow, effect of internal pressure force, and effect of externally-induced accelerations (such
as gravity). We shall discuss each in turn.

To capture the net amount of momentum entering and leaving Σ as a result of flow, we
can once again compute the boundary integral:∫∫

∂Σ

ρu(−u · n)dA = −
∫∫

∂Σ

ρuuTdn = −
∫∫∫

Σ

∇ ·
(
ρuuT

)
dV. (4.14)

Suppose u = (u1, u2, u3); then the i-th component of the above integral is

−
∫∫∫

Σ

∇ · (ρuiu)dV = −
∫∫∫

Σ

((ρ∇ui + ui∇ρ) · u + ρui∇ · u) dV

= −
∫∫∫

Σ

(ρu · ∇ui + ui(u · ∇ρ+ ρ∇ · u)) dV.

(4.15)

Therefore, we may express the integral from (4.14) as

−
∫∫∫

Σ

(ρu · ∇u + (u · ∇ρ)u) dV, (4.16)

where we used the fact that ∇ · u = 0.

Since the Cauchy stress tensor for an inviscid fluid is given by −pI, the internal pressure
force on Σ can be succinctly expressed as∫∫

∂Σ

−pIdn = −
∫∫

∂Σ

pdn = −
∫∫∫

Σ

∇pdV. (4.17)

Lastly, if a is the vector of externally-induced accelerations, then the force felt within Σ is∫∫∫
Σ

ρadV. (4.18)

Combining equation (4.13) with equations (4.16)-(4.18) and noting that the equality
must be true for all Σ, we deduce that

∂ρ

∂t
u + ρ

∂u

∂t
= − (ρu · ∇u + (u · ∇ρ)u)−∇p+ ρa (4.19)

holds everywhere. Dividing this equation by ρ and rearranging gives the equivalent expres-
sion

a =
1

ρ

(
∂ρ

∂t
+ u · ∇ρ

)
u +

∂u

∂t
+ u · ∇u +

∇p
ρ

=
∂u

∂t
+ u · ∇u +

∇p
ρ
, (4.20)

where we used the fact that the material derivative of the density field is zero (as stated
in equation (4.11)) to eliminate the term in parentheses.

37

4.1.4 Incompressible Euler Equations

The derived equations capture the evolution of incompressible and inviscid fluid flow.
They are collectively known as the incompressible Euler equations, and, for completeness,
we record them below:

∂u

∂t
+ u · ∇u +

∇p
ρ

= a, (4.21)

∇ · u = 0. (4.22)

To reiterate, u is the Eulerian velocity field, p is the pressure field, ρ is fluid density, and a
denotes externally-induced accelerations. Of these two equalities, the first is known as the
momentum equation, whereas the second is referred to as the incompressibility condition.

We conclude our discussion of the governing equations by listing the applicable bound-
ary conditions. Let Γ denote the boundary of the fluid region, and partition it into Γs (the
part in contact with solids) and Γa (the free surface). As explained previously, no forces are
exerted on the fluid at the free surface; thus, no internal forces can be generated, so that
pn = 0, or simply p = 0 on Γa. On Γs, we would like to prevent the liquid from entering
the solid, without affecting tangential flow. This condition can be succinctly expressed as
u · n = v · n on Γs, where v was used to denote the solid velocity field.

4.2 Discretization

Numerical solution of the incompressible Euler equations necessitates discrete spatial sam-
pling of the continuous velocity and pressure fields for the liquid. Considering the need
for approximating gradient and divergence operators, the simplest discretization scheme
might collocate these samples at the nodes of a uniform cubic grid. With such an approach,
however, we must either settle for use of first order estimates of derivatives or employ cen-
tral differencing at a lower resolution. These issues can be circumvented by utilizing the
staggered marker-and-cell (MAC) grid, which places pressure samples at cell centres, and
velocity components on cell faces. In two dimensions, x components of the velocity field
are sampled at centres of vertical faces, while y components sit on horizontal faces (see
Figure 4.4). In three dimensions, x components live at the centres of cell faces that are
perpendicular to the x axis (the setup is similar for y and z components, as depicted in
Figure 4.5). Since its initial introduction to computer graphics by Foster and Metaxas [23],
the MAC grid has become the standard discretization scheme for fluid animation, as it al-
lows for straightforward central finite difference approximation of the arising differential
operators and avoids odd-even pressure decoupling artefacts of collocated approaches.

38

Figure 4.4: A two-dimensional MAC grid;
pressure, x and y components of velocity
are sampled at blue circles, red squares,
and blue squares, respectively.

x

y

z

Figure 4.5: Three-dimensional MAC cell;
x, y, z components of velocity are sampled
at blue, red, black squares, respectively.
Pressure sample is at the cell’s centre.

Time stepping of the incompressible Euler equations is normally achieved through a
technique called operator splitting. This method relies on decoupling the various mecha-
nisms that influence the evolution of liquid velocity, allowing for their effects to be incor-
porated sequentially. Precisely, a single time step is separated into three stages:

∂u

∂t
+ u · ∇u = 0, (4.23)

∂u

∂t
= a, (4.24)

∂u

∂t
+
∇p
ρ

= 0 such that ∇ · u = 0. (4.25)

The first of these stages is known as advection; it handles the effects of fluid flow on the
velocity field. The third stage is referred to as pressure projection and it is responsible for
ensuring that the liquid volume does not compress or expand; in addition, the appropriate
boundary conditions on the velocity are enforced during pressure projection. We will
describe the details of these steps in subsequent sections. Note that the second stage
simply adds the effects of external forces and can be solved using a standard numerical
integrator; in case of a uniform acceleration (such as gravity), forward Euler is adequate.

39

4.3 Semi-Lagrangian Advection

Before presenting the numerical scheme that we chose to utilize, we note that our pressure
projection algorithm is agnostic to the advection method. Consequently, one is free to
solve the advection step using any reasonable technique. As is explained later, we adopt
the standard semi-Lagrangian method due to its simplicity and stability.

The advection stage of a simulation step considers the equation

Du

Dt
= 0. (4.26)

As discussed in Section 4.1.1, this differential equation states that observed changes in u
are only due to the flow. That is, fluid points carry their velocity along, unchanged, as
they move around in the domain. Noting this fact, consider advancing the initial velocity
field u0(x) at time t = t0 to t = t0 + ∆t = t1 to obtain u1(x). For a fluid point x in the
domain at time t1, we let x0(x) denote its location at time t0. Then it follows that

u1(x) = u0(x0(x)). (4.27)

As such, to sample the new velocity field at a point, we simply need to query the old velocity
field for the point’s location at the previous time. Thus, we only need to determine an
expression for x0.

To get to its current location of x, the point must have followed the fluid’s velocity
field. This suggests that we can find the point’s original position by following the velocity
field backwards for the duration of the time step; hence,

ẋ0 = −u. (4.28)

It is not difficult to numerically integrate this equation explicitly (setting u = u0). Typi-
cally, the midpoint method is deployed; assuming we are interested in finding x0(x), this
scheme can be expressed as

x∗ = x− ∆t

2
u0(x), (4.29)

x0(x) ≈ x−∆tu0(x∗). (4.30)

Recall that u0 is stored on a staggered MAC grid. Thus, its evaluation at x and x∗ must
involve some kind of interpolation. In practice, the components of the velocity field are
determined separately, using linear interpolation. We demonstrate a simplified version of

40

x

interpolate

x-velocity

interpolate
y-velocity

uy
0

ux
0

combine

velocities

combine
velocities

u0

find x0

x0 −∆tu0

interpolate
x-velocity

ux(x)

Figure 4.6: Simplified semi-Lagrangian advection on a MAC grid. Objective is to find the
x-component of the current velocity field at x (ux(x)).

this procedure in Figure 4.6 (in two dimensions, using forward Euler instead of explicit
midpoint rule).

The described algorithm is aptly termed semi-Lagrangian advection, since it uses in-
sight on behaviour of the Lagrangian velocity field to advect its Eulerian counterpart. It
possesses several desirable properties that make it an attractive solution for graphics. In
particular, it is simple to implement and it requires no extra data structures beyond the
MAC grid. Additionally, it is also incredibly efficient. Crucially, use of linear interpolation
renders the scheme unconditionally stable, ensuring that simulations do not blow up as a
consequence of taking large time steps.

4.4 Cut-Cell Pressure Projection

An integral part of a liquid simulator, the pressure projection step is responsible for simul-
taneously ensuring incompressibility and enforcing boundary conditions. In this section,
we describe a formulation for this crucial stage of the simulation process, in the presence
of solid boundaries (where the free-slip condition applies: u ·n = v ·n) and the free surface

41

(where the pressure field must vanish: p = 0). For the current chapter, we aim to only
capture one-way coupling to static solids (so that v = 0), which is sufficient for simulation
of interactions between a liquid and its enclosure. Two-way coupling between liquids and
deformable bodies will be discussed in Chapter 5.

4.4.1 Enforcing Incompressibility

The pressure projection stage of a simulation step generally involves finding a pressure
field whose effect on the fluid velocity renders it divergence-free. The specific algorithm we
shall present in this section, due to Ng et al. [43], uses cut-cells to capture solid geometry,
allowing for accurate enforcement of the free-slip condition. This formulation begins by
discretizing equation (4.25) in time, yielding

u = u∗ − ∆t

ρ
∇p. (4.31)

Here, u∗ denotes the velocity field before pressure projection and u is the velocity field
after effects of pressure are factored in, so that ∇ · u = 0.

P−x

Py

P−y

∂ΩS

b

Figure 4.7: A sample configuration
within a cell. Ω is shaded, ∂ΩF =
P−x ∪ P−y ∪ Py is in blue.

Consider the fluid region, denoted by Ω, con-
tained within a cubic computational cell (refer to
Figure 4.7 for a two-dimensional example); incom-
pressibility in conjunction with the above velocity
update rule imply

0 =

∫∫∫
Ω

∇ · udV =

∫∫
∂Ω

udn

=

∫∫
∂ΩF

(
u∗ − ∆t

ρ
∇p
)
dn +

∫∫
∂ΩS

vdn

=

∫∫
∂ΩF

(
u∗ − ∆t

ρ
∇p
)
dn,

(4.32)

where the divergence theorem was used to convert
the expression into a surface integral. In the last
step, we partitioned the liquid’s boundary into the
regions in contact with the solid, ∂ΩS, and the re-
mainder, ∂ΩF , and used the fact that u·n = v·n = 0
on ∂ΩS. To simplify the derivation, we ignore the presence of a free surface (this boundary

42

condition is handled separately, as we shall describe in Section 4.4.2). It follows that the
non-solid portion of the boundary is a union of axis-aligned planar regions, which are parts
of the cell walls neighbouring other fluid cells: ∂ΩF = Px∪P−x∪Py∪P−y∪Pz∪P−z, where
subscripts are used to denote outward-pointing normals. Consequently, the flux across
∂ΩF can be approximated as follows:∫∫

∂ΩF

u∗dn ≈
∑

α∈{x,y,z}

(A(Pα)u∗(Pα)− A(P−α)u∗(P−α)) . (4.33)

In the above equation, A(P) is the area of region P (which can be pre-computed for static
boundaries), and u∗(P) is the normal component of the intermediate fluid velocity at the
center of the face that contains P ; by construction, this velocity value can be read directly
from the MAC grid. Likewise, we have∫∫

∂ΩF

∇pdn ≈
∑

α∈{x,y,z}

(
A(Pα)

∂p

∂α
(Pα)− A(P−α)

∂p

∂α
(P−α)

)
, (4.34)

where the partial derivatives at cell face centers can be estimated with finite differences
between the cell-centered pressures. For example, using subscripts to index into the MAC
grid and assuming that cell (i, j, k) is considered, we have

∂p

∂x
(Px) ≈

pi+1,j,k − pi,j,k
∆x

, (4.35)

∂p

∂y
(P−y) ≈

pi,j,k − pi,j−1,k

∆x
, (4.36)

∂p

∂z
(P−z) ≈

pi,j,k − pi,j,k−1

∆x
(4.37)

and similarly for the other derivatives.

Substituting estimates (4.33) and (4.34) into (4.32) gives the incompressibility equation
for a single cell:

−∆t

ρ

∑
α∈{x,y,z}

(
A(Pα)

∂p

∂α
(Pα)− A(P−α)

∂p

∂α
(P−α)

)
= −

∑
α∈{x,y,z}

(A(Pα)u∗(Pα)− A(P−α)u∗(P−α)) .
(4.38)

We now use u∗ and p to denote the stacked vector of all discretely sampled intermediate
velocities and pressures, respectively. Then, combining the incompressibility condition for

43

all cells in the domain, we can write the pressure projection step in matrix form

Bp = Eu∗. (4.39)

In effect, the matrices B and E act as discrete versions of the continuous Laplacian and
divergence operators, respectively. This equation can be solved to obtain the pressure field
within the liquid; these pressures can then be used to update the fluid velocity field per
formula (4.31) (with discretized derivatives). Note that the matrix B above is positive-
semidefinite; in fact, it is also non-singular if the redundant cells (those without any liquid)
are removed from the system and there is a free surface. As was the case with solid
equations, this fact enables application of specialized linear solvers for efficient solution of
the system (such as the preconditioned conjugate gradient method).

4.4.2 Free Surface Condition

∆x
θ∆x

(1 − θ)∆x

p2

p1

x

Figure 4.8: A sample configuration for the free
surface, depicted by the blue line.

We have yet to discuss how to satisfy
the other applicable boundary condi-
tion: at the liquid’s free surface, its
pressure must drop to 0. Enright et
al. [17] outline a simple, yet effective,
technique to handle this requirement,
called the ghost fluid method. Con-
sider the scenario depicted in Figure
4.8 (where p1 is located within the
fluid, but p2 is on the “air” side); the
aforementioned method notes that the
pressure at the exact surface (drawn as
a blue dot) must be zero. Thus, the
partial derivative at x can be approxi-
mated by

∂p

∂y
(x) ≈ 0− p1

θ∆x
= − p1

θ∆x
. (4.40)

As such, we only need to determine the fraction θ. To this end, the liquid’s signed distance
function will be utilized.

Take a closed surface S ⊂ R3; the signed distance field of S is a function f : R3 → R

44

such that

|f(x)| = min
y∈S
‖y − x‖, (4.41)

sign(f(x)) =

{
−1 if x is in the interior of S,

1 otherwise.
(4.42)

Intuitively, the signed distance field returns the distance of a point from the surface (with
its magnitude) and indicates whether or not the point is in the interior (with its sign).
In addition, this function characterizes the set itself, which is simply the locus of points
satisfying f(x) = 0. This observation allows us to find the aforementioned θ.

Suppose that values of the fluid’s signed distance field are known at locations of samples
p1, p2; denote these values by φ1, φ2. On the line connecting these two points, linear
interpolation can be used to approximate the signed distance field. Particularly, we are
interested in finding θ such that (1− θ)φ1 + θφ2 = 0; solving this equation gives

θ =
φ1

φ1 − φ2

. (4.43)

Finally, this expression can be plugged into (4.40) to obtain the approximation

∂p

∂y
(x) ≈ − p1

∆x

φ1 − φ2

φ1

=
p1

∆x

φ2 − φ1

φ1

. (4.44)

Finally, this approximation of the derivative can be used wherever the free surface is present
(in equations (4.31) and (4.38)) to enforce the required boundary condition.

4.5 Tracking Geometry

Our treatment of fluids so far has been exclusively at the velocity level. Since this thesis
focuses on simulation for the purpose of animation, the actual liquid body must likewise be
tracked. To this end, we fill the initial liquid domain with marker particles and, after each
time step of the incompressible Euler equations, advect these particles along the divergence-
free velocity field. The velocity of a particle is determined through linear interpolation on
the MAC grid, and the particle locations are integrated using the explicit midpoint method,
akin to the procedure described in Section 4.3.

Besides facilitating visualization, the marker particles are also used to construct the
liquid’s signed distance field. This function is sampled at cell centres (as required by the

45

Algorithm 3 Fluid Simulation Loop

Input:
fluid density
MAC grid solid face areas
list of marker particles
initial (divergence-free) MAC grid velocities
acceleration due to gravity g = (gx, gy, gz)
time step size ∆t
simulation stop time tf

Output:
MAC grid velocities at tf
list of marker particles at tf

1: set t = 0
2: while t < tf do
3: advect marker particles (Section 4.5)
4: advect MAC grid velocities (Section 4.3)
5: add ∆tgx to all entries of the x MAC grid
6: add ∆tgy to all entries of the y MAC grid
7: add ∆tgz to all entries of the z MAC grid
8: compute fluid’s signed distance field (Section 4.5)
9: perform pressure projection (Section 4.4)

10: extrapolate fluid velocities
11: increment t by ∆t
12: end while

ghost fluid scheme), using a simple union-of-spheres approximation. That is, each particle
is assigned a radius r, so that every point within a distance of r of the said particle is
considered to be inside the liquid domain. In other words, the liquid region is determined to
be the union of spheres centred at the marker particles, each with radius r; this convention
is used for simulation, as well as rendering.

4.6 Algorithm Summary

The overall fluid simulation process is outlined in Algorithm 3. As the steps of this pro-
cedure have been described in theoretical detail within previous parts of this chapter, we

46

presently only make practical implementation comments. We mentioned in passing that the
redundant pressure degrees of freedom are a cause for singularity. Thus, eliminating these
variables effectively reduces the burden of the deployed numerical solver. Consequently,
“active” pressure cells are first identified; a cell is marked active if it contains some fluid
and its center is inside either the fluid or solid regions. The pressure projection system
is then assembled, involving only these active variables. In addition, face area fractions
below 0.01 are clamped down to 0, and fractions above 0.99 are rounded up to 1, to avoid
conditioning problems.

Successive advection steps will inevitably query the fluid velocity field outside of the
valid region updated by the pressure projection step. We use a simple constrained velocity
extrapolation approach to assign fluid grid velocities to these regions [32, 46] (line 10 of
the algorithm). That is, for each invalid velocity sample on the MAC grid neighbouring at
least one updated entry, we set the value to the average of its valid neighbours. Quantities
extrapolated into the solid are then modified to ensure that the normal velocity component
is zero. As is the case with semi-Lagrangian advection, to maintain order independence
and allow for simple parallelization, the updates are not performed in place, but rather
saved in a copy of the array.

47

Chapter 5

Solid-Fluid Coupling

In the preceding chapters, we presented schemes for simulating elastic solids and fluids in
isolation. In this chapter, we describe our novel coupled pressure projection method that
simultaneously enforces fluid incompressibility and integrates the solid’s internal forces,
allowing for accurate satisfaction of boundary conditions at the solid-fluid interface. But
before doing so, let us recap the relevant results.

Recall from Chapter 3 that the discrete equations of motion for a deformable body are(
1

∆t
M +D + ∆tK

)
v =

1

∆t
Mv∗ −Kx∗ + b + f , (5.1)

x = x∗ + ∆tv. (5.2)

In these equations, M,D,K are the solid mass, damping, and stiffness matrices, respec-
tively; x and v are the nodal positions and velocities for the body, with asterisks used to
identify the corresponding quantities before the time step; lastly, f is the vector of external
forces.

On the liquid side, the pressure projection equation is

Bp = Eu∗, (5.3)

u = u∗ − ∆t

ρ
Gp. (5.4)

where p is the stacked vector of liquid pressures, u contains fluid velocities from the MAC
grid, and G represents the discrete gradient operator; refer to Chapter 4 for a detailed

48

discussion on the structure of matrices B and E. Note that every equation in (5.3) corre-
sponds to discretization of ∫∫

∂ΩF

(
u∗ − ∆t

ρ
∇p
)
dn = 0, (5.5)

where ∂ΩF is the non-solid portion of the cell boundary. Recall that the full equation was∫∫
∂ΩF

(
u∗ − ∆t

ρ
∇p
)
dn +

∫∫
∂ΩS

vdn = 0, (5.6)

where ∂ΩS is the part of ∂Ω in contact with the solid. As we were dealing with stationary
boundaries, this solid integral vanished; in the presence of dynamic bodies, however, the
integral must be considered to account for the effect of solid’s motion on the liquid.

5.1 Coupled Pressure Projection

c1

c2

c3

c4

Q1

Q2

Q3

Q4

n1

n2

n3

n4

b

b

b

b

b

Figure 5.1: A sample configuration within a
cell. Ω is shaded, ∂ΩS = Q1 ∪Q2 ∪Q3 ∪Q4

is in red.

We are now ready to describe our coupled
pressure projection strategy, which involves
fairly straightforward alterations to the re-
stated equations of motion.

5.1.1 Modification to Fluid Equa-
tions

The modifications to the fluid incompress-
ibility equations arise from discretization of
the solid boundary integral in (5.6). Not-
ing that the deformable’s surface is repre-
sented by a triangle mesh, we partition ∂ΩS

into planar polygonal regions Q1, . . . , Qk;
these regions are not necessarily triangular,
since they result from clipping mesh trian-
gles against the cubic fluid cells. Letting ai
and ni be the area and unit normal of region
Qi (pointing out of the fluid), and ci be the

49

centroid of Qi (a simplified two-dimensional scenario is pictured in Figure 5.1), we can use
the following approximation: ∫

∂ΩS

vdn ≈
k∑
i=1

aiv(ci) · ni. (5.7)

To estimate the velocity at the centroid, v(ci), linear interpolation is used. Specifically,
note that Qi is contained within a surface triangle of the solid, and let the nodes of this
triangle be numbered i(1), i(2), i(3). If xj is the location of node j, then we can express ci
in terms of its barycentric coordinates:

ci = αxi(1) + βxi(2) + (1− α− β)xi(3). (5.8)

Finally, this allows us to approximate the velocity at ci using

v(ci) = αvi(1) + βvi(2) + (1− α− β)vi(3), (5.9)

where vj is the velocity of node j. Then the sum in (5.7) can be expressed in vector form as
NTCv, where N is the matrix containing area-weighted normals (oriented into the solid),
C is the matrix of barycentric coordinates, and v is the stacked vector of nodal velocities.
With this change, the modified pressure equations read

− Eu∗ +Bp +NTCv = 0. (5.10)

5.1.2 Modification to Solid Equations

On the solid side, we only need to add the effects of fluid pressure, by incorporating them
into the vector of external forces. This is done by observing that the force arising from a
pressure field p acting on a surface S is ∫∫

S

pdn, (5.11)

where n points into the surface.

Consider a planar patch P acquired by intersecting one of the solid’s surface triangles
T with a fluid cell; we will use p to denote fluid pressure at this cell’s center. We make
the simplifying assumption that pressure is constant within the computational cell; though
this may incur some minor additional error, it is a common and effective choice in graphics

50

applications [65, 5, 9]). The force applied by the liquid pressure on P is then given by
f = pA(P)n, where A(P) and n are the area and unit normal of P (oriented into the solid).
We further assume that f is applied at c, the centroid of the patch P , and distribute this
force among the nodes of T . Specifically, if the nodes of T are numbered 1, 2, 3, and the
barycentric representation of c within this triangle is

c = α1x1 + α2x2 + α3x3, (5.12)

then the force distributed to node i is

fi = αif = αipA(P)n. (5.13)

Stacking all nodal pressure forces into a vector, we find that it can be expressed as CTNp,
where C and N were defined in the previous section. As such, (5.1) with pressure forces
factored in reads(

1

∆t
M +D + ∆tK

)
v =

1

∆t
Mv∗ −Kx∗ + b + CTNp. (5.14)

5.1.3 Coupled System

Given the solid and fluid discretizations, we can proceed to assemble our combined linear
system. We note that (5.10) can be rearranged into

Bp +NTCv = Eu∗. (5.15)

Likewise, (5.14) can be equivalently written as(
1

∆t
M +D + ∆tK

)
v − CTNp =

1

∆t
Mv∗ −Kx∗ + b. (5.16)

Stacking these last two equations gives the linear system for our coupled pressure projection
scheme(

B NTC
CTN −

(
1

∆t
M +D + ∆tK

))(p
v

)
=

(
Eu∗

− 1
∆t
Mv∗ +Kx∗ − b

)
(5.17)

which we solve for fluid pressures and solid velocities. This allows us to simultaneously
account for fluid incompressibility, solid internal forces, and the two-way interactions be-
tween these two entities. Note that, in order to achieve symmetry, we negated the solid
equations.

51

5.2 Positive-Definite Transformation

The matrix associated with the linear system (5.14) for the corotational solid dynamics is
positive-definite, a fact that has been exploited in prior work (for example, [31]). While the
negation of the solid equations above allows us to obtain a symmetric system, it also causes
the principal sub-block corresponding to solid velocities to be negative-definite. Since B
is positive-definite, the overall coefficient matrix for our pressure projection solve (5.17) is
only symmetric indefinite. Although various methods tailored towards such equations exist
(such as MINRES or QMR, as discussed by Robinson-Mosher et al. [49, 47]), it is generally
more desirable to work with symmetric positive-definite (SPD) systems. Fortunately, the
symmetric coefficient matrix in (5.17) is endowed with a special structure: the principal
submatrix corresponding to pressures is positive-definite, and the principal submatrix for
solid velocities is negative-definite and constructed as a weighted sum of a stiffness matrix
and a diagonal mass matrix. We exploit these facts in order to efficiently convert the
system into SPD form; our method to do so is described below.

5.2.1 Algebraic Transformation

We begin by expressing the (negative) principal velocity submatrix as a sum of arbitrary
symmetric positive-definite matrices Z1 and Z2:

1

∆t
M +D + ∆tK = Z1 + Z2. (5.18)

Then the second set of equations in (5.17) reads

CTNp− Z1v − Z2v = w, (5.19)

where we let w denote the right-hand side for convenience. This equation is equivalent to

v = Z−1
1 (CTNp− Z2v −w). (5.20)

Substituting this expression for v into the first set of equations from (5.17) yields

Bp +NTCZ−1
1 (CTNp− Z2v −w) = Eu∗, (5.21)

which can be rearranged into(
B +NTCZ−1

1 CTN
)

p−NTCZ−1
1 Z2v = Eu∗ +NTCZ−1

1 w. (5.22)

52

Also, note that we can use (5.20) to derive

0 = Z2v − Z2v = Z2v − Z2Z
−1
1 (CTNp− Z2v −w), (5.23)

which is equivalent to

− Z2Z
−1
1 CTNp +

(
Z2 + Z2Z

−1
1 Z2

)
v = −Z2Z

−1
1 w. (5.24)

Finally, combining (5.22) and (5.24) gives the following SPD system:(
A11 A12

A21 A22

)(
p
v

)
=

(
Eu∗ +NTCZ−1

1 w
−Z2Z

−1
1 w

)
, (5.25)

where

w = − 1

∆t
Mv∗ +Kx∗ − b, (5.26)

A11 = B +NTCZ−1
1 CTN, (5.27)

A12 = −NTCZ−1
1 Z2, (5.28)

A21 = −Z2Z
−1
1 CTN = AT12, (5.29)

A22 = Z2 + Z2Z
−1
1 Z2. (5.30)

5.2.2 Choice of Summand Matrices

Note that Z−1
1 appears extensively in (5.25); as such, it is ideal to choose Z1 to be a

diagonal matrix. Upon experimenting, we found that letting Z1 be a multiple of the solid
mass matrix provides good results. Considering our use of Rayleigh damping and the
constraint that Z2 be SPD, it is reasonable to set Z1 = σ(1/∆t+ τM)M (where τM is the
Rayleigh mass damping coefficient), for σ ∈ (0, 1); we exclusively used σ = 0.9 to generate
simulations in Chapter 6 without encountering numerical difficulties. This construction
implies

Z2 =
1

∆t
M +D + ∆tK − Z1

=

(
1

∆t
+ τM

)
M + (∆t+ τK)K − σ

(
1

∆t
+ τM

)
M

= (1− σ)

(
1

∆t
+ τM

)
M + (∆t+ τK)K.

(5.31)

53

5.2.3 Connection to the Schur Complement

Using the cut-cell formalism, the problem of two-way coupling between fluids and rigid
bodies can be similarly solved during pressure projection [5, 9], yielding a familiar system(

A JT

J − 1
∆t
M̃

)(
p
v

)
= c. (5.32)

M̃ in the above equation represents the solid mass and inertia matrix, and J captures
the effect of pressure forces and torques on the rigid body. As M̃ is only a 6 × 6 matrix,
its inversion does not pose a significant challenge; thus, it is practical to take the Schur
complement with respect to v to get a system in terms of only pressures. Doing so yields
the symmetric positive-definite coefficient matrix A+∆tJTM̃−1J (whereas the full system
was symmetric indefinite). We observe that our described transformation technique for
deformable bodies is quite similar; in particular, if we duplicate the solid velocities in
(5.17) to get B NTC 0

CTN −Z1 −Z2

0 −Z2 Z2

 p
v1

v2

 =

 Eu∗

− 1
∆t
Mv∗ +Kx∗ − b

0

 , (5.33)

then our algebraic transformation is equivalent to taking the Schur complement with re-
spect to v1.

5.2.4 Proof of Positive-Definiteness

It is fairly straightforward to establish that the transformed system (5.25) is indeed SPD.
To this end, take vectors p,v (at least one of which is non-zero). Because B and Z2 are
both SPD, it can be concluded that

pTBp + vTZ2v > 0. (5.34)

Also, Z1 is SPD, so its inverse (which is necessarily SPD as well) can be written as Z−1
1 =

Y TY for some matrix Y . Use of these facts allows us to derive(
pT vT

)(A11 A12

A21 A22

)(
p
v

)
= pTBp + pTNTCZ−1

1 CTNp

− 2pNTCZ−1
1 Z2v + vTZ2v + vTZ2Z

−1
1 Z2v

> pTNTCY TY CTNp− 2pNTCY TY Z2v + vTZ2Y
TY Z2v

= ‖Y CTNp− Y Z2v‖2 ≥ 0,

(5.35)

54

as required.

5.2.5 Matrix Scaling

Lastly, we note that the system (5.25) may suffer from poor conditioning due to different
element magnitudes in the solid and fluid blocks. We resolved this issue through rescaling;
that is, we instead solve the modified system(

A11 αA12

αA21 α2A22

)(
p
1
α
v

)
=

(
Eu∗ +NTCZ−1

1 w
−αZ2Z

−1
1 w

)
. (5.36)

Theoretically, any non-zero scaling factor α can be plugged into the above system; how-
ever, certain values of this parameter may in fact be detrimental. Using the termination
condition for iterative solvers as a guide, we propose a simple heuristic for choosing α auto-
matically. In particular, for a linear system Ax = c, an iterative solver refines the current
solution until the relative residual, ‖Ax − c‖/‖c‖, falls below some specified threshold.
Writing the two parts of (5.25) as A1x = c1 and A2x = c2, we can prevent either c1 or
c2 from dominating the denominator of residual error by scaling them to be of roughly
equal norm; this can be achieved by setting α = ‖c1‖/‖c2‖. Choosing α in this manner
ensures that both fluid and solid dynamics equations are solved to comparable accuracy
by an iterative scheme. Alternatively, it is possible to use a static value of α through-
out a simulation. For instance, we found that α = 0.001 worked quite well and used it
exclusively for all our experiments. However, this setting may need modification if quite
different material parameters are used.

While this transformation allows us to acquire an SPD system, we have not yet con-
sidered whether doing so might significantly deteriorate sparsity and conditioning as a
side-effect. Section 6.2 describes the results of several numerical experiments designed to
assess these properties. To summarize our findings, the transformation provides us with
an SPD system at a permissibly modest cost to sparsity and conditioning.

5.3 Comparison with Changing to Stress-Like Vari-

ables

To acquire an SPD system, Robinson-Mosher et al. [48] instead perform a change of vari-
ables, replacing solid velocities with stress-like unknowns. For comparison purposes, we
outline this alternative transformation strategy.

55

Recall the definition of the local stiffness matrix of element t from equation (3.44):

Kt = ATDA
T
FA

T
ε AΨAεAFAD, (5.37)

The matrix AΨ can be written as LTL, where

L =
1√

2µ+ λ

2µ+ λ λ λ 0

0 2
√
µ2 + λµ λµ√

µ2+λµ
0

0 0 µ
√

4µ2+8λµ+3λ2

µ2+λµ
0

0 0 0 2
√

2µ2 + λµI

 , (5.38)

and I is the 3 × 3 identity matrix. Letting Rt = LAεAFAD, we can see that RT
t Rt = Kt.

It follows that the global stiffness matrix can be factored as K = RTR, where R is formed
by stacking Rt:

R =

 R1
...
Rm

 . (5.39)

Defining ζM = 1/∆t+ τM , ζK = ∆t+ τK , we can write (5.17) as(
B NTC

CTN −ζMM − ζKRTR

)(
p
v

)
=

(
Eu∗

w

)
. (5.40)

Isolating v in the second equation in the same manner as before gives

v =
1

ζM
M−1

(
CTNp− ζKRTRv −w

)
. (5.41)

We can use this expression to derive

Eu∗ = Bp +
1

ζM
NTCM−1

(
CTNp− ζKRTRv −w

)
, (5.42)

or, equivalently,(
B +

1

ζM
NTCM−1CTN

)
p− ζK

ζM
NTCM−1RTRv = Eu∗ +

1

ζM
NTCM−1w. (5.43)

Similarly,

ζKRv =
ζK
ζM

RM−1
(
CTNp− ζKRTRv −w

)
, (5.44)

56

Figure 5.2: The six possible configurations for a face, with the approximate solid region
shaded in each.

which can be re-expressed as

− ζK
ζM

RM−1CTNp + ζK

(
I +

ζK
ζM

RM−1RT

)
Rv = − ζK

ζM
RM−1w. (5.45)

If we define z = Rv, then making this substitution into equations (5.43) and (5.45) yields
an SPD system in terms of p and z. Note that the number of unknowns without the
pressure variables has changed from 3n to 6m, where n and m are the number of nodes
and elements in the solid mesh, respectively; in most cases this is a significant increase. In
addition, our technique is simpler, since it does not call for factorization of the solid stiffness
matrix. For a concrete comparison in performance between these two transformations in
a simulation scenario, see Section 6.2.

5.4 Algorithm Summary

The augmented pressure projection scheme fits rather conveniently into the previously
described fluid simulation loop (Algorithm 3). The main difference within each simulation

57

Algorithm 4 Coupled Simulation Step

1: update solid positions (using (5.2))
2: advect fluid particles (Section 4.5)
3: advect fluid velocities (Section 4.3)
4: add external accelerations to fluid and solid velocities
5: compute distance fields and cut-cells
6: identify active pressure cells (Section 4.6)
7: perform coupled pressure projection (Chapter 5)
8: extrapolate fluid velocities (Section 4.6)

step (as is evident from Algorithm 4) is computation of cut-cells and solid face areas. The
former is done by clipping the solid’s surface triangles against the computational grid; for
each planar surface region intersecting a cell, we save the area, unit normal oriented into
the solid, and barycentric representation of its centroid. For simplicity, solid MAC grid face
areas are calculated with the help of the deformable’s signed distance field, which is first
computed at the nodes of the MAC grid. See Figure 5.2 for the possible configurations and
estimated solid region in each case (filled dots indicate that the respective node is inside
the solid). Note that a more geometrically faithful approach would compute these face
areas based on the exact cut-cell geometry, although we encountered no issues from this
mild inconsistency.

Our CPU-based C++ implementation uses Eigen [29] to handle linear algebra routines
and OpenMP to facilitate simple loop parallelization throughout the code. The SPD system
is iteratively solved with the conjugate gradient method aided by an incomplete Cholesky
preconditioner, with convergence tolerance on the relative residual set to 10−10.

58

Chapter 6

Results

We conducted several experiments to test and demonstrate our scheme’s efficacy. Our
findings are presented within the present chapter.

6.1 Animation Examples

For animation examples, all visualizations were obtained by rendering our simulation data
in Houdini [55]. Table 6.1 contains simulation resolutions for the described tests. Excluding
the stability or conditioning assessments discussed later, the average time per experiment
to carry out a single step of simulation ranged between 18 and 59 seconds; of that time,
between 3.5 and 39 seconds were spent performing pressure projection. Simulations were
performed on a Linux machine (running Ubuntu 16.04) equipped with 16 GB of RAM and
AMD FX-8370E clocked at 3.3 GHz. In order to minimize the likelihood of tunneling of
liquid particles through solids from overly large timesteps relative to the fluid velocity, we
made use of substepping within frames, leading to approximately 4.42 simulation steps per
animation frame on average.

6.1.1 Dam Break

Our first scenario consists of an initially vertical column of liquid interacting with a dangling
deformable beam pinned at its top. Upon collapsing under gravity, the liquid collides with
the beam at which point two-way coupling effects can be witnessed: the fluid’s motion
is deflected by the solid, and the beam deforms as it is subjected to the accelerating

59

Table 6.1: Table of simulation resolutions.

Simulation Grid Size
Solid

Nodes Elements

Dam Break 100× 100× 100 725 2688
Buoyancy 100× 100× 100 481 2000
Compressibility 100× 100× 100 343 1296
Thin Solid 1 100× 100× 100 882 2400
Thin Solid 2 64× 64× 64 2450 6936
Fluid in Sphere 100× 100× 100 992 2948
Light Dino 100× 100× 100 1424 5920

liquid’s momentum. After the initial violent interactions, the solid and the liquid settle
into a calmer rhythm, gently swaying in tandem. Several frames from this animation are
pictured in Figure 6.1.

6.1.2 Buoyancy Example

To demonstrate that our coupling method applies buoyancy forces in a believable manner,
we conducted drop experiments with solid balls of different densities. The lightest solid is
realistically propelled out of the liquid body, while the heaviest one sinks rapidly to the
bottom of the pool. The neutrally buoyant ball (i.e., with rest density equal to the fluid)
can be observed to initially maintain its path of motion, then more passively flow with
the fluid, and finally sink to the bottom as compression induced by liquid pressure gives
it a slightly higher density. Figure 6.3 contains frames from the animation for the lightest
solid.

Figure 6.1: A deformable beam pinned at its top acting as an obstacle in a dam break
animation.

60

6.1.3 Solid Compressibility Example

Figure 6.2: A compressed solid is sub-
merged underwater; upon being re-
leased, it expands and floats to the
surface.

In contrast to the Eulerian coupling scheme of Teng
et al. [60], our formulation allows for simulation of
compressible solids without special treatment. To
showcase this feature, we simulated the expansion
of an initially squished cube submerged in a body
of water. At the start, this solid is compressed
to an eighth of its rest volume; however, elastic
forces cause it to rapidly recover its original size.
Furthermore, the initially compact solid begins to
sink slightly under the influence of gravity, only to
be pushed to the surface as expansion lowers its
density. Figure 6.2 contains several frames from
the described animation.

6.1.4 Liquid Supported by a Solid

Two different scenes were set up to illustrate that
our method can capture interactions between flu-
ids and deformable solids of modest thickness. For
the first scenario, a mass of fluid is dropped on
an angled rectangular elastic solid panel that is
constrained along two of its sloped sides. Upon
contact, the fluid deforms the object as expected.
Because the solid is angled, the liquid then starts
freely flowing down its slope, showing that the free-
slip condition is correctly applied at the solid-fluid
interface and no grid artefacts are present. As the
fluid flows off the object’s surface, the solid elas-
tically rebounds and gradually returns to equilib-
rium. Refer to Figure 6.4 for a few frames from
this scenario.

The second scenario consists of a mass of fluid
being dropped on a highly deformable horizontal
platform. Rich two-way interactions between the liquid and the solid can be observed:
fluid flow stretches and distorts the platform, and, conversely, internal elastic forces of the

61

Figure 6.3: A light ball is dropped into a pool of water; as expected, the ball is pushed
upwards by buoyancy forces.

Figure 6.4: Demonstration of free slip: liquid falls atop a sloped deformable platform and
flows down.

solid work to undo the induced deformations, further agitating the fluid. As the system
settles into equilibrium, the liquid collects into a pool at the center of its deformable
enclosure (see Figure 6.9).

Figure 6.5: Distribution of the fluid within a spherical shell affects the direction of its
bounce.

6.1.5 Fluid in a Sphere

In this experiment, a ball of liquid with a high initial velocity is placed inside a hollow
deformable sphere. It can be clearly observed that fluid interactions not only locally

62

distort the solid’s shape, but also affect the overall trajectory of the combined system. In
particular, the sphere is propelled to one side and bounces off a side wall as a result of the
liquid’s motion within it (see Figure 6.6). This phenomenon can likewise be seen in Figure
6.5, where an uneven distribution of liquid within the sphere causes it to bounce towards
the heavier side.

6.1.6 Light Dino

For our last animation example, we demonstrate a somewhat more complex solid geometry
in the form of a light dinosaur-shaped toy (a standard Houdini model) being dropped into
a breaking column of water. Two-way interactions can again be observed, with the water
being deflected by contact with the solid and the motion of the water distinctly impacting
the toy’s trajectory. Figure 6.7 contains several frames from this animation.

6.2 SPD System Conditioning

To assess the effect of our SPD transformation technique on conditioning and sparsity of
the system, we ran a few instances of our dam break experiment at different grid and mesh
resolutions. The simulations were allowed to proceed for 100 frames, and the relevant
properties of coefficient matrices were computed and aggregated (condition numbers were
estimated using MATLAB’s condest function [38]). Additionally, time taken to solve the
pressure projection system in Eigen was recorded for each formulation. BiCGSTAB in
conjunction with an incomplete LU preconditioner [51] was used to solve the indefinite
system. We also attempted to solve the indefinite system using MINRES with a block-
based preconditioner in the manner suggested by Robinson-Mosher et al. [49], but in our
experiments this performed appreciably worse than ILU-preconditioned BiCGSTAB; we

Figure 6.6: A volume of liquid moving within a thick-walled spherical shell affects its overall
motion, forcing it to collide with the right wall and bounce.

63

Figure 6.7: A low density elastic dinosaur toy deforming and interacting with liquid under
our cut-cell coupling scheme.

Figure 6.8: Stability assessment; from left to right: decoupled approach, only damping
coupled, our method with damping, our method without damping.

therefore present the BiCGSTAB data as our baseline. Our findings are summarized in
Table 6.2. The data reveals that the transformation results in a modest rise in matrix
density for our test case; in addition, the condition number sees a noticeable increase.
(As another point of comparison, a näıve approach to achieve a positive-definite system
would be to simply form the normal equations, but this has the significantly worse effect
of squaring the condition number.) More importantly, average convergence time for the
pressure projection illustrates the advantage of our SPD transformation: the indefinite
system generally takes longer to solve. Note also that despite being slightly slower on the
coarsest grid, the SPD system can be solved almost twice as fast on the medium grid,
and almost four times as fast on the finest grid. That is, the SPD formulation exhibits
appreciably better scaling with respect to simulation resolution.

Using the same test setup, we also compared the performance of our SPD transforma-
tion technique to the factoring method described in Section 5.3. Our findings are sum-
marized in Tables 6.3 and 6.4; we note that for the coarser solid, the equivalent fluid

64

grid resolution (with respect to node separation) would be 253, and for the finer one, it
is 503. Hence, our method performs substantially better when the fluid and solid are of
comparable resolution. Refinement of the fluid grid for a fixed solid mesh enjoys better
scaling under the factoring scheme; conversely, refinement of the solid mesh for a fixed fluid

Figure 6.9: A volume of liquid falls
onto and comes to rest atop a de-
formable platform.

resolution scales better with our proposed trans-
formation. However, thanks to fewer variables in
the system, we observe that our method’s memory
footprint is appreciably smaller, as the number of
nonzeros in the pressure projection coefficient ma-
trix is often a small fraction of the factored ver-
sion.

6.3 Stability Assessment

The dam break experiment was also used to gauge
the effect of strong coupling on stability. To this
end, we simulated a low-resolution dam break (353

fluid grid, solid with 189 nodes and 480 elements)
using several pressure projection schemes: weak
(alternating) coupling with the solid, strong cou-
pling with the solid’s damping only, and strong
coupling of solid damping and elasticity. In or-
der to strain these methods, a stiff but light de-
formable body was used along with high grav-
ity and relatively large time steps. As expected,
the first method was unstable, with the solid un-
dergoing extreme distortion, and the simulation
eventually failing. While the simulation was able
to complete when only solid damping was cou-
pled with pressure projection, results obtained via
this scheme were noticeably unrealistic; specifi-
cally, since pressure projection is sequenced after
elastic forces, pressure-induced buoyancy inaccu-
rately dominates and incorrectly pushes the stiff
solid to the surface. Our proposed fully coupled
approach, on the other hand, encountered no dif-

65

X = −L X = L
Y = 0

Y = τ0

undeformed solid

x = −1 x = 1

y = 0

y = a

x = −αL x = αL

y = y1

y = y2

Figure 6.10: Setup for the accuracy assessment.

Table 6.2: Comparison of coefficient matrices for the indefinite and SPD formulations (all
entries in this table are averaged over 100 simulation steps); c stands for the condition
number.

Fluid Solid Nonzeros log10 of c Solve Time (s)
Grid Size Nodes (Elements) Indefinite SPD Indefinite SPD Indefinite SPD

403 135 (336) 157498 185503 8.347 10.497 1.635 1.813
603 352 (1134) 499787 610697 8.579 11.311 16.121 8.292
803 725 (2688) 1177419 1439173 8.819 11.497 100.875 28.020

ficulties with this scenario. Additionally, the fully coupled simulation was repeated with
zero damping force; once again, our formulation had no problems producing the animation
(see Figure 6.8). This result is significant, since the current state-of-the-art method of
Robinson-Mosher et al. [47] simultaneously accounts for fluid pressure and solid damping
(but not elasticity) and, thus, requires the deformable object to be damped.

6.4 Accuracy Assessment

To numerically assess our method’s order of accuracy, we set up a simple scenario and
measured how far the velocities deviated from the analytic solution after a single time
step. In particular, we analyzed a submerged solid in a pool of liquid, in hydrostatic

66

Table 6.3: Running time in seconds (total frame time averaged over 100 frames) comparison
of our SPD transformation method (data in blue and on the left) to the factored formulation
(data in red and on the right).

Fluid Coarse Solid Fine Solid
Grid Size 135 nodes, 336 elements 725 nodes, 2688 elements

503 5.33 6.69 14.15 27.68
603 9.51 9.90 19.76 32.02
703 15.75 15.32 29.89 36.98
803 23.54 22.21 44.04 47.87
903 35.93 31.56 59.09 58.76

Table 6.4: Matrix nonzeros (averaged over 100 frames) comparison of our SPD transfor-
mation method (data in blue and on the left) to the factored formulation (data in red and
on the right).

Fluid Coarse Solid Fine Solid
Grid Size 135 nodes, 336 elements 725 nodes, 2688 elements

503 317505 814424 624387 5654643
603 501430 998372 807789 5838273
703 795668 1218020 1095644 6130135
803 1128123 1545752 1425174 6456548
903 1565587 1985347 1856102 6890398

equilibrium (refer to Figure 6.10). The deformation map for this solid is chosen to be

φ(X, Y) =

(
αX

βY 2 + γY + y1

)
(6.1)

and its first Piola-Kirchoff stress tensor can be derived from (3.3) and (3.8):

P (X, Y)

=

(
(2µ+ λ)(α− 1) + λ(2βY + γ − 1) 0

0 (2µ+ λ)(2βY + γ − 1) + λ(α− 1)

)
,

(6.2)

where

β = −α(y2 − y1)ρfg

2τ0(2µ+ λ)
, (6.3)

γ =
y2 − y1

τ0

− βτ0. (6.4)

67

Table 6.5: First accuracy assessment (µ = 20, λ = 10, L = τ0 = 0.4, α = 0.9, y1 =
0.205, y2 = 0.595).

∆x
Pressures Solid Velocities Liquid Velocities

Error Order Error Order Error Order

0.2000 4.19× 10−2 5.68× 10−3 3.75× 10−3

0.1000 4.22× 10−2 -0.01 4.20× 10−3 0.44 2.66× 10−3 0.49
0.0500 1.84× 10−2 1.20 1.93× 10−3 1.12 2.31× 10−3 0.20
0.0250 6.95× 10−3 1.41 9.75× 10−4 0.98 1.14× 10−3 1.01
0.0125 1.15× 10−3 2.59 2.72× 10−4 1.84 3.01× 10−4 1.93

The above formula for β ensures that the solid’s internal forces (∇·P) cancel out the effect
of gravity, and γ is set to satisfy the boundary condition (Y = τ0 maps to y = y2). In
these expressions, ρf denotes the fluid density, and g is acceleration due to gravity (acting
along the vertical axis). For the liquid, the pressure field is simply

p(x, y) = ρfg(y − a). (6.5)

It is not difficult to check that the solid and fluid are indeed in hydrostatic equilibrium,
assuming the following tractions are applied to the solid on the left, right, top, and bottom,
respectively:

TL(Y) = −(2µ+ λ)(α− 1)− λ(2βY + γ − 1)

− ρfg(βY 2 + γY + y1 − a)(2βY + γ),
(6.6)

TR(Y) = (2µ+ λ)(α− 1) + λ(2βY + γ − 1)

+ ρfg(βY 2 + γY + y1 − a)(2βY + γ),
(6.7)

TT (X) = (2µ+ λ)(2βτ0 + γ − 1) + λ(α− 1) + αρfg(y2 − a), (6.8)

TB(X) = −(2µ+ λ)(γ − 1)− λ(α− 1)− αρfg(y1 − a). (6.9)

Since these expressions are arrived at from the first Piola-Kirchoff stress, we highlight
that these tractions must be integrated with respect to the reference configuration. For
completeness, we state that in order for the densities to match, the solid’s initial density
field is constant and given by

ρs =
α(y2 − y1)ρf

τ0

. (6.10)

Our accuracy experiments yielded inconsistent results. Refer to Tables 6.5 and 6.6 for
some of our data (for all of our trials, we used ρf = 1, g = −1, a = 0.8, ∆t = 0.01 and

68

Table 6.6: Second accuracy assessment (µ = 100, λ = 100, L = τ0 = 0.4, α = 1.1, y1 =
0.18, y2 = 0.62).

∆x
Pressures Solid Velocities Liquid Velocities

Error Order Error Order Error Order

0.2000 9.19× 10−2 3.92× 10−3 3.02× 10−3

0.1000 3.35× 10−2 1.46 1.37× 10−3 1.51 1.06× 10−3 1.51
0.0500 6.01× 10−3 2.48 3.25× 10−4 2.07 2.08× 10−4 2.35
0.0250 7.30× 10−3 -0.28 4.74× 10−4 -0.55 7.57× 10−4 -1.86
0.0125 1.21× 10−3 2.59 1.07× 10−4 2.15 1.92× 10−4 1.98

Figure 6.11: Refinement of the computational grid increases the distance between pressure
samples (given by ×) and solid boundary (nodes given by ◦).

the ∞-norm was utilized for error computations). In certain cases, the coupling schemes
exhibits first order accuracy, but sometimes the error scales better than linearly with
respect to spatial discretization. In yet other scenarios, refinement of the computational
grids does not reduce the errors at all; for these cases, we noticed that the distance between
solid nodes and pressure samples actually increased in the higher-resolution discretization
(see Figure 6.11). Thus, we suspect that this behaviour may be due to our assumption
that pressure is constant within each fluid cell.

69

Chapter 7

Conclusions

We have presented a novel approach to simulating two-way coupling between fluids and de-
formable bodies. Compared to previous solutions, our cut-cell method facilitates accurate
free-slip boundary condition enforcement at the true solid-fluid interface without adding
new degrees of freedom. Due to a fully implicit treatment of solid dynamics as part of the
pressure projection, our technique also enjoys better stability properties. Additionally, an
efficient symmetric positive-definite transformation scheme was introduced that allows us
to convert the symmetric indefinite projection system into a form that is appreciably faster
to solve numerically.

7.1 Future Work

We conclude by listing possible avenues for future research. With respect to simulation of
thin solids, it was established that our method is capable of producing animations if the
object’s thickness is greater than a grid cell width or two. However, prevention of fluid
flow through the solid is much more difficult when it has a very small or zero thickness
(e.g., cloth); furthermore, differences in pressure and velocity on opposite sides of the
object must be taken into account. We expect that our method could be combined with
the techniques proposed by Azevedo et al. [2] to allow for efficient simulation of scenarios
involving such thin solids or shells. We assumed a simple isotropic linear elastic corotational
model that yields realistic results for many deformable objects, but the dynamics of more
complex materials cannot be adequately captured with this approach. To properly treat
nonlinear constitutive models within our framework, a linearization of the solid forces or
a full nonlinear solve would likely be required. Improved numerical linear algebra solvers

70

tailored to our SPD system, such as multigrid schemes, could benefit our timing results.
To allow the liquid to freely separate from solids, as originally proposed by Batty et al. [5],
one could explore extending our method with inequality boundary conditions leading to
an LCP system. Finally, we treated contact between the deformable solid and the domain
boundaries with a simple explicit correction; it could also be valuable to incorporate implicit
contact response into our system. For configurations involving multiple deformable objects
and complex contact, we expect that this extension would further improve stability and
accuracy.

71

References

[1] Nadir Akinci, Jens Cornelis, Gizem Akinci, and Matthias Teschner. Coupling elastic
solids with smoothed particle hydrodynamics fluids. Computer Animation and Virtual
Worlds, 24(3-4):195–203, 2013.

[2] Vinicius C Azevedo, Christopher Batty, and Manuel M Oliveira. Preserving geometry
and topology for fluid flows with thin obstacles and narrow gaps. ACM Transactions
on Graphics (TOG), 35(4):97, 2016.

[3] David Baraff and Andrew Witkin. Large steps in cloth simulation. In Proceedings of
the 25th Annual Conference on Computer Graphics and Interactive Techniques, pages
43–54. ACM, 1998.

[4] George Keith Batchelor. An Introduction to Fluid Dynamics. Cambridge university
press, 2000.

[5] Christopher Batty, Florence Bertails, and Robert Bridson. A fast variational frame-
work for accurate solid-fluid coupling. ACM Transactions on Graphics (TOG),
26(3):100, 2007.

[6] Christopher Batty, Stefan Xenos, and Ben Houston. Tetrahedral embedded bound-
ary methods for accurate and flexible adaptive fluids. Computer Graphics Forum,
29(2):695–704, 2010.

[7] Markus Becker and Matthias Teschner. Weakly compressible sph for free surface flows.
In Proceedings of the 2007 ACM SIGGRAPH/Eurographics Symposium on Computer
Animation, pages 209–217. Eurographics Association, 2007.

[8] David E Breen, Donald H House, and Michael J Wozny. Predicting the drape of
woven cloth using interacting particles. In Proceedings of the 21st Annual Conference
on Computer Graphics and Interactive Techniques, pages 365–372. ACM, 1994.

72

[9] Robert Bridson. Fluid Simulation for Computer Graphics. CRC Press, 2015.

[10] Tyson Brochu, Christopher Batty, and Robert Bridson. Matching fluid simulation
elements to surface geometry and topology. In ACM SIGGRAPH 2010 Papers, pages
47:1–47:9, 2010.

[11] Mark Carlson, Peter J Mucha, and Greg Turk. Rigid fluid: animating the interplay
between rigid bodies and fluid. ACM Transactions on Graphics (TOG), 23(3):377–384,
2004.

[12] Jim X Chen and Niels da Vitoria Lobo. Toward interactive-rate simulation of fluids
with moving obstacles using navier-stokes equations. Graphical Models and Image
Processing, 57(2):107–116, 1995.

[13] Nuttapong Chentanez, Tolga G Goktekin, Bryan E Feldman, and James F O’Brien.
Simultaneous coupling of fluids and deformable bodies. In Proceedings of the 2006
ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pages 83–89.
Eurographics Association, 2006.

[14] Pascal Clausen, Martin Wicke, Jonathan R Shewchuk, and James F O’brien. Simulat-
ing liquids and solid-liquid interactions with lagrangian meshes. ACM Transactions
on Graphics (TOG), 32(2):17, 2013.

[15] Mathieu Desbrun and Marie-Paule Gascuel. Smoothed particles: A new paradigm for
animating highly deformable bodies. In Computer Animation and Simulation, pages
61–76. Springer, 1996.

[16] Essex Edwards and Robert Bridson. Detailed water with coarse grids: combining
surface meshes and adaptive discontinuous galerkin. ACM Transactions on Graphics
(TOG), 33(4):136, 2014.

[17] Doug Enright, Duc Nguyen, Frederic Gibou, and Ron Fedkiw. Using the particle level
set method and a second order accurate pressure boundary condition for free surface
flows. In ASME/JSME 2003 4th Joint Fluids Summer Engineering Conference, pages
337–342. American Society of Mechanical Engineers, 2003.

[18] Douglas Enright, Frank Losasso, and Ronald Fedkiw. A fast and accurate semi-
lagrangian particle level set method. Computers & Structures, 83(6):479–490, 2005.

[19] Douglas Enright, Stephen Marschner, and Ronald Fedkiw. Animation and rendering
of complex water surfaces. In ACM Transactions on Graphics (TOG), volume 21,
pages 736–744. ACM, 2002.

73

[20] Olaf Etzmuß, Michael Keckeisen, and Wolfgang Straßer. A fast finite element solu-
tion for cloth modelling. In Proceedings of the 11th Pacific Conference on Computer
Graphics and Applications, pages 244–251. IEEE, 2003.

[21] Bryan E Feldman, James F O’brien, and Bryan M Klingner. Animating gases with
hybrid meshes. ACM Transactions on Graphics (TOG), 24(3):904–909, 2005.

[22] Nick Foster and Ronald Fedkiw. Practical animation of liquids. In Proceedings of
the 28th Annual Conference on Computer Graphics and Interactive Techniques, pages
23–30. ACM, 2001.

[23] Nick Foster and Dimitri Metaxas. Realistic animation of liquids. Graphical Models
and Image Processing, 58(5):471–483, 1996.

[24] Alain Fournier and William T Reeves. A simple model of ocean waves. ACM SIG-
GRAPH Computer Graphics, 20(4):75–84, 1986.

[25] TF Gast and C Schroeder. Optimization integrator for large time steps. In Proceedings
of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pages
31–40. Eurographics Association, 2014.

[26] Olivier Génevaux, Arash Habibi, and Jean-Michel Dischler. Simulating fluid-solid
interaction. In Graphics Interface, volume 2003, pages 31–38, 2003.

[27] Frédéric Gibou and Chohong Min. Efficient symmetric positive definite second-order
accurate monolithic solver for fluid/solid interactions. Journal of Computational
Physics, 231(8):3246–3263, 2012.

[28] Eran Guendelman, Andrew Selle, Frank Losasso, and Ronald Fedkiw. Coupling water
and smoke to thin deformable and rigid shells. ACM Transactions on Graphics (TOG),
24(3):973–981, 2005.

[29] Gaël Guennebaud, Benôıt Jacob, et al. Eigen v3. http://eigen.tuxfamily.org, 2010.

[30] Francis H Harlow and J Eddie Welch. Numerical calculation of time-dependent viscous
incompressible flow of fluid with free surface. The Physics of Fluids, 8(12):2182–2189,
1965.

[31] Florian Hecht, Yeon Jin Lee, Jonathan R Shewchuk, and James F O’Brien. Up-
dated sparse cholesky factors for corotational elastodynamics. ACM Transactions on
Graphics (TOG), 31(5):123, 2012.

74

[32] Ben Houston, Chris Bond, and Mark Wiebe. A unified approach for modeling complex
occlusions in fluid simulations. In ACM SIGGRAPH 2003 Sketches & Applications,
pages 1–1. ACM, 2003.

[33] Michael Kass and Gavin Miller. Rapid, stable fluid dynamics for computer graphics.
In ACM SIGGRAPH Computer Graphics, volume 24, pages 49–57. ACM, 1990.

[34] Bryan M Klingner, Bryan E Feldman, Nuttapong Chentanez, and James F O’brien.
Fluid animation with dynamic meshes. ACM Transactions on Graphics (TOG),
25(3):820–825, 2006.

[35] David IW Levin, Joshua Litven, Garrett L Jones, Shinjiro Sueda, and Dinesh K
Pai. Eulerian solid simulation with contact. ACM Transactions on Graphics (TOG),
30(4):36, 2011.

[36] Chia-Chiao Lin and Lee A Segel. Mathematics Applied to Deterministic Problems in
the Natural Sciences. SIAM, 1988.

[37] Wenlong Lu, Ning Jin, and Ronald Fedkiw. Two-way coupling of fluids to reduced
deformable bodies. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium
on Computer Animation, pages 67–76. Eurographics Association, 2016.

[38] Mathworks. Matlab. https://www.mathworks.com/, 2017.

[39] Nelson L Max. Vectorized procedural models for natural terrain: Waves and islands
in the sunset. ACM SIGGRAPH Computer Graphics, 15(3):317–324, 1981.

[40] Marek Krzysztof Misztal, Kenny Erleben, Adam Bargteil, Jens Fursund, Brian Bunch
Christensen, Jakob Andreas Bærentzen, and Robert Bridson. Multiphase flow of
immiscible fluids on unstructured moving meshes. IEEE Transactions on Visualization
and Computer Graphics, 20(1):4–16, 2014.

[41] Matthias Müller, David Charypar, and Markus Gross. Particle-based fluid sim-
ulation for interactive applications. In Proceedings of the 2003 ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation, pages 154–159. Euro-
graphics Association, 2003.

[42] Matthias Müller and Markus Gross. Interactive virtual materials. In Proceedings
of Graphics Interface 2004, pages 239–246. Canadian Human-Computer Communica-
tions Society, 2004.

75

[43] Yen Ting Ng, Chohong Min, and Frédéric Gibou. An efficient fluid–solid coupling
algorithm for single-phase flows. Journal of Computational Physics, 228(23):8807–
8829, 2009.

[44] Hidehiko Okabe, Haruki Imaoka, Takako Tomiha, and Haruo Niwaya. Three dimen-
sional apparel cad system. In ACM SIGGRAPH Computer Graphics, volume 26, pages
105–110. ACM, 1992.

[45] Vito Pasquariello, Georg Hammerl, Felix Örley, Stefan Hickel, Caroline Danowski,
Alexander Popp, Wolfgang A Wall, and Nikolaus A Adams. A cut-cell finite volume–
finite element coupling approach for fluid–structure interaction in compressible flow.
Journal of Computational Physics, 307:670–695, 2016.

[46] Nick Rasmussen, Douglas Enright, Duc Nguyen, Sebastian Marino, Nigel Sumner,
Willi Geiger, Samir Hoon, and Ronald Fedkiw. Directable photorealistic liquids. In
Proceedings of the 2004 ACM SIGGRAPH/Eurographics Symposium on Computer
Animation, pages 193–202. Eurographics Association, 2004.

[47] Avi Robinson-Mosher, R Elliot English, and Ronald Fedkiw. Accurate tangen-
tial velocities for solid fluid coupling. In Proceedings of the 2009 ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation, pages 227–236. ACM,
2009.

[48] Avi Robinson-Mosher, Craig Schroeder, and Ronald Fedkiw. A symmetric positive
definite formulation for monolithic fluid structure interaction. Journal of Computa-
tional Physics, 230(4):1547–1566, 2011.

[49] Avi Robinson-Mosher, Tamar Shinar, Jon Gretarsson, Jonathan Su, and Ronald Fed-
kiw. Two-way coupling of fluids to rigid and deformable solids and shells. ACM
Transactions on Graphics (TOG), 27(3):46, 2008.

[50] Doug Roble, Nafees bin Zafar, and Henrik Falt. Cartesian grid fluid simulation with
irregular boundary voxels. In ACM SIGGRAPH 2005 Sketches, page 138. ACM, 2005.

[51] Yousef Saad. Iterative Methods for Sparse Linear Systems. SIAM, 2003.

[52] Lee A Segel and GH Handelman. Mathematics Applied to Continuum Mechanics.
SIAM, 2007.

76

[53] Rahul Sheth, Wenlong Lu, Yue Yu, and Ronald Fedkiw. Fully momentum-conserving
reduced deformable bodies with collision, contact, articulation, and skinning. In Pro-
ceedings of the 14th ACM SIGGRAPH/Eurographics Symposium on Computer Ani-
mation, pages 45–54. ACM, 2015.

[54] Eftychios Sifakis and Jernej Barbic. Fem simulation of 3d deformable solids: a prac-
titioner’s guide to theory, discretization and model reduction. In ACM SIGGRAPH
2012 Courses, page 20. ACM, 2012.

[55] Side Effects Software. Houdini. https://www.sidefx.com/, 2017.

[56] Barbara Solenthaler, Jürg Schläfli, and Renato Pajarola. A unified particle model for
fluid–solid interactions. Computer Animation and Virtual Worlds, 18(1):69–82, 2007.

[57] Fotis Sotiropoulos and Xiaolei Yang. Immersed boundary methods for simulating
fluid–structure interaction. Progress in Aerospace Sciences, 65:1–21, 2014.

[58] Jos Stam. Stable fluids. In Proceedings of the 26th Annual Conference on Computer
Graphics and Interactive Techniques, pages 121–128. ACM Press/Addison-Wesley
Publishing Co., 1999.

[59] Alexey Stomakhin, Craig Schroeder, Lawrence Chai, Joseph Teran, and Andrew Selle.
A material point method for snow simulation. ACM Transactions on Graphics (TOG),
32(4):102, 2013.

[60] Yun Teng, David IW Levin, and Theodore Kim. Eulerian solid-fluid coupling. ACM
Transactions on Graphics (TOG), 35(6):200, 2016.

[61] Joseph Teran, Sylvia Blemker, V Hing, and Ronald Fedkiw. Finite volume meth-
ods for the simulation of skeletal muscle. In Proceedings of the 2003 ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation, pages 68–74. Eurograph-
ics Association, 2003.

[62] Demetri Terzopoulos and Kurt Fleischer. Deformable models. The Visual Computer,
4(6):306–331, 1988.

[63] Demetri Terzopoulos, John Platt, Alan Barr, and Kurt Fleischer. Elastically de-
formable models. ACM SIGGRAPH Computer Graphics, 21(4):205–214, 1987.

[64] Daniel Weber, Johannes Mueller-Roemer, André Stork, and Dieter Fellner. A cut-cell
geometric multigrid poisson solver for fluid simulation. Computer Graphics Forum,
34(2):481–491, 2015.

77

[65] Gary D Yngve, James F O’Brien, and Jessica K Hodgins. Animating explosions. In
Proceedings of the 27th Annual Conference on Computer Graphics and Interactive
Techniques, pages 29–36. ACM Press/Addison-Wesley Publishing Co., 2000.

[66] Omar Zarifi and Christopher Batty. A positive-definite cut-cell method for strong
two-way coupling between fluids and deformable bodies. In Proceedings of the ACM
SIGGRAPH/Eurographics Symposium on Computer Animation, page 7. ACM, 2017.

78

	List of Tables
	List of Figures
	List of Algorithms
	Introduction
	Contributions
	Outline

	Related Works
	Liquid Animation
	Solid Animation
	Coupling Fluids to Rigid Bodies
	Coupling Fluids to Lagrangian Deformables
	Coupling Fluids to Eulerian Deformables
	Smoothed Particle Hydrodynamics Methods

	Solid Dynamics
	Deformations
	Strain and Stress
	Strain
	Stress
	Material Model

	Equations of Motion
	Variational Treatment of Elasticity
	Spatial Discretization
	Mass Matrix
	Deformation Gradient
	Stiffness Matrix
	Discrete Equations
	Rayleigh Damping

	Corotational Model
	Elemental Rotations

	Algorithm Summary

	Fluid Dynamics
	Equations of Motion
	Material Derivative
	Conservation of Mass
	Conservation of Momentum
	Incompressible Euler Equations

	Discretization
	Semi-Lagrangian Advection
	Cut-Cell Pressure Projection
	Enforcing Incompressibility
	Free Surface Condition

	Tracking Geometry
	Algorithm Summary

	Solid-Fluid Coupling
	Coupled Pressure Projection
	Modification to Fluid Equations
	Modification to Solid Equations
	Coupled System

	Positive-Definite Transformation
	Algebraic Transformation
	Choice of Summand Matrices
	Connection to the Schur Complement
	Proof of Positive-Definiteness
	Matrix Scaling

	Comparison with Changing to Stress-Like Variables
	Algorithm Summary

	Results
	Animation Examples
	Dam Break
	Buoyancy Example
	Solid Compressibility Example
	Liquid Supported by a Solid
	Fluid in a Sphere
	Light Dino

	SPD System Conditioning
	Stability Assessment
	Accuracy Assessment

	Conclusions
	Future Work

	References

