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We generalize to higher spatial dimensions the Stokes–Einstein relation (SER) as well as the
leading correction to diffusivity in finite systems with periodic boundary conditions, and validate
these results with numerical simulations. We then investigate the evolution of the high-density
SER violation with dimension in simple hard sphere glass formers. The analysis suggests that this
SER violation disappears around dimension du = 8, above which it is not observed. The critical
exponent associated with the violation appears to evolve linearly in 8 − d, below d = 8, as pre-
dicted by Biroli and Bouchaud [J. Phys.: Condens. Matter 19, 205101 (2007)], but the linear coef-
ficient is not consistent with the prediction. The SER violation with d establishes a new benchmark
for theory, and its complete description remains an open problem. © 2013 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4825177]

I. INTRODUCTION

Constructing a completely satisfying theory for how
abruptly a fluid turns glassy with only unremarkable struc-
tural changes remains hotly debated.1 A key hurdle is that the-
oretical descriptions typically provide insufficiently precise
predictions for decisive experimental or numerical tests to be
performed. A promising way of addressing this issue is to in-
vestigate the glass transition as a function of spatial dimen-
sion d, as was recently achieved in numerical simulations.2, 3

In low d, various phenomena kinetically compete in glass-
forming fluids: (i) crystal nucleation, (ii) barrier hopping due
to thermal activation, and (iii) trapping in phase space due to
the proximity of ergodicity breaking. Different theories give
more or less weight to these physical processes, which are so
well enmeshed that they are typically hard to tell apart. An
advantage of increasing d is that both nucleation and barrier
hopping get strongly suppressed. Attention can then be fo-
cused on the onset of ergodicity breaking.3

A central quantity on which most theories give specific
predictions is the violation of the Stokes–Einstein relation
(SER). According to SER, the product of the shear viscos-
ity ηS and diffusivity D should be constant. Yet, in d = 2
and 3, a large violation of this relation is observed upon ap-
proaching the glass transition.4–12 Using the structural relax-
ation time τα as a proxy for ηS, the effect is often character-
ized by an exponent ω that describes the scaling D ∝ τ−1+ω

α

(see Refs. 13–16). Having ω �= 0 is traditionally attributed to a
spatial heterogeneity of “local relaxation times.”15 Diffusion
is dominated by faster regions, while viscosity is dominated
by slower regions, hence 1/D � ηS and ω ≥ 0,15 as is indeed
observed numerically.10, 13, 14, 16

From a glass theory point of view, explanations for
the dimensional evolution of SER violation fall into two
main categories. First, theories based on adapting the stan-
dard description of critical phenomena to the glass prob-
lem, within the “Random First Order Transition (RFOT)”
universality class,17–21 predict an upper critical dimension
du. For d > du, a mean-field theory is expected to give
the correct critical description, while for d < du critical
fluctuations qualitatively change the behavior of the sys-
tem by renormalizing the scaling exponents or eliminat-
ing the transition altogether. It is expected that du = 8
based both on static22, 23 and dynamical15 descriptions. Al-
though the relation between critical fluctuations and SER
violation is not completely clear already within the mean-
field description, a scaling argument has nonetheless been
proposed.15 It predicts that the SER violation should disap-
pear for d ≥ du, while below du the exponent ω ∼ (8 − d)/
(4γ ), where γ is the exponent that describes the divergence
of τα with packing fraction ϕ (and more generally tempera-
ture) near the onset of ergodicity breaking. Second, theories
based on a certain class of kinetic models24 predict that the
critical behavior of the system is qualitatively similar in all
dimensions, hence du = ∞.13 In these models, the slowdown
is indeed due to the complex dynamics of “defects” that de-
scribe soft regions of the sample. These defects’ dynamics is
dominated by facilitation effects that do not depend strongly
on the dimensionality of space. In the East model studied in
Refs. 13 and 24–26, for instance, numerical studies have
found ω ≈ 0.2 for a range of d. (A recent rigorous asymptotic
analysis of this model shows that at very low defect concentra-
tion, i.e., in extremely sluggish systems, a crossover to a dif-
ferent form of SER violation takes place.27 Yet, this crossover
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is most likely out of the dynamical range accessible in the
current work.) Numerically studying the SER violation as a
function of d can therefore provide useful theoretical insights,
and an attempt in this direction was done in Refs. 14, 16, and
28. In this paper, we systematically study the SER violation
as a function of d and perform numerical simulations to mea-
sure ω in higher d. In order to do so, we first consider the role
of finite-size corrections and the evolution of SER in the in-
termediate density fluid regime, and then use these results as
a basis of comparison for the dynamically sluggish regime. A
more general understanding of SER and strong constraints on
theories of the glass transition are thereby obtained.

The plan for the rest of this article is as follows. In
Sec. II, we describe the numerical approach. In Sec. III, hy-
drodynamic finite-size corrections to diffusivity are explored,
in Sec. IV, the dimensional evolution of SER in the fluid is
examined, and in Sec. V, the SER violation near the glass
transition is examined. A conclusion follows.

II. NUMERICAL METHODS

Equilibrated hard-sphere (HS) fluids in d = 3–10 are
simulated under periodic boundary conditions (PBC) using
a modified version of the event-driven molecular dynamics
(MD) code described in Refs. 2 and 29. A total of N =∑lN(l)

HS with l = 1 or 2 constituents are simulated in a fixed vol-
ume V and number density ρ = N/V .

In order to simplify the dimensional notation, let Vd (R)
denote the volume of a d-dimensional ball of radius R, and let
Sd−1(R) denote the volume of its (d − 1)-dimensional bound-
ary, the sphere Sd−1(R). We then have

Sd (R) = 2π
d+1

2 Rd



(

d+1
2

) , and Vd (R) = R

d
Sd−1(R). (1)

For instance, the circumference of the unit circle S1 is S1

= 2π and the surface area of the unit sphere S2 is S2 = 4π .

A. System descriptions

We consider systems with (i) monodisperse HS of diam-
eter σ and mass m in d = 3–10, (ii) an equimolar binary mix-
ture of HS with diameter ratio σ 2:σ 1 = 6:5 (for which σ 2 sets
the unit length σ ) and equal mass m in d = 3, and (iii) a single
HS of varying diameter σ 2 and mass M = (σ 2/σ 1)dm solvated
in a fluid of HS of diameter σ 1 (for which σ 1 sets the unit
length σ ) and mass m in d = 3–5. In all of these systems,
time is expressed in units of

√
βmσ 2 at fixed unit inverse

temperature β.
The high barrier to crystallization observed in system

(i) for d ≥ 4 provides access to the strongly supersatu-
rated fluid regime by compression.2, 3, 28–30 In d = 3, a com-
plex alloy, such as system (ii), is necessary to reduce the
drive to crystallize at moderate supersaturation,31, 32 and thus
to access that same dynamical regime.33–36 System (iii) is
chosen to systematically approach the hydrodynamic limit
for a solvated particle in a continuum solvent by taking
M/m = (σ 2/σ 1)d → ∞.37

In system (i), N = 8000 in d = 3–9 and N = 20 000 in
d = 10, unless otherwise noted. The unitless packing fraction

ϕ is given by

ϕ = Vd (σ/2)ρ. (2)

In system (ii), N = 9888, unless otherwise noted, and

ϕ = ρ

2
[Vd (σ1/2) + Vd (σ2/2)]. (3)

For system (iii), N = 8000 in d = 3 and N = 10 000 in
d = 4 and 5, unless otherwise noted. In order to keep the sol-
vent packing fraction ϕs fixed while σ 2/σ 1 is changed, we
follow the prescription of Ref. 37. We define the effective
volume accessible to solvent molecules Ṽ = V − Veff, which
accounts for the difference in excluded volume between the
larger sphere and a regular solvent molecule

Veff = Vd

(
σ1 + σ2

2

)
− Vd (σ1), (4)

and hence

ϕs = Vd (σ1/2)N1/Ṽ . (5)

B. Dynamical and structural observables

The transport coefficients that appear in SER are ex-
tracted by averaging over hundreds of periodically distributed
time origins t0 in long MD trajectories. For particles of type l,
diffusivity D(l) = limt→∞D(l)(t) is obtained from the long-time
limit of the mean-squared displacement

D(l)(t) = 1

2dN (l)t

〈
N (l)∑
i=1

[ri(t + t0) − ri(t0)]2

〉
. (6)

Shear viscosity ηS = limt→∞ηS(t) is similarly extracted from
the long-time limit of the integrated Green–Kubo relation for
the various Cartesian components α, α′ of the traceless pres-
sure tensor38, 39 (see Appendix A)

ηS(t) = βm2

2(d − 1)(d + 2)V t

〈 d∑
α,α′=1

[∑
tc

{( N∑
k=1

ṙα
k ṙα′

k

− δα,α′
PV

m

)
tc + ṙα

i rα′
ij

}]2〉
. (7)

For hard particles, this form is particularly efficient, because
the observable only changes value when a pair ij of particles
collide (collisions are separated by tc).40, 41 Figures 1 and 2
illustrate the extraction of D and ηS from numerical results.

The structural evolution of system (i) with d is described
by the structure factor

S(k) =
〈

1

N

N∑
i,j=1

eik·(rj −ri )

〉
, (8)

which for an isotropic fluid can be averaged over all wavevec-
tors k compatible with the box periodicity. Note that because
for a given k only a few orientations are available under PBC,
and that these orientations capture but a rapidly diminish-
ing fraction of a sphere’s surface as d increases, binning the
results over nearby k is numerically crucial. The results for
dense fluids in d = 4–9 (Fig. 3) indicate that the peak of the
function steadily shrinks and move to higher k for similarly
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FIG. 1. Extraction of D and ηS (lines) from the long-time limit of D(t)
and ηS(t) in d = 3 for (a)–(c) monodisperse HS at ϕ/(π /6) = 0.10, 0.20,
0.30, 0.40, 0.50, 0.60, 0.70, 0.80, 0.90, and 1.00, and (b)–(d) binary HS at
ϕ = 0.10, 0.20, 0.30, 0.40, 0.50, 0.52, 0.55, 0.56, 0.57, 0.575, and 0.58.
Long dashes are for the smaller particles.

sluggish systems. This observation is consistent with the re-
sults of Ref. 29 and is expected based on the theoretical anal-
ysis of Refs. 42–44.

The dynamical decorrelation of reciprocal-space density
fluctuations is obtained from the self-intermediate scattering
function

Fs(k, t) =
〈

1

N

N∑
i=1

eik·[ri (t)−ri (0)]

〉
. (9)

d=4–9

0

1
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3

S
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)
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k
0 5 10 15 20

FIG. 3. Structure factor for HS in d = 4–9 in the strongly supersaturated fluid
regime at ϕ = 0.402, 0.267, 0.171, 0.107, 0.652, and 0.0389, respectively.
The peak at k∗ steadily shifts with dimension.

The decay time Fs(k, τα) = 1/e defines a structural relax-
ation time scale τα(k). We further analyze the τα results in
Sec. V. Note for now that both D and τα are functionals
of the self-van Hove function, i.e., the real-space version of
Fs(k, t),45

Gs(r, t) = 1

N

〈
N∑

i=1

δ(|ri(t) − ri(0)| − r)

〉
. (10)

Diffusivity is indeed extracted from the second moment of the
long-time limit of the distribution, while τα is the character-
istic time of its Fourier transform at a given k.
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FIG. 2. Extraction of D and ηS (lines) from the long-time limit of D(t) and ηS(t) in (a)–(d) d = 4 for ϕ/(π2/32) = 0.10, 0.20, 0.40, 0.60, 0.80, 1.00, 1.10, 1.20,
1.25, 1.27, 1.29, and 1.30, (b)–(e) d = 5 for ϕ/(π2/60) = 0.125, 0.25, 0.50, 0.75 1.00, 1.25, 1.40, 1.50, 1.55, 1.58, and 1.60, and (c)–(f) d = 6 for ϕ/(π3/384)
= 0.125, 0.25, 0.375, 0.75, 1.25, 1.50, 1.70, 1.90, 2.00, 2.05, and 2.08.
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III. GENERALIZED HYDRODYNAMIC
FINITE-SIZE EFFECT

The leading finite system-size correction to D from sim-
ulations is hydrodynamic in nature.46 The drag force needed
to move a periodic array of particles (a particle and its pe-
riodic images under PBC) through a fluid is larger than that
exerted on a single particle in a bulk fluid.47–49 Although the
sum over the hydrodynamic flow fields involves an infinite
number of copies of the system, preservation of momentum (a
particle’s change of momentum is completely absorbed by its
surrounding) screens faraway contributions, which prevents
particles from being completely immobilized. In d = 3, the
phenomenon nonetheless results in corrections O(N−1/3). In
order to assess the importance of this phenomenon in higher
d, we generalize the model analysis and numerically test
its regime of validity. Note that no correction of this type
applies to ηS, whose system-size dependence is thus much
weaker.

A. Oseen tensor derivation

To obtain the correction due to system-size effects on
D, we generalize the hydrodynamic analysis of a periodi-
cally replicated particle surrounded by a solvent of viscosity
ηS.47–49 A generalized Oseen tensor approximates hydrody-
namic interactions between particles in an infinite nonperiodic
system as well as those in a periodic system. In the former,
the particle mobility tensor is given by βD0I, where D0 is
the diffusion coefficient of a particle in an infinite system; in
the latter, one needs to correct the mobility for hydrodynamic
self-interactions. The difference provides the correction to D
due to the system’s periodicity.

Following the argument of Ref. 49, one obtains the Oseen
mobility tensor for a periodic system in a box of side L

TPBC(r) = 1

ηS

∑
k �=0

e−ik·r

V k2

(
1 − k ⊗ k

k2

)
, (11)

where the sum extends over all non-zero PBC reciprocal lat-
tice vectors. For an infinite nonperiodic system, it then follows
that (see Appendix B)

T0(r) = lim
L→∞

TPBC(r)

= 1

ηS



(

d
2 − 1
)

8πd/2rd−2

[
1 + (d − 2)

r ⊗ r
r2

]
. (12)

Apparent diffusivity under PBC is thus

D(L) = D0 + 1

βd
lim
r→0

tr[TPBC(r) − T0(r)]

= D0 + 1

βηSd
lim
r→0

⎡
⎣∑

k �=0

e−ik·r

V k2
(d − 1)

− 

(

d
2 − 1
)

8πd/2rd−2
(2d − 2)

]
.

In order to perform the sum over k, we define a structure
function for the box periodicity

ϒ(k) =
∑
n �=0

(2π )d

V
δ

(
k − 2π

L
n
)

. (13)

Note that ϒ(k) goes to unity in an infinite system. We can
then write

D(L) = D0 + d − 1

βηSd

× lim
r→0

∫
dk

(2π )d
e−ik·r

k2
[ϒ(k) − 1]

= D0 + d − 1

βηSd

∫
dk

(2π )d
[ϒ(k) − 1]

k2
, (14)

which can be further simplified to (see Appendix C)

D(L) = D0[1 − (�/L)d−2], (15)

where the hydrodynamic analysis gives a length

�hydro =
(

ξd

βD0ηS

)1/(d−2)

. (16)

The unitless Madelung-type constant ξ d is obtained from an
Ewald-like summation for a periodic lattice

ξd = d − 1

d

⎧⎨
⎩
∑
n �=0

e−(2π)2n2/(4α2)

(2πn)2
− αd−2

2πd/2(d − 2)

+
∑
n �=0


( d
2 − 1, α2n2)

4πd/2nd−2
− 1

4α2

⎫⎬
⎭ . (17)

Note that the value of ξ d does not depend on the screen-
ing constant α (Table I is calculated with α = 3/2). The
constant only controls the number of wavevectors that must
be included to obtain a given numerical accuracy (see, e.g.,
Sec. 12.1.5 of Ref. 50 for the d = 3 case). Note also that pre-
vious works, such as Ref. 49, include in the definition of ξ 3

an arbitrary factor of 6π that is reminiscent of the stick SER
condition. We do not follow this convention, in order to iso-
late the dimensional dependence of ξ d alone.

B. Results and discussion

Numerical tests of Eq. (15) in d = 3–5 are reported in
Fig. 4. In agreement with earlier d = 3 studies,49, 51 the rela-
tionship is remarkably well obeyed for large systems far from
the glassy regime. Using ηS extracted numerically, it is pos-
sible to fit the simulation results within their error bars with
a single D0 value. Finite-size corrections thus vanish with in-
creasing d. The effect is numerically important in d = 3, but
for d > 3 at intermediate densities the correction can safely be
ignored as it falls within the accuracy of the current numerical
study.

As density is increased to a regime where the dynam-
ics becomes markedly more sluggish, however, deviations
from Eq. (15) appear (Fig. 5). The scaling form is preserved,
i.e., the correction remains proportional to 1/Ld−2 at all den-
sities, but a larger effective size constant �eff > �hydro is
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TABLE I. Stokes drag coefficient ζ for stick and slip boundary conditions as well as Madelung-type constant
ξd calculated with α = 3/2 and to the reported precision or better.

ζ stick ζ slip ξd

d 4dπd/2

(d−1)
( d
2 −1)

ηSRd−2 8πd/2

(d−1)
( d
2 −1)

ηSRd−2 Eq. (17)

3 6πηSR  18.851ηSR 4πηSR  12.567ηSR 0.15052
4 16

3 π2ηSR2  52.638ηSR2 8
3 π2ηSR2  26.320ηSR2 0.105346

5 10π2ηSR3  98.710ηSR3 4π2ηSR3  39.484ηSR3 0.085692
6 24

5 π3ηSR4  148.83ηSR4 8
5 π3ηSR4  49.610ηSR4 0.0713403

7 56
9 π3ηSR5  192.97ηSR5 16

9 π3ηSR5  55.132ηSR5 0.0578446
8 16

7 π4ηSR6  222.65ηSR6 4
7 π4ηSR6  55.665ηSR6 0.043191

9 12
5 π4ηSR7  233.83ηSR7 8

15 π4ηSR7  51.962ηSR7 0.0257838
10 20

27 π5ηSR8  226.68ηSR8 4
27 π5ηSR8  45.336ηSR8 0.00379742

observed for Eq. (15). Hence, finite-size corrections are larger
than expected from the hydrodynamic analysis. One may
speculate that the growth of static and dynamical correla-
tions in this regime leads to a similar hydrodynamic coupling
as in lower-density systems, but for an effectively smaller
system, thus renormalizing �hydro (Fig. 5). Such a compu-
tation has been carried out within RFOT with encouraging
results,52 but its careful consideration is beyond the scope
of the current work. For now, we mainly emphasize that
for large d the finite-size corrections remain proportional to
1/Ld−2 = 1/V 1−2/d ≈ 1/V ≈ 1/N , which means that they
decrease with the system volume, and not with its linear size.
This result indicates that finite-size corrections are limited in
high d, consistently with the discussion of Ref. 2.

It is interesting to relate these results with those of
Refs. 53 and 54, which considered the finite-size behavior
of τα at a fixed wave vector near the glass transition in
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FIG. 4. Scaling of diffusivity with box side L for the d = 3 binary mix-
ture (a) at ϕ = 0.40, where ηS = 2.03(1), D

(1)
0 = 0.0759(5), and D

(2)
0

= 0.0934(4) and (c) at ϕ = 0.52, where ηS = 16.6, D
(1)
0 = 0.0107(1), and

D
(2)
0 = 0.0145(1), (b) D0 for d = 4 at ϕ = 0.2930, where ηS = 2.88(5) and

D0 = 0.0401(1), and (d) for d = 5 at ϕ = 0.1644, where ηS = 1.84(2) and
D0 = 0.0534(1). Lines are fitted to the D0 intercept of Eq. (15).

d = 3.53 Because this quantity is derived from the same under-
lying distribution of particle displacements as D (see Sec. II),
one expects it to be subject to comparable finite-size correc-
tions (unlike ηS). The analysis of Ref. 53, however, correlated
τα with the finite-size configurational entropy,53 which is a
static quantity that bears no signature of hydrodynamic cou-
plings. Removing the trivial hydrodynamic finite-size contri-
bution prior to attempting a size collapse would thus likely be
more appropriate. Reference 54 further collapsed τα with an
effective system size, but here again the trivial hydrodynamic
contribution was not taken into account. This neglect suggests
that the length scales extracted should be reduced by a state-
point-dependent prefactor (see, e.g., Fig. 5(d)). The physical
interpretation of these two collapses and of the ratio �eff/�hydro

thus remains unclear.
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FIG. 5. Scaling of diffusivity with box side L for d = 3 binary mixture at (a)
ϕ = 0.55, where ηS = 66(1), D

(1)
0 = 0.00294(2), and D

(2)
0 = 0.00430(4), (c)

ϕ = 0.57, where ηS = 820(30), D
(1)
0 = 0.00036(1), and D

(2)
0 = 0.00064(1),

(b) for d = 4 at ϕ = 0.3855, where ηS = 135(5) and D0 = 0.00127(1). At
these high ϕ, although the scaling form of Eq. (15) is reasonable, an effective
size constant �eff now fits the data (solid red line) better than the measured
ηS (dashed line). In (d), we plot the ratio of �hydro to �eff for the d = 3 binary
system (dashed line is for the smaller particles). Readers should notice that
the ratio grows by a factor of at least 25 in going from ϕ = 0.52 to 0.58.
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IV. GENERALIZED STOKES–EINSTEIN RELATION

Having a good control over the finite-size corrections to
the transport coefficients allows us to relate the numerical
results with the continuum limit typically involved in SER
studies. In systems described by continuum hydrodynamics,
knowing the drag coefficient ζ that a fluid exerts on a particle
suffices to obtain the particle’s diffusivity via the Einstein–
Smoluchovski relation55, 56

D = (ζβ)−1. (18)

Using Stokes’ solution for the drag on a sphere of hydro-
dynamic radius R at low Reynolds numbers under slip fluid
boundary conditions,57, 58 for instance, provides a possible
SER for d = 3

DηS = (4πRβ)−1. (19)

The diffusion of large particles in simple liquids is well
within the low Reynolds regime over which this approxima-
tion should be valid. For self-solvation, however, the Navier–
Stokes continuum solvent hypothesis is far from being sat-
isfied. It has nonetheless long been observed that a “SER
regime,” over which DηS remains nearly constant (in prac-
tice, constant within a few percents), is obtained at interme-
diate densities and temperatures.45 For d = 3 HS, it is even
more remarkable that in this regime DηS ≈ (4πβσ /2)−1, i.e.,
the hydrodynamic radius equals the particle radius.40, 51

Yet, this result is microscopically “surprising,” in the
words of Sec. 6.4.3 of Ref. 59. For one thing, because of
volume exclusion, the solvating fluid velocity cannot obey
the slip boundary condition at R = σ /2, but at least at R
= σ .37, 60 In order to converge to the appropriate contin-
uum limit when the solvated particle diameter grows, one
must thus tolerate a much larger deviation from the contin-
uum result in the self-solvation regime. This weaker agree-
ment suggests that the observed SER regime may be due to
the near cancellation of other physical contributions. Marked
SER violations are indeed observed both in the Enskog (low-
density, see Appendix D) and in the dynamically sluggish
(high-density) regimes. In order to gain a better microscopic
understanding of SER, we generalize below the continuum
analysis to higher d and compare it with MD results.

A. Generalized Stokes drag for stick and slip
boundary conditions

In this section, we extend the computation of the Stokes
drag (which is well known in d = 3) to higher dimensions. In
the case of steady flow, the pressure P and velocity vector v of
an incompressible fluid of average continuum density ρ obey
the Navier–Stokes equation

ρ(v · grad)v = −gradP − ηSv. (20)

(For notational convenience, we adopt the geometer’s con-
vention that the Laplacian has a positive spectrum, i.e.,
 = −∑i

∂2

∂x2
i

.) To derive a SER for higher dimension, we

want to compute the drag force F = ζu exerted on a sphere
of radius R moving through such a fluid with velocity −u,

under the hypothesis that the Reynolds number Re = ρuR/ηS

is small. For small Re, the quadratic term in Eq. (20) can be
neglected, reducing the equation to

gradP = −ηSv. (21)

For the rest of the derivation, the analysis of Sec. 20 of
Ref. 58 is followed, but the language of differential forms
is used to facilitate the presentation. (For the readers famil-
iar with these forms, it suffices to say that we identify vector
fields and 1-forms. For the others, a quick guide can be found
in Appendix E. Many of the identities involving forms used
in this section are easy to prove to the initiated, but for those
new to the topic these identities are proven in Appendix F.)
One immediate consequence of the use of forms is that we
must temporarily yield the use of d to the exterior derivative.
For this subsection, we therefore denote the spatial dimension
by m. Throughout the derivation, we assume m ≥ 3 to avoid
the Stokes paradox in m = 2 (see, e.g., Sec. 7.4 of Ref. 61).

When m = 3, it is a classical exercise to check that
div w = �d � w and curl w = �dw for any vector field w.
We extend those relations to all dimensions and all degree,
and set

div ≡ �d�,

curl ≡ �d,

grad ≡ d,

d∗ ≡ (−1)m(p+1)+1 � d � on Ap(Rm),

 ≡ d∗d + dd∗.

Note that on functions and thus on components of forms 

is the usual Laplacian. Although for w ∈ A1(R3), curl w is a
1-form and thus a vector field, it is not generally the case.
For example, for a vector field w in Rm, curl w is a (m
− 2)-form, and thus belongs to a

(
m

2

)
-dimensional space. In

particular, when m = 2, curl w is a function, not a vector field
perpendicular to the plane. On Ap(Rm), we have

curl curl = (−1)mp+1 + (−1)m+1grad div, (22)

grad = grad . (23)

Note that when m = 3 and p = 1, Eq. (22) reduces to
curl curl =  + grad div. If u is a constant 1-form and f a
function, then

div(f u) = (df ) · u. (24)

We now want to solve Eq. (21) under the outer bound-
ary condition that v = u at an infinite distance away from the
sphere. This condition corresponds to an immobile sphere sur-
rounded by a fluid flowing around it. Because the fluid is in-
compressible, div(v) = 0, and furthermore

curl v = (d∗d + dd∗) � dv = d∗d � dv

= (−1)m+1 � d � d � dv

= �dd∗dv = curl d∗dv

= curl v (as − d∗v = 0)

= −η−1
S curl grad P = 0.
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The solutions we expect to find are not defined over all
Rm and the smooth “unphysical” continuation through the in-
side of the sphere potentially diverge at the origin, where a
sink or a source may be present. We therefore cannot auto-
matically state that div(v − u) = 0 implies that v − u is the
curl of something. However, when the flux through any sphere
centered at the origin vanishes, as it does here, the relation-
ship does indeed hold. Solutions to the contact boundary con-
ditions “slip” and “stick” introduced below both satisfy this
property.

Because v − u is invariant under rotations that leave the
axis defined by u fixed, it is possible to find a (m − 2)-form
w invariant as well, such that curl w = v − u. An educated
guess tells us to choose w = f ′(r) � n ∧ u for some function
f ′. We then have

v = u + curl(�gradf ∧ u) = u + curl curl(f u). (25)

Now, because curl(f u) ∈ Am−2(Rm),

curl v = curl curl curl(f u)

= (−1)m+1( + grad div)curl(f u)

= (−1)m+1 curl(f u),

and so

0 =  curl(v) = 2curl(f u)

= 2 �
(
df ∧ u

) = �
(
(2df ) ∧ u

)
.

Hence, 2f is constant. To get v = u at infinity, we need

2f = 0. (26)

For functions on Rm that only depend on r, we have

 = − 1

rm−1

∂

∂r
◦ rm−1 ∂

∂r
. (27)

Thus, 2f = 0 implies, when m �= 4, that f = (−1)m(ar4−m

+ br2−m + cr2 + c′). Note that the constant c′ is immaterial
after differentiation, and so we set c′ = 0 without loss of gen-
erality. Note also that when c �= 0 the limit at infinity of v − u
is non-zero, so for physical consistency we must set c = 0.
We then find

f =
⎧⎨
⎩

(−1)m(ar4−m + br2−m), if m = 3 or m ≥ 5,

a ln r + b
r2 , if m = 4.

(28)

Note that the (−1)m prefactor disappears upon applying
Eq. (29).

For any function h = h(r), we have (see Appendix F)

curl curl(hu) = (−1)m

×
((

(n − 1)

(
h′

r

)
+ r

(
h′

r

)′)
u

− r

(
h′

r

)′
(u · n)n

)
. (29)

Using v = u + curl curl f u and Eq. (28), we find

v =
⎧⎨
⎩

u + a (4−m)u+(m−4)(2−m)(u·n)n
rm−2 + b (m−2)u+n(2−m)(u·n)n

rm , if m = 3 or m ≥ 5,

u + a u+2(u·n)n
r2 + b 2u−8(u·n)n

r4 , if m = 4.

(30)

Using Eq. (21), we can also obtain the pressure. Substitut-
ing Eq. (25) in Eq. (21), and remembering Eqs. (22) and (26)
gives

grad P = −ηSv = −ηScurl curl(f u)

= (−1)mηS( + grad div)(f u)

= (−1)mηS

(
(2f )u + grad div(f u)

)
= (−1)mgrad (gradf ) · u,

so

P = P0 + (−1)mηSu · grad f, (31)

and then

P − P0 =
{ 2a(4−m)(m−2)ηS

rm−1 u · n, if m = 3 of m ≥ 5,

4aηS

r3 u · n, if m = 4.

(32)
The force Q exerted on the ball is obtained from

the stress tensor σ , classically described by (see, e.g.,

Eq. (15.8) of Ref. 58)

σik = −Pδik + ηS

(
∂vi

∂xk

+ ∂vk

∂xi

)
.

This description is, however, impractical—as would any
coordinate-dependent description—in a high-dimensional
setting. To describe the stress tensor without reference to
coordinates, one needs

1. the notion of vector fields as directional derivative oper-
ators, so that for any function h on Rm and at any point
q ∈ Rm, one has

(X(h))(q) = dh(q + tX)

dt

∣∣∣∣
t=0

;

2. the Levi-Civita covariant derivative, i.e., if Y
= (Y1, . . . , Ym), one sets

∇XY = (X(Y1), . . . , X(Ym)).
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The stress tensor, written in a coordinate-free way, is then
given by

σ (X, Y) ≡ −P X · Y + ηS(X(Y · v)

+ Y(X · v) − (∇XY) · v − (∇YX) · v) (33)

for any two vectors X, Y. The force Q acting on unit surface
area is defined by the relation

Q · X = σ (X, n) for all vectors X (34)

when r = R.

The drag force F exerted over the ball can then be ob-
tained by integrating the component Q · u

u
= σ
( u

u
, n
)

of the
force parallel to the velocity of the sphere over the sphere of
radius R

F = u
u

∫
�∈Sm−1(R)

d� σ
(u

u
, n
)

. (35)

Using Eqs. (30), (32), and (33), we find

σ (u, n) =
⎧⎨
⎩

2m(m−2)ηS

rm+1 (ar2(m − 4)(u · n)2 + b(m(u · n)2 − u2)), if m = 3 of m ≥ 5,

16ηS

r5 (−ar2(u · n)2 + b(4(u · n)2 − u2)), if m = 4.

(36)

Because σ (u, n) depends only on r and on the angle coordi-
nate θ for which u · n = u cos θ , we choose to work in spher-
ical coordinates. Recall from Eq. (1) that Sm is the volume of
the unit sphere Sm ⊂ Rm+1. Then

F = u
u2

Sm−2R
m−1
∫ π

0
σ (u, n)|r=R sinm−2(θ )dθ.

Let sn ≡ ∫ π

0 sinn(θ )dθ . Note that Sn−1 = Sn−2sn−2, and hence
sn = Sn+1

Sn
. The quantities sm−2 and sm obviously intervene in

the integration of σ (u, n). We now integrate to find

F = aψu (37)

with

ψ ≡
⎧⎨
⎩

16π
m
2




(
m
2 −2
)ηS, if m = 3 or m ≥ 5,

−8π2ηS, if m = 4.

(38)

One remarks from Eq. (33) that the stress tensor can be
split into pressure and viscous contributions σ (u, n) = −P u
· n + σ ′(u, n). Similarly, the drag force splits as F = Fpressure

+ Fviscous. Using Eqs. (32) and (37), one easily computes that

Fpressure = 1

m
F. (39)

In other words, because the pressure contribution comes from
a single direction and the viscous contribution from m − 1
directions, the two terms contribute to the drag force propor-
tionally to the number of directions over which they occur.

The indeterminate variables a and b in Eqs. (30), (32),
(36), and (37) are set by the choice of boundary conditions.
Two canonical possibilities are of particular interest:

(1) The “stick” condition, where the fluid velocity is zero on
the surface of the ball of hydrodynamic radius R, i.e.,

v = 0 when r = R. (40)

(2) The “slip” condition, where the normal component of
the fluid velocity is set equal to the normal component
of the velocity of the ball (which is zero), ensuring that

no fluid can enter or leave the sphere, and the tangential
force acting on the sphere is assumed to vanish, i.e.,

v · n = 0 and Q = (Q · n)n when r = R. (41)

The easier computation is for the “stick” boundary condition.
Setting r = R and solving for v = 0 gives

astick =
⎧⎨
⎩

mRm−2

2(m−4)(m−1) , when m = 3 or m ≥ 5,

− 2
3R2, when m = 4,

bstick =
⎧⎨
⎩

Rm

2(m−1) , when m = 3 or m ≥ 5,

− 1
6R4, when m = 4.

Substituting in Eqs. (30), (32), and (37), we get for any di-
mension m ≥ 3 that

vstick = u − mRm−2

2(m − 1)

u + (m − 2)(u · n)n
rm−2

− Rm

2(m − 1)

(m − 2)u + m(2 − m)(u · n)n
rm

, (42)

Pstick = P0 − m(m − 2)Rm−2

m − 1
ηS

u · n
rm−1

, (43)

and Fstick = ζsticku with

ζstick = 4mπ
m
2

(m − 1)

(

m
2 − 1
)ηSR

m−2, (44)

in agreement with an earlier computation.62 Note that setting
m = 3 in Eqs. (42)–(44) gives back Eqs. (20.9), (20.12), and
(20.14) of Ref. 58.

Consider now the “slip” boundary condition. To handle
the second equation in Eq. (41), we must have Q · u = (Q · n)
(n · u), i.e., σ (u, n) = σ (n, n)(n · u). We then find

aslip =
⎧⎨
⎩

Rm−2

(m−4)(m−1) , when m �= 4,

−R2

3 , when m = 4,

bslip = 0.

(45)
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Substituting these parameters into Eqs. (30), (32), and (37),
we get that for all m ≥ 3

vslip = u − Rm−2

rm−2(m − 1)
u − Rm−2(m − 2)(u · n)

(m − 1)rm−2
n, (46)

P = P0 − 2(m − 2)Rm−2

m − 1
ηS

u · n
rm−1

, (47)

and Fslip = ζslipu with

ζslip = 8π
m
2

(m − 1)

(

m
2 − 1
)ηSR

m−2. (48)

B. Hybrid boundary condition

Hynes–Kapral–Weinberg (HKW) proposed a bound-
ary condition that bridges the continuum fluid dynamics
and the microscopic Enskog kinetic theory description of
diffusivity.63 Their treatment divides the solvation of a hard
sphere into an inner microscopic region, which is dominated
by collisions, and an outer region, where the slip bound-
ary condition applies. One then obtains a “microscopic slip”
boundary condition, where at R = (σ 1 + σ 2)/2 the action of
the tangential force is assumed to vanish, but where the nor-
mal component of the fluid velocity is proportional to the nor-
mal component of the force

Q = (Q · n)n and v · n = λn · Q when r = R. (49)

Allowing the solvent velocity to remain finite at the solute’s
surface weakens the standard slip condition, but leaves an un-
determined proportionality constant λ. This constant is deter-
mined by considering the case where v is constant and inte-
grating the force over the hydrodynamic sphere of radius R.

Let e1, . . . , em denote the canonical basis of Rm and
assume v = e1. We find∫

�∈Sm−1(R)
d�(Q · n)n =

m∑
i=1

1

λ

∫
�∈Sm−1(R)

d�
x1xi

R2
ei

= 1

λ

∫
�∈Sm−1(R)

d�
x2

1

R2
e1

= Sm−1R
m−1

mλ
v.

Following Hynes et al.,63 we invoke the friction law to set
this last quantity equal to ζEv, where ζ E = βDE is the Enskog
kinetic theory result (see Appendix D). Hence,

λ = Sm−1R
m−1

mζE
. (50)

Using Eq. (50), we solve for the Eq. (49) boundary con-
dition and obtain

aHKWslip = aslip

1 + aslipψ

ζE

and bHKWslip = 0. (51)

Using Eq. (37), we then obtain FHKWslip = ζHKWslipu and

1

ζHKWslip
= 1

ζE
+ 1

ζslip
. (52)

Note that at low concentrations, because ζ slip is non-zero, this
scaling converges to the kinetic theory description. Note also
that substituting aHKWslip and bHKWslip in Eqs. (30) and (32)
yield formulas for vHKWslip and PHKWslip, but for conciseness
we do not report them here.

Let us now consider two variant hybrid conditions. The
first variant derives from noting that the proposal of Hynes
et al.63 accepts only half of the slip boundary condition
given by Eq. (41), and rejects the second half. Likewise, one
could break the stick boundary condition of Eq. (40) into
two parts, with v · n = 0 and v · x = 0 for all vectors x per-
pendicular with n. By replacing the v · n = 0 condition with
v · n = λn · Q while keeping the other condition, one obtains
a“microscopic stick” boundary condition (HKWstick). We
can then write

aHKWstick =
astick + C1

astick
ζE

1 + C2
astickψ

ζE

(53)

with

C1 =
⎧⎨
⎩

(m−1)Rm−2

m(m−4)(m−2)ψ, when m = 3 or m ≥ 5

− 3R2

8 ψ, when m = 4,

(54)

and

C2 = 2m − 3

m(m − 2)
. (55)

Solely this choice of C1 and C2 is independent of ζ E

and makes Eq. (53) valid. Using Eq. (37), we then obtain
FHKWstick = ζHKWsticku and

1

ζHKWstick
= C2

ζE
+ 1

ζstick
− C1

ζHKWstickζE
. (56)

Note that in this case the low concentration limit does not
converge to the kinetic theory result, but instead to

ζHKWstick = (ζE + C1)/C2. (57)

A second variant considers the full microscopic boundary
condition (HKWfull)

v = λQ when r = R. (58)

Using Eq. (50), we solve for the Eq. (49) boundary condition
and obtain

aHKWfull = astick

1 + 1
m

astickψ

ζE

. (59)

Using Eq. (37), we then obtain FHKWfull = ζHKWfullu and

1

ζHKWfull
= 1

mζE
+ 1

ζstick
= 1

mζE
+ 2

mζslip
, (60)

which also has a pathological low-concentration behavior.

C. Results and discussion

As a first test of the generalization of SER to higher di-
mensions, we check that as σ 2 � σ 1 the behavior of system
(iii) converges to the continuum limit with R = (σ 2 + σ 1)/2,
which is the solvent’s distance of closest approach. The slip
boundary condition, for which the perpendicular component
of the solvent velocity goes to zero at R, should best describe
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FIG. 6. Approaching SER with slip boundary condition (dashed line) for a
HS of increasing σ 2 solvated in HS of diameter σ 1 (a) in d = 3 at ϕs = 0.40,
where ηS = 1.75(2), (b) in d = 4 at ϕs = 0.1234, where ηS = 0.317(8), and
(c) in d = 5 at ϕ = 0.08225, where ηS = 0.35(1). In d = 3, (c) a finite-size
hydrodynamic scaling allows to extract the infinite-system diffusivity D0 for
σ 2/σ 1 = 1, 2, 3, and 4, from top to bottom. In higher d, D for a finite system
suffices to observe the effect.

particles colliding elastically and without friction. As can be
seen in Figure 6, the continuum slip limit is indeed attained
for σ 2 � 4σ 1. (In d = 3, finite-size corrections to D need
to be taken into account, but in d = 4 these corrections are
negligible.) Yet, as expected, when σ 2 = σ 1 the coefficient
is quite different from the SER prediction. In the limit σ 2

� σ 1, which is not explicitly considered here but corresponds
to a small particle rapidly diffusing in the pores of a nearly
frozen fluid, we would expect the deviation from SER to be
even more pronounced.

The density dependence of DηS for systems (i) and (ii)
(Fig. 7) provides another microscopic perspective on SER. A
severe SER violation is observed at low ϕ for all d, which cor-
responds to the Enskog kinetic theory low-density limit (see
Appendix D). This regime is followed in d = 3, both for the
monodisperse and for the bidisperse systems, by a SER-like
plateau. In higher dimension, however, no such plateau is ob-
served. A regime where DηS steadily increases with ϕ is in-
stead obtained. In d = 5, for example, DηS increases by more
than 50%, before the crossover to a third regime is identified.
This even more pronounced deviation from SER corresponds
to the “SER violation” regime traditionally observed near the
onset of glassy dynamics.11, 12

The minimum of the DηS curve with ϕ is the point of
closest approach to the SER prediction. Comparing it with
the stick and slip solutions for R = σ /2 and σ (Fig. 7(d)) con-
firms that the remarkable agreement of HS fluids with the slip
boundary condition at R = σ /2 in d = 3 is fortuitous. The
same boundary condition gets increasingly distant from the
numerical results as d increases. The solution with R = σ , by
contrast, shadows the simulation curve in all dimensions. It
is interesting to note, however, that this physically motivated
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FIG. 7. SER evolution with ϕ in HS fluids. (a) For monodisperse HS in d
= 3, finite-size corrections to D give D0 (filled symbols), which can be com-
pared with the results of Ref. 51 (empty symbols). At large ϕ, more physically
reasonable results are obtained here. The Enskog kinetic theory prediction is
given by the short dashed-line (see Appendix D). The other lines are guides
for the eye. (b) In d = 3–8, a similar behavior is observed (using D1 for
d = 3). (c) The SER evolution with d hints at a weakening of the SER viola-
tion for systems at similar sluggishness. (d) SER minimum from simulations
(triangles) compared with the hydrodynamic SER prediction for stick (cir-
cles) and slip (square) conditions at R = σ 1/2 (filled symbols) and R = σ 1
(empty symbols). Lines are guides for the eyes.

setting still does not asymptotically approach the simulation
limit with d. The curves instead slowly grow apart. One may
naïvely assume, based on the large number of nearest neigh-
bors present in high d, that the continuum limit would be-
come increasingly accurate with d. This rationale, however,
neglects the growing occurrence of large voids in the fluid
structure as d increases. The fluid order indeed becomes in-
creasingly ideal-gas-like with d,29, 35, 42, 43 which allows for
relatively large displacements of a particle in these directions.
As a result, D is much larger than what one would expect
based on viscosity alone even in the intermediate density fluid
regime.

This demonstration emphasizes that there are actually no
simple fluid regimes for which SER applies quantitatively
nor even qualitatively. The d = 3 plateau is also not robust.
At best, one may describe regimes where SER is violated at
different rates. From these results, we obtain a clear physi-
cal interpretation of SER and its violation. At low Reynolds
numbers, the relation mostly results from a particle being
large compared to the cavities that spontaneously appear in
the solvent. At low density, where the heterogeneity of the
gaps between particles is most pronounced large deviations
are observed. At intermediate liquid-like density, the gaps
are at their smallest and results most closely approach SER.
Yet, even in that regime the gaps increase with dimension,
which results in growing deviations from SER with d. At high
density, where the particle gets increasingly caged, diffusion
results from sampling the softer escape directions from the
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FIG. 8. Different predictions for the hard-sphere fluid diffusivity as a func-
tion of density in (a)–(d) d = 3–6 (infinite system-size D0 for d = 3, fi-
nite systems D otherwise). The simulation results (triangles) converge to the
Enskog limit (red short dashed line) at low-density, which is much more accu-
rate than the traditional slip SER prediction (dotted-dashed line). The HKW
hybrid (dashed) qualitatively capture the intermediate-density fluid regime.
Symbols in these last two curves are obtained from the simulation viscosity
results. The low-density extrapolations are obtained using the Enskog viscos-
ity results (see Appendix D).

cage. We explore this SER violation regime in more details in
Sec. V.

Before moving forward, let us evaluate the HKW pro-
posal for unifying the Enskog and the SER results

DHKWslip = DE + (βζslip)−1. (61)

This form does much better than SER with slip boundary
condition alone at low and intermediate densities (Fig. 8).
It correctly captures the Enskog low-density limit and gives
D > DE in the intermediate fluid regime. Yet, it significantly
overshoots D in this last regime, and does not actually con-
verge onto the SER form beyond it because DE does not
vanish sufficiently quickly. One may hypothesize that the
overshoot is due to the fact that the slip description does not
correctly capture the solvation of the solvation shell itself, un-
like what HKW posits. The tangential velocity of the solvent
is indeed likely affected by the structure of the solvated sphere
itself. It is, however, unclear how one could improve upon the
original description, because variants of the HKW treatment
for stick and other simple boundary conditions do not have
the correct low-density behavior, as detailed in Sec. IV B. A
quantitative, microscopic SER-like relation is thus still mostly
missing.

V. STOKES–EINSTEIN RELATION VIOLATION
AND GLASSY DYNAMICS

When the dynamics becomes sluggish, proper averaging
of ηS becomes computationally prohibitively expensive. How-
ever, we show in this section that in order to study the SER

violation in this regime, it is sufficient to approximate viscos-
ity with a quantity that numerically converges more rapidly,
the decorrelation time τα of single-particle displacements. We
then use this identification to study the dimensional depen-
dence of the SER violation.

A. Maxwell’s model

Microscopically, viscosity can be decomposed between
the instantaneous (infinite frequency) shear modulus G∞ and
a characteristic stress relaxation timescale τ S

39, 45

ηS = G∞τS. (62)

This Maxwell model for viscoelasticity is correct for a fluid at
all densities, but in general, it is not obvious to provide a di-
rect microscopic measure of τ S, other than its explicit calcula-
tion as the characteristic time to reach the asymptotic regime
of ηS(t).39 In the dynamically sluggish regime, this problem
is more tractable. Because the fluid structure changes very
little while the relaxation timescale grows rapidly, it is rea-
sonable to treat G∞ as constant (see Appendix G). The ap-
proximation ηS ∼ τα(k∗), where k∗ is the first peak of the
structure factor and τα(k) is the relaxation time of the self-
intermediate scattering function (Sec. II), is thus commonly
employed.12, 39 Whatever the microscopic description of τ S

may be in general, in the sluggish regime the relaxation dy-
namics is dominated by caging, which occurs on length scales
intermediate between the hydrodynamic limit and the inter-
particle spacing. Even though ηS is a collective property, the
self and the collective structural relaxation timescales on this
k and ϕ range are then essentially equal. The viscosity is thus
dominated by the average time over which a particle leaves its
cage. This analysis should hold in any dimension (and more
so in higher dimensions, where collective and self-properties
tend to coincide) and is tested here in d = 4 (Fig. 9). Note
that because the first peak of S(k) shifts with d (Fig. 3), we
prudently consider the length scale dependence of this effect.

From the very good scaling between ηS and τα , we in-
fer that in this dynamical regime both D and ηS are actu-
ally functionals of the self-van Hove function (see Sec. II).
Hence, the SER violation can be traced back to the prop-
erties of single-particle displacements. Because D weighs
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FIG. 9. Evolution of τα(k) with ηS in d = 4 for k = 1, 2, 4, 8, 12. Lines are
linear fits, and the results for k∗ = 8 are highlighted.
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large displacements more heavily than τα , a SER violation
suggests that Gs(r, τα) has an anomalous behavior at large
r, as previously reported in d = 2 and 3.64–66 More pre-
cisely, the spherically integrated displacement distribution
P(r, τα) = Sd − 1rd − 1Gs(r, τα) must develop a fat tail at
large r when τα increases. To further substantiate this claim,
we note that the time scale 1/D corresponds to the begin-
ning of the diffusive regime and thus 〈r2〉t ∼ 2dDt for t
> 1/D. A SER violation of the form Dτα ∝ τω

α implies that τα

� 1/D. Hence, the mean square displacement at τα is given
by 〈r2〉τα

∼ 2dDτα ∝ Dτα ∝ τω
α . At the same time, by def-

inition, most particles have not moved a lot at times t ∼ τα

(otherwise the self-intermediate scattering function would be
very small). We conclude that the second moment of P(r, τα)
must diverge with τα , while the typical value of displacement,
as encoded, for instance, by the median of P(r, τα), is con-
stant. This argument establishes the relation between the SER
violation and the fat tail of the self-van Hove function. This
description is also consistent with the physical picture sug-
gested by the analysis presented in Sec. IV. Its consequences
are explored below.

B. Dimensional study

Using the results for τα(k), we extract an exponent ω(k)
that captures the deviation from SER as D ∝ τα(k)−1+ω(k), or,
equivalently, τα(k) ∝ D−1/[1−ω(k)]. This scaling form is dif-
ferent from the logarithmically growing deviations from SER
at intermediate fluid densities (Fig. 7(c)). As the system be-
comes dynamically more sluggish, we note an increased im-
portance of the wavevectors at which ω is extracted. For in-
stance, in d = 4, the exponent goes from ω ≈ 0 to a finite
value as k increases. Of course, if k is so large that it becomes
comparable with the scale of the vibrations inside the cage,
then τα(k) corresponds to the time scale of this fast relax-
ation. At that point, the exponent ω(k) has no meaning, and
therefore in the following we restrict the discussion to values
of k such that Fs(k, t) is probing the long time dynamics. With
this caveat, an important remark must be made concerning
the dynamical range over which the exponent ω is extracted.
Consider, for instance, the results in Fig. 10, and remember
that ω ∼ 0 corresponds to no SER violation. It is seen that for
the lowest k, ω ∼ 0. This observation is consistent with dif-
fusion corresponding to the system’s largest length scale. The
relaxation time at small k should therefore scale as the inverse
of D. Yet, consider the curve for k = 1 in Fig. 10. For this
curve ω ∼ 0 in the D range examined. Still, if we could ac-
cess smaller values of D, then this curve would at some point
merge with the curve at k = 12 which has ω > 0. At suffi-
ciently small D, the two curves would become parallel and
one would measure roughly the same ω for both k = 1 and
k = 12. Actually, at larger densities and lower D, the curves
reported in Fig. 10 should all become parallel and therefore
one would extract the same ω > 0 for all the wavevectors ex-
amined in Fig. 10. In other words, upon increasing density
and decreasing D, the curves ω(k) of Fig. 11 shift to lower
wavevectors. In the limit D → 0, one measures the same ω

at all k > 0, which corresponds to the large k saturation of
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FIG. 10. Scaling of D vs. τα(k) with increasing ϕ in d = 4 for k = 1, 2, 4, 8,
and 12. The scaling exponent ω(k) (solid lines) depends on k.

the curves in Fig. 11. This description is consistent with the
exponent ω being associated with the development of a tail
of anomalously large displacements in the van Hove function
Gs(r, t). A more detailed analysis of this phenomenon will be
reported elsewhere.

We would also like to stress that, in the pre-asymptotic
regime that is accessible to numerical investigation, the de-
pendence of ω on k is still particularly strong in d = 3, and
this might explain why different values for this exponent have
been reported in the literature.12–14, 16, 39 Yet, irrespective of
the choice of k, we find that ω(k) vanishes with dimension.
If we follow the usual prescription and focus on the value k∗

that corresponds to the first peak of the static structure factor
(Fig. 3), then we find that ω(k∗) vanishes around du = 8. The
results are reported in Fig. 11. We find that for d < 8, ω(k∗)
≈ 0.056(8 − d).

Note that although this result is qualitatively consistent
with the scaling prediction of Ref. 15, the prefactor is in-
correct. In fact, using the estimate of γ ≈ 2.1 obtained in
Ref. 3, the theoretical prediction is ω ≈ 0.12(8 − d), which
is off by a factor of about 2. The k plateau regime is, how-
ever, not yet reached at k∗ in low d (Fig. 11), which may ex-
plain part of the discrepancy between the predicted and the
observed scaling.
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FIG. 11. (a) Relationship between D and τα(k∗) with a power-law scaling
(dashed lines) that changes with d. (Inset) The exponent ω(k∗) appears to
vanish linearly ω(k∗) = A(du − d) with du = 8 and A = 0.056(3) (solid line).
(b) Scaling of ω(k) with d, with the choice k∗ highlighted by a dashed line.
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VI. CONCLUSION

In this paper, we have investigated SER and its viola-
tions as a function of spatial dimensionality, for simple HS
fluids. Our first result is that SER does not generically hold
when the self-diffusion of a particle is considered, in all den-
sity regimes. This effect is due to the heterogeneity of local
caging, and it gets worse with increasing dimensions because
large voids are present in a high-dimensional fluid. Only in
d = 3, do we observe a region at intermediate densities where
DηS is approximately constant. The fact that this constant has
the order of magnitude predicted by SER is not surprising, but
we show that in order to obtain a perfect agreement with SER
one needs to increase the diameter of the solvated particle by
at least a factor of 4 with respect to the fluid particles. We are
thus led to our first conclusion, that (i) the approximate valid-
ity of the SER in d = 3 at intermediate densities is somehow
accidental (Sec. IV C). SER violations occur in all regimes
of density and spatial dimensions. A violation of SER should
thus not be generally regarded as a manifestation of dynami-
cal heterogeneity.

We have next examined the relation between viscosity
and the relaxation time of density fluctuations in dense fluids
approaching the glass transition. We find that the relaxation
time associated with the self-intermediate scattering function
diverges, in this density regime, proportionally to the viscos-
ity. SER violations are normally formulated as a strong in-
crease of DηS, but this result shows, consistently with previ-
ous studies,12, 39 that (ii) one can then equivalently formulate
the SER violation in terms of a strong increase of D τα(k),
with D τα(k) ∼ τ a(k)ω(k) if k is appropriately chosen. Because
both D and τα(k) can be simply extracted from the self-van
Hove function Gs(r, t), which is the distribution of particle
displacements, we conclude that Gs(r, t) contains all the infor-
mation about the SER violation close to the glass transition.

Results (i) and (ii) suggest that one should focus on the
fact that on approaching the glass transition single-particle
displacements display an anomalous behavior and one should
not overly emphasize the SER violation per se (it occurs for
different reasons in different regimes), but instead focus on
the fact that upon approaching the glass transition single-
particle displacements display an anomalous behavior. Some
particles move much faster than most of the others, leading to
a divergent second moment of the particles’ displacement dis-
tribution (Sec. V A). We will present a more detailed analysis
of this effect in a forthcoming publication.

Our last result is that (iii)“SER violations” (or, better,
“anomalous displacements”) near the glass transition are
strongly reduced upon increasing dimension, and almost dis-
appear around d = 8, consistently with the predictions of
Ref. 15. The prefactor of the exponent ω(k∗) (measured at
the peak of the static structure factor) is, however, not consis-
tent with the treatment of Ref. 15, in which the SER violation
has been attributed to large fluctuations of the local τα be-
tween dynamically heterogeneous spatial regions. In addition,
a small value of ω seems to persist even for d > 8, suggesting
that different physical processes could simultaneously induce
the SER violation in low dimensions. It is important to stress
that studies in similar systems14, 16 in d = 4 and preliminary

data from our simulations (not reported in this work) indicate
that the four-point dynamical susceptibility increases strongly
in the dynamical regime that we can access, in all dimensions.
This result indicates that our simulations access the dynami-
cally critical regime, but that dynamical criticality is not asso-
ciated with the SER violation or anomalous displacements in
d ≥ 8. Again, this observation is consistent with the mean-
field scenario in which dynamical criticality originates from
the proximity with a spinodal point (a bifurcation) of the
mode-coupling theory (MCT) type.15, 22, 67

In summary, our results, and in particular the k depen-
dence of ω, suggest that the SER violation originates from
a large tail of single-particle displacements that develop near
the glass transition, and is therefore a property of local caging.
Of particular interest in this respect is understanding how
hopping64 and dynamical heterogeneity,14, 66, 68 can separately
result in fat displacement tails at τα . These two effects are
expected to decrease in importance with d, but for different
physical reasons. Hopping results from inefficient caging. Be-
cause at finite pressures cage escape is but a locally activated
volume fluctuation away, it is always possible for a particle
to hop out of its cage. With increasing d, the cage dimension
remains fairly constant while the pressure in the dynamically
sluggish regime increases (see Refs. 2 and 3), thus the free
energy cost of hopping increases and its occurrence vanishes.
By contrast, dynamical heterogeneity induces a fat displace-
ment tail, because it corresponds to correlated regions over
which particles have a displacement much larger than the av-
erage. According to the analysis of Ref. 15, however, this ef-
fect should lead to a SER violation only if the fluctuations
are sufficiently strong, i.e., for d < 8. Note that facilitation
effects13, 24, 25 could also lead to the amplification of the fat
displacement tail induced by both mechanisms.

We conclude that local hopping, facilitation, and dynami-
cal heterogeneity might all contribute to determining and am-
plifying the SER violation near the glass transition in low
dimensions. A plausible scenario is that the contribution of
dynamical heterogeneity becomes negligible for d ≥ 8, as pre-
dicted in Ref. 15, while the contribution of (facilitated) hop-
ping is much smaller, thus explaining why ω is strongly re-
duced for d ≥ 8. However, it is not at all clear how to describe
hopping and facilitation within a field theory. Hence, how this
effect modifies the mean-field behavior, even above the upper
critical dimension du = 8, remains unclear. Hopping effects
are completely missed, for instance, by MCT, although vari-
ous attempts at including them have been suggested.69–71 An
improved understanding of these effects will require impor-
tant theoretical advances as well as more detailed numerical
simulations as a function of spatial dimension.
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APPENDIX A: VISCOSITY TENSOR

Following the Appendix of Ref. 38, we define the sym-
metrized molecular pressure tensor P

P = m

V

N∑
k=1

(
ṙk ⊗ ṙk + r̈k ⊗ rk + rk ⊗ r̈k

2

)
, (A1)

whose trace gives the scalar pressure P = 1
d

tr〈P〉. The viscos-
ity tensor can then be obtained from the autocorrelation of the
traceless tensor P◦ = P − P 1

η = βV

∫ ∞

0
dt〈P◦(t)P◦(0)〉, (A2)

which is a 4 tensor that is symmetric in the first and second
pair of indices. In an isotropic fluid, this tensor is invariant
under rotation and reflection. One can then appeal to the first
fundamental theorem for O(V ) (p. 390 of Ref. 72, Prop. 4.2.6
of Ref. 73, or Thm. 5.2.2 of Ref. 74), which states that all
polynomials with 4 sets of variables in the vector space V
that are invariant under the orthogonal group O(V ) can be
written in terms of inner products. In particular, the viscosity
tensor must be a linear combination of all the possible prod-
ucts of inner products between elements of distinct copies of
V . Because only four copies of V float around, we have

ηijkl = c1δij δkl + c2δikδjl + c3δilδjk,

regardless of the dimension of V . The case V = R3 was
solved in Ref. 38, and we here solve the general case V = Rd .

The requirement that η be symmetric gives c2 = c3. That
it is traceless in the first two indices further gives

0 =
d∑

i,j=1

δij ηijkl = (dc1 + c2 + c3)δkl

for all k, l. We therefore find c2 = − d
2 c1. Because in an

isotropic fluid ηS = ηijij for any i �= j, we obtain ηS = η1212

= c2 = − d
2 c1, while for any i,

ηiiii = η1111 = c1 + c2 + c3 = (1 − d)c1 = 2(d − 1)

d
ηS.

It follows that

I ≡ βV

∫ ∞

0
dt

〈
d∑

i,j=1

P◦
ij (t)P◦

ij (0)

〉

=
d∑

i �=j=1

ηijij +
d∑

i=1

ηiiii = d(d − 1)ηS + d
2(d − 1)

d
ηS

= (d + 2)(d − 1)ηS.

Note that this result also implies that for an isotropic fluid the
linear viscosity, i.e., ηL ≡ ηiiii for all i, is directly proportional
to ηS. For an isotropic fluid in d = 3, for instance, ηL = 4

3ηS .
The numerical results of Ref. 41 suggesting otherwise may
thus reflect insufficient averaging.

APPENDIX B: OSEEN TENSOR IN ARBITRARY
DIMENSION

For a periodic system in a square box of side L, i.e., for a
lattice LZd , one obtains the Oseen mobility tensor49

TPBC(r) =
∑

k∈ 2π
L
Zd\{0}

exp(−ik · r)

ηSk2V

(
1 − k ⊗ k

k2

)
.

For an infinite nonperiodic system, the Oseen tensor is
obtained by taking the limit

T0(r) = lim
L→∞

TPBC(r).

Reference 49 gives explicitly this limit in the case d = 3. In
this appendix, we compute the result for general d and prove
Eq. (12). We perform this limit on each of the components

Tij (r) =
∑

k∈ 2π
L
Zd\{0}

e−ik·r

ηSV

(
δij

k2
− kikj

k4

)
(B1)

of TPBC(r).
First, we compute

∫
Rd

dk e−ik·r−tk2 =
d∏

j=1

∫ ∞

−∞
dkj e

−ikj rj −tk2
j

=
d∏

j=1

e− r2
j

4t

∫ ∞

−∞
dkj e

−(
irj

2
√

t
+√

tkj )2

=
d∏

j=1

e− r2
j

4t√
t

∫
Im (z)= rj

2
√

t

dz e−z2

=
(π

t

) d
2
e− r2

4t ,

where to go from the integral on Im (z) = rj

2
√

t
to the well-

known integral on the real axis of e−x2
, one uses the fact that

e−z2
is holomorphic on each of the rectangles with corners

at ±R and ±R + rj (2
√

t)−1i and bound the integral on the
vertical sides by |rj |(2

√
t)−1e−R2

, a quantity that goes to zero
as R → ∞. Then for any α,

1

(2π )d

∫ ∞

0
dt

∫
Rd

dk tαe−ik·r−tk2 =
∫ ∞

0
dt

e− r2

4t

2dπd/2td/2−α
.

Using the change of coordinates s = r2

4t
, ds = − r2

4t2 dt , this
integral equals

r2+2α−d

41+απ
d
2

∫ ∞

0
ds s

d
2 −2−αe−s = r2+2α−d

41+απ
d
2


(d/2 − 1 − α).

In the computation below, we use the identity

1

(2π )d

∫ ∞

0
dt

∫
Rd

dk tαe−ik·r−tk2 = r2+2α−d

41+απ
d
2


(d/2 − 1 − α)

(B2)
for α = 0 and α = 1.



164502-15 Charbonneau et al. J. Chem. Phys. 139, 164502 (2013)

We now compute the contribution of the first part of Tij

∑
k �=0

e−ik·r

V k2
= 1

V

∑
k �=0

e−ik·r
∫ ∞

0
dte−tk2

=
∫ ∞

0
dt

1

Ld

∑
k∈ 2π

L
Zd\{0}

e−ik·r−tk2

= 1

(2π )d

∫ ∞

0
dt

(
2π

L

)d ∑
k∈ 2π

L
Zd\{0}

e−ik·r−tk2
.

The expression is obviously a Riemann sum, and thus

∑
k �=0

e−ik·r

ηSV

δij

k2
→ δij

(2π )dηS

∫ ∞

0
dt

∫
Rd

dk e−ik·r−tk2

= r2−d

4π
d
2 ηS


(d/2 − 1)δij . (B3)

Similarly, we get

∑
k �=0

e−ik·r

V k4
= 1

V

∑
k �=0

e−ik·r
∫ ∞

0
dt te−tk2

→ 1

(2π )d

∫ ∞

0
dt t

∫
Rd

dk e−ik·r−tk2

= r4−d

16π
d
2


(d/2 − 2)

= r4−d

8(d − 4)π
d
2


(d/2 − 1).

Now, given that

∂2r4−d

∂ri∂rj

= ∂2(r2)2− d
2

∂ri∂rj

= (4 − d)
∂

∂ri

rj (r2)1− d
2

= (4 − d)δij r
2−d + (4 − d)(2 − d)rirj r

−d ,

we have

∑
k �=0

kikj e
−ik·r

V k4ηS

= − ∂2

∂ri∂rj

∑
k �=0

e−ik·r

ηSV k4

→ − ∂2

∂ri∂rj

r4−d

8(d − 4)π
d
2 ηS


(d/2 − 1)

= δij r
2−d + (2 − d)rirj r

−d

8π
d
2 ηS


(d/2 − 1).

(B4)

Assembling the contributions of Eqs. (B3) and (B4) of
the limit of Eq. (B1), we obtain Eq. (12).

APPENDIX C: FOURIER TRANSFORM AND POISSON
SUMMATION

Here, we show how to write Eq. (14) in a computationally
more suitable way. We start by writing∫

dk
(2π )d

ϒ(k) − 1

k2

=
∫

dk
(2π )d

ϒ(k) − 1

k2
[e−k2/(4α2) + 1 − e−k2/(4α2)]

=
∫

dk
(2π )d

1

k2
[ϒ(k) − 1] e−k2/(4α2)

+
∫

dk
(2π )d

[ϒ(k) − 1]
1 − e−k2/(4α2)

k2
.

The first term can be used directly in momentum space be-
cause the integral is cut off by the Gaussian factor, while the
second is more conveniently written in real space. For this
purpose, we introduce the function

G̃(k) = 1 − e−k2/(4α2)

k2
(C1)

and its Fourier transform computed as we computed Eq. (B2)

G(r) =
∫

dk
(2π )d

e−ik·r 1 − e−k2/(4α2)

k2

=
∫

dk
(2π )d

e−ik·r(1 − e−k2/(4α2))
∫ ∞

0
dt e−tk2

=
∫ ∞

0
dt

∫
dk

(2π )d
e−ik·r(e−tk2 − e

−k2(t+ 1
4α2 ))

=
∫ ∞

0
dt

e−r2/(4t)

2d (πt)d/2
−
∫ ∞

1/(4α2)
dt

e−r2/(4t)

2d (πt)d/2

=
∫ 1/(4α2)

0
dt

e−r2/(4t)

2d (πt)d/2
= 
(d/2 − 1, α2r2)

4πd/2rd−2
,

where 
(n, z) is the incomplete gamma function. This func-
tion quickly decays to zero with z, which indicates that G(r)
is a short-ranged function in real space.

Next, let the one-dimensional Fourier transform of a
generic function f(r)

f̃ (k) =
∫

dreikrf (r). (C2)

Then

∞∑
m=−∞

f (mL) = 1

2π

∫
dk

∞∑
m=−∞

e−ikmLf̃ (k). (C3)

If we want to obtain the Fourier transform of a periodic
function of L, say

fp(r) =
∞∑

m=−∞
f (r + mL) (C4)
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for wavevectors k = 2πm/L, then

f̃p(k) =
∫ L

0
dr

∞∑
m=−∞

f (r + mL)eikr

=
∞∑

m=−∞

∫ L

0
drf (r + mL)eik(r+mL)

=
∞∑

m=−∞

∫ (m+1)L

mL

drf (r)eikr

=
∫ ∞

−∞
drf (r)eikr = f̃ (k).

Inverting the Fourier transform gives

fp(r) = 1

L

∞∑
m=−∞

e−2πmr/Lf̃
(
2πm/L

)
.

From this relation we can identify that, when r = 0,

∞∑
m=−∞

f (mL) = 1

L

∞∑
m=−∞

f̃
(
2πm/L

)
, (C5)

which is the Poisson summation formula. The above deriva-
tion is straightforwardly extended to its multidimensional
form

∑
m

f (mL) = 1

V

∑
m

f̃
(
2πm/L

)
, (C6)

where m ∈ Zd is a vector of integers.
Using this result and the general properties of Fourier

transforms, we can write that

∫
dk

(2π )d
[ϒ(k) − 1]G̃(k)

= −G(0) +
∫

dk
(2π )d

G̃(k)
∑
m�=0

(2π )d

V
δ
(
k − 2πm/L

)

= −G(0) + 1

V

∑
m�=0

G̃
(
2πm/L

)

= −G(0) − 1

V
G̃(0) + 1

V

∑
m

G̃
(
2πm/L

)

= −G(0) − 1

V
G̃(0) +

∑
m

G(mL)

= − 1

V
G̃(0) +

∑
m�=0

G(mL).

Collecting all the results and recalling that G̃(0)
= 1/(4α2) and V = Ld , we obtain

∫
dk

(2π )d
ϒ(k) − 1

k2

=
∫

dk
(2π )d

1

k2
[ϒ(k) − 1] e−k2/(4α2)

+
∫

dk
(2π )d

[ϒ(k) − 1]G̃(k)

= 1

V

∑
m�=0

e−(2πm)2/(4α2L2)

(2πm)2/L2
−
∫

dk
(2π )d

e−k2/(4α2)

k2

− 1

V
G̃(0) +

∑
m�=0

G(mL)

= 1

Ld−2

∑
m�=0

e−(2πm)2/(4α2L2)

(2πm)2
− αd−2

2πd/2(d − 2)

− 1

4α2Ld
+
∑
m�=0


(d/2 − 1, α2(mL)2)

4πd/2(mL)d−2
.

Recalling that the above result should not depend on α, with-
out loss of generality we rescale α2L2 → α2, defining the
Madelung-type constant ξ d,

d

d − 1

ξd

Ld−2
≡
∫

dk
(2π )d

ϒ(k) − 1

k2

= 1

Ld−2

∑
m�=0

e−(2πm)2/(4α2)

(2πm)2
− αd−2

2πd/2(d − 2)Ld−2

− 1

4α2Ld−2
+
∑
m�=0


(d/2 − 1, α2m2)

4πd/2(mL)d−2
.

Inserting this result in Eq. (14) gives Eqs. (15) and (17).

APPENDIX D: ENSKOG KINETIC THEORY

In this appendix, we detail the Enskog kinetic theory re-
sults for the diffusivity and viscosity used in the text. The self-
diffusivity of hard spheres of mass m is given by75

DE =
√

πσ 2

βm

1

4y(ρ)
, (D1)

where y(ρ) = βP/ρ − 1 is the cavity function. We determine
y(ρ) from the Padé approximant of order [4/5] of the HS virial
expansion.76
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Viscosity within the lowest-order Sonine approximation
is given by77, 78

ηE

ηB
= B2ρ

[
1

y(ρ)
+ 4

d + 2

(
1 + y(ρ) + 4dy(ρ)

π

)]
, (D2)

where B2 = Vd (σ )/2 is the HS second-virial coefficient and

ηB = π1/2(d + 2)

8dB2
(D3)

is the Boltzmann kinetic theory viscosity.

APPENDIX E: DIFFERENTIAL FORMS

In this appendix, we briefly review the calculus of forms
on Euclidean spaces to clarify the computations of Sec. IV A.
The reader desiring more background information may con-
sult Refs. 79 or 80, Sec. 5.4, amongst others. Every vector
field on Rm can be thought as a 1-form. Instead of writing
w = (w1, . . . , wm), we thus write w =∑m

i=1 widxi . The p-
forms are obtained by wedging together 1-forms, using the
alternating rule dxi ∧ dxj = −dxj ∧ dxi (hence, in particular
dxi ∧ dxi = 0). Hence, any p-form looks like

∑
i1<···<ip

αi1···ip dxi1 ∧ . . . ∧ dxip .

The set of p-forms on Rm is denoted Ap(Rm).
The exterior derivative is a map Ap(Rm) → Ap+1(Rm).

We define it by the relation

d

⎛
⎝ ∑

i1<...<ip

αi1...ip dxi1 ∧ . . . ∧ dxip

⎞
⎠

=
∑

i1<...<ip

m∑
j=1

∂αi1...ip

∂xj

dxj ∧ dxi1 ∧ . . . ∧ dxip .

Because partial derivatives commute, it is easy to check that
d2 = 0.

The Hodge star � is an isometry between Ap(Rm)
and Am−p(Rm). Denote by εi1...im the sign of the per-
mutation (i1. . . 1m) of (1. . . m), if it is a permutation,
and 0 if it is not. The Hodge star is defined by the
relation �

(
dxi1 ∧ . . . ∧ dxip

) =∑j1<...<jm−p
εi1...ipj1...jm−p

dxj1

∧ . . . ∧ dxjm−p
. For instance, on R3, �dx1 = dx2 ∧ dx3 while

�dx2 = −dx1 ∧ dx3.

APPENDIX F: IDENTITIES

Some identities involving forms in Sec. IV A are easy to
prove for the initiated. Because we expect a significant portion
of the readership to be new to the language of forms, we prove
these identities below. Some of the more involved proofs are
also provided.

We prove Eq. (22) by

curl curl = �d � d = (−1)m(p+2)+1d∗d

= (−1)m(p+2)+1( − dd∗)

= (−1)m(p+2)+1( + (−1)m(p+1)d � d�)

= (−1)mp+1 + (−1)m+1grad div.

We prove Eq. (23) by

grad = d = (d∗d + dd∗)d

= dd∗d = d(d∗d + dd∗) = d = grad .

We now prove Eq. (24). If u is a constant 1-form and f a
function, then

div(f u) =  � d � (f u) =  � d(f � u)

=  � (df ∧ �u) = df · u

= (df ) · u = (df ) · u.

For the more difficult identity given by Eq. (29), we in-
troduce an ad hoc notation to simplify our computations. Let

dxij ≡ dxi ∧ dxj ,

dx̂i ≡ dx1 ∧ . . . ∧ dxi−1 ∧ dxi+1 ∧ . . . ∧ dxm,

dx̂1i ≡ dx2 ∧ . . . ∧ dxi−1 ∧ dxi+1 ∧ . . . ∧ dxm,

dx̂11 ≡ 0.

We then have

�dxi = (−1)i−1dx̂i,

�dx̂i = (−1)m−idxi,

dr =
∑

i

xi

r
dxi,

�dxi ∧ dx1 = (−1)i−1dx̂1i ,

dr ∧ dx1 =
∑

i

xi

r
dxi1,

dxi ∧ dx̂1i = (−1)idx̂1, for i �= 1,

dx1 ∧ dx̂1i = dx̂i,

�dxi ∧ dx̂1i = (−1)m−i−1dx1,

�dr ∧ dx1 =
∑

i

(−1)i−1 xi

r
dx̂1i .

Without loss of generality, we pose u = dx1, a unit vector in
the direction of the first coordinate. We have n = dr . Suppose
f = f (r), then
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curl curl f u = �d � d(f dx1) = �d �
(
f ′dr ∧ dx1

)
= �d

(
f ′

r

∑
i

(−1)i−1xidx̂1i

)

=
(

f ′

r

)∑
i

(−1)i−1 � dxi ∧ dx̂1i +
(

f ′

r

)′∑
i

(−1)i−1xi � dr ∧ dx̂1i

= (−1)m(m − 1)

(
f ′

r

)
dx1 +

(
f ′

r

)′∑
i,j

(−1)i−1xi

xj

r
� dxj ∧ dx̂1i

= (−1)m(m − 1)

(
f ′

r

)
dx1 + 1

r

(
f ′

r

)′∑
i

(−1)i−1
(
xixi � dxi ∧ dx̂1i + xix1 � dx1 ∧ dx̂1i

)

= (−1)m(m − 1)

(
f ′

r

)
dx1 + 1

r

(
f ′

r

)′∑
i>1

(−1)i−1
(
x2

i � (−1)idx̂1 + xix1 � dx̂i

)

= (−1)m(m − 1)

(
f ′

r

)
dx1 + 1

r

(
f ′

r

)′ (
(−1)m

(∑
i>1

x2
i

)
dx1 + (−1)m−1

∑
i>1

xix1dxi

)

= (−1)m(m − 1)

(
f ′

r

)
dx1 + 1

r

(
f ′

r

)′ (
(−1)mr2dx1 + (−1)m−1r2 x1

r
dr
)

= (−1)m(m − 1)

(
f ′

r

)
u + (−1)mr

(
f ′

r

)′ (
u − (u · n)n

)

= (−1)m
((

(m − 1)

(
f ′

r

)
+ r

(
f ′

r

)′)
u − r

(
f ′

r

)′
(u · n)n

)
.

APPENDIX G: G∞ FOR HARD SPHERES

Generalizing Zwanzig and Mountain’s81 virial expres-
sion for the infinite frequency shear modulus to higher d gives

G∞ = ρ

β
+ ρ2πd/2

4
(2 + d/2)

∫ ∞

0
drg(r)

d

dr

(
rd+1 dU (r)

dr

)
,

where g(r) is the pair correlation function and U(r) is the pair
interaction potential. For a pair potential of the form U(r)
= ε(σ /r)n, where ε is a constant that sets the temperature
scale, we follow the approach of Ref. 82 to obtain

βG∞
ρ

− 1 = n − d

2 + d

(
βP

ρ
− 1

)
, (G1)

using the virial expression for the pressure

βP

ρ
− 1 = −Sd−1

2d

∫ ∞

0
drrd dU (r)

dr
. (G2)

For a given n, small pressure changes result in small and pro-
portional changes to G∞. Although the instantaneous shear
modulus diverges in the HS n → ∞ limit, we note that the rel-
ative rate of change of G∞ remains small. Maxwell’s model
for the viscosity therefore remains qualitatively valid even for
HS in the sense that τ S is proportional to a microscopic re-
laxation time, even though the proportionality constant (and
therefore its precise magnitude) loses its physical meaning.
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