
Enhancements to Hidden Markov Models for Gene

Finding and Other Biological Applications

by

Tomáš Vinař

A thesis
presented to the University of Waterloo

in fulfilment of the
thesis requirement for the degree of

Doctor of Philosophy
in

Computer Science

Waterloo, Ontario, Canada, 2005
c© Tomáš Vinař 2005



AUTHOR’S DECLARATION FOR ELECTRONIC SUBMISSION OF A THESIS

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii



Abstract

In this thesis, we present enhancements of hidden Markov models for the problem of finding
genes in DNA sequences. Genes are the parts of DNA that serve as a template for synthesis
of proteins. Thus, gene finding is a crucial step in the analysis of DNA sequencing data.

Hidden Markov models are a key tool used in gene finding. Yhis thesis presents three
methods for extending the capabilities of hidden Markov models to better capture the sta-
tistical properties of DNA sequences. In all three, we encounter limiting factors that lead to
trade-offs between the model accuracy and those limiting factors.

First, we build better models for recognizing biological signals in DNA sequences. Our
new models capture non-adjacent dependencies within these signals. In this case, the main
limiting factor is the amount of training data: more training data allows more complex
models. Second, we design methods for better representation of length distributions in
hidden Markov models, where we balance the accuracy of the representation against the
running time needed to find genes in novel sequences. Finally, we show that creating hidden
Markov models with complex topologies may be detrimental to the prediction accuracy,
unless we use more complex prediction algorithms. However, such algorithms require longer
running time, and in many cases the prediction problem is NP-hard. For gene finding this
means that incorporating some of the prior biological knowledge into the model would require
impractical running times. However, we also demonstrate that our methods can be used for
solving other biological problems, where input sequences are short.

As a model example to evaluate our methods, we built a gene finder ExonHunter that
outperforms programs commonly used in genome projects.

iii



Acknowledgements

I would like to thank all the people, who contributed to this thesis. Thanks to both of my
supervisors Ming Li and Dan Brown. During my years of PhD studies, they provided me
with tremendous amount of support and extraordinary freedom to pursue my own curiosity,
yet they were always eager to work on the problems with me and give me a guidance; to
Broňa Brejová, my wife, my best friend, and also my closest research collaborator.

I would also like to thank members of my committee Therese Biedl, Ian Munro, Burkhard
Morgenstern, and Romy Shioda for their guidance and insightful comments.

Special thanks to people who helped me in the beginnings of my research career by many
hours spent in helpful discussions: Jonathan Badger, Haoyong Zhang, John Tsang, and
Michael Hu. Thanks to Martin Demaine and Therese Biedl, who always encouraged me to
start new things, and who helped me to set up bioinformatics problem sessions. Special
thanks to Therese, under whose guidance we wrote our first research paper.

Thanks to all the other people with whom I had a pleasure to co-author research papers
and reports: Jonathan Buss, Erik Demaine, Chrysanne DiMarco, Mohammadtaghi Haji-
aghayi, Angele Hamel, Masud Hasan, Ian Harrower, Sandra Romero Hidalgo, Gina Holguin,
Joe D. Horton, Alejandro Lopez-Ortiz, and Cheryl Patten.

Last, but definitely not least, I would like to thank my parents, for supporting me and
encouraging me in all my endeavors.

iv



To my brother,
who left us early.

v



Contents

1 Introduction 1

1.1 Sequence Annotation and Hidden Markov Models . . . . . . . . . . . . . . . 2

1.1.1 Hidden Markov Models . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.2 Algorithms for Decoding Hidden Markov Models . . . . . . . . . . . . 4

1.1.2.1 Computing the Most Probable State Path . . . . . . . . . . 5

1.1.2.2 Posterior Decoding . . . . . . . . . . . . . . . . . . . . . . . 6

1.1.2.3 Combining Viterbi and Posterior Decoding . . . . . . . . . . 8

1.1.3 Training Hidden Markov Models . . . . . . . . . . . . . . . . . . . . . 8

1.1.3.1 Supervised Training . . . . . . . . . . . . . . . . . . . . . . 9

1.1.3.2 Unsupervised Training . . . . . . . . . . . . . . . . . . . . . 9

1.1.3.3 Beyond Maximum Likelihood . . . . . . . . . . . . . . . . . 11

1.2 Introduction to Gene Finding . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.2.1 Statistical Properties of Genes in DNA Sequences . . . . . . . . . . . 17

1.2.1.1 Differences in k-mer Composition . . . . . . . . . . . . . . . 17

1.2.1.2 Conserved Signal Sequences . . . . . . . . . . . . . . . . . . 18

1.2.2 Previous Work: Programs for Ab Initio Gene Finding . . . . . . . . . 20

1.2.2.1 Dynamic Programming . . . . . . . . . . . . . . . . . . . . 22

1.2.2.2 Probabilistic Modeling . . . . . . . . . . . . . . . . . . . . . 22

1.2.3 Beyond Ab Initio Gene Finding . . . . . . . . . . . . . . . . . . . . . 23

1.2.4 Evaluation Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.2.5 Experimental Verification of Gene Predictions . . . . . . . . . . . . . 26

1.2.5.1 Methods Based on Random Sampling . . . . . . . . . . . . 26

1.2.5.2 Genome-Wide Analysis . . . . . . . . . . . . . . . . . . . . 27

1.2.5.3 Prediction Driven Methods . . . . . . . . . . . . . . . . . . 27

1.3 Hidden Markov Models for Gene Finding . . . . . . . . . . . . . . . . . . . . 27

1.3.1 Exon Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

1.3.2 Intron Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

1.3.3 Start and Stop Sites . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

1.3.4 Untranslated Regions and Intergenic Region . . . . . . . . . . . . . . 29

1.3.5 Putting the Pieces Together . . . . . . . . . . . . . . . . . . . . . . . 29

vi



2 Higher Order Tree Models for Signal Recognition 35
2.1 Intra-signal Dependencies and HOT Models . . . . . . . . . . . . . . . . . . 37

2.1.1 Previous work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.2 Maximum Likelihood Training of HOT Models . . . . . . . . . . . . . . . . . 42

2.2.1 HOT Models and Hypergraphs . . . . . . . . . . . . . . . . . . . . . 43
2.2.2 Finding the Optimal Topology for Tree Models . . . . . . . . . . . . 46
2.2.3 Minimum Spanning Directed Hypertree is NP-hard . . . . . . . . . . 47
2.2.4 Finding the Optimal HOT Topology by Integer Programming . . . . 47
2.2.5 Greedy Heuristic for Finding a Good HOT Topology . . . . . . . . . 49

2.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
2.3.1 Using Generative Models as Classifiers . . . . . . . . . . . . . . . . . 51
2.3.2 Accuracy Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
2.3.3 Donor Site Experiments . . . . . . . . . . . . . . . . . . . . . . . . . 53
2.3.4 Relationship Between Model Order and the Amount of Training Data 58
2.3.5 Acceptor Site Experiments . . . . . . . . . . . . . . . . . . . . . . . . 60
2.3.6 Signal Models in Gene Finding . . . . . . . . . . . . . . . . . . . . . 60

2.4 Parallel Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3 Length Distributions in HMMs 65
3.1 Generalized HMMs with Explicit State Duration . . . . . . . . . . . . . . . . 67
3.2 Distributions with Geometric Tails . . . . . . . . . . . . . . . . . . . . . . . 69

3.2.1 Maximum Likelihood Training . . . . . . . . . . . . . . . . . . . . . . 72
3.2.2 Decoding HMMs with Geometric-Tail Lengths . . . . . . . . . . . . . 76
3.2.3 Generalization Properties . . . . . . . . . . . . . . . . . . . . . . . . 77

3.3 Decoding Geometric-Tail Distributions with Large Values of t . . . . . . . . 80
3.4 Gadgets of States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.4.1 Phase-type Distributions . . . . . . . . . . . . . . . . . . . . . . . . . 82
3.4.2 Gadgets of States and the Viterbi Algorithm . . . . . . . . . . . . . . 85

3.5 Length Distributions of Complex Sub-models . . . . . . . . . . . . . . . . . . 86
3.5.1 A Viterbi Algorithm for Boxed HMMs . . . . . . . . . . . . . . . . . 87
3.5.2 Boxed HMMs with Geometric-Tail Distributions . . . . . . . . . . . . 90

3.6 Summary and Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4 Finding the Most Probable Annotation 97
4.1 Comparing Decoding by the Most Probable Path and by the Most Probable

Annotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
4.2 Finding the Most Probable Annotation is NP-hard . . . . . . . . . . . . . . 101

4.2.1 Proof of Lyngsø and Pedersen . . . . . . . . . . . . . . . . . . . . . . 102
4.2.2 Layered Graphs and the Best-Layer-Coloring Problem . . . . . . 105
4.2.3 From Layer Colorings to HMMs . . . . . . . . . . . . . . . . . . . . . 112
4.2.4 Constructing a Small HMM that is NP-hard to Decode . . . . . . . . 113

4.3 Computing the Most Probable Annotation . . . . . . . . . . . . . . . . . . . 117

vii



4.3.1 Most Probable Extended Annotation . . . . . . . . . . . . . . . . . . 118
4.3.2 Critical Edge Condition . . . . . . . . . . . . . . . . . . . . . . . . . 119
4.3.3 Silent States and the Critical Edge Condition . . . . . . . . . . . . . 121
4.3.4 Applications of the EVA . . . . . . . . . . . . . . . . . . . . . . . . . 121
4.3.5 Generalizing the EVA and the Critical Edge Condition . . . . . . . . 124

4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

5 Implementing ExonHunter 129
5.1 Hidden Markov Model of ExonHunter . . . . . . . . . . . . . . . . . . . . . . 129
5.2 Common Sequence Repeats . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
5.3 Performance of ExonHunter on Human Sequences . . . . . . . . . . . . . . . 133
5.4 Performance of ExonHunter on Fruit Fly Sequences . . . . . . . . . . . . . . 135
5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

6 Conclusion 137

A Datasets and Their Preparation 139
A.1 ENCODE Gene Prediction Workshop . . . . . . . . . . . . . . . . . . . . . . 139
A.2 Chromosome 22 Annotated with RefSeq . . . . . . . . . . . . . . . . . . . . 140
A.3 Augustus Training Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
A.4 SpliceDB Collection of Splice Site Signals . . . . . . . . . . . . . . . . . . . . 140
A.5 Fruit Fly Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

Bibliography 141

viii



List of Figures

1.1 Example of a hidden Markov model . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 A simple HMM topology for transmembrane protein topology prediction . . 12
1.3 Central dogma of molecular biology . . . . . . . . . . . . . . . . . . . . . . . 14
1.4 Translating nucleotide sequences to protein sequences . . . . . . . . . . . . . 14
1.5 Summary of biological signals important for gene finding . . . . . . . . . . . 18
1.6 Splicing mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.7 Logo of 5’ (donor) splice site . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.8 Logo of 3’ (acceptor) splice site . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.9 Logo of region [−20,−5] before the acceptor splice site . . . . . . . . . . . . 21
1.10 Logo of translation start signal . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.11 Logo of translation stop signal . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.12 Example of exon model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
1.13 Example of an intron model . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
1.14 Start site model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
1.15 Stop site model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
1.16 HMM for a sequence with a single gene on the forward strand . . . . . . . . 32
1.17 HMM for a multi gene sequence with genes on both strands . . . . . . . . . 33

2.1 Pairwise dependencies in human donor splice site . . . . . . . . . . . . . . . 36
2.2 Examples of different model topologies for donor signal . . . . . . . . . . . . 39
2.3 Minimum spanning directed hypertree is NP-hard . . . . . . . . . . . . . . . 47
2.4 Minimum spanning directed hypertree is NP-hard (cont.) . . . . . . . . . . . 48
2.5 Comparison of models inferred by integer programming and a greedy algorithm 50
2.6 Graphs comparing sensitivity and specificity . . . . . . . . . . . . . . . . . . 53
2.7 Comparison of donor site prediction for PWM-2 and HOT-2 . . . . . . . . . 55
2.8 Detail of ROC curve for second order models of donor site . . . . . . . . . . 56
2.9 Score vs. actual fraction of true positives . . . . . . . . . . . . . . . . . . . . 57
2.10 The HOT-3 model dominates MDD model of donor site . . . . . . . . . . . . 58
2.11 Specificity of donor models at 90% sensitivity with increasing amount of train-

ing data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
2.12 Pairwise dependencies in human acceptor splice site . . . . . . . . . . . . . . 61

3.1 Length distributions in Human chromosome 22 . . . . . . . . . . . . . . . . 66
3.2 Approximation of length distributions by geometric distributions . . . . . . . 70

ix



3.3 Example of a geometric-tail distribution . . . . . . . . . . . . . . . . . . . . 71
3.4 Approximation by geometric-tail distributions . . . . . . . . . . . . . . . . . 75
3.5 Alternative implementation of geometric-tail distributions . . . . . . . . . . 78
3.6 Generalization capacity of geometric-tail distributions . . . . . . . . . . . . . 79
3.7 Geometric-tail distribution gadget for large values of t . . . . . . . . . . . . . 80
3.8 Step-function approximation of length distribution . . . . . . . . . . . . . . . 81
3.9 Gadget generating non-geometric length distribution in HMM . . . . . . . . 83
3.10 Family of distributions generated by the gadget from Figure 3.9 . . . . . . . 83
3.11 Gadget with geometric length distribution replaces gadget from Figure 3.9 . 84
3.12 3-periodic Markov chains used for modeling exons . . . . . . . . . . . . . . . 86
3.13 Alternative model of intron . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
3.14 Example of boxed HMM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
3.15 Intron lengths of fruit fly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.1 The most probable path is different than the most probable annotation . . . 98
4.2 HMM A: An HMM with the multiple path problem . . . . . . . . . . . . . . 100
4.3 HMM B: Simplified model of HMM A . . . . . . . . . . . . . . . . . . . . . 101
4.4 Comparison of different decoding methods . . . . . . . . . . . . . . . . . . . 102
4.5 NP hardness of the most probable labeling—gadget for vertex v . . . . . . . 103
4.6 Example of the construction of Lyngsø and Pedersen (2002) . . . . . . . . . 104
4.7 Illustration of the Best-Layer-Coloring problem . . . . . . . . . . . . . 106
4.8 Overview of NP-completeness proof of Best-Layer-Coloring . . . . . . . 107
4.9 Part of SAT (c, y) component corresponding to one variable . . . . . . . . . . 108
4.10 Example of assembly of SAT components . . . . . . . . . . . . . . . . . . . 108
4.11 Overview of encode and eq . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
4.12 One section of component mult(x) : α

x−→ αb(x) . . . . . . . . . . . . . . . 110
4.13 Component mult(x) : α

x−→ αb(x) . . . . . . . . . . . . . . . . . . . . . . . 110
4.14 One section of component square(x) : 1

x−→ K(n) − b(x)2 . . . . . . . . . . 111
4.15 Encoding formulas and assignments for HMM solving SAT . . . . . . . . . . 114
4.16 HMM solving SAT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
4.17 HMM with critical edges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
4.18 An HMM violating critical edge condition . . . . . . . . . . . . . . . . . . . 120
4.19 Usefulness of silent states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
4.20 Simplified model of ESTScan . . . . . . . . . . . . . . . . . . . . . . . . . . 122
4.21 Simple model of exon/intron structure . . . . . . . . . . . . . . . . . . . . . 123
4.22 TMHMM: prediction of topology of transmembrane proteins . . . . . . . . . 123
4.23 HMM requiring generalized EVA algorithm . . . . . . . . . . . . . . . . . . . 126
4.24 An HMM with unknown decoding algorithm . . . . . . . . . . . . . . . . . . 127

x



List of Tables

1.1 Standard genetic code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.2 Correlation of 3-mer composition of sequence elements in gene finding . . . . 18
1.3 Classification of objects in union of predicted and correct objects . . . . . . . 25

2.1 Position weight matrix for donor site . . . . . . . . . . . . . . . . . . . . . . 38
2.2 Finding optimal solution with CPLEX (running time) . . . . . . . . . . . . . 49
2.3 Characteristics of data sets used for testing of signal models . . . . . . . . . 51
2.4 Specificity at various sensitivity levels and reliability score of donor site models 54
2.5 Structures inferred for structured HOT models . . . . . . . . . . . . . . . . . 59
2.6 Specificity and reliability score of acceptor site models . . . . . . . . . . . . . 61
2.7 Performance of signal models in gene finding . . . . . . . . . . . . . . . . . . 62

3.1 Overview of methods for modeling length distributions . . . . . . . . . . . . 93
3.2 Performance of non-geometric length distributions on gene finding in human 94
3.3 Performance of non-geometric length distributions on gene finding in fruit fly 94

5.1 Feature comparison of gene finders . . . . . . . . . . . . . . . . . . . . . . . 132
5.2 Training sets for human sequences . . . . . . . . . . . . . . . . . . . . . . . . 134
5.3 Comparison of gene finding programs on ENCODE testing set with ExonHunter134
5.4 Comparison of accuracy of signal predictions in ENCODE testing set . . . . 135
5.5 Accuracy comparison on fruit fly chromosome 2L . . . . . . . . . . . . . . . 136
5.6 Comparison of signal predictions on fruit fly chromosome 2L . . . . . . . . . 136

xi





Chapter 1

Introduction

Hidden Markov models are a prime tool in the analysis of biological sequences. A wide
variety of important problems in computational biology, such as gene finding (Burge, 1997),
predicting the topology of transmembrane proteins (Krogh et al., 2001), predicting protein
secondary structure (Bystroff et al., 2000), identifying protein families (Eddy, 1998), or
searching for homologies (Brejová et al., 2004b), benefit from methods and algorithms based
on hidden Markov models. As of July 2005, these methods support the basic research of
almost 1500 genome projects in progress all over the world (Bernal et al., 2001).1

In this thesis, we explore several possible extensions to hidden Markov models for bio-
logical sequences. By careful study of the properties of biological sequences, we can design
new algorithms that extend the modeling capabilities of hidden Markov models to achieve
improved accuracy. However, such extensions are not free. In real applications, we need to
balance such model extensions with a variety of limiting factors. We show trade-offs that
exist between model faithfulness and the amount of data available for training (Chapter 2),
the feasibility of running time of required algorithms (Chapter 3), and sometimes even with
the inherent intractability of underlying problems (Chapter 4).

In hidden Markov models, many components work together to achieve high prediction
accuracy. In such a system, a seemingly modest improvement of one component may lead
surprisingly to improved performance of other components of the system as well. We observe
such behaviour in hidden Markov models in our experiments in Chapters 2 and 3.

While our results can be generalized to many scenarios, in this thesis we focus on the
annotation problem. Here, we first train the hidden Markov model to generate pairs of se-
quences and their annotations, maximizing the likelihood of a training set of known sequences,
and afterwards, we decode new sequences by finding their most probable annotation in the
trained model. We demonstrate our annotation methods on the problem of gene finding. In
the rest of this chapter, we introduce and review previous work on hidden Markov models,
on the annotation problem in general, and on gene finding specifically.

1The Genomes Online Database created by Bernal et al. (2001) is continuously updated with references
and progress of the current genome projects worldwide.

1



1.1 Sequence Annotation and Hidden Markov Models

In this section we present an overview of hidden Markov models in context of the problem
of sequence annotation, which is the central problem of this thesis. In this problem, we are
given a sequence of observations. Our goal is to find particular features of this sequence
(called labels). Our task is to assign a label to each observation in the sequence.

For example, we may have the sequence of the colors of roulette spins for an evening:
red for odd numbers, black for even numbers, or green for zeroes. Even though there are
numbers on the roulette wheel, we will be interested only in the colors of these numbers,
so the sequence of observations will be a sequence of colors from the set {red, black, green}.
We may suspect that the house occasionally changes the balance of the wheel so that the
black numbers come more often to gain more profit from unsuspecting gamblers. We want
to detect this trend in the data, and identify the spins from fair and unfair wheels. Thus,
we are looking to label each color in the sequence of observations by one of the labels from
the set {fair, loaded}.

Or, we may have a sequence of observations of smoke levels measured by a fire monitoring
device. In this scenario, we want to recognize parts of the sequence that may correspond
to a fire and raise an alarm. On the other hand, we do not want to raise an alarm when
somebody is cooking dinner.

The sequence does not need to correspond to observations of some physical phenomenon.
Tagging the words of a sentence with their parts of speech is a common example of the anno-
tation problem in the field of natural language processing. In areas such as bioinformatics,
we often annotate DNA or protein sequences. In these problems, we are usually interested
in functional or structural features of the sequence, and we want to mark every symbol in
the sequence with its particular feature. For example, in gene finding, a DNA sequence can
be functionally split into introns, exons, and intergenic regions.

The problems above have some features in common. For all, it is very hard to define
straightforward rules resulting in good annotation. Given this complexity, if we attempt to
formulate these problems as combinatorial or optimization problems based on common sense,
we may end up with a variety of different formulations, each yielding different results. Thus,
developing algorithms to solve these problems, or sometimes even attempting to provide
clear formulations of these problems, is an exceptionally hard task.

The sequences also may not contain enough information to resolve the questions we want
to ask. In case of the dishonest casino, if re-balancing the wheel is done very often, we may
never be able to detect which parts of the sequence correspond to a loaded wheel. In fact, we
only stand a chance if the casino is forced to keep the same wheel balance for long stretches
of spins.

Probabilistic modeling helps us to attack these problems. To solve a particular problem,
we require a training set T containing sequences properly annotated with their labels. Based
on this training set, we design and train the parameters of a generative probabilistic model.
We can imagine a generative model as a black box that upon request generates (based on
some stochastic process) a sequence and its corresponding annotation. Thus the generative
model defines a probability distribution over the space of all pairs of sequences of a given

2



length and their possible annotations.
For example, in case of the dishonest casino, we can use the following model. If the wheel

is fair at the moment, colors are generated from the fair distribution with the label “fair”.
If the wheel is loaded, colors are generated from a specific biased distribution and the label
will be “loaded”. In the training process, we can learn from the training set not only the
bias of the loaded wheel, but also how often the casino manager changes the wheel from fair
to loaded and vice versa.

When we are presented with a new unlabeled sequence, we need to decode the sequence.
In the process of decoding, we will choose labels for all observations in the sequence, based
on the probability distribution defined by the generative model. There are many definitions
of decoding, the advantages and disadvantages of which we will discuss in some length below,
but the annotation that maximizes the joint probability of the sequence and its corresponding
annotation, or the most probable annotation, is often chosen.

For example, in the dishonest casino example, we would get a sequence of spin colors
for the evening, and we would assign either the label “fair” or “loaded” to each spin to
maximize the probability of generating both the sequence and the annotation in the trained
probabilistic model.

This method yields the best results if the generative model is a true and exact represen-
tation of the process underlying the observation. However, even in such a perfect case the
results may not be perfect. Typically, though, the generative probabilistic model is merely a
good approximation of the true process, developed for the purposes of a particular decoding
algorithm. A generally accepted principle is that more faithful generative models give better
performance in decoding. That is, the more the pairs of sequences and their corresponding
annotations generated by the generative model resemble the real sequences, the better the
model’s performance will be in annotating new sequences. Even though this principle sounds
reasonable, and we generally concentrate on methods of increasing the faithfulness of the
generative models we use, we also demonstrate in Sections 3.4 and 4.1 that this principle is
not necessarily applicable in all cases.

In the rest of this section, we introduce hidden Markov models (HMMs), a family of
generative probabilistic models that are popular for annotation problems in areas such as
natural language processing, speech recognition, and bioinformatics

1.1.1 Hidden Markov Models

A hidden Markov model (HMM) is a generative probabilistic model, consisting of states and
transitions. A particular HMM defines a random process for generating strings of a pre-
specified length n, labeled with the sequence of states by which the symbols of the string
were generated.

The process starts in a start state σ. In each step, a symbol is first randomly generated
according to the emission probabilities of the current state, which we define shortly, and then
a random transition is followed to another state according to the transition probabilities of
the current state. The model finishes after n such steps. We call one instance of such
generative process a run.

3



Each state u is a Markov chain of order ou. Let eu(x1, . . . , xou
, x) be the emission probabil-

ity of generating character x in state u, provided that the previous ou symbols are x1, . . . , xou
.

In what follows, we will often use eu(s1 . . . si) or simply eu(si) instead of eu(si−ou
, . . . , si−1,

si) if we consider the emission probability in the context of a longer sequence s = s1s2 . . . sn.
Also, in special cases, such as the beginning of the sequence where it is impossible to use
Markov chains of order ou, we will automatically consider the Markov chains of appropriate
lower orders, without explicitly mentioning it.

We now define an HMM and the associated generative process formally.

Definition 1. A hidden Markov model (HMM) is a six-tuple (V, Σ, o, e, a, σ), where V is
a set of states, Σ is an alphabet, o is a function, where ov specifies the order of each state
v ∈ V , the function e : V → (Σ∗ × Σ → [0, 1]) defines emission probabilities, the function
a : V × V → [0, 1] defines transition probabilities, and σ ∈ V is the start state.

For all u ∈ V ,
∑

v∈V au,v = 1, and for all s ∈ Σ∗ and u ∈ V ,
∑

x∈Σ eu(s, x) = 1. For
all states u, the values of the emission function eu(s, x) must depend only on the last ou

characters of the string s, so that every state is an ou-th order Markov chain.

Definition 2. For a given HMM (V, Σ, o, e, a, σ), a state path π = π1 . . . πn consisting of
n states from V , and a string s = s1 . . . sn of symbols from Σ, we define the probability of
generating the sequence s by the state path π as follows:

Pr(π, s) = eπ1
(s1) ·

n∏

i=2

aπi−1,πi
· eπi

(si), (1.1)

if π1 = σ. Otherwise, Pr(π, s) = 0.

An HMM can be depicted as a graph, where states constitute vertices and positive prob-
ability transitions constitute edges. An example of such a representation of an HMM is
shown in Figure 1.1. The HMM generates sequences over the alphabet {a, c, g, t}. It has
two states, A and B, state B being the start state. The parts of the sequence generated
in state B are longer (expected length 100) and have composition bias towards the symbols
a and t. The parts of the sequence generated in state A are shorter (expected length 10)
with a bias towards g, c. The sequence composition biases are represented by the emission
probabilities, while the likelihood of changing between the two states is represented by the
transition probabilities.

1.1.2 Algorithms for Decoding Hidden Markov Models

To decode a given sequence s, we want to find the “best” annotation, or the sequence of the
states, corresponding to s. This decoding problem can be formulated in a variety of ways,
depending on which annotation is considered the “best”.

The most commonly used decoding in HMMs is finding the most probable state path.

Definition 3 (Most probable state path). The HMM defines for every state path π the
probability that the sequence s was generated by this state path Pr(π|s). The most probable

4



A

B

a: 0.2
c: 0.3
g: 0.3
t : 0.2

a: 0.3
c: 0.2
g: 0.2
t : 0.3

0.9

0.99

0.10.01

Figure 1.1: Example of a hidden Markov model. The HMM in the figure has two states,
A and B, with different sets of emission probabilities. The state B is marked as a start state
by an arrow.

state path for sequence s is the state path π that maximizes Pr(π|s). Only state paths starting
with the start state σ are considered.

This thesis focuses mostly on decoding using the most probable state path. However,
in this section we also mention other methods for decoding HMMs. Each of these methods
have some desirable and some undesirable properties. Moreover, some of the algorithms,
originally introduced in the context of decoding HMMs, will be useful later for computing
the probabilities necessary for training and decoding of HMMs that are extended in various
ways.

1.1.2.1 Computing the Most Probable State Path

The following algorithm computes the most probable state path π for a given sequence s in
a given HMM.

Theorem 4 (Viterbi algorithm, Viterbi (1967); Forney (1973)). For a given sequence
s of length n and a hidden Markov model with m states, the most probable state path can be
computed in O(nm2) time.

Proof. First observe that for any path π, Pr(π|s) = Pr(π, s)/ Pr(s). Therefore we can con-
centrate on computing the path π which maximizes Pr(π, s), since the denominator remains
constant. For a given prefix of the sequence s and the state path π, we can compute2:

Pr(π1...i, s1...i) = Pr(π1...i−1, s1...i−1) · a(πi−1, πi) · eπi
(si) (1.2)

Let P (i, v) be the probability of the most probable path through the model generating
the string s1...i and finishing in the state v. Based on equation 1.2, we have the following

2Note that here we do not consider the transition that logically belongs to the i-th step of the generative
process

5



recurrence:
P (i, v) = ev(si) · max

u∈V
P (i− 1, u) · a(u, v) (1.3)

We set the base cases P (1, σ) = eσ(s1) for the start state σ, and P (1, v) = 0 for all
the states that are not the start state. Or, if the start state is not specified uniquely, but
instead a prior distribution on initial state is given, we can set the probabilities of P (1, ∗)
accordingly.

Note that the probability of the most probable path corresponds to maxv∈V Pr(n, v). The
values of P (i, v) can be computed in order of increasing values of i by dynamic programming.
Computing each value of P (i, v) takes O(m) time, where m is the number of states of the
HMM. In addition to the values of P (i, v), we will also remember which state u maximized
the recurrence 1.3 when we computed P (i, v). In this way, we can reconstruct the most
probable state path by tracing back through the dynamic programming table.

Therefore, the most probable path can be computed in time O(nm2), where n is the
length of the sequence s, and m is the number of states of the HMM.

1.1.2.2 Posterior Decoding

While the definition of decoding using the most probable state path is very intuitive, it
sometimes does not reflect our needs. Posterior decoding, instead of computing the globally
optimal state path, concentrates on a single position in the sequence. For this position, we
try to answer a different question: what is the most likely state that could have generated
the symbol at this position?

This question cannot be simply answered by finding the most probable path using the
Viterbi algorithm. Many different state paths in the HMM can generate the same sequence
s, and for a particular position i many of them will agree on the same state. To compute
the probability of state v at a given position, we need to add the probabilities of all paths
that pass through state v at position i.

Definition 5 (Posterior state probability). The posterior probability Pr(πi = v | s) of
state v at position i of sequence s is the sum of the probabilities of all paths passing through
state v at position i:

Pr(πi = v | s) =
∑

π:πi=v

Pr(π | s) (1.4)

Note that there exists a similarity to the case of finding the probability of the most
probable path. Specifically, Pr(πi = v | s) is proportional to Pr(πi = v, s), and therefore
when computing the highest posterior probability state, we can compute the joint probability
instead of the conditional probability.

Definition 6 (Posterior decoding). In posterior decoding, we compute the highest pos-
terior probability state at each position i of the sequence s.

Sometimes, it is beneficial to use posterior decoding instead of the most probable path
decoding. Consider an example of three paths π, π′, and π′′, where π is the most probable

6



path, and π′ and π′′ are suboptimal paths with probability close to the probability of the
most probable path. Suppose that at a given position i, πi = u, while π′

i = π′′
i = v. Then the

best posterior annotation may differ from the annotation obtained using the most probable
path at position i: the posterior annotation gives state v, while the most probable state path
gives state u. State v in this case may actually be the better answer: if the parameters of
the model were to change only a little, one of the paths π′ and π′′ might easily become the
highest probability path.

On the other hand, if we look at the posterior annotation as a sequence of states, it
is often a composition of unrelated high probability annotations. There is nothing in the
definition to enforce dependencies between consecutive positions. If the posterior annotation
has state u at position i and state v at position i + 1, it is possible that the transition (u, v)
has very low probability tu,v or even does not exist at all in the HMM. Thus, the posterior
annotation π may have very small (or even zero) probability of having generated s. The
posterior annotation is a good decoding method if we are interested in local properties of the
annotation, but fails if we are interested in globally optimal solutions (such as annotations
of structural elements of DNA or protein sequences).

To compute the posterior probability, Pr(πi = v | s), of state v at position i of the sequence
s, we observe that the probability can be decomposed as follows:

Pr(πi = v | s) =
∑

w∈V

Fi(v, s) · tv,w · Bi+1(w, s)

Pr(s)
, (1.5)

where Fi(v, s) = Pr(πi = v, s1 . . . si), the probability of generating first i symbols and ending
in the state v, is called the forward probability of state v at position i, and Bi+1(w, s) =
Pr(πi+1 = w, si+1 . . . sn), the probability of starting in state w and generating sequence
si+1 . . . sn, is called the backward probability of state w at position i + 1.

Theorem 7 (Forward algorithm, Baum and Eagon (1967)). All forward probabilities
for a given sequence s and a given hidden Markov model can be computed in O(nm2) time.

Proof. Using equation 1.2, we can derive the following recurrence relation between values of
Fi(∗, s) and Fi−1(∗, s).

Fi(v, s) =
∑

w∈V

Fi−1(w, s) · tw,v · ev(si), (1.6)

where we define F1(σ, s) = ev(s1) for the start state σ, and F1(v, s) = 0 for all other states.
Therefore the values of F can be computed by dynamic programming, progressing in order
of increasing values of i, in O(nm2) time.

The similar backward algorithm, progressing right-to-left instead of left-to-right computes
all backward probability values in time O(nm2). Using Formula 1.5 and the results of the
forward and backward algorithms, we can compute the posterior probabilities of all states
at all positions of the sequence s in O(nm2) time.3

3Technically, the forward-backward algorithm computes only the joint probability Pr(πi = v, s). However,

7



1.1.2.3 Combining Viterbi and Posterior Decoding

We can overcome some of the disadvantages of posterior decoding by adding a post-processing
step. We first compute all posterior state probabilities, using the forward-backward algo-
rithm. In the post-processing step, we are restricted to the paths that are consistent with the
HMM topology (thus using only transitions present in the HMM topology are used), and we
then find the path that maximizes either the sum (Kall et al., 2005) or the product (Fariselli
et al., 2005) of the the posterior state probabilities. This is done by a dynamic programming
algorithm similar to the Viterbi algorithm in time O(nm2).

These objective functions are based on interpreting the posterior probabilities as a po-
sitionally independent error measure. In the case of sums, we are trying to minimize the
number of incorrectly predicted states, while in the case of products, we are trying to maxi-
mize the probability of a completely correct prediction.

1.1.3 Training Hidden Markov Models

The only step remaining in our scheme for designing an HMM for the annotation problem
is estimating the parameters to create as faithful a model as possible. The most common
approach to the problem can be defined formally as follows. We are given a training set T ,
and we want to find an HMM that maximizes the likelihood (probability) of generating the
training set, subject to constraints on model topology. This process is usually split into two
steps.

First, we choose the model topology : the directed graph consisting of the states of the
HMM and the transitions between the states that have non-zero probability. In this step,
we can apply in a very intuitive way any prior knowledge we may have about the particular
problem. In fact, the most successful HMMs typically have a manually created topology.

Second, given the model topology, we estimate the emission and transition probabilities
of the model to maximize the probability of generating the training set T .

These steps can be combined together if we choose a complete graph as the model topol-
ogy. However, such a model often contains too many parameters to train accurately. For
this reason, choosing the right topology is a very important step in the design of successful
HMMs.

There are two potential scenarios under which we may need to train the HMM, depending
on the composition of the training set T . If the training set T contains sequences together
with their annotations (where the structure of the HMM allows an easy mapping of each
sequence to its path through the HMM), a simpler scenario of supervised training can be
applied. However, if there is no annotation, or only a partial annotation is available for the
sequences in the training set T , we need to apply unsupervised training algorithms. Super-
vised training is the most common scenario connected to sequence annotation. However, we
review both scenarios for completeness.

the posterior probability Pr(πi = v|s) = Pr(πi = v, s)/ Pr(s), and Pr(s) can be easily obtained as a side
product of the forward algorithm.

8



1.1.3.1 Supervised Training

This method is applied if we can determine the target path (sequence of states) through the
model for each sequence in the training set. This is the case, for example, if the annotation
is known for each sequence in the training set, and there is a one-to-one correspondence
between such an annotation and the state paths in the HMM.

In this case, it is sufficient to count the frequency of using each transition and emission
to estimate the model parameters that maximize the likelihood of the training data (Durbin
et al., 1998, Chapter 11.3). In particular, we estimate the transition probability from state
u to state v as:

au,v =
Au,v

∑

v′∈V

Au,v′

, (1.7)

where Au,v is the number of transitions from state u to v in the training set. Similarly, the
emission probabilities are estimated as:

eu(y, x) =
Eu(y, x)

∑

x′∈Σ

Eu(y, x′)
, (1.8)

where Eu(y, x) is the number of emissions of symbol x in state u in the training set, immedi-
ately preceded by emission of the sequence y. We need to determine eu(y, x) independently
for all possible strings y that are ou or fewer symbols long, because in special cases (such as
at the beginning of the sequence) we may need to use a Markov chain of lower order than ou.

The closed formula correspondence between simple statistics of the training set T and
the parameters of the HMM is a very attractive property of the supervised training scenario.
If one-to-one correspondence between the labels of the sequence and the states of the HMM
cannot be established, we can use a variety of computational means (such as computational
prediction tools and heuristics) to complete the annotation. Still, such treatment of the data
is often preferable to the unsupervised training described below.

1.1.3.2 Unsupervised Training

If the sequences in the training set T are not annotated, we need to apply more complex
methods for training. The task is, as in the supervised case, to find the parameters of
the HMM with a given topology that maximize the likelihood of the training set. Some
modifications of the problem have been shown to be NP-hard (Abe and Warmuth, 1992;
Gillman and Sipser, 1994), while for special cases there exist polynomial-time algorithms
(Freund and Ron, 1995).

There is, however, no general exact algorithm known for solving this unsupervised train-
ing problem efficiently. The method most commonly used, the Baum-Welch algorithm
(Baum, 1972), is an iterative heuristic and can be considered a special case of the general

9



EM algorithm for learning maximum likelihood models from incomplete data sets (Dempster
et al., 1977).

The Baum-Welch algorithm starts from an initial set of model parameters θ0. In each
iteration, it changes the parameters as follows:

1. Calculate the expected number of times each transition and emission is used to generate
the training set T in an HMM whose parameters are θk.

2. Use the frequencies obtained in step 1 to re-estimate the parameters of the model,
resulting in a new set of parameters, θk+1.

The first step of the algorithm can be viewed as creating a new annotated training set
T (k), where for each unannotated sequence s ∈ T , we add every possible pair (s, π) of the
sequence s and any state path, weighted by the probability Pr(π | s, θk) of the path π in the
model with parameters θk. The second step then estimates new parameters θk+1, as in the
supervised scenario based on the new training set T (k). This algorithm takes exponential
running time in each iteration, while the Baum-Welch algorithm achieves the same result
in O(nm2) time per iteration, using the forward and backward algorithms. Details can be
found, for example, in Durbin et al. (1998, Chapter 3.3).

Theorem 8 (Baum (1972)). An iteration of the Baum-Welch algorithm never worsens
the model parameters. More formally, for any k,

Pr(T | θk+1) ≥ Pr(T | θk) (1.9)

The above theorem does not guarantee that the Baum-Welch algorithm reaches optimal
model parameters. In fact, this is often not true: the Baum-Welch algorithm may reach a
local maximum or a saddle point in the parameter space (Dempster et al., 1977). Moreover,
it is not clear how one would estimate the number of iterations needed to reach such a local
maximum. In practice, the Baum-Welch algorithm performs well in some cases and very
badly in other cases (Freund and Ron, 1995), with its performance often depending on the
choice of initial parameters θ0.

A modification of the Baum-Welch algorithm, called Viterbi training, is often also used in
practice. In the first step of the algorithm, instead of considering all possible paths through
the model, we only consider the most probable path. However, there is no clear optimization
formulation behind this algorithm, and it is not even guaranteed to improve the parameters
in each step (Durbin et al., 1998, Chapter 3.3).

The Baum-Welch algorithm can also be used in the semi-supervised scenario. For
example, the annotation for some sequences in T may be missing, or we may decide to use a
complex HMM that has richer structure than the available sequence annotation, and thus it
is not possible to assign a single path through the model to each annotation. In such case,
we modify step 1 of the algorithm again to include only paths that agree with such partial
annotations.

10



1.1.3.3 Beyond Maximum Likelihood

In the previous section, we introduced algorithms for training HMMs by maximizing the
likelihood of the training set. If we denote T = (s, a), where s are the sequences, and a are
their annotations, then the maximum likelihood method (ML) learns the model parameters
that maximize the joint probability Pr(s, a).

A common criticism of the ML approach in the machine learning literature is that it
maximizes the wrong objective (see for example Krogh (1997)). Our goal in the decoding
algorithm is to retrieve the annotation a that maximizes Pr(a|s), sequence s being fixed.
Therefore, instead of maximizing the joint probability during the training, we should con-
centrate on maximizing conditional probability Pr(a|s), since the probability of the sequence
itself is fixed in the decoding phase, and therefore it does not matter whether this probabil-
ity is low or high. This optimization criterion is known as conditional maximum likelihood
(CML).

In context of hidden Markov models, CML was used in applications in bioinformatics
(Krogh, 1997) and natural language processing (Klein and Manning, 2002). Even if the
sequences in both of these applications are annotated, there is no known closed formula or
EM algorithm that would estimate the parameters of the model to optimize the conditional
maximum likelihood. Instead, numerical gradient descent methods are used to achieve local
maximum. In these studies, slight (Klein and Manning, 2002) to significant (Krogh, 1997)
improvement was observed compared to models trained by ML.

Theoretical analysis is available in context of the simpler classification problem, where
similar dichotomy occurs between naive Bayes classifier (ML) and logistic regression (CML).
In this context, Ng and Jordan (2002) have shown that even though using CML gives asymp-
totically lower error, ML requires significantly smaller number of training samples to con-
verge to the best model: it requires only a logarithmic number of samples with respect to
the number of parameters, compared to the linear number of samples for CML. Thus ML is
appropriate if only a small number of samples is available, while it is better to use CML if
the training set is large. It is not known whether these results extend to the case of more
complex models, such as HMMs. Also, an interesting question is: if the amount of available
data increases, is it better to switch from ML to CML or to increase the number of the model
parameters? A larger family of models may potentially allow the choice of a model that is
closer to reality, decreasing both training and testing error.

One major disadvantage of HMMs optimized for CML is that it is hard to interpret the
resulting emission and transition probabilities. The generative process associated with the
HMM no longer generates sequences that look like sequences from the training set. The
probabilities no longer represent frequencies observed directly in the sequence, which makes
it hard to incorporate prior knowledge about the problem into the probabilistic model by
applying restrictions on parameters of the model, or by creating a custom model topology.

Consider, for example, the HMM in Figure 1.2. Such a model can be used to model
amino acid sequences of transmembrane proteins. Transmembrane proteins are composed
of parts located inside of the cell (represented by state A), outside of the cell (represented
by state C), and the parts crossing the cell membrane (represented by states B and D). It

11



A

D

C

B

Figure 1.2: A simple HMM topology for transmembrane protein topology predic-
tion. State A represents the parts of the protein located inside the cell, state D represents
parts located outside the cell, and states B and D represent the parts crossing the cell mem-
brane. In an ML model, states B and D would share the same set of emission probabilities.

may be reasonable to assume that since the sequences corresponding to states B and D are
localized in the same part of the cell, and serve the same function (membrane transition),
that in an ML model, both states should share the same emission probabilities. Based on
this assumption, we can reduce the number of parameters (and thus the number of sequences
required for training) by tying those parameters together. On the other hand, since in CML
method the emission probabilities are set to maximize the conditional probability of the
annotation given the sequence, rather than likelihood of the sequence, it is not clear that the
emission probabilities in states B and D should be similar, even if the sequences attributed
to these states are similar.

For another example, consider the smoke detector. A model of its readings would typically
have two states, one representing normal readings, the other representing readings in case
of fire. Potentially, we may also consider including a state representing readings at times
when dinner is cooked (which are perhaps consistently higher than normal readings, for short
periods of time). Adding such a new state into our model, representing dinner-time readings,
could help to increase the likelihood in case of ML training. However, it is not clear that
the same improvement would happen in CML, since raising the likelihood of the sequences
is no longer the objective.

The above examples illustrate that in case of CML training, it is not clear whether com-
mon methods for incorporating background knowledge into HMM design (such as extending
model topology or parameter tying) are still relevant or beneficial.4

4Conditional random fields (Lafferty et al., 2001) further continue in the direction of CML training,
abandoning the probabilistic interpretation of emission and transition probabilities, replacing them with

12



Recent extensions abolish the probabilistic interpretation of HMMs altogether. Instead,
they consider the following problem directly: set the parameters of the model (without
normalization restrictions) so that the model discriminates well between correct and incorrect
annotations. Such models (hidden Markov support vector machines (Altun et al., 2003),
convex hidden Markov models (Xu et al., 2005)) are inspired by maximum margin training
and kernel methods in support vector machines (Boser et al., 1992), a successful method for
the classification problem.

1.2 Introduction to Gene Finding

A significant amount of resources is spent every year on DNA sequencing projects. The
year 2001 saw the publication of the human genome project from both public (International
Human Genome Sequencing Consortium, 2001) and private (Venter et al., 2001) initiatives.
This was closely followed by the mouse genome (Mouse Genome Sequencing Consortium,
2002), and recently the rat (Rat Genome Sequencing Project Consortium, 2004), the chicken
(International Chicken Genome Sequencing Consortium, 2004), and the chimpanzee genomes
(Chimpanzee Sequencing and Analysis Consortium, 2005). According to the Genomes Online
Database (Bernal et al., 2001), as of July 2005 there are close to 500 genome projects of
eukaryotic organisms5 in progress worldwide.

The main output of these genome projects are DNA sequences of a wide variety of
organisms. DNA sequences can be viewed as long strings of nucleotides or bases—symbols
from the alphabet {A, C, G, T}, encoding the biological information defining the organism.
The length of the DNA sequence is specified by the number of bases, often referring to 103

bases as a kilobase (KB), 106 bases as a megabase (MB), and to 109 bases as a gigabases (GB).
The DNA sequence is a template for protein sythesis. Proteins are macromolecules that

are essential to practically every function of a living cell. Thus, DNA sequences by themselves
give us the information that is contained in living cells, but further understanding and
analysis of this information is required in order to understand how living cells function.

The basics of the process by which proteins are synthesized in eukaryotic organisms are
moderately well understood, and are described by the central dogma of molecular biology,
illustrated in Figure 1.3. For each protein, there is a section of the DNA sequence called its
gene that serves as a template for the synthesis of that protein. The gene is located on the
DNA by the cell machinery and is transcribed into primary mRNA. RNA is a molecule very
similar to DNA in structure, and for simplicity, we will envision the process of transcription
as creating a simple copy of a subinterval of the DNA sequence.

In the mRNA maturation process, non-coding parts of the gene (introns) are removed by
splicing. The remaining parts, called exons, are joined together in the original order as they
appeared in the DNA sequence. The resulting sequence is then translated into a protein.

undirected potentials that do not need to be normalized to 1.
5 Eukaryotic organisms are organisms with complex cells, where genetic material is organized in the

nucleus and surrounded by a nuclear membrane. They include animals, plants, and fungi, but do not include
simpler prokaryotes, such as bacteria.

13



� � � � �� � � �
exon1

downstream

intron1promoter exon2 intron2 exon3

upstream gt ag gt ag
DNA:

transcription

exon1 intron1 intron2 exon3
primary RNA:

exon2

RNA splicing

mature RNA:

protein:

translation

exon2 exon3exon1

untranslateduntranslated

Figure 1.3: Central dogma of molecular biology

T G G T T T G G C T C A
︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸

W F G S

mRNA:

protein:

Figure 1.4: Translating nucleotide sequences to protein sequences

Proteins can also be seen as strings of simpler units, amino acids. We denote each amino
acid by a symbol from a 20-letter alphabet. The nucleotides in the mRNA sequence are
translated into amino acids of the protein sequence according to the genetic code (see Table
1.1). Except for short untranslated regions at the beginning and end of the gene, every
triplet of nucleotides (called a codon) encodes a single amino acid (as illustrated in Figure
1.4). Consecutive codons of the mRNA encode consecutive amino acids of the protein.

It is important to know where the translated sequence begins. If we shift the codon
locations by one or two positions, these will result in a completely different protein. We refer
to the first nucleotide of a codon as being in frame 0, the second as being in frame 1, and
the third as being in frame 2. If the first nucleotide of a triplet is in frame 0, we call the
triplet an in frame codon. Every translated sequence starts with the codon ATG, encoding
the amino acid methionine (M), and translation always stops upon encountering one of the
stop codons, TAA, TGA, or TAG.

Figure 1.3 depicts a single gene of the genome. The genome itself is composed of sev-
eral chromosomes. Many genes are located on each chromosome, corresponding to oriented
subintervals of the chromosome. The subintervals need to be oriented, since the genes are
sometimes on the forward strand (in direction from left to right), and sometimes on the
reverse strand (in direction from right to left).

Without knowing where genes, exons, and introns are located in the DNA sequence, we

14



TTT → F TTC → F TTA → L TTG → L

TCT → S TCC → S TCA → S TCG → S

TAT → Y TAC → Y TAA → * TAG → *

TGT → C TGC → C TGA → * TGG → W

CTT → L CTC → L CTA → L CTG → L

CCT → P CCC → P CCA → P CCG → P

CAT → H CAC → H CAA → Q CAG → Q

CGT → R CGC → R CGA → R CGG → R

ATT → I ATC → I ATA → I ATG → M

ACT → T ACC → T ACA → T ACG → T

AAT → N AAC → N AAA → K AAG → K

AGT → S AGC → S AGA → R AGG → R

GTT → V GTC → V GTA → V GTG → V

GCT → A GCC → A GCA → A GCG → A

GAT → D GAC → D GAA → E GAG → E

GGT → G GGC → G GGA → G GGG → G

Table 1.1: Standard genetic code

do not know the proteins that are produced by the organism. Only partial information about
location of genes and about the proteins directly can be acquired by experimental means.
Locating these elements in a DNA sequence by computational means is called gene finding.
Gene finding is a crucial step in the analysis of a genome. More formally, the problem can
be defined as follows.

Definition 9 (Gene finding problem). For a given DNA sequence (a string of symbols
over the four letter alphabet {A, C, G, T}), assign to each symbol in the sequence one of
the following labels: intergenic region (non-coding sequence located between genes), exon on
forward strand or exon on reverse strand (coding sequence), intron on forward strand or
intron on reverse strand (non-coding sequence located within genes that is removed during
splicing).6

Gene finding methods that only use the information contained in the analyzed DNA
sequence itself are called ab initio methods. This thesis specifically focuses on ab initio
gene finding. There are methods to incorporate additional information, not present in the
DNA sequence, into gene finding. Such sources of information include similarities to the
DNA sequence of other genomes, experimental evidence, or similarity to known proteins and
expressed RNA sequences. We will briefly discuss these approaches in Section 1.2.3.

The gene finding problem presents many challenges. First, the problem is not defined as
an exact optimization problem. As in many problems from computational biology, the prob-

6Some parts of the mature mRNA at the beginning and at the end of the sequence are not translated.
These are called untranslated regions (or UTRs). For the purpose of this thesis, we will count these regions
as intergenic regions.

15



lem can be formulated as several different optimization problems, each yielding potentially
different solution. Thus the ultimate goal is not only to design efficient algorithms that solve
a particular optimization problem, but also find an optimization formulation of the problem
that corresponds well to underlying biological principles and at the same time can be solved
reasonably efficiently.

Genes themselves are not mere intervals in the DNA sequence, but they also have complex
internal intron-exon structure. Since our goal in gene finding is to predict the proteins
produced by a particular organism, it is important that the whole structure of the gene is
predicted accurately. Very small mistakes can result in practically useless predictions. For
example, if boundary of an exon is shifted by a single position, the codon boundaries will
shift, resulting in a completely different predicted amino acid sequence.

Another complication is that in spite of their importance, protein coding genes constitute
only a small portion of many eukaryotic genomes. From the entire human genome length of
approx. 3.7 GB, the estimated 20 000 to 25 000 genes cover only about 2% of the genome
(International Human Genome Sequencing Consortium, 2004). This means that many ma-
chine learning techniques, which often assume that data sets contain approximately the same
number of positive and negative samples, will over-predict genes in the human genome.

DNA sequences are generally long. Ideally, we would like gene finding algorithms to
process whole chromosomes. In the human genome, chromosomes vary in length from 46 MB
(chromosome 21) to 245 MB (chromosome 1). Even if we could separate the sequences
corresponding to single genes, such sequences still can span hundreds of kilobases. With
such a long sequences, it is important that the algorithms used for gene finding are efficient
(ideally, linear) in both time and space.

Data sets of known genes are all based on indirect information. For some genes, evidence
of their existence and their structure is solid, while for other genes the evidence is only
circumstantial. It is generally impossible to verify experimentally that a given structure
is not translated into a protein. This causes numerous problems in assembling adequate
training sets and in the evaluation of gene finding methods.

Finally, in Figure 1.3, and in the problem definition, we assumed that a particular interval
of the DNA sequence translates only into a single protein. This is often not the case. Different
genes can overlap, and some genes can yield several proteins by alternative splicing : including
or excluding some of the exons, shifting exon boundaries, etc. In this thesis, we ignore the
problem of alternative splicing and overlapping genes—the problem remains open in the
context of ab initio gene finding and is yet to be tackled by the gene finding community.

In the rest of this section, we give an introduction into common aspects of gene finding.
First, we give a more detailed overview of the statistical properties of DNA sequences that
are commonly used in gene finding. Next, we summarize the techniques that have been
previously used for gene finding. We mention common measures for evaluating the accuracy
of gene finders, and touch on the availability of experimental evidence for protein coding
genes. Finally, in Section 1.3, we describe the use of hidden Markov models for gene finding
in more detail.

16



1.2.1 Statistical Properties of Genes in DNA Sequences

There are two main sources of information upon which one relies when designing an algorithm
for gene finding. First, the coding parts of the sequence (or exons) have distinctly different
composition than the non-coding parts (so called k-mer composition). Second, the sequence
is conserved around certain functional sites, such as the boundaries of exons. However,
neither the difference in composition nor detection of signals is strong enough to allow reliable
gene finding by itself (Lim and Burge, 2001). To design a successful gene finder, these sources
of information must be combined.

In the following text, the 5’ end denotes the start of the gene, while 3’ end denotes the
end of the gene. If the DNA sequence is displayed from left (its 5’ end) to right (its 3’ end),
the genes on the forward strand have their 5’ end on the left side, while the genes on the
reverse strand have their 5’ end on the right.

Consider a sequence window relative to the boundary of two regions, such as boundaries
between the end of an exon and the beginning of an intron (called donor splice sites) or
boundaries between the end of an intron and beginning of an exon (called acceptor splice
sites). See Figure 1.5 for the illustration. We will often refer to such windows as intervals
[x, y]. If x is a negative number, it means a relative position on the 5’ side of the boundary,
while if it is a positive number, it means a relative position on the 3’ side. No position is
marked as zero. For example, the interval [−6, +3] relative to the donor site represents a
window of nine nucleotides, six of them within the exon located on the 5’ side of the donor
site, and three of them within the intron located on the 3’ side of the donor site.

1.2.1.1 Differences in k-mer Composition

Table 1.2 shows a comparison of the 3-mer composition in sequence elements that play a role
in gene finding. We used annotated and masked sequence of half of human chromosome 22
(details of the data set can be found in Appendix A) and counted the frequencies of over-
lapping 3-mers occurring in each of these sequence elements: introns, exons, and intergenic
regions. These frequencies were then compared using Pearson’s correlation coefficient.

We can see that the 3-mer composition of exons does not correlate well with intronic
or intergenic sequences, but that there is a high correlation between introns and intergenic
regions. That suggests that coding sequences have significantly different composition from
non-coding sequences. This is because coding sequences carry protein content information,
while non-coding sequences are often considered to be mostly random sequences.

Comparing introns on the forward strand and introns on the reverse strand, one would
expect the correlation to be close to one. However, the table shows that introns contain
some information about their direction. It is also interesting that the average between the
two directional intron distributions show high correlation with intergenic regions. This fact
can be used when training a gene finder from annotated single-gene sequences, since in such
a case, only a limited amount of intergenic sequence is available.

Interesting observations can also be made for untranslated regions, the regions that are
transcribed, but not translated into proteins. Such a region on the 5’ end of the gene is called

17



exon intergenic intron intron intron 5’UTR 3’UTR
(forward) (average) (reverse)

exon 1.00 0.57 0.42 0.46 0.49 0.84 0.92
intergenic 0.57 1.00 0.97 0.99 0.97 0.33 0.71
intron fwd. 0.42 0.97 1.00 0.97 0.90 0.24 0.57
intron avg. 0.46 0.99 0.97 1.00 0.97 0.22 0.61
intron rev. 0.49 0.97 0.90 0.97 1.00 0.19 0.61
5’UTR 0.84 0.33 0.24 0.22 0.19 1.00 0.85
3’UTR 0.92 0.71 0.57 0.61 0.61 0.85 1.00

Table 1.2: Correlation of 3-mer composition of sequence elements in gene finding

promoter
signals

start of
transcription

start of
translation

donor
site

branch
site

acceptor
site

translation
stop

AATAAA
box

polyA add.
site

Intergenic
Intron
Exon (coding region)

Figure 1.5: Summary of biological signals important for gene finding

a 5’ UTR, and on the 3’ end of the gene it is called a 3’ UTR. UTRs are not annotated
in our data set, so we made our observations in the region [−75,−10] before the start of
the coding sequence for 5’ UTRs, and in the region [+10, +75] after the end of the coding
sequence for 3’ UTRs. The composition of these regions seems to be much more similar to
the coding exons than to the introns or intergenic regions (showing especially low similarity
in case of 5’ UTRs). Even though the differences seem to be even more pronounced than
between exons and introns, we were not able to successfully exploit this observation in our
gene finder.

1.2.1.2 Conserved Signal Sequences

Figure 1.5 summarizes the most common biological signals important for gene finding. Bio-
logical signals occur at the boundaries of sequence elements, as well as within them. Signal
sequences are conserved because they are used by cell transcription, splicing, and translation
machinery.

For example, three main functional elements are present inside introns: branch point,
donor site (or 5’ splice site) and acceptor site (or 3’ splice site). During splicing, the donor

18



AG G

AG G

upstream downstream
GUAAGU UAUAAC Y(n)NCAG

branch site

exon2exon1
precursor:

products:

UAUAAC Y(n)NCAG−OH

lariat
Intron 

exon1 exon2

RNA splicing

5’ (donor) splice site 3’ (acceptor) splice site

Figure 1.6: Splicing mechanism. Adapted from Gilbert (1997).

site separates from the neighboring exon and attaches to the branch site, located in the
intron sequence near the acceptor site; the cut end of the introns sequence thereby becomes
covalently linked to the branch site A nucleotide as shown in Figure 1.6. After this the two
exons separated by this intron are joined together.

From our point of view, signals are short windows of the sequence around a particular
functional site. Within this window, we will observe an unusually conserved distribution
of nucleotide bases at each of the positions. Common properties of the signals are often
displayed by sequence logos (Schneider and Stephens, 1990). For each position in the window
corresponding to the signal, the sequence logo displays a stack of nucleotides. The nucleotides
are ordered from top to bottom by their relative frequency, and their sizes correspond to
the relative frequency of characters. The height of each stack represents the “importance”
of each of the position. Positions for which the distribution of nucleotides is uniform do not
help identifying signals, while positions where the conservation is perfect help the most. This
can be measured by number of bits of information, 2 − H(x), where H(x) is the Shannon
entropy of the distribution of nucleotides at each position (Shannon, 1948). The logos in
this section were created by the program WebLogo (Crooks et al., 2004), using the sequence
annotation of half of human chromosome 22.

Figure 1.7 shows the logo of the donor splice site signal for the window [−3, +6] (three
nucleotides before the exon/intron boundary and six nucleotides after the boundary). The
strongest signal is supplied by the consensus GT at the exon/intron boundary, with strong
conservation at positions −2, −1, +3, +4, and +5. Similarly, acceptor sites (Figure 1.8)
show the consensus sequence AG at the intron/exon boundary, but conservation is much
weaker at the other positions within the window, with significant conservation observed only
at position −3.7 The acceptor signal is therefore very weak. It can be supplemented by the
observation that introns tend to contain a pyrimidine (CT) rich tail towards the 3’ end, as
shown in Figure 1.9.

7We only considered so called canonical splice sites displaying the consensus GT/AG at intron/exon
boundaries. Splice sites that do not follow this consensus exist, but they are uncommon (less than 2% of all
splice sites).

19



weblogo.berkeley.edu

0

1

2

b
it

s

5′ -3
G

A

C

-2

C

G

T

A

-1

C

T

A

G

+1

G

+2

T

+3

C

G
A

+4

T

C

G

A

+5

A

T

C

G

+6

C

G

T

3′

Figure 1.7: Logo of 5’ (donor) splice site

weblogo.berkeley.edu

0

1

2

b
it

s

5′ -4 -3

A

T
C

-2

A
-1

G
+1

T

C

A

G

+2

T

+3 3′

Figure 1.8: Logo of 3’ (acceptor) splice site

Finally, we also show logos for the start site (window [−9, +4], Figure 1.10), and for the
stop site (window [−6, +9], Figure 1.11). Note that a coding sequence always starts with
the start codon ATG. The logo of the stop site does not show all the information about the
signal, in that the coding sequence always ends with one of the three possible stop codons:
TAA, TGA, or TAG. The three stop codons will never occur inside the coding sequence in
the coding frame.

The other signals mentioned in this section, the promoter, start of transcription, branch
site, AATAAA box, and polyA site, are used in gene finding only infrequently. Since they are
not associated with the boundary of an intron or exon, it is complicated to incorporate them
into a gene finder. Another problem with their use is that they are not usually annotated,
so it is hard to obtain a significant sample for training probabilistic models of these signals,
especially for newly sequenced organisms.

1.2.2 Previous Work: Programs for Ab Initio Gene Finding

In general, programs for computational gene prediction from DNA sequences can be di-
vided into two large groups (Stormo, 2000; Solovyev, 2002): dynamic programming, and
probabilistic modeling. In this section we give a short overview of these two approaches.

20



weblogo.berkeley.edu

0

1

2

b
it

s

5′ -2
0

C

T

-1
9

C

T

-1
8

G

C

T

-1
7

G

C

T

-1
6

G

C

T

-1
5

A

G

C
T

-1
4

A

G

C

T

-1
3

A

G

C
T

-1
2

G

C
T

-1
1

A

G

C
T

-1
0

G

C

T

-9

A

G

C
T

-8

A

G

T
C

-7

A

G

T
C

-6

A

G

T
C

-5

A

G

C
T

3′

Figure 1.9: Logo of region [−20,−5] before the acceptor splice site

weblogo.berkeley.edu

0

1

2

b
it

s

5′ -9

A

T

C

G

-8

A

T

G

C

-7 -6

T

C

G

-5

T

G

C

-4

A

G

C

-3

C

G
A

-2

T

G

A

C

-1

T

A

G

C

+1
A
+2

T
+3

G
+4

T

C

A

G

3′

Figure 1.10: Logo of translation start signal

weblogo.berkeley.edu

0

1

2

b
it

s

5′ -6 -5 -4

T

A

G

C

-3

T

-2

G
A

-1

G
A

+1 +2 +3 +4

T

G

C

+5 +6 +7 +8 +9 3′

Figure 1.11: Logo of translation stop signal

21



1.2.2.1 Dynamic Programming

Dynamic programming methods are variations of the following general approach. First, they
create a set of candidate exons. These candidates are scored based on their composition and
surrounding signals. Then, from all biologically meaningful combinations, the best scoring
combination is selected using dynamic programming.

In general, the number of potential exons may be quadratic in the length of the sequence.
This may prevent dynamic programming algorithms from running in reasonable time. How-
ever, Burge (1997) has shown experimentally that if we apply reasonable filtering conditions,
such as enforcing the presence of GT/AG consensus strings at the boundaries of candidate
exons, and the rule that there are no in-frame stop codons, in real sequences the number of
candidate exons grows roughly linearly with the length of the sequence.

Examples of such systems are GRAIL (Xu et al., 1994), FGENEH (Solovyev et al., 1995),
geneid (Guigó, 1998), and recently DAGGER (Chuang and Roth, 2001). A major problem
with these approaches is their use of ad hoc scoring schemes with many components whose
interaction is not clearly defined. On the other hand, it is relatively easy to extend these
methods when new sources of information become available.

1.2.2.2 Probabilistic Modeling

Probabilistic modeling methods formulate the problem of gene finding as the sequence an-
notation problem, as described earlier in this chapter. The commonly used probabilistic
models are hidden Markov models, with a variety of topology restrictions to encode back-
ground knowledge about structure of the genes. We train these probabilistic models on a
training set, and to find genes in the new sequences, we use standard decoding algorithms,
such as the Viterbi algorithm. These models mostly differ in the topology of their underlying
probabilistic models, and sometimes in their training and decoding methods.

The best known gene finder based on hidden Markov models is Genscan (Burge, 1997;
Burge and Karlin, 1997). The Genscan model includes the basic intron/exon structure of
genes (including sophisticated models of splice sites), simple single state models of 5’ and
3’ UTRs, and a simple model for intergenic regions. Genscan model also includes explicit
length distribution models for exons, using generalized HMMs. Genes on both strands are
modeled within the same model. The model is trained using maximum likelihood, and the
decoding algorithm is the Viterbi algorithm.

The recently developed gene finding program Augustus by Stanke and Waack (2003) uses
a model very similar to that of Genscan. Augustus, compared to Genscan, does not model
UTRs, since these are not well annotated in available training sets. The authors also change
the model used for introns to model length distributions more accurately, and they alter
some of the signal models. Augustus and Genscan are the closest models in literature to our
newly developed gene finder, ExonHunter. We describe differences and similarities of these
three programs in more detail in Chapter 5.

Fgenesh (Salamov and Solovyev, 2000) uses a model very similar to Genscan. However,
the influence of signals on prediction is artificially boosted, which is claimed to improve the

22



performance. The details are not documented in the authors’ work.

HMM-gene by Krogh (1997) uses conditional maximum likelihood training, instead of
maximum likelihood training. Krogh also devises a simple heuristic method for decoding to
address some of the problems that we explore in Section 4. We cannot compare the model
itself to that of Genscan or Augustus, since it is not documented in the literature.

Genie (Kulp et al., 1996; Reese et al., 2000) models exons, introns, and signals each
by a single state in an HMM. However, each state can emit an arbitrarily long section of
sequence. This is an instance of generalized HMMs, which are presented in Section 3.1. The
states themselves use a variety of other models (for example, neural networks are used for
the signals). The decoding algorithm first builds a graph representing all possible parses of
the sequences, and this graph is then searched for the most probable annotation using the
Viterbi algorithm.

GeneMark.hmm (Besemer and Borodovsky, 2005) is a hidden Markov model based gene
finder, originally designed for the simpler problem of gene finding in prokaryotes, and later
extended to eukaryotic genomes. Genezilla (formerly known as TIGRscan (Majoros et al.,
2004)) is an open source software project of an HMM-based gene finder that is focusing
on overcoming various software engineering challenges in building a high-performance gene
finder. The authors modified traditionally used decoding algorithms to speed up sequence
analysis in practice.

1.2.3 Beyond Ab Initio Gene Finding

In this section we briefly mention some of the programs that use other sources of information,
in addition to the information contained in the DNA sequence, to improve gene prediction.

The DNA sequences of genomes are related by the process of evolution. Genomic
sequence undergoes gradual changes over long periods of time, and natural selection favours
the changes that are either advantageous or neutral. Naturally, the parts of the sequence
that do not have any function often mutate more rapidly than the functional parts, since a
random mutation in the functional gene may have large (often undesired) effects.

A special class of gene finders, comparative gene finders, use similarities of related genomes
to their advantage. Because coding regions should be more conserved, comparison of human
DNA sequence to that of mouse, chicken, or chimpanzee reveals higher levels of conservation
in coding regions compared to non-coding regions. Examples of comparative gene finders
include Twinscan (Korf et al., 2001), ExoniPhy (Siepel and Haussler, 2004), and N-SCAN
(Gross and Brent, 2005). These gene finders extend regular HMMs for gene finding by
introducing more complex alphabets that incorporate the alignment information between
analyzed DNA sequence and sequences from other genomes. The emission probabilities for
these alphabets take into account the evolutionary relationship of the genomes. Some com-
parative gene finders introduce innovations that might be useful in ab initio gene finding.
For example, the authors of N-SCAN introduced perhaps the first realistic model of 5’ UTR
in their model (Brown et al., 2005), but the effect of this modification on ab initio gene
finding was not evaluated separately.

23



Other sequence elements related to gene finding were explored separately from general
gene finding problem. Ohler et al. (2001) developed a hidden Markov model for recognition
of promoters and transcription start sites as a separate program McPromoter. Hajarnavis
et al. (2004) developed a probabilistic model of the polyA signal and of the composition of
3’ UTRs. Incorporation of such additions to an ab initio gene finder might improve accuracy,
especially on long sequences.

Complex systems for introducing various sources of additional information into HMM
based gene finding have been introduced (see, for example, GenomeScan (Yeh et al., 2001),
Augustus++ (Stanke et al., 2005), and our own extension of ExonHunter (Brejová et al.,
2005)). However, the architecture and evaluation of these systems are beyond the scope of
this thesis.

1.2.4 Evaluation Measures

Because we are interested in studying how genes are translated into proteins, we need mea-
sures that evaluate complex gene structures, rather than just simple labels at particular
positions. In this section we describe the accuracy measures that are commonly used for
gene finding.

For simplicity, let us first assume that both the prediction and the correct annotation
consists of non-overlapping genes without alternative splicing. In such case, we may con-
sider three levels of accuracy: nucleotide accuracy, measuring how well we predict which
nucleotides are coding, exon accuracy, measuring how well we predict exons, including their
exact boundaries, and gene accuracy, measuring how many genes we predict completely cor-
rectly, starting with the correct start codon, including all exons and correct splice sites, and
ending with the correct stop codon.

At all of these levels, we compute two measures: sensitivity and specificity. If we classify
each object (coding nucleotide, exon, or gene structure) as either true positive (TP), true
negative (TN), false positive (FP), or false negative (FN) as shown in Table 1.3, we can
define the sensitivity, measuring the percentage of correct objects found:

Sn =
TP

TP + FN
, (1.10)

and specificity, measuring percentage of correct objects in all predicted objects:

Sp =
TP

TP + FP
, (1.11)

Note that in the case of nucleotide statistics, it is easy to achieve high sensitivity and low
specificity (predict all nucleotides as coding). Achieving high sensitivity is not trivial in the
case of exons and genes, especially if we do not allow predictions with overlapping genes. If
sensitivity is high, but specificity is low, it means that the algorithm is over predicting the
number of objects. Similarly, if the sensitivity is low, but specificity is high, the algorithm
is too conservative. If the sensitivity and specifity are the same, then the number of objects
predicted is on the right scale, as the number of true negatives and false positives are equal.

24



correct incorrect
objects objects

predicted true positives false positives
objects TP FP

not predicted false negatives true negatives
objects FN TN

Table 1.3: Classification of objects in union of predicted and correct objects

In many scenarios (such as the classification problem), it is possible to trade sensitivity
for specificity and vice versa. However, this is not easy in gene finding (especially if we
formulate it as the sequence annotation problem for hidden Markov models).

Supplementary statistics are sometimes observed for other types of objects, such as in-
trons, in the same way as for exons. Intron sensitivity and specificity combines the accuracy
of prediction of splice sites with the ability to determine proper sequence of exons in genes.

We will often compare different programs or variants of the same algorithm by their
sensitivity and specificity, in most cases at the exon level. If the approach A has both
sensitivity and specificity higher than the other approach B, we will generally say that the
results of A are better than results of B. On the other hand, if one approach has higher
sensitivity, and the other approach has higher specificity, we will say that A and B are not
comparable.

Such comparison is not completely fair, since these measures are taken on a particular
data set. Especially when the number of samples in such a data set is small, the differences
in performance between A and B may be result of a chance, rather than result of superiority
of approach A over approach B.

In such cases, we would like to test the statistical significance of the results. However,
most statistical significance tests assume that the samples in the data sets are independent,
which is an assumption that is hard to meet in case of the elements of gene prediction. For
example, a small change in prediction of one exon of a gene may lead to a completely different
predictions of other exons within the same gene, or small extension of a gene on one end may
critically affect prediction of neighbouring genes. To the best of our knowledge, we are not
aware of any standard tests of statistical significance that would be commonly accepted and
used in the gene finding community. Therefore, we do not compute the statistical significance
of our results, and some of the results presented in this thesis may, in fact, not be statistically
significant.

Finally, we need to consider the case when predictions and correct annotations may
contain alternatively spliced forms of the same gene, or overlapping genes. In this case,
nucleotide and exon statistics are computed in the same way, though in all sets, we count
each object only once (i.e., if there are two instances of the same coding nucleotide in two
splicing forms, we always count them as one nucleotide).

In gene statistics, the overlapping splicing forms are considered as a single gene, and the
two genes are considered the same if they share at least one transcript. This allows us to

25



correctly define notions of true/false positives/negatives.

1.2.5 Experimental Verification of Gene Predictions

In the previous section, we assumed that we already have correct annotations of the se-
quences. However, it is not easy to obtain correct annotations. Otherwise, there would be
no need for computational gene finding. In general, it is often possible to collect positive
evidence for the existence of a particular splicing form or a particular gene, but it is generally
not possible to rule out the existence of a predicted splicing form. In this section, we give
a short overview of the experimental techniques that could be used to obtain experimental
evidence on existence of particular genes or their splicing forms. Such experimental pro-
tocols can be generally divided into three categories: methods based on random sampling,
genome-wide analysis, and prediction driven methods.

Common to all of these methods is that to discover or verify a particular splicing form,
we must obtain a biological sample wherein the splicing form was transcribed into RNA,
or expressed. Since some genes are transcribed only under very specific conditions, we may
never be able to discover these genes or some of their splicing forms experimentally. Stan-
dardized samples containing mRNAs transcribed and spliced under specific conditions are
called libraries.

1.2.5.1 Methods Based on Random Sampling

Sequencing of expressed sequence tags (ESTs) is a typical random sampling method (Adams
et al., 1991). ESTs come from randomly chosen short pieces of spliced mRNA sequences.
The likelihood of sequencing an EST corresponding to a particular splicing form depends on
many factors, the most important being the abundance of the transcript in the particular
library. In later stages of EST sequencing projects, the yield of novel ESTs decreases,
and more and more samples start to reoccur. Eventually, it is no longer economical to
continue the EST project. Thus, some mRNAs, even if they are expressed in a library,
may not be sequenced. Due to technological restrictions, ESTs are usually 400–600 bp long
(Pontius et al., 2002). These bases often come from either the 5’ end or 3’ end of the
transcript. Since many transcripts are longer then 1000bp, sequences from the middle of
such long transcripts are under-represented in EST databases. EST libraries may also be
contaminated by incompletely spliced pre-mRNA transcripts.

It is also possible to sequence proteins directly, such as by mass spectrometry (Henzel
et al., 1993). Mass spectrometry experiments rely heavily on computational post-processing
(see for example Perkins et al. (1999)) to recover the amino acid sequence. The same
restrictions with respect to choosing the proteins for sequencing apply as in the case of
ESTs.

26



1.2.5.2 Genome-Wide Analysis

Genome-wide analysis is based on asking the following query: How much mRNA that con-
tains a specific short sequence s is contained in a particular library? The length of the
sequence s is usually large enough so that the sequence s occurs only once in the whole
genome. Many such questions can be asked in parallel using expression arrays. In fact,
recently such arrays tiling 10 human chromosomes, with one query every 5 nucleotides, were
built by Affymetrix (Cheng et al., 2005). This allows building high-density transcriptional
maps of human chromosomes.

However, analysis of such transcriptional maps is hard, and the results vary depending
on the computational method used for the analysis. Due to expression array technology, it
is not straightforward to distinguish signal from noise. Moreover, the signal obtained from
such an expression array is a mixture of signals from all of the alternative transcripts of the
same gene, and it is difficult to distinguish individual transcripts. Complex methods (not
dissimilar to gene finding) were developed to interpret the data from such tiling arrays.

1.2.5.3 Prediction Driven Methods

While the previous two methods work independently of gene predictions, methods in this
category are designed to confirm already predicted transcripts. Some aspects of a candidate
gene structure can be confirmed with reverse transcription-polymerase chain reaction (RT-
PCR). For example, it is possible to confirm the correctness of the boundaries of predicted
introns, and sometimes (coupled with sequencing), it is possible to detect and correct small
errors in gene predictions, such as skipping short exons, or a short-range mistake in the
prediction of a splice sites. Special protocols using RT-PCR can also be used to extend or
verify predictions at the 5’ and 3’ ends of the genes. Eyras et al. (2005) recently performed
such large scale experiment using RT-PCR on a random sample of predicted genes in the
chicken genome.

1.3 Hidden Markov Models for Gene Finding

In this section we show a simple HMM for gene finding upon which we have built our gene
finding program ExonHunter. The topology of the HMM is based on basic knowledge of
the properties of DNA sequences presented in Section 1.2.1. The model that we present in
this section contains many parameters (such as order of various states and lengths of regions
corresponding to signals) that were chosen somewhat arbitrarily according to prevailing
practice in the field of gene finding. Most of these choices are not backed by systematic
experiments and there may be better choices for these parameters. In Chapter 5, we present
more detailed comparison of these parameters for three gene finders: Genscan (Burge, 1997),
Augustus (Stanke and Waack, 2003), and our gene finder ExonHunter (see Table 5.1 on page
132).

As we noted above, eukaryotic DNA is composed of three types of regions. The exons
are the coding parts, which are used to encode proteins. The introns are the non-coding

27



E E E44 4

Figure 1.12: Example of exon model. States are shown as boxes with the label E for
exons, the number associated with the boxes indicate order of the corresponding Markov
chain.

sequences inserted between exons in the gene. Finally, the intergenic regions are non-coding
regions separating genes. See Figure 1.3 on page 14. We will first show how to model exons,
introns, and intergenic regions, and then how to place these small models together to form
a model of whole genes and chromosomes.

In all figures in this section, we show states as boxes with the label E (exons/coding
sequence), I (introns) or X (intergenic region); the numbers associated with these boxes
indicate the order of the corresponding Markov chain in that state.

1.3.1 Exon Model

Every in-frame triple of bases in an exon (called a codon) encode one amino acid in the
resulting protein. Because significant information is encoded in exons, it is natural that
such coding sequences show strong compositional bias. Moreover, neighboring codons in the
resulting sequence also show strong dependence (Zhang, 1998).

An example of an exon model is shown in Figure 1.12. We generate the nucleotides of
exons using a three-periodic Markov chain, where each state is of fourth order. Note that
introns may split some codons between neighboring exons. Thus, when modeling internal
exons, we may enter the exon model in any state and leave it in any state. (This is not true
for the first exon, which must be entered in the first nucleotide of the codon or for the last
exon, which must be left after emitting the last nucleotide of a codon.) Note also that the
first positions of exons depend on the last positions of preceding introns.

1.3.2 Intron Model

In our basic model, we represent the donor and acceptor signals in the intron structure
by a chain of states of order 2, though we will show better methods for modeling signals in
Chapter 2. We also include a pyrimidine tail section with 20 states. Between the two signals,
we represent the rest of the intron by a single fourth-order state as shown in Figure 1.13.
Alternately, one could represent the pyrimidine tail by a single state with a self-loop instead
of the 20 states. That would result in model closer to reality—the length of the pyrimidine

28



tail varies in different introns. However, there are disadvantages to such an arrangement,
which we discuss in Chapter 4.

1.3.3 Start and Stop Sites

The coding region of a gene’s first exon starts with the start codon ATG. This start signal is
encoded straightforwardly by a chain of states as shown in Figure 1.14. Note that compared
to the donor and acceptor site signals, we use first-order states instead of second order
states. There are many more donor and acceptor sites than start sites, since a gene contains
on average 8–10 exons (International Human Genome Sequencing Consortium, 2004). Thus
we are unlikely to have enough information to train the higher order Markov chain without
overfitting.

Similarly, the stop codon (TAA, TAG, or TGA) is represented by the chain of states
modeling stop codon and its surroundings. For the last nucleotide of the stop codon, we use
a first-order state, to make sure that the stop codon is TAA, TAG, or TGA, and not TGG.

1.3.4 Untranslated Regions and Intergenic Region

The region immediately upstream of the start site is called the 5’ untranslated region
(5’ UTR). There is a complex promoter signal near the transcription start site consist-
ing of three functional elements, some of which may be omitted: cap-site, TATA-box and
CAAT-box. Similarly, the region downstream from the stop site is called the 3’ untranslated
region (3’ UTR). It contains a strong signal, called the AATAA-box and Poly(A)-site, at
its end. Details of the composition of both kinds of UTRs can be found in Zhang (1998).
However, we chose not to model untranslated regions, since they are not reliably annotated
in the training sets, and thus it is hard to train the parameters of such models.

Intergenic regions are modeled by a single state fourth order Markov chain. It is common
for gene finders to be trained on single gene sequences that do not include much of intergenic
regions. Therefore we instead set the emission probabilities of the intergenic regions as an
average of the values trained for introns on the forward and on the reverse strand. This is a
reasonable approximation, as observed in Section 1.2.1.1.

1.3.5 Putting the Pieces Together

We are ready to put together the whole model. The model for a single gene sequence will
require four copies of the exon model, and three copies of the intron model. The gene model
is shown in Figure 1.16.

The four copies of exon models are used for different purposes. One copy is used for the
first exon always starting in frame 0 after the start codon. One copy is used for the last exon
that always ends in frame 2, before the stop codon. One copy is used for internal exons,
which may be entered and left in any frame. Finally, the last one is used as a representation
of single exon gene, which must be entered in frame 0 and left in frame 2. The three intron
models are exactly the same, but they are used to preserve coding frame. For example, if

29



I 2
I 2 I 2

I 2

C/T

I 2

C/T

I I

I

2 2 2

Intronic sequence

A G G T A G

E E E 0 0

A/G

I I I I2 2 2 2

C/T C/T C/T C/T

...

I I I I2 2 2 2 2

GA

E E E00

C g

pyrimidine tail

donor site (5’ splice site)

acceptor site (3’ splice site)

4

Figure 1.13: Example of an intron model. The consensus sequences corresponding to
each of the signals are shown above each of the states representing the signal. Lower-case
characters represent a weak consensus, upper-case characters represent a strong consensus.

E E E EE

T G

0 0E

A

0

C

X...X X1 1 1 1 1 1

Figure 1.14: Start site model

30



X 1 X 1XE E E E E E1 1 1 1 1
...

T A
T
T

A
AA
G

G

0 0

Figure 1.15: Stop site model

we leave an exon in frame 1, we must enter the next exon in frame 2. The three copies allow
the model to maintain in which frame it left the last exon. The placement of other elements
(such as start signals, stop signals) is straightforward.

By naively copying models of certain sequence elements, we could greatly increase the
number of parameters of the model. This increases the amount of data needed to train its
parameters. However, we can deal with the problem by using parameter tying. For example,
we can assume that the four first nucleotides in all exon model copies have the same emission
probabilities. Similarly, we can assume that all intron models have the same parameters.

To create a model of multi-gene sequences instead of just a single gene, we need to be able
to model genes on both strands. This is easily achieved by copying the original model, and
reversing all the transitions. In addition, when the forward model would omit a nucleotide,
we need to ensure that the reverse model emits its complement.

Finally, we separate the genes using a single-state model of an intergenic region. From
this state, we can either follow a transition to the beginning of a gene on the forward strand,
or to the end of a gene on the reverse strand. The resulting model is shown in Figure 1.17.

31



Intron m
odel

Intron m
odel

Intron m
odel

Stop site modelStart site model

E
E

E

E E E

E
E

Exon model (single exon gene)

Exon model (first exon) Exon model (last exon)

E E E

Exon model (internal exon)
E

Figure 1.16: HMM for a sequence with a single gene on the forward strand

32



Intron m
odel

Intron m
odel

Intron m
odel

Stop site modelStart site model

E
E

E

E E E

E
E

Exon model (single exon gene)

Exon model (first exon) Exon model (last exon)

E E E

Exon model (internal exon)

E

In
tr

on
 m

od
el

In
tr

on
 m

od
el

In
tr

on
 m

od
el

Stop site modelStart site model

E
E

E

E E E
E

E

Exon model (single exon gene)

Exon model (first exon) Exon model (last exon)

E E E

Exon model (internal exon)

E

intergenic
region

to forward
strand

to reverse
strand

Figure 1.17: HMM for a multi gene sequence with genes on both strands

33





Chapter 2

Higher Order Tree Models for Signal
Recognition

In this chapter, we examine the problem of signal recognition. As we have seen earlier,
recognition of biological signals (such as donor, acceptor, start, and stop sites) is an important
component of gene finding. Lim and Burge (2001) estimated that more than half of the
information required for successful gene finding is contained in such biological signals. In
this chapter, we propose a new family of higher order tree (HOT) models based on optimal
directed spanning hypertrees in hypergraphs. These models incorporate a limited amount
of intra-signal dependencies, chosen optimally from all dependencies of bounded cardinality
among positions of a signal.

In Section 1.3, we suggested that signals can be modeled as stretches of states in hid-
den Markov models, with each state representing the probability distribution of a single
nucleotide (see Figure 1.13 on page 30). If the Markov chains associated with the states
are zeroth order, we obtain what are often called position weight matrices (PWMs) (Staden,
1984; Stormo et al., 1982). If we instead use Markov chains of order k, we will call such a
model a k-th order PWM. Alternative names of the same model in literature include position
specific score matrix or weight matrix model for PWMs of order 0, and weight array model
for PWMs of order 1.

PWMs can easily model dependencies between adjacent positions in the signal, but
they cannot model long-range dependencies within signals. Yet, such dependencies exist,
as demonstrated in Figure 2.1. Thus the faithfulness of the signal model would improve if
the model could capture these non-adjacent dependencies. Such improvement can potentially
translate into higher accuracy of gene prediction.

To study this problem, we make the following modification to hidden Markov models.
Instead of modeling signals as stretches of ` states in the model, we replace them with a
single composite state, which generates strings of a fixed length ` in a single step. This can
be easily incorporated in all algorithms used for training and decoding HMMs. In this way,
we can formulate the problem of finding probabilistic models of signals separately from the
problem of gene finding. In particular, we are looking for generative models that generate
signal-like sequences in a fixed window of length ` around a given functional site in the DNA

35



-3 -2 -1 +1 +2 +3 +4 +5 +6

-3

-2

-1

+1

+2

+3

+4

+5

+6

0

0.012

0.023

0.035

0.047

0.058

Figure 2.1: Pairwise dependencies in human donor splice site. These dependencies
were observed in the human chromosome 22 training set. The color intensity represents the
amount of dependency between two positions. In particular, the intensity of a cell (i, j)
in the table is the differential entropy H(i) + H(j) − H(i, j), where H(i) is the entropy of
position i, and H(i, j) is the joint entropy of positions i and j. We will show in Section
2.2.2 that this is indeed a reasonable measure.

36



sequence.
The simplest generative model would give a separate probability to all 4` possible se-

quences of length `. This model would implicitly account for all intra-signal dependencies.
However, such a model would have 4` − 1 parameters that would need to be estimated from
the training data. For example, to model donor splice sites, which is commonly done with a
window of length 9, this would mean 262 143 parameters. Only rarely would we have enough
data to train a model with so many independent parameters without overfitting.

In this chapter, we explore a new class of generative signal models, higher order trees
(HOTs). The two extreme examples of these models are PWMs of order 0, which require only
3` parameters, and the model suggested in the previous paragraph, with 4` − 1 parameters.
Choosing HOT models of increasingly higher order will capture increasingly more intra-
signal dependencies that can be observed in the data. However, the number of parameters
is exponential in the order, and therefore increasing the order also requires larger training
data set. Thus, we introduce a tradeoff between model faithfulness and available training
data.

The rest of this chapter explores use of these models. First, we introduce HOTs, and
we compare them to other models commonly used for capturing intra-signal dependencies in
signal recognition. The HOT models are based on an underlying hypertree structure. Then
we show how to find an optimal HOT structure from the training data so as to maximize
the likelihood of the training data. Even though the problem is hard in general, we can
formulate it as an integer programming problem easily solved by common software tools for
integer programming such as CPLEX (ILOG Inc., 2003). We conclude this chapter with a
series of experiments, evaluating the performance of our new models on human splice site
recognition. Our new models offer a modest improvement over existing techniques, most
notably in improving the accuracy of scores given by the probabilistic model, rather than in
increasing its usefulness as a classifier.

In gene finding, there are many factors that work together in non-trivial combination to
achieve good prediction accuracy. Our experiments show that improving the faithfulness of
the donor and acceptor site models does not directly increase sensitivity and specificity of
predicting splice sites in the final gene prediction. Surprisingly, this change improves other
indicators, such as exon level statistics, and the discovery of start and stop sites. This result
confirms that it is important to test improved models for signal recognition in the context
of the hidden Markov models for which they were designed.

Most of the work presented in this chapter was published in Brejová et al. (2003). Parallel
work, suggesting similar models to ours appeared in Barash et al. (2003), Yeo and Burge
(2003), and Castelo and Guigó (2004). We discuss the similarities and differences among
these publications at the end of the chapter.

2.1 Intra-signal Dependencies and HOT Models

The simplest generative model for signals is the position weight matrix (PWM) (Staden,
1984; Stormo et al., 1982). A PWM gives a separate probability distribution of nucleotides

37



-3 -2 -1 +1 +2 +3 +4 +5 +6
A .30 .64 .09 0 0 .51 .67 .06 .14
C .41 .10 .04 0 0 .04 .10 .07 .20
G .19 .12 .82 1 0 .44 .14 .81 .23
T .10 .14 .05 0 1 .01 .09 .06 .43

Table 2.1: Position weight matrix for donor site. The nucleotide frequencies for posi-
tions [−3, +6] around donor splice site were observed from the chromosome 22 training set
annotations. We can observe the consensus sequence nAGGTnAGT.

to each position of the signal, and assumes that there are no other dependencies among
the positions in the model. If r(i, b) is the probability that the ith position in the signal is
the base b, then the probability that the model generates a given sequence s of length ` is
∏̀

i=1

r(i, si).

Zhang (1998) characterized many signals used in gene finding in the form of PWMs. An
example PWM that characterizes donor sites in the window [−3, +6] around the donor splice
junction is shown in Table 2.1.

The basic assumption of PWMs is that the probability of generating a character depends
only on its position within the signal. Many researchers (e.g., Burge (1998); Zhang (1998))
have demonstrated that this assumption is false. In fact, there are significant dependencies
within signals between positions located even several bases apart. Higher order PWMs
(Zhang, 1998) incorporate dependencies between adjacent positions in the sequence. For
example, in a first order PWM, the probabilities at each position depend on the immediate
predecessor in the sequence. To generate a signal, one starts with its first position, and then
each subsequent character is picked using a probability distribution that is conditional on
the character generated as its predecessor.

Here, we investigate an extension of PWMs to allow for multiple dependencies among non-
adjacent signal positions. In our model, each position in the signal depends on a fixed set of
other positions, and there are no cyclic dependencies. We can view such a model as a directed
acyclic graph (DAG), where nodes represent positions in the signal, and edges represent
dependencies between the positions. Each node is assigned a probability distribution of
bases depending only on the bases at positions that are its immediate predecessors in the
DAG (see examples in Figure 2.2). We call the underlying DAG the signal model topology,
and the maximum in-degree of a node in such a graph is the model’s order. Such models
are also called Bayesian networks and are extensively used in machine learning (Friedman
et al., 1997).

The acyclicity of the graph assures straightforward interpretation of the parameters of
this generative model as conditional probabilities. Some graphical models, such as undi-
rected Markov random fields (Chellappa and Jain, 1993), allow cycles, but the probabilistic
interpretation of these models is not straightforward, and we do not use them in this chapter.

38



nG G T Tn A A GG G T Tn A A G

nG G T Tn A A GG G T Tn A A G

nG G T Tn A A GG G T Tn A A G

nG G T Tn A A GG G T Tn A A G

nG G T Tn A A GG G T Tn A A G

PWM (order 0):

PWM (order 1):

Tree (HOT, order 1):

PWM (order 2):

HOT (order 2):

Figure 2.2: Examples of different model topologies for donor signal

39



To generate a signal in one of these models, one iteratively finds positions whose direct
predecessors have all been fixed, and then chooses the symbol at that position from the
conditional probability distribution dependent on the predecessors. This can of course be
done in O(k`) time, if the signal is of length ` and k is the order of the model.

Similarly, one can compute the probability that model M generates a given sequence s
by simply multiplying these conditional probabilities. If the ith position in the sequence
is dependent on positions di,1 . . . di,ki

, and we denote r(i, b, x1, . . . xki
) = Pr[si = b | di,1 =

x1, di,2 = x2, . . . , di,ki
= xki

], the probability Pr(s |M) of generating the sequence s by model
M is:

Pr(s |M) =
∏̀

i=1

r(i, si, sdi,1
, sdi,2

, . . . , sdi,ki
). (2.1)

If the topology of the HOT model is fixed, the number of parameters that need to be
trained depends on two variables: it is linear in the length of the signal, and exponential in
the order of the model. The amount of data available for training the probability distribution
at any given position does not change with the order of other positions or length of the signal.
Therefore the model’s order is the most relevant parameter in the training, and the amount
of data needed for training a k-th order HOT model is comparable to the amount of data
needed for training a PWM of the same order. It may appear that HOT models have fewer
parameters, since some nodes may be of lower order than k. However, we are searching for
a model over a wider family of distributions (namely, all possible topologies). Therefore, it
is possible for a HOT model to overfit during training, even if the PWM model of the same
order does not overfit.

2.1.1 Previous work

HOT models of order zero are exactly PWMs, which as we have noted are extensively used
to characterize signals and motifs in bioinformatics (see for example Zhang (1998) for a
comprehensive study of signals related to genes and gene finding).

The underlying topology of HOT models of order one are directed forests (in fact, later
we show that it is sufficient to consider directed trees). Tree models of this sort were first
explored in the statistics literature by Chow and Liu (1968), and they are also called Chow-
Liu trees. The optimal structure, maximizing the likelihood of a tree model, can be found in
polynomial time, using standard graph algorithms. Tree models were used in bioinformatics
for the classification of splice sites by Cai et al. (2000) and by Agarwal and Bafna (1998).
Agarwal and Bafna (1998) used an alternative approach to measure the amount of dependen-
cies between signal positions, based on chi-squared statistical test. In both cases, the authors
found that tree models can capture significant non-adjacent dependencies within the donor
splice site, but Cai et al. (2000) also conclude that this does not make significant difference
when such models are applied to the classification task of distinguishing true signals from
decoys.

40



Ellrott et al. (2002) proposed a special subclass of tree models, the path models. The
path models are HOT models of order 1, but their structure must be a directed path instead
of a directed tree. They use these models for the related problem of locating transcription
factor binding sites. Unfortunately, finding the optimal path model is NP-hard, since the
underlying problem is the travelling salesman problem. We do not see much advantage in
using path models since tree models are more expressive and can be optimized in polynomial
time. Recently, their work was extended by Zhao et al. (2004) by employing variable order
Markov chains together with path models. In their models, every position i can depend on
several other positions immediately preceding position i on the chosen path. The order varies
depending on the amount of training data available for training the conditional probabilities.

A very popular generative model in the context of gene finding is maximum dependency
decomposition (MDD) designed by Burge (1997) for Genscan. The MDD model consists of
two components: a decision tree that first generates the nucleotides at “important” positions
with large amount of influence on the other positions within the signal, and a PWM-0 model
at each leaf of the tree. The decision tree is inferred by a greedy method, starting with the
position that exhibits the largest amount of dependencies to other positions as measured by
chi-squared test. Burge identifies four important positions within donor site signal: −1, −2,
+5, and +6. These positions proved to be significant in our experiments as well. The MDD
model used in Genscan can be expressed as a fourth order HOT model. However, this is not
very practical; such a model would contain many parameters not used by the MDD model.

The ultimate HOT model for a signal with a window of length ` is HOT-(`− 1). Such a
model essentially contains a separate independent probability for each of the |Σ|` strings. The
number of independent parameters of such model is high and it would require an enormous
amount of data to train such model reasonably well. However, Stanke and Waack (2003)
suggested similarity-based sequence weighting to overcome this problem. In this method,
the authors expand the training data set by including additional samples with lower weight.
If s is in the original training data set, the authors include all sequences that are within
Hamming distance 1 with weight w1 < 1, all sequences that are within Hamming distance 2
with weight w2 < w1, etc. In this way, authors create sufficiently large data set to train the
model.

As we mentioned before, HOT models are a subclass of Bayesian networks, which are com-
monly used for classification in machine learning literature (Friedman et al., 1997). Learning
the optimal structure of a Bayesian network is a problem closely related to training the struc-
ture of HOT models. Much of the work in learning the structure of a Bayesian network is
focused on the design of a scoring metric that evaluates both how well the structure fits the
training data set, and the complexity of the network structure. A penalty for the network
complexity is required to prevent learning the network corresponding to the complete graph
all the time. After the scoring metric is defined, the problem is usually reduced to a heuris-
tic search for a structure with high score in the metric. For more detailed review of this
technique, see Heckerman (1999).

In HOT models, we take a different approach. We specifically include the limits on the
complexity of the structure in the definition of the class of HOT models, since training of

41



higher order Markov chains requires a higher amount of training data. Once the order of the
model is fixed, we compute the optimal model structure maximizing the likelihood. Since
our models are small, this can be done exactly by using integer programming, and even
simple greedy heuristics achieve good results.

In this chapter, we study only generative models for signal recognition. The reason for
this is that we want to incorporate these models into a larger probabilistic generative models
for gene finding. However, the classification problem for signal recognition has also been
studied separately from the problem of gene finding, and multiple methods for discrimination
of signals from their decoys have been developed.

Such discriminative methods work in two steps. First, we collect information about
signal site and its surrounding. Such information may include symbols at each position
of the signal, amino acid composition in some window (usually much larger than `) on
the left side and right side of the signal, the number of stop codons which appear in such
windows, and other sequence features. This information is transformed into a set of real-
valued or discrete features. Second, linear discrimination (Solovyev et al., 1994), quadratic
discrimination (Zhang, 1997), neural networks (Xu et al., 1994), support vector machines
(Zien et al., 2000; Sonnenburg et al., 2005), or other discrimination methods (Chuang and
Roth, 2001) are used to separate signals from decoys.

While these methods generally show better performance than generative models when
used only to predict signals in DNA sequences, they are not very useful in the context of
hidden Markov models for gene finding. First, they usually do not have a straightforward
probabilistic interpretation, making it hard to incorporate their predictions to generative
probabilistic models. Second, they usually use information from a long window of sequence
around the functional site, which is used in other parts of the model as well. This could
yield unpredictable dependencies between their prediction and the rest of the hidden Markov
model.

2.2 Maximum Likelihood Training of HOT Models

In this section, we investigate methods for the estimation of parameters of HOT models to
maximize likelihood of the training data set. Once the topology of a model is fixed, we only
need to count the frequencies from the training data to produce the probability distributions
that maximize the likelihood. Thus the crucial step in training HOT models is choosing
the optimal topology given a training data set. We define the training problem in terms of
finding optimal spanning trees of directed hypergraphs, and we show that this underlying
problem is NP-hard. Given the hardness of the problem, we use integer programming to
find the optimal hypertree topology. We also describe a simple greedy algorithm, which we
use for some of our experiments. Thi greedy algorithm often produces the optimal solution
as found by integer programming, so it is a reasonable heuristic to use.

42



2.2.1 HOT Models and Hypergraphs

To formalize the problem of finding the best topology, we formulate the problem in terms of
hypergraphs.

Definition 10 (Hypergraphs). A directed hypergraph is a pair H = (V, E), where V is
a set of vertices, and E is a set of directed hyperedges. Each directed hyperedge E = (T, h)
has a tail T , which is a subset of V (potentially empty), and a head h /∈ T , which is a single
vertex.1 Let the order of a directed hyperedge be the cardinality of its tail.

Definition 11 (Complete hypergraphs). A complete hypergraph of order k is a hyper-
graph that contains all possible hyperedges (T, h) of order at most k.

Definition 12 (Spanning directed hypertrees). A directed hypertree is a directed hy-
pergraph H, where each node is the head of at most one hyperedge, and the directed graph
which can be obtained by replacing every hyperedge ({v1, . . . , vk}, v) with the k edges (v1, v),
(v2, v),. . . , (vk, v) is acyclic. A spanning directed hypertree is a directed hypertree where
each vertex is a head of a hyperedge.

Note that a hyperedge in a hypertree may have an empty tail. Therefore, spanning
directed hypertrees are analogous to spanning forests in directed graphs.

There is an easy correspondence between spanning directed hypertrees and HOT models:
for a given vertex, all incoming edges in the HOT model can be represented as a single
hyperedge. Such hyperedges form a spanning directed hypertree.

We will show that training HOT models to maximize likelihood of a given training set
(S(1), S(2), . . . , S(m)) is equivalent to finding the minimum spanning hypertree in an hyper-
graph with appropriate hyperedge weights. To define the hyperedge weights, we need to first
introduce the notion of Shannon entropy H(P ).

Definition 13 (Shannon entropy). For a set of signal positions P and a string xP of
length |P |, let fP (xP ) be the number of occurrences of the string xP at the positions in P in
the training set. Then the Shannon entropy of these positions H(P ) is defined as follows:

H(P ) = −
∑

xP

fP (xP )

m
· log

fP (xP )

m
. (2.2)

Note that Shannon entropy H(P ) is always non-negative. In the rest of this chapter, we
will also use the following well-known properties of Shannon entropy.

Lemma 14 (Shannon (1948)). Let P and Q be disjoint sets of signal positions. Then
H(P, Q) ≥ H(P ) and H(P, Q) ≤ H(P ) + H(Q).

1Sometimes, directed hyperedges are defined as a pair (T, H), where both tail T and head H are sets of
vertices, rather than requiring that the head is always a single vertex (Gallo et al., 1993). However, we will
use the simpler definition here.

43



Lemma 15 (Jelinek (1968, Chapter 4.5)). Let P, Q, R be pairwise disjoint sets of posi-
tions. Then H(P, Q, R) − H(Q, R) ≤ H(P, Q) − H(Q).

Using the definition of Shannon entropy, we can now formulate the following claim.

Theorem 16. Let H be a complete directed hypergraph of order k on a set of vertices
representing the positions in a signal. Let the weight of every hyperedge (T, h) ∈ H be
H(T ∪ {h})−H(T ), where H(P ) is the entropy of the signal positions from the set P in the
training set of signals (S(1), . . . , S(m)).

Then the directed acyclic graph M∗ corresponding to the minimum spanning hypertree
M∗ of the hypergraph H yields the topology of the HOT model of order k maximizing the
likelihood of the training set (S(1), . . . , S(m)).

Proof. We have noted on page 40 that in the maximum likelihood HOT model with fixed
topology M , the string S has the probability

Pr(S |M) =
∏

(T,h)∈E(M)

fT∪{h}(ST∪{h})

fT (ST )
, (2.3)

where E(M) is the set of hyperedges in the corresponding spanning directed hypertree.
In order to maximize the likelihood of generating the training set of independent samples
(S(1), . . . , S(m)), we have to maximize the following probability over all possible model topolo-
gies M :

Pr(S(1), . . . , S(m) |M) =
m∏

i=1

Pr(S(i) |M) =
m∏

i=1

∏

(T,h)∈E(M)

fT∪{h}(S
(i)
T∪{h})

fT (S
(i)
T )

=
∏

(T,h)∈E(M)

∏

xT∪{h}

fT∪{h}(xT∪{h})
fT∪{h}(xT∪{h})

∏

xT

fT (xT )fT (xT )
, (2.4)

where xT∪{h} in the product takes as values all possible strings of length |T ∪ {h}|, and
similarly xT takes as values all possible strings of length |T |. Each particular string xT∪{h}

occurs in fT∪{h}(xT∪{h}) samples from the training set, and therefore we can rewrite the
product as above.

Maximizing the probability of generating the training set Pr(S(1), . . . , S(m) |M) is equiv-
alent to minimizing −(1/m) log Pr(S(1), . . . , S(m) |M):

− 1

m
log Pr(S(1), . . . , S(m) |M) =

∑

(T,h)∈E(M)



−
∑

xT∪{h}

fT∪{h}(xT∪{h})

m
log fT∪{h}(xT∪{h})



+

[
∑

xT

fT (xT )

m
log fT (xT )

]
(2.5)

44



Note that

∑

xT

fT (xT )

m
log fT (xT ) =

∑

xT

fT (xT )

m

(

log
fT (xT )

m
+ log m

)

= H(T ) + log m, (2.6)

since
∑

xT

fT (xT )

m
= 1. Similarly:

∑

xT∪{h}

fT∪{h}(xT∪{h})

m
log fT∪{h}(xT∪{h}) = H(T ∪ {h}) + log m, (2.7)

and therefore

− 1

m
log Pr(S(1), . . . , S(m) |M) =

∑

(T,h)∈E(M)

H(T ∪ {h}) − H(T ), (2.8)

which is exactly what we wanted to prove.

Theorem 16 shows how to reformulate the problem of finding the graphical model maxi-
mizing the likelihood of our training data to the problem of finding the minimum spanning
directed hypertree problem.

Finally, we have noted before that our definition of directed hypertrees is analogous
to forests in directed graphs, rather than trees. The following lemma suggests that this
distinction is not important.

Lemma 17. Let H be a complete directed hypergraph of order k on a set of vertices rep-
resenting the positions in a signal. Let the weight of every hyperedge (T, h) ∈ H be H(T ∪
{h})−H(T ), where H(P ) is the entropy of the signal positions from the set P in the training
set of signals (S(1), . . . , S(m)).

Then there exists a minimum spanning hypertree M∗ of the hypergraph H that has at most
one hyperedge of each of the orders 0, 1, . . . , k − 1. All the other hyperedges have order k.

Proof. Consider any minimum spanning hypertree M. Let v1, . . . , v` be the vertices of M
in the topological order, i.e., for every hyperedge E = (T, vj) in M, j > i for all vi ∈ T .

We can construct a new spanning hypertree M∗ that will satisfy the hyperedge order
restrictions in our claim. Consider vertex vi, which is a head of a hyperedge (T, vi). If
|T | < min{i − 1, k}, we can add some of the vertices from {v1, . . . , vi−1} to T so that M
remains a hypertree, and the size of the new tail T ′ is min{i − 1, k}. Due to Lemma 15,

H(T ′ ∪ {h}) − H(T ′) ≤ H(T ∪ {h}) − H(T ), (2.9)

and therefore this operation will not increase the cost of the hypertree. In other words, cost
of this new spanning hypertree M∗ must be smaller or equal to the cost of the spanning
hypertree M. Therefore M∗ must be a minimum spanning directed hypertree as well.

45



In the rest of this section we provide methods to solve the minimum spanning directed
hypertree problem. Depending on the order of a HOT model, we will distinguish two cases.
If the order is 1, the problem can be solved in polynomial time by finding the minimum
spanning tree in an undirected graph. However, for order at least 2 the problem of finding
the minimum directed spanning hypertree is NP-hard. In practical cases we solve the problem
by integer programming, or find a reasonable model topology by a simple heuristic.

2.2.2 Finding the Optimal Topology for Tree Models

To solve the problem of finding an optimal topology of HOT model, we first consider the
special case of tree models, where k = 1.

Lemma 18 (Chow and Liu (1968)). Consider an undirected graph, where every vertex
represents a position in the signal, and each edge (u, v) has weight H(u, v) − H(u) − H(v),
where the entropies are computed from the training set. The minimum spanning tree of
such a graph, rooted at any vertex, corresponds to the maximum likelihood topology of the
HOT model of order 1.

Proof. According to Theorem 16 and Lemma 17, we are looking for a directed tree with
set of edges E and root s minimizing the cost function:

cost(E, s) = H(s) +
∑

(u,v)∈E

H(u, v)− H(u). (2.10)

We can rewrite the formula by subtracting H(v) from the cost of every edge. Since every
vertex except the root has exactly one incoming edge, we can compensate for the subtracted

cost by adding the term
∑

v∈V \{s}

H(v) as follows:

cost(E, s) =
∑

v

H(v)

︸ ︷︷ ︸

(∗)

+
∑

(u,v)∈E

H(u, v)− H(u) − H(v). (2.11)

Since (*) is the same for every structure of the model, we can ignore it in the optimization,
thus turning the problem into the undirected problem described in the lemma statement.

This proof also shows that every directed tree with the same set of undirected edges has
the same cost, regardless of the rooting of the tree.

Thus, the optimal topology for a HOT model of order 1 can be determined by finding the
minimum spanning undirected tree, where the weight of the edge (u, v) is H(u, v)−H(u)−
H(v). This can be easily done by Prim’s algorithm (Prim, 1957) in O(`2 log `) time (or
O(`2 + ` log `), if we use Fibonacci heaps—see for example Cormen et al. (2001)).

Note that the measure we used in Figure 2.1 on page 36 to visualize the strength of
dependencies between the positions of the signal is justified by the above proof as well.

46



0

0

2

1

1 10reduction

Figure 2.3: Minimum spanning directed hypertree is NP-hard. Example of the
reduction.

2.2.3 Minimum Spanning Directed Hypertree is NP-hard

Unfortunately, the method introduced in the previous section cannot be extended to models
of order k ≥ 2. In this section we will show that the underlying problem of finding the
minimum spanning directed hypertree is NP-hard, even for k = 2.

We will require the following result of Karp (1972).

Lemma 19 (Minimum feedback arc set, Karp (1972)). Consider the minimum feed-
back arc set problem of finding the minimum edge set in a directed graph whose removal
makes the graph acyclic. This problem is NP-hard, even if the graph has in-degree at most 2.

Theorem 20. Finding the minimum spanning directed hypertree in a hypergraph is NP-hard,
even if all the edges are of order at most 2.

Proof. We prove the NP-hardness by reduction from minimum feedback arc set. Consider
an instance of the minimum feedback arc set problem, which is a directed graph G, with
in-degree at most 2.

Create a hypergraph H on the same set of vertices. For every vertex v, we find the set X
of tails of edges incoming to v in G. By our assumption, X has at most 2 elements. For each
subset A of X, we create a hyperedge (A, v) with cost |X| − |A|. To complete the graph,
we add all other possible hyperedges with tails of size at most 2, but with a large cost C, so
that they will not be chosen. Figure 2.3 shows an example of the reduction.

As established earlier, each spanning hypertree of H corresponds to a directed acyclic
graph M . This DAG is a subgraph of G, assuming it does not use one of the very high-cost
edges. Conversely, if we remove a feedback arc set from G, we obtain a directed acyclic
graph that correspond to some spanning hypertree of H. Moreover, for every edge deleted
from G, the cost of the corresponding hypertree increases by one. Therefore, graph G has a
feedback arc set of size at most k if and only if H has a spanning hypertree of cost at most
k (see the example in Figure 2.4).

2.2.4 Finding the Optimal HOT Topology by Integer Program-

ming

Because of Theorem 20, our hypertree formulation of the problem of finding the optimal
HOT topology does not immediately result in an efficient algorithm for models of order

47



01

0underlying graph

Figure 2.4: Minimum spanning directed hypertree is NP-hard (cont.). Solution of
the minimum spanning hypertree indicates the minimum feedback arc set.

higher than one, though of course the instances that come from real data may not be hard
to solve in general. However, we note that the length of the window ` of a signal is often
small (and thus, the number of vertices in the underlying hypergraph problem is small). In
this case, we can achieve a practical running time by formulating the problem as an integer
linear program and solving the problem by a commercial package such as CPLEX (ILOG
Inc., 2003). Integer linear programming is guaranteed to give us the optimal hypertree, yet
it uses potentially exponential runtime (Schrijver, 1986).

Our IP model of the problem includes two kinds of variables. One family of variables
models the acyclicity of the spanning hypergraph, by requiring that we order the nodes in
the hypergraph, and that we place the heads of hyperedges later in the ordering than the
nodes in their tails. The second family of variables models the hyperedges of the graph. We
require that each node have only one incoming hyperedge, to again ensure the hypertree
property.

In particular, we assign a decision variable bi,j to each pair of distinct positions, i and
j. This variable is set to 1 exactly when i comes before j in the ordering of nodes, and 0
otherwise. There is a variable aT,h for each possible directed hyperedge E = (T, h), where
|T | ≤ k, and where h /∈ T . When aT,h = 1, the hyperedge E is in the chosen spanning
hypertree, while when it is 0, the hyperedge is not in the chosen hypertree.

We model the ordering constraint on the nodes by requiring that the order relationship is
antisymmetric and that there are no 3-cycles in it. In particular, we require that bi,j +bj,i = 1
for all pairs i and j and that bi,j + bj,k + bk,i ≤ 2 for all triplets i, j and k of distinct nodes.

The requirement that chosen hyperedges are properly ordered is modeled by the con-
straint aT,h ≤ bx,h for all nodes x in T . This requires that all nodes in the tail of the
hyperedge are ordered before the head node, for the chosen hyperedge.

Finally, we require that every node has exactly one incoming hyperedge (in the case of
the tree’s root, this will have no tail nodes). This is the constraint

∑

E:E=(T,h) aT,h = 1 for
all nodes h.

The cost of a chosen hypertree is
∑

E=(T,h) aT,hwT,h, where wT,h is the cost of including

the hyperedge E = (T, h) in the tree.

This description gives the following integer linear program:

48



Runtime to find solution
Signal Model optimal within 1%

Donor [−3, +6] HOT-2 0.38s 0.38s
Acceptor [−4, +3] HOT-2 5.97s 1.71s
Acceptor [−20, +3] HOT-2 hours 91.38s

Table 2.2: Finding optimal solution with CPLEX (running time). The time was
measured on a computer with 3Ghz Xeon processor and 4GB memory, running CPLEX 8.1
in Linux under normal load. Note that searching for acceptor models takes much more time
than searching for donor models, even if we consider acceptor sites with windows shorter
than donor sites. As shown in Figure 2.12, the intrasignal dependencies within acceptor sites
are weaker than those in donor sites. This suggests that the branch and bound method used
for solving the integer program cannot decrease the gap between upper and lower bounds
quickly, which makes the instance of the integer program for acceptor sites harder than for
donor sites.

min
∑

E=(T,h)

wT,haT,h, subject to: (2.12)

bi,j + bj,i = 1, for all pairs of nodes i and j,

bi,j + bj,k + bk,i ≤ 2, for all triplets of nodes i, j and k,

aT,h ≤ bx,h, for all hyperedges E = (T, h) and nodes x in T ,
∑

E:E=(T,h)

aT,h = 1, for all nodes h,

aT,h ∈ {0, 1}, for all possible hyperedges E = (T, h),

bi,j ∈ {0, 1}, for all pairs of nodes i and j.

This linear program has O((` + 1)k+1) variables and O((` + 1)k+1) constraints, where
` is the size of the window, and k is the maximum order of a hyperedge. We used the
integer programming solver CPLEX version 8.110 (ILOG Inc., 2003) to solve moderate-sized
instances of these problems, where k = 2 (so all hyperedges have at most two head nodes).
The runtime of the optimization procedure is summarized in Table 2.2. For signals with short
window, the running time is negligible. For signals that require longer windows, finding the
optimal solution requires a long time, but for our entropy based objective function it is quite
easy to find a solution which is provably within 1% of the optimal solution. We did not
experiment with integer programming for orders k > 2.

2.2.5 Greedy Heuristic for Finding a Good HOT Topology

For larger models, we have to resort to heuristic algorithms that do not guarantee to find the
optimal structure. Fortunately, the resulting model topologies still perform well in practice.

49



nG G T Tn A A GG G T Tn A A G

Optimized by CPLEX:

nG G T Tn A A GG G T Tn A A G

Chosen by greedy:

Figure 2.5: Comparison of models inferred by integer programming and a greedy
algorithm. The dashed edges can be reversed without changing the distribution defined by
the model, and therefore the two models are equivalent

We start with a single node in the spanning hypertree T . In each iteration, we add one
more vertex v into the hypertree T , where v is the head of the shortest hyperedge (T, h)
such that T ⊆ T and h /∈ T . This heuristic can be implemented in O(knk+1) time. Since the
hypertrees generated in this way can differ depending on the chosen starting vertex, we run
the algorithm for every vertex as a starting point and choose the best resulting hypertree.
Note that this is just a simple variation of Prim’s algorithm for maximum spanning trees
(Prim, 1957).

The model inferred for donor site window [−3, +6] is shown in Figure 2.5, together
with the optimal model inferred by integer programming. To compare the two models, we
need the following definition and theorem characterizing equivalence classes of probability
distributions defined by underlying directed acyclic graphs of hypertrees.

Definition 21 (Covered edges). An edge (u, v) of a directed acyclic graph is the covered
if vertex u has the same set of parents as vertex v (aside from u being parent of v). Parents
of vertex u are the tails of the edges entering u.

Theorem 22 (Chickering (1995)). When used as topologies for HOT models, two directed
acyclic graphs G and G′ define the same set of probability distributions if and only if graph
G can be transformed to graph G′ by a sequence of reversals of covered edges.

The underlying undirected graph of both models in Figure 2.5 is the same, and the only
difference is an orientation of three edges (highlighted and dashed). According to Theorem
22, these edges can be reversed, without changing the set of probability distributions that
are represented by these models. In other words, the two models are equivalent.

2.3 Experiments

We tested the usefulness of higher order models at identifying splicing signals in the human
genome. Our experiments show that there are some cases where allowing multiple non-

50



Donor sites Acceptor sites
Name Abbrev. Length True False True False
SpliceDB SpliceDB N/A 14 558 N/A 14 558 N/A
Chromosome 22 (training) chr22-training 17.9MB 1 566 1 040 152 1 576 2 656 849
Chromosome 22 (testing) chr22-testing 16.7MB 1 676 1 693 151 1 688 2 515 278

Table 2.3: Characteristics of data sets used for testing of signal models. Only
canonical donor (GT) and acceptor (AG) sites were considered as true sites. We list any
occurrence of GT or AG that was not marked as a true splice site as a false donor or false
acceptor site respectively. The difference in number of splice sites is caused by incomplete
gene annotations

adjacent dependencies can increase specificity of the models, but the improvement is quite
slight; this is similar to the results of Cai et al. (2000), who studied tree models.

However, one useful finding is that higher order tree models can be better in predicting
the probability that a given position actually is a signal. This probability can be used in
other programs, such as probabilistic gene finders. Perhaps our most interesting result is that
using a higher order tree model allows a substantially better prediction of the probability
that a position is a donor site than is available with other local sequence-based measures.

We used two training data sets in our experiments. First, we used a data set of gene
annotations in chromosome 22, as described in Appendix A, which was split into training
and testing sets. The chromosome 22 training set was mostly used for estimation of the
background model, as well as to calibrate the frequency of splice sites. Second, we used
a database of human splice sites SpliceDB (Burset et al., 2000) as the main training set.
The dataset was cleaned for overlaps with the chromosome 22 testing set as described in
Appendix A. The data sets are summarized in Table 2.3. In the experiments, we considered
only canonical splice sites conforming to the GT/AG consensus at the splice junctions.

2.3.1 Using Generative Models as Classifiers

In classification, we want to assign each sequence s to one of the two classes: “signal” or
“background”. We can perform classification based on a score obtained from the signal
model. By setting a threshold T , we can classify all the sequences s with score lower than T
as “background”, and all the sequences with score higher than T as “signal”. By changing
the threshold, we can control balance between sensitivity and specificity of such a method.

For a given sequence s of length `, a generative probabilistic model M+ computes the
probability Pr(s|M+) that the sequence s is generated by the signal model. For simplicity,
we assume that non-signal positions in the sequence can be represented by a background
model M− and that the signal occurs with probability Pr(M+). Under these assumptions,
we can compute the probablity Pr(M+|s) that a particular sequence S is an occurence of the

51



signal, using Bayes formula as follows:

Pr(M+|s) =
Pr(s|M+) · Pr(M+)

Pr(s|M+) · Pr(M+) + Pr(s|M−) · (1 − Pr(M+))
. (2.13)

The values of Pr(M+|s) are more suitable for classification than Pr(s|M+). The problem
with Pr(s|M+) is that a high probability of a sequence s being generated by the model
does not necessarily mean that the sequence represents the signal. Some sequences may be
common in non-signal regions, and thus have higher probability Pr(s|M+) simply because
they are more likely to occur in general.

To specify the background model M−, we make the assumption that in contrast to
the signal model, the background model should be positionally independent. We use a
simple fifth order Markov chain trained with parameters estimated from the chromosome 22
training set chr22-training. Fifth order Markov chains are commonly used to model generic
DNA sequence (Burge, 1997). The frequency of the signal occurrence is estimated from the
chr22-training as well.

Note that in the chromosome 22 testing set, less than 0.1% of candidate sites are true
donor/acceptor sites. Classifying such sites is extremely difficult. Many machine learning
methods assume that 50% of all candidate sites in a testing data sets are true splice sites.

2.3.2 Accuracy Measures

We used two types of accuracy measures in our experiments. The first type is sensitivity
and specificity, computed in the same way that we described in Section 1.2.4. In particular,
if we denote the number of true positives as TP, false positives as FP, true negatives as
TN, and false negatives FN, we measure classification accuracy with the sensitivity SN =
TP/(TP + FN) and specificity SP = TP/(TP + FP). If we lower the threshold T , the
sensitivity increases and the specificity decreases.

For a given model, we can plot a curve depicting the tradeoff between specificity (x-
axis) and sensitivity (y-axis), and compare different models. In such plots, the curve of
an ideal classifier would occupy the top and right boundary of the graph, passing through
the top-right corner (100% sensitivity and specificity), while a random classifier would have
specificity close to the prior frequency of the signal for almost all levels of sensitivity.

We can also display this information as a receiver operating characteristic (ROC) curve
(Metz, 1978). In a ROC curve, we plot the percentage of false positives (x-axis) out of all
negatives vs. sensitivity—percentage of true positives out of all positives (y-axis). The ROC
curve of an ideal classifier would pass through the top-left corner (100% true positives and
0% false positives), while the ROC curve of a random classifier would be a straight line from
(0, 0) to (1, 1). One of the advantages of ROC curves is that the results do not depend on the
prior frequency of the signal in the testing set. However, sometimes important differences
are more visible from sensitivity/specificity plots. An example of the sensitivity/specificity
plot and the ROC curve for a PWM model is shown in Figure 2.6.

Our interest in gene finding and generative probabilistic models has inspired another
type of accuracy measure. In these applications, signal models are not used as classifiers,

52



0.00 0.02 0.04 0.06 0.08
Specificity 

0.0

0.2

0.4

0.6

0.8

1.0
Se

ns
it

iv
it

y 

PWM-0

0.0 0.2 0.4 0.6 0.8 1.0
False positives

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e 
po

si
ti

ve
s 

PWM-0

Figure 2.6: Graphs comparing sensitivity and specificity. Model PWM-0 for donor
splice site was trained on SpliceDB set and evaluated on chr22-testing. Left: Sensitivity vs.
specificity plot. Right: ROC curve

but rather to estimate Pr(M+|s), the probability that the evaluated sequence is a signal.
This estimate is used and combined with other parts of the model. Therefore, this estimate
should be as close to the actual probability that the sequence is a signal as possible.

Let λs be the estimate of Pr(M+|s) given by the model of a signal. Intuitively, λs should
represent the fraction of true positives in a set of sequences that have similar probability
Pr(M+|s). To ascertain whether this assumption is true for our models, we first collect other
sequences from the testing set, for which the model predicted a probability similar to λs.
In particular, we choose the 1 500 samples from our test set whose estimated probability is
closest to λs, but smaller, and analogously the 1 500 sample with closest probabilities, but
higher. Then we compute the fraction of true positives λ′

s in this set and compare λs and λ′
s

by computing the correlation coefficient of λs and λ′
s over all sequences s in the testing set.

We call this measure a reliability score.

In what follows, we abbreviate the various chosen signal topology models as follows:
PWM-k is the position weight matrix of kth order, TREE is the first order HOT model,
and HOT-k are higher order models of order k. HOT models of order greater than one
were optimized by the greedy heuristic method. We also confirmed that the HOT-2 models
optimized by the heuristic and by integer programming were the same.

2.3.3 Donor Site Experiments

In this experiment, we want to determine whether our new structured HOT models increase
the performance of donor site signal classification, and how well they compare to unstructured
PWM models of the same order.

For our experiments, we represented the donor site by the window [−6, +3] of length 9
around the site. In addition to the models presented in this chapter, we also implemented

53



Sensitivity level Reliability
Model 20% 40% 60% 80% 95% score
Random 0.1% 0.1% 0.1% 0.1% 0.1% N/A
PWM-0 7.2% 5.0% 3.4% 1.7% 0.7% 0.953
PWM-1 7.5% 5.5% 4.0% 2.6% 1.1% 0.959
TREE 7.5% 5.5% 4.0% 2.5% 0.9% 0.973
PWM-2 7.9% 5.7% 3.9% 2.5% 1.0% 0.967
HOT-2 7.6% 5.6% 4.1% 2.7% 1.2% 0.980
PWM-3 7.7% 5.7% 4.1% 2.6% 1.1% 0.971
HOT-3 7.9% 6.0% 3.9% 2.6% 1.2% 0.986
MDD 7.7% 5.3% 4.0% 2.6% 1.1% 0.982

Table 2.4: Specificity at various sensitivity levels and reliability score of donor
site models. The donor site models were trained for window [−6, +3] on the training set
SpliceDB and tested on the testing set chr22-testing. For each model, the table shows the
specificity at levels of sensitivity 20%, 40%, 60%, 80%, and 95%. The column labeled random
shows the estimated specificity of classifier randomly ordering samples and then assigning
increasing scores in this random order.

the maximal dependence decomposition (MDD) model of Burge (1997). MDD consists of a
set of PWMs of order 0. The PWM to be used for a particular sequence is chosen using a
decision tree. For our experiments with MDD, we used the decision tree presented by Burge
(1997) that involves the four nucleotides at positions −1, −2, +5, and +6, but we retrained
the PWMs.

Table 2.4 shows the summary of experiments with donor site models. The most significant
improvement in accuracy is between zeroth order models and higher order models, with the
PWM-0 model being clearly inferior to all others. In both unstructured PWM models and
structured HOT models, there is a modest increase in specificity with increasing order.

We can also see that the accuracy is always slightly improved by considering struc-
tured models (HOTs) compared to the unstructured models (PWMs). Figure 2.7 shows
the comparison of sensitivity and specificity of PWM-2 and HOT-2 models. However, such
improvement is not consistent over the whole range of sensitivity levels. In some cases, the
improvement is confined to mostly low sensitivity (TREE and HOT-3), in other cases im-
proving high sensitivity range (HOT-2). The improvement can easily be seen on the ROC
curves—Figure 2.8 shows a comparison of ROC curves of PWM-2 and HOT-2.

With respect to the reliability score, the structured models clearly win out over unstruc-
tured models. Figure 2.9 suggests that this is most likely because unstructured models tend
to systematically under-value low scoring patterns, and over value high scoring patterns.

From the tested models, the best model to use in gene finding seems to be HOT-3, though
we note that the differences between HOT-3 and some of the other models are very small.
The MDD model, which was commonly used in many gene finding programs since it was
suggested and implemented in Genscan (Burge, 1997), seems to be closest in performance

54



0.00 0.02 0.04 0.06 0.08
Specificity 

0.0

0.2

0.4

0.6

0.8

1.0

Se
ns

it
iv

it
y 

PWM-0
PWM-2
HOT-2

Figure 2.7: Comparison of donor site prediction for PWM-2 and HOT-2. The
specificity slightly improves in the high-sensitivity range by switching from the unstructured
model to the structured HOT model of the same order.

55



0.0 0.1 0.2 0.3 0.4
False positives

0.6

0.7

0.8

0.9

T
ru

e 
po

si
ti

ve
s 

PWM-0
PWM-2
HOT-2

Figure 2.8: Detail of ROC curve for second order models of donor site. The ROC
curve of HOT-2 dominates the ROC curve of PWM-2, showing the modest advantage of
a structured model over its unstructured alternative. However, most of the improvement
occurs for scores recalling more than 10% of false positives. Such a false positive rate is
impractical if we are using the model as a classifier, since at this rate the absolute number
of false positives will be much higher than the absolute number of true positives.

56



0.00 0.05 0.10
Model score 

0.00

0.05

0.10

T
ru

e 
po

si
ti

ve
s

PWM-0
PWM-3
HOT-3

Figure 2.9: Score vs. actual fraction of true positives. The model’s score, representing
an estimate of the expected true positive rate is correlated with the actual fraction of true
positives. For a sequence s with score λs, the actual number of true positives is computed by
counting the fraction of true positives among the examples with scores closest to λs. Out
of the three models, HOT-3 exhibits the best correlation of model scores with the actual
fraction of true positives.

57



0.00 0.02 0.04 0.06 0.08
Specificity 

0.0

0.2

0.4

0.6

0.8

1.0

Se
ns

it
iv

it
y 

PWM-0
MDD
HOT-3

Figure 2.10: The HOT-3 model dominates MDD model of donor site

to HOT-2, with HOT-3 being moderately superior (Figure 2.10 and Table 2.4).
Table 2.5 shows the inferred dependencies in all structured models. It seems that the

most important position determining the form of the donor splice site is position −1. In
HOT-2, this position is a parent to all positions but +3, and in HOT-3 it is a parent to all
other positions. This trend is not apparent from Figure 2.1 on page 36, from which the most
significant position seems to be +5 (consequently, the position −1 does not appear much in
the tree model). It seems that positions +5 and −1 in fact work together as a pair and their
influence becomes significant only if considered as such.

2.3.4 Relationship Between Model Order and the Amount of Train-

ing Data

In this section, we study how the performance of the signal models change with increasing
amount of training data. In particular, we were interested in how much training data is
needed for models of higher order to avoid overfitting, and whether the structured HOT
models are more prone to overfitting than their unstructured counterparts.

Figure 2.11 shows that the order of the models which should be used indeed depends
on the amount of training data that is available. We have randomly created subsets of the
training set of size 1 000, 4 000, 7 000, 10 000, and 13 000 splice sites, and compared the
specificity of both unstructured and structured models for each of these training sets at
sensitivity level 90%.

58



Position Neighbors in TREE Parents in HOT-2 Parents in HOT-3
−3 −2 −2,−1 −2,−1, +6
−2 −3,−1, +6 −1, +5 −1, +5, +4
−1 −2, +5
+3 +5 +4, +5 −1, +5
+4 +5 −1, +5 −1, +5, +3
+5 −2, +3, +4 −1 −1
+6 −1 −1, +5 −1, +3,−2

Table 2.5: Structures inferred for structured HOT models. The hypertree topologies
were trained on the data set SpliceDB. For TREE, we show both parents and children of
each position, since all the trees which differ only in rooting have the same performance.
For HOT-2 and HOT-3 we only show immediate ancestors. The nucleotides at positions +1
and +2 are always GT, and they have no effect on the rest of the model, forming isolated
vertices in the model topologies. Note that the positions −1, −2, +5, and +6, identified as
important positions in the MDD model (Burge, 1997), are also identified by our models.

5000 10000
Amount of training data

1.2

1.4

1.6

Sp
ec

if
ic

it
y 

(%
) PWM-0

PWM-1
PWM-2
PWM-3
TREE
HOT-2
HOT-3

Figure 2.11: Specificity of donor models at 90% sensitivity with increasing amount of training
data

59



We test the statistical significance of our results by using McNemar’s test (McNemar,
1947) as outlined by Dietterich (1998). For two classifiers A and B and a test set of inde-
pendent samples, this test compares the number of samples n10 that were classified correctly
by A, but incorrectly by B, and number of samples n01 that were classified correctly by B,
but incorrectly by A. The null hypothesis is that the two classifiers have the same error rate
on the test set. The McNemar statistics

χ2 =
(|n01 − n10| − 1)2

n01 + n10

(2.14)

is distributed approximately as chi-squared distribution with 1 degree of freedom, and the
probability that this quantity is greater than 3.841459 is less than 5%. In such a case, we
may reject the null hypothesis.

It seems that it is always better to use at least the first order model. If we have only
a small amount of data, TREE seems to be the best model to use, while the other models
overfit to the training data. With an increasing amount of data, HOT-2, and later HOT-3
become the best models. Adding structure to the models does not seems to increase the
chance of overfitting, except when we have very small amounts of data. All the results we
mentioned are statistically significant, except for the differences between the HOT-2 and
HOT-3 models for large testing set sizes (10 000 elements and more).

Thus in this case, we indeed experience a tradeoff between the amount of available data
and the amount of intra-signal dependencies the signals can capture. Figure 2.11, together
with Table 2.4, suggest that if we are using an unstructured PWM model of order k ≥ 2 and
we increase the amount of available training data, it is in general more profitable to change
the model to the structured model of the same order k, rather than to the PWM model of
order k + 1.

2.3.5 Acceptor Site Experiments

We also studied acceptor sites on the window [−20, +3] around the splice site and used
structured and unstructured models of order up to 3. The results are shown in Table 2.6.

In case of acceptor sites, the structured models do not bring any advantage compared
to high order PWMs. Indeed, compared to dependencies between neighboring nucleotides,
non-adjacent dependencies seem to be weak (see Figure 2.12). Large changes in specificity
are associated with an increase of order up to two, with only a small advantage brought by
the third-order model compared to the second-order model. The results show PWM-3 as the
best model to use for acceptor sites.

2.3.6 Signal Models in Gene Finding

We also evaluated a variety of signal models in the context of gene finding. We used our
gene finder ExonHunter described in Chapter 5, but we modified its signal models as follows.
We only used start site, stop site, donor, and acceptor site models (removing all other signal
models from the HMM). For all experiments, start sites and stop sites were always PWM-1.

60



Sensitivity level Reliability
Model 20% 40% 60% 80% 95% score
Random 0.07% 0.07% 0.07% 0.07% 0.07% N/A
PWM-0 2.7% 1.8% 1.3% 0.8% 0.4% 0.838
PWM-1 4.8% 2.8% 1.9% 1.1% 0.5% 0.943
TREE 4.7% 2.8% 2.0% 1.1% 0.5% 0.944
PWM-2 6.0% 3.5% 2.4% 1.3% 0.6% 0.962
HOT-2 5.8% 3.7% 2.2% 1.3% 0.6% 0.964
PWM-3 6.1% 3.8% 2.3% 1.4% 0.6% 0.964
HOT-3 6.3% 3.5% 2.1% 1.2% 0.5% 0.963

Table 2.6: Specificity and reliability score of acceptor site models. The models of
acceptor site were trained for window [−20, +3].

-20-19-18-17-16-15-14-13-12-11-10-9 -8 -7 -6 -5 -4 -3 -2 -1+1+2+3

-20
-19
-18
-17
-16
-15
-14
-13
-12
-11
-10
-9
-8
-7
-6
-5
-4
-3
-2
-1
+1
+2
+3

0.016
0.031
0.047
0.063
0.078

Figure 2.12: Pairwise dependencies in human acceptor splice site. Dependencies
as observed in the human chromosome 22 training set. The color intensity represents the
amount of dependency between the two positions, H(i) + H(j) − H(i, j).

61



(Donor model, Acceptor model)
(PWM-0,PWM-0) (PWM-3,PWM-3) (HOT-3,PWM-3)

Nucleotide Sensitivity 75% 76% 77%
Nucleotide Specificity 77% 77% 77%
Exon Sensitivity 60% 62% 63%
Exon Specificity 62% 62% 63%

Donor Sensitivity 70% 72% 72%
Donor Specificity 73% 72% 72%
Acceptor Sensitivity 68% 70% 70%
Acceptor Specificity 70% 69% 70%
Start Sensitivity 48% 58% 68%
Start Specificity 38% 37% 40%
Stop Sensitivity 48% 51% 63%
Stop Specificity 34% 35% 35%

Table 2.7: Performance of signal models in gene finding. Performance on the data set
encode-small. The table heading shows combination of donor site and acceptor site model
used. In all experiments, start site and stop site are modeled by PWM-1.

In the first experiment, we used PWM-0 for both donor and acceptor sites. In the second
experiment, we increased order of both models to PWM-3. Finally, in the third experiment,
we changed the donor model from unstructured PWM-3 to structured HOT-3.

All models were trained on the combination of training sets described in Chapter 5 and
the repeat advisor was included for decoding (see Chapter 5 for details). Predictions were
obtained on the data set encode-small, described in Appendix A. The data set contains
1.5MB of sequence with total of 41 genes with 110 transcripts (2.68 transcripts per gene),
and 1228 exons (some overlapping).

We observed a modest improvement in both nucleotide and exon statistics, though the
improvement is relatively small between unstructured and structured models. In fact, the
statistics for donor and acceptor site sensitivity and specificity are almost identical in all three
experiments. However, a very surprising effect of introducing the structured HOT-3 model
for donor sites is a large improvement of the model’s ability to correctly locate start sites and
stop sites, even though the model for start site and stop site is the same first order PWM
model in all experiments. This result suggests that in gene finding, there are many factors
playing together in non-trivial combinations to obtain good gene structure predictions. The
changes in a model of one element may cause surprising changes in predictions of other
elements.

2.4 Parallel Work

Barash et al. (2003) suggest using Bayesian networks for the related problem of identification
of protein binding sites. To optimize the structure of the model, they use BDeu metrics

62



(Heckerman et al., 1995), and a heuristic search procedure. They show that the models of
binding sites that they learn achieve better false positive rates than PWM models of binding
sites, using results of genome-wide yeast localization assays (Lee et al., 2002).

Castelo and Guigó (2004) uses a similar approach for identification of splice sites, with a
different heuristic to search through the model parameter space. Our main criticism is that
they use a testing set which contains the same number of positive sites and decoys, thus
significantly simplifying the problem, and they only show results for 95% sensitivity.

In our work, we suggest using integer programming instead of a heuristic method to
optimize the network structure, especially for models with small window size `, where the
resulting integer programs can be solved in negligible time. The integer program does not
require the use of our entropy-based measure, which maximizes the likelihood of the model.
Other common measures, such as KL-divergence or BDeu metrics could be used instead.

Yeo and Burge (2003) show a different generalization of position weight matrices and
the maximal dependence decomposition model introduced by Burge (1997). They use the
maximum entropy principle, where one seeks the probability distribution that maximizes
the Shannon entropy subject to satisfying constraints that are based on marginalized ob-
servations from the training set. Different sets of constraints result in different probabilistic
distributions. Yeo and Burge (2003) select the constraints by a greedy heuristics.

2.5 Summary

In this chapter, we explored the problem of probabilistic modeling of splice site signals in
DNA sequences by modeling non-adjacent dependencies in the signals. We introduced a
new class of models, higher order trees (HOTs), which are essentially Bayesian networks
with limited in-degree of variables. The limited in-degree is needed to support the trade-off
between the amount of data available for training and amount of dependencies captured by
the model. If the in-degree were not limited, the models would overfit the training data.

We suggested a new technique, based on integer programming and the maximum likeli-
hood principle, to find the optimal structure of such models. Integer programming can be
used to quickly find the optimal solution for small instances of the problem, or a solution
close to optimal for large instances of the problem.

Finally, we showed that introducting structured HOT models into modeling of donor
splice sites improves accuracy, but has no have any impact when used to acceptor splice
sites, as they do not exhibit strong non-adjacent dependencies. Using higher-order and
structured models in gene finding increases the accuracy of gene finding. We also made an
interesting observation that the changes in donor site do not seem to affect the accuracy of
donor site prediction by themselves, but have a large impact on the accuracy in other parts
of the model (such as prediction of start sites and stop sites).

Finally, the structure of HOT models is very intuitive. Thus analysis of the structure
of learned HOT models, applied to gene finding or other similar problems in bioinformatics
(such as location of transcription factor binding sites, or location of promoters) may reveal
mechanisms by which proteins bind to the DNA sequence to perform particular functions.

63





Chapter 3

Length Distributions in HMMs

In this chapter, we examine a tradeoff between model faithfulness and the running time of
an HMM’s decoding algorithm in connectin with representing the length distributions of
elements of biological sequences. The following example demonstrates the issue.

Assume that we model a sequence element (for example an intronic region) with a single
state of an HMM. To allow such a region to be longer than 1, we include a self-loop transition,
with transition probability p. The probability that the HMM stays in this state for exactly
` steps is (1−p)p`−1. Therefore the length distribution of intronic regions generated by such
a model will be geometric.

The length distributions of biological sequence elements are far from geometric. Figure 3.1
shows actual length distributions of various sequence elements necessary for gene finding, and
Figure 3.2 on page 70 shows their best approximation by geometric distributions. If each such
element is represented by a single state, this problem is traditionally solved by introducing
generalized HMMs (Rabiner, 1989). In generalized HMMs, the self-loop transitions are
replaced by explicit state durations. Upon entering a state, the generative model first chooses
the number of symbols that will be generated in this state. The length distribution is defined
explicitly for each state. This requires a change in the Viterbi algorithm, increasing the
running time from O(nm2) to O(n2m2), where n is the length of the sequence and m is the
number of the states of the HMM. A running time that is quadratic in the length of the
sequence is, however, impractical for the analysis of DNA sequences several megabases long.

We cannot offer a better solution for the general class of length distributions. However,
we observe that the length distributions commonly occurring in gene finding are all well
approximated by the class of distributions with geometric tails. In this class, the accuracy
of the fit of the distribution to the training data is determined by a parameter t, balancing
the accuracy and running time of sequence annotation.

In particular, we offer two modifications of the Viterbi algorithm to analyze such models:
one with running time O(ntm + nm2) for the cases when t is small, and one with running
time O(n

√
tm2) for the cases when t is large, which achieve more coarse approximation of the

distribution. Our solution provides a range of modeling options to balance the faithfulness
of the model with the decoding time.

Durbin et al. (1998) proposed a different solution, based on replacing a single state with

65



(a) Internal exons (b) Intergenic regions

0 200 400 600 800 1000
Length

0

50

100

150

200

250

0 20000 40000 60000
Length

0

5

10

15

(c) Introns

0 200 400 600 800 1000
Length

0

20

40

60

80

Figure 3.1: Length distributions in Human chromosome 22. Graphs were obtained
from the data set chr22-training prepared from sequence annotation based on RefSeq collec-
tion (Pruitt et al., 2005) downloaded from UCSC genome browser (Karolchik et al., 2003)
in July 2005. More details on the data set can be found in Appendix A

66



a group of states organized in a specific topology, yielding a non-geometric distribution.
However, if such a model is decoded by the Viterbi algorithm, we show that the decoding
result is equivalent to that which would arise from much simpler HMM with geometric length
distributions only.

Finally, it is not always desirable to model a sequence element by a single state. For
example, to model exonic sequences, we require a 3-periodic Markov chain, which is modeled
by 3 states. In such a case, we would like to set the length distribution for a group of states
representing the sequence element, instead of setting it independently for each state in the
group. We solve this problem by introducing boxed HMMs—a simple hierarchical extension
of HMMs, and giving an appropriate decoding algorithm for boxed HMMs.

Most of the results presented in this chapter were published in Brejová and Vinař (2002)
(Sections 3.2 and 3.5) and Brejová et al. (2005) (Section 3.3).

3.1 Generalized HMMs with Explicit State Duration

To introduce the notion of generalized HMMs, we need to modify the definitions of a hidden
Markov model, state path, and the probability of generating sequence/state path pairs as
follows:

Definition 23 (Generalized HMMs). A generalized hidden Markov model is a tuple
(V, Σ, o, e, a, σ, δ), where the set of states V , the output alphabet Σ, the order o of every
state, the emission probability table e, the transition probability table a, and the start state σ
are defined as for an ordinary hidden Markov model (Definition 1 on page 4).

The function δπ, for every state π, is a function from {1, 2, . . .} to [0, 1] defining the
probability distribution of the length of time (duration) the model spends in state π.

In ordinary HMMs, the generative process always emits in the current state a single
symbol, followed by a transition to (potentially the same) state according to the transition
probabilities. We now modify this process: upon entering state π, we first choose the duration
d of the state from the length probability distribution δπ. Then d symbols are generated
according to the state’s emission probabilities eπ. Only after d symbols are generated in π,
the model follows a transition to a new state (which may be any state in the HMM including
π), according to the transition probabilities aπ.

Ordinary HMMs can be viewed as a special case of generalized HMMs. We can simply
set the duration of each of the states in the original HMM to one. On the other hand, the
following slightly more complicated construction will help us to illustrate our modifications
to generalized HMMs. In this construction, we will remove self-loops from the model as
follows. States without self-loops will have length distribution δπ(1) = 1, δπ(`) = 0 for all
` > 1. The length distribution of states with self-loops, where aπ,π = p, will be geometric,
i.e. δπ(`) = p`−1(1− p). We also have to remove self-loops from the transition function, and
renormalize the transition probabilities.

One problem with the above definition is that the length distribution is defined as a
function over all positive integers. Thus, the description length of such a generative model

67



is potentially infinite. This is usually solved by either imposing an upper bound on the
duration of a state (often used in speech recognition applications), or by defining the length
distribution as a function with few parameters (as in the example above).

These changes to the generative process are captured in the following definition of a state
path and the joint probability of generating a sequence and a state path.

Definition 24 (State path in a generalized HMM). A state path for a generalized
HMM is a sequence π = πb1:e1

1 πb2:e2

2 . . . πbk:ek

k , where πi is a state of the generalized HMM, π1

is the start state, b1 = 1, ei ≥ bi (for all 1 ≤ i ≤ k), and bi+1 = ei + 1 (for all 1 ≤ i < k).
In this state path, the model emits symbols sbi

to sei
(inclusively) in state πi, and then

transits to state πi+1. More precisely, the probability of generating the sequence of symbols
s = s1 . . . sn by the state path π, where ek = n, is defined as follows:

Pr(π, s) = δπ1
(e1 − b1 + 1) · emit(π1, b1, e1) ·

k∏

i=2

aπi−1,πi
· δπi

(ei − bi + 1) · emit(πi, bi, ei), (3.1)

where emit(π, b, e) =
∏e

j=b eπ(sj) is the emission probability of the sequence sb . . . se in
state π.

Note that emission probabilities may be of order higher than zero. Treatment of higher
order emissions is automatically included in our definitions and algorithms by use of the
shortened notation for emission probabilities as introduced on page 4.

To compute the most probable state path that generates a particular sequence of symbols,
a modification is required to the Viterbi algorithm. In each step of the dynamic programming,
in addition to examining all potential last transitions, we also have to consider all possible
durations of the last state. If P (i, v) is the probability of the most probable path generating
the first i symbols of the sequence s and finishing in state v, assuming that in the next step
the model will transit out of state v or finish, then the dynamic programming is characterized
by the following recurrence:

P (i, v) = max
1≤j≤i

[emit(v, j, i) · δv(i − j + 1) · max
u∈V

P (j − 1, u) · a(u, v)] (3.2)

The base cases are the same as for the regular Viterbi algorithm. The straightforward
implementation of this dynamic programming gives running time of O(n3m2), where n is
the length of the sequence and m is the number of the states, since the computation of
emit(v, j, i) takes O(n) time in the worst case. However, it is possible to reduce the running
time to O(n2m2) using an O(nm) pre-computation time, after which it is possible to compute
emit(v, j, i) in constant time for any i and j. The method we show below is analogous to
the one given by Mitchell et al. (1995).

First, assume that all emission probabilities are non-zero. Then for each state v and
each i, we pre-compute L(v, i) = emit(v, 1, i). This can be computed in linear time, since
L(v, i) = L(v, i − 1) · ev(si), where L(v, 0) = 1. To compute emit(v, i, j), it is enough to use
a single division operation: emit(v, i, j) = L(j)/L(i − 1).

68



If we allow zero emission probabilities, at some point i the value of L(v, i) may become
zero, and in such case all values of L(v, j) for j > i will also be zero. Then it is no longer
possible to compute emit(v, i, j) as outlined above. To overcome this problem, whenever the
value of L(v, i) becomes zero, we replace it with 1. We will also maintain an index K(v, i),
which is the last index when such a replacement occurred (i.e., K(v, i) = i if i = 0, or
ev(si) = 0, and K(v, i) = K(v, i − 1) otherwise). To compute emit(v, i, j), we distinguish
two cases:

• if K(v, j) < i, then emit(v, i, j) = L(j)/L(i − 1),

• otherwise, emit(v, i, j) = 0.

In either case, we can now compute the function emit(v, i, j) in constant time, and the
running time of the Viterbi algorithm for generalized HMMs is O(n2m2).

3.2 Distributions with Geometric Tails

Generalized hidden Markov models can be used to accurately model any length distribution.
However, the running time O(n2m2) of the modified Viterbi algorithm for generalized HMMs
is not practical for the analysis of DNA sequences that can be several megabases long. On
the other hand, in ordinary hidden Markov models we can employ the faster version of the
Viterbi algorithm with running time O(nm2), but in this case, the length distributions are
forced to be approximated by geometric distributions. An example of such an approximation
can be seen in Figure 3.2.

A linear-time solution is needed for the analysis of long DNA sequences, yet using geomet-
ric length distributions will decrease the performance of the model. One way of decreasing
the running time is to restrict the family of length distributions allowed in the generalized
states. We propose geometric-tail distributions for this purpose. They can model length dis-
tributions of many elements of biological sequences more accurately, while not incurring the
decoding slowness characteristic for generalized HMMs. A geometric-tail length distribution
joins two distributions: the first part is an arbitrary length distribution, and the second part
is a geometric tail (see the example in Figure 3.3).

Definition 25 (Geometric-tail distribution). A geometric-tail distribution δ of order t
is defined by a t-tuple (δ1, δ2, . . . , δt−1, q), where 0 ≤ q < 1 is the coefficient of the geometric

tail starting at length t of the distribution. We define δt so that

(
t−1∑

i=1

δi

)

+
δt

1 − q
= 1. In

this distribution,

δ(x) = Pr[X = x] =

{
δx, if x ∈ {1, . . . , t},
δt · qx−t, if x > t.

(3.3)

The geometric tail is motivated by the availability of an efficient decoding algorithm
for such distributions, as we will see in Section 3.2.2. The running time of the decoding

69



(a) Internal exons (b) Intergenic regions

200 400 600 800 1000
Length

0.002

0.004

0.006

0.008

0.010

20000 40000 60000
Length

0.00002

0.00004

0.00006

(c) Introns (d) Introns (detail)

2000 4000 6000 8000 10000
Length

0.001

0.002

200 400 600 800 1000
Length

0.001

0.002

Figure 3.2: Approximation of length distributions by geometric distributions. Solid
line represents the smoothed distribution of sequence elements on chromosome 22. Dashed
line represents the maximum likelihood approximation by geometric distribution.

70



200 400 600 800 1000
Length

0.000

0.002

0.004

0.006

0.008

0.010

Figure 3.3: Example of a geometric-tail distribution. A geometric-tail distribution is
composed of two parts: the first part is an arbitrary length distribution, the second part is
geometric. The vertical line represents the boundary of the two parts, at t = 130.

71



algorithm is O(nmt + nm2), where t is the start of geometric tail, n is the length of the
sequence, and m is the number of states in the HMM. This is practical even for long DNA
sequence, as long as we use distributions with moderate values of t.

Moreover, this variety of distributions (including the tail section) is well suited for mod-
eling the lengths of many biological sequence elements that have most of the probability
mass concentrated in relatively short lengths, but where much longer sequences do sporad-
ically occur. The geometric tail assigns a non-zero probability to a region of any length,
so we do not exclude any possible feature by setting the upper bound too small. Also, the
geometric tail has only one parameter, q, which measures how quickly the tail decays. This
is advantageous, since the probability distribution with only a single parameter is much eas-
ier to estimate from sparse data without risk of overfitting the training data. On the other
hand, the densely populated core region of the distribution, where the δi values are explicitly
enumerated, can be estimated simply by the smoothed empirical distribution of the training
data. If appropriate, we can also stipulate a lower bound on the length of an element by
assigning zero probability to all smaller lengths.

3.2.1 Maximum Likelihood Training

Assume we have a training sample of lengths in which the length i occurs fi times. In this
section, we derive a maximum likelihood training method for geometric-tail distributions,
with a fixed start of geometric tail t. The tail t is then set manually, based on the properties
of a particular distribution, and the running time requirements for the decoding algorithm.
In general, by increasing the value of t, we achieve better approximation.

We want to use the training sample to estimate the parameters (δ1, . . . , δt−1) and q of
the geometric-tail distribution δ of order t. The parameters of the head of the distribution
δ1, . . . , δt−1 and the parameters of the geometric tail δt and q can be optimized separately,

as long as we fix the probability mass p =

t−1∑

i=1

δi.

Lemma 26 (Maximizing likelihood of the distribution head). The likelihood of the
sample f1, . . . , ft−1 corresponding to the head of the geometric-tail distribution, subject to
t−1∑

i=1

δi = p, is maximized by setting δi = p · fi/M , where M =

t−1∑

i=1

fi.

Proof. The logarithm of the likelihood of the training data set for a given set of parameters
of the distribution head is:

log Pr(f1, . . . , ft−1 | δ1, . . . , δt−1) = log
t−1∏

i=1

δfi

i =
t−1∑

i=1

fi log δi (3.4)

Set δi = p · fi/M , and let us consider any other set of parameters δ′1, . . . , δ
′
t−1. Then, since

72



log x ≤ x − 1 and p/M is a positive constant, we have:

t−1∑

i=1

δi log δ′i/δi ≤
t−1∑

i=1

δi(δ
′
i/δi − 1) =

t−1∑

i=1

δ′i −
t−1∑

i=1

δi = 0

t−1∑

i=1

fi log δ′i/δi ≤ 0

t−1∑

i=1

fi log δ′i ≤
t−1∑

i=1

fi log δi

Thus our set of parameters δ1, . . . , δt−1 maximizes the likelihood of the training set, which
is what we wanted to prove.

Lemma 27 (Maximizing likelihood of the distribution tail). The likelihood of the
sample ft, ft+1, . . . corresponding to the geometric tail of the geometric-tail distribution, sub-
ject to

∑∞
i=t δi = (1 − p), is maximized by setting:

q =

∞∑

i=t

(i − t)fi

∞∑

i=t

(i − t + 1)fi

(3.5)

δt = (1 − p)(1 − q) (3.6)

Proof. Since the probability of length i ≥ t in the geometric tail is δt · qi−t, to normalize the
distribution to overall mass of (1−p), we have to set δt = (1−p)(1− q). Thus the logarithm
of the likelihood of the training set in the distribution tail is:

log Pr(ft, ft+1, . . . | δt, q) =
∞∑

i=t

log((1 − p)(1 − q)qi−t)fi

=

∞∑

i=t

fi · (log(1 − p) + log(1 − q) + (i − t) log q) (3.7)

Since log(1 − p) is constant, we have to maximize
∞∑

i=t

fi log(1 − q) + fi · (i − t) log q (3.8)

This function is strictly concave, and by taking a derivative with respect to q, we find that
it is maximized when

q =

∞∑

i=t

(i − t)fi

∞∑

i=t

(i − t + 1)fi

, (3.9)

73



which is what we wanted to prove.

Now it remains only to assign a proper mass to both head and tail sections of the
geometric-tail distribution.

Theorem 28 (Training geometric-tail distributions). To maximize the likelihood of
the sample f1, f2, . . . by a geometric-tail distribution with tail starting at position t, we set
the probability of head p = M/M ′, where M is the number of samples of length less than t,
and M ′ is the number of all samples.

The maximum likelihood can be then maximized separately in the head section by using
Lemma 26 and in the tail section by using Lemma 27.

Proof. For a given value of p, we can use Lemma 26 and Lemma 27 to estimate the parameter
of head an tail of the geometric-tail distribution. Thus, the logarithm of likelihood of the
training set in the geometric-tail distribution is:

log Pr(f1, . . . | p) =
t−1∑

i=1

fi · log

(

p · fi

M

)

+
∞∑

i=t

fi · [log(1 − p)(1 − q) + (i − t) log q] (3.10)

Note that according to the result of Lemma 27, the value of q does not depend on value of
p. Therefore, the values of p and q can be optimized independently, where the value of q is
determined by Lemma 27. Therefore, we can remove all the elements that do not depend on
p, and our task is to maximize the following formula:

t−1∑

i=1

fi log p +

∞∑

i=t

fi log(1 − p) = M log p + (M ′ − M) log(1 − p). (3.11)

Since this function is strictly concave, it is maximized for p = M ′/M , which is what we
wanted to prove.

In practice, we used a smoothing procedure introduced in Genscan (Burge, 1997). In this
method, every point k observed in the training data set nk times is replaced by a normal
distribution with mean µ = k and standard deviation σ2 = 2c/nk, rescaled to a mass of
nk/N , where N is the total number of observations. The resulting smooth distribution is
obtained as a sum of these normal distributions. Constant c is selected by hand so that
the resulting curve reasonably describes the underlying data. It is also desirable to employ
additional smoothing before the start of geometric tail; otherwise a large gap may occur
between values of δt−1 and δt, introducing bias not observed in the original data set.

The resulting geometric-tail length distributions approximating lengths of exons, introns,
and intergenic regions are depicted in Figure 3.4. Note that additional smoothing was
required to reduce the gap between values of δt−1 and δt, as suggested above. The geometric-
tail distributions approximate lengths of exons well even for small values of t. Introns are
harder to approximate, since the tail of the intron distribution has a slower than geometric
decay. However, a reasonable approximation can be achieved with moderate values of t. For

74



(a) Internal exons, t = 130 (b) Intergenic regions, t = 30000

200 400 600 800 1000
Length

0.000

0.002

0.004

0.006

0.008

0.010

20000 40000 60000
Length

0.00000

0.00002

0.00004

0.00006

(c) Introns (detail) t = 400

200 400 600 800 1000
Length

0.000

0.001

0.002

Figure 3.4: Approximation by geometric-tail distributions. Solid line represents
smoothed distribution of sequence elements on chromosome 22. Dashed line shows approx-
imation by geometric-tail distribution. Vertical line indicates start of geometric tail. Both
internal exons and introns can be well approximated with small values of t. For intergenic
regions, large value of t is required. We applied additional smoothing around the joining of
the head and tail of the distribution to reduce the size of the gap between δt−1 and δt.

75



intergenic regions, much higher values of t are required. However, we will show an alternative
approach to decoding geometric-tail length distributions for large values of t in Section 3.3.

We did not design any automated method for choosing good values of t. As we will see
in the following section, the running time of the decoding algorithm increases with the value
of t. On the other hand, higher values of t often help to increase faithfulness of the model,
as demonstrated in Section 3.2.3. For our applications, we pick the values of t manually to
achieve a good approximation of the real distribution in a feasible running time. In practice,
even small values of t often help to improve over geometric length distributions.

3.2.2 Decoding HMMs with Geometric-Tail Lengths

Generalized HMMs allow any distribution with finite description. Therefore, we can easily
use geometric-tail distributions with generalized HMMs. Such models may even demonstrate
improved accuracy due to the fact that the tail of the distribution (where training data is
usually sparse) is now parametrized with only a single parameter, which may reduce the
chance of overfitting.

However, our main goal in introducing geometric-tail distributions is to reduce the de-
coding time, so that they can be used in the analysis of long biological sequences. To achieve
this goal, we need to modify the Viterbi algorithm.

Consider a state v with geometric-tail distribution, where the start of the geometric tail
is at the length tv and the geometric coefficient of the tail is qv. Recall that in the generalized
Viterbi algorithm, we define P (i, v) as the probability of the most probable path generating
the first i symbols of sequence s and finishing in state v. To compute P (i, v) using recurrence
3.2, we had to consider all possible durations of state v explicitly.

For geometric-tail distributions, we can reduce the running time by distinguishing be-
tween two cases: durations less than or equal to tv, and durations longer than tv. Let Q(i, v)
be the probability of the most probable path generating the first i symbols of the sequence,
and spending at least last tv steps in state v.

To compute the value of Q(i, v), we consider two cases. Either the i-th character extends
the duration of the state v, which was already at least tv, or generating the i-th character
brings the duration of state v to exactly tv steps. In the first case, Q(i, v) can be computed
by multiplying Q(i − 1, v) by the geometric coefficient qv and the corresponding emission
probability, as in the case of self-loops in the ordinary hidden Markov models. In the second
case, the probability Q(i, v) is computed from P (i − tv, u) for some state u, multiplied by
the appropriate transition probability to state v and the emission probability for the last tv
characters.

To compute the value P (i, v), we only need to check the tv−1 previously computed values
of P (for when the duration of state v is less than t), and the value of Q(i, v) (which covers
all other lengths). This is more precisely expressed in the following recurrence defining a
dynamic programming algorithm:

76



P (i, v) = max







Q(i, v), (duration at least tv)

max
1≤k≤tv

[emit(v, i − k + 1, i) · δv(k) · max
u∈V

P (i − k, u) · a(u, v)]

(duration less than tv)

(3.12)

Q(i, v) = max







Q(i − 1, v) · qv · ev(i) (duration more than tv)

emit(v, i − tv + 1, i) · δv(tv) · max
u∈V

P (i − tv, u) · a(u, v)

(duration exactly tv)

(3.13)

A straightforward dynamic programming algorithm implemented based on this recurrence
would take O(ntm2) time, where t is the average of the values of tu over all states u, where tu
equals to one for ordinary states emitting only a single character. This can be further reduced
by pre-computing the value of maxu∈V P (i, u) · a(u, v) whenever the computation of the i-th
column of the dynamic programming matrix has been completed. This pre-computation
costs O(nm2), and reduces the overall running time to O(nmt + nm2).

This algorithm is practical even for the analysis of long sequences, provided that small
values of t give reasonable approximation of the length distributions of modeled elements.
As is illustrated in Figure 3.4, this is true for exons and introns. However the required value
of t is too large for intergenic regions. We will address this problem in the next section.

Stanke and Waack (2003) observed that the same effect as geometric-tail distributions
can be achieved by replacing a generalized state with a group of three generalized states with
upper bound t on the duration, as depicted in Figure 3.5. This immediately gives a running
time of O(ntm2), using the standard algorithm from Section 3.1. However, this approach
increases the conceptual complexity of the model. In Section 3.5, we introduce further
extensions to this basic framework that allow us to explicitly model length distributions not
only of a single state, but also of sequence elements represented by a group of states. Such
extensions are not feasible with the approach of Stanke and Waack (2003).

3.2.3 Generalization Properties

In Figure 3.1, we have seen examples of the length distributions needed for the sequence
elements in gene finding. These distributions can be approximated well with geometric-tail
distributions with small values of t, as shown in Figure 3.4.

The parameters of a geometric-tail distributions are estimated by optimizing the fit to the
training data. However, even if the resulting distribution fits the training data well, it does
not mean that this would generalize to the testing data. Figure 3.6 shows the log likelihood
of testing data per data sample for increasing values of t with the optimal geometric tail
distribution fit to the training data. We used the training set chr22-training and the testing
set chr22-testing described in Appendix A.

For comparison, we have also computed the likelihood for the “ideal fit” distribution ob-

77



S3

S1 S2

1−p

p

q

Figure 3.5: Alternative implementation of geometric-tail distributions. For a
geometric-tail distribution of order t with parameters (δ1, . . . , δt−1, q), state S3 represents
durations shorter than t, and the combination of states S1 and S2 represents durations of
at least t. State S3 is a generalized state with maximum duration t − 1 and the duration
probabilities (δ1, . . . , δt−1). State S1 is a generalized state with fixed duration t − 1. State
S2 is a regular state with self-loop of probability q. The probability of entering state S3
representing short sequences is p =

∑t−1
i=1 δi; otherwise the model emits a long sequence in

states S1 and S2.

78



a. internal exon b. intron

0 200 400 600 800
Start of geometric tail

-8.4

-8.2

-8.0

L
og

 li
ke

lih
oo

d 
pe

r 
da

ta
 s

am
pl

e

0 200 400 600 800
Start of geometric tail

-13.1

-13.0

-12.9

L
og

 li
ke

lih
oo

d 
pe

r 
da

ta
 s

am
pl

e
Figure 3.6: Generalization capacity of geometric-tail distributions. The log2 likeli-
hood per data sample increases with increasing values of the parameter t. Geometric distri-
bution corresponds to t = 1 with log likelihood well below the bottom of the y-axis scale.
Solid line corresponds to the training set chr22-training and the testing set chr22-testing.
Data set chr22-testing was used as both training and testing set to produce dotted line.

tained by using the same data set for both training and testing. This is the “best case” upper
bound, estimating how well the algorithm could do if the testing data exactly corresponded
to the training data for a given family of length distributions.

For both exon and intron lengths, the likelihood of the testing data grows rapidly, even
for small values of t. A geometric distribution corresponds to the value t = 1. We can
see that even small values of t give much better results than does a geometric distribution.
For internal exons, we achieve the best performance for values of t between 300 and 400.
For larger values, the distribution starts overfitting the training data, as demonstrated by
the slightly decreased performance for larger values of t. For intron length distribution, the
likelihood of testing data grows steadily even for large values of t (several thousands, the
data is not shown). In this case we need to balance running time versus model faithfulness.

We see that even small values of t help significantly compared to a geometric distribution
(t = 1). Moderate values of t allow fast running time, while yielding good results.

79



v v’’v’

Figure 3.7: Geometric-tail distribution gadget for large values of t. The state v′ is
assigned a geometric-tail distribution, in each step emitting

√
t symbols. The state v′′ is a

generalized state with limit on duration
√

t and uniform length distribution.

3.3 Decoding Geometric-Tail Distributions with Large

Values of t

In our discussion so far, we have given a new model for length distributions. We achieved
a better running time of decoding algorithm by approximating the length distributions by
geometric-tail distributions. In particular, the running time of the decoding algorithm for
this solution is O(nmt + nm2), where the parameter t is the length at which the geometric
tail starts. This is practical for distributions which are well approximated with small values
of t (such as those in Figure 3.4 (a) and (c)). However, this is not always the case in practice.
For example, Figure 3.4(b) shows the lengths of intergenic regions, which need to be modeled
in the context of gene finding. This distribution cannot be approximated well with values of
t below 10 000.

Let the state v correspond to a sequence element for which a length distribution with a
large value of t is required. We replace this state with two states: a special state v′ with all of
the incoming transitions of state v, and state v′′ with all outgoing transitions of state v, and a
single transition from v′ to v′′ (see Figure 3.7). Both states v′ and v′′ have the same emission
probabilities as the state v. The state v′ has a geometric-tail length distribution with the
tail starting at t′ =

√
t, and length distribution of this state corresponds to the lengths for

the original state v divided by
√

t. The difference between v′ and a regular generalized state
is that it emits symbols in multiples of

√
t. When we enter the state, we decide how many

blocks of
√

t symbols the state will emit. The length distribution of the second state v′′

is uniform with upper bound of
√

t.1 A transition is also added to allow skipping state v′

altogether. This transition represents all lengths that are shorter than
√

t. Such a gadget
effectively replaces the original length distribution by a step-function approximation—see
the example in Figure 3.8.

For simplicity, this construction assumes that the values of t are perfect squares. In
practice, we choose values of t that can be factored into a product of two reasonably close
numbers. All the methods are easily extended to such case.

Extending the algorithm from Section 3.2.2 to handle state v′ is straightforward. For
these states, we modify the formulas 3.12 and 3.13 as follows:

1It is possible to use non-uniform distributions for state v′′. However, we did not experiment with this
option.

80



3000 4000 5000 6000 7000 8000
Length

0.00000

0.00002

0.00004

0.00006

Figure 3.8: Step-function approximation of length distribution. Dashed line: detail
of length distribution of intergenic regions from Figure 3.4(b). Solid line: step function
approximation.

81



P (i, v′) = max







Q(i, v′), (at least t′ blocks)

max
1≤k<t′

[emit(v′, i − kt′ + 1, i) · δv′(k) · max
u∈V

P (i − kt′, u) · a(u, v′)]

(less than t′ blocks)

(3.14)

Q(i, v′) = max







Q(i − t′, v′) · qv · emit(v′, i − t′ + 1, i) (more than t′ blocks)

emit(v′, i − t′2 + 1, i) · δv′(t
′) · max

u∈V
P (i − t′

2
, u) · a(u, v′)

(exactly t′ blocks)

(3.15)

Note that we have introduced stepping by blocks of t′ characters into Formula 3.14 and
replaced the single emission probability in Formula 3.15 with a block emission of length t′.
Since emit() is computed in linear time, the algorithm will run in O(nmt′ +nm2) time, even
though it explicitly operates over regions of lengths up to t = t′2.

Thus by replacing the length distribution with the step-function approximation, and by
modifying the Viterbi algorithm as stated above, we achieve a running time of O(nm

√
t +

nm2). This running time is practical even for values of t as large as tens of thousands; a
good value of t for human intergenic regions is around 30 000.

3.4 Gadgets of States

An alternative way of avoiding the geometric character of length distributions generated by
hidden Markov models is to model a sequence element by multiple states instead of a single
state. Durbin et al. (1998) (recently also re-examined by Johnson (2005)) discuss several
ways to model non-geometric length distributions by replacing a single state with a group
of states that share the same set of emission probabilities. Transitions are added inside this
group so that the probability of staying within the group for ` steps is close to the probability
that the modeled feature has length `. In this section we explore this technique and show
that its usability is limited when the Viterbi algorithm is used for decoding.2

3.4.1 Phase-type Distributions

Consider an example gadget in Figure 3.9. Such a gadget can represent a single sequence
element within a larger HMM. The left-most transition is an entry point to such a sub-model,
and the right-most transition is the exit. If the gadget consists of n states, the probability
of generating a string of length ` > n is

f(`) =

(
` − 1

n − 1

)

p`−n(1 − p)n, (3.16)

2To the best of our knowledge, this approach has not been used in applications of hidden Markov models
in bioinformatics.

82



p p p p p

1−p 1−p 1−p 1−p 1−p

Figure 3.9: Gadget generating non-geometric length distribution in HMM

20 40 60 80 100
0.00

0.05

0.10

0.15

0.20

1 state
2 states
4 states
8 states

Figure 3.10: Family of distributions generated by the gadget from Figure 3.9. We
set p = 0.8 and varied the number of states in the chain. Many distributions with a single
mode can be generated using this approach. The distributions generated by this particular
gadget of states are a subclass of the discrete gamma distributions Γ(p`, 1).

which can be used to model a wide variety of distributions with a single mode (see Figure
3.10). Using such gadgets does not require modifying the algorithms for HMMs, though it will
slow down the decoding due to the number of states used to model the length distribution;
this slowdown is not significant if the number of such states is small. Of course, there is
no reason to limit ourselves to gadgets with the structure in Figure 3.9; one can use any
topology of states.

Definition 29 (Gadget of states). A Gadget of states is a group of states in an HMM with
the same emission probabilities. All transitions entering the gadget come from a single state
outside the gadget, or they enter a single state inside the gadget. Similarly, all transitions
leaving the gadget leave a single state inside the gadget, or enter a single state outside the
gadget. The duration of the gadget is the number of symbols generated by the HMM in the
states within that gadget.

Definition 30 (Phase-type distributions). The family of length distributions that can

83



error

p

1

(1−p)
n−1

1−p

Figure 3.11: Gadget with geometric length distribution replaces gadget from Fig-
ure 3.9. This gadget can be used to replace the gadget from Figure 3.9, achieving the same
results as if the Viterbi algorithm is used for decoding.

be represented by a gadget of states is called phase-type distributions. The number of states
required to represent a particular phase-type distribution is the order of the distribution.

The family of phase-type distributions, and their graphical characterization by gadgets
of states, plays an important role in queuing theory and system theory. A recent overview of
the results and open problems can be found in Commault and Mocanu (2003). In fact, any
length distribution can be approximated arbitrarily well by a phase-type distribution, even
though better approximations often require high order. Maximum likelihood approximation
of a given sample by a phase-type distribution has been explored by Asmussen et al. (1996)
using the EM algorithm.

This approach of using phase-type distributions seems like an ideal framework for mod-
eling general length distributions in HMMs: depending on the desired running time, we fix
the order of the phase-type distribution, and then we find the best approximation of a given
sample from training data. Such a generative model indeed generates the sequences of the
desired (non-geometric) length distribution, which closer and closer represent the real length
distributions.

Note that this modeling technique significantly departs from the principles we used so far.
In our previous models, for each pair of the sequence and its annotation, there was always
a unique path through the model that generated them. Instead, gadgets of states introduce
many paths that represent the same sequence/annotation pair, to achieve the non-geometric
character of the length distribution. For example, in Figure 3.9, each individual path of a
given length ` has the same (small) probability. The probability of generating path of length
` is now the product of the number of such paths with the probability of each path. In fact,
the non-monotonic non-geometric length distribution is achieved because up to some point

84



the number of paths grows faster with length ` than the probability of each individual path
decays with length `.

3.4.2 Gadgets of States and the Viterbi Algorithm

Since the length distribution is now created by multiple paths, each with a small probability,
it is not clear whether decoding such model by the Viterbi algorithm for finding only a single
most probable path is still a good method. In this section, we show that in fact the Viterbi
algorithm does not decode such models correctly.

Let us compare the gadget A in Figure 3.9 with the gadget B in Figure 3.11. Gadget
B has n states corresponding to the states in gadget A. However, only one of those states
includes a self-loop and thus the length distribution generated by this gadget is geometric
(except that lengths shorter than n have zero probability). Moreover, there is an additional
absorbing error state in gadget B to help to balance length probabilities. The probability of
entering this state will be 1 − (1 − p)n−1. The error state emits only a special error symbol
that is not part of the original alphabet Σ of the sequences to be decoded. For this reason,
no non-zero probability path will include the error state for an input sequence of symbols
over Σ∗.

For every length ` > n, there are many paths in gadget A of length `, all of which have
the same probability: emit` · p`−n(1 − p)n, where emit` is the emission probability of the
corresponding part of the sequence. In gadget B, there is only one path of length ` that does
not include the error state, and its probability is also emit` · p`−n(1 − p)n. Therefore, from
the point of view of the Viterbi algorithm, there is no difference between gadgets A and B:
the maximum probability path in the HMM including model A will be the same with the
same probability as if we replace model A with model B.

Therefore, even though gadget A seems to model non-geometric length distributions, the
same effect (with respect to the Viterbi decoding) is achieved if we use gadget B instead.
However, gadget B generates only geometric distributions. Moreover, a large amount of
probability mass is lost to the error state of gadget B.3 Since this state cannot be used
in any state path generating a real sequence, this incorporates a multiplicative penalty of
(1 − p)n−1 for entering gadget B (and therefore gadget A since they are equivalent).

For example, if we use 5 states and probability p = 0.9, then 0.9999 of the probability
mass will end in the error state, or, entering the sequence element represented by the gadget
is now approximately 10000 times less likely, than estimated from the training data. Thus
introducing the gadget in Figure 3.9 into an HMM not only does not give any improvement in
accuracy of the prediction (since the model is equivalent to one with geometric distribution),
but also causes the model to “avoid” the part of the model represented by the gadget.

Thus, finding the most probable path, which is solved by the Viterbi algorithm, is inap-
propriate for models that use gadgets to model complex length distributions.

3The error state in gadget B is necessary to ensure that a path of length ` has the same probability in
both gadgets A and B. If we renormalized the probabilities in gadget B instead, the probabilities in gadget
B would be higher than in gadget A, and the two gadgets would not be equivalent any more.

85



Figure 3.12: 3-periodic Markov chains used for modeling exons. Each of the states
in a periodic Markov chain has different set of emission probabilities. The incoming and
outgoing edges represent different connection points with the rest of the model (introns and
intergenic regions).

S T

Figure 3.13: Alternative model of intron. State S models most of the intronic se-
quence, with emission probabilities similar to those in intergenic regions. A relatively short,
pyrimidine-rich tail of varying length occurs towards the end of introns, with emission prob-
abilities heavily biased towards C/T. This region is modeled by state T . In this model, both
S and T have geometric length distributions.

A logical suggestion would be to replace the Viterbi algorithm and the most probable path
problem with some other formulation of decoding. We have discussed the disadvantages of
a posteriori decoding (forward-backward algorithm) in the context of biological applications
such as gene finding in Section 1.1.2.2. Another option is to aim for finding the most probable
annotation instead of the most probable path—we will defer discussion on this to Chapter 4.

3.5 Length Distributions of Complex Sub-models

One of the disadvantages of the length distribution modeling methods presented in this
chapter so far is that they are applicable only to sequence elements modeled by a single
state. There are examples where one may want to employ more complex sub-models for
particular sequence elements. In gene finding, exons in the gene are best modeled by 3-
periodic Markov chains of the type shown in Figure 3.12. The sequence characteristics of
intronic regions change dramatically toward their 3’ end, thus we may want to employ an
intron model like the one in Figure 3.13. At the same time, we would still like to be able to
model the length distributions of exons and introns as a whole, not state-by-state.

We introduce boxed HMMs to address this problem. States of a boxed HMM are orga-
nized in boxes. As in ordinary HMMs, each state emits a sequence according to a Markov

86



chain of some order. A box is a subset of states, where each state belongs to at most one
box (some states may be unboxed). We will denote by Bu the box containing state u. Each
box of a boxed HMM is assigned an arbitrary length distribution. Let δB be the length
distribution associated with box B.

Each state located in a box has two sets of outgoing transitions: internal transitions which
lead only into states grouped in the same box, and external transitions which can lead to any
state that is not part of the same box. The probability of an internal transition from state u to
state v is denoted by a′(u, v), and the probability of an external transition is denoted a(u, v).
For every state u,

∑

v a(u, v) = 1 and for every boxed state u,
∑

v∈B(u) a′(u, v) = 1 and
∑

v/∈B(u) a(u, v) = 1. Unboxed states have only external transitions (and self-loop transitions

are allowed in this case). A simple example of a boxed HMM is given in Figure 3.14.

The boxed HMM as a generative model works as follows. Unboxed states are treated
as in ordinary HMMs. When a transition to a box B occurs, the length m is generated
according to the length distribution δB. For the next m − 1 steps, internal transitions are
used in, and the HMM will remain in box B for m steps. In the m-th step, an external
transition is used to take the model to a new state. Each state inside the box must have at
least one external transition.4

Boxes of a boxed HMM correspond to states in generalized HMMs. However, each state
inside a box can have a different set of emission probabilities, and a different set of external
transitions, and similarly, the transitions entering the box specify which state of the box is to
be used as the first. This feature is very useful, for example for modeling frame consistency
between exons in genes.

It might seem that the actual length distribution is a combination of the explicit distri-
bution δB associated with a box B and the implicit geometric-like distribution induced by
the internal transitions inside the box. However, for a given length m and start state in box
B, the sum of probabilities over all strings of length m generated by box B is 1, and the
internal transitions do not constitute any implicit distribution of lengths.

Boxed HMMs, coupled with geometric-tail distributions as introduced above form a con-
venient modeling tool for many biological applications such as gene finding. We first discuss
the modifications to the Viterbi algorithm to allow computation of the most probable path
in boxed HMMs for general length distributions. Then we follow a similar path as for gener-
alized HMMs, to improve decoding times for the case of length distributions with geometric
tails.

3.5.1 A Viterbi Algorithm for Boxed HMMs

Decoding of a boxed HMM is very similar to decoding of a regular HMM. For a given sequence
s, and a state path π, the HMM defines their joint probability Pr(s, π). In the process of
decoding, we are looking for the most probable path, the state path π that maximizes the

4In some cases, this restriction can be relaxed and the algorithms can be easily modified to handle such
extensions. For example, if the length distribution is defined so that all the lengths are multiple of k, states
that can never be reached by a number of steps that is multiple of k do not need to have external transitions.

87



inter
genic

start 2

start 3 stop 1

stop 2

stop 3

exon 1 exon 2 exon 3

aux 2 aux 3

box B1

box B2

start 1

Figure 3.14: Example of boxed HMM. A simple boxed HMM model for DNA sequences
consisting of single-exon genes on the forward strand only. Internal transitions are marked by
dashed lines. All transitions have probability 1. Box B1 models the exonic region between the
start and stop codons, box B2 models intergenic regions. Both boxes can use non-geometric
length distributions. Here a boxed HMM is a more accurate model than the corresponding
pure HMM because a boxed HMM can model non-geometric length distributions of exons
and intergenic regions.

88



probability Pr(s, π).
To compute the most probable path in a boxed HMM, we modify Equation 3.1 on page 68,

which gives the joint probability of sequence and state path for generalized HMMs. Let
emit(v′, v, j, i) be defined for all pairs of states v and v′ belonging to the same box Bv as
the probability of the most probable path emitting the sequence sj . . . si, using only internal
transitions within box Bv, starting in state v′, and finishing in state v (as in the case of
generalized HMMs, we assume that in the next step the model will either transit out of the
box or finish). For the purpose of dynamic programming, instead of considering all possible
durations of the last state v, we need to consider the duration within the box Bv associated
with state v, as well as all possible states v′ where we could have entered the box. Thus
Formula 3.1 to compute P (i, v), the probability of the most probable path generating the
first i symbols of the sequence, and ending in state v, changes for boxed states as follows
(the formula remains unchanged for unboxed states):

P (i, v) = max
1≤j≤i

v′∈Bv

[emit(v′, v, j, i) · δBv
(i − j + 1) · max

u∈V −Bv

P (j − 1, u) · a(u, v′)] (3.17)

The pre-computation trick which we used to compute values of emit() in constant time,
cannot be applied in this scenario. The information about maximum path probabilities for
the first i symbols of the sequence and for the first j−1 symbols of the sequence do not help
us to compute the maximum path probabilities for generating the symbols sj . . . si. Instead,
we can use the traditional Viterbi algorithm to compute the probability emit(v′, v, j, i), as
the states within the box and the internal transitions of the box implicitly form an ordinary
HMM.

Let ∆ be the number of states in the largest box. For a given i and j, the running
time of computing emit(v′, v, j, i) for all possible combinations of v′, v is O((j− i)m∆). In a
straightforward implementation, this would mean a running time O(n3m2∆). To make the
algorithm more efficient, we can reorder the computation as follows:

initialize P
for i = 1 . . . n, for all states u
| if v is a boxed state
| | for ` = 1 . . . i, for all states v′ ∈ Bv

| | | compute emit(v′, v, i − ` + 1, i) (*)
| compute P (v, i)
| values computed in (*) can now be discarded

To compute emit(v′, v, j, i) in step (*), we can reuse previously computed values of
emit(∗, v, j + 1, i), using a recurrence analogous to the Viterbi algorithm:

emit(v′, v, j, i) = max
w∈Bv

ev′(j) · a′
v′,w · emit(w, v, j + 1, i), (3.18)

where ev(j) is the emission probability of symbol xj in state v. Thus to compute any value
of emit(v′, v, j, i), we need time O(∆) only, since in this order of computation, all values

89



needed in recurrence 3.18 were already computed in previous steps. The total decoding time
is O(n2m2∆), which is a factor of ∆ slower than the decoding of generalized HMMs.

The algorithm can be even more efficient if the topology of states in each box satisfies
further restrictions. For example, if the states in each box are organized as in Figure 3.14,
Box 1 (a k-periodic Markov chain), we can reduce the running time to O(n2m2), because for
a fixed i, j, and u, only one of the values emit(∗, u, i, j) will be non-zero.

3.5.2 Boxed HMMs with Geometric-Tail Distributions

The modifications introduced to the Viterbi algorithm in Section 3.2.2 can now be applied
in a straightforward way to the case of boxed HMMs. Analogously to recurrences 3.12 and
3.13, we obtain:

P (i, v) = max







Q(i, v), (duration at least tv)

max
1≤k≤tv
w∈Bv

[emit(w, v, i − k + 1, i) · δv(k) · max
u∈V

P (i − k, u) · a(u,w)]

(duration less than tv)

(3.19)

Q(i, v) = max







max
w∈Bv

Q(i − 1, w) · a′(w, v) · qv · ev(i) (duration more than tv)

max
w∈Bv

[emit(w, v, i − tv + 1, i) · δv(tv) · max
u∈V

P (i − tv, u) · a(u,w)]

(duration exactly tv)

(3.20)

The order of computation can be reorganized as in the previous section, and thus we
can decode the boxed HMMs with geometric-tail length distributions in O(ntm∆2 + nm2)
running time.

On the other hand, the algorithm in Section 3.3 for geometric-tail distribution with large
values of t approximated by a step-function cannot be immediately extended to the boxed
HMMs. The recurrences 3.14 and 3.15 again extend easily to the case of boxed HMMs:

90



P (i, v′) = max







Q(i, v′), (at least t′ blocks)

max
1≤k<t′

w∈Bv′

[emit(w, v′, i − kt′ + 1, i) · δv′(k) · max
u∈V

P (j − 1, u) · a(u,w)]

(less than t′ blocks)

(3.21)

Q(i, v′) = max







max
w,w′∈Bv′

Q(i − t′, w′) · a′(w′, w) · qv · emit(w, v′, i − t′ + 1, i)

(more than t′ blocks)

max
w∈Bv′

[emit(w, v, i − t′
2
+ 1, i) · δv′(t

′) · max
u∈V

P (i − t′
2
, u) · a(u,w)]

(exactly t′ blocks)

(3.22)

The resulting running time is O(n
√

tmC +nmC∆2 +nm2), where C is the running time
required for a single emit() query. However, in this case the reordering of computation does
not help us to compute needed values of the function emit() in constant time. Our previous
algorithms relied on the fact that whenever we needed to compute value emit(u, v, i, j) (for
i < j), we also required the computation of values emit(∗, v, i + 1, j). However, this is not
the case for recurrences 3.21 and 3.22.

In the rest of this section, we introduce a different scheme for computing values of emit()
that does not depend on the order of computation. The scheme requires pre-computation
time of O(nm∆3), after which each emit() query can be answered in C = O(∆3α(nm)) time,
where α(n) is the inverse Ackerman function. This function grows very slowly, and for all
practical cases can be considered constant (Cormen et al., 2001). This gives a modification
of the Viterbi algorithm for boxed HMMs for the case when we are using the step-function
approximation of geometric-tail distributions, with running time of O(n

√
tmC + nmC∆2 +

nm2∆2) ≈ O(n
√

tm∆3 +nm∆5 +nm2∆2). This is still a reasonable running time if the size
of the largest box ∆ is quite small.

To solve this problem, we formulate the computation of emit() as a graph problem. For a
sequence of length n and an HMM with m states, we create a layered graph with n+1 layers,
and with m vertices in each layer. Let [i, j] denote the jth vertex in the ith layer. There
is an edge between vertices [i, j] and [i + 1, j′] if and only if there is an internal transition
between vertices j and j′ in HMM. The weight of such edge will be − log ei(j) · a′(j, j′). In
such a graph, the negative logarithm of the probability defined by emit(u, v, i, j) corresponds
exactly to the shortest distance between vertices [u, i] and [v, j + 1].

Definition 31 (Tree decomposition). A tree decomposition of a graph G = (V, E) is
a pair (X, T ), where X = {X1, . . .Xk} is a family of subsets of V , T is a tree on a set of
vertices {X1, . . . , Xk}, and the following conditions hold:

• Edge mapping: For each edge (v, w) ∈ V , there is a set Xi for which both v and w
belong to Xi.

91



• Connectivity: For each vertex v, all sets Xi that contain vertex v form a connected
subgraph of tree T .

The treewidth of the tree decomposition is maxi(|Xi| − 1).

Lemma 32. The graph constructed to compute values of emit() has a tree decomposition
with treewidth 2∆, where ∆ is the size of the largest box of the HMM.

Proof. For every box B in the HMM, create n sets XB,1, . . . , XB,n, set XB,i containing vertices
[i, v] and [i + 1, v] for all v ∈ B. Let the tree T over the set of vertices XB,i for all boxes B
and 1 ≤ i ≤ n contain edges (XB,i, XB,i+1). This tree clearly satisfies both conditions of the
tree decomposition, and the treewidth of such a decomposition is 2∆ − 1.5

Chaudhuri and Zaroliagis (2000) presented an indexing scheme where shortest path dis-
tance queries in a graph can be answered in running time independent of the size of the
graph, provided that the graph has small treewidth. This result is formulated more precisely
in the following theorem.

Theorem 33 (Chaudhuri and Zaroliagis (2000)). Let G be a weighted digraph with
n vertices and treewidth at most t with a known tree decomposition. Then after O(t3n)
preprocessing time, shortest path distance queries in G can be answered in O(t3α(n)) time,
where α(n) is the inverse Ackerman function.

This immediately yields an indexing scheme for computing emit() in time C = O(∆3α(mn))
with O(∆3mn) preprocessing time.

3.6 Summary and Experiments

In this chapter, we have introduced an efficient method of modeling non-geometric length
distributions in hidden Markov models. The solution has two components: an approximation
of the real length distribution by a geometric-tail length distribution, and a modification to
the Viterbi algorithm that allows efficient decoding in O(nmt + nm2) time, where t is a
parameter of the distribution. Some length distributions require large values of t to be
reasonably well approximated. For these cases, we extend the method by replacing the
geometric-tail distribution with its step-function approximation, and extend the decoding
algorithm to this context with runtime of O(nm

√
t+nm2), which is practical even with large

values of t. We also extended these methods to more general class of HMMs which we call
boxed HMMs. In boxed HMMs, we can specify the length distributions of whole sub-models
instead of individual states. This is an advantage if we model a particular sequence element
as a group of states instead of a single state. The decoding times remain linear in the length
of the sequence, and are practical even for large values of t, if the size of the largest box in
the model is small.

5Note, that T is, in fact, a path. However, it is not clear whether this difference would bring any additional
improvement in algorithm of Chaudhuri and Zaroliagis (2000).

92



Method Running time Applicability in gene finding

Generalized HMMs O(n2m2) not applicable (running time)
Limited duration d O(ndm2) not applicable (modeling)
Gadget methods w/ k added states O(n(k + m)2) improperly decoded by Viterbi
Genscan O(n2m2) worst case exons

O(nm2) expected
Augustus O(ntm2) exons, introns
Geometric-tail w/ tail start at t O(ntm + nm2) exons, introns

Geometric-tail+step-function O(n
√

tm + nm2) intergenic regions

Table 3.1: Overview of methods for modeling length distributions. Our methods
introduced in the previous sections are highlighted in bold typeface. Different states in an
HMM can use different methods for representing length distributions.

Table 3.1 summarizes available methods for modeling length distributions in HMMs and
their suitability for application in gene finding. We have described generalized HMMs in
detail and their disadvantages for modeling long DNA sequences in Section 3.1.

HMMs with limited state duration are essentially generalized HMMs, where the duration
of each state is bounded by a small constant d. This restriction significantly reduces the
running time from O(n2m2) to O(ndm2) and the method is often used in speech recognition
applications. For biological sequence element lengths, no reasonable upper bound on the
state duration exist. Hence, in general this method is not suitable for applications such
as gene finding. We also explored the method of replacing a single state with a gadget of
states to modify the length distribution. This method works well for analysis of sequences
by posterior decoding. However, the Viterbi algorithm produces inferior results with this
method, as we demonstrated in Section 3.4.

Two methods specifically tailored to gene finding have emerged to address the problem
of length modeling. Genscan (Burge, 1997) uses generalized states to model the length
distribution of exons. The use of generalized states leads in general to a quadratic running
time in the length of the sequence. However, in the case of exons, it is possible to use the
boundaries observed in DNA sequences: no exon can extend beyond the closest in-frame
stop codon. Since 3 out of 64 possible codons code for stop codons, in a random sequence
one would expect a stop codon to occur approximately every 20 codons or 60 bases. Thus
at most positions of the DNA sequence, only few previous positions need to be inspected
in the dynamic programming, and the expected running time thus grows linearly with the
length of the sequence (Burge, 1997).

Second, in a method very similar to our geometric-tail distributions presented in Brejová
and Vinař (2002), Stanke and Waack (2003) introduced a new model for intron lengths,
as described in Figure 3.5 on page 78. In their program Augustus, they use this method
together with Genscan’s method for modeling exon lengths.

Compared to these two methods, our geometric-tail distributions have several advantages.
First, the Genscan method does not extend to modeling lengths of introns or intergenic re-

93



exon intron intergenic exon exon
lengths lengths lengths sensitivity specificity
geom. geom. geom. 60% 61%
t = 120 geom. geom. 61% 63%
geom. t = 150 geom. 61% 63%
t = 120 t = 150 geom. 63% 64%
t = 120 t = 150 t = 30 000 63% 64%

Table 3.2: Performance of non-geometric length distributions on gene finding in
human. The results for testing set encode-small described in Appendix A.

exon intron intergenic exon exon
lengths lengths lengths sensitivity specificity
geom. geom. geom. 70% 66%
t = 250 geom. geom. 69% 66%
geom. t = 150 geom. 74% 69%
t = 250 t = 150 geom. 74% 70%
t = 250 t = 150 t = 3600 74% 70%

Table 3.3: Performance of non-geometric length distributions on gene finding in
fruit fly. The results for testing set drome-small described in Appendix A.

gions. This is because for these sequence elements there are no natural boundaries in DNA
sequences such as in-frame stop codons. Second, geometric-tail distributions and correspond-
ing algorithms can be easily extended to simple hierarchical models, as we demonstrated in
Section 3.5. This gives us flexibility to model sequence elements by complex sub-models
instead of a single state. This is not easily done for the methods introduced in Augus-
tus or Genscan. Finally, coupled with the step-function approximation, it is possible to
use geometric-tail distributions to model intergenic region lengths with reasonable decoding
time. This is not possible with any of the other methods described above.

For evaluation, we have implemented our methods to our gene finding program Exon-
Hunter (see Chapter 5 for more detailed description of the implementation). The training
and testing data sets for this experiment are described in Appendix A.

Tables 3.2 (human) and 3.3 (fruit fly) show that the use of non-geometric length distri-
butions contribute to the increased accuracy of gene prediction.

In human, we observed the greatest increase in performance in combination of exon
and intron non-geometric length distributions. This observation supports our hypothesis
that most augmentations to HMMs for gene finding do not bring significant increase in
performance by themselves. Instead, they work in concert and the improved overall likelihood
of the model then helps to improve the performance of predictions. We can also conclude
that use of non-geometric exon lengths or use of non-geometric intron lengths improves the

94



100 200 300 400 500
Length

0.00

0.01

0.02

0.03

0.04

Figure 3.15: Intron lengths of fruit fly. A geometric-tail distribution (dashed line) ap-
proximates well the distribution of intron lengths (solid line) in fruit fly genome chromosome
3L/3R.

results of gene prediction about the same in human.
In contrast to these results for human sequences, in fruit fly the effect of non-geometric

length distributions can be attributed almost exclusively to the intron length distributions.
Fruit fly genes have short introns whose length can be approximated very well by geometric-
tail distributions (Figure 3.15). Perhaps for this reason, the improvement in fruit fly gene
finding is more pronounced than the effect in human gene finding.

95





Chapter 4

Finding the Most Probable
Annotation

In the previous two chapters, we explored two different trade-offs related to modeling accu-
racy in HMMs. In models of biological signals (Chapter 2), the trade-off was between the
amount of available training data and the faithfulness of a model structure. In the second
trade-off, explored in Chapter 3, we exchanged the speed of the decoding algorithm for the
increased faithfulness of modeling length distributions.

Sometimes we attempt to increase the faithfulness of an HMM by introducing complex
model topologies in an attempt to capture the properties of a particular sequence element
better. For example, Section 3.4 introduces a method for modeling length distributions
where a single state in the HMM is replaced with a group of states (a gadget), and the
correct probability is obtained only by adding the probabilities of multiple paths through
such model.

We demonstrated in Section 3.4 that in this scenario, the Viterbi algorithm that finds
only the single most probable state path in an HMM is no longer an appropriate method for
decoding such models. This observation suggests an alternative definition of HMM decoding.

Definition 34 (Most probable annotation decoding). Suppose we are given a hidden
Markov model with set of states V and a mapping λ : V → Λ from the set of states V to a set
of labels Λ. For a given sequence of symbols s = s1 . . . sn, the probability of the annotation
L = λ1 . . . λn is defined as the sum of probabilities of all state paths whose annotation in L.

More precisely, let ΠL be the set of all state paths π, where for all i, λ(πi) = λi. Then
the probability of annotation L is

Pr(L, s) =
∑

π∈ΠL

Pr(π, s) (4.1)

The most probable annotation problem is the problem of finding the annotation L that
maximizes the probability Pr(L, s).

The labels in this definition represent the features of the sequence which we are interested
in. There may be several state paths that correspond to the same sequence of labels. These

97



α

0.6

a:0.5
b:0.5

0.2

0.2 β

β a:0.2
b:0.8

a:0.4
b:0.6

Figure 4.1: The most probable path is different than the most probable annotation.
The most probable path for the string “ababa” is “ααααα,” with probability 0.004, while
the most probable labeling is “αβαβα,” with probability 0.01. The highest probability path
with the same labeling has probability only 0.003.

represent “alternative explanations” of the same annotation, and we want to consider all
possible explanations of a particular annotation together. This notion of a single annotation
corresponding to multiple paths is consistent with the length distribution example cited
above: all states within the same gadget have the same label, and thus when looking for the
most probable annotation, we consider all the paths through the gadget together, as long as
they all enter and leave the gadget at the same positions in the sequence.

The choice of the labels is an important step in creating models that are to be decoded
using the most probable annotation. For example, in gene finding, we may decide to have
separate sub-models for different classes of genes with different statistical properties, such as
those encoding transmembrane proteins and globular proteins. If we assign the same sets of
labels to all classes of genes, the most probable annotation decoding will find the most likely
exon/intron structure. On the other hand, we can also assign separate sets of labels to each
class, in which case the most probable annotation will also distinguish between these classes.
Most probable annotation decoding gives us the flexibility to adjust the level of detail in the
annotation simply by changing the label set.

In this chapter we will show that for some hidden Markov models, this new formulation
of decoding is NP-hard, while for other models, the most probable annotation can be still
found in time linear in the length of the sequence. Thus we introduce a different type of
trade-off: increasing the faithfulness of a model by using a complex topology and the new
formulation of decoding may make decoding intractable.

Consider a simple example in Figure 4.1. The example consists of an HMM with one
state labeled α, and two states labeled β. The most probable state path for the string (ab)na
is always α2n+1 with the probability of 0.09n · 0.5. However, the most probable annotation
α(βα)n has higher probability, 0.14n · 0.5, even though the highest probability path with the
same annotation has probability of only 0.08n · 0.5. Differences between the most probable
path and the most probable annotation are surely a cause for concern. Moreover, as n
grows in our example, the number of paths forming the most probable annotation increases
exponentially. Thus, in this example, the probability of each single path of the most probable
annotation is very low compared to the probability of the most probable path.

In these examples, a problem was caused by the existence of multiple paths corresponding

98



to the same annotation. We say that such an HMM has the multiple path problem.

The discrepancies between most probable state paths and most probable annotations in
HMMs with the multiple path problem, as well as desirability of being able to retrieve the
most probable annotation in case of such an HMM, have been recognized before (Burge,
1997; Krogh, 1997), and various heuristics have been suggested.

A common (but rarely implemented) idea is to compute the k most probable paths, which
provide k candidate annotations (Durbin et al., 1998). These paths can be found efficiently
with an algorithm for finding the k shortest paths in a directed acyclic graph by Eppstein
(1998), and the probabilities of annotations corresponding to these candidate paths can be
evaluated by a simple modification of the forward algorithm, in time linear in the length
of the sequence. Finally, the best candidate annotation would be chosen. However, this
approach will often fail (as in the case above), since the probability of each path in the most
probable annotation may be small.

A different heuristic, called the N -best algorithm, was introduced by Schwartz and Chow
(1990) and used in the context of biological sequence analysis by Krogh (1997). The algo-
rithm, similar to the Viterbi algorithm, maintains a pool of several candidate annotations.
The algorithm guarantees only that the probability of the chosen annotation is at least as
high as the probability of the most probable state path, not that it is the most probable
annotation.

Finally, one can apply a posteriori decoding—using the forward-backward algorithm to
compute the most probable label at each sequence position. However, no state path may
correspond to this annotation, so we cannot guarantee that it is consistent with the biological
constraints of the model. To complete the heuristic, a second step is required to modify such
a labeling to obtain a plausible annotation (see, e.g., Martelli et al. (2002)), and the approach
still does not guarantee that the most probable annotation is found.

In fact, it is unlikely that a polynomial-time algorithm computing the most probable
annotation exists: Lyngsø and Pedersen (2002) showed that the problem is NP-hard. There
is one loophole that can be explored. The proof of Lyngsø and Pedersen (2002) assumed that
both an HMM and a sequence were part of the input. This does not match our decoding
scenario precisely: in our application, the HMM is fixed and the input consists only of the
sequence. Perhaps, for each particular HMM, an algorithm that is polynomial-time in the
length of the sequence, but exponential in the size of HMM can be found.

In this chapter, we show that this is not the case, unless P = NP . We present a proof
that there exists an HMM of modest size, for which finding the most probable annotation
of an input sequence is NP-hard. This, however, does not mean that the most probable
annotation problem is hard to solve for all HMMs. To that end, we present a range of
algorithms with increasing running time that can compute the most probable annotation for
increasingly larger classes of HMMs (the fastest one being the original Viterbi algorithm).
However, the problem of deciding whether an HMM with a particular topology is NP-hard
to decode, or whether there exist a polynomial-time decoding algorithm for it, is still open.

Most of the results presented in this chapter were published in Brejová et al. (2004a).

99



11 1 p2 p1 10.5

exp.length 20 exp.length 20 exp.length 10

0.95 0.90.95

Figure 4.2: HMM A: An HMM with the multiple path problem. This HMM is
inspired by the structure of introns (gray regions) whose composition changes towards their
end. Colors (white or gray) represent state labels. The HMM emits symbols over the
alphabet {0, 1} and the numbers inside states represent the emission probability of symbol
1. The values of p1 and p2 are the parameters of the experiment.

4.1 Comparing Decoding by the Most Probable Path

and by the Most Probable Annotation

We have designed a simple experiment to test if computing the most probable labeling
instead of the most probable state path increases accuracy. We used the HMM A in Figure
4.2 to generate 5 000 sequences of mean length about 500 for various combinations of the
parameters p1 and p2. This HMM outputs alternating white regions of mean length 20 and
gray regions of mean length 34. The composition of white regions is constant, while the
composition of gray regions changes towards their right ends. The gray regions are bounded
by the signal 11 on both sides.

To analyze these sequences, we used three decoding algorithms: standard Viterbi, an al-
gorithm for computing the most probable annotation, which will be introduced later in
Section 4.3, and the Viterbi algorithm on a simplified model B in Figure 4.3.

Note that if an HMM does not have the multiple path problem, so that for every labeling,
there exist only one path with that labeling, the most probable labeling corresponds to the
most probable state path, and thus we can use the Viterbi algorithm to find the most
probable labeling.

Therefore, in the simplified model, we replaced the two gray-labeled states with probabili-
ties p1 and p2 by a single state and set the parameters to maximize the likelihood (probability
of self-loop ≈ 0.97, probability of emission of 1 equal to (2p2+p1)/3), as shown in Figure 4.3.
This new HMM does not have the multiple path problem and therefore the Viterbi algorithm
yields the most probable labeling.

We evaluated the error rate (percentage of the positions that were mislabeled compared
to the labels on the state path that generated each sequence) for each decoding algorithm.
Figure 4.4 shows our results.

We have observed two trends in the data. First, computing the most probable annotation
in model A increases the accuracy compared to applying the Viterbi algorithm to model A.
Second, the Viterbi algorithm applied to a simplified model B, which does not have the
multiple path problem, often performs better than the Viterbi algorithm on the full model

100



11 1 10.5

exp.length 20

0.95
0.97

exp.length 30

p’

Figure 4.3: HMM B: Simplified model of HMM A. The two states in the HMM
from Figure 4.2 with self-loops were replaced by a single self-loop state, where the emission
probability of symbol 1 is p′ = (2p2 + p1)/3. At most one state path corresponds to every
labeling in this simplified HMM.

A. This behavior is paradoxical: since the data set was actually generated by model A, one
would expect that decoding using the same model would give the best results. However, if
the Viterbi algorithm is used for decoding, using a model B that is further from reality, but
does not have the multiple path problem, gives better results.

We also encountered the same problem in Section 3.4. In that section, we replaced a
single state with a gadget of several states to introduce a non-geometric length distribu-
tion. The probability of generating a sequence of length ` within such gadget was a sum of
probabilities of many low-probability paths through the gadget and by this trick we achieved
non-geometric length distribution. Such an HMM has a multiple path problem, and applying
the Viterbi algorithm to decode it yielded surprising and paradoxical results. In particular,
we observed in Section 3.4.2 that significant probability mass was “lost” upon entering such
a gadget, and thus the most probable state path would enter such gadget less often. As
suggested at the beginning of this chapter, this effect would disappear if we used the most
probable annotation definition of decoding.

4.2 Finding the Most Probable Annotation is NP-hard

In our discussion so far, we concentrated on justifying the new definition of decoding by the
most probable annotation. We demonstrated that such a decoding achieves better results
in HMMs with the multiple path problem. In this section, we show that the problem of
finding the most probable annotation is NP-hard. First, we review the NP-hardness proof
of Lyngsø and Pedersen (2002), which used reduction from the maximum clique problem.
However, in their reduction, they construct both an HMM and a sequence for every instance
of the maximum clique problem. This does not correspond to our scenario, since in the
annotation problem, the HMM is always fixed, and only the sequence changes from instance
to instance. Therefore we give a new NP-hardness proof that shows that finding the most
probable annotation is NP-hard, even if the HMM is fixed. Then we proceed to construct a
small HMM that is NP-hard to decode by the most probable annotation.

For convenience of notation, we need to introduce silent states into hidden Markov mod-

101



0 0.1 0.2 0.3 0.4
0

0.1

0.2

0.3

0.4

0.5

p
2

er
ro

r 
ra

te

p
1
 = 0.1

0 0.1 0.2 0.3 0.4
0

0.1

0.2

0.3

0.4

0.5

p
2

er
ro

r 
ra

te

p
1
 = 0.4

our algorithm
Viterbi
simplified Viterbi

our algorithm
Viterbi
simplified Viterbi

Figure 4.4: Comparison of different decoding methods. The graphs show the error rate
using three decoding algorithms: Viterbi on model A, the algorithm for the most probable
annotation on model A, and Viterbi on the simplified model B.

els. Silent states are regular states, except they do not emit any symbols. They are used as
a convenient extension to the modeling language (see (Durbin et al., 1998, Section 3.4)), or
to simply increase readability of the HMM diagrams. Obviously, the HMM is well-defined
only if there is no directed cycle composed of silent states. In diagrams, we will display silent
states as small black circles.

Silent states can be easily removed from the HMM. Every path π from a non-silent state u
to a non-silent state v, going through only silent states can be replaced by a direct transition
(u, v), where the transition probability will be the product of the transition probabilities on
path π.

4.2.1 Proof of Lyngsø and Pedersen

We first review the proof of Lyngsø and Pedersen (2002), to clearly identify the differences
between our work and theirs.

Theorem 35 (Lyngsø and Pedersen (2002)). Finding the most probable annotation in
hidden Markov models is NP-hard.

Proof. We prove the claim by reduction from the maximum clique problem. Consider a
graph G = (V, E) over the set of vertices V = {1, 2, . . . , n}. We will construct an HMM H
and a sequence s such that the most probable annotation of the sequence s in HMM H can
be used to identify the maximum clique in the graph G.

The HMM will emit sequences over a unary alphabet Σ = {∗}. Clearly then, every state
in the HMM will emit ∗ with probability 1. There will be n + 2 labels {1, . . . , n, #, !}. The

102



1/2

1/2

#

v

Figure 4.5: NP hardness of the most probable labeling. Gadget for vertex v in chain
of vertex u, where (u, v) is an edge in graph G.

HMM will be composed of n chains of states, each corresponding to one vertex in V . In
particular, the chain corresponding to vertex u ∈ V will contain one block for each state
v ∈ V in the order {1, 2, . . . , n}, where the block is:

• a single state with label v, if u = v

• the sub-model shown in Figure 4.5, if (u, v) is an edge in E,

• a single state with label #, otherwise.

Each chain will connect to the start state at the beginning and to the final state at the
end. The transition from the start state to the beginning of the chain of a vertex u has
probability 2deg(u)/γ, where γ =

∑

v∈V 2deg(v), and deg(v) is the degree of vertex v in graph
G. Figure 4.6 shows an example of the construction.

Obviously, the only string generated by such a hidden Markov model is ∗n+2. Any path
in this model has the same probability 1/γ. Consider any annotation S =!s1s2 . . . sn! of the
sequence. Each si is either # or si = i. Let KS be the set of all indices i for which si = i.

Each annotation S with non-zero probability is generated by several chains, with each of
these chains contributing the same probability 1/γ. If S is generated by a chain corresponding
to vertex u, then all v ∈ KS must be connected to u, and also vertex u belongs to KS. Thus
the annotation S generated by k chains has probability k/γ, and the vertices corresponding
to these k chains form a k-clique in G. Therefore, if the probability of the most probable
annotation is k/γ, then there exists a clique of size k in graph G.

On the other hand, consider a clique K of size k in graph G. Take labeling S =
∗s1s2 . . . sn∗, where si = i, if i ∈ K, and si = # otherwise. This labeling is generated
by each of the chains corresponding to vertices in K. Therefore, this labeling has probability
at least k/γ.

In this reduction, the construction of the HMM from a given graph is an essential part
of the NP-hardness proof. However, this does not correspond to a typical application, where

103



1

2

3

4

1

2

#

3

#

#

3

##

1

#

4

2

#

1 2

#

#3

2

#

# # 4

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

4/18

8/18

4/18

2/18

start
end

!
!

(a) (b)

Figure 4.6: Example of the construction of Lyngsø and Pedersen (2002). HMM (b)
is an example of the HMM constructed in the NP-hardness proof for the graph (a).

104



the HMM is given beforehand, and the task is to provide the decoding algorithm for that
particular HMM. The HMM of Lyngsø and Pedersen (2002) has Θ(n2) states, where n is the
length of the sequence, while in bioinformatics applications, the HMM is of constant size.

In the rest of this section, we show a stronger result: there exists a specific constant-size
HMM in which finding the most probable annotation of a sequence is NP-hard. This requires
us to move much of the complexity of the reduction into the sequence itself, as the sequence
will encode a particular instance of an NP-hard problem; in our case, a logical formula for
the satisfiability problem.

4.2.2 Layered Graphs and the Best-Layer-Coloring Problem

Before we proceed with the proof itself, we introduce a simpler path counting problem on
layered directed acyclic graphs, which we show is NP-complete. Then we show a reduction
from this problem to the most probable annotation problem for HMMs, and so demonstrate
that for SAT instances, we will have a specific HMM of constant (though large) size for
which decoding is hard.

Definition 36 (Layered digraphs). A colored proper layered digraph is a directed graph,
with its vertices arranged in layers L1, L2, . . . , Lw. Each edge connects a vertex in some layer
Li to a vertex in layer Li+1. Each vertex is colored white or black.

A layer coloring is an assignment of a color (white or black) to each of the layers. A
directed path from layer L1 to layer Lw is consistent with a layer coloring if the colors of the
vertices on the path match the colors of the layer coloring.

Figure 4.7 shows an example of a layer coloring. The layered graph has four layers.
There are no paths consistent with the layer coloring ◦ ◦ ◦ ◦ , but there are six different
paths consistent with the coloring ◦ • ◦ ◦ . The Best-Layer-Coloring problem asks the
following natural question.

Definition 37 (Best-Layer-Coloring problem). Given a colored proper layered digraph
G and a threshold T , is there a layer coloring which has at least T paths consistent with it?

Theorem 38. Best-Layer-Coloring is NP-complete, even for graphs where each layer
has at most a constant number of vertices.

Proof. Best-Layer-Coloring is in NP: for a given layer coloring, the number of consistent
paths is at most exponential in the number of layers and can be computed by simple dynamic
programming.

To prove NP-hardness, we reduce SAT to Best-Layer-Coloring. Consider an in-
stance of SAT, which is a logical formula in conjunctive normal form with n variables
u1, u2, . . . , un and m clauses c1, c2, . . . , cm. We give an overview of the construction in Fig-
ure 4.8.

The graph consists of m + 1 blocks 0, 1, 2, . . . , m, each with 2n layers. The layer coloring
of each block represents a truth assignment of the variables u1, . . . , un. The truth assignment
of each variable is encoded by two consecutive layer colors: ◦ ◦ (false) or ◦ • (true). Layer

105



0

6

2

Figure 4.7: Illustration of the Best-Layer-Coloring problem. An example of a
layered graph and of its layer colorings showing the number of paths consistent with each
coloring. The coloring ◦ • ◦ ◦ is the best coloring, with six consistent paths.

colorings that are not of this form will have no corresponding paths, so we do not need to
consider them. Thus, we can use the terms “layer coloring of a block” and “truth assignment
of a block” interchangeably. Let x be the truth assignment of block 0 and let y1, . . . , ym be
the truth assignments of blocks 1, . . . , m.

In a “yes” instance of SAT, we want truth assignments x, y1, . . . , ym to be the same
satisfying truth assignment of the SAT formula.

We will decompose the structure of the graph into several components, each of them
having several inputs and outputs. An input of a component is the number of consistent
paths ending in a designated vertex on the left-most layer of the component. Similarly, an
output of a component is the number of consistent paths ending in a designated vertex on
the right-most layer of the component. Let A

x−→ B denote a component that transforms a
vector of inputs A to a vector of outputs B when corresponding layers have coloring x.

The component encode(x) in Figure 4.8 encodes the truth assignment x as a vector
of three integers v(x) on its output. In each of the blocks 1, 2, . . . , m, we enforce the truth
assignment to be the same as x with the component eq(x, yi). The input of this component
is the encoding of the truth assignment x, vector v(x), and the output is the number 2K(n),
where K(n) = 4n − 2n+1 + 1, if the truth assignments x and yi are the same, or a number
smaller than 2K(n) otherwise. Finally, component SAT (ci, yi) outputs its input if truth
assignment yi satisfies clause ci, or 0 otherwise. The input to SAT (c1, y1) is a single path.

There is an additional layer before the first block and after the last block to ensure the
proper start and end of each consistent path.

The path counting threshold for the Best-Layer-Coloring instance T is 2m·K(n)+1.
For the number of consistent paths to reach this threshold, all of the block colorings must

106



x

assignment
x

...

...

...

...

...

eq(x, ym)?

sat(cm, ym)?

ym

encode

sat(c2, y2)?sat(c1, y1)?

eq(x, y2)?eq(x, y1)?

assignmentassignment
y2

assignment
y1

Figure 4.8: Overview of NP-completeness proof of Best-Layer-Coloring. The
boxes represent components of the graph construction. Lines connecting the components
represent layered subgraphs that propagate the number of paths from left to right regardless
of the layer coloring (this is achieved by using one black and one white vertex in each layer).

represent the same truth assignment and the assignment must satisfy all clauses. Otherwise
the number of consistent paths will be smaller.

What remains to show is that the components we have described exist. Lemma 39
shows how to create the component SAT (ci, yi), while Lemma 40 shows the construction of
encode(x) and eq(x, yi) The total number of vertices in each layer of this construction is
at most 29, which is sufficient to show that an instance of SAT can be reduced to Best-

Layer-Coloring with a constant number of nodes per layer.

Lemma 39. For a given clause c, there exists a component SAT (c, y) with a constant number
of vertices in each layer that outputs its input, if the truth assignment y satisfies clause c,
or 0 otherwise.

Proof. The component has two parallel lanes, one corresponding to the clause being satisfied,
the other to it being unsatisfied. There is one 2-layer section for each variable of the truth
assignment. The structure of the ith section depends on whether variable ui is present in the
clause ci as the positive literal ui, the negative literal ¬ui or not at all, as shown in Figure
4.9. If the variable is present and its assignment satisfies the clause, the path switches from
the “unsatisfied” lane to the “satisfied” lane. The input is the first vertex of the “unsatisfied”
lane and the output is the last vertex of the “satisfied” lane. Figure 4.10 shows an example
of a chain of the SAT components assembled as in Figure 4.8.

Lemma 40. There exist components encode(x) and eq(x, y) with a constant number of
vertices in each layer, such that the output of eq(x, y) is 2K(n), if x = y, and smaller
otherwise.

Proof. Let b(x) be the number whose binary representation encodes the truth assignment x
of variables u1, . . . , un (with u1 as the highest-order bit and un as the lowest-order bit). Our

107



sat.

not sat.not sat.

sat.

negation in clause:

sat.

not sat.not sat.

sat.

not in clause:

sat.

not sat.not sat.

sat.

variable in clause:

Figure 4.9: Part of SAT (c, y) component corresponding to one variable. Gray
vertices represent ’uncolored’ vertices that can be used in a path for either layer color. These
vertices are used only to simplify the drawings: each ’uncolored’ vertex can be replaced by
a white and a black vertex with the same incoming and outgoing edges. In layer a coloring,
◦ ◦ encodes false, ◦ • encodes true.

x1 x2 – – ¬x2 x3

. . .

Figure 4.10: Example of assembly of SAT components. Assembly for the formula
(x1 ∨ x2) ∧ (¬x2 ∨ x3). The assembly results in one path, if the formula is satisfied, or in
zero paths, if the formula is not satisfied by the coloring of layers, assuming that the same
assignment is repeated three times.

108



MULT

SQUARE

SQUARE

MULT

1

2

1

1

2b(x)

K(n)−b(x)2

K(n)−b(y)2

2b(x)b(y)

K(n)−b(x)2

Sum:
2K(n)− (b(x)−b(y))2

Encode x x = y?

Figure 4.11: Overview of encode and eq. The number of paths generated by the com-
ponent encode (left side) and the component eq (right side) together is maximized if the
two assignments x and y are equal. In a layer coloring, ◦ ◦ encodes false, ◦ • encodes true.

goal is to encode b(x) as a vector with the encode(x) component and use this encoding
to compute 2K(n) − (b(x) − b(yi))

2 as the output of the eq(x, y) module. To this end,
the encode component computes encode(x) : 1

x−→ (1, K(n) − b(x)2, 2b(x)) and the eq

component computes eq(x, y) : (1, α, β)
y−→ K(n) − b(y)2 + β · b(y) + α. An overview of

these two components is shown in Figure 4.11. If the output of encode(x) is used as the
input of eq(x, y), the output of eq(x, y) will be 2K(n) − (b(x) − b(y))2, which is equal to
2K(n) if x = y and is less than 2K(n) otherwise.

These two required components can be constructed as a combination of two subcompo-
nents, mult(x) : α

x−→ αb(x) and square(x) : 1
x−→ K(n)− b(x)2, as shown in Figure 4.11.

Both mult(x) and square(x) consist of identical 2-layer sections, each processing one bit
of b(x).

Consider the section of component mult(x) processing the k-th bit of the truth assign-
ment x. Let w be the binary representation of truth assignment of the first k − 1 variables,
t be the truth assignment of the k-th variable, and z = 2w + t be the truth assignment of
the first k variables.

The section has two inputs and outputs: (α, αw)
t−→ (α, αz). The value αz can be

computed from the values αw, α, and t by the following equation:

αz =

{
2αw, if t = 0
2αw + α, if t = 1

(4.2)

This computation can implemented by the layered graph shown in Figure 4.12. Assembling
n copies of this section into the component mult(x) is straightforward, as illustrated in
Figure 4.13.

Similarly, we can design the component square(x). Section k of this component has

four inputs and outputs (1, B(k−1), C(w, k−1), D(w, k−1))
t−→ (1, B(k), C(z, k), D(z, k)),

109



α

αz

t

α

αw

Figure 4.12: One section of component mult(x) : α
x−→ αb(x). In layer coloring, ◦ ◦

encodes false (or t = 0), ◦ • encodes true (or t = 1). In the bottom level, the number of
paths is always doubled between the first and second layer, and an additional α paths are
added if t = 1. This structure implements Equation 4.2.

α

αb(x)

Figure 4.13: Component mult(x) : α
x−→ αb(x). Assembly for a formula with four

variables. If α paths are consistent with the coloring in the left part of the graph, αb(x)
paths are consistent with the layering on the output of this component.

110



C C

1

B

D D

B

1

Figure 4.14: One section of component square(x) : 1
x−→ K(n) − b(x)2

where functions B, C, D are defined as follows:

B(k) = 2k+2 − 4, (4.3)

C(z, k) = B(k) − 4z, (4.4)

D(z, k) = 4k − 2k+1 + 1 − z2. (4.5)

The values of B, C, D can be computed bit by bit using the following recurrence relations:

B(k) = 2B(k − 1) + 4 (4.6)

C(z, k) =

{
2C(w, k − 1) + 4, if t = 0
2C(w, k − 1), if t = 1

(4.7)

D(z, k) =

{
4D(w, k − 1) + B(k − 1) + 1, if t = 0
4D(w, k − 1) + C(w, k − 1), if t = 1

(4.8)

The graph for each section, based on the recurrences (4.6), (4.7), (4.8), is depicted in
Figure 4.14. Graphs of n such identical sections can be assembled into the component
square(x). Since B(0), C(0, 0), and D(0, 0) are all zeroes, there are no paths entering
these inputs in the first section. The output D of the last section is the output of the whole
component, and it has value D(b(x), n) = K(n) − b(x)2, as desired.

Now, with all the required components, our proof is complete. We have given a layered
directed graph for the SAT instance. The layer with the largest number of vertices has
four lines carrying previously computed values (with two vertices in each of them), one
component eq (consisting of mult with at most four vertices per layer, square with at most
12 vertices per layer, and a line carrying a previously computed value with two vertices),
and one component SAT (with at most four vertices per layer). Therefore each layer has at

111



most 30 vertices, and wherein if there exist a layer coloring with 2K(n)+1 consistent paths,
the formula is satisfiable.

4.2.3 From Layer Colorings to HMMs

In the previous section we have shown the NP-completeness of the Best-Layer-Coloring.
Here we use the Best-Layer-Coloring problem to prove that most probable annotation
in HMMs is NP-hard, even for a fixed HMM.

Theorem 41. There exists a constant-size HMM for which it is NP-hard to find the most
probable labeling of an input binary string.

Proof. Theorem 38 shows that there exists a constant k such that finding the best layer
coloring is NP-hard, even if each layer has size at most k. Here we show that Best-Layer-

Coloring for a graph with at most k vertices per layer can be reduced to finding the most
probable labeling of a binary string in a fixed HMM, the size of which depends only on k.

In particular, consider an instance of Best-Layer-Coloring: a proper layered digraph
G with at most k vertices in each layer. We will show that there exists a constant-size HMM
M (depending only on the constant k) and a binary string S of a polynomial size in the
number of layers of G such that the most probable annotation of string S in M gives the
best layer coloring of G.

First, we modify the digraph G by adding unconnected vertices so that each layer has
exactly k white and k black vertices, and we number the vertices in each layer so that the
white vertices have numbers 1, . . . , k and black vertices k+1, . . . , 2k. Denote V = {1, . . . , 2k}.

Now, we construct an HMM M ′, which has all the properties we require except that the
alphabet Σ will be huge, but constant. Such an HMM is easily transformed into an HMM
M using only a binary alphabet: each character in Σ is replaced by a binary string of length
dlog2 |Σ|e, and each state is replaced by a binary tree of states with |Σ| leaves.

Our HMM M ′ has 2k·22k states of the form (i, V ′), for each i ∈ V and V ′ ⊆ V , and special
“error” and “start” states. The alphabet contains (22k)2k symbols of the form (V ′

1 , . . . , V
′
2k),

where V ′
i ⊆ V , and a special symbol $.

The alphabet symbols encode G’s structure: each symbol encodes the configuration of
edges between two layers of G (for each vertex i, V ′

i is the set of its neighbors in the next
layer). Each state corresponds to a vertex and the set of its neighbors in the next layer.

We will set the label of each state (i, V ′) to white if i ≤ k, or to black otherwise. Vertex
(i, V ′) can emit all symbols of form (V ′

1 , V
′
2 , . . . , V

′
i−1, V

′, V ′
i+1, . . . , V

′
n) with equal probability

p1. State (i, V ′) will have transitions to all states (j, V ′′), where j ∈ V ′ and V ′′ ⊆ V , with
equal probability p2 = 1/(2k · 22k). There will also be a transition from each state (i, V ′) to
the ’error’ state with probability 1 − |V ′|/2k.

The start state does not emit any characters and has a transition to each state (i, V ′),
with equal probability p2. The error state emits the special character $ and has a transition
only to itself.

Consider string S = s1 . . . sw, where w+1 is the number of layers of G, and si corresponds
to the configuration of edges between layers i and i+1. Any state path that emits this string

112



has equal probability pw
1 · pw

2 . Moreover, there is a one-to-one correspondence between the
state paths and paths through G, and a labeling of a state path corresponds to a coloring of
the corresponding path in G. Therefore, the most probable labeling corresponds to the best
layer coloring in G.

4.2.4 Constructing a Small HMM that is NP-hard to Decode

The HMM obtained in the proof of Theorem 41 has O(k · 22k(2k+1)) states, which is very
large, considering the number of layers required for the proof of Theorem 38 is k = 30.

In this section we will use ideas from the proof of Theorem 38 to reduce SAT to the most
probable labeling problem directly, obtaining a much smaller HMM.

The SAT instance will be encoded in the sequence. If the SAT formula contains m
clauses with n variables, then the sequence will consist of (m + 1) blocks of (n + 1) symbols,
terminated by a special symbol ! as follows.

The first block is a string 0n#, where each of the zeroes represents one variable. Each
of the next m blocks encodes one clause of the formula. The ith symbol is 1, if the clause
contains the positive literal of the ith variable, 0 for the negative literal, and – , if the clause
does not contain the ith variable. Each block is terminated by a special symbol $. For
example, formula x1 ∧ (x2 ∨ ¬x3) will be encoded as 000#1 – – $ – 10$!.

The HMM will have two labels: white and gray. We can imagine that the most prob-
able annotation of the HMM is simply a coloring of the original sequence. We expect the
most probable annotation to represent the satisfying assignment, where special characters
are colored white, each variable with value “true” is colored gray, and each variable with
value “false” is colored white. In the most probable annotation representing a satisfying as-
signment, the same pattern will repeat m + 1 times, and in each clause at least one symbol
“0” will be labeled white, or one symbol “1” will be labeled gray. Figure 4.15 shows an
example of a satisfying assignment as a labeling.

Figure 4.16 shows the schema of the HMM. The labels of the states are represented by
the color of each state (white or gray). Each state emits only the symbols depicted inside
the state with equal probability. Multiple edges join some pairs of states; the multiplicity
of an edge is noted at the tail of the edge (if not explicitly stated, it is 1). Silent states are
inserted to increase the readability of the diagram.

We want all non-zero probability paths in this HMM to have the same probability. To
achieve this goal, we need to transform the diagram in the figure to an HMM by removing
silent states and introducing an error symbol, and an error state (not shown in the figure).
The error state emits only the error symbol and has only one outgoing transition, leading
back to the error state. The error symbol is also emitted in each of the states. Emissions
of the error symbol and transitions to the error state are used to normalize probabilities, so
that every ordinary symbol emission, and every transition between two ordinary states, have
the same probabilities.

Once we have accomplished this transformation, every path has the same probability, we
only need to count the number of paths produced by each particular annotation.

113



Formula: x1 ∧ (x2 ∨ ¬x3)
Satisfying assignment: x1: true, x2: true, x3: false

Encoding of the formula: 0 0 0 # 1 - - $ - 1 0 $ !

Labeling corresponding

to the assignment: 0 0 0 # 1 - - $ - 1 0 $ !

Figure 4.15: Encoding formulas and assignments for HMM solving SAT

To understand the HMM, we will relate it to the diagram of a layered graph in Figure 4.8
on page 107. Each path in this layered graph will be represented by a path in the HMM and
the coloring of the path in the layered graph will be represented by the annotation (labels of
the states) in the HMM. For a given annotation and a given formula with n variables and
m clauses, we will denote by x the truth assignment implied by the annotation of the first
block, and yi the truth assignment implied by the annotation of block i+1, representing the
i-th clause. In Section 4.2.2, we defined K(n) = 4n − 2n+1 + 1, and we also defined b(x) to
be the number whose binary representation encodes the truth assignment x.

At each point of time, sub-model A carries exactly one path. Block A corresponds to
the top-most level in the layered graph (the top-most level always carries one path as well).
From time to time, one or more paths are split from the path carried by sub-model A; these
paths are propagated to the other blocks. All non-zero probability paths must end in the
state “stop” after (m+1)(n+1)+1 steps. This is because the analyzed sequence always ends
with a symbol !, which is emitted only by the “stop” state. The number of paths that end in
this state is proportional to the probability of a particular annotation. Thus the annotation
generating the largest number of such paths will be the most probable annotation.

There are two parts of the HMM. Sub-models B, C, D contribute one path to the final
annotation if all block annotations represent satisfying assignments (i.e., for each block
corresponding to a clause, there must be at least one symbol 1 colored gray, or one symbol
0 colored white). At the beginning of each clause, this path is in sub-model C, and it is
transferred to sub-model D once a variable is found that is satisfied by the truth assignment
represented by the annotation. After the clause is terminated with symbol “$”, this path is
transferred back to the sub-model B, if there was a satisfied variable, or it is discontinued in
sub-model C, if the clause is not satisfied. Thus, the function of sub-model B is characterized
by the following lemma.

Lemma 42. Upon emission of the symbol “$”, terminating block i + 1 representing the i-
th clause, block B contains one path if the first i clauses are satisfied by their assignments
y1, . . . , yi, or zero paths otherwise.

Sub-models E, F, G, H, J, L, and M enforce that all clause blocks of the input sequence
are annotated with the same value assignment of the variables. The combination of these
sub-models mimics the function of the component encode(x) in Figure 4.8. The following
lemma characterizes the intermediate number of paths in each of the sub-models G, E, F, J

114



01− $#01−

!
stop

44
# 01−

01− 01−

start

4 4 24

2 2 2 2

#$

10 1−01−

$01− 01−

0# 0

22

01−01−

$$
2 2

01− 01− 01−01− 01−

01−

01−

01− 0−

C: unsatisfied

D: satisfied

F: 2^(n+2)−4 G: 2x

J: K(n)−y^2

M: 2xy

B: new clause

E: 2^(n+2)−4−4y

N: sum and storeL: store K(n)−x^2

H: store 2x

A: store  1

Figure 4.16: HMM solving SAT. A small HMM for which it is NP-hard to find the most
probable annotation of a sequence. The input sequence encodes the formula in blocks, where
each block except the first encodes one clause of the formula. The most probable labeling
represents a satisfying assignment, if such an assignment exists. Gray labels represent value
true, and white labels represent value false. The first block is terminated by #, blocks
corresponding to clauses are terminated by $, and the formula is terminated by !.

115



in the process of emitting the first block of the sequence. The correctness of the lemma
follows directly from the Recurrences 4.6–4.8 on page 111.

Lemma 43. Let z be the binary representation of the first k variables in the truth assign-
ment x. After emitting the first k symbols of the first block of the sequence,

a) sub-model G contains 2z paths,

b) sub-model E contains C(z, k) paths,

c) sub-model F contains B(k) paths,

d) sub-model J contains D(z, k) paths,

where B(k) = 2k+2 − 4, C(z, k) = B(k) − 4z, and D(z, k) = 4k − 2k+1 + 1 − z2 are defined
as in Section 4.2.2.

The sub-models characterized in the previous lemma are used to compute the values
of K(n) − b(x)2 and 2x, which are then stored in sub-models L and H for the rest of the
execution.

Lemma 44. After emitting the symbol “#” terminating the first block of the sequence,

a) sub-model L contains K(n) − b(x)2 paths,

b) sub-model H contains 2b(x) paths.

The number of paths contained in sub-model L is added to the number of paths in sub-
model N upon terminating each clause-block of the sequence. The paths in block H are
used for further computation to obtain value of 2xyi for each clause i.

After finishing the first block, for each of the subsequent blocks of the input sequence
corresponding to i-th clause, K(n)− b(yi)

2 and 2b(x)b(yi) paths are created in sub-models J
and M . This function is analogous to the component eq(x, yi) in Figure 4.8. Sub-models
M, E, F, and J are used for computing intermediate results, again according to Recurrences
4.6–4.8.

Lemma 45. Let z be the binary representation the first k variables in the truth assignment yi.
After emitting the first k symbols of block i + 1 of the sequence representing the i-th clause
of the formula,

a) sub-model M contains 2xz paths,

b) sub-model E contains C(z, k) paths,

c) sub-model F contains B(k) paths,

d) sub-model J contains D(z, k) paths,

116



Whenever the model reaches the end of a clause, marked by the $ symbol, the paths
from sub-models J , L, and M are added into sub-model N , contributing altogether 2K(n)−
(b(x) − b(y))2 paths.

Lemma 46. After emitting the symbol “$” terminating block i + 1 of the sequence cor-
responding to the i-th clause of the formula, the number of paths contained in block N is

i∑

j=1

2K(n) − (b(x) − b(yi))
2 (4.9)

Upon emitting the symbol “!” terminating the sequence, the final “stop” state will receive
all the paths accumulated in sub-model N . This number is maximized when x = y (i.e.,
if the annotation is the same for every clause). If all clauses have the same assignment,
sub-model N contributes 2mK(n) paths; otherwise, it contributes some smaller number.
The “stop” state also receives one path from sub-model B if all clauses are satisfied by their
assignments.

Therefore, a satisfying annotation that is consistent over all the clauses will yield 2mK(n)+
1 paths. Any other annotation will yield a smaller number of paths, and thus a satisfying
consistent annotation is the most probable annotation, if such an annotation exists. There-
fore, if we can solve the most probable annotation problem for the HMM in Figure 4.16, we
can use it to solve SAT in polynomial time.

After removing the silent states and introducing the error state, the resulting HMM has
34 states. As we will see in the following section, this HMM is hard to decode because states
with different labels are distributed all over the HMM, with many edges between states with
different labels. For HMMs with only a few edges leading between states of different labels,
we will introduce polynomial-time algorithms.

4.3 Computing the Most Probable Annotation

In the previous section, we have shown that in general, it is NP-hard to compute the most
probable annotation for a given HMM. However, we can characterize special classes of HMMs
for which the most probable annotation can be computed efficiently.

For example, consider an HMM where the annotation is uniquely determined by the state
path, so any two state paths have different annotations. Then the most probable state path
corresponds exactly to the most probable annotation, and it is thus easily computable by
the Viterbi algorithm in O(nm2) time, where n is the length of the sequence, and m is the
number of states in the HMM.

In this section, we give a range of algorithms with increasing running time (the Viterbi
algorithm being the fastest of them) that can decode increasingly wider classes of HMMs. For
each algorithm, we give a sufficient condition that characterizes the class of HMM topologies
that can be decoded using the algorithm. Moreover, each of the algorithms is also guaranteed
to return an annotation with probability at least as high as the probability of the most

117



A B C

Figure 4.17: HMM with critical edges. The labels of the states are determined by the
colors (white or gray).

probable state path, even if the input HMM does not belong to the class of HMMs that are
guaranteed to be decoded correctly by the algorithm.

4.3.1 Most Probable Extended Annotation

We first introduce a notion of extended annotation and an algorithm that computes the most
probable extended annotation in polynomial time. Then we characterize a class of HMMs
for which an extended annotation uniquely determines the annotation. For this class, our
algorithm finds the most probable annotation. In the following definitions we assume that the
HMM has a designated start state s and a designated final state f . However, the definitions
and algorithms are easily extended to models without such states. Let in(u) for any state u
be the set of states that have a transition into state u.

Definition 47 (Extended annotation). A critical edge is a transition between two states
of different label. The extended annotation of a state path π1π2 . . . πn is the pair (L, C), where
L = λ1, λ2, . . . , λn is the sequence of labels of each state in the path and C = c1, c2, . . . , ck is
the sequence of all critical edges followed on the path.

For example, the HMM in Figure 4.17 has three states and two different labels. The edges
between states A and B are critical edges, since states A and B have different labels. State
path ABCB and state path ABBB both yield the same extended annotation (����, A →
B). The following extended Viterbi algorithm (EVA) computes the most probable extended
annotation.

Theorem 48 (Extended Viterbi algorithm). For a given sequence S = x1 . . . xn and an
HMM with m states, it is possible to compute the most probable extended annotation in time
O(n2m3).

Proof. We modify the Viterbi algorithm for computing the most probable state path. The
Viterbi algorithm computes by dynamic programming values of V [u, i], where V [u, i] =
max Pr(x1 . . . xi, π1 . . . πi), where the maximum is taken over all state paths π1 . . . πi starting
in state s and ending in state u.

To compute a particular value of V [u, i], the dynamic programming uses the following
recurrence, examining all possible options for the second to last state:

V [u, i] = max
v∈in(u)

V [v, i − 1] · a(v, u)eu(xi). (4.10)

118



The extended Viterbi algorithm (EVA) is a modification of the Viterbi algorithm to
compute the most probable extended annotation. Instead of computing the values V [u, i],
we compute values L[u, i] defined as follows:

L[u, i] = max Pr(x1 . . . xi, (L, C), πi = u), (4.11)

where the maximum is taken over all extended annotations (L, C) of sequence x1 . . . xi, where
the generating process ends in state u. The Viterbi algorithm computes the most probable
paths through the model using dynamic programming, at each step considering all possible
options for the second last state. Instead, we will examine all possible durations of the last
segment with the same label and instead of the single most probable path in that segment,
we will compute the sum of all possible state paths in this segment. If the segment starts at
position j ≤ i of the sequence, let P [v, u, j, i] be this sum; it is the probability of generating
the sequence xj . . . xi, starting in state v, and ending in state u, using only states with label
λ(u) = λ(v). We get the following recurrence:

L[u, i] = max
j≤i

max
v:λ(v)=λ(u)

max
w∈in(v):λ(w)6=λ(v)

L[w, j − 1] · a(w, v) · P [v, u, j, i] (4.12)

We compute values of L in order of increasing i. For each i, we compute all relevant values
of P (v, u, j, i) in order of decreasing j by an algorithm similar to the backward algorithm,
using the following recurrence:

P [v, u, j, i] =
∑

w:v∈in(w),λ(v)=λ(w)

ev(xj) · a(v, w) · P [w, u, j + 1, i] (4.13)

When the computation of L is finished, the most probable extended annotation can be
reconstructed by tracing back the labels and critical edges used to obtain the value of L[f, n],
as for the Viterbi algorithm.

Note that the probability of the extended annotation returned by the algorithm is always
at least as high as the probability of the most probable state path Π found by the Viterbi
algorithm. This is because the probability of the extended annotation corresponding to Π
must be at least as high as the probability of Π itself.

4.3.2 Critical Edge Condition

The algorithm defined above is guaranteed to compute the most probable annotation for a
much wider class of HMMs than the Viterbi algorithm. Here is a sufficient condition for this
class.

Definition 49. An HMM satisfies the critical edge condition for an input sequence s, if
any two paths for s with the same annotation have the same sequence of critical edges. An
HMM satisfied the critical edge condition in general if for all input sequences s, the critical
edge condition is satisfied.

119



A B C

Figure 4.18: An HMM violating critical edge condition

The hidden Markov model in Figure 4.17 clearly satisfies the critical edge condition, since
for each transfer between the two labels there is only one possible critical edge which can be
used. A more complicated example of a model satisfying the critical edge condition is shown
in Figure 4.21. On the other hand, the HMM in Figure 4.18 does not satisfy the critical
edge condition, since for the annotation ��� there are two possible extended annotations:
(���, B → A, A → B) and (���, B → C, C → B). The significance of the critical edge
condition is shown by the following claim.

Corollary 50. If an HMM satisfies the critical edge condition for a sequence s, then the
EVA computes the most probable annotation of sequence s.

Proof. We call an annotation (or extended annotation, or state path) L possible with respect
to sequence s if Pr(L | s) > 0.

The EVA computes the most probable extended annotation. Therefore for the statement
to be false, the most probable annotation and the most probable extended annotation must
be different.

This happens only if there exist at least two different possible extended annotations L1

and L2, that correspond to the most probable annotation. Let π1 be a possible state path
corresponding to L1, and π2 be a possible state path corresponding to L2. Since L1 and
L2 are different, the paths π1 and π2 must differ in at least one critical edge; yet both π1

and π2 produce the same annotation. Therefore the HMM cannot satisfy the critical edge
condition.

We can test algorithmically whether a given HMM topology (not considering emission
probabilities) satisfies the critical edge condition for every input sequence. We first use
depth-first search to build a set Ss of all pairs of states that are reachable from the start
state by the same annotation. We start from the pair (s, s) ∈ Ss, and in each iteration we
add a new pair (u, v) if λ(u) = λ(v), and there exists (u′, v′) ∈ Ss such that u′ ∈ in(u)
and v′ ∈ in(v). The search is completed in O(m2) iterations, each requiring O(m2) running
time. Similarly, we also build a set Sf of all pairs of states from which the final state can be
reached by the same annotation. For the critical condition to be violated, there must exist
a pair (u, v) ∈ Ss and (u′, v′) ∈ Sf such that λ(u) 6= λ(u′), and (u, u′) and (v, v′) are two
different transitions. The algorithm takes O(m4) time.

It is possible to modify this verification algorithm to verify the critical edge condition
in O(m4|Σ|2) time, if emission probabilities are given. Note that this test may yield a
different result, since some states may not produce some of the alphabet symbols, making it

120



(a) (b) (c)

Figure 4.19: Usefulness of silent states. The color of each state corresponds to the
label. Silent states are represented as smaller circles. The HMM (a) violates the critical
edge condition and cannot be decoded by our algorithm. There is no equivalent topology
without silent states satisfying the condition. Using silent states, we are able to construct
an equivalent HMM (b) that satisfies the critical edge condition. However, the technique is
not universal: HMM (c) cannot be transformed to comply with the condition.

impossible for two different paths with the same extended annotation to generate the same
string; hence, this extended algorithm may find even more HMMs that satisfy the condition.

And finally, we can also verify the condition for a given HMM and input string in O(nm4)
time. In that case, we will build a set of state pairs that can be reached by the same
annotation for each position in the sequence.

4.3.3 Silent States and the Critical Edge Condition

For purposes of decoding algorithms such as Viterbi, forward, or backward algorithm, there
are two ways of dealing with the silent states: either modify the algorithms to account for
their presence or construct an equivalent HMM with silent states removed.

It is possible to modify the EVA to account for the presence of silent states as well, using
an approach analogous to one shown in the book of Durbin et al. (1998, Section 3.4). For
the purpose of evaluating the critical edge condition, we need to assign labels to silent states,
even though the silent states do not emit any symbols.

The second method, removing the silent states, cannot be used because the transforma-
tion of the HMM topology can result in an HMM violating the critical edge condition—see
Figure 4.19. Conversely, some HMMs can be transformed to equivalent HMMs that satisfy
the critical edge condition by addition of silent states. Thus, in our case, the silent states
are a crucial modeling tool.

4.3.4 Applications of the EVA

The EVA solves the most probable annotation problem on a much wider variety of HMM
topologies than does the Viterbi algorithm. In this section we show several biological appli-
cations, where the EVA can be used, and which could consequently benefit from increased

121



5’ end exon exonexon 3’ end

phase 0 phase 1 phase 2

Figure 4.20: Simplified model of ESTScan

accuracy.

The simplified model of ESTScan (Iseli et al., 1999) shown in Figure 4.20 has the multiple
path problem. ESTScan uses an HMM to predict the coding part of an EST. Compared to a
typical coding region predictor, ESTScan needs to handle insertions and deletions within the
coding sequence, which are caused by the low quality of EST sequencing. The exact place of
a sequencing error cannot be easily identified, so to simply distinguish coding parts of ESTs
from non-coding, we assign the same label to all states corresponding to coding sequence.
Each path in this model corresponds to some combination of insertions and deletions, but
many such paths can yield the same annotation. The actual model used in ESTScan has
a more complicated topology, ensuring for example that only one insertion or deletion can
occur within the same codon.

Because the model has the multiple path problem, the Viterbi algorithm is not appropri-
ate for decoding it. However, the model satisfies the critical edge condition and thus the EVA
can be used to find the most probable annotation. The condition is satisfied because the
states labeled “exon” are grouped in a subgraph with only one incoming and one outgoing
edge.

A more complicated example is the simple model of exon/intron structure of eukaryotic
genes in Figure 4.21. Multiple copies of the same intron model preserve the three-periodicity
of coding regions. Intronic sequence in DNA contains a pyrimidine-rich tail close to the
acceptor site. Its composition is very different from the rest of the intron, and provide
strong support for a possible neighboring acceptor site. The tail has variable length, and
it does not have a clear boundary. This creates a multiple-path problem because there are
always several high-probability alternatives for the transfer from “intron” state to the “tail”
state. Even though there are multiple edges for transitions between “exon” and “intron”
labels, the model does not violate the critical edge condition, since the length of the exonic
sequence uniquely determines which critical edge will be used.

TMHMM (Figure 4.22) is an HMM for prediction of topology of transmembrane pro-
teins (Krogh et al., 2001). The task is to predict positions of transmembrane helices, cy-
toplasmic, and non-cytoplasmic loops in a protein sequence. The two different models of
non-cytoplasmic loops create the multiple path problem, potentially decreasing prediction
accuracy if the Viterbi algorithm is used. We introduce silent states to ensure that the
critical edge condition is satisfied.

122



exon intron intron

exon intron intron

exon intron intron

3’ end

5’ end

phase 0

phase 1

phase 2

pyrimidine tail

Figure 4.21: Simple model of exon/intron structure

loop
cytoplasmic

helix
loop
non−cyt.

helix
loop
non−cyt.

(short loop)

(long loop)

Figure 4.22: TMHMM: prediction of topology of transmembrane proteins. Boxes
in the figure represent groups of states with the same label.

123



4.3.5 Generalizing the EVA and the Critical Edge Condition

In previous sections we introduced two scenarios under which it was possible to find the
most probable annotation in HMM. First, if every annotation can be uniquely mapped to a
single path in HMM, the Viterbi algorithm with running time O(nm2) can be used to find
the most probable annotation, which is the same as the most probable path in this case.
Second, if the HMM satisfies the critical edge condition (which is satisfied by a much larger
class of HMMs), then the extended Viterbi algorithm (EVA) with running time O(n2m3)
can be used to find the most probable annotation.

In this section we extend the notion of critical edge condition and EVA to an even larger
class of HMMs. As the configuration of critical edges in HMM gets more complex, the
running time of the decoding algorithm progressively increases.

Definition 51 (Generalized extended annotation). A generalized extended annotation
is a pair (L, C), where L = λ1λ2 . . . λn is a sequence of labels, and C = c1, c2, . . . , ck contains
for every transition between different labels in L either a critical edge that can be used for
such a transition, or the symbol “*” (a masked critical edge).

We say that a generalized extended annotation matches a state path π1π2 . . . πn if the
labeling L corresponds to the labels of the states, and if every critical edge in C corresponds
to the critical edges used on the path (while critical edges, which are masked by “*” in C,
can be arbitrary).

We say that a generalized extended annotation is of order d if from any d consecutive
critical edges of C at least one is not masked.

Note that one path can be matched by several generalized extended annotations.

Theorem 52 (Generalized EVA). For a given sequence S = x1 . . . xn and an HMM with
m states, it is possible to compute the most probable generalized extended annotation of order
d in time O(nd+1md+2). We call the corresponding algorithm generalized EVA of order d.

Note that Theorem 48 is a special case of generalized EVA of order 1.

Proof. In Theorem 48 we were computing values of L[u, i]—the probability of the most
probable extended annotation of the first i symbols of the sequence ending at state u—by
dynamic programming. The recurrence decomposed the problem of computing L[u, i] into
subproblems depending on the last critical edge used.

We can further modify the algorithm to account for masked critical edges in generalized
extended annotations. The dynamic programming algorithm will compute values of Ld[u, i]:
the probability of the most probable generalized extended annotation of order at most d
of the first i symbols ending in state u. This will be done by decomposing the problem
into subproblems depending on the position of the last unmasked critical edge. If the last
unmasked critical edge was used at position j < i, then we need to consider all possible
annotations of the region of the sequence xj . . . xi with at most d − 1 transitions between
different labels. In particular:

Ld[u, i] = max
j≤i,(v,w):λ(v)6=λ(w)

L[w, j − 1] · a(w, v) · max
λj ,...,λi∈Ld(j−i+1)

Pd(v, j, u, i, λj . . . λi), (4.14)

124



where Ld(k) is the set of labelings of length k with at most d−1 transitions between different
labels, and Pd(v, j, u, i, λj . . . λi) is a probability of labeling λj . . . λi of sequence xj . . . xi, if
the model starts in state v and finishes in state u. This probability for a given labeling
can be computed in O(nm2) by the backward algorithm. For each tuple (v, j, u, i) there are
O(nd−1md−2) possible labelings λj . . . λi, and for each pair v, i there are O(nm2) values of
v, w and j. Therefore, to compute the O(nm) values of Ld[u, i], we need a running time of
O(nd+2md+3).

This running time can be further reduced by careful organization of how the values of
Pd(v, j, u, i, λj . . . λi) are computed. For a given pair (u, i), all labelings that will need to be
explored can be organized in a tree. The root of the tree is composed of labeling containing
only a single label λ(u). Children of each node either extend this labeling backward with the
same label as the parent node, or change the label to a different label; such extensions are
done until either the beginning of the sequence is reached, or the threshold d − 1 of allowed
label changes is exceeded. If the computation of the values of Pd is organized along this tree,
only O(m) time is needed to compute the desired probabilities for each labeling from the
probabilities of the parent labeling. Using this method, we can decrease the running time to
O(nd+1md+2).

Analogously to the critical edge condition for EVA, we now introduce the generalized
critical edge condition which will characterize the class of HMM topologies that can be
decoded by the generalized EVA.

Definition 53 (Consensus generalized extended annotation). The consensus gener-
alized extended annotation of a set of extended annotations {(L, C1), (L, C2), . . . , (L, C`)}
sharing the same labeling L is a generalized extended annotation (L, (c1, c2, . . . , ck)) such
that ci = c, if the ith critical edge of all of C1, C2, . . . , C` is the same edge c, and ci = ∗
otherwise.

Definition 54 (Generalized critical edge condition). An HMM satisfies the generalized
critical edge condition of order d, if for any sequence s, and a non-zero probability annotation
L of s, the consensus generalized extended annotation of all non-zero probability extended
annotations (L, C) of s is of order at most d.

The HMM in Figure 4.23 does not satisfy the critical edge condition. This is because
there are two critical edges leading from white label to gray label: B → C and D → E. Note
that the critical edge condition is a special case of the generalized critical edge condition for
d = 1.

On the other hand, the HMM satisfies the generalized critical edge condition for d = 2.
For example, annotation ���������� has only two possible combinations of critical
edges in an extended annotation: (F → A, B → C, F → A) and (F → A, D → E, F → A).
This yields a consensus annotation: (F → A, ∗, F → A), which is consistent with the
generalized critical edge condition of order d = 2. The following corollary shows that the
most probable labeling for this HMM can be found by the generalized EVA in running time
O(n3m4).

125



A F
D E

B C

Figure 4.23: HMM requiring generalized EVA algorithm

Corollary 55. If an HMM satisfies the generalized critical edge condition of order d, then
the generalized EVA of order d finds the most probable annotation in HMM.

Proof. Consider the most probable annotation L. Its consensus generalized extended an-
notation (L, C) is of order at most d, since the HMM satisfies the generalized critical edge
condition of order d. Thus (L, C) must be one of the options considered by the generalized
EVA, and thus the generalized extended annotation (L′, C ′) returned by generalized EVA
will have a probability at least that of L.

Now assume that L′ is not equal to L. All paths included in generalized extended anno-
tation (L′, C ′) are also included in annotation L′, and therefore the probability of annotation
L′ is at least that of L (and, in fact, it must be equal, since L is the most probable annota-
tion).

4.4 Summary

In this section we have investigated the most probable annotation problem in HMMs. We
showed that the problem is NP-hard, even for a fixed HMM constructed in the proof, in
contrast to the previous NP-hardness proof by Lyngsø and Pedersen (2002), where the HMM
constructed depended on the input instance. In most biological applications, the HMM is
fixed.

Even though the problem is NP-hard in general, it is possible to compute the most
probable labeling for some HMMs. First of all, if there is only a single feasible state path for
every possible annotation, the problem can be solved by the Viterbi algorithm. Otherwise,
the HMMs have the multiple path problem, and we need to use different methods to decode
them.

We provided an O(n2m3) time extended Viterbi algorithm (EVA) and characterized a
wide class of HMMs (those satisfying the critical edge condition) for which we can find the
most probable annotation using it. Its run time may cause problems in applications with long
input sequences, such as gene finding. Still, it is acceptable in other cases, such as analysis
of protein sequences or ESTs. In practice, the running time may be further decreased by
application of biological constraints (such as location of open reading frames) and various
stopping conditions.

The model topologies that can be decoded by the EVA include those for transmembrane
protein topology prediction (TMHMM), distinguishing coding regions in ESTs (ESTScan),

126



Figure 4.24: An HMM with unknown decoding algorithm. Is there a polynomial
algorithm that finds the most probable annotation in this HMM, or is the problem NP-
hard?

or a better intron model used in gene finding. We also noted that the use of the Viterbi
algorithm instead of the most probable labeling may lead to paradoxical behavior, where a
more accurate model will yield worse results.

We can further generalize the EVA and the critical edge condition and use increasingly
slower decoding algorithms to decode increasingly wider classes of HMMs. Even if a par-
ticular HMM topology cannot be proved to be always decoded correctly with a particular
algorithm, increasing the running time helps to increase the accuracy. The probability of
the annotation corresponding to the most probable path found by the Viterbi algorithm in
O(nm2) time is at most as large as the probability of the annotation corresponding to the
most probable extended annotation found by EVA in O(n2m3). This trend extends to the
generalized EVA, where the probability increases with the value of the parameter d, though
at the cost of an increasing running time O(nd+1md+2).

Several problems remain open. First, we do not know at present any polynomial algorithm
for finding the most probable annotation for the model shown in Figure 4.24. Is decoding
of this simple model NP-hard? Similar topologies are useful in various applications for
providing alternative models for multi-label structures (such as different types of genes).
More generally, can we provide a complete characterization of the models that are NP-hard
to decode?

Second, are there HMM topologies (other than ones without the multiple path problem)
that can be decoded in sub-quadratic time? Such models may be useful in applications where
the input sequence is long.

127





Chapter 5

Implementing ExonHunter

To facilitate the evaluation of our ideas from the previous sections, we implemented an ab
initio gene finder, which we named ExonHunter. ExonHunter is based on hidden Markov
models, as described in Section 1.3. It incorporates structured HOT signals as outlined in
Chapter 2, and advanced methods for length distribution modeling described in Chapter
3. In the design of the model topology we avoided topologies that have the multiple path
problem described in Chapter 4.

The main purpose of this chapter is to desribe the implementation which we used to
evaluate our ideas in Chapters 2 and 3. ExonHunter’s performance is comparable to other
commonly used ab initio gene finders, and therefore it is a reasonable base line for our
experiments.

Ab initio gene finders only use information that is contained in the DNA sequence it-
self. We also implemented extensions to ExonHunter that allow consideration of informa-
tion beyond the DNA sequence. Such information includes genome-to-genome comparisons,
databases of expressed sequence tags and proteins, etc. The description and evaluation of
this extension is beyond the scope of this thesis, and is described in Brejová et al. (2005),
and in detail in Brejová (2005). However, in this chapter, we briefly describe how we in-
corporate information about common sequence repeats into our gene finder, since using this
information is crucial for the performance of the gene finder.

5.1 Hidden Markov Model of ExonHunter

We use the HMM shown in Figure 1.17 on page 33. This model finds genes on both strands
of DNA at the same time.

We model exon states, intron states, and intergenic states by fourth order Markov chains.
The intron states of all three models on the forward strand have the same parameters. Sim-
ilarly, the intron states of all three models on the reverse strand have the same parameters.
The parameters of the exon states which are in the same frame on the same strand are also
tied together. Finally, the parameters of the fourth order Markov chain representing inter-
genic regions are computed as an average of the parameters for introns on forward strand

129



and introns on reverse strand as we cannot rely on accurate annotation of intergenic regions;
in fact, the best available training sequences contain single genes, with only a small amount
of their flanking intergenic sequence.

Each basic signal is represented by a single state generating the whole length of the
signal, as described in Chapter 2. The donor signal uses the window [−3, +6] around the
donor splice site, and is represented as a HOT-2 model. The acceptor signal uses the window
[−4, +3] around the acceptor splice site, and is represented as a HOT-2 model as well. The
start site signal uses the window [−9, +4], and is represented as a TREE model. Finally, the
stop site signal uses the window [−6, +9], and is represented as a TREE model as well.

We have used two additional signals in our model to enhance detection of start sites and
acceptor sites. First, we added a model of the signal peptide. The signal peptide is a chain
of several amino acids close to the start of proteins, serving as a targeting signal for the
cell transport machinery. Having a signal peptide is characteristic of proteins directed to
the endoplasmatic reticulum, transmembrane proteins, and of proteins that are transported
outside the cell. The signal peptide is a special signal because it is at the same time a signal
and part of the resulting protein.

To build a model of the signal peptide, we translated the DNA sequences annotated in
the training set to protein sequences. Zhang and Henzel (2004) presented a profile HMM
built from a data set of experimentally confirmed occurrences of the signal peptide. We
used this model and scored the likelihood of occurrences of the signal peptide in sequences
in our training set with the program HMMER (Eddy, 1998). Then we chose the top 30% of
identified sequences, and trained a DNA signal model for the window [+5, +20] relative to
the start site. We chose 30% of sequences because the signal peptide occurs in approximately
30% of all proteins. For that reason, we use a mixture of 30% of this signal and 70% of regular
coding sequence for this window in the model.

The second signal is a pyrimidine (C/T) rich tail that occurs at the end of each intron.
The pyrimidine tail is of variable length, therefore the model suggested in Figure 4.21 on page
123 would be a proper model of this phenomenon. However, such a model would introduce
the multiple path problem into the HMM, and in consideration of the results of Chapter 4,
we decided to replace it with a signal model of fixed length on the window [−20,−5] relative
to the acceptor splice site.

Both signal peptide and pyrimidine rich tail are signals that have only vague positional
dependence. Significant positions important for recognition of the signal may be shifted by
several positions within the signal. Therefore, we use a windowed position weight matrices
(WPWM) for these signals. In windowed models, the statistics for position i are collected
not only from position i, but also from positions in interval [i − w, i + w], where w is the
size of the window. Such models were suggested in Genscan for some of the signals (Burge,
1997). For the signal peptide, we use a three-periodic WPWM of order 2 with window size
4. The model of pyrimidine rich tail is a WPWM of order 3 with window size 10.

We modeled length distributions as suggested in Chapter 3. We trained the length
distributions of exons separately for first exons (tail starts at position 100), internal exons
(tail starts at position 120), last exons (tail starts at position 290), and single exon genes

130



(tail starts at position 370). The length distributions of introns were trained with a tail
starting at position 150. In case of intergenic regions, we applied the faster algorithm for
step-function approximation, and the geometric tail starts at 30000.

We subjected all conditional probability distributions estimated from the training data
(both for Markov chains and for the signals) to interpolation to prevent overfitting the
training data. This interpolation was introduced to gene finding by Salzberg et al. (1998)
in their gene finding program GLIMMER for the simpler task of prokaryotic gene finding
(prokaryotic genes do not have introns).

Consider a Markov chain of order 2 and an interpolation threshold D. Suppose we are
estimating the probability Pr(Xi = xi |Xi−1 = xi−1, Xi−2 = xi−2) of generating the symbol
xi given that the symbols xi−1 and xi−2 were generated at the preceding two positions. Let
the number of all samples in the training set for which Xi−1 = xi−1 and Xi−2 = xi−2 be D′,
out of which d′ have Xi = xi.

If D′ is at least D, we estimate the probability simply by the frequency count as d′/D′.
Otherwise, we consider these statistics unreliable, and supplement the training set by lower
order statistics, computing the probability using the following formula:

d′ + (D − D′) · Pr(Xi = xi |Xi−1 = xi−1)

D
. (5.1)

Intuitively, this formula replaces the “missing” data points by using a sample generated with
lower order statistics. This is done recursively if the number of samples is not sufficient to
train the lower order statistics. We have set D = 100 in ExonHunter.

Finally, many researchers have noticed before that various statistics used in gene finding
change significantly with the GC content of the DNA sequence (Burge, 1997; Stanke and
Waack, 2003). The GC content is the percentage of the nucleotides G and C in the sequence.
For example, GC-rich sequences are more likely to contain genes than AT-rich sequences. We
use four GC content categories, set so that each category has roughly the same amount of the
DNA sequence in the training set (for human sequences, the boundaries between categories
are 41%, 48%, and 55%). We compute the GC content based on a window of 1000 nucleotide
around each sequence position, and change parameter sets according to the category. This is
different from other gene finding programs that use a single GC category computed over the
whole sequence. Such an approach is not suitable for long sequences, such as chromosomes.

Table 5.1 shows comparison of common features of three gene finders: Genscan (Burge,
1997), Augustus (Stanke and Waack, 2003), and our new gene finder, ExonHunter. Genscan
is the only of the three gene finders that includes a model of untranslated regions, even
though the model is simplistic. Other gene finders do not contain models of untranslated
regions due to lack of dependable training data.

Novel features of Augustus include similarity-based sequence weighting model for donor
splice sites (see the description in Section 2.1.1), and a high number of GC content levels.
The high number of GC content levels is achieved by parameters at a particular level being
a linear combination of all training samples, where those samples that do not belong to the
particular level are weighted with lower weight.

131



Genscan Augustus ExonHunter

Composition:
– Non-coding variable

(base for log-odds)
MC-4 MC-4

– Coding 3xMC-5 3xMC-4 3xMC-4
Lengths:
– Exons exact exact geometric tail

(t = 150 . . . 370)
– Introns geometric short/long introns geometric tail

(t = 150)
– Intergenic geometric geometric geometric tail/step

function (t = 30000)
Signals:
– Donor [−3, +6] MDD [−8,−4] MC-4

[−3, +6] SSW
[−3, +6] HOT-2

– Acceptor [−38,−5] WPWM-3
[−4, +3] PWM-1

[−37,−6] WPWM-3
[−5, +1] PWM-0

[−20,−5] WPWM-3
[−4, +3] HOT-2

– Start site [−6, +6] PWM-0 [−20,−1] WPWM-3
[+1, +7] PWM-0
[+8, +23] 3xMC-4

[−9, +4] TREE
[+5, +20] 3xWPWM-2

– Stop site [−3, +3] PWM-0 [−3,−1] PWM-1 [−6, +9] TREE
GC-content: 4 levels

whole sequence
10 levels with
smoothing
whole sequence

4 levels
sliding window

UTRs: simple model within intergenic within intergenic

Legend:
– kxMC-o: k-periodic Markov of order o
– MDD: maximum dependence decomposition (Burge, 1997)
– SSW: similarity-based sequence weighting (Stanke and Waack, 2003)

Table 5.1: Feature comparison of gene finders. Basic features of the gene finders Gen-
scan (Burge, 1997), Augustus (Stanke and Waack, 2003) and our gene finder, ExonHunter.
The table was assembled based on our best understanding of the descriptions in the papers
presenting the programs.

132



Finally, our gene finder includes the novel length distribution models described in Chapter
3, as well as the new structured signal models that were introduced in Chapter 2.

5.2 Common Sequence Repeats

About 50% of human DNA sequence is composed of sequence repeats (International Human
Genome Sequencing Consortium, 2004). These may be short simple sequences of 1-5 nu-
cleotides that are repeated with minor variations many times, or they may be long complex
regions copied several times in various places of the genome. These repeats are only rarely
part of the protein coding genes we are looking for. Yet, often their statistical properties
resemble real genes.

Gene finding programs usually either mask the original sequence for repeats, or ignore
the issue of repeats altogether. The program RepeatMasker (Smit et al., 2002) can be used
to find such repeats and replace them in the sequences by symbol N—a symbol for unknown
nucleotides. However, this requires gene finding programs to systematically and explicitly
deal with potentially long stretches of such unknown nucleotides.

Instead, we use the framework we have developed for incorporating additional information
into ExonHunter (Brejová et al., 2005). Such information is expressed in form of advisors—
probabilistic statements about the likelihood of labeling a particular position as being from
intron, exon, or intergenic region. In our case, we base an advisor on a list of likely repeats
produced by RepeatMasker. In regions covered by the repeats, the advisor identifies a high
probability of the region being part of an intron or intergenic region. This has an effect of
significantly increasing the probability of all state paths that identify introns or intergenic
regions in repetitive parts of the sequence. The details of the technique can be found in
Brejová et al. (2005) and are beyond the scope of this thesis.

5.3 Performance of ExonHunter on Human Sequences

We trained ExonHunter for human DNA sequence, using a mixture of data sets as outlined in
Table 5.2. The training was conducted on sequences with repeats identified by RepeatMasker
(Smit et al., 2002) and replaced by the “unknown” nucleotide N.

Then we evaluated ExonHunter on the testing set of the ENCODE gene prediction work-
shop (see more detailed description of the dataset in Appendix A). The data set contains
21 MB of sequence and includes 296 genes and 2782 unique exons. Some exons overlap due
to alternative transcripts of the same gene. We compared two versions of ExonHunter (one
without the repeat advisor, and one with the repeat advisor) with other ab initio programs
submitted to the ENCODE workshop (an overview of these programs can be found in Sec-
tion 1.2.2), as well as with Genscan. The predictions were evaluated using the program Eval
(Keibler and Brent, 2003). The results are shown in Table 5.3.

In the first group, we considered programs that did not use repeat information. This
includes GeneMark.hmm (Besemer and Borodovsky, 2005), Genscan (Burge, 1997), and

133



Feature Training sets
Intron/exon composition encode-train, augustus-train
Intron/exon lengths encode-train, augustus-train
Number of exons encode-train
Intergenic lengths chr22-training
Donor/acceptor signals encode-train, augustus-train, SpliceDB
Start/stop signals encode-train, augustus-train
Signal peptide augustus-train-signalpeptide

Table 5.2: Training sets for human sequences. More detailed description of the data
sets used for training can be used in Appendix A.

Exon Intron Nucleotide
Gene finder Sn Sp Sn Sp Sn Sp
Genscan 59% 37% 63% 39% 85% 44%
GeneMark 45% 26% 60% 38% 77% 37%
ExonHunter (no repeats) 55% 39% 75% 51% 79% 52%
geneid 47% 59% 77% 62% 74% 78%
Genezilla 62% 50% 55% 61% 86% 50%
Augustus 52% 63% 34% 82% 78% 75%
ExonHunter (repeats) 57% 51% 75% 55% 79% 72%

Table 5.3: Comparison of gene finding programs on ENCODE testing set with
ExonHunter. The exon, intron, and nucleotide statistics were computed from the files
submitted by program authors to EGASP workshop, except for Genscan and ExonHunter.
The top of the table shows programs that did not use information about masked repeats,
the bottom of the table shows programs that work on masked sequences or take the repeat
information into account.

134



Acceptor Donor
Gene finder Sn Sp Sn Sp
Genscan 72% 45% 72% 46%
GeneMark 62% 32% 61% 29%
ExonHunter (no repeats) 66% 49% 68% 50%
geneid 63% 69% 62% 64%
Genezilla 73% 53% 73% 54%
Augustus 62% 68% 62% 69%
ExonHunter (repeats) 67% 63% 69% 66%

Table 5.4: Comparison of accuracy of signal predictions in ENCODE testing set

ExonHunter without the use of the repeat advisor. The second group consists of the programs
geneid (Parra et al., 2000), Genezilla (Majoros et al., 2004), and Augustus (Stanke and
Waack, 2003).

From the results at the exon and nucleotide level it seems that the three programs,
Genezilla, Augustus, and ExonHunter have comparable performance, each reaching a dif-
ferent balance between sensitivity and specificity. Genezilla shows high sensitivity and low
specificity, while Augustus covers the other end of the spectrum. An interesting observation
can be made at the intron level, where ExonHunter shows very high sensitivity, together
with geneid. This means that ExonHunter performs very well in correctly chaining exons
together, while its performance lacks in predicting correct exons. This can be explained by
ExonHunter’s tendency to split genes: ExonHunter predicts on average 4.65 exons per gene,
while the correct annotation has average 8.11 exons per gene. When a gene is split, there
are at least two exons where the splice sites were replaced by incorrectly predicted start sites
and stop sites, thus lowering both exon sensitivity and specificity. Still, ExonHunter has a
very good performance in predicting both donor and acceptor splice sites (see Table 5.4), so
the predictions of start sites and stop sites likely need to be improved.

5.4 Performance of ExonHunter on Fruit Fly Sequences

We also trained ExonHunter for sequences of Drosophila Melanogaster (fruit fly), using
annotation and the masked sequence of chromosome 3L as a training set. Then we evaluated
ExonHunter on the sequence of chromosome 2L and compared the results to predictions of
Genscan and Augustus. The predictions of Augustus for the fruit fly genome are available
from the author’s web site (Stanke, 2005). The authors of Genscan did not train their
program on the fruit fly genome, and they recommend using human genome parameters
instead. This results in low performance for Genscan on this data set, and we include these
results for reference only. Predictions of other programs mentioned in previous section cannot
be easily obtained for this data set.

More information on the data sets we used can be found in Appendix A. Table 5.5 shows

135



Gene Exon Intron Nucleotide
Gene finder Sn Sp Sn Sp Sn Sp Sn Sp
Genscan 24% 19% 60% 42% 60% 35% 95% 69%
ExonHunter 39% 36% 73% 66% 59% 59% 96% 92%
Augustus 34% 43% 64% 74% 67% 66% 86% 97%

Table 5.5: Accuracy comparison on fruit fly chromosome 2L

Acceptor Donor Start Stop
Gene finder Sn Sp Sn Sp Sn Sp Sn Sp
Genscan 78% 53% 74% 54% 54% 40% 65% 38%
ExonHunter 89% 79% 82% 78% 66% 57% 84% 56%
Augustus 78% 88% 73% 88% 56% 66% 77% 71%

Table 5.6: Comparison of signal predictions on fruit fly chromosome 2L

the results of the experiment.
Again, we can see that the predictions of ExonHunter are comparable to Augustus, with

the predictions of Augustus achieving high specificity, and the predictions of ExonHunter
achieving high sensitivity. This is also an apparent trend in the prediction of signals (Table
5.6).

5.5 Summary

In this chapter, we provided the implementation details of our ab initio gene finding program
ExonHunter and compared its features to two other gene finding programs: Genscan (Burge,
1997) and Augustus (Stanke and Waack, 2003). We used ExonHunter in our experiments in
Chapters 2 and 3 to evaluate the effect of our new models for signal recognition and for length
distributions on gene finding accuracy. In this chapter, we compared the performance of
ExonHunter to other gene finders on the testing sets from human and fruit fly. ExonHunter’s
performance is comparable to the performance of the best ab initio gene finders. Compared
to Augustus (Stanke and Waack, 2003), ExonHunter provides higher sensitivity, but lower
specificity. The situation is reversed with respect to the gene finder Genezilla (Majoros et al.,
2004).

136



Chapter 6

Conclusion

In this thesis we explored several methods for improving hidden Markov models for biological
sequence analysis, with focus on the problem of gene finding. We demonstrated on three
problems related to gene finding that it is possible to create better models of biological
sequences by extending the probabilistic modeling techniques available within the framework
of hidden Markov models to better reflect specific properties of biological sequences. In these
problems, we concentrated on exploring the trade-off between increased model faithfulness
introduced by a particular extension of HMMs and a variety of limiting factors.

First, we explored the modeling of biological signals. We introduced a new class of
generative models, called higher order trees (HOT), that can capture dependencies between
non-adjacent positions within these signals. Such models are particularly useful for modeling
donor splice sites in gene finding, and incorporating them into a gene finder helps to improve
not only the prediction of donor sites, but of start sites and stop sites as well. By increasing
the complexity of HOT models, we can design models that are more faithful to reality.
However, such an increase in model complexity also requires more training data. This
introduces a trade-off between the model faithfulness and the amount of available training
data, which in our case can be adjusted by changing the order of the HOT models.

In the second problem of modeling length distributions, we introduced new methods
that are tailored specifically to biological sequences and gene finding. A common method of
generalizing hidden Markov models to incorporate non-geometric length distributions is not
usable in the case of gene finding, since such increased modeling ability is accompanied by an
increase in the running time of the decoding algorithm from linear to quadratic in the length
of the analyzed sequence. Quadratic running time is not practical for long DNA sequences.
We noticed that elements in biological sequences are well approximated by geometric-tail
length distributions, for which we also designed a more efficient decoding algorithm that is
linear in the length of the sequences. A new parameter t of the distribution introduces a
trade-off between how well the geometric-tail distributions fits the real data, and the running
time of the decoding algorithm.

Third, we explored the problem of decoding complex HMM topologies. The common
method for decoding hidden Markov models is to find the most probable state path through
the model with the Viterbi algorithm. However, we argued that this method of decoding

137



is not appropriate for complex topologies, where multiple paths through the model may
correspond to the same sequence annotation. We suggest to replace the most probable path
decoding approach with a different formulation of the decoding problem, where we seek
the most probable annotation. We proved that for some HMMs, finding the most probable
annotation is NP-hard. However, on the positive side, we designed an algorithm that can
decode many HMMs relevant for biological applications in quadratic time. We showed that
we can use increasingly slower decoding algorithms to find the most probable annotations
for increasingly wider classes of HMMs, though we cannot give such a scheme for all HMMs.
These slower decoding algorithms are not practical for gene finding. However, the analysis of
this problem helped us to reject some modifications that would introduce the multiple path
problem into our gene finder. The most probable annotation problem introduces a trade-off
between model faithfulness achieved by more complex models and tractability of underlying
optimization problems.

Finally, we also designed a new gene finder, ExonHunter, that we used to test our ideas.
ExonHunter’s performance is competitive compared to other gene finders developed in par-
allel with our work. In our study of gene finding and hidden Markov models, we found that
it is important to extend established methods in directions that take into account specifics
of a particular problem and data. We believe that our extensions to hidden Markov models
will be useful in their other applications both in and outside of bioinformatics.

138



Appendix A

Datasets and Their Preparation

In this Appendix we describe the sources of the training and testing data sets used in the
thesis, as well as the steps we have taken in their preparation.

A.1 ENCODE Gene Prediction Workshop

The ENCODE project (Encyclopedia of DNA Elements) is a two-phase project with the
aim of producing a high quality annotations of all functional elements in the human genome
(ENCODE Project Consortium, 2004). In the first phase of the project, approximately
1% of the human genome (44 regions selected partly manually and partly at random) was
selected for detailed analysis. In an attempt to evaluate the current state of gene prediction,
the HAVANA annotation team from the Sanger Institute prepared a high-quality manual
annotation of these 44 regions and solicited gene predictions from research groups working
on the problem of gene finding (Guigó and Reese, 2005). The data can be downloaded from
the workshop web page (Ashurst et al., 2005).

The annotation of the 44 regions was prepared and released in two phases. First, the
ENCODE training set, which we refer to as encode-training, includes 13 regions of total
length 9 MB, containing 137 genes and 1 597 unique coding exons. Since this set contains
alternatively spliced genes, for the purpose of the training we reduce the set, selecting non-
overlapping genes that cover the largest portion of the sequences.

Second, the ENCODE testing set (encode-testing) contains the remaining 31 regions
of total length 21 MB, with 296 genes and 2 782 unique coding exons.

We also created a smaller test set (encode-small) for the evaluation of partial imple-
mentations of ExonHunter. This set contains three of the randomly selected encode-testing
regions (ENr131, ENr233, ENr332) of total length 1.5 MB, with 41 genes and 533 unique
exons.

139



A.2 Chromosome 22 Annotated with RefSeq

We downloaded the sequence of chromosome 22 (hg17, May 2004 assembly) and its annota-
tion, based on the manually curated RefSeq database (Pruitt et al., 2005) from the UCSC
human genome browser (Karolchik et al., 2003), using the version current to July 2005. We
split the chromosome 22 sequence into two halves, with the first half designated as chromo-
some 22 training set (chr22-training), and the second half designated as the chromosome
22 testing set (chr22-testing).

The training set was further reduced to contain only non-overlapping genes chosen for
the maximum coverage of the sequence. The length of the training set is 18 MB, with 196
genes, and 1 786 coding exons. The testing set has length 17 MB, with 220 genes, and 1 913
coding exons.

A.3 Augustus Training Set

The Augustus training set is a set of 1 284 single gene sequences, assembled by Stanke and
Waack (2003). The data set was used to train their gene finder Augustus. We excluded 81
genes from the data set which overlapped with the ROSETTA testing set (Alexandersson
et al., 2003), which we used in the preliminary evaluation of our gene finder (Brejová et al.,
2005). The resulting data set has 1 203 genes, with 6 151 exons in 11 MB of sequence.

A.4 SpliceDB Collection of Splice Site Signals

SpliceDB is a database of mammalian splice sites (Burset et al., 2000). We downloaded
15 263 donor/acceptor site pairs supported by human ESTs on May 26, 2005. For the purpose
of signal experiments, we further excluded 705 splice site sequences that showed similarity
to the chr22-testing dataset.

A.5 Fruit Fly Datasets

We downloaded fruit fly genome sequences and their RefSeq annotations from the UCSC
genome browser (Karolchik et al., 2003) on July 11, 2005 (sequence assembly April 2004).
We used chromosome 3L and 3R, with its annotation reduced to non-overlapping genes as a
training set (drome-training) and chromosome 2L as a testing set (drome-testing). The
training set has 52 MB with 5 835 genes and 22 578 exons. The testing set has 22 MB with
3 380 genes and 10 021 exons. Finally, for experiments with length distributions, we also
created a small subset of the drome-testing set (drome-small), which has 2 MB with 357
genes and 1 187 exons.

140



Bibliography

Abe, N. and Warmuth, M. K. (1992). On the computational complexity of approximating
distributions by probabilistic automata. Machine Learning, 9(2-3):205–260.

Adams, M. D., Kelley, J. M., Gocayne, J. D., Dubnick, M., Polymeropoulos, M. H., Xiao,
H., Merril, C. R., Wu, A., Olde, B., and Moreno, R. F. (1991). Complementary DNA
sequencing: expressed sequence tags and human genome project. Science, 252(5013):1651–
1656.

Agarwal, P. and Bafna, V. (1998). Detecting non-adjoining correlations within signals in
DNA. In RECOMB 1998: Proceedings of the 2nd Annual International Conference on
Research in Computational Molecular Biology (RECOMB 1998), pages 2–8. ACM Press.

Alexandersson, M., Cawley, S., and Pachter, L. (2003). SLAM: cross-species gene finding and
alignment with a generalized pair hidden markov model. Genome Research, 13(3):496–502.

Altun, Y., Tsochantaridis, I., and Hofmann, T. (2003). Hidden Markov support vector
machines. In ICML 2003: 20th International Conference on Machine Learning, pages
3–10. AAAI Press.

Ashurst, J., Birney, E., Good, P., Guigó, R., and Hubbard, T. (2005). ENCODE gene
prediction workshop. http://genome.imim.es/gencode/workshop2005.html.

Asmussen, S., Nerman, O., and Olsson, M. (1996). Fitting phase-type distributions via the
EM algorithm. Scandinavian Journal of Statistics, 23(4):419–441.

Barash, Y., Elidan, G., Friedman, N., and Kaplan, T. (2003). Modeling dependencies in
protein-DNA binding sites. In RECOMB 2003: Proceedings of the 7th Annual Interna-
tional Conference on Research in Computational Molecular Biology, pages 28–37, New
York, NY, USA. ACM Press.

Baum, L. E. (1972). An inequality and associated maximization technique in statistical
estimation for probabilistic functions of Markov processes. In Inequalities III, Proceeding
of the Third Symposium, pages 1–8. Academic Press, New York.

Baum, L. E. and Eagon, J. A. (1967). An inequality with applications to statistical estimation
for probabilistic functions of Markov processes and to a model for ecology. Bulletin of the
American Mathematical Society, 73:360–363.

141

http://genome.imim.es/gencode/workshop2005.html


Bernal, A., Ear, U., and Kyrpides, N. (2001). Genomes online database (GOLD): a monitor
of genome projects world-wide. Nucleic Acids Research, 29(1):126–127.

Besemer, J. and Borodovsky, M. (2005). GeneMark: web software for gene finding in prokary-
otes, eukaryotes and viruses. Nucleic Acids Research, 33(Web Server issue):W451–454.

Boser, B. E., Guyon, I. M., and Vapnik, V. N. (1992). A training algorithm for optimal mar-
gin classifiers. In COLT 1992: Proceedings of the 5th Annual Workshop on Computational
Learning Theory, pages 144–152. ACM Press.

Brejová, B. (2005). Evidence Combination in Hidden Markov Models for Gene Prediction.
PhD thesis, School of Computer Science, University of Waterloo.

Brejová, B., Brown, D. G., Li, M., and Vinař, T. (2005). ExonHunter: a comprehensive
approach to gene finding. Bioinformatics, 21(Suppl 1):i57–i65. Intelligent Systems for
Molecular Biology (ISMB 2005).

Brejová, B., Brown, D. G., and Vinař, T. (2003). Optimal DNA signal recognition models
with a fixed amount of intrasignal dependency. In Benson, G. and Page, R., editors,
WABI 2003: Algorithms and Bioinformatics: 3rd International Workshop, volume 2812
of Lecture Notes in Bioinformatics, pages 78–94, Budapest, Hungary. Springer.

Brejová, B., Brown, D. G., and Vinař, T. (2004a). The most probable labeling problem in
HMMs and its applications to bioinformatics. In Jonassen, I. and Kim, J., editors, WABI
2004: Algorithms in Bioinformatics, volume 3240 of Lecture Notes in Bioinformatics,
pages 426–437, Bergen, Norway. Springer.

Brejová, B., Brown, D. G., and Vinař, T. (2004b). Optimal spaced seeds for homologous
coding regions. Journal of Bioinformatics and Computational Biology, 1(4):595–610. Early
version appeared in CPM 2003.

Brejová, B. and Vinař, T. (2002). A better method for length distribution modeling in
HMMs and its application to gene finding. In Apostolico, A. and Takeda, M., editors,
CPM 2002: Combinatorial Pattern Matching, 13th Annual Symposium, volume 2373 of
Lecture Notes in Computer Science, pages 190–202, Fukuoka, Japan. Springer.

Brown, R. H., Gross, S. S., and Brent, M. R. (2005). Begin at the beginning: predicting
genes with 5’ UTRs. Genome Research, 15(5):742–747.

Burge, C. and Karlin, S. (1997). Prediction of complete gene structures in human genomic
DNA. Journal of Molecular Biology, 268(1):78–94.

Burge, C. B. (1997). Identification of Genes in Human Genomic DNA. PhD thesis, Depart-
ment of Mathematics, Stanford University.

142



Burge, C. B. (1998). Modeling dependencies in pre-mRNA splicing signals. In Salzberg,
S. L., Searls, D. B., and Kasif, S., editors, Computational Methods in Molecular Biology,
pages 129–164. Elsevier, Amsterdam.

Burset, M., Seledtsov, I. A., and Solovyev, V. V. (2000). Analysis of canonical and non-
canonical splice sites in mammalian genomes. Nucleic Acids Research, 28(21):4364–4365.

Bystroff, C., Thorsson, V., and Baker, D. (2000). HMMSTR: a hidden Markov model for local
sequence-structure correlations in proteins. Journal of Molecular Biology, 301(1):173–180.

Cai, D., Delcher, A., Kao, B., and Kasif, S. (2000). Modeling splice sites with Bayes networks.
Bioinformatics, 16(2):152–158.

Castelo, R. and Guigó, R. (2004). Splice site identification by idlBNs. Bioinformatics,
20(S1):i69–i76. Intelligent Systems for Molecular Biology (ISMB 2004).

Chaudhuri, S. and Zaroliagis, C. D. (2000). Shortest paths in digraphs of small treewidth.
Part I: Sequential algorithms. Algorithmica, 27(3):212–226.

Chellappa, R. and Jain, A. (1993). Academic Press.

Cheng, J. et al. (2005). Transcriptional maps of 10 human chromosomes at 5-nucleotide
resolution. Science, 308(5725):1149–1154.

Chickering, D. M. (1995). A transformational characterization of equivalent Bayesian net-
work structures. In UAI 1995: Proceedings of 11th Conference on Uncertainty in Artificial
Intelligence, pages 87–98. Morgan Kaufmann.

Chimpanzee Sequencing and Analysis Consortium (2005). Initial sequence of the chimpanzee
genome and comparison with the human genome. Nature, 437(7055):69–87.

Chow, C. K. and Liu, C. N. (1968). Approximating discrete probability distributions with
dependence trees. IEEE Transactions on Information Theory, IT-14(3):462–467.

Chuang, J. S. and Roth, D. (2001). Gene recognition based on DAG shortest paths. Bioin-
formatics, 17(S1):S56–S64.

Commault, C. and Mocanu, S. (2003). Phase-type distributions and representations: some
resuts and open problems for system theory. International Journal of Control, 76(6):566–
580.

Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C. (2001). Introduction to Algo-
rithms, Second Edition. The MIT Press.

Crooks, G. E., Hon, G., Chandonia, J.-M., and Brenner, S. E. (2004). WebLogo: a sequence
logo generator. Genome Research, 14(6):1188–1190.

143



Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977). Maximum likelihood from in-
complete data via the EM algorithm. Journal of the Royal Statistical Society Series B,
39(1):1–38.

Dietterich, T. G. (1998). Approximate statistical tests for comparing supervised classification
learning algorithms. Neural Computation, 10(7):1895–1923.

Durbin, R., Eddy, S., Krogh, A., and Mitchison, G. (1998). Biological sequence analysis:
Probabilistic models of proteins and nucleic acids. Cambridge University Press.

Eddy, S. R. (1998). Profile hidden Markov models. Bioinformatics, 14(9):755–763.

Ellrott, K., Yang, C., Sladek, F. M., and Jiang, T. (2002). Identifying transcription factor
binding sites through Markov chain optimization. In ECCB 2002: Proceedings of the
European Conference on Computational Biology, pages 100–109.

ENCODE Project Consortium (2004). The ENCODE (ENCyclopedia Of DNA Elements)
project. Science, 306(5696):636–640.

Eppstein, D. (1998). Finding the k shortest paths. SIAM Journal on Computing, 28(2):652–
673.

Eyras, E., Reymond, A., Castelo, R., Bye, J. M., Camara, F., Flicek, P., Huckle, E. J.,
Parra, G., Shteynberg, D. D., Wyss, C., Rogers, J., Antonarakis, S. E., Birney, E., Guigó,
R., and Brent, M. R. (2005). Gene finding in the chicken genome. BMC Bioinformatics,
6(1):131.

Fariselli, P., Martelli, P. L., and Casadio, R. (2005). The posterior-Viterbi: a new decod-
ing algorithm for hidden Markov models. Technical Report q-bio.BM/0501006, arXiv
Quantitative Biology. http://arxiv.org/abs/q-bio.BM/0501006.

Forney, G. D. (1973). The Viterbi algorithm. Proceedings of the IEEE, 61:268–278.

Freund, Y. and Ron, D. (1995). Learning to model sequences generated by switching dis-
tributions. In COLT 1995: Proceedings of the 8th Annual Conference on Computational
Learning Theory, pages 41–50. ACM Press.

Friedman, N., Geiger, D., and Goldszmidt, M. (1997). Bayesian network classifiers. Machine
Learning, 29:131–163.

Gallo, G., Longo, G., Pallottino, S., and Nguyen, S. (1993). Directed hypergraphs and
applications. Discrete Applied Mathematics, 42:177–201.

Gilbert, S. F. (1997). The biochemisty of pre-mRNA splicing.
http://zygote.swarthmore.edu/rna2.html.

144

http://arxiv.org/abs/q-bio.BM/0501006
http://zygote.swarthmore.edu/rna2.html


Gillman, D. and Sipser, M. (1994). Inference and minimization of hidden Markov chains.
In COLT 1994: Proceedings of the 7th Annual Conference on Computational Learning
Theory, pages 147–158. ACM Press.

Gross, S. S. and Brent, M. R. (2005). Using multiple alignments to improve gene predic-
tion. In RECOMB 2005: 9th Annual International Conference on Research in Computa-
tional Molecular Biology, volume 3500 of Lecture Notes in Bioinformatics, pages 374–388.
Springer.

Guigó, R. (1998). Assembling genes from predicted exons in linear time with dynamic
programming. Journal of Computational Biology, 5(4):681–702.

Guigó, R. and Reese, M. G. (2005). EGASP: collaboration through competition to find
human genes. Nature Methods, 2(8):575–577.

Hajarnavis, A., Korf, I., and Durbin, R. (2004). A probabilistic model of 3’ end formation
in Caenorhabditis elegans. Nucleic Acids Research, 32(11):3392–3399.

Heckerman, D. (1999). A tutorial on learning with Bayesian networks. In Jordan, M., editor,
Learning in Graphical Models. MIT Press.

Heckerman, D., Geiger, D., and Chickering, D. M. (1995). Learning Bayesian networks: The
combination of knowledge and statistical data. Machine Learning, 20(3):192–243.

Henzel, W. J., Billeci, T. M., Stults, J. T., Wong, S. C., Grimley, C., and Watanabe, C.
(1993). Identifying proteins from two-dimensional gels by molecular mass searching of
peptide fragments in protein sequence databases. Proceedings of the National Academy of
Sciences of the USA, 90(11):5011–5015.

ILOG Inc. (2003). CPLEX optimizer version 8.1. Computer software.

International Chicken Genome Sequencing Consortium (2004). Sequence and comparative
analysis of the chicken genome provide unique perspectives on vertebrate evolution. Na-
ture, 432(7018):695–716.

International Human Genome Sequencing Consortium (2001). Initial sequencing and analysis
of the human genome. Nature, 409(6822):860–921.

International Human Genome Sequencing Consortium (2004). Finishing the euchromatic
sequence of the human genome. Nature, 431(7011):931–935.

Iseli, C., Jongeneel, C. V., and Bucher, P. (1999). ESTScan: a program for detecting,
evaluating, and reconstructing potential coding regions in EST sequences. In ISMB 1999:
Seventh International Conference on Intelligent Systems for Molecular Biology, pages 138–
148.

Jelinek, F. (1968). Probabilistic Information Theory. Mcgraw-Hill.

145



Johnson, M. T. (2005). Capacity and complexity of HMM duration modeling techniques.
IEEE Signal Processing Letters, 12(5):407–410.

Kall, L., Krogh, A., and Sonnhammer, E. L. L. (2005). An HMM posterior decoder
for sequence feature prediction that includes homology information. Bioinformatics,
21(S1):i251–i257. Intelligent Systems for Molecular Biology (ISMB 2005).

Karolchik, D., Baertsch, R., Diekhans, M., Furey, T. S., Hinrichs, A., Lu, Y. T., Roskin,
K. M., Schwartz, M., Sugnet, C. W., Thomas, D. J., Weber, R. J., Haussler, D., and Kent,
W. J. (2003). The UCSC genome browser database. Nucleic Acids Research, 31(1):51–54.

Karp, R. M. (1972). Reducibility among combinatorial problems. In Miller, R. E. and
Thatcher, J. W., editors, Complexity of Computer Computations, pages 85–103, New
York. Plenum Press.

Keibler, E. and Brent, M. R. (2003). Eval: a software package for analysis of genome
annotations. BMC Bioinformatics, 4:50.

Klein, D. and Manning, C. D. (2002). Conditional structure versus conditional estimation
in NLP models. In EMNLP 2002: Conference on Empirical Methods in Natural Language
Processing, pages 9–16. Association for Computational Linguistics.

Korf, I., Flicek, P., Duan, D., and Brent, M. R. (2001). Integrating genomic homology into
gene structure prediction. Bioinformatics, 17(S1):S140–S148.

Krogh, A. (1997). Two methods for improving performance of an HMM and their application
for gene finding. In ISMB 1997: Proceedings of the 5th International Conference on
Intelligent Systems for Molecular Biology, pages 179–186.

Krogh, A., Larsson, B., von Heijne, G., and Sonnhammer, E. L. (2001). Predicting transmem-
brane protein topology with a hidden Markov model: application to complete genomes.
Journal of Molecular Biology, 305(3):567–570.

Kulp, D., Haussler, D., Reese, M. G., and Eeckman, F. H. (1996). A generalized hidden
Markov model for the recognition of human genes in DNA. In ISMB 1996: Proceedings
of the 4th International Conference on Intelligent Systems for Molecular Biology, pages
134–142.

Lafferty, J., McCallum, A., and Pereira, F. (2001). Conditional random fields: Probabilistic
models for segmenting and labeling sequence data. In ICML 2001: 18th International
Conference on Machine Learning, pages 282–289. Morgan Kaufmann, San Francisco, CA.

Lee, T. I. et al. (2002). Transcriptional regulatory networks in Saccharomyces cerevisiae.
Science, 298(5594):799–804.

146



Lim, L. P. and Burge, C. B. (2001). A computational analysis of sequence features involved
in recognition of short introns. Proceedings of the National Academy of Sciences USA,
98(20):11193–11198.

Lyngsø, R. B. and Pedersen, C. N. S. (2002). The consensus string problem and the com-
plexity of comparing hidden Markov models. Journal of Computer and System Sciences,
65(3):545–569.

Majoros, W. H., Pertea, M., and Salzberg, S. L. (2004). TigrScan and GlimmerHMM: two
open source ab initio eukaryotic gene-finders. Bioinformatics, 20(16):2878–2879.

Martelli, P. L., Fariselli, P., Krogh, A., and Casadio, R. (2002). A sequence-profile-based
HMM for predicting and discriminating beta barrel membrane proteins. Bioinformatics,
18(S1):S46–53.

McNemar, Q. (1947). Note on the sampling error of the difference between correlated pro-
portions or percentages. Psychometrika, 12:153–157.

Metz, C. E. (1978). Basic principles of ROC analysis. Seminars in Nuclear Medicine,
8(4):283–288.

Mitchell, C., Harper, M., and Jamieson, L. (1995). On the complexity of explicit duration
HMMs. IEEE Transactions on Speech and Audio Processing, 3(3):213–217.

Mouse Genome Sequencing Consortium (2002). Initial sequencing and comparative analysis
of the mouse genome. Nature, 420(6915):520–522.

Ng, A. Y. and Jordan, M. I. (2002). On discriminative vs. generative classifiers: A comparison
of logistic regression and naive Bayes. In Dietterich, T. G., Becker, S., and Ghahramani, Z.,
editors, NIPS 2002: Advances in Neural Information Processing Systems, pages 841–848,
Cambridge, MA. MIT Press.

Ohler, U., Niemann, H., and Rubin, G. M. (2001). Joint modeling of DNA sequence and phys-
ical properties to improve eukaryotic promoter recognition. Bioinformatics, 17(S1):S199–
206.

Parra, G., Blanco, E., and Guigó, R. (2000). GeneID in Drosophila. Genome Research,
10(4):511–515.

Perkins, D. N., Pappin, D. J., Creasy, D. M., and Cottrell, J. S. (1999). Probability-based
protein identification by searching sequence databases using mass spectrometry data. Elec-
trophoresis, 20(18):3551–3557.

Pontius, J. U., Wagner, L., and Schuler, G. D. (2002). UniGene: A unified view of the
transcriptome. In NCBI Handbook, chapter 21. The National Library of Medicine.

147



Prim, R. C. (1957). Shortest connection networks and some generalizations. Bell System
Technical Journal, 36:1389–1401.

Pruitt, K. D., Tatusova, T., and Maglott, D. R. (2005). NCBI reference sequence (RefSeq):
a curated non-redundant sequence database of genomes, transcripts and proteins. Nucleic
Acids Research, 33(Database issue):D501–4.

Rabiner, L. R. (1989). A tutorial on hidden Markov models and selected applications in
speech recognition. Proceedings of the IEEE, 77(2):257–285.

Rat Genome Sequencing Project Consortium (2004). Genome sequence of the Brown Norway
rat yields insights into mammalian evolution. Nature, 428(6982):493–521.

Reese, M. G., Kulp, D., Tammana, H., and Haussler, D. (2000). Genie—gene finding in
Drosophila melanogaster. Genome Research, 10(4):529–538.

Salamov, A. A. and Solovyev, V. V. (2000). Ab initio gene finding in Drosophila genomic
DNA. Genome Research, 10(4):516–522.

Salzberg, S. L., Delcher, A. L., Kasif, S., and White, O. (1998). Microbial gene identification
using interpolated Markov models. Nucleic Acids Research, 26(2):544–548.

Schneider, T. D. and Stephens, R. M. (1990). Sequence logos: a new way to display consensus
sequences. Nucleic Acids Research, 18(20):6097–6100.

Schrijver, A. (1986). Theory of Linear and Integer Programming. Wiley and sons.

Schwartz, R. and Chow, Y.-L. (1990). The N -best algorithms: an efficient and exact pro-
cedure for finding the N most likely sentence hypotheses. In ICASSP 1990: Acoustics,
Speech, and Signal Processing, pages 81–84, vol. 1.

Shannon, C. E. (1948). A mathematical theory of communication. The Bell System Technical
Journal, 27:379–423,623–656.

Siepel, A. and Haussler, D. (2004). Computational identification of evolutionarily conserved
exons. In RECOMB 2004: 8th Annual International Conference on Research in Compu-
tational Molecular Biology, pages 177–186, New York, NY, USA. ACM Press.

Smit, A. F. A., Hubley, R., and Green, P. (2002). RepeatMasker.
http://www.repeatmasker.org.

Solovyev, V. V. (2002). Finding genes by computer: Probabilistic and discriminative ap-
proaches. In Jiang, T., Xu, Y., and Zhang, M. Q., editors, Current Topics in Molecular
Biology, pages 201–248. The MIT Press.

Solovyev, V. V., Salamov, A. A., and Lawrence, C. B. (1994). Predicting internal exons by
oligonucleotide composition and discriminant analysis of spliceable open reading frames.
Nucleic Acids Research, 22(24):5156–5163.

148

http://www.repeatmasker.org


Solovyev, V. V., Salamov, A. A., and Lawrence, C. B. (1995). Identification of human
gene structure using linear discriminant functions and dynamic programming. In ISMB
1995: Proceedings of the 3rd International Conference on Intelligent Systems for Molecular
Biology, volume 3, pages 367–375.

Sonnenburg, S., Rätsch, G., and Schäfer, C. (2005). Learning interpretable SVMs for bio-
logical sequence classification. In RECOMB 2005: Research in Computational Molecular
Biology, 9th Annual International Conference, volume 3500 of Lecture Notes in Computer
Science, pages 389–407. Springer.

Staden, R. (1984). Computer methods to aid the determination and analysis of DNA se-
quences. Biochemical Society Transactions, 12(6):1005–1008.

Stanke, M. (2005). Augustus gene prediction web site. http://augustus.gobics.de/.

Stanke, M., Schöffmann, O., Morgenstern, B., and Waack, S. (2005). Gene prediction in
eukaryotes with a generalized hidden Markov model that takes hints. Submitted for pub-
lication.

Stanke, M. and Waack, S. (2003). Gene prediction with a hidden Markov model and a new
intron submodel. Bioinformatics, 19(S2):II215–II225.

Stormo, G. D. (2000). Gene-finding approaches for eukaryotes. Genome Research, 10(4):394–
397.

Stormo, G. D., Schneider, T. D., Gold, L., and Ehrenfeucht, A. (1982). Use of the perceptron
algorithm to distinguish translational initiation sites in E. coli. Nucleic Acids Research,
10(9):2997–3011.

Venter, J. C. et al. (2001). The sequence of the human genome. Science, 291(5507):1304–
1311.

Viterbi, A. J. (1967). Error bounds for convolutional codes and an asymtotically optimum
decoding algorithm. IEEE Transactions on Information Theory, IT-13:260–267.

Xu, L., Cheng, L., Wang, T., and Schuurmans, D. (2005). Convex hidden Markov models.
Submitted.

Xu, Y., Einstein, J. R., Mural, R. J., Shah, M., and Uberbacher, E. C. (1994). An improved
system for exon recognition and gene modeling in human DNA sequences. In ISMB
1994: Proceeding of the 2nd International Conference on Intelligent Systems for Molecular
Biology, pages 376–384.

Yeh, R. F., Lim, L. P., and Burge, C. B. (2001). Computational inference of homologous
gene structures in the human genome. Genome Research, 11(5):803–806.

149

http://augustus.gobics.de/


Yeo, G. and Burge, C. B. (2003). Maximum entropy modeling of short sequence motifs
with applications to RNA splicing signals. In RECOMB 2003: Proceedings of the 7th
Annual International Conference on Research in Computational Molecular Biology, pages
322–331, New York, NY, USA. ACM Press.

Zhang, M. Q. (1997). Identification of protein coding regions in the human genome by
quadratic discriminant analysis. Proceedings of the National Academy of Sciences of the
USA, 94(2):565–568.

Zhang, M. Q. (1998). Statistical features of human exons and their flanking regions. Human
Molecular Genetics, 7(5):919–922.

Zhang, Z. and Henzel, W. J. (2004). Signal peptide prediction based on analysis of experi-
mentally verified cleavage sites. Protein Science, 13(10):2819–2824.

Zhao, X., Huang, H., and Speed, T. P. (2004). Finding short DNA motifs using permuted
markov models. In RECOMB 2004: Proceedings of the 8th Annual International Confer-
ence on Resaerch in Computational Molecular Biology, pages 68–75, New York, NY, USA.
ACM Press.

Zien, A., Rätsch, G., Mika, S., Scholkopf, B., Lengauer, T., and Muller, K. R. (2000).
Engineering support vector machine kernels that recognize translation initiation sites.
Bioinformatics, 16(9):799–807.

150


	Introduction
	Sequence Annotation and Hidden Markov Models
	Hidden Markov Models
	Algorithms for Decoding Hidden Markov Models
	Computing the Most Probable State Path
	Posterior Decoding
	Combining Viterbi and Posterior Decoding

	Training Hidden Markov Models
	Supervised Training
	Unsupervised Training
	Beyond Maximum Likelihood


	Introduction to Gene Finding
	Statistical Properties of Genes in DNA Sequences
	Differences in k-mer Composition
	Conserved Signal Sequences

	Previous Work: Programs for Ab Initio Gene Finding
	Dynamic Programming
	Probabilistic Modeling

	Beyond Ab Initio Gene Finding
	Evaluation Measures
	Experimental Verification of Gene Predictions
	Methods Based on Random Sampling
	Genome-Wide Analysis
	Prediction Driven Methods


	Hidden Markov Models for Gene Finding
	Exon Model
	Intron Model
	Start and Stop Sites
	Untranslated Regions and Intergenic Region
	Putting the Pieces Together


	Higher Order Tree Models for Signal Recognition
	Intra-signal Dependencies and HOT Models
	Previous work

	Maximum Likelihood Training of HOT Models
	HOT Models and Hypergraphs
	Finding the Optimal Topology for Tree Models
	Minimum Spanning Directed Hypertree is NP-hard
	Finding the Optimal HOT Topology by Integer Programming
	Greedy Heuristic for Finding a Good HOT Topology

	Experiments
	Using Generative Models as Classifiers
	Accuracy Measures
	Donor Site Experiments
	Relationship Between Model Order and the Amount of Training Data
	Acceptor Site Experiments
	Signal Models in Gene Finding

	Parallel Work
	Summary

	Length Distributions in HMMs
	Generalized HMMs with Explicit State Duration
	Distributions with Geometric Tails
	Maximum Likelihood Training
	Decoding HMMs with Geometric-Tail Lengths
	Generalization Properties

	Decoding Geometric-Tail Distributions with Large Values of t
	Gadgets of States
	Phase-type Distributions
	Gadgets of States and the Viterbi Algorithm

	Length Distributions of Complex Sub-models
	A Viterbi Algorithm for Boxed HMMs
	Boxed HMMs with Geometric-Tail Distributions

	Summary and Experiments

	Finding the Most Probable Annotation
	Comparing Decoding by the Most Probable Path and by the Most Probable Annotation
	Finding the Most Probable Annotation is NP-hard
	Proof of Lyngsø and Pedersen
	Layered Graphs and the Best-Layer-Coloring Problem
	From Layer Colorings to HMMs
	Constructing a Small HMM that is NP-hard to Decode

	Computing the Most Probable Annotation
	Most Probable Extended Annotation
	Critical Edge Condition
	Silent States and the Critical Edge Condition
	Applications of the EVA
	Generalizing the EVA and the Critical Edge Condition

	Summary

	Implementing ExonHunter
	Hidden Markov Model of ExonHunter
	Common Sequence Repeats
	Performance of ExonHunter on Human Sequences
	Performance of ExonHunter on Fruit Fly Sequences
	Summary

	Conclusion
	Datasets and Their Preparation
	ENCODE Gene Prediction Workshop
	Chromosome 22 Annotated with RefSeq
	Augustus Training Set
	SpliceDB Collection of Splice Site Signals
	Fruit Fly Datasets

	Bibliography

