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Abstract

In 1978, the concept of privacy homomorphism was introduced by Rivest et al. [35].

Since then, homomorphic cryptosystems have gathered researchers’ attention. Most of

the early schemes were either partially homomorphic or not secure. The question then

arose: was fully homomorphic encryption (FHE) scheme possible? And if so, would it

have a practical worth? About thirty years later, Gentry, in his pioneering work [20],

constructed the first fully homomorphic encryption scheme. The scheme’s security was

based on worst-case problems over ideal lattices [21] along with a sparse subset-sum prob-

lem. A conceptually simpler scheme was proposed in 2010 by Dijk, Gentry, Halevi, and

Vaikuntanathan (DGHV). The scheme is over integers instead of ideal lattices, and its

security is based on the hardness of the approximate great common divisor problem (A-

GCD). Afterward, different techniques were proposed to reduce ciphertext noise growth

and to compress the public key size in order to enhance the practicality of FHE. Moreover,

Coron et al. [12] proposed and implemented a scale-invariant of the DGHV scheme and

a number of optimization techniques including modulus switching (MS). However, FHE

over integers is still far from practical. To this end, this work proposes a residue num-

ber system (RNS) variant to FHE of [12], which is also applicable to the DGHV scheme.

The proposed scheme exploits properties of RNS to perform the required operations over

relatively small moduli in parallel. The RNS variant enhances the timing of the original

scheme. The variant scheme also improves the original scheme’s security, since the former

relies only on the hardness of the A-GCD problem and eliminates the need for the sparse-

subset-sum problem used in the original MS procedure. Moreover, the public key elements

that are required for the MS method is slightly reduced in the RNS variant. Finally, our

analysis of the RNS variant reveals a different linear relationship between the noise and

the multiplication depth.
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Chapter 1

Introduction

Over the recent years, cloud computing has been rapidly developed to fulfill the demand

of outsourcing services. This demand has been driven by critical users whose private data

is required to be held in public and multi-tenancy computing and storage environments.

These environments are subject to a great variety of attacks that compromise user’s sen-

sitive data. To address this issue, sensitive data can be encrypted to make it unreadable

for secure transmission and storage. However, such unreadable data cannot be easily used

for any computation without first being decrypted. This raises security concerns as users’

sensitive data might be vulnerable to theft since it is publicly held by the cloud service

provider, which cannot be trusted. This critical problem requires a solution that allows

processing the unreadable form of the data without revealing it to the external service

provider.

1



Figure 1.1: The process of homomorphically evaluating users’ sensitive data over a public

cloud using homomorphic encryption scheme.

1.1 Motivation

In the 1970s, Rivest et al.[35] addressed aforementioned issue by proposing the notion of

privacy homomorphism. This concept defines the encryption scheme, which is known as

homomorphic encryption that can process complicated functions on the unreadable data.

Homomorphic encryption schemes allow users to manipulate their data on external service

providers privately and securely as illustrated in Figure 1.1.

There is a growing body of literature that recognized the importance of the homomor-

phic property and several schemes and protocols were proposed in the past. Unfortunately,

most of these schemes ended up to be unsecured or had the partially homomorphic prop-

erty that supports only a particular class of functions. In 2009, Gentry proposed the first

fully homomorphic encryption (FHE) that has the ability to evaluate any boolean function

with any depth. Later on, there has been renewed interest in this field where different

FHE schemes were introduced. These schemes are best classified under their security as-
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sumptions. However, current homomorphic schemes are computationally so expensive that

they are considered to be impractical for users whose computation resources are limited.

Therefore, a different track of researchers’ contributions has targeted the development of

practical FHE schemes.

Together, several studies indicate that homomorphic encryption still requires more

improvements to be made for practical usages. Therefore, the objective of this study is to

investigate whether adopting the operations of FHE scheme over an alternative efficient

number system (residue system) will improve the feasibility of our proposed FHE scheme.

1.2 Thesis organization

This thesis is divided into five chapters, each chapter devoted to provide significant infor-

mation to build a road map toward the proposed RNS variant.

Chapter 2 reviews the basic concepts of residue number system arithmetic. Chap-

ter 3 provides a literature review on homomorphic cryptosystems and highlights several

researchers’ contributions in the area. It also presents a full narrative on two main con-

tributions to the fully homomorphic encryption over integers. Chapter 4 presents all the

procedures required to achieve an RNS variant. Chapter 5 lists the contributions of the

thesis and proposes several recommendations and suggestions for future research.
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Chapter 2

Residue Number System Arithmetic

The residue number system (RNS) is defined over small independent divisors (known as

moduli). The independence between the moduli allows RNS to be a carry-free, borrow-

free system that naturally performs parallel addition, subtraction, and multiplication. This

property allows RNS to reduce the computation delay. Hence, RNS has gathered consider-

able attention since the last century where it has been implemented in different applications

such as Digital Signal Processing [34], Fast Fourier transform [43], cryptography [4], etc.

The beginning of this chapter introduces initial concepts for residue systems, followed by

RNS forward conversion. Section 2.2 discusses RNS representations, system dynamic range

and moduli preferences and its influence on RNS performance; this section also introduces

the basic RNS arithmetic and its properties. Sections 2.3, 2.4 and 2.5 discuss briefly the

mixed radix conversion, RNS base extension, and reverse conversion, respectively.
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2.1 Preliminaries

2.1.1 Remainder theorem

Suppose that a and m are integers s.t. a > m. Then for an integer q > 1, one can write

a = q ·m+r where r ∈ [0, m). I.e., q and r are the quotient and the remainder, respectively,

resulting from the division of a by m. The remainder can be written as.

r = a−
⌊ a
m

⌋
·m ≡ |a|m (2.1)

where b∗c is the floor function and |a|m is a modulo m operation (or a mod m for short).

2.1.2 Linear congruence

Two numbers are said to be congruent when they have the same remainder associated with

the same divisor.

Suppose a, b, r, and m are integers s.t. m divides (a− r) as well as (b− r), which can

be written in the following way:

a ≡ b ≡ r (mod m) (2.2)

The integer r is said to be a residue of a and b with respect to the modulus m, and a, b and

r are congruent modulo m. This implies that there are integers q1, q2 ≥ 0 and r ∈ [0, m)

such that

a ≡ q1 ·m+ r

b ≡ q2 ·m+ r

5



Example 2.1.1. For modulus m = 7, one can say that integers 25, 11 and 4 are congruent

with respect to m. This is because all of them have the same remainder 4 as illustrated in

the following

25 ≡ 11 ≡ 4 (mod 7).

2.2 Arithmetic using RNS

Unlike conventional number systems which consist of weighted numbers, a specific RNS

system is defined over a set of independent co-prime moduli (also known as “base”), B ≡

{m1, m2, · · · , mn} where the system dynamic space is M =
∏n

i=1mi . Accordingly, an in-

teger C has RNS representation defined in the following set: C
RNS−−−→ |c|B = (c1, c2, · · · , cn)

where:

C ≡ ci (mod mi).

Example 2.2.1. Given an RNS defined over base B ≡ {3, 5, 7}, the RNS representation

of C = 442 and X = 69 are:

C = 442 X = 69

442 ≡ 1 (mod 3) 69 ≡ 3 (mod 3)

442 ≡ 2 (mod 5) 69 ≡ 4 (mod 5)

442 ≡ 1 (mod 7) 69 ≡ 6 (mod 7)

RNS→ 442
RNS−−−→ |c|B = (1, 2, 1) 69

RNS−−−→ |x|B = (3, 4, 6)

We note that it is difficult to identify which integer is bigger just based on |c|B and

|x|B, in the sense that |x|B has greater residue values does not indicate that X is bigger.
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This is because RNS is not a weighted number system where the only relationship between

residues is the fact that they form a tuple of remainders to the same integer.

2.2.1 Uniqueness of RNS representation

The uniqueness property implies that there is only one representation associated with a

unique integer C over a set of moduli.

Suppose N and mi are integers s.t. N ≡ 0 (mod mi). Then, for an arbitrary positive

integer C in the interval [0, mi], one can assume that N + C has a unique representation

over mi s.t. N ≡ 0 (mod mi), and accordingly N + 1 ≡ 1 (mod mi) and so on up-to

N + (mi − 1) ≡ mi − 1 (mod mi). The uniqueness property will apply except in case

C = mi where the two numbers N + C and N are congruent.

N + C ≡ N (mod mi) s.t. C = mi

For N = 0, C satisfies the uniqueness property when 0 ≤ C ≤ mi − 1. Likewise, for

an RNS defined by a set of co-prime moduli B ≡ {m1,m2, · · · ,mn}, an integer C has

representation in each modulus s.t. 0 ≤ |C|mi < mi, ∀i ∈ [1, n]. Thus for unique RNS

representation, C should satisfy 0 ≤ C <
∏n

i=1 mi, so that there are no two integers that

have congruent RNS representation over B. In other words, C should be in the system

dynamic space {0, 1, 2, · · · ,M − 1}, where M =
∏n

i=1mi, so that the uniqueness property

holds.

Example 2.2.2. Recalling Ex. 2.2.1, the dynamic space M for the specified RNS over

B ≡ {3, 5, 7} is M =
∏n

i=1 mi = 3 · 5 · 7 = 105. Since N = 442 > M , the resultant

RNS representation |442|B ≡ {1, 2, 1} is not unique. Consequently, there are a number

of integers less than N that share the same representation. Furthermore, their number is

7



equal to the quotient of N to M , q = b442
105
c = 4. The four integers are 22, 127, 337 and 442

itself, all of which share the same representation over B:

442 ≡ 337 ≡ 127 ≡ 22 ≡ 1 (mod 3)

442 ≡ 337 ≡ 127 ≡ 22 ≡ 2 (mod 5)

442 ≡ 337 ≡ 127 ≡ 22 ≡ 1 (mod 7)

442 ≡ 337 ≡ 127 ≡ 22
RNS−−−→ {1, 2, 1}

2.2.2 RNS representation over negative integers

In the above discussion, C was assumed to be a positive integer. However, there is a

need for some applications to represent negative integers as well. Generally, the adequate

range for positive and negative integers over RNS is specified by equally dividing the RNS

dynamic space M as discussed below.

For an integer C ∈ Z, the range of the representation over a specific RNS composed of

n independent moduli with dynamic space M =
∏n

i=1 mi is as follows: the range allocated

for positive integer Cp is defined over 0 6 Cp 6
⌊
M
2

⌋
. Accordingly, the range allocated to

negative Cn is over
⌊
M
2

⌋
< Cn < M . Therefor, the allocated space of a variable C is as

follows:

−M−1
2

6 C 6 M−1
2

for M is odd

−M
2

6 C 6 M
2
− 1 for M is even

It is worthwhile to mention that the reason for subtracting one in the even space M is

that zero has been assumed to be among the positive integers. Furthermore, the reason

for allocating Cn over
⌊
M
2

⌋
< Cn < M is because Cn considered as complementary of M .
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2.2.3 Moduli preferences

Choosing a proper base for RNS is very important to enhance the performance and ensure

the correctness of such a system. For instance, co-prime moduli set is the natural choice

to ensure correctness. However, different aspects control appropriate (efficient) moduli set

selection in different applications, such aspects as:

• The moduli set should be co-prime.

• To ensure unique representation, the product of moduli should be large enough to

adequate the dynamic range and prevent overflow.

• To enhance speed performace, the moduli bit size should be as small as possible to

reduce computation time [32]. Also, the different bit sizes between moduli should

not be significant. This is because there are no advantages to use small moduli with

large ones [1].

• To ensure efficient binary representation, conversion and arithmetic, the moduli can

be formulated as {2k, 2k − 1, ...2kn, 2kn − 1} [1, 24, 42, 17].

In addition, choosing a random moduli set usually produces an inefficient system that

complicates hardware implementation. Moreover, in the forward conversion and arithmetic

operations, system’s delay is dominated by the worst modulus, and it is worth to mention

that worst modulus might be defined in terms of hardware implementation complexity, or

the largest modulus size. In contrast, reverse conversion is most complicated operation

since its performance is dominated by the characteristic of all moduli.
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2.2.4 RNS arithmetic property

RNS is also known as a residue encoding system. This implies that for a particular integer

C, the associated RNS representation carries independent pieces of information held with

each base. Furthermore, these pieces reassemble the conventional representation of that

integer C. Consequently, the residue representation of integer C also comprises the same

relation that C holds. Given the representations for integers A and B for a specified RNS

over B ≡ {m1,m2, · · · ,mn}

A
RNS−−−→ (a1, a2, · · · , an)

B
RNS−−−→ (b1, b2, · · · , bn)

there is an RNS equivalent to an integer C that satisfies some relation between A and B

s.t. C = A ∝ B. Using the remainder theorem, the residue for both sides associated with

one of the moduli (namely mi) are:

C ≡ ci mod mi (2.3)

A ∝ B ≡ a (mod mi) ∝ b (mod mi) ≡ ce mod mi

recalling linear congruence in Section 2.1.2, which implies that the integer ce is equivalent

to C and ci (mod mi).

C ≡ ce ≡ a ∝ b ≡ ci mod mi

Therefore, the RNS representation of C over B can be formulated as follows:

C = A ∝ B
RNS−−−→ (a1 ∝ b1, a2 ∝ b2, ..., an ∝ bn) ≡ (c1, c2, ..., cn) (2.4)

10



Addition operation

Eq. (2.4) holds for ∝ being an addition. Thus, for given A, B and C, s.t. C = A+B, the

unique RNS representation of C can be computed as follows:

A
RNS−−−→ ( a1, a2, ... , an )

B
RNS−−−→ ( b1, b2, ... , bn )

C
RNS−−−→ (|a1 + b1|m1 , |a2 + b2|m2 , ..., |an + bn|mn )

where 0 6 A,B 6 C < M =
∏n

i=1 mi.

Example 2.2.3. Let A and B be 46 and 54, respectively. The addition of these integers

over RNS defined over B ≡ {3, 5, 7} can be performed as follows:

Base : { 3, 5, 7 }

A
RNS−−−→ ( 1, 1, 4 )

B
RNS−−−→ ( 0, 4, 5 ) +

C
RNS−−−→ ( |1|3 , |5|5, |9|7 )

Recalling the congruent property, the resultant system of congruence must satisfy all

congruent relationships which gives the following equivalent result ( |1|3, |0|5, |2|7 )⇒

C = 100.

It is worthwhile to mention that |C|B is unique since A, B and C are in the specified

RNS dynamic space M where 0 < A = 46 < B = 54 < C = 100 < 105 = 3 ·5 ·7. Moreover,

11



the overflow in base 7 that occurred when adding |4 + 5|7 has no effect on residues of the

other moduli. In conclusion, the addition carried out in each modulus has been done

independently, and the result does not depend on the intermediate overflow in the RNS

moduli; For this reason, RNS is called carry-free (borrow-free) system which enables RNS

to perform correct parallel computation.

Multiplication operation

Similarly, Eq. (2.4) holds for ∝ being a multiplication operation with the same uniqueness

condition for integers A, B and C s.t. C = A × B and 0 6 A,B 6 C < M =
∏n

i=1 mi.

Hence, C can be computed in RNS as follows:

A
RNS−−−→ ( a1, a2, ... , an )

B
RNS−−−→ ( b1, b2, ... , bn )

C
RNS−−−→ (|a1 × b1|m1 , |a2 × b2|m2 , ..., |an × bn|mn )

Example 2.2.4. For RNS defined over B ≡ {3, 5, 7} and for integers A and B that are

equal to 4 and 25, respectively, the multiplication of these two integers can be preformed

as follows:

Bases : { 3, 5, 7 }

A
RNS−−−→ ( 1, 4, 4 )

B
RNS−−−→ ( 1, 0, 4 ) ×

C
RNS−−−→ ( |1|3, |0|5, |2|7 )

12



Similar to addition, the resultant RNS representation of C is unique and satisfies:

0 < A = 4 < B = 25 < C = 100 < 105 = 3 · 5 · 7. Furthermore, the multiplication carried

out in each modulus has been done independently which enables RNS to perform parallel

computation.

Additive inverse:

An integer Cin is said to be the additive inverse to C over base M , if it satisfies the following

relation:

|C + Cin|M ≡ 0 ≡M (2.5)

Then Cin can be written as follows:

Cin = M − C (2.6)

by considering the fact that the representation of negative numbers, M/2 ≤ Cn < M , has

an equal dynamic space as the positive integer, 0 ≤ CP < M/2, as defined in Section 2.2.2.

Therefor, every integer in range 0 < x < M − 1 has a unique additive inverse.

Similar to addition and multiplication, subtraction follows Eq. (2.4) as well s.t. A −

B
RNS−−−→ ( a1− b1, a2− b2, ..., an− bn). In addition, we can use the additive inverse property

to rewrite the subtraction relation into: C = A−Bin
RNS−−−→ ( a1+b1in , a2+b2in , ..., an+bnin).

Example 2.2.5. Given A = 25 and B = 16 in the RNS defined over B ≡ {3, 5, 7},

13



determine A−B.

B : {3, 5, 7}

A = 25
RNS−−−→ (1, 0, 4)

Bin = 16
RNS−−−→ (1, 1, 2) −

C = 9
RNS−−−→ (|0|3, | − 1|5, |2|7)

Recalling the additive inverse property, | − 1|5 ≡ |(5 − 1)|5, we have C
RNS−−−→

{ |0|3, |4|5, |2|7 }. This is equivalent to A + (M − B) = 25 + (105 − 16) = 25 + 89

and can be computed as:

B : {3, 5, 7}

A = 25
RNS−−−→ (1, 0, 4)

Bin = 89
RNS−−−→ (1, 1, 2) +

C = 114
RNS−−−→ (|3|3, |4|5, |9|7)

We note that the RNS’s dynamic space has been equally divided between positive

integers ∈ [0, 53), and negative integers in ∈ [53, 105) where they represent 53 unique

additive inverses for positive integers.

Multiplicative inverse

For non-zero integer C s.t. C and M are co-prime, there is a unique integer X that satisfies:

|C ·X|M ≡ |1|M (2.7)

14



where X is said to be the multiplicative inverse to C modulo M , X ≡ C−1 ≡ 1
C

. Recipro-

cally, C is the multiplicative inverse of X modulo M . On the other hand, if C and M are

not co-prime then there is no such integer X that satisfies Eq. (2.7).

Similarly, an integer C has multiplicative inverse in specified RNS, if C is co-prime to

all of the RNS bases. On other words, if there are one or more zero-residues in |C|B, then

C will not have a multiplicative inverse in the space M . For instance, given RNS defined

over B ≡ {3, 5, 7} with M = 105, and C = 15, then C−1 does not exist. This is because

both of the bases 3 and 5 divide C which is clear in the C representation |C|B = (0, 0, 1).

In contrary, for C = 13 with |C|B = (1, 3, 6), C has inverse over M (C−1 = 97). In general,

given a co-prime dynamic range, it is certain that there are a multiplicative inverse for all

space members as illustrated in Table 2.1.

Table 2.1: The Multiplicative inverse for different moduli.

Prime m=7 Even m=8 Odd m=9

c c−1 c c−1 c c−1

1 1 1 1 1 1

2 4 2 None 2 5

3 5 3 3 3 None

4 2 4 None 4 7

5 3 5 5 5 2

6 6 6 None 6 None

7 7 7 4

8 8

Even though there is no explicit expression to determine multiplicative inverse of an

15



integer modulo M , Fermat’s theorem can be used for a prime modulus as special case. In

fact, a brute-force algorithm can be used to search for a multiplicative inverse, if it exists,

but this approach is inefficient for large moduli. Thus executing the extended Euclidean

algorithm is considered to be a more efficient alternative.

Division

In contrast to addition and multiplication, performing the division operation in RNS is

more complex. Hence, it is suitable to classify division into categories where the first two

are special cases of the last one:

• Exact division: The division is between two integers where the dividend is exact mul-

tiple of the divisor. For an integer A and B s.t. A = q · B or |A|B ≡ 0, the division

A/B is defined over modulo m as follows:

|A|m ≡ |q ·B|m

Therefore, for the multiplicative inverse of B, we have

|A ·B−1|m ≡ |q|m (2.8)

and for a given RNS base B, A/B can be expressed as:

q =
A

B

RNS−−−→ |q|B ≡ ( |a1 · b−1
1 |m1 , |a2 · b−1

2 |m2 , ..., |an · b−1
n |mn )

Example 2.2.6. Divide A = 1530 by B = 17, which is an exact multiple of the

16



dividend A, using RNS defined over B ≡ {23, 29, 31} and M = 20677:

B : { 23, 29, 31 }

A = 1530
RNS−−−→ ( 12, 22, 11 )

|B−1|20677 = 12163
RNS−−−→ ( 19, 12, 11 ) ×

q = |90|20677
RNS−−−→ ( |19|23, |12|29, |11|31 )

where |B|B ≡ (17, 17, 17), and |17−1|23 ≡ 19, |17−1|29 ≡ 12 and|17−1|31 ≡ 11.

Indeed, q = 90 and it is surely true because A is the exact multiple of B. After all,

the exact division can be applied on some applications that ensure zero remainder

division but what if B does not exactly divide A as following:

Example 2.2.7. To discuss the exact division, let the dividend and the divisor be 9

and 3, respectively. Then the exact division modulo 17 is:

q = | 9 · |3−1|17|17 ≡ | 9 · 6 |17 ≡ |3|17

Thus Eq. (2.8) holds, but what about the division of 9 by 4 modulo 17:

q = | 9 · |4−1|17|17 ≡ | 9 · 13 |17 ≡ |15|17

In this case, Eq. ( 2.8) does not hold. This is because there is a remainder included in

the result as illustrated in the following: The exact answer for the above is 2.25 which

consists of = 2 + |4−1|17 ≡ |15|17, as well as for 5/2 = 2.5 = 2 + |2−1|17 ≡ |2 + 9|17

and for 9/5 ≡ 1 + |4 · 5−1|17 ≡ |12|17 (where 4 ≡ |9|5). However, to correct the result,

we apply floor rounding to the division by deducting the remainder of the dividend

as illustrated in scaling division.

17



• Scaling division: The divisor, here, is a known constant which consists of one modulus

or the product of multiple moduli. Scaling is much easier and faster than general

division. This is because dividing by a predetermined constant is fairly less complex

and faster than dividing by a random integer.

Suppose that A and B are two integers that satisfy the following expression:

A =
⌊A
B

⌋
·B + |A|B

Thus we have the following form of division⌊A
B

⌋
=
A− |A|B

B
(2.9)

Since B is predetermined that has a multiplicative inverse modulo M (which can be

pre-computed): ⌊A
B

⌋
= (A− |A|B) · |B−1|M (2.10)

To carry out the above scaling division over specific RNS characterized by B ≡

{m1,m2, · · · ,mn}, B has to be a co-prime to all moduli in set B.

RNS(
⌊A
B

⌋
)B ≡ (|(a1 − ||A|B |m1) · |b−1

1 |m1 |m1 , |(a2 − ||A|B |m2) · |b−1
2 |m2 |m2 , · · ·

· · · |(an − ||A|B |mn) · |b−1
n |mn |mn)

As mentioned above, it is worth to state that, if B is equal to one or a product of

multiple base elements (denoted as mx), then Eq. (2.10) applies to all base elements

except mx set, and the result will be in RNS dynamic space equal to M/mx. In order

to restore the original space M , base extension is required, and will be discussed in

Section 2.4.

In what follows, two examples will be used to illustrate scaling division by one and

two RNS base elements.
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Example 2.2.8. In RNS defined over B ≡ {3, 5, 7, 11, 13} with M = 15015, scale

A = 1392 by B = 13.

The representation of A in all base elements except m5 is (0, 2, 6, 6), and |A|B ≡ 1,

then we have:

Base : {3, 5, 7, 11 }

A = 1392
RNS−−−→ ( 0, 2, 6, 6 )

|A|m5 = 1
RNS−−−→ ( 1, 1, 1, 1 ) −

A− |A|m5 = 1391
RNS−−−→ ( 2, 1, 5, 5 )

Now multiply by RNS(|B−1|M∗)B ≡ (1, 2, 6, 6), for |B−1|M∗ = 622 and M∗ =
M

13
.

A− |A|m5

RNS−−−→ ( 2, 1, 5, 5 )

|B−1|M∗ = 622
RNS−−−→ ( 1, 2, 6, 6 ) ×

C = 107
RNS−−−→ ( |2|3, |2|5, |2|7, |8|11)

Note that the result is in the RNS dynamic space M∗ =
M

13
. The final step is to

preform a base extension which will be carried out in Example 2.4.1. An easy way

to return to the original system is to concatenate |107|13 ≡ 3 under base 13. Then,

the final result in the original RNS representation would be:⌊1392

13

⌋
= 107

RNS−−−→ ( |2|3, |2|5, |2|7, |8|11, |3|13)
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• General division is one of the most difficult operations. Currently, there are different

algorithms performing division that can be grouped into two categories based on

their iteration operation [17] [10]. The first category is based on iterative subtrac-

tion and comparison operation, such as in [18, 25, 28, 44] and the second category

is multiplicative iteration algorithms, such as [46]. The former is similar to conven-

tional binary division where it subtracts multiples of the divisor from the dividend

repeatedly until the deference becomes less that the divisor. This carries a prime

disadvantage in the sense that it requires a number of costly sequential (repeated)

magnitude comparisons. The second category, multiplicative division algorithms, de-

termines the quotient by multiplying the reciprocal of the divisor with the dividend.

This approach is based on division by an approximate divisor which is applicable in

scaling algorithms. This procedure introduces some error that can be reduced by

recursion. Unlike the first category, the latter does not require repeated magnitude

comparisons; yet, the disadvantage of the multiplicative division algorithm is that it

does not know when the algorithm should terminate for a given acceptable error.

2.3 Mixed radix conversion

The mixed radix conversion was first mentioned by Garner [19]. This operation is the

conversion from a un-weighted RNS representation to a weighted mixed radix number

system (MRS). The resultant MRS has the same space as the original RNS.

For an integer A represented in RNS defined over {m1,m2, ...,mn}, the corresponding

MRS representation is defined as the following:

A = a′1 + a′2 ·m1 + a′3 ·m1 ·m2 + ... + a′n

n−1∏
i=1

mi (2.11)
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where |A|m1 ≡ a′1, and the mixed radix of A denoted as MRS(A)= {a′1, a′2, · · · , a′n}.

In order to obtain MRS(A)’s coefficients, a sequence of operations is required. Accord-

ingly, a′2 can be computed by moving a′1 to the left hand side, and then taking Eq. (2.11)

mod m2:

|A− a′1|m2 = a′2 ·m1

a′2 = | |A− a′1|m2 · |m−1
1 |m2 |m2 ≡

∣∣∣∣ ⌊ Am1

⌋∣∣∣∣
m2

Similarly for a′3:

|A− ( a′1 + a′2 ·m1 )|m3 = a′3 ·m1 ·m2

a′3 = | |A− a′1 + a′2 ·m1|m3 · |( m1 ·m2 )−1|m3 |m3 ≡
∣∣∣∣⌊ A

m1 ·m2

⌋∣∣∣∣
m3

And so on. Hence, the conversion is a sequential operations where finding a′n requires

finding all a′i, up to i = n− 1. This will slowdown the mixed redix conversion procedure

when we will have a very large number of moduli.

Example 2.3.1. Given RNS defined over B ≡ {3, 5, 7}, convert RNS(85)B = {1, 0, 1} to
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its equivalent representation in MRS

Base : ≡ 3 5 7

A = 85
RNS−−−→ 1 0 1

|A|m1

RNS−−−→ 1 1 1 − ⇒ a′1 = |85|m1

0 4 0

|1
3
|m1

RNS−−−→ 2 6 ×

3 0 ⇒ a′2 = |3|m2

a′2 = 3
RNS−−−→ 3 3 −

0 4

|1
5
|m2

RNS−−−→ 3 ×

5 ⇒ a′3 = |5|m3

(2.12)

Thus, the corresponding to RNS(85)B ⇒MRS(85)B ≡ (1, 3, 5).

Since MRS is a weighted system, it eases the comparison operation relative to RNS.

Moreover, it is fairly fast in residue computer to perform conversion from RNSB to MRSB

[17]. This advantage applies for small moduli sets which can be efficiently implemented in

hardware.

2.4 Base extension

The operation that is used to extend the original base B of an RNS by adding one or more

moduli is known as base extension. Precisely, this operation determines the residue modulo

mnew from residues of an integer over B. This is in order to expand or restore the RNS

dynamic space M by a factor of the new modulus. Base extension is utilized to achieve
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sign detection, comparison and overflow detection operations [33] and scaling as described

in Example 2.2.8.

Szabo and Tanaka [17] proposed a procedure to find the extra residue modulo mnew.

The procedure converts the un-weighted RNS to its corresponding weighted mixed radix

system.

For RNS characterized by B ≡ {m1,m2, ...,mn} over the interval [0, M =
∏n

i=1mi), the

extended RNS version, by the new base element mnew, will be in the interval [0, M ·mnew).

Thus, the MRS representation, including mnew, will be:

A = a′1 + a′2 · m1 + ... + a′n

n−1∏
i=1

mi + a′n+1

n∏
i=1

mi (2.13)

Note that the base extension procedure does not change the value of the integer A

thus a′n+1 is clearly equal to zero. Therefore, the residue of A mod mnew can be obtain by

determining all MRS coefficients and use the fact that a′n+1 is zero. The following example

will be used to illustrate the Szabo and Tanaka base conversion procedure.

Example 2.4.1. Recall Ex. 2.2.8, as last step in scaling operation is to recover the base

13 by using base extension.
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First, perform the MRS conversion as follows.

Base : ≡ 3 5 7 11 13
RNS−−−→ 2 2 2 8 c

|A|m1

RNS−−−→ 2 2 2 2 2 − ⇒ a′1 = |107|m0=3

0 0 0 6 c+ 11

|1
3
|m1=5

RNS−−−→ 2 5 4 9 ×

0 0 2 9c+ 8 ⇒ a′2 = |0|m1

a′2 = 0
RNS−−−→ 0 0 0 0 −

0 0 2 9c+ 8

|1
5
|m2=7

RNS−−−→ 3 9 8 ×

0 7 7c+ 12 ⇒ a′3 = |0|m2

a′3 = 0
RNS−−−→ 0 0 0 −

0 7 7c+ 12

|1
7
|m3=11

RNS−−−→ 8 2 ×

1 c+ 11 ⇒ a′4 = |1|m3

a′4 = 1
RNS−−−→ 0 1 1 −

0 c+ 10

| 1
11
|m4=13

RNS−−−→ 6 ×

6c+ 8 ⇒ a′5 = |0|m4

Secondly, solve the linear equation of the last MRS coefficient to find |A|m5=13, knowing
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that a′5 satisfies a′5 = 0 and a′5 = 6c+ 8 = 0, as follows.

a′5 = 6c+ 8 = 0 To keep the same value of A

6c = | − 8|13 Additive inverse

6c = 5

c = 5 · |6−1|13 Multiplicative inverse

c = |5 · 11|13 Congruence property

c = |3|13 = 3

Indeed, this is the correct answer where, from Ex. 2.2.8, A = 107 and |A|m5=13 =

|107|m5=13 = 3. We note that the new dynamic space has increased by the factor of

mnew = 13; yet, the value of A is the same.

2.5 Reverse conversion

The reverse conversion is the most complicated part of implementing RNS [29]. Generally,

there are two main approaches to performing reverse conversion, one of which is Chinese

Remainder Theorem (CRT) and the other one is Mixed Radix System (MRS). The latter

will be illustrated directly in Ex. 2.5.2, where the former will be introduced below:

2.5.1 Chinese remainder theorem

For an integer C represented in (c1, c2, ..., cn) over RNS base {m1,m2, ...,mn} with dynamic

space M , the CRT provides a closed form expression that defines C in the space M .

|C|M =
∣∣ n∑
i=1

|ci ·M−1
i |mi ·Mi

∣∣
M

(2.14)
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where Mi = M
mi

, and M =
∏n

i=1 mi.

However, the CRT can be used for a reverse conversion procedure; but first a brief

explanation of Eq. (2.14) will introduced. The CRT breaks an integer C into sum of the

product between a constant xi and residue of C associated to each modulus mi. Therefore,

C can be expressed as follows:

C = cm1 · x1 + cm2 · x2 + ... + cmn · xn

such that |xj|mi ≡ 1 only when j = i and zero otherwise. Such xj can be formulated as

the following:

xj = (
n∏

i=1,i 6=j

mi) ·
∣∣( n∏
i=1,i 6=j

mi)
−1
∣∣
mj

xj = Mj · |M−1
j |mj

Indeed, both Mj and |M−1
j |mj depend on fixed moduli set in a specified RNS; therefore,

both of them can be computed offline. Furthermore, the multiplication of each cmi · xi can

be done in parallel. Parallel computation should be followed by a modulus M adder to

complete the CRT procedure. This adder is usually large and can adversely affect the

reverse conversion’s hardware implementation. Below is an example for reverse conversion

using CRT.

Example 2.5.1. Find the number whose remainders are (2, 3, 2) to the divisors {3, 5, 7}.
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First, we find both Mj and |M−1
j |mj as follows

[m1 = 3]⇒M1 = 5 · 7 = 35

|M−1
1 |3 = |35|3 = 2

[m2 = 5]⇒M2 = 3 · 7 = 21

|M−1
2 |5 = |21|5 = 1

[m3 = 7]⇒M3 = 3 · 5 = 15

|M−1
3 |7 = |15|7 = 1

Next, we perform cmi · xi as follows.

C = 2 · (35 · 2) + 3 · (21 · 1) + 2 · (15 · 1) = 233

Lastly, we reduce C mod M :

|C|M = |105|M ≡ 23

where M = 3 · 5 · 7 = 105

It is important to note that the above last step is necessary to get the desired result in

the RNS dynamic range. Therefore, this might increase the complexity for large dynamic

range M , where costly division is involved.

2.5.2 Reverse conversion using MRS

The advantage of reverse conversion using MRS is that it does not exceed the dynamic range

M as in CRT. Accordingly, this will eliminate an expensive division by M . However reverse

conversion using MRS requires an extra step- conversion to the mixed radix equivalent as

described in Section 2.3.
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Example 2.5.2. Recalling Ex. 2.3.1, for RNS(85)B
RNS−−−→ (1, 0, 1), with B = {3, 5, 7}, the

MRS(85) is (1, 3, 5). Thus, the reverse conversion can be performed simply as below:

C = 1 + 3 · (3) + 5 · (3 · 5) = 85

We note that for a large moduli set the conversion from RNS to decimal is relatively faster

using CRT than MRS as it can involve parallel computation.
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Chapter 3

Homomorphic Encryption

These days, cryptography is being used much more widely than ever before. Cryptography

has led to the development of various security functions such as encryption. For a special

class of encryption, known as homomorphic encryption, the encrypted data can be directly

used for complex operations without being decrypted. Homomorphic encryption is however

not supported by traditional cryptosystems and has largely remained impractical to date.

This chapter presents a literature review on homomorphic encryption by highlighting

several researchers’ contributions to this field. Section 3.1 provides a survey of previous

proposed schemes that partially fulfill the homomorphic property; this section also ad-

dresses basic homomorphic definitions and properties and presents a literature review of

fully homomorphic encryption schemes. Section 3.2 provides a descriptive presentation of

Gentry et al. in [45] scheme and its variant proposed by Coron et al. in [12]. Finally,

Section 3.3 presents a ciphertext batch generalization by Coron et al.
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3.1 Homomorphic encryption

Homomorphic encryption (HE) allows a specific operation to be performed directly on

ciphertexts and generate another ciphertext that encodes the equivalent operation between

plaintexts as follows:

Enc(ma αm mb) ≡ Enc(ma) αc Enc(mb)

where αm and αc are operations over message and ciphertext space, respectively. It is

worthwhile to indicate that αm and αc might not be the same. We say that an encryption

is an additive homomorphic encryption if αm is ⊕, and multiplicative homomorphic if αm is

×. In addition, HE scheme would be able to homomorphically evaluate a specific function

of degree L over encrypted data up to a certain level. HE is also known as a somewhat

homomorphic scheme (SWHE).

Since the proposal of HE initial idea by Rivest et al. [35], different homomorphic

schemes have been proposed, but they are either insecure or can only support one type of

operations (additive or multiplicative) and are known as partially homomorphic schemes.

Such an additive homomorphic scheme was proposed by Goldwasser and Silvio [23] in 1982.

The Goldwasser scheme was secure, nonetheless inefficient because it encrypted one bit with

ciphertext usually of size 1024-bits [Enc(m1)×Enc(m2) ≡ Enc(m1⊕mm2)]. Later in the

probabilistic encryption version [30], Naccache and Stern proposed an additive scheme that

enhanced the poor expansion rate in [23]. In 1999, similar to [23], a scheme was proposed

by Paillier in [31], and its derivative was proposed by Damgrd, and Jurik in [15]. In addi-

tion, existing public key encryption schemes, namely, Rivest, Shamir, and Adleman [36],

and Taher Elgamal [16] can perform homomorphic multiplication. Furthermore, schemes

as in [2, 5] allowe arbitrary homomorphic additions with limited multiplication depth. It
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is worthwhile mentioning that the Sanders, Young and Yung scheme [37] is able to eval-

uate circuits in NC11, with logarithmic depth, at the expense of exponentially expanding

ciphertext size with circuit depth, hence, increasing their communication complexity and

restricting their circuit to logarithmic depth. The rest of this section provides some basic

definitions.

Basic homomorphic definitions

The following definitions are mostly adopted from Gentry et al. [45].

The scheme ζ ≡ (KeyGen,Encrypt, Eval, Decrypt) is said to be a correct homo-

morphic scheme, if ζ can evaluate any function with arithmetic depth d (namely E(∗)),

which composed of addition and multiplication operations, directly on n-tuple ciphertexts

C = (c1, c2, · · · , cn) and we have the equivalent result over a massage space as follows:

f(m1,m2, ...,mn) ≡ Decrypt(sk, Eval(pk,E(c1, c2, ..., cn))

where ci ←− Encrypt(pk,mi) with a key pair (sk, pk) ←− KeyGen(∗) and massage mi.

And f(∗) is the equivalent function of E(∗) over the message space.

Furthermore, the homomorphic scheme ζ is said to be a compact scheme, if the size

of cout−Eval ←− Eval(pk,E(c1, c2, ..., cn)) is within defined bounds, regardless of the size

or the depth of Eval(pk, ∗). The compactness property controls the practicality and the

security of the scheme; for instance uncompact homomorphically multiplicative scheme can

reveal the depth of multiplication by analyzing the size of Eval(pk, ∗)’s output.

Most likely Eval(pk, ∗) is publicly known; thus the security proof of ζ scheme does not

involve the evaluation function. However, it is essential to security requirements that the

1NCi is the class of decision problems, s.t. NC1 ⊆ NC2... ⊆ NC, computed by boolean circuits of

polynomial number of gates of at most two inputs, and depth O(logi n)
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output of Eval(pk, ∗) does not reveal the inputs (∗) even for third party who has the secret

key sk.

3.1.1 Fully homomorphic encryption (FHE)

An encryption scheme is said to be fully homomorphic when it implicitly allows evaluating

an arbitrary Boolean circuit over plaintexts by only manipulating the ciphertexts.

In 2009, Gentry [20], in his pioneering work, constructed the first fully homomorphic

encryption scheme. The scheme’s security was based on ideal lattices worst-case problems

[21] along with a sparse subset-sum problem. First, he constructed a HE scheme with

limited multiplication operations namely, a somewhat homomorphic scheme (SWHE). In

SWHE, the ciphertext is constructed with inner noise that grows linearly with addition

and exponentially with multiplication, which limits SWHE’s operation depth up to a cer-

tain bound. In order to achieve the FHE scheme, Gentry's second step was to squash

the decryption circuit so it is transformed to a low degree polynomial. Finally, Gentry’s

breakthrough was refreshing the ciphertext noise using bootstrapping procedure. The pro-

cedure homomorphically evaluates the low degree decryption circuit on the encryption of

the secret key. The result is refreshed ciphertext, which encrypts the original plaintext

under different distribution with reduced noise. Therefore, the SWHE scheme with limited

homomorphic operations is transformed into a fully homomorphic scheme with unlimited

homomorphic operations.

Besides their aggressive analysis on the hardness assumptions of [20], Stehl and Steinfeld

[40] described two optimization techniques for Gentry’s scheme. Their first optimization

technique was proposed to reduce the number of vectors in the sparse subset-sum problem;

their second one was to reduce the degree of the decryption polynomial. The authors
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of [39] suggested several optimization techniques to implement Gentry’s original scheme

with relatively small key and ciphertext size; yet, the implementation did not achieve

the bootstrapping functionality that is needed to have a FHE scheme. However, using

the optimization techniques in [39] and the first optimization in [40] along with other

techniques, Gentry and Halevi in [22] successively implemented the original Gentry scheme.

Since Gentry’s blueprint, fully homomorphic encryption may be divided into three main

groups based on their security assumptions

• Fully homomorphic encryption based on ideal lattices proposed by Gentry in [20]:

The earlier implementation was due to Smart and Vercauteren [39]. They were able

to implement the SWHE of Gentry’s original scheme; but unfortunately, their imple-

mentation was not bootstrappable. Employing the suggestion of [39] with technical

optimization, the authors of [22] introduced the first fully implementation of [20] but

without any enhancement in the performance.

• Fully homomorphic encryption based on Learning with error (LWE) problem pro-

posed by Barkerski and Vaikuntananthan in [8]: The scheme security is based on the

worst-case hardness of short vector problems on arbitrary lattices. The authors also

presented a new dimension-modulus reduction technique that shortens the ciphertext,

which allows [8] to achieve a bootstrapping functionality.

• Fully homomorphic encryption over integers proposed by Dijk, Gentry, Halevi, and

Vaikuntanathan [45]: The DGHV security is based on the hardness of the approxi-

mate greatest common divisors problem (A-GCD).
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3.2 Fully homomorphic encryption over integers

Following Gentry’s footsteps in [20], DGHV first constructed SWHE using modulo algebraic

arithmetic, which has limited operation depth. Then they squashed the decryption circuit

and realized bootstrapping to achieve a fully homomorphic encryption scheme by just

operating over integers instead of complex ideal lattices. In general, DGHV is conceptually

simpler than Gentry’s original scheme [20]. This simplicity comes at the expense of large

public key size (around O(λ10) to avoid lattice attacks for a security parameter λ), making

the DGHV scheme far from practical. In order to reduce DGHV complexity, an attempt by

Coron et al. [13] reduced the public key size toO(λ7). In addition, and for similar security

parameters of [13], Coron et al. [14] were able to obtain 10.1 MB public key instead of 802

MB for the full implementation.

However, DGHV requires a bootstrapping procedure after each homomorphic multipli-

cation which is quite expensive. Thus, alternative techniques (so-caled modulus switching

technique (MS)) were proposed in [6] and implemented for DGHV in [14]. In addition, a

scale-invariant to DGHV was introduced in [12] (SI-DGHV) where the authors adopted

some optimization techniques from [13], and public key compression and modulus switch-

ing technique from [14]. They also introduced an optimization to the MS scalar product

to improve SI-DGHV performance; yet, SI-DGHV over integers is still far from practical,

since encryption, decryption and MS take about 5min, 24s and 4.37min, respectively.

As our work focuses on FHE over integers, we provide a bit detailed overview of DGHV

[45] and its variant in [12]. First, we will follow Gentry’s footsteps for constructing a FHE,

and provide a general description of the SWHE scheme with some examples for both [45]

and [12]. Secondly and toward fully homomorphism, two techniques, namely bootstrapping

and modulus switching, are introduced where the former is described in brief and the latter
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in more details.

3.2.1 DGHV over integers

This section first provides a brief description of the somewhat homomorphic encryption

DGHV (SMHE-DGHV) scheme. For this, first we introduce some notations: for a real

number x, we denote bxc, dxe and dxc to be the lower, upper and nearest integer to x,

respectively; moreover, for two integers a and b, we denote |a|b to be a residue modulo b

∈ (−b/2, b/2). However, for a security parameter λ the construction of DGHV is described

as follow:

DGHV.KeyGen(λ): Set the secret key to be a random prime integer p of size η, and let

the distribution over γ and ρ bits integer to be:

Dγ,ρ(p) =
{

choose q ∈ Z ∩ [0, 2γ/p), r ∈ Z ∩ (−2ρ, 2ρ) : Outputs x = pq + r
}

To obtain public key elements, sample xi ←− Dγ,ρ(p) for i = 0, 1, ..., τ , then re-label

them, so that x0 would be the largest. Restart unless x0 is odd and [x0]p is even.

Thus public key elements are pk = {x0, x1, ..., xτ}.

DGHV.Enc(pk, m ∈ {0, 1}): Choose a random subset S ⊆ {1, 2, 3, ..., τ}, and a random

integer r ∈ (−2ρ, 2ρ), output:

c = [ 2
∑
i∈S

xi + 2r +m ]x0 (3.1)

DGHV.Evaluate(pk, C, c1, c2, ..., ct): For a circuit C with t input bits and t cipher-

texts, apply the addition and multiplication gates of C to ciphertexts, by performing

all addition and multiplication over the integers, and then output the resultant inte-

ger.
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DGHV.Dec(sk, c): Output m = ( |c|p ) mod 2

SWHE scheme has limited number of homomorphic operations (known as depth) be-

cause the ciphertext’s inner noise grows with respect to the depth and operation type

(addition or multiplication). For illustration purposes, simpler version of Eq. (3.1) is uti-

lized to analysis the noise growth. The simplified ciphertext would then be equivalent to

the following:

c = p · q + 2r +m

where the same DGHV.Dec(*,*) function can be used to recover the message bit m.

Now, given two ciphertexts c1 and c2, the addition over the integers can be performed as

follows:

c1 + c2 = (pq1 + 2r1 +m1) + (pq2 + 2r2 +m2)

c3 = c1 + c2 = p · (q1 + q2) + 2 · (r1 + r2) + (m1 +m2)

where m3 = m1 +m2, r3 = r1 + r2; hence the noise grows at most by ρ+ 1 bits.

The multiplication operation over the integers can also be performed as follows:

c1 · c2 = c4 = p2 · (q1q2) + p · (2q1r2 + 2q2r1 + q1m2 + q2m1)

+4 · (r1r2) + 2 · (r1m2 + r2m1) + (m1m2)

c4 = p · q4 + 2r4 +m4

where m4 = m1m2, r4 = 2r1r2+r1m2+r2m1 and q4 = p·(q1q2)+2q1r2+2q2r1+q1m2+q2m1.

we note that the size of noise growth is 2ρ bits. However, in order to perform correct

decryption the size of the noise should not exceed the modulo size (secret key p), thus we

need:

−p/4 < r3 = r1 + r2 < p/4 for addition

−p/4 < r4 = 2r1r2 + r1m2 + r2m1 < p/4 for multiplication
(3.2)
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For the addition operation, it is obvious that the noise grows linearly with the addition

depth; for instance, the noise growth for the summation of d fresh2 ciphertexts would be at

most of (ρ+ d+ 1) bits. However, the multiplication dominates the noise growth, where it

can say that the noise for multiply d fresh ciphertexts would be d·(ρ+1) bits. Therefor, the

SWHE scheme can perform at most (η−2)/(ρ+1) successful multiplication on ciphertext.

Example 3.2.1. For the hypothetical parameters γ = 18-bits, η = 12-bits, ρ = 4-bits,

and τ = 4, encrypt both m1=1 and m2=0, and determine homomorphically m1 ⊕m2 and

m1 ⊗m2 using DGHV scheme.

First, we generate the private and the public keys

DGHV.KeyGen(λ = 2) ⇒ p = 4013

⇒ x0 = 256846 ←− r = 14, q = 64

⇒ x1 = 232757 ←− r = 3, q = 58

⇒ x2 = 248796 ←− r = −10, q = 62

⇒ x3 = 224714 ←− r = −14, q = 56

⇒ x4 = 240783 ←− r = 3, q = 60

Note that, p is kept secret and pk is [x0, x1, x2, x3, x4]=[256846,248796, 240783, 232757,

224714], with x0 be the largest one s.t. |x0|2 = 1 and ||x0|p|2 = 0.

Secondly, obtain the encryption of both m1 and m2: c1 = DGHV.Enc(pk,m1 = 1) and

c2 = DGHV.Enc(pk,m2 = 0)

c1 = [ 2 (232757 + 224714) + 2(−11) + 1 ]256846 = 208667 for S ∈ {1, 3}

c2 = [ 2 (224714 + 240783) + 2(7) + 0 ]256846 = 160560 for S ∈ {3, 4}

2fresh implies that cipher with noise size ρ bits.
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Thirdly, evaluate both m1 ⊕m2 and m1 ⊗m2: the addition and the multiplication of

c1 and c2 are

c3 = c1 + c2 = 208667 + 160560 = 369227

c4 = c1 · c2 = 208667 · 160560 = 33503573520

Finally, in order to check the correctness of the example scheme setting, we will decrypt

both ciphertexts c3 and c4, but first we note that we have to use Eq. (2.1) to perform

|369227|sk

DGHV.Dec(sk = 4013, c3) ⇒ |(|369227|sk)|2 = 1 ≡ m1 +m2

DGHV.Dec(sk = 4013, c4) ⇒ |(|33503573520|sk)|2 = 0 ≡ m1 ·m2

which is correct.

Indeed, the question now is how many multiplications our SWHE-DGHV can perform

correctly. Let us naively analyze the noise bound to obtain the depth of multiplications. Re-

calling Eq. (2.1) which its result would be ∈ (−p/2, p/2), and knowing that p ∈ [2η−1, 2η),

thus the multiplication depth d using Eq. (3.2) is:

2(ρ+1)·d < 2η−3 < p/4 < 2η−2

d <
η − 2

ρ+ 1

In our example d < 12−2
4+1

= 2. Then for correct decryption we have less than two multipli-

cations. Actually, Gentry et al. [45] also considered the bootstrapping procedure in their

noise bound and they had:

d 6
η − 4− log |f⇀|

ρ+ 2

where |f⇀| is the norm of the multivariate polynomial f(x1;x2; ...;xt) computed by C∗.

C∗ is the associated integer circuit of a Boolean circuit C with t inputs (see [45]).
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Security of SWHE-DGHV

DGHV scheme’s security is based on the hardness of the Approximate-GCD problem that

is defined below:

Definition 3.2.1. (Approximate-GCD) The (ρ, η, γ)-Approximate-GCD problem is: given

polynomially many samples from Dγ,ρ(p) for a random odd integer p of η bits, determine

p, where Dγ,ρ(p), which is a distribution over η bits integer, defined as

Dγ,ρ(p) =
{
choose q ∈ Z ∩ [0, 2γ/p), r ∈ Z ∩ (−2ρ, 2ρ) : Outputs x = pq + r

}
Thus Approximate-GCD simply tries to guess the common near divisor, namely sk = p,

from the list of public keys x0, x1, ..., xτ , where xi = Dγ,ρ(p) . However, this section

discuss known attacks on just two public elements. Considering Approximate-GCD samples

{x0, x1, ..., xt}, there is a known brute-force attack that approximates the great common

divisor of two samples xi and xj, by guessing ri and rj ∈ (−2ρ, 2ρ). The attacker in each

iteration applies p∗ ← gcd(xi, xj), and considering p∗ as a solution if its bit-size equals to η.

Accordingly, the attack running time is approximately 22ρ. Using the Stehle-Zimmermann

algorithm [41] to compute the GCD with time complexity O(γ), the overall brute-force

attack complexity would be 22ρ · O(γ), and accordingly, the size of the noise ρ would be

ω(log λ).

Moreover, there is a variant of the brute-force attack based on factoring xi to determine

η bit factor p∗, and then consider p∗ to be a solution if p∗ is a divisor of xj. The authors

of [45] show that using the Lenstras elliptic curve factoring algorithm [27], the attack

complexity is approximately 2ρ+
√
η. Lattice-based attacks on Approximate-GCD, such as

the attack proposed by Howgrave-Graham (see [26]), the attacker has an advantage when

(ρ/γ) < (η/γ)2. Therefore, γ should satisfy ω(η2 log(λ)).
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In general, the SWHE scheme’s parameters must meet some constraints to avoid known

attacks such as the Howgrave-Graham attack. For a security parameter λ, the scheme’s

parameters are listed in the follow:

• ρ = ω(log λ), to avoid brute-force attacks on the noise

• η ≥ ρ ·Θ(λ log2 λ), to support homomorphic operation for a certain depth.

• γ = ω(η2 log λ), to thwart various lattice-based attacks on the underlying Approxi-

mate GCD problem.

• τ ≥ γ + ω(log λ), to apply the leftover hash Lemma 3.2.1 in the reduction of

Approximate-GCD.

In order to satisfy the above constraints, the SWHE scheme’s parameter can be taken as

ρ = λ, η = O(λ2), γ = O(λ5) and τ = γ+λ [45], which result in a scheme with complexity

O(λ10).

Accomplishing fully homomorphic DGHV scheme

In order to transform the SWHE-DGHV scheme to be fully homomorphic scheme, the

authors of [45] followed Gentry’s blueprint in [20] by homomorphically computing the de-

cryption equation m∗ ⇐= [c − bc/pe]2. Unfortunately, SWHE was incapable of evaluating

their decryption circuit because the decryption circuit required a Boolean circuit with

depth more than SWHE can reach. Thus, squashing the decryption circuit is required to

allow and make SWHE bootstrappable. Consequently, this requires adding extra elements

to make the scheme bootstrappable. The extra elements assemble the secret key in the

form of a large set of secret sparse subsets that sums to the original secret key (sk = p);
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here, the security relies on a sparse subset-sum problem. The procedure is briefly described

in the following:

m∗ ⇐= [c∗ − b
∑
i∈S

sizie]2

where si ∈ {0, 1} and zi ⇐= c∗ ·yi (mod 2), condition to sk sparse 1/p (mod 2)⇐=
∑

i∈S yi

such that b
∑

i∈S sizie (mod 2)⇒ bc/pe, (see [45] for full description).

Further, the idea of bootstrapping is to run the decryption circuit homomorphically on

the noisy ciphertext using an encrypted secret key (given the public key), to obtain fresh

ciphertext with less noise and different distribution that encrypts the same message m.

However, bootstrapping is quite expensive. Thus an alternative technique was proposed in

[6] and implemented for the DGHV in [14]. The new technique, a.k.a. modulus switching

technique, is used to reduce the noise by transforming the ciphertext’s encryption key from

sk1 into a smaller key sk2. It is worthwhile to pointout that the noise is scaled by a factor

of sk2/sk1. Consequently and for d multiplication depth, the modulus switching technique

requires a storage of d secret keys (ski)1≤i≤d, which will increase the storage requirement.

Coron et al. [12] proposed a clever trick that is used to transform a ciphertext’s encryption

key from p2 into a smaller key p, thus scale the noise by 1/p. The new modulus switching

procedure allows SWHE to be leveled FHE scheme whose noise size grows linearly with

the multiplications depth. The following section presents full description of the Coron et

al. procedure.

3.2.2 Homomorphic encryption scheme of Coron et al.

In [12], Coron et al. proposed a variant of the DGHV scheme (denoted as SI-DGHV)

which is considered Leveled FHE scheme as described later in this section. However, the
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SI-DGHV scheme works over mod p2 instead of mod p as in the original DGHV scheme.

The scheme encrypts a message m ∈ {0, 1} as the most significant bit of the ciphertext

c (mod p), rather than the least significant bit (as in the DGHV). Altogether, SWHE

SI-DGHV ciphertext is formulated as follows:

c = q p2 +
p− 1

2
(m+ 2r∗) + r (3.3)

where log2(c) ≤ γ, q ∈ [0, 2γ/p2) ∩ Z, and r and r∗ of size ρ and ρ∗ bits, respectively.

In addition, the ciphertext in Eq. (3.3) is denoted as a type-I ciphertext that can be de-

crypted using m←− (|2 · c|p)mod 2. SWHE SI-DGHV ciphertext is homomorphic scheme,

such that, for two given ciphertexts c1 and c2 which encrypts m1 and m2, respectively.

c1 = q1 p
2 +

p− 1

2
(m1 + 2r∗1) + r1

c2 = q2 p
2 +

p− 1

2
(m2 + 2r∗2) + r2

The addition of c1 and c2 is equivalent to the encryption of | m1 +m2 |2 as follows:

c1 + c2 = (q1 + q2) p2 + p−1
2

( (m1 +m2) + 2r∗3) + (r1 + r2)

where r3 and r∗3 of size ρ+ 1, and ρ∗ + 1, respectively.

The multiplication of c1 and c2 is equivalent to the encryption of | m1 ·m2 |2 as follows:

cp = 2c1c2 = (q∗p) p
2 + (p−1)2

2
(m1 + 2r∗1)(m2 + 2r∗2) + r∗p

cp = (q∗p) p
2 + p2−1

2
(m1 m2) + rp

(3.4)

where c4 is known as type-II ciphertext with noise rp of size ≤ η + ρ+ ρ∗ + 4 .

In contrary to the addition operation where the noise growth linearly with addition

depth; the multiplication operation transforms a ciphertext type-I to type-II whose noise

is greater than modulus p and less than modulus p2.
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Making the SWHE scheme fully homomorphic

The author of [12] used a Convert procedure to convert type-II ciphertext modulo p2

back to t type-I ciphertex by scaling down the product of the ciphertext cp. The concept

of Convert procedure is similar to modulus switching technique in [14] where instead of

switching ciphertext with modulo p to another with modulo p∗, and accordingly scaling

the noise by p∗/p; the Convert procedure will transform a ciphertext with modulo p2 to

another with modulo p to scale the noise by p/p2.

It is important to address the fact that the factor p/p2 should remain secret. There-

fore, 2η

p2
is hidden in sparse subset-sum problem, and p

2η+1 encrypted in cipher type-I. The

following provides a description of the Convert procedure:

First, secure 2η

p2
by generating sparse subset-sum problem s.t.

2η

p2
= 〈s, z〉+ ε mod 2η with ε ≤ 2−k (3.5)

where s is a vector of Θ bits, kept secret and encrypted in Eq. (3.6). z is a vector of Θ

rational numbers, ∈ [0, 2η), of k precision after binary point.

In addition, different ways are proposed to generate the vector z, naive one proposed

by [9], is by randomly select zi ∈ [0, 2η)2≤i≤Θ, then set z1 that gives
∑

i∈S si zi for a random

set s. Other approach proposed as practical implementation is used in [12]. However, the

secret vector s along with p
2η+1 have to be secured as in the following step.

Secondly, encrypt the secrets s and p
2η+1 in Θ element vector σ.

σ = q p2 + r +
⌊
s · p

2η+1

⌉
(3.6)

where q ←− (Z ∩ [0, q0))Θ and r ←− (Z ∩ (−2ρ, 2ρ))Θ are integers.
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Then we have

c' = 2〈σ, c〉 =⇒ 2 · p2 · 〈q, c〉+ 2〈r, c〉+
2 · p
2η+1

〈c, s〉

where c = (|bc · zie|2η)1≤i≤Θ.

Even though 2p
2η+1 · 〈c, s〉 should scale down the ciphertext by 1/p which reduces the

inner cipher c noise, the multiplication itself adds noise formed in 2〈r, c〉 as well as expands

the size of the ciphertext formed in 2p2 · 〈q, c〉.

In order to reduce the noise and compact the ciphertext, the authors of [12] used

BitDecompη(∗) and PowerOfTwoη(∗) procedures defined in terms of a and b ∈ ZΘ as

follows

BitDecompη(a) ⇒ (a0, a1, a2, · · · aη−1 ) ∈ {0, 1}Θη with ai ∈ {0, 1}Θ

PowerOfTwoη(b) ⇒ (b, 2b, 22b, · · · , 2η−1b) ∈ ZΘη

The approach squashes the multiplicand c = (|bc · zie|2η)1≤i≤Θ in the (Θ× η) matrix using

c∗ ←− BitDecompη(c) and expands s using PowerOfTwoη(s).

The convert procedure requires extra public key elements, namely the vector z and σ

that is defined as follows:

σ = q p2 + r +
⌊
PowerOfTwoη(s) ·

p

2η+1

⌉
Finally, transform ciphertext type-II to type-I as follows:

c′ = 2〈σ, c∗〉 = 2 · p2 · 〈q, c∗〉+ 2〈r, c∗〉+
p

2η
〈c∗, s〉

The output is type-I ciphertext with noise of size ρ′ = ρ+ log2 Θ + 9 and ρ∗′ = log2 Θ;

thus the noise grows linearly with multiplication operation and by additive factor of log2 Θ+

9 bits.

To sum up, the scheme’s full description for a security parameter λ is outlined as follows:
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SI-DGHV.KeyGen(λ): Generate odd η bit integer p and γ bits integer x0 = q0 p
2 + r0

with r0 ←− Z∩(−2ρ, 2ρ) and q0 ←− Z∩ [0, 2γ/p2); thus, for the defined distribution

over η bit integers:

Dρp,q0 =
{
choose q ∈ Z ∩ [0, q0), r ∈ Z ∩ (−2ρ, 2ρ) : Outputs x = q p2 + r

}
• Sample xi ←− Dρp,q0 for i = 0, 1, ..., τ of size γ.

• Compute y = y∗ + (p− 1)/2 with y∗ ←− Dρp,q0 .

• Let z be vector of Θ elements, with k = 2γ + 2 bits of precision after binary

point, and s is a vector of Θ bits s.t.

2η

p2
= 〈s, z〉+ ε mod 2η

with ε ≤ 2−k.

• Finally compute

σ = q p2 + r +
⌊
PowerOfTwoη(s) ·

p

2η+1

⌉
where q and r are random vectors chosen from (Z∩[0, q0))ηΘ, (Z∩(−2ρ, 2ρ))ηΘ,

respectively.

Output the secret key sk = {p}, and the public key pk = {x0, x1, ..., xτ , y,σ, z}.

SI-DGHV.Enc(pk, m ∈ {0, 1}): Choose a random subset S ⊆ {1, 2, 3, ..., τ} and out-

put:

c←− [
∑
i∈S

xi +m y]x0 (3.7)

SI-DGHV.Evaluate(pk, c1, c2): The evaluation function performs addition, multipli-

cation and conversion from type-II to type-I operation on ciphertext c.
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• SI-DGHV.Add(pk, c1, c2). Output c3 = |c1 + c2|x0

• SI-DGHV.Convert(pk, c). Output c∗ = 2 〈σ, BitDecompη(c)〉. with c = (|bc ·

zie|2η)1≤i≤Θ.

• SI-DGHV.Mult(pk, c1, c2). Output c←− | SI-DGHV.Convert(pk, 2 c1 · c2) |x0

SI-DGHV.Dec(sk, c}): Output m←− (|2c|p)mod 2

Example 3.2.2. Let us consider a toy example of encrypting m1 = 1 and m2 = 1 and

homomorphically evaluating m1 ⊕m2 and m1 ·m2 : For given security parameter λ = 2

and η = 14 γ = 32, ρ = 5, τ = 5, Θ = 6, the implementation of SIDGHV FHE can be

formed as follows:

SI-DGHV.KeyGen(λ = 2) ⇒ p = 13127

q0p
2 + r ⇒ x0 = 4135635100 ←− r0 = 4, q0 = 24

Dρp,q0 ⇒ x1 = 1895499415 ←− r = −4, q = 11

Dρp,q0 ⇒ x2 = 861590644 ←− r = −1, q = 5

Dρp,q0 ⇒ x3 = 2584771933 ←− r = −2, q = 15

Dρp,q0 ⇒ x4 = 2584771937 ←− r = 2, q = 15

Dρp,q0 ⇒ x5 = 1550863158 ←− r = −3, q = 9

Dρp,q0 + p−1
2
⇒ y = 3963323525 ←− r = −5, q = 23

Randomly generate the public vector z of size Θ− 1 and then randomly choose the secret

subset Sz ⊆ {1, 2, ...,Θ−1}. Lastly, append zΘ−i that satisfies Eq. (3.5) where i is selected

randomly, and accordingly, set the secret vector s. Thus we have the following:

z = [2.9431247067265853e−05, 3.0096133401769087e−05, 1.772869756397344e−05,

2.5342163695651898e−05, 2.7395711602901107e−05, 2.0524299050181383e−05]

s = [1, 0, 1, 0, 1, 1]
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and accordingly, using Eq. (3.2.2), we get:

σ =


861590641 1206226906 ...

2929408194 ... ...

... ... 2929411474

... 172319767 2929411471


(Θ,η)=(4,14)

Thus the secret key p = 13127, and the public key ←− {x0, x1, x3, x4, x5, y,z,σ}.

Using public key elements, the ciphertext c1 and c2 can be obtained as follows:

c1 = SI-DGHV.Enc(pk,m1) = [(861590644 + 2584771937) + 3963323525]x0

= 3274051006

c2 = SI-DGHV.Enc(pk,m2) = [(1895499415 + 1550863158) + 3963323525]x0

= 3274050998

where Sc1 = {2, 4} and Sc2 = {1, 5}.

The example first evolution (m1 ⊕m2) can be homomorphically made over the integer

as follows:

c1 + c2 = 3274051006 + 3274050998 = 6548102004

= [6548102004]x0=4135635100 = 2412466904 for compactness

Let us now decrepit (c1 +c2) in order to check the correctness of the example SI-DGHV

setting. We have | ( |2412466904|13127 ) |2 = 0, which implies that | ( |c1 + c2|13127) |2 ≡

m1 ⊕m2 = 0.

The example second evaluation (m1 ·m2) can also be performed over integers as follows:

c4 = 2 c1 × c2 = 2× 3274051006× 3274050998 = 10719409963697203988
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Indeed, c4 is type-II ciphertext that is needed to be converted back to type-I ciphertext.

Therefore, compute c = (|bc × zie|2η)1≤i≤Θ = [4740, 7232, 12236, 693, 12636, 11157], then

c∗ = BitDecomp14(c) and the recovered type-I ciphertext is

c∗p = 2〈c∗,σ〉 = 183346508674

In fact, the type-I ciphertext c∗4 is 44 times x0 (s.t. c∗4 = 44x0 + 1378564274); thus to

preserve the ciphertext compactness compute cp = |c∗4|x0 = 1378564274.

Remark. This very last step is important at it provides compactness to the SI-DGHV

scheme as well erase any trace of the SI-DGHV.Evaluate(pk, c1, c2) procedure.

To check the correctness of SI-DGHV homomorphic multiplication, let us decrepit cp:

||1378564274|13127|2 = 1, which implies that ||c1 × c2|13127|2 ≡ m1 ×m2 = 1.

Security of SI-DGHV scheme

Unlike the DGHV scheme, the security of the SI-DGHV scheme is based on a decisional

version of Approximate-GCD problem 3.2.1. The Decisional Approximate-GCD problem

is defined as follows:

Definition 3.2.2. (Decisional Approximate-GCD problem) The (ρ, η, γ)-Decisional Ap-

proximate GCD problem is: Let p be a random odd integer of η bits, q0 and r0 are uni-

formly distributed over Z∩ [0, 2γ/p2) and Z∩ (−2ρ, 2ρ), respectively. Given x0 = p2q0 +r0

and polynomially many samples from Dρp,q0 and y ←− Dρp,q0 + p−1
2

, determine b ∈ {0, 1}

from z = x+ b× r(mod x0) where x←− Dρp,q0 and r ←− [0, x0) ∩ Z.

Simply, try to distinguish the integer z to be over the distribution Dρp,q0 from being truly

uniform integers ∈ [0, x0). The definition of Decisional Approximate-GCD that adopted
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by [12], and proposed by [9], does not consider public key elements σ and z; however,

as an attacking scenario, the attacker has to guess b∗ with probability Pr[b∗ = 1/b =

0] − Pr[b∗ = 0/b = 0] < εnegl. Further, we have Pr[b∗ = 1/b = 0] = 1/2 because
∑

i∈S xi

(mod x0) has a distribution with statistical distance from the uniform distribution at most

ε ≤ 1
2
|DSI−DGHV −Duniform|∀x∈pk. This can be proved using the following modified leftover

hash lemma (LHL) used by [45]:

Lemma 3.2.1. Set x1, · · · , xτ ←− Z2γ uniformly and independently, and set y =
∑

i∈S xi

mod 2γ with random subset S ⊆ {1, 2, ..., τ}. Then (x1, ..., xτ , y) is 1
2

√
2γ/2τ -uniform over

Zτ+1
2γ .

Therefore, to make the distance ε = 2
1
2

(γ−τ) negligible, the constraint on the public key

over Dρp,q0 should satisfy τ > γ + 2λ.

3.3 Batching SI-DGHV scheme

In general, the process of compacting l bits (m0,m1, · · · ,ml−1) into a single ciphertext

and yet supporting pairwise homomorphic evaluation over each mi, is known as batching

a homomorphic scheme. The authors of [12] proposed generalization of batch setting in

[7, 11, 8]. The batch generalization forms RNS with respect to base Bp of (l) co-prime

moduli p2
0, ..., p

2
l−1. Consequently, the public key elements would be:

x0 = q0 · π2 + CRTBp(r0,0, ..., rl−1,0)

xj = qj · π2 + CRTBp(r0,j, ..., rl−1,j) j ∈ [0, τ)

yi = qi · π2 + CRTBp(r0,i, ..., rl−1,i) +
pi − 1

2
·
∏l−1

j=0,j 6=i p
2
i i ∈ [0, l)

(3.8)

where π =
∏l−1

i=0 pi is co-prime with q0 ∈ [0, 2γ/π2), and qj, qi ∈ Z∩ [0, q0) , r0, ..., rl−1 ∈

Z ∩ (−2ρ, 2ρ).
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Moreover, using the encryption function of (3.7), the batched ciphertext has the fol-

lowing form:

CCRT ← CRTq0,Bp

(
q, r0 + (2r∗0 +m0) · p0 − 1

2
, ..., rl−1 + (2r∗l−1 +ml−1) · pl−1 − 1

2

)
(3.9)

Because of the independence between the RNS channels, the addition of two CCRT
1 +CCRT

2

yields a new ciphertext CCRT
3 that encrypts the bitwise sum modulo 2 to decryption of

both CCRT
1 and CCRT

2 . Also, the multiplication of CCRT
1 and CCRT

2 yields componentwise

batched ciphertext of type-II.

c(i)
p ≡ r(i)

p + (m(i)
p ) ·

p2
l−1 − 1

2
(mod pi)

Similar to the un-batched ciphertext of type-II, the corresponding batched ciphertext

can be converted using the same SI-DGHV.Convert(∗) procedure but for z be vector of

Θ elements, with k = 2γ + 2 bits of precision after binary point. Also, we have s to be l

vectors of Θ bits s.t.

2η

p2
i

= 〈si, z〉+ εi mod 2η ∀i ∈ [0, l )

with εi ≤ 2−k.

Accordingly, and for s̃i = PowerOfTwoη(si), we have σ = (σ1, σ2, ...,σηΘ) with σi

defined as follows:

σi = CRTq0, Bp

(
qi, r0,i +

⌊
( ˜s0,i) ·

p0

2η+1

⌉
, · · · , rl−1,i +

⌊
( ˜sl−1,i) ·

pl − 1

2η+1

⌉)
where q and r are random vectors chosen from (Z∩ [0, q0))ηΘ, (Z∩ (−2ρ, 2ρ))ηΘ, respec-

tively.
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Therefore, and for cp = (|b CCRT
p · zie|2η)1≤i≤Θ, the recovered type-I batched ciphertext

is

c∗ ← 2〈σ, BitDecompη(cp)〉

51



Chapter 4

RNS version of Fully Homomorphic

Encryption over Integers

4.1 Problem statement

The homomorphic encryption proposed in [45] and its variant [12], are still considered

to be far from practical because they deal with very large integers and require a huge

amount of operations. This issue has motivated us to improve the practicality of the

scheme in [12] (and [45] as well) by adopting SI-DGHV.Mult(*) and SI-DGHV.Add(*) in

RNS, as well as the SI-DGHV.Convert(*) procedure. The RNS adoption will improve

the timing performance of SI-DGHV which, by virtue of RNS, the SI-DGHV.Evaluate(*)

and SI-DGHV.Convert(*) operate in parallel and over relatively small size moduli. The

RNS version of SI-DGHV.Convert(*) preserves the original procedure functionality with

improvement in the security hardness by eliminating the need for a sparse subset sum

problem in the security requirement.
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Other optimizations are available to enhance the multiplication complexity of [12]; for

instance, one can use an efficient multiplication algorithm such as Karatsuba, Toom-Cook,

and Schonhage-Strassen. Different optimization techniques have been already adopted by

Coron et al. such as the one-multiplication technique [14], τ reduction technique [13],

and public key compression techniques [14, 11]. These techniques are related to the ex-

pensive procedures required by the subset-sum assumption. Our variant can utilize the

public key compression techniques [14, 11]; however, it does not require the use of the

one-multiplication technique and the τ reduction because RNS.Convert(*) uses slightly

different approach than SI-DGHV.Convert(*).

This chapter presents the RNS variant of the SI-DGHV scheme [12]. Section 4.2 in-

troduces the main concept of an RNS variant, and Section 4.3 presents the RNS’s actual

implementation. RNS base constraints, the Montgomery modulo reduction, base conver-

sion, and ciphertext batching are introduced in Sections 4.4, 4.5, 4.6 and 4.8. Section 4.9

provides a semantic security proof of the RNS variant. Finally, Sections 4.10 and 4.11

present our complexity estimation and noise growth analysis for both schemes.

4.2 Preliminary

In this section a general overview of the RNS variant of [12] is presented.

Recalling the SI-DGHV scheme, the encryption of message mi with a given prime

integer p of size η is:

ci = qi p
2 +

p− 1

2
(mi + 2r∗i ) + ri (4.1)

where ci, ri and r∗i are of size γ, ρ and ρ∗ bits, respectively, and q ∈ [0, 2γ/p2).
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As discussed in Chapter 2 and for a given proper RNS base B with M =
∏n

i=0mi >

22γ+2, the ciphertext (4.1) can be uniquely represented in the RNS base. Similar to [12],

the execution of SI-DGHV.mult(∗) and SI-DGHV.add(∗) can be done correctly and in

parallel over the RNS base. Furthermore, the result from SI-DGHV.mult(∗) is ciphertext

of type-II (cp formulated in Eq. (3.4)) that has to be scaled by a factor of 1/p in order to

restore type-I ciphertext which can be performed using SI-DGHV .Convert(∗). Unlike to

[12], the RNS version of SI-DGHV .Convert(∗) (hereafter simply RNS.Convert(∗)) does

not use the subset-sum problem to hide the secret key.

The RNS.Convert(∗) will use the following two lemmas.

Lemma 4.2.1. Given integers M > 22γ and M∗ > 0, there is an integer χ =

⌊
M ×M∗

p2

⌋
that scales a type-II ciphertext cp ∈ [0, 22γ) by M∗/p2 as follows:

⌊ c
M
χ
⌋

=

⌊
cM∗

p2

⌋
+ δ (4.2)

where δ is an integer in the interval [0, 2).

Proof. We have:

c

M
(
M ×M∗

p2
− 1) <

c

M
χ ≤ c×M∗

p2

0 ≤ c×M∗

p2
− c

M
χ <

c

M
< 1

which concludes the proof.

Lemma 4.2.2. For an even integer M∗ and a given ciphertext as in Eq. (3.4) with log2(rp) <

ρx = η + ρ+ ρ∗ + 4, we have⌊
c ·M∗

p2

⌋
= qp ·M∗ +

M∗

2
mp + r (4.3)
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where |r| < M∗

p2
(2ρx + 0.5).

Proof. From Lemma 4.2.1 and Eq. (3.4), we have⌊
cM∗

p2

⌋
≤ cM∗

p2

(
q∗p · p2 +

p2 − 1

2
(m1 ·m2) + rp

)
= qp ·M∗ +

M∗

2
·mp +

M∗

p2
(rp −mp/2);

then |r| ≤ M∗

p2
· (|rp|+mp/2) <

M∗

p2
(2ρx + 1/2).

From the two previous lemmas, scaling cp can be obtained as follows:

p

M∗ ·
⌊ c
M
χ
⌋

= qp · p+
p− 1

2
·mp + r∗∗ (4.4)

or alternatively

p

M∗

⌊ c
M
χ
⌋

=
p− 1

2
(2qp +mp) + r∗∗

where r∗∗ =
p

M∗ · (δ + r); hence, |r∗∗| < max(2 · p

M∗ ,
1

p
· (2ρx + 0.5) ) and the result is

type-I ciphertext with noise that is scaled by 1/p.

4.3 RNS implementation

Through this chapter, we will use two RNS co-prime bases B = {m1, ...,mn} with M =∏n
i=0mi and B∗ = {m∗1, ...,m∗t} with M∗ =

∏t
i=0 m

∗
i s.t. gcd(M,M∗) = 1. Moreover, we

will assume that the modulus bit size in both bases are the same and equal to V bits;

thus, for an integer c, the RNS representations are denoted as |c|B ≡ (|c|m1 , ..., |c|mn) and

|c|B∗ ≡ (|c|m∗
1
, ..., |c|m∗

t
) in bases B and B∗, respectively.

However, the main idea of RNS.Convert(∗) is to perform the computation specified in

Eq. (4.2) in RNS as follows: ⌊ c
M
· χ
⌋

=
cp · χ− |cp · χ|M

M
(4.5)
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Accordingly, we can compute cp · |χ ·M−1|M∗ in base B∗, and |cp · χ|M in base B, then

compute over all |cp ·χ|M · |M−1|M∗ over B∗. Lastly, the output of Eq. (4.5) will be in base

B∗ which needs to be converted back to base B for further evaluation.

Eq. (4.5) requires the result of the multiplication, cp = 2c1 · c2, to be in B ∪B∗ because

we need both |cp|B and |cp|B∗ . This extra multiplication over base B∗ is of low cost with t

elementary multiplications over relatively small size moduli.

However, χ and the factor p/M∗ in Eq. (4.4) contain the secret p, thus it must be

encrypted using SI-DGHV distribution Dρp,q0 . The following is complete description of the

RNS.convert(∗) procedure which is divided into two main procedures (cp · |χ ·M−1|M∗ and

|cp · χ|M · |M−1|M∗) followed by reduction modulo x0.

Computing cp · |χ ·M−1|M∗ . The computation will be done in base B∗; thus we need

cp in B∗ and χ ·M−1 (mod M∗). Furthermore, and in order to have correct multiplication,

cp has to be assembled on the fly using the following definition of DecB∗(∗) and PowB∗(∗)

functions:

DecB∗(cp) =

( ∣∣∣∣cp · m∗1M∗

∣∣∣∣
m∗

1

,

∣∣∣∣cp · m∗2M∗

∣∣∣∣
m∗

2

, ... ,

∣∣∣∣cp · m∗tM∗

∣∣∣∣
m∗
t

)

PowB∗(|χ ·M−1|M∗) =

( ∣∣∣∣χ ·M−1M
∗

m∗1

∣∣∣∣
M∗

,

∣∣∣∣χ ·M−1M
∗

m∗2

∣∣∣∣
M∗

, ...,

∣∣∣∣χ ·M−1M
∗

m∗t

∣∣∣∣
M∗

)
(4.6)

Thus we have 〈DecB∗(cp), PowB∗(|χ ·M−1|M∗)〉 ≡ cp · χ ·M−1 (mod M∗).

As mentioned above, χ, which is represented in the vector PowB∗(|χ ·M−1|M∗), along

with the factor p/M∗, must be encrypted using Dρp,q0 . For this reason, we generate the

vector of encryptions KB∗ as follows:

KB∗ = p2 q + r +

⌊
p

2M∗ · PowB∗(|χ ·M−1|M∗)

⌉
∈ [0, 2γ )t (4.7)
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where q ∈ [0, 2γ/p2)t and r ∈ (−2ρ, 2ρ)t.

Computing −|cp · χ|M · |M−1|M∗ . From Eq. (4.5), the computation of |cp · χ| has to

be in B and at same time the inverse of M in base B∗; but, we need both computations in

base B∗. Therefore we will use an equivalent as follows:

n∑
i=1

|cp|mi · |χ ·M−1
i |mi ·Mi = |cp · χ|M + α ·M , 0 ≤ α < n · 2v (4.8)

where Mi = M/mi.

Similar to the previous computation, the term |χ ·M−1
i |mi has to be encrypted as well:

KB = p2 q + r +

(⌊
p

2M∗ ·
∣∣∣∣− |χ ·M−1

i |mi m−1
i

∣∣∣∣
M∗

⌉)
1≤i≤n

(4.9)

where q ∈ [0, 2γ/p2)n and r ∈ (−2ρ, 2ρ)n.

Run RNS.convert(KB, KB∗ , |cp|B∗ , |cp|B). Let us consider both vectors KB and KB∗

to be pre-computed and publicly known; thus for a given cp in both bases (|cp|B∗ , |cp|B),

we compute on-the-fly DecB∗(|cp|B∗) and then output

ctype−I ← 2 · [
〈
DecB∗

(
|cp|B∗

)
, KB∗

〉
+
〈
|cp|B, KB

〉
] (4.10)

where 〈a, b〉 is the dot product of vectors a and b. We note that Eq. (4.10) is computed

over base B∗.

Lemma 4.3.1. Let c1 and c2 be two type-I ciphertexts with noise size at most (ρtype1, V +

log2(t + n)), and cp = 2c1 · c2 be a type-II ciphertext with noise size ρtype2 ≤ η + ρtype1 +

V + log2(t + n) + 4. Using RNS.Convert(∗) in Eq. (4.10), the conversion of cp, with

ρtype2 ≥ max(η + ρtype1 + V + log2(t + n) + 4, 2η + t(1 − V)), is a type-I ciphertext, with

noise (ρtype1, ρ
∗
type1) ≤ (ρtype2+2−η, V+log2(t+n)). The procedure yields type-I ciphertext

with a noise growth at most V + log2(t+ n) + 6 bits.
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Proof. For the first computation of RNS.Convert(∗), we have:

2 ·
〈
DecB∗

(
|cp|B∗

)
,KB∗

〉
= p2 Q∗ +R∗ + 2

〈
DecB∗

(
|cp|B∗

)
,

⌊
p

2M∗ PowB∗(|χ ·M−1|M∗)

⌉〉
(4.11)

where: {
Q∗ = 2

∑t
i=1 |cp

m∗i
M∗ |m∗

i
qi → 0 < Q∗ < t 2γ+V+1−2η

R∗ = 2
∑t

i=1 |cp
m∗i
M∗ |m∗

i
ri → |R∗| < t 2ρ+V+1

moreover, there exist real numbers vi ∈ [−1, 1) ∀ 1 ≤ i ≤ t.

2

⌊
p

2M∗ · PowB∗(|χ ·M−1|M∗)

⌉
=

p

M∗ · PowB∗(|χ ·M−1|M∗) + (vi)1≤i≤t

=
p

M∗ · (|χ ·M
−1 M∗

i |M∗)1≤i≤t + (vi)1≤i≤t

Therefore, the last term in (4.11) can be obtained as follows :

2
〈
DecB∗(cp),

⌊
p

2M∗ PowB∗(|χM−1|M∗)

⌉〉
=

p

M∗

∑t
i=1 |cpM

∗−1
i |m∗

i
|χM−1M∗

i |M∗

+
∑t

i=1 |cpM
∗−1
i |m∗

i
vi

=
p

M∗ (|cpχM−1|M∗ + α∗M∗) + V ∗

=
p

M∗ |cpχM
−1|M∗ + α∗p+ V ∗

(4.12)

where |V ∗|, α∗ < t 2V .

Next step, computing the second term in RNS.Convert(∗) as follows

2 ·
〈
|cp|B, KB

〉
= p2 Q+R + 2

〈
|cp|B,

(⌊
p

2M∗ ·
∣∣∣∣− |χ ·M−1

i |mi m−1
i

∣∣∣∣
M∗

⌉)
1≤i≤n

〉
(4.13)

where {
Q = 2

∑n
i=1 |cp|mi · qi → 0 < Q < n 2γ+V+1−2η

R = 2
∑n

i=1 |cp|mi · ri → |R| < n 2ρ+V+1
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Similarly, there exist real numbers v∗i ∈ [−1, 1) ∀ 1 ≤ i ≤ n .

2

⌊
p

2M∗

∣∣∣∣− |χ ·M−1
i |mi m−1

i

∣∣∣∣
M∗

⌉
=

p

M∗ ·
(∣∣∣∣− |χ ·M−1

i |mi m−1
i

∣∣∣∣
M∗

)
1≤i≤n

+ (v∗i )1≤i≤n

Therefore, 2
〈
|cp|B,

(⌊
p

2M∗ ·
∣∣∣∣− |χ ·M−1

i |mi m−1
i

∣∣∣∣
M∗

⌉)
1≤i≤n

〉
can be obtained as follows:

=
p

M∗

∑n
i=1 |cp|mi ·

∣∣∣∣− |χ ·M−1
i |mi m−1

i

∣∣∣∣
M∗

+
∑n

i=1 |cp|miv∗i

=
p

M∗ (| −
∑n

i=1 |cp|mi · |χ ·M
−1
i |miMi M

−1|M∗ + α1M
∗) + V

=
p

M∗ (| − (|cp · χ|M + α2M) M−1|M∗) + α1p+ V

=
p

M∗ (| − |cp · χ|M M−1|M∗) + α3p+ V

(4.14)

where V =
∑n

i=1 |cp|miv∗i , α1 and α2 < n 2V and α3 < n 2V+1.

Finally, we can compute and analyze Eq. (4.4) by employing (4.10) as follows:

2 · [
〈
DecB∗

(
|cp|B∗

)
, KB∗

〉
+
〈
|cp|B, KB

〉
] = P 2(Q+Q∗) + (R +R∗)

+ 2
〈
DecB∗(cp),

⌊
p

2M∗ PowB∗(|χM−1|M∗)

⌉〉
+ 2
〈
|cp|B,

(⌊
p

2M∗ ·
∣∣∣∣− |χ ·M−1

i |mi m−1
i

∣∣∣∣
M∗

⌉)
1≤i≤n

〉
(4.15)

and use the results from Eq. (4.12) and Eq. (4.14) as follows:

2
〈
DecB∗(cp),

⌊
p

2M∗ PowB∗(|χM−1|M∗)

⌉〉
+ 2
〈
|cp|B,

(⌊
p

2M∗

∣∣∣∣− |χM−1
i |mi m−1

i

∣∣∣∣
M∗

⌉)
1≤i≤n

〉
=

p

M∗ 〈DecB∗(cp), PowB∗(|χM−1|M∗)〉+ V ∗

− p

M∗ 〈|cp|B,
(∣∣∣∣− |χ ·M−1

i |mi m−1
i

∣∣∣∣
M∗

)
1≤i≤n

〉
− V

=
p

M∗

( ⌊ c
M
χ
⌋

+ α4 M
∗)+ e (4.16)

where e = V ∗ − V and α4 is an integer.
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Using Eq. (4.4), the right hand side of (4.16) can be written as:

p

M∗

( ⌊ c
M
χ
⌋

+ α4 M
∗)+ e

= p qp +
p− 1

2
·mp + r∗∗ + α4 · p+ e

= p q∗p +
p− 1

2
·mp + r∗∗∗

=
p− 1

2
· (2q∗p +mp) + r∗∗∗2

where

|r∗∗| = max(2 · p

M∗ ,
1

p
(2ρx + 0.5) )

|r∗∗∗| = |r∗∗ + e| < (t+ n) 2V + max(2 · p

M∗ ,
1

p
(2ρtype2 + 0.5) )

q∗p < (t+ n) 2V

|r∗∗∗2 | = (q∗p + r∗∗∗) < (t+ n) 2V+1 + max(2 · p

M∗ ,
1

p
(2ρtype2 + 0.5) )

It is worthwhile to mention that q∗p and r∗∗∗2 are integers since α4 and e are integers.

In conclusion, from (4.15) we obtain:

ctype−I = Q p2 +R +
p− 1

2
(2q∗p +mp) + r∗∗∗2 (4.17)

with

Q = (t+ n) 2γ+V+1−2η

q∗p < (t+ n) 2V

|R| < (t+ n) 2ρtype1+V+1

|r∗∗∗2 | ' max(2ρx+1−η, 2η+1+t(1−V))

ctype−I < (t+ n) 2γ+V+2

(4.18)

which concludes the proof.
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4.4 Constraints on RNS bases

For base B, M has to contain the product of two ciphertext (cp = 2c1 · c2); thus, it

should satisfy M =
∏n

i=1mi > 22γ+1. Accordingly, the dynamic space of B∗ should satisfy

M∗ > (n+ t) 2γ+V+3 in order to contain the recovered ctype−I in (4.17).

Following the assumption that the size of the moduli in both bases B and B∗ are the

same and equal to V bits, and it is sufficient to have:

n(V − 1) ≥ 2γ + 2

t(V − 1) ≥ log2(t+ n) + γ + V + 3

Moreover, it is necessity to have 2γ + 1 < nV , in all the above, we assumed that mi ∈

[2V−1, 2V − 1], and gcd(mi,mj) = 1 with (i 6= j).

In addition, We note that for asymptotic computational complexity, the relationship

between n and the ciphertext size γ = O(λφ) can be written as:

n ∈ O(
λφ

β · log2(2λ)
) (4.19)

for an integer β satisfying γ ∈ Ω(λβ) and an integer φ that satisfies the scheme security

requirements (i.e., φ = 5 in DGHV).

Proof. The number of primes of size V bits is

(#primes < 2V) ≈ 2V

V · ln(2)

and to satisfy M > 22γ+5, we have:

γ ≈ 2V

2 ln(2)
− 5

2

Thus V ≈ log2((2γ + 5) · ln(2)), and for γ ∈ Ω(λβ) we have

n ∈ O(
λφ

β · log2(2λ) + log2(ln(2))
) ≈ O(

λφ

β · log2(2λ)
)
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4.5 Reduce the result modulo x0

From (4.18), the quantity obtained in (4.17) has at most log2(t+n)+V+2 extra bits than

type-I ciphertext. Thus, the ciphertext in (4.17) has to be reduced modulo x0 in order to

preserve the scheme’s compactness.

Furthermore, the reduction has to be in the RNS base, which can be achieved including

a new auxiliary modulus m̃ into base B∗. This decompose a new base B̃ as B∗ ∪ m̃ (and

accordingly M̃ = M∗ · m̃).

Therefore, for an odd modulus m̃ co-prime to x0 and M∗, we can define a reduction of

the quantity obtained in (4.17) as follows:

c̃ =
ctype−I + x0 · | − ctype−I/x0|m̃

m̃
≡ ctype−I · m̃−1 mod x0 (4.20)

From above, the suggested value for the auxiliary modulus is m̃ ≥ 2γ+k

x0

which limits

|c̃| < x0 + 2γ · 2k

m̃
≤ 2x0 and we also have k = log2(t+ n) + V + 2 (see Eq. (4.18)).

However, the result from Eq. (4.20) will have an extra element m̃−1. To eliminate m̃−1,

we will multiply the recovered ciphertext ctype−I by m̃ and get c∗type−I . But we want to

perform this multiplication without any extra cost, thus the multiplication will be impeded

in RNS.Convert(∗) procedure by modifying both KB and KB∗ to be:

K̃B̃ = |(p2 · q + r) · m̃|x0 + m̃ ·
⌊

p

2M∗ · PowB̃(|χ ·M−1|M∗)

⌉
(4.21)

K̃B = |(p2 · q + r) · m̃|x0 + m̃ ·
(⌊

p

2M∗ ·
∣∣∣∣− |χ ·M−1

i |mi m−1
i

∣∣∣∣
M∗

⌉)
1≤i≤n

(4.22)

The procedure described in the following lemma.
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Lemma 4.5.1. For a given type-II ciphertext cp in both bases B̃ and B (|cp|B̃ and |cp|B),

the type-I ciphertext c∗type−I can be obtained using both K̃B and K̃B̃ as follows:

c∗type−I ← RNS.convert(K̃B, K̃B̃, |cp|B̃, |cp|B). (4.23)

where B̃ as B∗ ∪ m̃.

Proof. As a sketch proof that follows the same procedures in the proof of Lemma 4.3.1,

then for a vector y = DecB̃
(
|cp|B̃

)
∪ |cp|B where yi < 2V , we have:

c∗type−I = 2 ·
(t+1)+n∑
i=1

yi · |(p2 · qi + ri) · m̃|x0 + m̃(
p− 1

2
· (2q∗p +mp) + r∗∗∗2 )

where from (4.11) we have an equivalent 2m̃ ·
〈
DecB̃

(
|cp|B̃

)
,

⌊
p

2M∗ · PowB̃(|χ ·M−1|M∗)

⌉〉
,

and from (4.13), we have 2m̃ ·
〈
|cp|B,

(⌊
p

2M∗ ·
∣∣∣∣ − |χ · M−1

i |mi m−1
i

∣∣∣∣
M∗

⌉)
1≤i≤n

〉
. Thus

adding them both we get m̃ · (p− 1

2
· (2q∗p +mp) + r∗∗∗2 ) which conclude the proof.

As a remark, we have:∑(t+1)+n
i=1 yi · |(p2 · q + r) · m̃|x0 = |(p2 ·

∑(t+1)+n
i=1 yi · qi +

∑(t+1)+n
i=1 yi · ri) · m̃|x0 + αx0

= |(p2 ·Q+R) · m̃|x0 + αx0

where α ≤ (t+ n) · 2V .

Finally, we are ready to perform the reduction modulo x0 as described in the following

lemma.

Lemma 4.5.2. For a recovered ciphertext c∗type−I in (4.7) and an auxiliary modulus m̃ >

(t+ n) · 2V+1 + 2, the reduction modulo x0 of c∗type−I can be done using (4.20).
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Proof. For a given c∗type−I in (4.7) and using (4.20), we have:

c̃ =
c∗type−I + x0 · | − c∗type−I/x0|m̃

m̃

=
|(p2 ·Q+R) · m̃|x0 + αx0 + x0 · | − ((p2 ·Q+R) · m̃|x0 + αx0)/x0|m̃

m̃

+
p− 1

2
(2q∗p +mp) + r∗∗∗2

= p2 ·Q+R + α∗x0 + (
p− 1

2
· (2q∗p +mp) + r∗∗∗2 )

= p2 ·Q∗ +R∗ + (
p− 1

2
· (2q∗p +mp) + r∗∗∗2 )

(4.24)

where α∗ is an integer, Q∗ = Q + α∗q0 and |R∗| ≤ |R + α∗r0| < (t + n) · 2ρtype1+V+4 when

x0 = p2q0 + r0.

Moreover, from (4.24), by using central reminder theorem | − ((p2 · Q + R) · m̃|x0 +

αx0)/x0|m̃ < m̃/2, and |(p2·Q+R)·m̃|x0 < x0, then we have |p2·Q∗+R∗| < x0·(0.5+
α + 1

m̃
).

Assume that h = (0.5 +
α + 1

m̃
) is a rational number; thus to reduce c∗type−I , we should

have h < 1. In order to have h < 1, and given that α ≤ (t + n) · 2V (see Lemma 4.5.1

proof) , we have

0.5m̃ > α + 1

m̃ > (t+ n) · 2V+1 + 2 (4.25)

Finally, using m̃ > (t+ n) · 2V+1 + 2, the reduced ciphertext modulo x0 is given below

c̃ = q̃ p2 + r̃ +
p− 1

2
(2q∗p +mp) (4.26)

where r̃ = R∗ + r∗∗∗2 , q̃ = Q∗ and with

q∗p = (t+ n) 2V

|r̃| < (t+ n) · 2ρtype1+V+4 + max(2ρx+1−η, 2η+1+t(1−V))

c̃ < x0

(4.27)

which conclude the proof.
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The above implies that the RNS dynamic space M has to contain |2c1c2| < 2(x0)2;

accordingly, the system’s dynamic space should satisfy M > 22γ+1.

4.6 Exact base conversion

Up to now, we have recovered compact type-I ciphertext in base B∗ (4.26). To complete

the next level of evaluations, we need to perform base conversion B∗ → B. A naive way

to perform a base conversion is to reconstruct |c̃|B∗ into the positional number system and

then convert it back to RNS in base B. The whole procedure is illustrated in the following:

The CRT’s Eq. (2.14) can be rewritten as follows

t−1∑
i=0

|ci ·M
∗

i

−1|m∗
i
·M∗

i = c̃+ αM∗ (4.28)

where 0 < α ≤ t− 1.

Then, RNS forward conversion, to base B, can be applied on (4.28) to have |c̃∗|B.

c̃∗i = |c̃|mi + |αM∗|mi ∀ i ∈ [0, n) (4.29)

Yet, the result is not an exact base conversion due to the extra term |αM∗|mi . Therefore,

to obtain the correct |c̃|B, we have to subtract |αM∗|B from |c̃∗|B which requires finding α.

The authors in [38] proposed a technique to obtain α by using an extra redundant modulus

m∗t > t. Their procedure obtains α by taking (4.28) modulo m∗t as follows:

t−1∑
i=0

∣∣∣∣|ci ·M ∗

i

−1|m∗
i
·M∗

i

∣∣∣∣
m∗
t

= c̃t +
∣∣αM∗∣∣

m∗
t

(4.30)

where c̃t =
∣∣c̃∣∣

m∗
t

which could be carried out through the computation of (4.26) or use base
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extension. Finally, rearrange the above to have [38]:

α =

∣∣∣∣|M∗−1|m∗
t
·
( t−1∑
i=0

∣∣∣∣|ci ·M ∗

i

−1|m∗
i
·M∗

i

∣∣∣∣
m∗
t

− c̃t
)∣∣∣∣
m∗
t

(4.31)

Lemma 4.6.1. For an integer c̃ < x0 in RNS base B∗ with M∗ ·m∗t > x0 and m∗t ≥ t, the

exact base conversion (|c̃|B∗ → |c̃|B) is:

|c̃|B =

(∣∣∣∣ t−1∑
i=0

∣∣∣∣|ci ·M ∗

i

−1|m∗
i
·M∗

i

∣∣∣∣
mj

− |αM∗|mj
∣∣∣∣
mj

)
0≤j<n

(4.32)

where α

α =

∣∣∣∣|M∗−1|m∗
t
·
( t−1∑
i=0

∣∣∣∣|ci ·M ∗

i

−1|m∗
i
·M∗

i

∣∣∣∣
m∗
t

− c̃t
)∣∣∣∣
m∗
t

The work of Bajard et al. used further optimization to reduce the size of M∗ by

adopting part of m∗t in the dynamic space M∗ as follows [3]:

Lemma 4.6.2. For an integer c̃ < 3 ·x0 in RNS base B∗ with M∗ = M∗∗ ·β > 3x0 for β ≥ 1,

the exact base conversion (|c̃|B∗ → |c̃|B) using (4.32) and (4.31) follows the assumption

that m∗t ≥ 2 · (t− 1 + dβe) and M∗∗ · β > 3x0.

4.7 Putting it together

Below, we sketch the new RNS variant scheme showing the sequence in which various

procedures are called.

RNS homomorphic evaluation: The evaluation is done over both bases (B and B∗)

and over m∗t and m̃. For two type-I ciphertexts C1 and C2, the RNS evaluation is:

C1 + C2
RNS−−−→ (|c1 + c2|B, |c1 + c2|B∗∪ m̃ ∪m∗

t
)

C1 × C2
RNS−−−→ (|c1 × c2|B, |c1 × c2|B∗∪ m̃ ∪m∗

t
)
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RNS convert procedure: RNS.Convert(∗) procedure is used to transform a noisy type-

II to type-I ciphertext with a scaled noise. The procedure as described in Section 4.3

is performed over both bases B and B̃∗ = B∗ ∪ m̃ ∪m∗t , and the result will be in B̃∗.

|c∗type−I |B̃∗ ← RNS.convert(K̃B, K̃B̃∗ , |cp|B̃∗ , |cp|B).

Reduction modulo x0: The reduction is used to preserve the scheme’s compactness and

performed over B∗ ∪m∗t .

Exact base conversion: This is the very last procedure in our RNS variant. The proce-

dure is used to recover the base B and modulus m̃ for the next level of evaluation.

Figure 4.1: A block diagram showing the sequence of various procedures of the new RNS

variant scheme.
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To sum up, the previous sections show how the new RNS variant successfully recovers

and reduces type-I ciphertexts and Figure 4.1 depicts how the RNS moduli change from

one procedure to another.

4.8 Ciphertext batching

Similar to [7, 11, 8] and [12], and as described in Chapter 3, the type-I ciphertext for a

given l bit message (mi)0≤i<l−1 encrypted using secret p0, ..., pl−1 of η bits is:

c = q · π2 + CRTBp

(
r0 + (2r∗0 +m0) · p0 − 1

2
, ..., rl−1 + (2r∗l−1 +ml−1) · pl−1 − 1

2

)
where π =

∏l−1
i=0 pi is co-prime with q0 ∈ [0, 2γ/π2), and log2(|ri|) < ρ, log2(|r∗i |) < ρ∗ and

q ∈ Z ∩ [0, q0).

Thus, the multiplication of c1 and c2 yields component wise batched type-II ciphertext.

c(i)
p ≡ r(i)

p + (m(i)
p ) ·

p2
l−1 − 1

2
(mod p2

i )

with similar noise log2(|r(i)
p |) < ρx = η + ρ+ ρ∗ + 4 as un-batched ciphertext type-II.

Like the un-batched ciphertext type-II, the batched ciphertext type-II can be converted

using the same RNS.Convert(∗) procedure. Therefore, using Lemma 4.2.1 and 4.2.2, we

associate χi =

⌊
M ×M∗

p2
i

⌋
for each secret pi. Now we define the batched version of both

KB and KB∗ as follows:

KB = π2 q +

(
CRTBp

((
ri,j +

⌊
pi

2M∗

∣∣∣∣− |χi ·M−1
j |mj m−1

j

∣∣∣∣
M∗

⌉)
0≤i<l−1

))
1≤j≤n

(4.33)
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and

KB∗ = π2 q∗ +
(
CRTBp

((
r−i,j +

⌊
pi

2M∗

∣∣∣∣χi ·M−1 · M
∗

m∗j

∣∣∣∣
M∗

⌉)
0≤i<l−1

))
1≤j<t

(4.34)

where q ∈ [0, q0)n and ri,j ∈ (−2ρ, 2ρ) and q∗ ∈ [0, q0)t, r−i,j ∈ (−2ρ, 2ρ).

4.9 Semantic security

The semantic security of the RNS variant follows the variant of the Approximate-GCD

problem introduced in [9] and [12]. For given an integer z, it is hard to distinguish whether

z is from Dρp,q0 or a truly uniform integer ∈ [0, x0), where:

Dρp,q0 =
{
choose q ←− Z ∩ [0, q0), r ←− Z ∩ (−2ρ, 2ρ) : Outputs x = q p2 + r

}
Definition 4.9.1. (Decisional Approximate-GCD problem) The (ρ, η, γ)-Decisional Approximate-

GCD problem is: for a random η bit prime p, given a γ bit integer x0 = p2q0 + r0 and

polynomially many samples from Dρp,q0 and y ←− Dρp,q0 + p−1
2

, determine b ∈ {0, 1} from

z = x+ b× r (mod x0) where x←− Dρp,q0 and r ←− [0, x0) ∩ Z.

The assumption is that the Decisional Approximate-GCD problem is hard for any

polynomial time attacker which implies the hardness of determining whether b is 0 or 1.

Similarly, using the reduction of the Decisional Approximate-GCD problem [9], the se-

curity of batched RNS variant is based on (ρ, η, γ)-l-Decisional Approximate-GCD problem

which is as in the original scheme. Below is the problem definition:

Definition 4.9.2. (l-Decisional Approximate-GCD problem) The (ρ, η, γ,)-l-Decisional

Approximate-GCD problem is: Consider l random η bit primes p0, p1, ...pl−1, and a γ bit
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integer x0 = π2q0+CRTp0,...pl−1
(r0, ...rl−1) where q0 ∈ Z∩[0, 2γ/p2), and ri ∈ Z∩(−2ρ, 2ρ).

Given polynomially many samples from Dρq0,p1,...pl−1
and yi ←− Dρq0,p1,...pl−1

+
pi − 1

2
·∏l−1

j=0,j 6=i p
2
i for 0 ≤ i < l, determine b ∈ {0, 1} from z = x + b × c ( mod x0) where

x←− Dρq0,p1,...pl−1
, c←− [0, x0) ∩ Z and

Dρq0,p1,...pl−1
=
{

Outputs CRTq0,p0,...pl−1
(q, r0, ...rl−1) : q ∈ Z ∩ [0, q0), ri ∈ Z ∩ (−2ρ, 2ρ)

}
.

In addition, the RNS variant scheme is semantically secure under extra public key

elements KB∗ and KB; and since the security of both KB∗ and KB only depend on Decisional

Approximate-GCD problem as in the previous work [12, 9, 14], the RNS variant’s security is

based on Decisional Approximate-GCD assumptions. Therefore, the RNS variant enhances

the security assumption of FHE over integers by eliminating the need for subset sum

problem.

4.10 Estimation of complexity

Throughout this section, we will use the definition of elementary operations over a word

that fits in V bits. Thus each V bits of positional number system is considered as a word.

Now our elementary operations are defined as follows: 1

• Elementary multiplication of two words denoted as EM and the notation for modulo

reduction is M.

• Elementary modular multiplication is denoted as EMM which corresponds to an

elementary multiplication modulo mi (i.e. |2c1 · c2|B requires n EMM).

1The notation are mostly adopted from Bajard et al. [3].
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• Dot modular product over x moduli is denoted as DMPx. This is costlier compared

to EM and EMM; yet, the cost of the inner modulo reduction can be reduced by

using lazy reduction (i.e. 〈|a|B, |b|B〉 requires n DMPn where n = #B )

Another remark, to simplify our complexity estimation, the estimation does not consider

the two auxiliary moduli m̃ and m∗t since t, and n >> 2.

For bases B ≡ {m1, ...,mn} and B∗ ≡ {m∗1, ...,m∗t}, the multiplication between two

type-I ciphertexts (2c1 · c2) has to be done in both bases B and B∗; therefore, we need n+ t

EMM.

Furthermore, to convert from type-II to type-I, we have to compute (4.10), throughout

(4.11) and (4.13) requiring t EMM, t2 DMPt and nt DMPn. This cost can be reduced to

(t+ t2 + nt) EMM and (t+ 1) M using lazy reduction:

DecB∗(cp) =

( ∣∣∣∣cp · m∗1M∗

∣∣∣∣
m∗

1

,

∣∣∣∣cp · m∗2M∗

∣∣∣∣
m∗

2

, ... ,

∣∣∣∣cp · m∗tM∗

∣∣∣∣
m∗
t

)
⇒ t EMM

and

ctype−I ← 2 · [
〈
DecB∗

(
|cp|B∗

)
, KB∗

〉
+
〈
|cp|B, KB

〉
]⇒ t2 DMPt + nt DMPn

In addition, the Montgomery reduction in Section 4.5 requires 2+ t EMM in total using

(4.20) in bases B∗:

c̃ =
ctype−I + x0 · | − ctype−I/x0|m̃

m̃
⇒ 2 + t EMM

Lastly, exact base conversion, as indicated in Section4.6, requires nt+ 3t+ 1 EMM and

n M:

t−1∑
i=0

∣∣∣∣|ci ·M ∗

i

−1|m∗
i
·M∗

i

∣∣∣∣
m∗
t

= c̃t +
∣∣αM∗∣∣

m∗
t
⇒ t EMM
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α =

∣∣∣∣|M∗−1|m∗
t
·
( t−1∑
i=0

∣∣∣∣|ci ·M ∗

i

−1|m∗
i
·M∗

i

∣∣∣∣
m∗
t

− c̃t
)∣∣∣∣
m∗
t

⇒ 1 EMM

|c̃|B =

(∣∣∣∣ t−1∑
i=0

∣∣∣∣|ci ·M ∗

i

−1|m∗
i
·M∗

i

∣∣∣∣
mj

− |αM∗|mj
∣∣∣∣
mj

)
0≤j<n

⇒ t(n+ 2) EMM and n M

Therefore, the total cost for RNS multiplication and conversion is:

C = (t2 + 6t+ n+ 2nt+ 3) EMM + (t+ n+ 1) M

= (
5

4
n2 + 4n+ 3) EMM + (

3

2
n+ 1) M

for n ≈ 2t.

It is easy to show that the original scheme’s complexity is Θ · n2 + t2 which can be

rewritten as Θ · n2 + n2/4. Roughly, the complexity comparison between two schemes is:

(
5

4
n2 + 4n+ 3) EMM vs (Θ · n2 + n2/4) EM

Therefore, the asymptotic complexity comparison for the two schemes is

O(n2) vs O(Θ · n2)

The original scheme complexity can be reduced from O(Θ · n2) to O(Θ · n1+ε) where

ε depends on the underlying multiplication algorithm such as Karatsuba, Toom-Cook or

Schonhage-Strassen (e.g., ε = 0.585 using the Karatsuba algorithm). In addition, the RNS

variant of [12] can be fully parallelized, and accordingly one can have an area and a delay

linearly with n (i.e., Cdelay = O(n)).

Therefore, using the approximation Θ ∼ ω(n), the RNS variant shows an advantage

over the original scheme by almost n.
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4.11 Noise growth analysis

This section discusses the noise analysis of both schemes. The analysis compares the noise

added by each scheme. The compression will be in the asymptotic sense and based on the

previous implementation parameters. As described in Chapter 3, using SI-DGHV.Convert(*)

procedure, the recovered type-I ciphertext will have a noise of size:

ρp = ρ+ log2(Θ) + 9

ρ∗p = log2(Θ)
(4.35)

where ρ is the noise size of the original ciphertext and Θ is the vector size of the public

key z. In addition, it has also been shown (in Section 4.3) that the noise growth in the

RNS variant is around

ρp = ρ+ V + log2(n+ t) + 6

ρ∗p = V + log2(n+ t)
(4.36)

where n and t are the number of RNS mudoli of V bits.

Therefore, the asymptotic comparison of the RNS variant and the original scheme is:

O(2λ+ φ · log2(3λ)− log2(2β · log2(2λ)) ) vs O(λ+ log2(L · λ)) (4.37)

where γ = O(λφ), V < O(λ), and L is the depth of homomorphic operation.

This indicates that the FHE over integers becomes leveled FHE in the sense that it has

certain level of operation depth. Considering that for a type-I ciphertext (as in (4.17)),

the noise level should not exceed:

2ρ + 2ρ
∗
< p/4

|r∗∗∗2 |+ |q∗p| < p/4
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To have a fair compassion, we can compute the actual level of operations that both

schemes can reach under the same security parameters.

dRNS <
η − 2− ρ

V + log2(n+ t) + 6

dSI-DGHV <
η − 2− ρ

log2(Θ) + 9

Therefore, we have:

dRNS <
log2(Θ) + 9

V + log2(n+ t) + 6
· dSI-DGHV

For using the same security parameters dRNS ≈ 0.39 · dSI-DGHV. We note that the two

schemes have different parameters affecting the noise growth– the RNS variant is mainly

affected by ciphertext size whereas the SI-DGHV depends on the subset sum assumption.

Accordingly, more optimization has to be done for the RNS variant’s security parameters

to improve its performance.

Lastly, the noise growth in the RNS.Convert(∗) procedure can be signaficantly reduced

by using BitDecompV(∗) and PowerOfTwoV(∗) techniques (as in the original scheme)

where the noise growth will be around ≈ log2(V) + log2(n + t) + 6. The adoption will

improve the variant multiplication depth to be dRNS ≈ 0.72 · dSI-DGHV.

4.12 Public key size

Here we briefly discuss the extra public key elements required for SI-DGHV.Convert(∗)

and RNS.Convert(∗). In the original scheme [12], the SI-DGHV.Convert(∗) procedure

requires two extra elements in the public key where σ is a matrix of size η ×Θ with each
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entry being < 2γ, and z is a vector of Θ elements, each of size k = 2γ + 2. Therefore, the

required storage for both elements is at most O(3γ+log2(η)+log2(Θ)). On the other hand,

both (4.9) and (4.7) in the RNS variant require an storage of at most O(γ + log2(n+ t)).
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Chapter 5

Contributions and Future Work

The main goal of this thesis has been to enhance the practicality of fully homomorphic

encryption over integers, by presenting an RNS variant to SI-DGHV of [12]. The work

presented in this thesis can be summarized as follows:

• Presenting an overview of the mathematical definitions and properties of the residue

number system that provides sufficient background to the RNS variant.

• Surveying various works on SWHE and FHE schemes, introducing a comprehensive

description of DGHV and SI-DGHV, and analyzing their procedures to achieve FHE.

• Showing the basic concept of the RNS variant with analytic proof of target noise

reduction, and proposing the RNS variant to SI-DGHV.Convert(∗) that does not

rely on the subset-sum assumption as a security parameter.

• Providing a technical implementation of the RNS variant to [12] along with a math-

ematical analysis for correctness, ciphertext expansion, and noise growth. Moreover,

giving a mathematical bound that restrains the number and the size of RNS moduli.
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• Proposing an efficient technique to incorporate the Montgomery reduction in our

RNS variant, and adopting the ciphertext batching technique for efficient utilization

of the RNS variant.

• Introducing suitable Approximate-GCD assumption to our RNS.Convert(∗) proce-

dure and providing a security proof of non-batched and batched RNA variants.

• Providing analytical estimation of complexity for both the RNS variant and the

original scheme [12], doing the same for the RNS.Convert(∗) procedure’s public key

size, and showing the relative size reduction in comparison with SI-DGHV.Convert(∗)

[12].

To sum up, the work in this thesis has introduced a new RNS variant to FHE of

[12]. The new RNS variant scheme enhances the SI-DGHV scheme complexity and speeds

up noise reduction procedures. In addition, the variant improves the original scheme’s

security by eliminating the need for the subset-sum assumption. However, in our variant,

the noise grows linearly with the moduli size V which lowers the scheme’s multiplication

depth relative to the original scheme. In order to control the growth, the RNS.Convert(∗)

noise management requires more optimization.

Below are some recommendations and suggestions for future research that would add

to this work and contribute in general to HE:

• Adopting both BitDecompV(∗) PowerOfTwoV(∗) procedures to squash the dot

product 〈∗, ∗〉 in Eq. (4.10) which might reduce the noise growth.

• The RNS.Convert(∗) procedure carries a relatively high noise growth compared to

the original scheme that has to be optimized.
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• Adopting an efficient public key compression as in [14].

• Adopting Gentry’s bootstrapping technique in RNS.

• Further optimization for more practical implementation to speed up theRNS.Convert(∗)

procedure.
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