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Corner-Based Estimation of Tire Forces and Vehicle
Velocities Robust to Road Conditions

Ehsan Hashemi , Mohammad Pirani, Amir Khajepour, Alireza Kasaiezadeh, Shih-Ken Chen, Bakhtiar Litkouhi

Abstract—Recent developments in vehicle stability control and
active safety systems have led to an interest in reliable vehicle
state estimation on various road conditions. This paper presents
a novel method for tire force and velocity estimation at each
corner to monitor tire capacities individually. This is entailed for
more demanding advanced vehicle stability systems and especially
in full autonomous driving in harsh maneuvers. By integrating
the lumped LuGre tire model and the vehicle kinematics, it
is shown that the proposed corner-based estimator does not
require knowledge of the road friction and is robust to model
uncertainties. The stability of the time-varying longitudinal and
lateral velocity estimators is explored. The proposed method is
experimentally validated in several maneuvers on different road
surface frictions. The experimental results confirm the accuracy
and robustness of the state estimators.

Keywords—Vehicle state estimation, velocity estimation, tire force
estimation, robust observer design

I. INTRODUCTION

Advanced vehicle stability control and active safety systems
require dependable vehicle states, which may not be accessible
by measurements and should be estimated. Two major practical
issues that have dominated the vehicle state estimation field are
velocity and tire force estimation robust to the road friction
changes. Tire forces can be measured at each corner with
sensors mounted on the wheel hub, but their significant cost,
required space, and calibration and maintenance make them
completely unfeasible for mass production vehicles. Provided
that the tire force calculation needs road friction, even accurate
slip ratio/angle information from the GPS will not engender
forces at each corner. Hence, estimation of the longitudinal
and lateral tire forces would be a remedy. Estimation of
longitudinal and lateral forces independent from the road
condition may be classified on the basis of wheel dynamics
into the nonlinear and sliding mode observers [1]–[3], Kalman-
based estimation [4]–[6], and unknown input observers [7]–
[9]. A force estimation method based on the steering torque
measurement is introduced in [10], [11], which requires addi-
tional measurements. A high gain observer with inputoutput
linearization is proposed by Gao et al. [12] to estimate the
lateral states. An extended Kalman filter (EKF) is employed
in [13] to estimate tire forces and road friction condition.

Longitudinal and lateral velocities make major contributions
to traction and stability control systems, respectively. They
can be measured with GPS, but the poor accuracy of the
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mostly practiced conventional GPSs and the loss of reception
in some areas are primary drawbacks. Literature has adopted
three major approaches for longitudinal/lateral velocity esti-
mation. One is the modified kinematic-based approach, which
uses acceleration and the yaw rate measurements from an
inertial measurement unit (IMU) and estimates the vehicle
velocities employing Kalman-based [14], [15], or nonlinear
[16] observers. This method does not employ a tire model,
but instead the sensor’s bias and noise should be identified
precisely to have a reliable estimation. In addition, low-
excitation cases that lead to erroneous estimation should be
handled with this method. To increase the accuracy of the
estimated heading and position, Farrell et al. [17] used the
carrier-phase differential GPS, which requires a base tower
and increases the cost significantly. To remove noises and
address the low excitation scenarios, some kinematic-based
methodologies [18], [19] employ accurate GPS, which may
be lost and impose additional costs on commercial vehicles.
Yoon and Peng [20] utilize two low-cost GPS receivers for the
lateral velocity estimation and compensate the low update rate
issue of conventional GPS receivers by combining the IMU
and GPS data using an EKF.

The other velocity estimation method integrates measured
longitudinal/lateral accelerations and uses an observer on tire
forces to correct the estimation. This approach requires a good
perception of the road friction and a precise tire model. To
deal with the varying tire parameters and model uncertainties,
model scheduling is introduced in [21] and [22] using tire
slips. A nonlinear observer is also provided in [23] with
simultaneous bank angle estimation to address the unknown
tire parameters. An EKF is employed for both longitudinal
and lateral vehicle state estimations in [24], [25]. EKF has
been used in [26] along with the Burckhardt model [27]
to estimate the vehicle states and tire model parameters; an
EKF with smooth variable structure is also utilized in [28] to
estimate lateral velocities and sideslip angles. Computational
complexities of the EKF justify using a reliable approach
such as the unscented Kalman filter (UKF) [29] without any
need for linearization in system dynamics. Antonov et al.
employ an unscented Kalman filter for vehicle state estimation
in [30] and provided a longitudinal/lateral velocity estimator
at each corner. They utilized wheel torques, wheel speeds,
and a simplified empirical Magic formula [31] as the tire
model, which requires known tire parameters and road friction.
Similarly, employing UKF, Wielitzka et al. [32] and Sun et al.
[33] propose different methods for estimation of the lateral and
longitudinal velocities using knowledge of the road condition,
Magic formula, and LuGre [34] tire models respectively.

On the other hand, to address unknown road friction,
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some literature attempted to identify the road condition and
estimated vehicle states simultaneously. Grip et al. suggest
a nonlinear sideslip angle observer in [35] and [36] that
incorporates time-varying gains and estimates the vehicle states
as well as the surface friction using a tire model. Their method
should cope with the noises and uncertainties imposed by road
identification errors due to the lack of excitation. You et al.
[37] introduce an adaptive least square approach to jointly es-
timate the lateral velocities and tires’ cornering stiffness (road
friction terms). The road bank angle is also identified in their
approach. However, lateral acceleration measurement noises
have not been addressed. A sliding-mode observer is provided
by Magallan et al. in [38] based on the LuGre tire model [34]
to estimate the longitudinal velocity and the surface friction.
Zhang et al. propose a sliding-mode observer in [39] to esti-
mate velocities using wheel speed sensors, braking torque and
longitudinal/lateral acceleration measurements. Their approach
utilizes a sliding-mode observer for the velocity estimation
and an EKF for estimation of the Burckhardt tire model’s
friction parameter. However, this method needs accurate tire
parameters in presence of tire wear, inflation pressure, and
road uncertainties. A switched nonlinear observer based on
a simplified Pacejka tire model is introduced by Sun et al.
[40] to provide estimates of longitudinal and lateral vehicle
velocities and the tire-road friction coefficient during anti-lock
braking. Their approach benefits from switching in specific
cases because of unreliability of the measurements, but it relies
on a predefined zero slip ratio for the longitudinal velocity
measurement.

Other studies focus on the velocity estimation robust to the
road condition, but implements additional measurements which
are not common for conventional cars or require identification
of tire parameters. Hsu et al. propose a method in [10] and [41]
to estimate the road friction condition and sideslip angle using
the steering torque sensor, which may not be applicable for all
production vehicles. Nam et al. [42] present a sideslip angle
estimation method with a recursive least squares algorithm to
improve stability of in-wheel-motor-driven electric vehicles,
but their approach uses force measurements from the multi-
sensing hub units, which are not available for all electric and
conventional cars. Gadola et al. investigate a Kalman-based
lateral vehicle estimation on a single-track car model in [43]
with the Magic formula tire model. The derivatives of the
lateral forces in their approach, however, may amplify noise
effects in the lateral/longitudinal state estimates.

Therefore, developing an observer-based vehicle state esti-
mator using conventional sensor measurement (wheel speed,
steering angle, and IMU) without using road friction informa-
tion is desirable and provided in this paper.

II. PROPOSED CORNER-BASED ESTIMATION STRUCTURE

This paper provides different observers for the vehicle state
estimation on various road friction with the following distinct
contributions:
• Longitudinal, lateral, and vertical tire-free force esti-

mators are developed using computationally efficient
nonlinear observers and common measurements without

any limiting assumption on the lateral force distribution
proportional to the vertical loads on a track.

• A novel parameter-varying observer for the velocity
estimation, robust to road friction changes, is introduced
which treats acceleration measurement noises and the
road condition as uncertainties.

• The newly introduced velocity estimator can be utilized
in many road identification approaches [3], [13], [44],
[45]. However, those references usually employ the slip
ratio/angle measurement from accurate GPS data, that is
not available for production vehicles.

• The corner-based structure of the longitudinal/lateral
force and velocity estimators advantageously leads to
better performance of the stability and traction control
systems which need slip ratio/angle at each corner

• The combined kinematic and model-based algorithm for
estimation of the sideslip angle and slip ratio has a mod-
ular structure which can employ any force estimation
module.

The corner-based state estimation structure is illustrated
in Fig. 1, in which the estimations from Longitudinal Force
Est and Lateral Force Est modules are fed to the observer-
based velocity estimators. Longitudinal, lateral, and vertical
force estimators in this article are developed using nonlinear
and Kalman-based observers. The longitudinal force estimators
uses total torques and wheel speeds at each corner. The UKF-
based lateral force estimator employs vehicle lateral dynamics,
acceleration measurements, steering, and the yaw rate. Vertical
forces at each corner from Normal Force Est are obtained
by load transfer, vehicle angles and accelerations; vertical
forces are utilized for normalization of the longitudinal and
lateral forces in the velocity estimators. In the newly proposed
Longitudinal Velocity Est and Lateral Velocity Est modules,
kinematic-based approach is combined with the internal tire
states considering road friction and measurement noises as
uncertainties. The longitudinal and lateral velocity estimators
use accelerations, yaw rate, steering angle, roll dynamics,
estimated tire forces, and provide slip angle/ratio at each tire.
Measured accelerations by IMU attached to the sprung mass
are corrected with the vehicle’s body pitch and roll angles
from Pitch/Roll Angle Est to include only the kinematics of
the motion. These corrected values are then used for the normal
force and velocity estimators.

Finally, the proposed approach is experimentally validated
on various road conditions using a full-size test vehicle.

In the following, a corner-based methodology for the longi-
tudinal, lateral, and normal force estimation is first discussed
in section III. The suggested observer-based longitudinal and
lateral velocity estimator is then provided in section IV. The
stability and performance of the linear parameter-varying error
dynamic system is also investigated in this section. Section V
presents experimental results used to verify the approach on
different road conditions and in various maneuvers with high
and low longitudinal/lateral excitations. Finally, conclusions
are provided.
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Fig. 1: Corner-based state estimation structure

III. FORCE ESTIMATION

An observer for the longitudinal force and an unscented
Kalman filter for the lateral force estimation are designed in
this section. Vertical forces are estimated using vehicle body
dynamics, the load transfer, and the acceleration measure-
ments.

A. Longitudinal force estimation

Longitudinal force estimation significantly contributes to
vehicle stability control. When the total torque at each wheel
is available, wheel dynamics can be utilized for the force
estimation. Neglecting the bearing’s viscous damping, one can
write the wheel dynamic equation at each corner as (1) in the
coordinates attached to the tires: (Fig. 2):

Fxij =
1

Re
(Ttij − Iwω̇ij) + Ωf , (1)

where Re is the wheel effective radius, Ttij represents the total
effective torque on each wheel, Fxij is the longitudinal tire
force at each corner in the coordinate frame attached to the tires
[46], ω̇ij is the wheel acceleration, Iw is the wheel’s moment of
inertia and Ωf represents uncertainties in the model including
the wheel acceleration, torque, etc. A corner-based estimation
approach proposed in this section for the longitudinal force
estimation uses a PID state observer [47]–[50] that has also
been used in other applications. The suggested estimator uses
wheel torques Ttij and speed ωij at each corner and provide an
estimated wheel speed ω̂ij to estimate longitudinal tire force:

F̂xij =
Ttij − Iwω̇ij

Re
− η1eωij + η3

∫
eFijdt. (2)

where i ∈ {f, r} (front and rear axles), j ∈ {L,R} (left and
right tires), η1, η3 are design parameters, and the estimated
wheel speed error is (eωij = ωij − ω̂ij) where ω̂ij will
be described in the following. Subtracting the longitudinal
force (1) from the estimated force (2), the longitudinal force
estimation error eFij = Fxij − F̂xij can be described as

eFij = −η3

∫
eFijdt + η1eωij + Ωf . The time derivative of

the error dynamic yields:

ėFij = −η3eFij + η1ėωij + Ω̇f , (3)

where the estimated wheel speed ω̂ at each corner ij is
described as:

˙̂ωij =
1

Iw
(Ttij −ReF̂xij + η2

∫
eωijdt+Reη3

∫
eFijdt),

(4)

in which η2 is another design parameter for this observer. The
estimated wheel speed ω̂ij is an auxiliary term for longitudinal
force estimation. Substituting F̂xij from (2) in (4), one can
rewrite:

˙̂ωij = ω̇ij +
1

Iw
(Reη1eωij + η2

∫
eωijdt). (5)

The deviation of the estimated wheel speed from the measured
one is denoted by eω and incorporated for the force estimation
as in (2). In the implementation setup, the term

∫
eFijdt

is attainable by the updated measurement
Ttij−Iwω̇ij

Re
at the

current time step and the longitudinal force estimates F̂xij from
the previous time step, due to the fact that the uncertainty term
Ωf is mostly contributed to the wheel torque which is zero
mean, its integral over time will eliminate the effect of Ωf .

Proposition 1: The estimation error for the longitudinal
force estimator (2) is asymptotically bounded by supt≥0

|Ω̇f |
η3

.

Proof: : Subtracting the estimated wheel speed (4)
from the speed by the wheel dynamics (1), i.e., ω̇ij =
1
Iw

[
Ttij −Re(Fxij − Ωf )

]
, results in Iwėωij = −ReeFij +

ReΩf − η2

∫
eωij −Reη3

∫
eFijdt. Taking time derivative and

replacing the error dynamics (3) yield:

Iwëωij +Reη1ėωij + η2eωij = 0, (6)

which is in the following state-space form[
ėωij
ëωij

]
=

[
0 1
−η2

Iw

−Reη1

Iw

]
︸ ︷︷ ︸

K

[
eωij
ėωij

]
, (7)

where K is Hurwitz and (7) is exponentially stable provided
η1, η2 > 0, therefore, eωij → 0 and ėωij → 0. Thus, the
estimation error dynamics (3) asymptotically turns to

ėFij = −η3eFij + Ω̇f , (8)

that is an exponentially stable dynamic for ∀η3 > 0. By solving
(8) we get eFij (t) = e−η3teFij (0) +

Ω̇f
η3

. As e−η3teFij (0)
exponentially converges to zero, eFij (t) will be asymptotically

bounded by supt≥0
|Ω̇f |
η3

.
Based on several road experiments on various road frictions,
the designed observer has the gain η3 = 50.6 and the order
of Ω̇f is obtained as Ω̇f = O(102). Other observer gains are
provided in section V. Longitudinal force estimates (2) will
be normalized by (13) to be implemented in the longitudinal
velocity estimator (24).
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B. Lateral force estimation

Lateral tire forces are required for the vehicle stability
control systems as well as the lateral velocity estimators.
Lateral forces are estimated in this paper employing an un-
scented Kalman filter (UKF), using acceleration and yaw rate
measurements, and vehicle’s lateral dynamics. Figure 2 depicts
longitudinal/lateral forces and slip angles at each corner in the
xyz coordinates attached to the vehicle body for the double-
track vehicle model used in this study.
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Fig. 2: (a) Double track vehicle model (b) Planar roll model

Introducing Fxi =
∑
j Fxij , Fyi =

∑
j Fyij (the sum

of longitudinal/lateral forces at each axle), vehicle’s lateral
dynamics with the measured acceleration and yaw rate in the
body-fixed coordinates xyz can be expressed as:

max = Fxf cos δ − Fyf sin δ + Fxr ,

may = Fyf cos δ + Fxf sin δ + Fyr ,

Iz ṙ = (Fyf cos δ + Fxf sin δ)Lf

+ (F̄xf cos δ − F̄yf sin δ)
Trf
2
− FyrLr + F̄xr

Trr
2
, (9)

in which δ is the steering angle (with parallel steering in front
wheels). Distances from the front and rear axles’ to CG are
denoted by Lf , Lr and F̄xi = FxiR − FxiL , F̄yi = FyiR −
FyiL . Longitudinal forces at each corner Fxij are assumed to
be available from (2) in the previous subsection. The set of
equations (9) can be solved for the lateral forces Fyij at each
corner with the assumption of lateral force distribution based
on the normal forces, but this may not address maneuvers in
which road friction under each tire is different. To resolve
this, an estimation method for lateral forces is proposed in this
section that uses longitudinal forces, accelerations ax, ay , and
the yaw rate r measurements from a 3-axis IMU. The measured
longitudinal and lateral accelerations include the kinematics
of the vehicle’s CG Vx, Vy , vehicle’s body pitch/roll angles
θv, φv , and road grade/bank angles θr, φr as in ax = V̇x −
rVy +g sin(θv +θr) and ay = V̇y + rVx+g sin(φv +φr). The
vehicle and road angles are estimated by an unknown input
observer in [51].

The set of equations (9) can be rewritten in the following

form to obtain the newly introduced lateral force estimator:

˙̄x = Āx̄ + Ω̄,

ȳ =

 −
1
m sin δ 0 0

1
m cos δ 1

m 0
1
Iz

cos δLf − 1
Iz
Lr

1
2Iz

sin δTrf


︸ ︷︷ ︸

C̄(δ)

x̄

+


1
m (Fxf cos δ + Fxr)

1
mFxf sin δ

1
Iz

(Fxf sin δLf + F̄xf cos δ
Trf

2 + F̄xr
Trr
2


︸ ︷︷ ︸

ū

+Γ̄, (10)

where Ā = 03×3 and the states are x̄ = [Fyf Fyr F̄yf ]T ,
output (measurement) is ȳ = [āx āy r]T , and uncertainties
in the process and measurements are denoted by Ω̄ and Γ̄.
Acceleration measurements ax, ay are corrected with the road
and body’s roll/pitch angles as:

āx = ax − g sin(θv + θr), āy = ay − g sin(φv + φr).
(11)

Measured accelerations ax, ay usually have bias and noises
which can be addressed by a bias-removal method in high or
low excitations or observer-based approaches [15]. The matrix
C̄(δ) in (10) is time-varying and physically bounded (because
of the steering angle and its derivative). Thus, the observability
matrix for the time-varying system (10) can be written as [52],
[53]:

On = [ξ1 ξ2... ξn]T

ξ1 = C̄, ξi+1 = ξiĀ(t) + ξ̇i, (12)

Observability of the system (10) is confirmed by holding the
full rank condition rank(O3) = 3 for the operating regions of
the steering angle and its time derivatives, except for the case
where δ = 0, kπ for integer values of k. For the case where
δ = 0 we have rank(C̄) = 2. However, in this case there is no
lateral force applied to the tire. Moreover, situations δ = kπ
do not take place, due to the fact that the maximum value of
the steering angle is much less than π/2. Observability is a
sufficient condition for implementation of an optimal variance
filter (such as a Kalman estimator). Therefore, a Kalman-based
observer can be employed on the discretized form of (10). The
Gaussian and uncorrelated measurement/process noise are also
required for such Kalman estimator. The unscented Kalman
filter [29], [54] is used in this study to include non-Gaussian
noises.

Remark 1: In general, discretization of the continuous-time
system ẋ = Acx + Bcu with the output y = Ccx + Dcu
is done by the zero-order hold method [55], because of its
precision and response characteristics. Input to the continuous-
time system is the hold signal uk = u(tk) for a period between
tk ≤ t < tk+1 with the sample time Ts. Then, the discrete-
time system has the output matrices Cd = Cc, Dd = Dc and
state/input matrices Ad = eAc(t)Ts , Bd =

∫ Ts
0
eAc(t)τBc(t)dτ
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The unscented Kalman filter is utilized on the discretized
from of (10) for the lateral force estimation at each corner. The
UKF employs a transformation to include nonlinear character-
istics of the system x̄k+1 = F(x̄k, ūk, Ω̄k),yk = G(x̄k, Γ̄k)
with process and measurement uncertainties Ω̄k, Γ̄k and the
covariance matrices Q̄k = E[Ω̄k, Ω̄

T
k ], R̄k = E[Γ̄k, Γ̄

T
k ]

in a recursive estimation procedure. The force estimator’s
process and measurements are x̄k+1 = Ādx̄k + Ω̄k and
yk = C̄dx̄k + Γ̄k where Ād, C̄d are the state and output
matrices of the discrete-time estimator (10).

The following procedure illustrates the lateral force estima-
tion with UKF in which the proper capturing of nonlinearities
contributed to the unscented transformation that defines Sigma
vectors Σ ∈ RN×2N+1 (N is the length of the state vectors)
around x̄. This propagation yields nonlinear stochastic char-
acteristics of the random variables and results in getting the
posterior mean and covariance up to second-order approxima-
tion [56], [57]. The square root factorization of the covariance
matrix Pk−1 is obtained by Cholesky decomposition at each
time step k. Spread of the sigma points far from the mean
values of random variables (states) are shown by the scalar
τ̄ . It is defined in [56] as τ̄ =

√
N + η̄, where η̄ is the

compound scaling parameter η̄ = ε̄2N − N and ε̄ =
√

3/N .
Propagated sample points within the system F are represented
by Σk|k−1. The estimated function output is denoted by
Λk|k−1 and W c

i ,W
m
i are weighting parameters defined by

W c
i = Wm

i = 1
2 (N + η̄) for all sets i ∈ {1, 2, . . . , 2N} and

W c
0 = η̄

N+η̄ +1−ε̄2+β̄,Wm
0 = η̄

N+η̄ for i = 0. The parameter
β̄ = 2 is introduced to employ the prior information on the
Gaussian distribution of x̄.

LATERAL FORCE ESTIMATION, UKF
Systems: (The estimator (10))
xk+1 = F(xk,uk, %qk),yk = G(xk, %rk)
Σk−1 = [x̂k−1 x̂k−1 + τ̄

√
Pk−1 x̂k−1 − τ̄

√
Pk−1]

Σk|k−1 = F(Σk−1,uk−1)
Λk|k−1 = G(Σk|k−1,Σk−1)
Optimal prediction of the mean, output, and covariance:
x̂mk =

∑2N
i=0W

m
i Σi,k|k−1, ŷmk =

∑2N
i=0W

m
i Λi,k|k−1

Pmk =
∑2N
i=0W

c
i (Σi,k|k−1 − x̂mk)(Σi,k|k−1 − x̂mk)T + Q̄k

Modified covariance matrices:
Px̃kỹk =

∑2N
i=0W

c
i (Σi,k|k−1 − x̂mk)(Λi,k|k−1 − ŷmk)T

Pỹkỹk =
∑2N
i=0W

c
i (Λi,k|k−1 − ŷmk)(Λi,k|k−1 − ŷmk)T +

R̄k
State and covariance update:
Kk = Px̃kỹkP

−1
ỹkỹk

x̂k = x̂mk +Kk(yk − ŷmk)
Pk = Pmk −KkPỹkỹkK

T
k

Optimality and convergence of the UKF state estimation
method is discussed in [54], [56] and makes this method
appropriate for such force estimation with road uncertainties
and measurement noises.

The velocity estimator in the next section requires normal-
ization of the longitudinal/lateral forces at each corner. Thus,

estimated forces are normalized as

µxij = Fxij/Fzij µyij = Fyij/Fzij , (13)

at each corner ij using calculated vertical forces in the
vehicle coordinate frame. Lateral force estimates from (10) is
normalized by (13) to be implemented in the lateral velocity
estimator (38).

C. Vertical force calculation
Estimated longitudinal/lateral forces in (2) and (10) should

be normalized to be utilized in the velocity estimator robust
to the road condition, which will be explored in the next
section. Normal (vertical) forces at each axle/tire and longitu-
dinal/lateral dynamics are schematically illustrated in Fig. 2-
b. The effects of the vehicle body’s vertical motion and the
roll/pitch angles are not commonly considered in the existing
vertical force estimation methods [4], [5]. To tackle this issue,
the vertical force estimator module is developed in this paper
using vehicle dynamics and incorporation of the vehicle angles.
The longitudinal and vertical acceleration components of the
longitudinal dynamics are defined as follows in the body-fixed
coordinates:

āθx = ax cos θv + az sin θv
āθz = az cos θv − axsinθv, (14)

where ax, az are the measured longitudinal and vertical ac-
celerations by an IMU attached to the sprung mass, which are
influenced by the kinematics of the vehicle’s CG, vehicle pitch
angle θv , and the road grade angle θr. Normal forces at front
and rear axles, thus can be calculated by:

Fzf = − m

Lf + Lr
(hCGāθx − Lrāθz)

Fzr =
m

Lf + Lr
(hCGāθx + Lf āθz), (15)

where the vehicle’s body pitch is denoted by θv , and hCG is the
height of the vehicle’s center of gravity. Similarly, the lateral
and vertical acceleration components of the lateral dynamics
in the body-fixed coordinates are defined by:

āφy = ay cosφv + az sinφv
āφz = az cosφv − ay sinφv, (16)

in which φv is the vehicle’s body roll angle and ay is the
measured lateral acceleration by IMU which contains the
kinematics of the vehicle’s CG, vehicle roll φv angle, and
the road bank angle φr. Therefore, using (15) and defining
equivalent masses at each axle mi =

Fzi
g , i ∈ {f, r} (front

and rear axles), the normal forces at each corner becomes:

FziL =
mi

Tri

[
āφz(

Tri
2
− hrc sinφv)− āφyhCG

]
FziR =

mi

Tri

[
āφz(

Tri
2

+ hrc sinφv) + āφyhCG

]
, (17)

in which hrc is the height of the roll center, Tri represents the
front and rear track widths (i.e. Trf , Trr ), and left and right
sides are denoted by L,R.
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IV. VELOCITY ESTIMATION

This section presents a velocity estimation methodology
robust to the road friction. As conferred in section I, because
of difficulties in dealing with time-varying tire parameters
and unknown road conditions, conventional kinematic-based
velocity estimators employ acceleration measurement and rely
on GPS data intermittently. Linear, Kalman-based, or nonlinear
observers are used in such kinematic methods [15], [16],
[19] without using a tire model. Solving the longitudinal
V̇x = ax + rVy + ϑx and lateral V̇y = ay − rVx + ϑy
kinematics with removing bias and noises ϑx, ϑy from using
GPS, the kinematic methods estimate the longitudinal and lat-
eral velocities Vx, Vy . However, using an accurate GPS device
and unavailability of reliable signals in many circumstances
imposes extra costs and uncertainties for production vehicles.
On the other hand, the performance of the velocity estimators
based on tire forces is practically limited because of uncertain
road friction and tire parameters, especially for saturation
regions. Consequently, the kinematic approach is combined
with the LuGre model’s internal states at each corner in this
section to tackle these issues.

The average lumped LuGre model [58] is utilized in this
study to estimate velocities because of its accuracy and the
dynamics on its internal states. This model symbolizes the
distributed force over the patch line with some simplifications
of normal force distribution. The internal state z̄q for each
direction q ∈ {x, y} in the pure-slip model is described as:

˙̄zq = vrq − (κqRe|ω|+
σ0q|vrq|
θg(vrq)

)z̄q, (18)

µq = σ0q z̄q + σ1q ˙̄zq + σ2qvrq, (19)

in which σ0q, σ1q, σ2q are the rubber stiffness, damping, and
relative viscous damping in longitudinal/lateral directions, re-
spectively. Re is the rolling radius and the normalized force of
the averaged lumped pure-slip LuGre model for each direction
is denoted by µq . The force distribution along the patch
line is represented by parameter κq in the average lumped
model and can be a function of time, a constant, or may
be approximated by an asymmetric trapezoidal scheme. The
suggested value for κq in [58] is κq = 7

6Lt
, where Lt is

the tire patch length. The function, g(vrq) in the pure slip
model is defined for the longitudinal and lateral directions as
g(vrq) = µc + (µs − µc)e

−| vrqVs |
ᾱ

, in which µc, µs are the
normalized Coulomb friction and static friction, respectively.
The vehicle stability is analysed with the pure and combined-
slip LuGre tire models in [59]. The Stribeck velocity Vs
shows the transition between these two friction states. The tire
parameter ᾱ = 0.5 is assumed for this study. The longitudi-
nal/lateral relative velocities are defined by vrx = Reω − vxt
and vry = −vyt respectively. These relative velocities at the
tire coordinates of the LuGre model represent the slip ratio
λ = Reω−vxt

max{Reω,vxt} and slip angle α = tan−1 vyt
vxt

in the mostly
used tire models such as Burckhardt [27] and Pacejka [31]
models. The level of tire and road adhesion is represented
by introducing the road classification factor θ which may
vary between 0 < θ ≤ 1 according to dry, wet, and icy

conditions. Chen and Wang [60] suggested a recursive least
square (RLS) estimator and an adaptive control law with a
parameter projection approach for identification of this road
classification parameter. Identification of this factor is also
addressed in [38] by a sliding mode observer for estimation
of the maximum transmissible torque and wheel slip. The
unknown road friction term σ0q|vrq|

θg(vrq)
z̄q and changes in the

rolling radius are unknown, considered as uncertainty terms,
and will be described in the following subsections.

A. Longitudinal velocity estimation
The LuGre model’s internal states (18) can be written in the

presence of uncertainty Ωz(t) as follows at each corner (tire)
for the longitudinal direction:

˙̄zx = vrx − κxRe|ω|z̄x + Ωzx. (20)

Uncertainty Ωzx is replaced with the road friction term
σ0x|vrx|
θg(vrx) z̄x and is bounded. Moreover, the derivative of the

relative velocity is also corrupted due to the sensor noise and
bias [61]:

v̇rx = Reω̇ − v̇xt + Ωax, (21)

in which ω̇ is the wheel’s rotational acceleration and v̇xt
represents the longitudinal acceleration in the tire coordinate
system. v̇xt is obtained from first, transformation of the cor-
rected acceleration āx + rVy from CG to corners where āx
from (11) only contains the kinematic part, then, projection
of the corner’s acceleration into the tire coordinates. The term
Ωax shows the deviation of the measured relative acceleration
Reω̇− v̇xt from v̇rx because of the sensor noises. Establishing
these equations allow the development of an observer to
incorporate both tire deflections (20) and relative velocities
(21) concurrently. The general form of the system dynamics
is given as follows:[

˙̄zx

v̇rx

]
=

[
−κxReω 1

0 0

][
z̄x

vrx

]
+

[
0

1

]
(Reω̇ − v̇xt) + Ωx

= Ax(ω)x +Bxux + Ωx, (22)

in which Ωx = [Ωzx Ωax]T and states are x = [z̄x vrx]T .
Substituting ˙̄zx from (20) into the normalized longitudinal
force equation of the pure-slip LuGre model (19), one can
rewrite the output equation as:

µx = [(σ0x − σ1xκxReω) (σ1x + σ2x)]x + σ1xΩzx
= Cx(ω)x + σ1xΩzx. (23)

Thereby, the estimated output can be written as µ̂x = Cx(ω)x̂.
Using the modified longitudinal kinematics (22) the following
observer is proposed for the velocity estimation:

˙̂x = Ax(ω)x̂ +Bxux + Lx(µx − µ̂x), (24)

where Lx = [L1x L2x]T is the observer gain matrix and
µx represents the normalized longitudinal forces discussed in
section III. Taking into account that the systems dynamic is
time-varying with respect to the wheel speed, the suggested
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estimation method must be designed for the corresponding
uncertain LPV system.

The bounded time-varying parameter is the wheel speed
ω : R≥0 → Sp where Sp is the set of vertices of the parameter
interval [ωl, ωu] and the parameter varying state transition
matrix is Ax(ω) ∈ R2×2. The error dynamics ėx = ẋ − ˙̂x
from (22) and (24) yields:

ėx = (Ax(ω)− LxCx)ex − Lxσ1xΩzx + Ωx

= Aex(ω)ex +

[
1− L1xσ1x 0

−L2xσ1x 1

]
︸ ︷︷ ︸

Bex

Ωx, (25)

1) Estimator’s stability analysis: The objective of this
subsection is to show that the error dynamics (25) is affinely
quadratically stable over all possible trajectories of ω. The
state matrix Aex(ω) is said to be affinely dependent on the
parameter ω when known and fixed matrices A0x and A1x

exist such that Aex(ω) = A0x + ωA1x. The error dynamic
matrix for both lateral and longitudinal directions q ∈ {x, y}
is introduced as:

Aeq =

[−L1qσ0q −L1qp1q

−L2qσ0q −L2qp1q

]
+ ω

[
κqRep2q 0

κqReL2qσ1q 0

]
= A0q + ωA1q (26)

where p1q = σ1q + σ2q and p2q = L1qσ1q − 1. The bounded
time-varying parameter and its time derivatives are in the sets
ωp ∈ [ωl, ωu] and ω̇p ∈ [ω̇l, ω̇u], respectively.

A linear system like (25) is affinely quadratically stable
over all possible trajectories of the parameter vector ω(t) if
Aex(ωm) is stable (ωm is the average value of ω over the
parameter span) and there exists an affine positive definite
Lyapunov function

V (ex, ω) = eTxP (ω)ex, (27)

with P (ω) = P0 + ωP1 > 0 such that dV (ω, ω̇)/dt < 0
for all initial conditions x0 and the additional multi-convexity
constraint AT1xP1 +P1A1x ≥ 0 holds [62]. The condition V̇ <
0 resembles

ATex(ωp)P (ωp) + P (ωp)Aex(ωp) + P (ω̇p)− P0 < 0, (28)

for all (ω, ω̇) ∈ Sp × Sr where Sr is the set of corners of
the rate in [ω̇l, ω̇u]. The affine quadratic stability condition
implements the variation rate ω̇(t), which makes it less conser-
vative than the quadratic stability criteria. The error dynamics
is affinely quadratically stable for the two sets of observer
gains L1x ∈ [0.5, 0.9], L2x ∈ [60, 210], obtained by several
simulations and experimental tests on different road conditions
and the vehicle parameters listed in Table I. Moreover, a
rigorous method for determining the LPV observer gains is
provided in the next subsection.

Stability of the system (25) will be guaranteed with the
substitution of the operating regions |ω| ≤ 180[rad/s] and
|ω̇| ≤ 800[rad/s2], which is practical for this case accord-
ing to the sampling frequency 200[Hz] i.e. Ts = 0.005[s]

TABLE I: Vehicle Spec. for Simulation & Experiments

Parameter Unit Value Description

m [kg] 2270 Vehicle mass
Iz [kg.m2] 4650 Vehicle moment of inertia
Iw [kg.m2] 1.68 Wheel moment of inertia
Lwb [m] 2.85 Vehicle wheel base
Lf , Lr [m] 1.42, 1.43 Front & rear axles to CG
Re [m] 0.33 Effective radius
hCG [m] 0.65 CG height
hrc [m] 0.54 Roll axis height

Trf , Trr [m] 1.62, 1.56 Front and rear track width

and measurement errors in the wheel speed. Given the ve-
hicle parameters listed in Table I, the tire rubber stiffness
σ0x = 632.1[1/m], rubber damping σ1x = 0.76[s/m], relative
viscous damping σ2x = 0.0016[s/m], load distribution factor
κx = 8.32, observer gains L1x = 0.68, L2x = 183.1 and the
affinely dependent form of (26), considering a polytope with
bounds on ω̇ to solve (28) yields the following numeric values
for the symmetric matrix P (ω):

P (ω) =

[
1.2176− 0.0011ω 115.35− 0.2227ω

115.35− 0.2227ω 80379.0− 67.969ω

]
. (29)

2) Estimator’s performance analysis: The objective is to
find the observer gains such that the ratio of the estimation
error to the disturbance energy is minimized considering the
fact that the process disturbance Ωzx and the measurement dis-
turbance Ωax are bounded. Given a compact set ω ∈ [ωl, ωu]
and a bounded rate of variation of |ω̇| < ζω , for some ζω > 0
the system (25) is robustly exponentially stable if there exist a
continuously differentiable positive definite matrix P (ω) and
a matrix χ(ω) such that the following LMI holds:ϕ(ω) P (ω) + χ(ω)Be1 CTe

∗ −γI 0

∗ ∗ −γI

 ≺ 0, (30)

where the symmetric terms are denoted by ∗ and ϕ is:

ϕ(ω) = [ATx (ω)− CTx (ω)LTx ]P (ω)

+ P (ω)[Ax(ω)− LxCx(ω)] +
∂P

∂ω
ω̇. (31)

In order to isolate the observer gain effect, Bex can be written
as Bex = I2×2 + LxBe1, in which Be1 = [σ1x 0]. The
induced L2 norm from the input disturbance to the output
error is less than the performance level γ > 0. The LMI
(30) is obtained by taking derivative of the Lyapunov function
V (ex, ω) = eTxP (ω)ex, imposing the condition ϕ(ω) < 0, and
using the Bounded Real Lemma. Employing χ(ω) = P (ω)Lx,
one can rewrite:

ϕ(ω) = ATxP + PAx − χCx − CTx χT +
∂P

∂ω
ω̇ (32)

The LMI (30) guarantees that V̇ + eTx ex−γ2ΩT
xΩx < 0. The

set of gains will be calculated by Lx = P (ω)−1χ(ω). The
infinite dimensional parameter-varying LMI (30) with ϕ(ω)
from (32) can explicitly be expressed in a finite dimensional
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problem with the parametric matrices and using appropriate
basis functions. The positive definite matrix P and matrix ϕ
are defined as P (ω) :=

∑f
i=0 Piω

i and ϕ(ω) :=
∑f
i=0 ϕiω

i

respectively and the set ω = [0 140] is gridded to Ngr = 140
points. The time-varying observer gains L1, L2 are depicted in
Fig. 3 for the longitudinal observer and the vehicle parameters
provided in Table I. The YALMIP package [63] is integrated
with MOSEK to solve the LMIs.

Used for VxVy

LPV, x direction observer gains Lp1 = L1/(1+L1S1); Lp2 = L2/(1+L1S1)
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100

150

200

L 2x

   [rad/s]

Fig. 3: Time-varying observer gains for the longitudinal esti-
mator

The estimated relative longitudinal velocities v̂rxij at each
corner from (24) are used for the longitudinal velocity estima-
tion at the tire coordinates as v̂xtij = Reωij−v̂rxij . Afterward,
each corner’s longitudinal velocity in the vehicle coordinates
v̂xij yields:

v̂xij = v̂xtij cos δ − v̂ytij sin δ (33)

in which δ is the steering angle at corners and the estimated
lateral velocity at each corner’s tire coordinates is denoted
by v̂ytij . The corner-based lateral velocity estimation will be
described in the next subsection.

To tackle the high slip conditions and provide a smooth
estimation with removing outliers, weighted estimated longi-
tudinal velocities at each corner are used for the estimation of
the vehicle speed, V̂x. Specifically, each axles’ longitudinal
velocities are defined by v̂xf and v̂xr that are the mean
values between v̂xfL , v̂xfR for the front axle and v̂xrL , v̂xrR
for the rear axle respectively. Then, the longitudinal velocity
of the vehicle V̂x at CG is achievable by adaptive weighted
velocity mapping method, which is allocating adaptive weights
Wf
x ,Wr

x to each axle as V̂x = Wf v̂xf +Wrv̂xr . Adaptive
weights are defined with respect to the maximum slip ratio of
each axle as functions:

Wi
x =Wsx + W̄x tan−1[ρwx(λam − λwth)], (34)

and W−ix = 1 − Wi
x where i ∈ {f, r} and −i represents

another axle i.e. −i ∈ {r, f}. The weight range coefficient is
W̄x = (W̄ubx − W̄lbx)/π where upper and lower bounds on
the allocated weights are expressed by W̄ubx , W̄lbx . The slip
ratio threshold at which the weight of each axle is the same

is denoted by λwth . The maximum slip ratio of axles is used
to allocate a smaller weight to an axle with higher slip ratio;
it is achievable by

λam = max{Σxi ,Σx−i}, (35)

where Σxi = |λiL| + |λiR| is defined for an axle and Σx−i =
|λ−iL|+ |λ−iR| is written for another axle. The shape of the
axle’s weight function can change with the parameters ρwx
and the static weight Wsx . Afterward, the calculated velocity
at CG is remapped again to each corner to have slip ratios for
the stability and traction control systems.

B. Lateral velocity estimation
The LuGre output equation for the lateral direction can be

described as follows with states xl = [z̄y vry]T :

µy = [(σ0y − σ1yκyReω) (σ1y + σ2y)]xl + σ1yΩzy
= Cy(ω)xl + σ1yΩzy. (36)

Employing the lateral LuGre internal state from (18) and
the relative lateral acceleration v̇ry = −v̇yt + Ωay with the
projected lateral acceleration v̇yt in the tire coordinate system,
the newly proposed lateral dynamics can be developed. v̇yt is
obtained from first, transformation of the corrected acceleration
āy−rVx from CG to corners where āy from (11) only includes
the kinematic part, then, projection of the corner’s acceleration
into the tire coordinates.

Therefore, (22) can be rewritten for the lateral direction as:

ẋl = Ay(ω)xl +Byuy + Ωy. (37)

using state and input matrices similar to the longitudinal case
Ay = [−κyReω 1; 0 0], By = Bx and uy = −v̇yt. Uncer-
tainties in the lateral states are denoted by Ωy = [Ωzy Ωay]T .
The state estimator can be expressed as follows for the lateral
direction:

˙̂xl = Ay(ω)x̂l +Byuy + Ly(µy − µ̂y), (38)

in which Ly = [L1y L2y]T . The error dynamics is then
developed as:

ėy = Aey (ω)ey +

[
1− L1yσ1y 0

−L2yσ1y 1

]
︸ ︷︷ ︸

Bey

Ωy, (39)

where Aey = (Ay − LyCy). The error dynamics (39) for
the proposed lateral velocity estimator represents a linear
parameter-varying system and its stability can be investigated
using the affine quadratic stability criteria discussed in the
previous subsection.

Remark 2: The error dynamics (39) is affinely quadratically
stable over all possible trajectories of ω. Analogous to the
longitudinal case, the state matrix Aey (ω) can be written in the
affine form Aey (ω) = A0y+ωAly with the fixed matrices A0y

and A1y from (26). Aey (ωm) is stable and there exists an affine
positive definite Lyapunov function V (ey, ω) = eTy P (ω)ey
with P (ω) = P0 + ωP1 > 0 such that dV (ω, ω̇)/dt < 0
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for all initial conditions xl0 and the additional multi-convexity
constraint AT1yP1 + P1A1y ≥ 0 holds. The condition V̇ < 0
resembles

ATey (ωp)P (ωp) + P (ωp)Aey (ωp) + P (ω̇p)− P0 < 0 (40)

The error dynamics is affinely quadratically stable for the two
sets of observer gains L1y ∈ [0.8, 1.3], L2y ∈ [6, 19], obtained
by several road experiments. Given the tire specifications
σ0y = 181.5[1/m], σ1y = 0.81[s/m], σ2y = 0.001[s/m],
κy = 12.84, observer gains L1y = 1.11, L2y = 16.7, the
vehicle parameters in Table I, and the affinely dependent form
of (26), solving (40) with considering a polytope and bounded
wheel acceleration |ω̇| ≤ 800[rad/s2] yields:

P (ω) =

[
4.7718− 0.0070ω 154.87 + 0.0038ω

154.87 + 0.0038ω 75627.0− 0.0013ω

]
. (41)

Similar to the longitudinal case, parameter-varying observer
gains are obtained using LMI (30) for the lateral direction and
the outcomes are illustrated in Fig. 4.

Used for VxVy

LPV, y direction observer gains Lp1 = L1/(1+L1S1); Lp2 = L2/(1+L1S1)
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Fig. 4: Lateral observer’s time-varying gains

Analogous to the longitudinal case, each corner’s lateral ve-
locity v̂yij in the body-fixed vehicle coordinates is achievable
from:

v̂yij = v̂xtij sin δ + v̂ytij cos δ, (42)

where v̂ytij and v̂xtij are the estimated lateral and longitudinal
velocities at the tire coordinates respectively. The lateral ve-
locity in the tire coordinates is v̂ytij = −v̂ryij and the relative
velocity v̂ryij is obtained from (38) at each corner.

The lateral velocities at each corner v̂yij are then utilized
for definition of the front and rear axle’s lateral velocities
v̂yf , v̂yr respectively. Each axle’s lateral velocities are obtained
by v̂yf = −rLf + (v̂yfL + v̂yfR)/2 for the front axle and
v̂yr = rLr + (v̂yrL + v̂yrR)/2 for the rear axle. Similar to
the longitudinal case, using weighted estimated axles’ lateral
velocities, the vehicle lateral velocity V̂y at the CG is expressed
as follows:

V̂y =Wf
y v̂yf +Wr

y v̂yr , (43)

where Wf
y and Wr

y are adaptive weights for each axle and are
defined similar to the longitudinal case (34), but with respect
to the maximum slip angle at each axle as in

Wi
y =Wsy + W̄y tan−1[ρwy (αam − αwth)]. (44)

with the slip angles threshold αwth . The weight range coeffi-
cient for the lateral direction is denoted by W̄y = (W̄uby −
W̄lby )/π with the upper and lower bounds W̄uby , W̄lby . Param-
eters ρwy and Wsy are introduced to change the shape of the
lateral axle’s weight function. To address the high slip angle
scenarios and provide smooth estimation, the maximum slip
angle of axles αam = max{Σyi ,Σ

y
−i} are utilized to allocate a

smaller weight to an axle with higher slip angle. Each axle’s
slip angle is defined by

Σyi = |αiL|+ |αiR|, Σy−i = |α−iL|+ |α−iR|. (45)

Experimental results of the developed force and velocity
estimators with weighted axles’ velocity scheme are provided
in the next section.

V. RESULTS AND DISCUSSION

This section includes experimental tests for validation of
the longitudinal and lateral state estimators on an instrumented
SUV with the specifications given in Table I. The test platform
is a four-wheel-independent-drive electric vehicle.

The RT2500 6-axis GPS and IMU system and the Tire
Force/Moment Measurement module are used for validation
of the longitudinal, lateral, and vertical force estimators. The
Controller & Estimator module requires longitudinal and
lateral accelerations, yaw rate, wheel speed as well as the
wheel torques, which are measured using an IMU, regular
ABS wheel speed sensors, and electric actuators respectively
as shown in Fig. 5. Measured signals are communicated using
a CAN-bus. Real-time acquisition and processing of sensory
information and the developed algorithm is done using the
dSPACE R© MicroAutobox. The dSPACE compiles measure-
ments for MATLAB/SIMULINK, and the controller provides
control signals for the dSPACE as well. Visualization of the
experiment results is performed through the ControlDesk. The
sampling frequency for the experiment is set to be 200[Hz].

First, road experiments using a four independent wheel
drive SUV are used in this section to evaluate the force
estimation methods, then the performance of the proposed
velocity estimator is studied. To validate the estimated forces,
this vehicle is equipped with additional sensors for direct
measurement of tire forces and moments at each corner.

A. Force estimation results
In order to assess the proposed approach in combined-slip

conditions, in which the tire capacities are reduced due to
high slip ratio as well the high slip angles in each longitu-
dinal/lateral direction, a harsh lane change (LC) maneuver is
performed. Experimental results of the force estimation at the
front-right wheel in a harsh LC maneuver on the wet road are
demonstrated in Fig. 6a and compared with the measurement.
The performed combined-slip maneuver is harsh, but the
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Fig. 5: The I/O and hardware layout

suggested observer handles the oscillations in the transient
regions. A brake-in-turn (BiT) maneuver accompanied by hard
acceleration on the packed snow (with µ ≈ 0.3) is also done
and the force estimation approach is validated by the filtered
measurements in Fig. 6b at the front-right wheel.

Used for VxVy (Complete versions of both Used for Vx_KF and FxFy, AIM)
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Fig. 6: Longitudinal forces for (a) harsh steering and LC on
wet road µ ≈ 0.5 (b) BiT and acceleration on snow

The vehicle speed in harsh LC with brake on wet road (i.e.
Fig. 6a) changed from 10.9[m/s] to 9.6[m/s] at t = 11.3[s]
then decreased to Vx = 7.3[m/s] at the end. In the BiT
maneuver on packed snow (i.e. Fig. 6b), vehicle started from
Vx = 8.4[m/s] and stopped at t = 10.5[s], then accelerated
to 3.1[m/s] at the end of the experiment. The fluctuations
observed in the filtered force profile measurement are attributed
to the low-stick characteristics of the packed snow. Uncer-
tainties in the effective radius and wheel speed derivative are
tackled by tuning the observer gains η1, η3 and the observer
provides smooth outcomes. The selected gains for these road
experiments are η1 = 1.8, η2 = 11.4 and η3 = 50.6.

Performance of the lateral and vertical force estimators on
dry and slippery surfaces is examined in several road exper-
iments with the process and measurement noise covariance
matrices Q̄ = 0.132I3×3, R̄ = 0.0122I3×3 for the lateral
case. Results of the proposed force estimator in a lane change
on the dry road is presented in Fig. 7 and compared with
the measurement. The vehicle speed is Vx = 12[m/s] at the
beginning of the maneuver.4WD, LC on dry_20140807_test012, FL wheel
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Fig. 7: Lateral force estimation, LC on a dry surface

The measured accelerations and yaw rate are also provided
to show the characteristics of the test. Accuracy of the devel-
oped estimators are evaluated in different maneuvers with the
normalized root mean square of NRMS the error defined by:

εn =

√∑Ns
i=1(ŝi − si)2/Ns

sm
, (46)

where the estimated and measured signals are denoted by s and
ŝ respectively, Ns is the number of collected signal samples
during a driving scenario (DLC, BiT, LC etc.), and sm =

max
i=1...Ns

|si| shows the maximum value of the measured signal.

A harsh steering on an icy road is done and the results of
the front left corner are illustrated for the All-Wheel-Drive
(AWD) case in Fig. 8. The maneuver ended up on a surface
with packed snow which is highly slippery itself with µ ≈ 0.3.
The vehicle longitudinal velocity is 6.1 ≤ Vx ≤ 7.7[m/s] for
this test.

In summary, Table II provides the maximum and NRMS of
the longitudinal, lateral, and vertical forces in different driving
scenarios and on various road frictions.

Table II substantiates that the NRMS of the estimated
longitudinal forces is less than 7.4% for the performed ma-
neuvers on dry, wet, and snowy roads. This normalized error



11
4WD, harsh steering on ice (ߤ ൎ 0.2) then packed snow_20140820_test041, FL Wheel

0 5 10
-0.4

-0.2

0

0.2

0.4

0.6

time [s]

r [
ra

d/
s]

0 5 10
-4

-2

0

2

4

time [s]

ac
ce

le
ra

tio
n 

[m
/s

2 ]

 

 

ax, IMU

ay, IMU

Used for VxVy and FxFy (AIM)

0 2 4 6 8 10 12
-4
-2
0
2
4
6
8

La
t. 

Fo
rc

e 
[k

N
]

 

 

Fy, Measurement
Fy, Est.

0 2 4 6 8 10 12
-8

-6

-4

-2

time [s]

V
er

tic
al

 F
or

ce
 [k

N
]

 

 
Fz, Measurement
Fz, Est.

Fig. 8: Force estimates, steering on ice then packed snow

TABLE II: NRMS of the Errors for the Longitudinal, Lateral,
and Vertical Force Estimators at each Corner (wheels)

Estimated
forces

DLC on dry LC on wet BiT/Accel., snow
εn[%] sm[N ] εn[%] sm[N ] εn[%] sm[N ]

FxfL 4.31 4751 5.89 4569 5.43 2056
FxfR 3.90 4042 6.12 4571 4.57 2051
FxrL 4.72 3996 4.33 4574 6.59 747
FxrR 4.02 3991 5.95 4577 7.38 740
FyfL 2.94 1.01e+ 4 6.03 6380 5.56 3185
FyfR 3.19 9989 5.11 6548 6.82 1196
FyrL 3.86 9208 5.24 4089 6.17 2749
FyrR 2.73 8537 4.65 4180 7.08 1420
FzfL 2.06 1.29e+ 4 3.20 1.06e+ 4 4.01 8673
FzfR 3.44 1.23e+ 4 2.93 1.05e+ 4 2.80 6482
FzrL 1.91 1.07e+ 4 2.68 8110 3.19 7106
FzrR 2.24 1.06e+ 4 3.47 8231 2.36 6297

is εn ≤ 7.1% for the lateral forces and εn ≤ 4% for the vertical
forces respectively. These normalized RMS of the errors
confirm effectiveness of the algorithm for the corner-based
force estimation on dry and slippery roads. Observed errors
between the measured and estimated forces in Table II for
the force estimators may have several sources such as camber
angle, which has not been modeled in the estimation algorithm.
Moreover, inaccurate inertial parameters and uncertainties in
the CG location contribute to such errors.

B. Velocity estimation results
So far, outcomes of the force estimators are investigated.

In the following, several driving scenarios such as launch on
ice, lane change (LC) with harsh steering, and acceleration-in-
turn (AiT) are examined on various roads and experimental

results of the proposed velocity estimators (24), (38) are
presented. For the road experiments, the rubber stiffness for
the longitudinal and lateral directions are σ0x = 632.1[1/m]
and σ0y = 181.5[1/m], the rubber damping is assumed as
σ1x = 0.76, σ1y = 0.81[s/m], relative viscous damping is
σ2x = 0.0016, σ2y = 0.001[s/m], and load distribution factor
is κx = 8.32, κy = 12.84 for the velocity estimators.

1) Launch on split-µ: Longitudinal velocity estimator is
examined in a harsh launch maneuver on a surface, which have
two different friction conditions on the left and right sides and
the results are shown in Fig. 9. The right wheels are on an icy
road with µ ≈ 0.2, the left wheels are on a dry road, and the
powertrain configuration is AWD.
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Fig. 9: Longitudinal velocity estimation for AWD, split µ on
ice and dry

Figure 9 demonstrates good performance of the longitudinal
velocity estimator validated by the measurement from the accu-
rate GPS at the vehicle’s CG. It also shows wheel speeds on dry
and icy roads. Proper time-varying observer gains and track’s
weighted velocities lead to the observed smooth and accurate
velocity estimation at the vehicle CG and consequently at
corners for such high-slip conditions.

2) Steering on dry and snowy roads: Fig. 10 demonstrates
velocity estimation results in a lane change (LC) on snow and
ice for the AWD configuration.

Fluctuations of the measured lateral acceleration in Fig. 10b
and sudden changes of the vehicle yaw rate in Fig. 10c
substantiate arduous characteristics of the driving scenario.
Longitudinal and lateral velocity estimators’ results show
correspondence with the measured GPS data for such severe
maneuver on a slippery surface and can be used for traction
and stability control systems.

The provided experimental tests have been conducted so far
on a vehicle with AWD configuration. The proposed estimator
can be utilized on vehicles with different driving axle con-
figurations i.e. Rear and Forward-Wheel-Drive (RWD, FWD).
In order to evaluate the outcomes of the velocity estimator, a
maneuver on a dry road with an oval shape has been performed
and results are validated with the measured GPS velocities in
Fig. 11

The measured accelerations and yaw rate in Fig. 11 resemble
a harsh combined-slip maneuver with several oval steering and
acceleration/deceleration, however the estimation outcome is
accurate.
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3) Acceleration-in-turn on dry and wet roads: To study the
velocity estimator’s performance in combined-slip conditions,
an acceleration-in-turn (AiT) scenario with AWD configuration
is done on the dry road and results of the lateral velocity
estimator are provided in Fig. 12

As can be seen from Fig. 12, high oscillations exist both in
the lateral and longitudinal accelerations because of this harsh
maneuver on a dry road and consequent high slip ratio regions,
which reduce the lateral tire capacities significantly. The wheel
speed and consequently the slip ratio increases significantly
between t = 5 and t = 7[s], but the proposed lateral state
estimation methodology handles these situations and exhibit
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Fig. 12: Lateral velocity estimator for AWD, AiT on the dry
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smooth and accurate outcomes.
The next test is an acceleration during a large left steering

from a wet and slippery surface with µ ≈ 0.4 to a dry surface
with RWD configuration. This test is done to explore the
performance of the state estimators and incorporation of each
track with the weights (34), (44) on a combined dry/wet sur-
face. Validated estimation results with the GPS data, measured
accelerations, and yaw rate are shown in Fig. 13.RWD, Michigan left (large left steering with accel.) from dry to wet_20150824_test022
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Fig. 13: Acceleration with large left turn (TL) on wet/dry, RWD

The maneuver is demanding because of the reduction effect
of the longitudinal slip on the tire lateral capacity and the
transition between the dry and slippery surfaces, but the
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estimators provide smooth results because of the weighted
tracks’ velocities and time-varying observer gains.

Performance of the longitudinal and lateral velocity estima-
tors are investigated in Table III for vehicle with AWD and
RWD traction configurations in different driving conditions.

TABLE III: NRMS of the Errors for the Velocity Estimators at
Vehicle’s CG for AWD and RWD Configurations

Maneuvers Estimated Vx Estimated Vy
εn[%] sm[m/s] εn[%] sm[m/s]

AWD
Launch on ice/dry, split µ 2.64 4.14 0.2 0.08
AiT on dry 4.61 9.1 6.3 0.83
Steering & Accel./Deccel., snow 3.38 9.98 4.11 4.04
LC on snow 1.6 11.86 3.29 2.02
RWD
Oval steering on dry 3.15 8.38 7.6 1.24
Accel. & left turn dry/wet 2.07 9.06 5.91 0.95
Full turn on dry 0.65 9.01 7.15 0.52
Full turn on dry/wet 0.79 7.51 6.21 0.74

The corner-based state estimators with the adaptive weighted
velocity mapping modules (34), (43) based on the slip ra-
tio/angle can handle dry and slippery roads with error NRMS
εn < 7.4% for the force and error NRMS εn < 6.3% for
the velocity estimation. The state estimators exhibit reliable
performance for the maneuver with the pure-slip characteristics
(i.e. launch, normal driving, acceleration/deceleration) as well
as the combined-slip ones (i.e. acceleration-in-turn and brake-
in-turn), in which the tire capacities reduces significantly both
in the lateral and longitudinal directions.

VI. CONCLUSION

This paper has proposed a method to estimate the vehicle
states at each corner robust to road conditions. An observer
is provided on the wheel dynamics for the longitudinal force
estimation at each corner and its stability is discussed. Lat-
eral tire forces are estimated utilizing UKF on the handling
dynamics and without any assumption on the lateral force
distribution. Vertical tire forces were calculated at each corner
employing the roll and pitch effects of the vehicle sprung
mass. To tackle the limitations of the kinematic and model-
based velocity estimation approaches, the average Lumped
LuGre model and the kinematics are coupled at each corner
to estimate the longitudinal and lateral velocities.

Several road experiments with normal and harsh driving
conditions have been conducted on dry and slippery roads to
validate the approach. Based on the road experiment results
on an instrumented vehicle, the following conclusions can be
made:

The presented corner-based longitudinal/lateral force and
velocity estimation robust to the road conditions is an ad-
vantage over estimators on double track models because it
can exhibit saturation and capacity conditions of all tires. The
proposed force estimator does not implement any tire model
and is independent from changes in the road friction or tire
parameters due to wear, inflation pressure, temperature, etc. In
addition, the suggested UKF-based lateral force estimators can

address the cases in which tires are on surfaces with various
road friction.

Utilizing the dynamics on the LuGre’s internal deflection
states, the proposed corner-based velocity estimators form a
linear parameter-varying model with the road friction as uncer-
tainties. The stability of the velocity estimators’ error dynamics
is investigated with the affine quadratic stability approach. An
observer was designed as well with variable gains with respect
to the wheel speed. One significant advantage of the suggested
velocity estimator is that a unidirectional lumped LuGre model
could be used instead of the combined one since the term
containing the combined friction model i.e. σ0q|Vrq|

θg(Vrq)
z̄q was

considered as uncertainty.
The results of the road experiments on different road con-

ditions substantiate that the algorithm can handle different
vehicle traction configurations i.e. AWD and RWD. This pre-
eminence of the algorithm makes it appropriate for a wide
range of vehicles’ traction configurations.

The algorithm can be integrated with various active safety
systems (e.g. stability control, traction control, and roll over
prevention), or road angle estimators, to ensure reliable per-
formance of such systems in presence of model uncertainties
and road friction changes. In addition, while preserving the
overall structure of the estimation, one can replace or modify
estimators independently because of the modularity of the
developed structure.

Observed inconsistencies in some tests of the proposed
estimation approach are due to the lack of a general chassis
model, a limitation to be addressed in future work, using the
vehicle generalized force model. Moreover, wheel torques need
to be estimated using accelerations and engine/brake torques
to be able to utilize the proposed estimation structure for
conventional vehicles.

Note for the esteemed reviewer(s): The conclusions on
performance of the observer in presence of faulty measure-
ments had been removed from here on the previously revised
manuscript.
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