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Abstract

In this thesis, we introduce, model, and solve bi-objective hub location problems. The

two well-known hub location problems from the literature, the p-hub median and p-hub

center problems, are unified under a bi-objective setting considering the single, multiple,

and r-allocation strategies. We developed a 3-index and a 4-index mixed-integer program-

ming formulation for each of the allocation strategies. All the formulations are tested on

the CAB dataset from the literature using a commercial optimization software. We observe

the effect of different priorities given to the objectives on the locations of hub nodes, allo-

cations, and the CPU time requirements with different allocation strategies under different

values of problem parameters.

Keywords: p-hub median, p-hub center, hub location, mixed-integer programming for-

mulations.
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Chapter 1

Introduction

Hubs are facilities, which can be used as transshipment consolidation, or sorting points to

connect origin-destination (O-D) pairs in networks. Their main feature is to connect high

number of O-D pairs with less number of links. Instead of serving each O-D pair with a

direct link, flows with the same origin but different destinations are merged at hubs, and

then these flows are combined with flows with the same destinations but different origins.

Thus hub networks reduce network setup costs by eliminating direct links between O-D

pairs. Moreover, the transportation costs decrease by means of economies of scale on the

inter-hub links.

Hubs are commonly used in telecommunication, computer, logistics, and transportation

networks. Hubs are employed in passenger and freight airline networks, truckload and less-

than-truckload networks, postal and parcel delivery networks, and public transportation

networks. There is usually a large traffic flow between O-D pairs in such networks, and

economies of scale is achieved by the use of hub facilities.

Hub location problems are location problems that include decisions on locating hub

facilities and/or designing hub networks, and mostly aim to optimize a cost or a service

based objective function. There are two main decisions in hub location problems: where to
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locate hubs and how to allocate non-hub nodes to those hubs. Hub location problems are

difficult problems in nature because they require determining the locations of hub facilities

as well as the routes of flows through the network. Hub location problems are mostly

classified based on the allocation strategies of non-hub nodes to hub nodes. There are

two basic allocation strategies: single allocation and multiple allocation (Figure 1.1). In

single allocation, each demand node must be allocated to a single hub, whereas, in multiple

allocation, demand nodes can be allocated to any number of hubs.

(a) Single allocation hub network. (b) Multiple allocation hub network.

Figure 1.1: Single and multiple allocation hub networks.

Figure 1.1 illustrates two different examples of hub networks. In this figure, squares

denote hub facilities, bold lines inter-hub links, and thin lines allocation links. Figure 1.1a

shows a single allocation hub network. Note that all nodes are assigned to at most one

hub, while Figure 1.1b illustrates a multiple allocation hub network when nodes can be

allocated to more than one hub facility. More recently, a new allocation strategy referred as

r-allocation is introduced (Yaman, 2011). In r-allocation, demand nodes can be allocated

to at most r hubs.

Hub location problems have a lot of similarities with the classical location problems,

yet hub location problems have three main key features, which classical location problems

do not include. First, in hub location problems, the demand is specified between pairs of

O-D nodes, but in classical location problems, demand is specified for each node. Second,
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hub facilities are consolidation or collection points, which sort and separate the flow, yet

facilities in classical location problem do not have this function. Third, economies of scale

exist on inter-hub links, which reduce the transportation cost between hubs, while there is

usually no transportation of flow between facilities in the classical location problems.

In this study, we model and solve bi-objective hub location problems. We consider

two common hub location problems from the literature, the p-hub median and p-hub cen-

ter problems, and unify them under a single bi-objective problem. We model all possible

allocation strategies for this new problem: single, multiple, and r-allocation. The p-hub

median and p-hub center problems have not been combined under a single bi-criteria prob-

lem in the literature before. Our aim is to analyze the resulting hub networks when these

two different objectives are considered at the same time.

The outline of this thesis is as follows. In Chapter 2, we define the p-hub median and

p-hub center problems and provide a brief review of the relevant literature. Chapter 3

presents different mathematical models that we developed for the single, multiple, and r-

allocation p-hub location problems. Detailed computational experiments with these models

are provided in Chapter 4. We finalize the study with a conclusion presented in Chapter

5.
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Chapter 2

Literature Review

In this chapter, we analyze the related studies on hub location problems. Since we are

considering a bi-objective p-hub location problem with median and center objectives, we

particularly focus on the literature on the p-hub median and p-hub center problems. More-

over, we also review the multi-objective studies on hub location problems.

The literature on hub location problems started with the pioneering works of O’Kelly

(1986a,b, 1987). O’Kelly (1987) presented a quadratic integer programming formulation

of the problem, and a heuristic solution methodology. The original problem introduced

by O’Kelly (1987) is later referred as the single allocation p-hub median problem. In this

problem, the aim is to locate p hub facilities so as to minimize total transportation costs.

O’Kelly (1987) defined a constant economies of scale factor (α) to reflect the discounted

transportation costs on the inter-hub links.

Campbell (1994a) presented linear integer programming formulations for the single

and multiple allocation p-hub median problems. Moreover, hub center and hub covering

problems have been introduced for the first time in this study. The p-hub center problem

aims to locate p hub facilities while minimizing the maximum transportation or service cost

between O-D pairs. Hub covering problems, on the other hand, locate hub facilities where
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demand points are within the service radius. Campbell (1994a) classified hub covering

problems in three categories. The first one is where the maximum cost from the origin

to its destination does not exceed an upper bound. The second one is when the cost for

each link between an O-D pair do not exceed an upper value. The last one where each

origin-hub transportation cost and hub-destination cost do not exceed a specified value.

Several reviews on hub location problems are presented in the literature. Campbell

(1994b), O’Kelly and Miller (1994) presented the first surveys related to hub location

problems. Klincewicz (1998) reviewed hub location applications on telecommunication

networks. Bryan and O’Kelly (1999) study air transportation networks related to hub

location problems. Alumur and Kara (2008), Farahani et al. (2013) classified the papers

published in the area of hub location. One can refer to additional reviews by Campbell

et al. (2002), Campbell and O’Kelly (2012), and Contreras (2015).

A few data sets are introduced in the literature for testing hub location problems. The

first one is the CAB dataset introduced by O’Kelly (1987). This dataset is evaluated by the

Civil Aeronautics Board (CAB) based on airline passenger interactions between 25 U.S.

cities in 1970. The second data set is based on Australia Post (AP) data introduced by

Ernst and Krishnamoorthy (1996). This dataset includes 200 postal districts for the postal

delivery network of Sydney. The third one is based on the Turkish postal delivery system

data proposed by Kara and Tansel (2000). This dataset consists of 81 nodes representing

the cities in Turkey. All of these datasets are readily available in OR Library (Beasley,

1990).

In the next section, we review studies on the p-hub median problem. The p-hub center

literature is reviewed in Section 2.2. In Section 2.3, we review the studies on multi-objective

hub location problems. We also present bi-objective solution strategies at the end of this

section.
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2.1 The p-hub median problem

As defined in the previous section, p-hub median problems aim to locate p hubs to minimize

the total transportation cost. In this section, we review the studies on p-hub median

problems.

The p-hub median problem is NP-hard. For the single allocation version, it is proved

that even though the hub locations are fixed, the allocation part of the problem still remains

NP-hard (Kara, 1999).

Campbell (1994a) proposed the first linear integer programming formulation for the

single allocation p-hub median problem. This formulation uses decision variables with four

indices. Skorin-Kapov et al. (1996) proposed a new mixed-integer formulation again with

four-indexed decision variables. The LP relaxation of this new formulation yields good

lower bounds with less than 1% below the optimal objective function value.

O’Kelly et al. (1996) proposed a formulation for the single allocation problem with

symmetrical flow data to reduce the problem size. The study focused on sensitivity of the

solutions to inter-hub discount factor and exact solution methodologies for hub location

problems. Sohn and Park (1998) presented a reduced size formulation, and mixed-integer

formulation again for the single allocation problem with symmetrical flows.

Ernst and Krishnamoorthy (1996) presented a new formulation using 3-index decision

variables. This formulation has fewer variables and constraints and it yields quite efficient

solution times for optimality when compared with other formulations in the literature using

commercial solvers.

Ebery (2001) proposed a different formulation with 2-index decision variables for the

single allocation problem. This formulation has the least number of decision variables

in the literature, yet the solution times required for the optimality were slower than the

formulation presented by Ernst and Krishnamoorthy (1996).
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Campbell (1992) proposed the first linear integer programming formulation for the

multiple allocation p-hub median problem. The formulation contains 4-index decision

variables. This paper also presented models for the problems with flow thresholds and

fixed costs. Skorin-Kapov et al. (1996) presented a new mixed-integer formulation. This

formulation contains less constraints and variables than the Campbell (1992) formulation

and provides tighter LP relaxation results.

Ernst and Krishnamoorthy (1998) presented a 3-index formulation for the multiple

allocation p-hub median problem. This formulation utilizes the similar idea with the single

allocation formulation presented in Ernst and Krishnamoorthy (1996). This formulation

provided faster solution times for optimality than other multiple allocation formulations.

There are a number of studies proposing heuristic algorithms to solve hub location

problems in the literature. Ilić et al. (2010) proposed one of the best heuristics in terms

of solution quality and CPU time required for the solutions of the single allocation p-hub

median problem. This algorithm uses variable neighbourhood search (VNS) and solves

very large problems with up to 1,000 nodes and 20 hubs in reasonable CPU times. Marić

et al. (2013) presented a memetic algorithm (MA) for solving the uncapacitated single

allocation hub location problem. This heuristic provides very good results especially with

large-scale problems.

Contreras et al. (2011a) presented a Bender’s decomposition algorithm for the multiple

allocation uncapacitated hub location problem. The algorithm is able to solve instances

with up to 500 nodes within resonable CPU times. Contreras et al. (2011b), on the other

hand, proposed a branch-and-price algorithm for the capacitated single allocation hub

location problem.
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2.2 The p-hub center problem

The p-hub center problem locates p hubs with the aim of minimizing the maximum trans-

portation cost on the hub network. In this section, the studies on the p-hub center problem

are provided.

Campbell (1994a) introduced p-hub center problems to the literature and proposed the

first linear integer programming formulations for the single and multiple allocation versions

of the problem. Additionally, the author discussed and classified the p-hub center problem

in three categories. The first one is that the maximum cost for any origin-destination pair is

minimized. This type of hub center problems are important for perishable or time sensitive

items in hub networks. The second one minimizes the maximum cost for any single link.

This type is important when preserving or processing at hub locations are effective. The

last one minimizes the cost only between a hub and origin. This type has similar features

with the second type under special conditions. Even though, there are different types of

p-hub center problems, literature focused only on the first type as we defined.

The literature on the p-hub center problems is scarce compared with the p-hub median

problem. Kara and Tansel (2000) presented several basic model linearizations and a new

formulation for the single allocation p-hub center problem, which provide faster solution

times than other formulations shown by computational experiments in the study. Ernst

et al. (2009) proposed new mixed-integer programming formulations for both single and

multiple allocation problems that are superior to the previous p-hub center formulations.

Meyer et al. (2009) proposed an ant colony optimization algorithm for the single alloca-

tion p-hub center problem. This algorithm provides high quality solutions for large-scale

problems with up to 400 demand nodes.
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2.3 Multi-objective hub location studies

Multi-objective optimization has been used for simultaneous optimization of more than

two different objective functions for mathematical programming problems. This method is

commonly applied when optimality factor is based on more than one conflicted trade-off.

We consider median and center type objectives in this thesis because they are the most

employed objectives in the hub location literature. These objectives are minimizing total

transportation cost, and minimizing the maximum transportation cost in the network.

These are two conflicting objectives, thus bi-objective optimization is used in our models.

There are not many studies considering multiple-objectives in hub location problems.

Costa et al. (2008) presented two bi-criteria single allocation hub location problems. In the

first model the objectives are minimizing the summation of cost and minimizing the total

time to process the flow entering hubs. In the second model, the objectives are minimizing

the summation of cost and minimizing the maximum service time for the hubs.

Köksalan and Soylu (2010) studied two bi-criteria multiple allocation p-hub location

problems. The former problem in this study minimizes the total transportation costs and

total travelling costs between hubs and origin-destination points, where the problem turns

into classical facility location problem. The latter problem focuses on the service delay

at the hubs. The objectives in this problem are minimizing the total transportation cost

and minimizing the maximum delay at each hub. Moreover, an evolutionary algorithm is

proposed.

Mohammadi et al. (2011) proposed a multi-objective imperial algorithm to find near-

optimal solutions for capacitated hub covering problems. The first objective is minimizing

the total transportation cost while the second objectice is minimizing service times in the

hubs. Mohammadi et al. (2013) used a novel stochastic multi-objective model for hub

covering problems under uncertainty. Their objectives are minimization of total current

investment costs and total maximum transportation time between each origin-destination
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pair.

As can be seen, there are not any hub location studies in the literature combining

median and center objectives together in a bi-objective problem.

In this thesis, we study bi-objective hub location problems. The two conflicting ob-

jective functions can be combined with several different strategies. The first strategy we

suggest is the weighting method from the literature (Fishburn, 1967). The strategy is as

follows:

Min β1Obj1 + β2Obj2 (2.1)

where β1, β2 ≥ 0 and
∑2

i=1 βi = 1. This bi-objective function provides pareto optimal

solutions for different weights given to the objectives. We use this weighting method in

our study as both of our objectives are in the same units.

The second strategy which could be used is the ε-constraint method (Haimes et al.,

1971). In this method, one objective is selected to be optimized, while the other objective

is added as a constraint with its upper or/and lower bound. For illustration:

Min Obj1 (2.2)

s.t. Obj2 ≤ εObj2 (2.3)

Where εObj2 is an upper bound for the second objective. The model minimizes the first

objective where the second objective is less than its upper bound.

The third strategy is no-preference method (Proos et al., 2001). This method is used

on the scaling of the objective functions to make them dimensionless. For this reason,

using ratio of the objective functions with their ideal solutions, or finding gaps between

ideal solutions and current objective functions can be used. For instance:
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Min Obj1/Obj
ideal
1 +Obj2/Obj

ideal
2 (2.4)

Objideal1 and Objideal2 stand for individual optimum solutions for the two objectives.

Moreover, this formulation takes the ratio of them the make the bi-objective function

dimensionless. Another non-preference method can be as follows (Proos et al., 2001):

Min ‖Obj1 −Objideal1 ‖+ ‖Obj2 −Objideal2 ‖ (2.5)

This formulation finds the gaps between optimum solutions and the current objectives,

and minimizes the total gap.

In addition to the stated methods, the hybrid methods, combining two or more different

methodologies, can be used. Moreover, there are other strategies that can be used for the

problem. One may refer for further strategies that as presented in Marler and Arora (2004),

and Proos et al. (2001).
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Chapter 3

Mathematical Models

In this chapter, we introduce mathematical models for bi-objective p-hub location prob-

lems. We study single, multiple, and r-allocation versions of the problem and propose two

different mathematical formulations for each version. The parameters used in all of the

formulations are defined as follows:

N Set of nodes.

wij Amount of demand originated at node i ∈ N destined to node

j ∈ N .

cij Unit transportation cost from node i ∈ N to node j ∈ N .

α Transportation cost discount factor (0 ≤ α ≤ 1).

p Number of nodes to be selected as hubs.

β1 Weight of the total transportation cost median objective.

β2 Weight of the maximum transportation cost center objective.

3.1 Single allocation formulations

In single allocation, each demand node is allocated to exactly one hub node, which means

that every demand point can receive and send flow through at most one hub. We introduce
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two different mixed-integer programming models for the single allocation version of the

problem in the subsequent sections.

3.1.1 The 4-index formulation

We firstly introduce a formulation with decision variables consisting of four indices, referred

as the 4-index formulation. To formulate this model we used ideas from the p-hub median

formulation presented by Skorin-Kapov et al. (1996) and the p-hub center formulation

presented by Campbell (1994a). The decision variables that are used for the 4-index

model are given below:

xik =

 1, if node i ∈ N is allocated to hub k ∈ N ,

0, otherwise.

yijkm Fraction of demand originated at node i ∈ N destined to node

j ∈ N which is transferred from hub k ∈ N to hub m ∈ N .

obj1 Total transportation cost.

obj2 Maximum transportation cost.

The 4-index formulation for the single allocation bi-objective p-hub location problem

with the given variables and parameters is as follows:

Min β1obj1 + β2obj2 (3.1)

s.t. obj1 =
∑
i∈N

∑
j∈N

∑
k∈N

∑
m∈N

wijyijkm(cik + αckm + cmj) (3.2)

obj2 ≥
∑
k∈N

∑
m∈N

yijkm(cik + αckm + cmj) ∀i, j ∈ N (3.3)

∑
k∈N

xkk = p (3.4)

∑
k∈N

xik = 1 ∀i ∈ N (3.5)
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xik ≤ xkk ∀i, k ∈ N (3.6)∑
k∈N

∑
m∈N

yijkm = 1 ∀i, j ∈ N (3.7)

∑
k∈N

yijkm ≤ xjm ∀i, j,m ∈ N (3.8)

∑
m∈N

yijkm ≤ xik ∀i, j, k ∈ N (3.9)

xik ∈ {0, 1} ∀i, k ∈ N (3.10)

yijkm ≥ 0 ∀i, j, k,m ∈ N (3.11)

Objective function (3.1) is the weighted sum of two objectives. It minimizes the

weighted sum of median and center objectives. Equation (3.2) computes the total trans-

portation cost, while constraints (3.3) compute the maximum transportation cost in the

network. Constraint (3.4) ensures that the model locates exactly p hub facilities. Con-

straints (3.5) allocates a node to a single hub. Constraints (3.6) make allocations to be

made only for located hubs. Constraints (3.7) states that all demands are to be satisfied.

Constraints (3.8) and (3.9) assure that the flow is routed only through feasible allocations.

Constraints (3.10) define the binary variables and constraints (3.11) are the non-negativity

constraints.

3.1.2 The 3-index formulation

In addition to the formulation introduced in the previous section, we introduce another

formulation using decision variables with three indices rather than four. We formulated

this model based on the median formulation of Ernst and Krishnamoorthy (1998) and

the center formulation of Ernst et al. (2009). The decision variables used in the 3-index

formulation are defined as follows:

xik =

 1, if node i ∈ N is allocated to a hub at node k ∈ N ,

0, otherwise.
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yikm Amount of demand originated at node i ∈ N which is trans-

ferred from hub k ∈ N to hub m ∈ N .

rk Maximum distance between hub k ∈ N and the nodes which

are allocated to it (radius of hub k ∈ N).

obj1 Total transportation cost.

obj2 Maximum transportation cost.

The 3-index formulation of the single allocation problem is as follows:

Min β1obj1 + β2obj2 (3.1)

s.t. obj1 =
∑
i∈N

∑
j∈N

∑
k∈N

wijcikxik +
∑
i∈N

∑
k∈N

∑
m∈N

αckmyikm+

∑
i∈N

∑
j∈N

∑
m∈N

wijcmjxjm (3.12)

obj2 ≥ rk + αckm + rm ∀k,m ∈ N (3.13)∑
k∈N

xkk = p (3.4)

∑
k∈N

xik = 1 ∀i ∈ N (3.5)

xik ≤ xkk ∀i, k ∈ N (3.6)∑
m∈N

yikm −
∑
m∈N

yimk =
∑
j∈N

wijxik −
∑
j∈N

wijxjk ∀i, k ∈ N (3.14)

∑
m∈N

yikm ≤
∑
j∈N

wijxik ∀i, k ∈ N (3.15)

rk ≥ cikxik ∀i, k ∈ N (3.16)

xik ∈ {0, 1} ∀i, k ∈ N (3.10)

yikm ≥ 0 ∀i, k,m ∈ N (3.11)

In this formulation, constraint (3.12) calculates the total transportation cost, and con-

straints (3.13) calculates the maximum transportation cost between pair of nodes in the
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network. Constraints (3.14) are flow balance constraints. Constraints (3.15) force the flow

to be correctly routed on the network. Finally, constraints (3.16) calculates the maximum

cost radius of every hub in the network.

3.2 Multiple allocation formulations

Multiple allocation problems allow nodes to receive and send flow through more than one

hub, which means non-hub nodes can be allocated to more than one hub node. In the

following two subsections, we introduce two different mixed-integer programming formula-

tions for the multiple allocation bi-objective p-hub location problem.

3.2.1 The 4-index formulation

Similar to the single allocation version, we fist introduce a 4-index formulation of the

problem. We adopt the formulation presented by Skorin-Kapov et al. (1996) for the median

part and the formulation presented by Ernst et al. (2009) for the center part of the model.

The decision variables required for this formulation are provided below:

xk =

 1, if node k ∈ N is a hub,

0, otherwise.

yijkm Fraction of demand originated at node i ∈ N destined to node

j ∈ N which is transferred from hub k ∈ N to hub m ∈ N .

obj1 Total transportation cost.

obj2 Maximum transportation cost.

Note that, we require one less index in defining the x variables in the multiple allocation

version of the problem. We can now present the 4-index formulation of the problem.

Min β1obj1 + β2obj2 (3.1)
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s.t. obj1 =
∑
i∈N

∑
j∈N

∑
k∈N

∑
m∈N

wijyijkm(cik + αckm + cmj) (3.2)

obj2 ≥
∑
k∈N

∑
m∈N

yijkm(cik + αckm + cmj) ∀i, j ∈ N (3.3)

∑
k∈N

∑
m∈N

yijkm = 1 ∀i, j ∈ N (3.7)

∑
k∈N

xk = p (3.17)

∑
k∈N

yijkm ≤ xm ∀i, j,m ∈ N (3.18)

∑
m∈N

yijkm ≤ xk ∀i, j, k ∈ N (3.19)

xk ∈ {0, 1} ∀k ∈ N (3.10)

yijkm ≥ 0 ∀i, j, k,m ∈ N (3.11)

Constraint (3.17) ensures that the model locates exactly p hubs. Constraints (3.18)

and (3.19) represent that flow is routed only through established hubs. The rest of the

constraints of the model are as defined as before.

3.2.2 The 3-index formulation

We additionally introduce a 3-index formulation as well. To model this formulation, we

adapted the formulations of Ernst and Krishnamoorthy (1998) and Ernst et al. (2009).

The decision variables defined for multiple allocation 3-index formulation are given below:
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xk =

 1, if node k ∈ N is a hub,

0, otherwise.

uikj =

 1, If node i ∈ N is allocated to hub k ∈ N to send flow to node j ∈ N .

0, otherwise.

vimj =


1 If node j ∈ N is allocated to hub m ∈ N to receive flow originated

from node i ∈ N .

0, otherwise.

yikm Amount of demand originated at node i ∈ N which is trans-

ferred from hub k ∈ N to hub m ∈ N .

himj Amount of demand originated at node i ∈ N flowing from

hub m ∈ N to node j ∈ N .

zik Amount of flow from node i ∈ N to hub k ∈ N .

obj1 Total transportation cost.

obj2 Maximum transportation cost.

Note that the radius variable (rk) that we used in the single allocation 3-index formula-

tion is not used in this model. Since a demand node can use a different hub for sending flow

to each destination, we cannot use the radius idea to model the multiple allocation ver-

sion of the problem. The mixed-integer programming formulation for the 3-index multiple

allocation problem is as follows:

Min β1obj1 + β2obj2 (3.1)

s.t. obj1 =
∑
i∈N

∑
k∈N

cikzik +
∑
i∈N

∑
k∈N

∑
m∈N

αckmyikm+

∑
i∈N

∑
j∈N

∑
m∈N

cmjhimj (3.20)
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obj2 ≥
∑
k∈N

(cik + αckm)uikj +
∑
n∈N

cnjvinj−

α(1− vimj)cmax ∀i, j,m ∈ N (3.21)∑
k∈N

xk = p (3.17)

∑
k∈N

zik =
∑
j∈N

wij ∀i ∈ N (3.22)

∑
m∈N

himj = wij ∀i, j ∈ N (3.23)

∑
m∈N

yikm −
∑
m∈N

yimk = zik −
∑
j∈N

hikj ∀i, k ∈ N (3.24)

zik ≤
∑
j∈N

wijxk ∀i, k ∈ N (3.25)

himj ≤ wijxm ∀i, j,m ∈ N (3.26)

uikj ≤ xk ∀i, j, k ∈ N (3.27)

vimj ≤ xm ∀i, j,m ∈ N (3.28)∑
k∈N

uikj = 1 ∀i, j ∈ N (3.29)

∑
m∈N

vimj = 1 ∀i, j ∈ N (3.30)

uikj, vimj, xk ∈ {0, 1} ∀i, j, k,m ∈ N (3.31)

yikm, himj, zik ≥ 0 ∀i, j, k,m ∈ N (3.32)

Constraint (3.20) presents the total transportation cost. Constraints (3.21) calculate

the maximum transportation cost in the network, where cmax is the maximum unit trans-

portation cost. Constraints (3.22)-(3.24) are flow balance constraints. Constraints (3.25)

and (3.26) assure that the flows between nodes and hubs exist when hubs are located. Sim-

ilarly, constraints (3.27) and (3.28) make sure that nodes are allocated only to established

hubs. Constraints (3.29) and (3.30), on the other hand state that the demand between an

origin destination pair is routed using at most one origin and one destination hub.
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3.3 r-allocation formulations

In r-allocation problems, each node can be assigned to at most r hubs. If r is 1, the problem

reduces to the single allocation problem; on the other hand, if r is equal to the maximum

number of nodes, the problem becomes the multiple allocation problem. Thus, r-allocation

is a generalization of both of the allocation rules (Yaman, 2011). Similar to other allocation

rules, we present two formulations for the r-allocation version of the problem.

3.3.1 The 4-index formulation

We present a mixed-integer formulation for the problem with decision variables of four

indices in this section. We used ideas from the r-allocation p-hub median formulation

presented by Yaman (2011) to model this problem. However, there is not any study in the

literature presenting a model for the p-hub center version of the r-allocation problem. The

decision variables used for r-allocation 4-index formulation are given below:

xik =

 1, if node i ∈ N is allocated to hub k ∈ N ,

0, otherwise.

yijkm Fraction of demand originated at node i ∈ N destined to node

j ∈ N which is transferred from hub k ∈ N to hub m ∈ N .

obj1 Total transportation cost.

obj2 Maximum transportation cost.

The formulation is as follows:

Min β1obj1 + β2obj2 (3.1)

s.t. obj1 =
∑
i∈N

∑
j∈N

∑
k∈N

∑
m∈N

wijyijkm(cik + αckm + cmj) (3.2)

obj2 =
∑
k∈N

∑
m∈N

yijkm(cik + αckm + cmj) ∀i, j ∈ N (3.3)
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∑
k∈N

xkk = p (3.4)

xik ≤ xkk ∀i, k ∈ N, (3.6)∑
k∈N

yijkm ≤ xjm ∀i, j,m ∈ N (3.8)

∑
m∈N

yijkm ≤ xik ∀i, j, k ∈ N (3.9)

∑
k∈N

∑
m∈N

yijkm = 1 ∀i, j ∈ N (3.7)

∑
k∈N

xik ≤ r ∀i ∈ N (3.33)

xik ∈ {0, 1} ∀i, k ∈ N (3.10)

yijkm ≥ 0 ∀i, j, k,m ∈ N (3.11)

This formulation uses the same set of constraints introduced in the previous formu-

lations, except for constraints (3.33). These constraints make sure that the nodes are

allocated to at most r hubs.

3.3.2 The 3-index formulation

In this section, an the r-allocation formulation containing three indices is given. We used

ideas from Ernst et al. (2009) and Yaman (2011) to formulate this model. The decision

variables used for the 3-index r-allocation formulation are defined as follows:
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xik =

 1, if node i ∈ N is alocated to hub k ∈ N ,

0, otherwise.

uikj =

 1, If node i ∈ N is allocated to hub k ∈ N to send flow to node j ∈ N .

0, otherwise.

vimj =


1 If node j ∈ N is allocated to hub m ∈ N to recieve flow originated

from node i ∈ N .

0, otherwise.

yikm Amount of demand originated at node i ∈ N which is trans-

ferred from hub k ∈ N to hub m ∈ N .

himj Amount of demand originated at node i ∈ N flowing from

hub m ∈ N to node j ∈ N .

zik Amount of flow from node i ∈ N to hub k ∈ N .

obj1 Total transportation cost.

obj2 Maximum transportation cost.

The r-allocation 3-index mixed-integer programming formulation we proposed is as

follows:

Min β1obj1 + β2obj2 (3.1)

s.t. obj1 =
∑
i∈N

∑
k∈N

cikzik +
∑
i∈N

∑
k∈N

∑
m∈N

αckmyikm+

∑
i∈N

∑
m∈N

∑
j∈N

cmjhimj (3.20)

obj2 ≥
∑
k∈N

(cik + αckm)uikj +
∑
n∈N

cnjvinj−

α(1− vimj)cmax ∀i, j,m ∈ N (3.21)
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∑
k∈N

xkk = p (3.4)

xik ≤ xkk ∀i, k ∈ N (3.5)∑
k∈N

zik =
∑
j∈N

wij ∀i ∈ N (3.22)

∑
m∈N

himj = wij ∀i, j ∈ N (3.23)

∑
m∈N

yikm −
∑
m∈N

yimk = zik −
∑
j∈N

hikj ∀i, k ∈ N (3.24)

∑
k

uikj = 1 ∀i, j ∈ N (3.29)

∑
m

vimj = 1 ∀i, j ∈ N (3.30)

∑
k∈N

xik ≤ r ∀i ∈ N, (3.33)

zik ≤
∑
j∈N

wijxik ∀i, k ∈ N (3.34)

himj ≤ wijxjm ∀i, j,m ∈ N (3.35)

uikj ≤ xik ∀i, j, k ∈ N (3.36)

vimj ≤ xjm ∀i, j,m ∈ N (3.37)

uikj, vimj, xik ∈ {0, 1} ∀i, j, k,m ∈ N (3.10)

yikm, himj, zik ≥ 0 ∀i, j, k,m ∈ N (3.11)

The constraints of this model are almost the same with the multiple allocation 3-index

formulation’s. However, the location decision variable has an extra index to account for

allocations in the r-allocation formulation. Hence, constraints (3.25)-(3.28) are modified

accordingly as (3.34)-(3.37). Moreover, constraints (3.33) limiting the number of allocations

for r is introduced.
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3.4 Comparison of the formulations

In this section, we demonstrate the number of variables and constraints in each of the

formulations. Let |N | = n, then from Table 3.1, single allocation 4-index mixed-integer

formulation has O(n2) binary, O(n4) continuous variables, and O(n3) constraints, while

single allocation 3-index formulation has O(n2) binary, O(n3) continuous variables, and

O(n2) constraints. As can be seen, the single allocation 3-index formulation has less num-

ber of continuous variables and constraints than 4-index formulation has. On the other

hand, note that there are less number of binary variables and constraints in the 4-index for-

mulations of the multiple and r-allocation problems. However, there are more continuous

variables in these formulations compared with the 3-index versions.

Table 3.1: Number of variables and constraints in the formulations.

Single Allocation Multiple Allocation r-allocation

4-index 3-index 4-index 3-index 4-index 3-index

Number of
binary variables n2 n2 n 2n3 + n n2 2n3 + n2

Number of
continuous variables n4 + 2 n3 + n+ 2 n4 + 2 2n3 + n2 + 2 n4 + 2 2n2 + n2 + 2

Number of
constraints 2n3 + 3n2 + n+ 2 5n2 + n+ 2 2n3 + 2n2 + 2 4n3 + 5n2 + n+ 2 2n3 + 3n2 + n+ 2 4n3 + 6n2 + 2n+ 2
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Chapter 4

Computational Experiments

In this chapter, we test our formulations and analyze the resulting locations of hubs on the

Civil Aeronautics Board (CAB) dataset O’Kelly (1987). This dataset is formed based on

airline passenger interactions between 25 U.S. cities (Figure 4.1). Each city is a potential

hub location. The data on the demand between each pair of cities (wij) and costs (cij)

are presented in OR Library Beasley (1990). We scaled the demand values so that the

total demand adds up to one as customarily done in the literature. Due to this scaling, it

is possible that the center objective (the maximum cost) can be greater than the median

objective (the total cost) in our results. We test different values for the number of hubs (p)

the transportation cost discount factor between hubs (α), and the weights of the objectives

(β1, and β2). We take α values to be 0.2 (the highest discount), 0.4, 0.6, and 0.8 (the lowest

discount). Number of hubs are varied from 2 to 8. We tested different values for β1 and

β2 between 0 and 1. As mentioned before, we used the weighting method as both of the

objectives are in same units (cost). However, we would like to note that the choice of

weights may effect the bi-objective model as one objective function can be larger than the

other one.

All the numerical experiments were performed on a computer with AMD A-10-7300
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Figure 4.1: CAB dataset.

4-core 1.90 GHz processor and 12.0 GB of RAM. The formulations were coded and solved

using IBM ILOG CPLEX Optimization Studio 12.7. We changed absolute and relative

mixed-integer programming gap tolerances as 10−9 for all the experiments.

In the next section, we compare the performances of the 4- and 3-index formulations

using instances from the CAB dataset. In section 4.2, the computational results for sin-

gle allocation, multiple allocation, and r-allocation problems are provided using selected

formulations. We demonstrate the trade-off between the two objectives in the last section.

4.1 Comparison with the formulations

In this section, we compare each of the formulations that we proposed in Chapter 3 using

the CAB dataset. Initially, we compare the number of variables and constraints in all the

formulations in Table 4.1. Table 4.1 has three parts for single allocation, multiple allo-

cation, and r-allocation formulations. For each allocation rule, we calculated the number

of binary and continuous variables and the number of constraints in the proposed 4- and

26



3-index formulations with the CAB dataset containing 25 nodes.

Table 4.1: Number of variables and constraints in the formulations (n = 25).

Single Allocation Multiple Allocation r-allocation

4-index 3-index 4-index 3-index 4-index 3-index

Number of binary variables 625 625 25 31, 275 625 31, 875

Number of continuous variables 390, 627 15, 627 390, 627 31, 877 390, 627 31, 877

Number of constraints 33, 152 3, 152 32, 502 65, 652 33, 152 66, 302

Observe from Table 4.1 that both of the single allocation formulations has exactly the

same number of binary variables. However, the 3-index single allocation formulation has

less number of continuous variables and constraints than the 4-index multiple allocation

formulation. The 4-index multiple allocation formulation has the least number of binary

variables among all the given formulations, and it has less number of constraints than the

3-index multiple allocation formulation. However, the 4-index formulation has much more

number of continuous variables than the 3-index multiple allocation formulation. When

we look at the r-allocation formulations, they have quite similar features with the multiple

allocation formulations. Again, while the 4-index formulation has less number of binary

variables and constraints than the 3-index formulation, the 3-index formulation has less

number of continuous variables.

Table 4.2 presents and compares the CPU time requirements to obtain optimal solu-

tions with the proposed formulations. For this analysis, we set a 12-hour (43,200 seconds)

maximum time limit to CPLEX. The results are observed with p = 3, and p = 4, addi-

tionally, with r = 2 for the r-allocation formulations. We tested all formulations with four

different α values. β1 and β2 values are both taken as 0.5 for this analysis.

From Table 4.2 it can be observed that the 3-index formulation for the single allocation

problem works faster than the 4-index formulation. Both of the formulations have ex-
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Table 4.2: CPU time requirements in seconds with the formulations when p = 3 and 4.

Single allocation Multiple allocation r-allocation

α 4-index 3-index 4-index 3-index 4-index 3-index

p = 3

0.2 199.8 26.1 170.4 3,046.4 158.4 11,137.7

0.4 353.1 46.9 161.0 30,804.9 181.5 42,816.6

0.6 273.8 48.3 96.6 43,200 128.2 43,200

0.8 153.6 40.8 95.7 43,200 198.5 43,200

p = 4

0.2 212.8 55.0 247.4 25,169.6 238.6 26,184.2

0.4 250.2 53.0 177.5 43,200 235.0 43,200

0.6 304.0 81.1 146.9 43,200 230.0 43,200

0.8 274.2 96.1 100.1 43,200 216.2 43,200

Average CPU time (s) 253.4 56.4 149.2 34,377.6 198.1 37,017.3

actly the same number of binary variables; however, note from Table 4.1 that the 3-index

formulation has less number of continuous variables and constraints.

When we analyse the solution times with the multiple allocation formulations from

Table 4.2, it is obvious that the 4-index formulation is more consistent and has faster

solution times than the 3-index formulation. It seems that more number of binary variables

and constraints makes the 3-index formulation slower and less efficient.

We can interpret similar conclusions from Table 4.2 for the r-allocation formulations (as

with the multiple allocation formulations). The 4-index r-allocation formulation is clearly

more efficient than the 3-index r-allocation formulation on these instances.

Observe from the average CPU times reported in the last row of Table 4.2 that the

3-index single allocation formulation is significantly faster than all the other formulations,

while the 3-index r-allocation formulation is the slowest. The 3-index multiple alloca-

tion formulation has slightly lower CPU time requirement than the 3-index r-allocation
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formulation.

Given the results that we obtained in this section, we decided to use the 3-index single,

the 4-index multiple, and the 4-index r-allocation formulations for the remaining compu-

tational experiments.

4.2 Computational results

In this section, we present results with the selected single, multiple, and r-allocation for-

mulations on the CAB dataset. The experiments are done with p values ranging from 1 to

8, four α values (0.2, 0.4, 0.6, and 0.8) and three different combinations for (β1, β2): (1,

0), (0.5, 0.5), and (0, 1).

Table 4.3 demonstrates solutions of the single allocation problem. The first column

indicates eight different p values tested for the problem, and the second column lists the

corresponding α value for each instance (Note that there is no economies of scale between

hubs when only a single hub is located, so the solutions are independent from the α value

when p = 1). The table is divided into three main parts. The first part represents solutions

of the problem when β1 = 1 and β2 = 0 (p-hub median solutions). The second part is for

β1 = 0.5 and β2 = 0.5, while the third part is for β1 = 0 and β2 = 1 (p-hub center

solutions). Furthermore, the first columns in each part show the median objective function

value (Obj1), and the second columns report the center objective function value (Obj2) at

optimality. The third columns list optimal hub locations for each instance, and, lastly, the

fourth columns indicate the CPU times in seconds required to obtain the optimal solutions.

Observe from Table 4.3 that different solutions are obtained under different β values

given to the two objectives - median and center. When the weights of the objectives

changes, objective function values and optimum hub locations change. Note that when

p = 1, equally weighted problem and the center objective weighted problem result in exactly
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the same solution. In all the other instances, on the other hand, all resulting solutions are

different under different β values. In most of the instances, the objective function values

obtained under the equally weighted problem fall between the values obtained under the

two extreme weighted problems.

Different hub locations are selected under different p values. Note that locations ob-

tained with smaller p values are not a subset of the locations obtained with larger p values.

This shows that the decision maker needs to determine the locations of all the hubs at once

rather than locating the hubs incrementally. For a given p value, hub locations tend to

change with different values of α. When the discount factor value is close to 1, the distances

between hubs become smaller. Hence optimum locations are sensitive to the economies of

scale discount factor.

Lastly, observe from Table 4.3 that when β1 = 1 and β2 = 0, CPU times required for

the optimal solutions increase when α increases. On the other hand, note that the CPU

times decrease with the increase in α values when β1 = 0 and β2 = 1. With β1,β2 = 0.5,

we cannot deduce a conclusion on the effect of α on the CPU times. When we observe the

effect of p values on the CPU time again we cannot derive a generic conclusion. One would

expect the CPU times to increase with increasing values of p; however, note from Table 4.3

that this is not the case. When we calculated the average CPU times of the instances

under different β values, we observed that β1 = 0.5, β2 = 0.5 provided the slowest CPU

times, while β1 = 1, β2 = 0 is the fastest.

Figure 4.2 depicts solutions of the single allocation problem with p = 4 and α = 0.4

under different weights given to the objectives. In this figure, squares denote hubs, bold

lines the inter-hub connections, and the thin lines the allocation connections.

It can be observed from the figure that the distances between hubs are closer with the

median objective problem compared with the other two solutions. In the center objective

weighted solution, on the other hand, the distances between hubs tend to be far. In the
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(a) β1 = 1 and β2 = 0.

(b) β1 = 0.5 and β2 = 0.5.

(c) β1 = 0 and β2 = 1.

Figure 4.2: Single allocation solutions with different β values when p = 4 and α = 0.4.
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equally weighted objective solution the locations of the three hubs are the same with the

center weighted objective solution; however, one hub is located in Pittsburgh (20) rather

then Philadelphia (18). Since Pittsburgh (20) is more centrally located than Philadelphia

(18) the total transportation cost is 922 with the equally weighted solution whereas it is

1127 with the center weighted solution although both solutions yield the same maximum

transportation cost (Obj2) of 1885.

Table 4.4 shows solutions for the multiple allocation problem. As it is in the previous

table, the first column is for eight different p values tested for the problem, and the second

column presents α value for each instance. The table is separated into three main parts

for three different β1 and β2 combinations. The first column of every part indicates the

optimal hub median objective function value (Obj1), the second column lists the optimal

hub center objective function (Obj2), the third column reports optimal hub locations, and

lastly, the fourth column indicates CPU time requirements in seconds.

Observe from Table 4.4 that in general the model resulted in different solutions under

different β values. Hub locations are exactly the same in a few solutions when (β1, β2)=(0.5,

0.5) and (β1, β2)=(0, 1); for instance, when p = 2 and α = 0.2, or p = 3 and α = 0.8.

Center objective function (Obj2) values are quite close for the equally weighted problem

and the center weighted problem, even though selected hub locations are different. On

the other hand, the differences between the objective function values and the selected

hub locations of the median weighted and the equally weighted problem are greater and

these two solutions have less similarities. As expected, objective function values under the

equally weighted problem is always between the two extreme weighted problem solutions.

Similar to the single allocation solutions, solutions with smaller p values are not subsets

of the solutions with larger p values in multiple allocation. On the other hand, observe

from Table 4.4 that for a given p value, α value has less effect on the locations of hubs in

multiple allocation than single allocation problem. More comparable solutions are obtained

with different α values.
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CPU time requirements are mostly steady with different p and α values for β1 = 1,

β2 = 0. For β1 = 0.5, β2 = 0.5 and β1 = 0.5, β2 = 1, CPU times tend to decrease when α

increases. Similar to the results obtained with the single allocation problem, the multiple

allocation model has the slowest solution times when β1 = 0, β2 = 1, whereas β1 = 1,

β2 = 0 provides the fastest results.

Figure 4.3 demonstrates solutions of the multiple allocation problem with p = 4 and

α = 0.4 under different weights given to the objectives. Squares presents hub locations,

bold lines inter-hub connections, and thin lines node allocations, just as in the previous

figure.

Note from Figure 4.3 that distances between the hubs are the smallest in the center

weighted solution, while this variation is the largest in the median weighted solution.

Moreover, the nodes are allocated to, generally two, but sometimes at most three hubs in

the equally weighted solution; however, the nodes are allocated, mostly, to four hubs in

the center weighted solution, whereas there are a few nodes allocated to four hubs in the

median weighted solution.

Table 4.5 shows solutions for the r-allocation problem. We observed from the multiple

allocation solutions that a node is generally allocated to at most three hubs. Thus we

tested two different r values; r = 2, and r = 3. These values are presented in the first

column of Table 4.5. We tested five different p values for this analysis, which are listed in

the second column. The reminder of Table 4.5 is organized as previous tables.

Observe from Table 4.5 that similar to the results obtained with the other two models

the median and center solutions result in different hub locations and objective function

values under different β values. However, the problem gives the same or close objective

function values when β1 = 0.5, β2 = 0.5 and β1 = 0, β2 = 1. For example, hub locations

and the center objective function (Obj2) values are exactly the same when p = 3 and

α = 0.6 with both of the r values.
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(a) β1 = 1 and β2 = 0.

(b) β1 = 0.5 and β2 = 0.5.

(c) β1 = 0 and β2 = 1.

Figure 4.3: Multiple allocation solutions with different β values when p = 4 and α = 0.4.
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A comparison of Tables 4.4 and 4.5 reveals that the results obtained with the r-

allocation model are very similar to the results obtained with the multiple allocation prob-

lem. Note that the multiple allocation problem provides a lower bound for the r-allocation

problem. Hence, the objective function values obtained with the multiple allocation model

will always be less than or equal to the values obtained with r-allocation.

Observe form Table 4.5 that CPU times increase considerably when β1 = 0, β2 = 1 with

the center weighted objective function. The median weighted instances, on the other hand,

are solved within a few seconds. Equally weighted objective problem is slower than the

median objective weighted problem but faster than the center objective weighted problem.

Figure 4.4 illustrates the solutions of the r-allocation problem when p = 4, α = 0.4,

and r = 2 with different weights given to the objectives. Observe from the figure that hubs

are located on the same nodes as the multiple allocation problem when β1 = 1, β2 = 0 and

β1 = 0.5, β2 = 0.5. The objective function values, on the other hand, are different because

of the allocations. The multiple allocation problem yields an optimum median objective

of 754 whereas 2-allocation problem yields an optimum median objective of 759. This is

because a non-hub node is allocated to more than two hub nodes in the optimum multiple

allocation solution. In the center objective weighted 2-allocation problem, two of the four

hubs are located at different nodes than the multiple allocation version of the problem.

Lastly, we compared single, multiple, and r-allocation solutions. We observed from

Tables 4.3, 4.4, and 4.5 that resulting optimal hub locations are similar under all the three

problems. In terms of objective function values, as noted before, multiple allocation solu-

tions provide a lower bound both to r-allocation and single allocation problems. Similarly,

r-allocation problem provides a lower bound for the single allocation problem. Hence, the

highest objective function values are obtained with single allocation. Regarding the CPU

time requirements, single allocation formulation is the fastest among all the formulations.

The slowest formulation, on the other hand, is the r-allocation model.
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(a) β1 = 1 and β2 = 0.

(b) β1 = 0.5 and β2 = 0.5.

(c) β1 = 0 and β2 = 1.

Figure 4.4: 2-allocation solutions with different β values when p = 4, α = 0.4.
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4.3 Trade-off between two objectives

In this section, we provide trade-off curves to observe the effects of weights given to the

objectives on the solutions. For this analysis, we use p = 4 and α = 0.4. We tested 11

different weight combinations by incrementing the β values by 0.1 between 0 and 1.

We first analyze the single allocation problem. Table 4.6 presents results with eleven

different β combinations. The first two columns list the β values. The median objective

function values are shown in the third column, and the center objective function values

are given in the fourth column. The last column provides the optimal hub locations in the

solutions.

Table 4.6: Single allocation solutions (p = 4, α = 0.4).

β1 β2 Obj1 Obj2 Hub locations

1 0 788 2,592 1,4,12,17

0.9 0.1 807 2,327 4,12,16,17

0.8 0.2 834 2,170 14,17,21,22

0.7 0.3 922 1,885 12,13,18,23

0.6 0.4 922 1,885 12,13,18,23

0.5 0.5 922 1,885 12,13,18,23

0.4 0.6 922 1,885 12,13,18,23

0.3 0.7 922 1,885 12,13,18,23

0.2 0.8 922 1,885 12,13,18,23

0.1 0.9 922 1,885 12,13,18,23

0 1 1,127 1,885 12,13,20,23

Note from Table 4.6 that the seven out of eleven strategies result in the same hub

locations. The optimal solution and the objective function values remain the same when

β1 ∈ [0.1, 0.7] and β2 ∈ [0.3, 0.9]. Figure 4.5 displays the trade-off curve for the values

presented in Table 4.6.
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Figure 4.5: Trade-off curve for the single allocation problem when p = 4, α = 0.4.

Figure 4.5 clearly shows that the center weighted objective should not be adopted as a

solution. Note that this solution is dominated by the β1 = 0.1, β2 = 0.9 solution that has

a better value of the median objective and exactly the same value of the center objective.

Secondly, we analyze the multiple allocation problem. Table 4.7 presents solutions with

eleven different β combinations. Similar to the previous table, the first two columns present

β values, while the third and fourth columns provide the objective function values, and

the last column shows the hub locations.

In Table 4.7, there are five different hub-location groups shown as optimal out of the

eleven different strategies. Five of the solutions indicate the hubs should be located at

nodes 9, 12, 16, and 23, while three of the solutions designate hub nodes at 12, 13, 18, and

23. Additionally, hub locations are selected at nodes 4, 12, 17, and 24 at two strategies.

There is quite a few variations in these solutions.

Figure 4.6 provides the trade-off curve with the multiple allocation problem. Observe

from the figure that as a decision maker the extreme solutions (median and center) do not

look very promising by means of the objective function values. A small compromise in one
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Table 4.7: Multiple allocation solutions (p = 4, α = 0.4).

β1 β2 Obj1 Obj2 Hub locations

1 0 754 4,652 4,12,17,24

0.9 0.1 754 2,362 4,12,17,24

0.8 0.2 797 2,066 14,17,21,22

0.7 0.3 870 1,863 12,13,18,23

0.6 0.4 870 1,863 12,13,18,23

0.5 0.5 870 1,863 12,13,18,23

0.4 0.6 981 1,774 9,12,16,23

0.3 0.7 981 1,774 9,12,16,23

0.2 0.8 981 1,774 9,12,16,23

0.1 0.9 981 1,774 9,12,16,23

0 1 1,575 1,774 9,12,16,23

Figure 4.6: Trade-off curve for the multiple allocation problem when p = 4, α = 0.4.
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objective may result in a huge gain in the other objective.

Table 4.8: 2-allocation solutions (p = 4, α = 0.4).

β1 β2 Obj1 Obj2 Hub locations

1 0 759 3,435 4,12,17,24

0.9 0.1 761 2,362 1,4,12,17

0.8 0.2 799 2,066 14,17,21,22

0.7 0.3 870 1,863 12,13,18,23

0.6 0.4 870 1,863 12,13,18,23

0.5 0.5 870 1,863 12,13,18,23

0.4 0.6 870 1,863 12,13,18,23

0.3 0.7 870 1,863 12,13,18,23

0.2 0.8 870 1,863 12,13,18,23

0.1 0.9 870 1,863 12,13,18,23

0 1 1,300 1,863 12,13,18,23

Lastly, we analyze the trade-off between the objectives for the 2-allocation problem.

Table 4.8 demonstrates the results in the same way with the two previous tables. Note from

Table 4.8 that the optimal median and center objective function values are slightly higher

than the multiple allocation solutions because at most two hub allocations are allowed in

this problem. Eight of the solutions indicate that the hubs should be located at nodes 12,

13, 18, and 23.

Figure 4.7 shows the trade-off curve with the given solutions for the 2-allocation prob-

lem. Note that it has a similar shape with the trade of curve of the multiple allocation

solution. The decision maker must avoid adopting the extreme solutions because as can

be observed from this curve a small change in weights has a great influence on the other

objective function value.
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Figure 4.7: Trade-off curve for the 2-allocation problem when p = 4, α = 0.4.
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Chapter 5

Conclusion

In this thesis, we defined and studied bi-objective p-hub location problems. We unified

p-hub median and p-hub center problems under a bi-objective problem considering the

single, multiple and r-allocation strategies. Our aim is to find the optimal locations of

hubs and the optimal allocations of the demand nodes to these hubs.

First, we developed different mathematical models combining p-hub median and p-hub

center problems for each possible allocation strategy. We used a weighted sum objective.

A 3-index and a 4-index mixed-integer programming formulation have been developed for

each of the single, multiple, and r-allocation strategies.

All of the developed formulations were compared based on their CPU time requirements

to obtain optimal solutions using the commercial solver IBM CPLEX. Then, the formula-

tion, which provided the fastest solution time, was selected for each allocation strategy for

further computational experiments. It was shown that the 3-index single allocation for-

mulation yields the fastest solution times, and the 3-index r-allocation formulation yields

the slowest ones. The 3-index multiple allocation formulation gives slightly faster solu-

tion times than the 3-index r-allocation formulation. 4-index formulations provide better

solution times than 3-index formulations for the multiple and r-allocation strategies.
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We have performed numerical experiments on selected formulations using the CAB

dataset from the literature. We varied the values of the problem parameters while testing

our formulations. More specifically, we varied the number of hubs to be established, the

economies of scale parameter, and the weights given to the median and center objectives.

For each instance, we analyzed the values of the median and center objectives, the locations

of the hub nodes, the allocations, and the CPU time requirements. We observed the effect

of changes in the problem parameters on the results.

The multiple and the r-allocation models with r = 2 and 3 yielded very similar results.

Moreover, the multiple allocation formulation provides a lower bound for the single and

r-allocation formulations. The single allocation formulation yields the highest objective

function values.

With all the models, hubs were located at different nodes under different p values. It

has been observed that the locations obtained with smaller p values are not a subset of

the locations obtained with larger p values. Hence, rather than selecting the locations of

the hubs incrementally, the decision maker needs to determine the locations of all hubs at

once.

In general, the models resulted in different optimal hub locations under different weights

given to the median and center objectives. We further analysed the trade-off between the

two objective functions for each allocation strategy. The results showed that the decision

maker must avoid implementing neither the optimal median nor the optimal center solution,

as better solutions can be obtained with a small compromise in one objective.

In this study, we used a constant economies of scale factor as commonly done in the lit-

erature. As a future research direction, one may use and model a flow-dependent economies

of scale factor. This will definitely yield more realistic results. Furthermore, all the data

that we used were deterministic, we have not considered any uncertainty in the data.

However, real life certainly involve several uncertain conditions. Therefore, the models can
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further be extended considering uncertainty. Lastly, we assumed complete inter-hub net-

works. Formulations for the bi-objective p-hub location problems on incomplete inter-hub

networks can be another direction for future research.
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Marić, M., Stanimirović, Z., Stanojević, P., 2013. An efficient memetic algorithm for the

uncapacitated single allocation hub location problem. Soft Computing 17 (3), 445–466.

50



Marler, R. T., Arora, J. S., 2004. Survey of multi-objective optimization methods for

engineering. Structural and Multidisciplinary Optimization 26 (6), 369–395.

Meyer, T., Ernst, A. T., Krishnamoorthy, M., 2009. A 2-phase algorithm for solving the

single allocation p-hub center problem. Computers & Operations Research 36 (12), 3143–

3151.

Mohammadi, M., Jolai, F., Tavakkoli-Moghaddam, R., 2013. Solving a new stochastic

multi-mode p-hub covering location problem considering risk by a novel multi-objective

algorithm. Applied Mathematical Modelling 37 (24), 10053–10073.

Mohammadi, M., Tavakkoli-Moghaddam, R., Rostami, R., 2011. A multi-objective impe-

rialist competitive algorithm for a capacitated hub covering location problem. Interna-

tional Journal of Industrial Engineering Computations 2 (3), 671–688.

O’Kelly, M. E., 1986a. Activity levels at hub facilities in interacting networks. Geographical

Analysis 18 (4), 343–356.

O’Kelly, M. E., 1986b. The location of interacting hub facilities. Transportation Science

20 (2), 92–106.

O’Kelly, M. E., 1987. A quadratic integer program for the location of interacting hub

facilities. European Journal of Operational Research 32 (3), 393–404.

O’Kelly, M. E., Bryan, D., Skorin-Kapov, D., Skorin-Kapov, J., 1996. Hub network design

with single and multiple allocation: A computational study. Location Science 4 (3),

125–138.

O’Kelly, M. E., Miller, H. J., 1994. The hub network design problem: a review and syn-

thesis. Journal of Transport Geography 2 (1), 31–40.

51



Proos, K., Steven, G., Querin, O., Xie, Y., 2001. Multicriterion evolutionary structural

optimization using the weighting and the global criterion methods. AIAA journal 39 (10),

2006–2012.

Saboury, A., Ghaffari-Nasab, N., Barzinpour, F., Jabalameli, M. S., 2013. Applying two

efficient hybrid heuristics for hub location problem with fully interconnected backbone

and access networks. Computers & Operations Research 40 (10), 2493–2507.

Skorin-Kapov, D., Skorin-Kapov, J., O’Kelly, M., 1996. Tight linear programming re-

laxations of uncapacitated p-hub median problems. European Journal of Operational

Research 94 (3), 582–593.

Sohn, J., Park, S., 1998. Efficient solution procedure and reduced size formulations for

p-hub location problems. European Journal of Operational Research 108 (1), 118–126.

Yaman, H., 2011. Allocation strategies in hub networks. European Journal of Operational

Research 211 (3), 442–451.

52


	List of Tables
	List of Figures
	Introduction
	Literature Review
	The p-hub median problem
	The p-hub center problem
	Multi-objective hub location studies

	Mathematical Models
	Single allocation formulations
	The 4-index formulation
	The 3-index formulation

	Multiple allocation formulations
	The 4-index formulation
	The 3-index formulation

	r-allocation formulations
	The 4-index formulation
	The 3-index formulation

	Comparison of the formulations

	Computational Experiments
	Comparison with the formulations
	Computational results
	Trade-off between two objectives

	Conclusion
	References

