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Abstract 28 

Paralympic wheelchair curling is an adapted version of Olympic curling played by individuals with spinal 29 

cord injuries, cerebral palsy, multiple sclerosis, and lower extremity amputations. To the best of the 30 

authors’ knowledge, there has been no experimental or computational research published regarding the 31 

biomechanics of wheelchair curling. Accordingly, the objective of this research was to quantify the angular 32 

joint kinematics and dynamics of a Paralympic wheelchair curler throughout the delivery. The angular joint 33 

kinematics of the upper extremity were experimentally measured using an inertial measurement unit 34 

system; the translational kinematics of the curling stone were additionally evaluated with optical motion 35 

capture. The experimental kinematics were numerically optimized to satisfy the kinematic constraints of a 36 

subject-specific multibody biomechanical model. The optimized kinematics were subsequently used to 37 

compute the resultant joint moments via inverse dynamics analysis. The main biomechanical demands 38 

throughout the delivery (i.e., in terms of both kinematic and dynamic variables) were about the hip and 39 

shoulder joints, followed sequentially by the elbow and wrist. The implications of these findings are 40 

discussed in relation to wheelchair curling delivery technique, musculoskeletal modelling, and forward 41 

dynamic simulations. 42 
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Introduction 55 

Wheelchair curling debuted at the 2006 Paralympic Games. Competing athletes utilize the same stones 56 

and ice sheets as Olympic curlers, although sweeping (i.e., using a broom to control the stone’s 57 

trajectory) is omitted and the stone must be pushed from a stationary wheelchair using a delivery stick.1 58 

One of the main objectives in wheelchair curling is to launch the stone in such a way that it rectilinearly 59 

translates along the ice over 28 m and lands within the ‘house’ to accumulate points; this is known as a 60 

‘draw shot’ delivery. Research conducted at the 2010 Paralympic Games noted that 18 % of athletes 61 

competing in wheelchair curling (n = 50) sought medical attention for musculoskeletal injuries, the 62 

majority of which were sustained about the lower back and shoulder joint.2 To date, there has been no 63 

experimental or computational research published regarding the biomechanics of wheelchair curling. 64 

These investigations would provide unprecedented insights into the physical demands of this Paralympic 65 

sport.  66 

 One of the main objectives of biomechanists is to evaluate the dynamics (i.e., forces and 67 

moments) associated with human movements. Experimentally measuring the forces of individual skeletal 68 

muscles (i.e., dynamometry) is invasive and therefore unpractical in sport environments.3 With modern 69 

advancements in computer science, biomechanical modelling presents a viable method of approximating 70 

the dynamics of multibody movements.3 Considering the emergent interests in determining the physical 71 

demands of different Paralympic sports, the objectives of this research were i) to develop a subject-72 

specific multibody biomechanical model of Paralympic wheelchair curling, and ii) to quantify the angular 73 

joint kinematics and dynamics throughout the wheelchair curling delivery via experimental measurements 74 

and inverse dynamics analysis, respectively. 75 

Methods 76 

Paralympic Athlete 77 

A single wheelchair curler (sex: male, age: 39 y, total body mass: 87.9 kg) was recruited from the 78 

Canadian Paralympic Team. The athlete was a gold medalist at the 2014 Paralympic Games and 2013 79 

World Wheelchair Curling Championships. In 2007, the athlete sustained a traumatic incomplete spinal 80 
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cord injury between the 5th and 6th cervical vertebrae. The athlete was diagnosed with a level ‘C’ 81 

impairment on the American Spinal Injury Association Impairment Scale.4 The Paralympian provided 82 

informed written consent and the University of Waterloo Research Ethics Board approved this research. 83 

Experimental Kinematics 84 

The angular joint kinematics throughout the wheelchair curling delivery were experimentally measured 85 

using an inertial measurement unit (IMU) system (MVN Suit, Xsens Technologies, Netherlands). The 86 

system consists of 17 IMUs, which were attached to the Paralympian’s head, torso, upper arms, 87 

forearms, hands, thighs, shanks, and feet (Figure 1). The IMU system utilises a 23-segment 88 

biomechanical model and proprietary algorithms to calculate the angular joint kinematics.5 The 89 

Paralympian performed 14 ‘draw shot’ deliveries of the curling stone interspersed with 2 minutes of rest 90 

between deliveries; all 14 deliveries were considered in the analyses. The athlete used his right hand to 91 

deliver the curling stone. Data were sampled at 120 Hz. High-frequency noise in the joint kinematic 92 

measurements was minimized using smoothing splines (MATLAB, MathWorks, USA). Previous research 93 

has demonstrated the test-retest reliability6 and concurrent validity7 of the IMU system in computing 94 

angular joint kinematics compared with optical motion capture. 95 

 Movement of the curling stone was recorded with a digital camera (Nikon D3100, Nikon 96 

Corporation, Japan) that was positioned perpendicular to the Paralympian’s plane of motion. The camera 97 

sampled at 29 frames per second. The translational stone kinematics (i.e., displacements and velocities) 98 

throughout the delivery were determined relative to an inertial reference frame using markerless feature 99 

tracking software (ProAnalyst, Xcitex Incorporation, USA). The delivery is defined as the time duration 100 

between the initial displacement of the stone and its moment of release from the delivery stick. High-101 

frequency noise in the stone kinematic measurements was minimized using smoothing splines (MATLAB, 102 

MathWorks, USA).  103 

Multibody Biomechanical Model 104 

A novel biomechanical model of the wheelchair curling delivery was developed in MapleSim software 105 

(MapleSoft, Canada). The model included a representative torso, head and neck, right upper arm, right 106 
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forearm, right hand, delivery stick, and curling stone (Figure 2a). The wheelchair is fixed to the inertial 107 

reference frame (Figure 2a). The mechanical parameters of each biological body segment were 108 

experimentally measured using dual-energy x-ray absorptiometry (Table 1).8 Synonymous with the 109 

Paralympian’s equipment configuration, the delivery stick body segment was set to 1.96 m in length, 0.18 110 

kg in mass, and the principal mass moment of inertia was calculated via 𝐼𝑧𝑧 =
1

12
𝑚𝐿2. The curling stone 111 

body segment was given a mass of 19.96 kg and a height of 0.19 m.9  112 

 The model also included a representative hip, shoulder, elbow, and wrist, all of which were 113 

modelled as revolute kinematic pairs (Figure 2b). The hip, shoulder, and elbow permit flexion-extension 114 

while the wrist allows for radial-ulnar deviation, assuming a neutral hand position (Figure 2b). The hip joint 115 

was set to 0.62 m above the inertial reference frame (i.e., simulating the height of the wheelchair seat) 116 

(Figure 2b). The revolute joints contained angular viscous damping, the quantities of which were taken 117 

from previous research.10-11 A prismatic kinematic pair was used to model the contact between the curling 118 

stone and ice (Figure 2b); rotations about the vertical axis were omitted. The contact model also included 119 

dry Coulomb friction.9 The multibody biomechanical model has 3 degrees of freedom and is 120 

mathematically represented by 4 ordinary differential equations and 1 algebraic equation (i.e., indicative 121 

of the model’s kinematic constraints). 122 

Kinematic Constraints 123 

The experimental kinematics were numerically optimized to satisfy the kinematic constraints of the 124 

multibody biomechanical model. A nonlinear constrained optimization algorithm was used to minimize the 125 

following multi-objective function at discrete time steps (i.e., t = 0…0.65 s and Δt resampled = 0.001 s) 126 

𝜓𝑡
ϯ

= Arg min [∑ 𝑤𝑖 (
𝜓𝑖𝑡−𝜓𝑖𝑡

𝑚

𝛥𝜓𝑖
𝑚 )

2
5
𝑖=1 + 𝑤6 (

𝐴𝐸(𝜃1𝑡…𝜃4𝑡)

𝐿
)

2

+ 𝑤7 (
𝑥𝑡−𝑓(𝜃1𝑡…𝜃4𝑡)

𝛥𝑥𝑚 )
2

]                                                   (1) 127 

subject to: 𝜓𝑚𝑖𝑛
𝑚 < 𝜓𝑡 < 𝜓𝑚𝑎𝑥

𝑚                                                                                                                      (2) 128 

where 𝜓 = [θ1 θ2 θ3 θ4 x]T, 𝜓𝑚 represents the experimentally measured 𝜓 variables, W1…W7 are 129 

weighting terms (i.e., W1 = 15, W2 = 0.1, W3 = 0.95, W4 = 1.5, W5 = 200, W6 = 100, and W7 = 100), AE 130 

(θ1j…θ4j) is the algebraic constraint equation from the multibody biomechanical model, and L (i.e., 0.43 m) 131 
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is the vertical distance between the heights of the wheelchair seat and curling stone handle. f (θ1j…θ4j) 132 

denotes the modelled displacement (x) of the curling stone in terms of the variables θ1…θ4. Equation (2) 133 

specifies the minimum and maximum bounds on each 𝜓 variable. The Paralympian’s maximum range of 134 

motion about the hip (𝜃1), shoulder (𝜃2), elbow (𝜃3), and wrist (𝜃4) were experimentally measured using a 135 

digital goniometer. Δ𝜓 is the difference between 𝜓𝑚𝑖𝑛
𝑚  and 𝜓𝑚𝑎𝑥

𝑚 . 136 

Inverse Dynamics 137 

Inverse dynamics is a mathematical technique through which resultant forces and moments about 138 

individual joints are calculated by solving the Newton-Euler equations of motion given the kinematics and 139 

inertial parameters of adjacent body segments.3 The MapleSim software was used to solve the Newton-140 

Euler equations of motion for the resultant joint moments about the hip, shoulder, and elbow using the 141 

optimized kinematics. The wrist was modelled as a passive joint (i.e., unactuated) in the interests of 142 

simulating the limited hand functionality of the Paralympic wheelchair curler. 143 

Results 144 

The shoulder joint displayed the largest range of motion (i.e., Δ 142.7 ± 3.1°) throughout the wheelchair 145 

curling delivery compared to the hip (i.e., Δ 27.0 ± 2.9°), elbow (i.e., Δ 96.7 ± 3.3°), and wrist (i.e., Δ 22.8 146 

± 1.7°) (Figure 3). The mean duration of the delivery was approximately 0.65 seconds. The delivery was 147 

initiated through rotations about the hip (i.e., flexion), followed sequentially by the shoulder (i.e., flexion), 148 

elbow (i.e., extension), and wrist (i.e., ulnar deviation).  149 

 The shoulder joint had the largest magnitude of angular velocity throughout the delivery, with a 150 

maximum flexion velocity of 427.2 ± 12.6 °/s and extension velocity of -4.1 ± 16.4 °/s (Figure 4). The hip 151 

joint had a maximum flexion velocity of -133.8 ± 10.2 °/s (Figure 4). The elbow joint had a maximum 152 

flexion velocity of 21.0 ± 13.3 °/s and extension velocity of -299.7 ± 16.7 °/s (Figure 4). The wrist joint had 153 

a maximum radial-deviation velocity of 17.2 ± 9.6 °/s and ulnar-deviation velocity of -126.3 ± 12.1 °/s 154 

(Figure 4). 155 
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 There was minimal translational stone acceleration just before the moment of release (Figure 5); 156 

this technique is presumably used by the Paralympian to enhance precision. The translational release 157 

velocity (i.e., 2.0 ± 0.1 m/s) correlated with that reported by recent mathematical models of curling stone 158 

mechanics.9 The uncertainties in the translational stone velocities slightly increased as a function of the 159 

duration of the delivery (Figure 5). The curling stone displaced a maximum of 0.80 ± 0.02 m throughout 160 

the delivery (Figure 5). The Paralympian exhibited a high degree of inter-delivery consistency, as 161 

evidenced by the minor uncertainties in the stone kinematics (Figure 5).  162 

 The largest joint moments throughout the wheelchair curling delivery were about the hip joint (i.e., 163 

maximum of 203.2 ± 34.9 Nm), followed by the shoulder (i.e., maximum of 54.6 ± 6.2 Nm) and elbow (i.e., 164 

maximum of 12.6 ± 2.2 Nm) (Figure 6).  165 

Discussion 166 

The objectives of this research were i) to develop a subject-specific multibody biomechanical model of 167 

Paralympic wheelchair curling, and ii) to quantify the angular joint kinematics and dynamics throughout 168 

the wheelchair curling delivery via experimental measurements and inverse dynamics analysis, 169 

respectively. The main kinematic demands throughout the delivery (i.e., in terms of maximum range of 170 

motion and angular velocity) were about the shoulder joint; this may explain why previous research found 171 

the highest incidences of musculoskeletal injuries in Paralympic wheelchair curling were about the 172 

shoulder.2 The Paralympian initiated the delivery via forward hip flexion, followed sequentially by shoulder 173 

flexion, elbow extension, and ulnar-deviation. This kinematic sequencing resembles a ‘follow-through’ 174 

technique. The Paralympian’s delivery technique was also highly reproducible, as evidenced by the minor 175 

uncertainties in the joint (Figures 3-4) and stone (Figure 5) kinematics. To the best of the authors’ 176 

knowledge, these findings represent the first documented kinematic analysis of the wheelchair curling 177 

delivery. Although the joint kinematics might be considered indicative of an ‘optimal’ delivery technique 178 

(i.e., since the athlete is a Paralympic gold medalist), additional research is needed to ascertain the 179 

delivery kinematics of other Paralympic wheelchair curlers to derive statistically significant conclusions. 180 
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 The multibody biomechanical model was used to evaluate the resultant joint moments about the 181 

lower back and upper extremity joints throughout the wheelchair curling delivery. Resultant joint moments 182 

are mathematical summations of the dynamics from all neighbouring biological elements (e.g., skeletal 183 

muscles, tendons, ligaments, and bursae).3 Consequently, the forces and moments from individual 184 

skeletal muscles cannot be determined. For example, the positive resultant joint moment about the elbow 185 

joint throughout the wheelchair curling delivery (Figure 6) could be attributed to either activations of the 186 

agonist muscles (e.g., biceps brachii) or deactivations of the antagonist muscles (e.g., triceps brachii). 187 

Musculoskeletal models would be needed to evaluate the activations and dynamics of individual skeletal 188 

muscles throughout the wheelchair curling delivery. These models could provide further insights into the 189 

documented musculoskeletal injuries amongst Paralympic wheelchair curlers.2   190 

 Considering a wide variety of individuals with physical disabilities compete in wheelchair curling, 191 

including those with spinal cord injuries, cerebral palsy, multiple sclerosis, and lower extremity 192 

amputations,1 it is important to quantify the maximum physical demands associated with the delivery 193 

movement. The resultant joint moments throughout the wheelchair curling delivery were calculated using 194 

inverse dynamics analysis. The maximum dynamic loads were computed about the hip joint, followed 195 

sequentially by the shoulder and elbow. Nevertheless, inverse dynamics is not predictive, and requires 196 

expensive and time-consuming experiments. Forward dynamics, by contrast, computes the multibody 197 

kinematics by numerically integrating the Newton-Euler equations of motion given the forces and 198 

moments as inputs; these dynamic inputs are often elicited from mathematical models of neural 199 

excitations.3 Forward dynamics has the distinct capability of i) predicting the effects of model parameters 200 

(e.g., height of the wheelchair seat) on performance outcomes, and ii) optimizing equipment designs in 201 

silico.12 Consequently, the authors intend to further investigate the biomechanics of wheelchair curling 202 

using forward dynamic simulations.  203 
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Table 1. Body segment parameters of the Paralympic wheelchair curler as experimentally measured 236 

using dual-energy x-ray absorptiometry.8 The quantities are presented as arithmetic means ± 1 standard 237 

deviation over multiple scans. Segments in the upper extremity are of the right side. The position vector of 238 

the center of mass was determined relative to the proximal endpoint. 239 

 

Parameter 

 

Head & Neck 

 

Torso 

 

Upper Arm 

 

Forearm 

 

Hand 

 

Length (m) 

 

0.265 ± 0.005 

 

0.588 ± 0.008 

 

0.291 ± 0.005 

 

0.276 ± 0.002 

 

0.123 ± 0.002 

Mass (kg) 6.967 ± 0.085 44.616 ± 0.677 3.099 ± 0.192 1.371 ± 0.009 0.396 ± 0.011 

Center of Mass 

(m) 

0.1231 ± 

0.0025 

0.2237 ± 

0.0031 

0.149 ± 0.002 0.108 ± 0.001 0.022 ± 0.001 

Mass Moment of 

Inertia (kg∙m2) 

0.1963 ± 

0.0102 

2.8508 ± 

0.0349 

0.0238 ± 

0.0022 

0.0106 ± 

0.0002 

0.0022 ± 

0.0001 

 240 

  241 
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 242 

 243 

Figure 1 – Locations of the inertial measurement units on the Paralympic wheelchair curler. 244 

 245 

  246 
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 247 

 248 

Figure 2 - Schematic of the multibody biomechanical model. The rigid body segments and lower 249 

kinematic pairs are presented in (a) and (b), respectively. 250 

 251 

  252 
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 253 

 254 

Figure 3 - The relative joint angles of the hip, shoulder, elbow, and wrist throughout the wheelchair 255 

curling delivery. The quantities are presented as arithmetic means ± 1 standard deviation over 14 256 

consecutive deliveries. 257 

 258 

  259 
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 260 

 261 

Figure 4 - The angular joint velocities of the hip, shoulder, elbow, and wrist throughout the wheelchair 262 

curling delivery. The quantities are presented as arithmetic means ± 1 standard deviation over 14 263 

consecutive deliveries. 264 

  265 
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 266 

Figure 5 - The translational stone kinematics (i.e., displacements and velocities) throughout the 267 

wheelchair curling delivery. The quantities are presented as arithmetic means ± 1 standard deviation over 268 

14 consecutive deliveries. 269 

  270 
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 271 

Figure 6 - The resultant joint moments about the hip, shoulder, and elbow as computed via inverse 272 

dynamics analysis. The quantities are presented as arithmetic means ± 1 standard deviation over 14 273 

consecutive deliveries. 274 

 275 


