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A hallmark of nanoscience is the control of materials property as a function of nanoparticle 

size and inter-particle distance.[1] One classical example is DNA-directed assembly of 

inorganic nanoparticles.[2] Via DNA surface functionalization, nanoparticles with different 

compositions, sizes, or shapes can be brought in close proximity using a linker DNA resulting 

in programmable and reversible changes in their physical properties and in turn offering 

multi-functionality to such systems. Recently, DNA-functionalized inorganic nanoparticles 

have also been tested for drug delivery.[3] Since most inorganic nanoparticles with interesting 

optical and magnetic properties are non-porous, drugs have to be attached to the surface 

resulting in a limited loading capacity.[4]  

On the other hand, soft materials such as liposomes have been shown to be a safer 

alternative with high drug loading capacity. In recent years, the amount of work involving 

DNA-functionalized liposomes is rapidly increasing.[5] Liposomes alone, however, do not 

possess the unique optical or magnetic properties of inorganic nanoparticles. If liposomes and 

inorganic nanoparticles can be assembled in a programmable manner, multifunctional 

nanostructures combining advantages of both particles can be obtained.[6] We herein report 

the reversible assembly of DNA-functionalized liposomes and gold nanoparticles (AuNPs). 

Contrary to the majority of previous reports where AuNPs promoted radiation induced 
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liposome leakage, we found that using linker DNA created a short but finite separation 

between AuNPs and liposomes, and this separation hindered heat transfer. By tuning this 

separation, it is possible to either promote liposome leakage or inhibit it.    

As shown in Figure 1, our hybrid nanostructure contained two kinds of nanoparticles. 

The “soft” particle was a liposome (DOPC:cholesterol:DOPG:MPB-PE, wt/wt = 10:8:1:1). 

DNA conjugation was achieved by reacting the MPB-PE component of the liposome 

containing a maleimidophenyl functionality with thiol-modified DNA (DNA1). The liposome 

hydrodynamic size was determined to be 103 nm using dynamic light scattering. We 

estimated the number of DNA on each liposome to be 365 with a coupling efficiency of ~21% 

(see Supporting Information). Liposomes can also be used to encapsulate drugs or 

fluorophores for biomedical and analytical applications. The “hard” particle was a ~13 nm 

AuNP functionalized with a different thiol-modified DNA (DNA2). We chose to use AuNPs 

since they can effectively absorb radiation energy and the assembly of AuNPs can be 

monitored via a visible color change. Although several Au-liposome hybrids have been 

reported,[7,8] most of these materials were prepared by non-specific and irreversible 

electrostatic interactions.[8] In our system, programmable and reversible DNA hybridization 

interaction allows a precise control on the property of the assembly. 

Figure 1. Schematics of DNA-directed reversible assembly of DNA-functionalized liposomes 

and AuNPs. The DNA sequences and DNA-liposome linkage are also shown. 

The dispersed AuNPs have a characteristic extinction peak at 520 nm (Figure 2a) with 

a red color. Upon addition of the DNA-functionalized liposomes and linker DNA, a gradual 
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color change to purple was observed and the 520 nm peak shifted slightly to longer 

wavelength and decreased in intensity, suggesting the formation of assembled AuNPs with 

liposomes. In the case of Au-Au assembly, where the above-mentioned liposome was 

replaced by AuNPs with the same DNA sequence, a significant decrease in intensity of the 

shifted 520 nm peak was observed because of better surface plasmon coupling. To determine 

the optimal ratio of AuNPs and liposomes, 4 nM of the AuNPs was mixed with varying 

concentrations of liposome. The resulting products were characterized using UV-vis 

spectroscopy. To quantitatively measure this assembly process, the extinction ratio of 650 nm 

over 520 nm was used (Figure 2b). With increasing concentration of liposome, the ratio 

initially increased, indicating formation of assemblies. After reaching a maximum with ~0.2 

nM liposome (AuNP:liposome = 20:1), the ratio started to decrease due to dilution of AuNP 

density of the liposome surface at high liposome concentrations. As a control experiment, if 

the linker DNA was omitted, no color change was observed (see Supporting Information). 

Therefore, aggregation was specific and only achieved in the presence of linker DNA. 
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Figure 2. (a) UV-vis spectra of dispersed and assembled AuNPs and liposomes. (b) Assembly 

of AuNPs as a function of liposome concentration. 4 nM AuNPs were used for all the samples. 

(c) Melting curves of Au-Au and Au-liposome aggregates linked by the same DNAs. (d) 

Reversible assembly and melting of AuNP-liposome controlled by temperature.    

An important characteristic of DNA-linked nanostructures is their sharp melting 

transition.[9,10] To study the melting of our hybrid nanostructures, the extinction at 260 nm 

was monitored as a function of temperature. As shown in Figure 2c, a sharp melting transition 

with Tm = 47 C was obtained. A similar Tm value was observed (within 2 C) for the Au-Au 

assembly linked by the same linker DNA. We further tested reversibility of the assembly 

process by cycling the temperature between 90 and 25 C, where the extinction ratio changed 

reversibly (Figure 2d). The reversibility of our aggregates indicated that the functionalized 

liposomes and AuNPs were stable and aggregation was indeed achieved via DNA 
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hybridization. This also distinguished our system from previously reported AuNP-liposome 

hybrids, where aggregation was achieved through simple electrostatic interactions.[8]  

To characterize the structure of our AuNP-liposome assemblies, cryo-TEM was used. 

Two vitrified samples were prepared with two different sizes of liposome (Figure 3a and b for 

103 nm liposome and Figure 3c for 258 nm liposome). The assembled structures were formed 

for each liposome size, suggesting good generality and programmability of DNA-directed 

assembly irrespective of the liposome size. All the aggregates were very large (e.g. more than 

several micrometers), suggesting that the AuNPs and liposomes were extensively crosslinked. 

AuNPs were not evenly distributed but followed the surface contour of the liposome and 

clustered between them (Figure 3c). In some regions, the liposomes were completely 

encapsulated by AuNPs (Figure 3b). In general, the AuNPs were more sparsely distributed in 

Au-liposome compared to typical Au-Au assemblies, which may explain the smaller shift in 

the UV-vis spectrum for the Au-liposome assemblies as shown in Figure 2a. 

 

Figure 3. Cryo-TEM micrographs of AuNP-liposome assemblies. The average liposome size 

is 103 nm in (a) and (b), and 258 nm in (c). (a) and (b) are collected on the same TEM grid. 

To test liposome stability and integrity during DNA-directed assembly process, 

calcein was encapsulated in the liposome at a self-quenching concentration (100 mM) prior to 

the addition of AuNPs and linker DNA. Liposome leakage can therefore be monitored by an 

increase in calcein fluorescence. Our results suggest that assembly with AuNPs did not 

increase calcein leakage from the liposome (see Supporting Information). 
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Since AuNPs can effectively absorb radiation energy, the DNA linkage provided us a 

unique opportunity to study distance-dependent heat transfer at nanometer scale, which can 

lead to applications such as light-triggered drug release.[7,8] For the initial proof of concept, a 

302 nm UV light was used. For this study, we chose to use calcein-loaded DPPC liposomes, 

because DPPC has a phase transition temperature of 41 C, where a significant leakage rate is 

expected. While at room temperature, little leakage occurs.[8]   

We tested three DPPC assembly states. In addition to free DPPC liposomes (Figure 

4a), the liposomes were also assembled with AuNPs in the same way as shown in Figure 1 

where there was a ~8 nm separation defined by the 24-mer linker DNA (Figure 4b). By 

changing the DNA sequence on the AuNPs to be complementary to the DNA1 on the 

liposome, the AuNPs were positioned in close proximity to the liposome (Figure 4c). 
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Figure 4. Schematics of UV induced calcein loaded DPPC leakage of free liposomes (a), and 

when AuNP and liposome were far (b) or close (c) to each other. Percentage of calcein release 

as a function of AuNP to liposome ratio (d) or AuNP-to-liposome distance (e) under UV 

irradiation, or in dark (f). (g) Release of calcein as a function of temperature in the absence of 

UV irradiation. The y-axis is the amount of fluorescence increase at each temperature. 

The liposome samples were loaded in a 96-well PCR plate and exposed to 302 nm UV 

light. At designated time points, the plate was read by a real time PCR thermocycler and the 

final fluorescence was also read after breaking the liposomes using Triton X-100. As shown 
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in Figure 4d (black dots), free DPPC liposomes showed a time-dependent leakage. With an 

accumulative irradiation for about 100 min, ~15% calcein release was observed. We attribute 

this leakage to UV-induced liposome damage. For example, UV light is known to generate 

reactive oxygen species (ROS) that can make pores on DPPC liposome.[10] In the presence of 

ascorbate to remove ROS, the amount of leakage was reduced (see Supporting Information), 

supporting that ROS was playing a role in the process. If the liposomes were assembled with 

AuNPs as shown in Figure 4b, leakage was almost completely inhibited (Figure 4d, gray 

triangles). In majority of the previous work, it has been shown that adsorbed AuNPs promoted 

radiation induced liposome leakage; this is the first time that a protection effect was observed. 

The protection effect is related to the amount of AuNP used. Reducing the AuNP to liposome 

ratio resulted in increased leakage as shown in Figure 4d.  

We found that in most previous work, AuNPs were either embedded within the 

hydrophobic bilayer or directly adsorbed on the bilayer surface through electrostatic 

interactions, giving a close-to-zero distance between AuNPs and liposomes. In our DNA-

linked system, there was a ~8 nm separation between AuNPs and liposomes defined by the 

rigid DNA. Therefore, we attribute this protection effect to the absorption of UV light by 

AuNPs and thus damage to liposome was reduced minimizing liposome leakage. The 

absorbed UV was converted to heat. Due to the 8 nm distance, the heat cannot be effectively 

transferred to the liposome surface, making heat induced leakage also ineffective. Therefore, 

AuNPs reduced both radiation and heat induced leakage in this system. 

To test this hypothesis, several control experiments were performed. First, we 

prepared AuNP-DPPC aggregates shown in Figure 4c, where the AuNPs and liposomes were 

positioned very closely to allow for more effective heat transfer. For this type of aggregates, 

we indeed observed a relatively fast calcein release compared (Figure 4e, open squares). 

Second, if the samples were incubated at room temperature in dark, no significant leakage 

was observed. This was true for all of the samples (Figure 4f), suggesting UV radiation was 



   Submitted to  

 9 

responsible for increased calcein leakage. Finally, to ensure that AuNP attachment did not 

perturb the liposome releasing profile or phase transition behavior, we exposed the three types 

of liposomes at varying temperatures and the amount of calcein release at each temperature 

was recorded. As shown in Figure 4g, all the liposomes showed the same temperature-

dependent releasing profile; the fastest releasing was observed at ~40 C, the phase transition 

temperature of DPPC.   

In summary, we have prepared and characterized a new DNA-linked hybrid 

nanostructure containing both soft and hard nanoparticles. Such a system is useful for 

fundamental understanding on the interaction between light, AuNPs, and liposomes at 

nanoscale, since the length of linker DNA can be easily varied. For example, in contrary to 

previous reports where AuNPs always promoted radiation induced liposome leakage, we 

observed both promotion and protection effects, depending on the distance between the 

AuNPs and liposomes defined by DNA. At the same time, this system can potentially be used 

for triggered drug release applications. For drug delivery, the size of the aggregates must be 

significantly reduced and this can be potentially achieved using a higher AuNP to liposome 

ratio. Although UV light was used for a proof-of-concept in this work, near IR light can also 

heat up AuNPs with a better tissue penetration property.  

           

Experimental 

Preparation of liposomes: Liposomes were prepared by the standard extrusion method. 

DOPC, cholesterol, DOPG, and MPB-PE were mixed in chloroform at a weight ratio of 

10:8:1:1 with a total lipid mass of 2.5 mg. In another lipid formulation, DPPC and MPB-PE 

were mixed at a 19:1 ratio. Chloroform was removed under a gentle N2 flow in the fume hood 

and trace amount of residual chloroform was removed by storing the samples in a vacuum 

oven overnight. The lipid was stored at -20 C prior to use. To prepare liposome, the lipid was 

hydrated with 0.5 mL of buffer A (150 mM NaCl, 25 mM HEPES, pH 7.6) at room 
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temperature with occasional sonication. Therefore, the lipid concentration was 5 mg/mL. To 

prepare DPPC liposomes, all the operations were carried out at temperatures above 50 C. To 

prepare calcein loaded liposomes, 100 mM disodium calcein in 100 mM HEPES pH 7.6 were 

used to hydrate the lipids. The hydrated lipids were extruded through a polycarbonate 

membrane 21 times. The membrane pore diameters include 50, 100 and 400 nm. The prepared 

liposomes were used immediately for DNA conjugation. Free calcein was removed by passing 

the samples through a Pd-10 gel filtration column or by centrifugation and removal of the 

supernatant.  

DNA conjugation to liposomes: Thiol modified DNAs were activated by TCEP 

(TCEP:DNA=2:1 molar ratio) in pH 5.0, 40 mM acetate buffer for 1 hr at room temperature. 

In a typical reaction, 50 L of the above prepared liposomes were reacted with a final of 50 

M activated DNA overnight. After DNA conjugation, the liposomes formed aggregates due 

to DNA mediated self-aggregation and were centrifugation at 4 C to remove free DNA. 

Preparation of AuNP-liposome aggregates: Literature procedures were followed to prepare 

AuNPs and to attach thiol-modified DNAs to AuNPs.[2c] In a typical reaction, 4 nM AuNPs 

were reacted with 0.2 nM 103 nm liposomes in the presence of 200 nM of the linker DNA in 

buffer B (300 mM NaCl with 25 mM HEPES, pH 7.6). To prepare 258 nm liposome-AuNP 

assemblies, the same mass concentration of liposomes were used. The mixture was incubated 

at 50 C for 5 min and then allowed to cool slowly to room temperature to form aggregates. 

DPPC leakage experiment: DNA-functionalized calcein containing DPPC liposomes 

(extruded through 100 nm membrane) were prepared. To form aggregates with AuNPs, 300 

L of DNA2- or DNA3-functionalized AuNPs (~10 nM) were concentrated down to 40 L in 

buffer B. To 30, 10, or 5 L of this AuNP solution, 1.5 L of 5 mg/mL DPPC-DNA1 and a 

final of 10 M of linker DNA were added. This mixture was left at 4 C overnight to allow 

aggregation. The formed aggregates were centrifuged at 4 C at 8000 rpm for 8 min. The 
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supernatant was discarded and the aggregates were washed twice with 100 L buffer B. 

Finally the aggregates were dispersed in 40 L buffer B. These aggregates and free DPPC 

(loaded with 100 mM calcein and purified by Pd-10 column) were always kept on ice prior to 

use. For the UV radiation experiment, 10 L of the aggregates or free DPPC was added to 

100 L of buffer B. 5 L of this solution was then added to each well of a 96-well PCR plate. 

The fluorescence was determined using a real time PCR thermocycler (Bio-Rad, CFX96) in 

the FAM channel (fluorescence = I0) at 25 C. The 302 nm UV lamp of a gel documentation 

system (Alpha Innotech, FluorChem FC2) was used. After each 15-20 min exposure, the plate 

was read using the PCR machine (fluorescence intensity = IT). Finally, 1 L of 5% Triton X-

100 was added to each well and the plate was read (fluorescence intensity = IF). The fraction 

of leakage was calculated to be (IT – I0)/(IF – I0). 
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