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Abstract

RC4 is one of the most widely used ciphers in practical software ap-
plications. In this thesis we examine security and design aspects of RC4.
First we describe the functioning of RC4 and present previously published
analyses. We then present a new cipher, Chameleon which uses a similar
internal organization to RC4 but uses different methods. The remainder
of the thesis uses ideas from both Chameleon and RC4 to develop design
strategies for new ciphers. In particular, we develop a new cipher, RC4B,
with the goal of greater security with an algorithm comparable in simplicity
to RC4. We also present design strategies for ciphers and two new ciphers
for 32-bit processors. Finally we present versions of Chameleon and RC4B
that are implemented using playing-cards.
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Chapter 1

Introduction

This thesis is the result of the author’s interest in two similar ciphers of inde-
pendent origin. The first is the well known and often used RC4, developed by
Ron Rivest. The second is a cipher of the author’s own design, Chameleon.
The similarity of the design between these two ciphers prompted the ques-
tion of whether the considerable amount of analysis conducted on RC4 could
be of benefit in the analysis of Chameleon and whether design elements from
Chameleon, together with elements from RC4, could be used to design new
ciphers with greater security. The goal of this thesis is to explore these
questions.

1.1 History of RC4

At the time of the development of RC4 much of the research in stream
ciphers was focused on so-called linear feedback shift registers, or LFSRs
(see [16], page 196). These devices are easy to study from a mathematical
point of view, making the analysis of their security an attractive topic. Un-
fortunately LFSRs use many bit operations, making them slow in software
implementations.

RC4 was developed in 1987 by Ron Rivest, co-developer of RSA. (RC
stands for “Ron’s Code”.) In contrast to LFSRs, RC4 uses byte operations
that are more friendly to software implementations, especially on the 8-bit
and 16-bit machines commonly available at the time. In addition, the algo-
rithm is quite simple, making implementations compact and less error-prone
than other algorithms such as DES (see [16], Chapter 7) . This led to the use
of RC4 in many software packages in addition to its use in standards such
as Wired Equivalent Privacy (WEP) used in WiFi (a wireless networking
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protocol) and the Cellular Digital Packet Data specification [12].
Rivest originally developed RC4 for RSA Security Inc. and it was kept

as a trade secret until 1994, when source code was anonymously leaked on
the Cypherpunks mailing list. Since then much public research has been
done and many attacks have been found.

1.2 History of Chameleon

Chameleon was designed by the author during the Summer of 2004 under
the supervision of Allen Herman at the University of Regina with funding
provided by an NSERC USRA1. Its development started with an interest
in the idea of developing a hand cipher that uses a deck of cards as its
only necessary equipment with a security level comparable to computerized
ciphers. During the development of Chameleon the author was aware of
existence of RC4, but not of any details. It is perhaps surprising, then,
that the core functioning of these two ciphers designed for very different
environments is so similar.

1.3 Outline and Contributions

The main contributions of this thesis are a survey of the published analysis
of RC4, a description and analysis of Chameleon, and the extension of the
design principles of RC4 and Chameleon.

Chapter 2 contains a general description of RC4, its algorithm, and
some general observations on its design. Chapter 3 gives further analysis
by presenting the findings of the various papers on RC4. These papers
describe both practical attacks and theoretical analysis.

Chapter 4 describes Chameleon. The design of Chameleon rests on a new
cryptographic primitive called a mutating S-box. It is this primitive that
contributes the similarity between Chameleon and RC4. In this Chapter
we first describe the mutating S-box. A description of Soft-Chameleon, a
variant designed to work in software, follows. Finally, the analysis of RC4
described in the previous Chapter is applied to Chameleon.

After describing both Chameleon and RC4, we examine ways in which
they can be improved. In Chapter 5 we begin this examination by breaking
down RC4 and Chameleon into smaller elements. From this analysis we
produce a new cipher, RC4B. The goal behind this cipher is to use ideas

1National Science and Engineering Research Council Undergraduate Student Research
Award
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from both Chameleon and RC4 while increasing security against the attacks
described in Chapter 3. In addition, we describe some other attempts to
improve RC4.

In Chapter 6 we look at further modifying RC4 with the aim of increasing
throughput on 32-bit processors. We describe some new techniques that
could be used to develop such ciphers. We also develop two new ciphers
using these techniques.

In Chapter 7 we examine the context for which Chameleon was origi-
nally developed, hand ciphers using playing-cards. Here we describe Card-
Chameleon, the playing-card version of Chameleon, along with a playing-
card version of RC4B which we call Pocket-RC4.

In the final Chapter, we examine some of the possibilities for future work
in this area and give some concluding remarks.
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Chapter 2

Description of RC4

The RC4 algorithm is fairly simple and yet leads to a cipher that, despite
much research and many attacks, is still secure enough for many applica-
tions. In this Chapter we give a detailed description of the algorithm and
discuss some of the structures used. We also give a general analysis of the
functioning of these structures.

2.1 A Simple Algorithm

Before a more abstract consideration of RC4 we present the algorithm in its
entirety. i and j are n-bit words and S[ ] is an array of N = 2n n-bit words
indexed by the values 0 to N − 1. All additions are carried out modulo N .
The initial set-up phase, called the Key Schedule Algorithm takes a key k[ ]
consisting of l n-bit words. It is described in Figure 2.1. After the set-up,
the round algorithm (see Figure 2.2) is executed once for each word output.

In virtually all practical applications RC4 is implemented with n = 8 in
which case all the entries of S along with i and j are bytes.

To see the algorithm in its entirety, see Figure 2.3

2.2 General Description

RC4 is somewhat unique in the world of stream ciphers because of its pe-
culiar internal structure, in particular its internal state. We can think of
RC4 as a finite state machine that contains some internal state information,
a state change function that depends on the current state, and an output
function that depends on the internal state. The machine is triggered exter-
nally causing it to first execute the state change function and then return

4



Input: Key k of l words

1. For i = 0 to N − 1

S[i] = i

2. j = 0

3. For i = 0 to N − 1

(a) j = j + S[i] + k[i mod l] mod N

(b) Swap S[i] and S[j].

4. i = j = 0 Output: i, j, S

Figure 2.1: RC4 Key Schedule Algorithm

Input: RC4 state S, i, j

1. i = i + 1 mod N

2. j = j + S[i] mod N

3. Swap S[i] and S[j]

4. Output S[S[i] + S[j] mod N ]

Figure 2.2: RC4 Round Algorithm

the result of the output function. This general framework can be used to
describe almost any stream cipher, and in the case of RC4 provides a nice
picture of how the various parts function with each other.

2.3 The Internal State

RC4 operates on binary words of length n. On each tick of the clock RC4
outputs one word which can take any of the N = 2n possible values. The
internal state of RC4 is built around a random permutation of these N val-
ues. This permutation, which we denote S can be thought of in several ways.
Those implementing RC4 would typically think of S as an array or look-up
table while those who come from a background of block ciphers might think
of S as an S-box. We want to be able to do two things with S, namely apply
S to a word and multiply S by a transposition. We more typically use the
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Input: Key k of length l

1. For i = 0 to N − 1

S[i] = i

2. j = 0

3. For i = 0 to N − 1

(a) j = j + S[i] + k[i mod l] mod N

(b) swap S[i] and S[j].

4. i = j = 0

5. Repeat the following for each byte of output required

(a) i = i + 1 mod N

(b) j = j + S[i] mod N

(c) Swap S[i] and S[j]
(d) Output S[S[i] + S[j] mod N ]

Figure 2.3: Complete RC4 Algorithm

look-up table terminology where these operations are equivalent to looking
up a value in the table and swapping two entries. The entire internal state
consists of S and two additional variables, i and j.

The size of the internal state is an important factor for a stream cipher
since it provides an upper bound on the complexity of a brute force attack.
In the case of RC4 the state size is very large. In terms of the number of
possible states it is 22n(N !), which makes for log2 N !+2n bits of information.
In the case when n = 8 this is about 1700 bits. This makes guessing the
internal state in a brute force manner completely impractical. Determining
the 8 bits of i is easy but the rest is not. Another important factor is that
the size of the internal state puts an upper limit on the cycle length. In
particular, the cycle length (i.e. the number of outputs before the whole
pattern repeats) cannot be more than the number of possible states. In this
respect having a large internal state is again an advantage.

In addition to S the internal state of RC4 contains variables i and j
which can be thought of as pointers into the look-up table S. Their role is
critical since they control both the state change and output functions.

6



2.4 State Change Function

The state change function modifies each of i, j and S. It is accomplished by
steps 1, 2 and 3 in the round algorithm.

First i is incremented. When considered over N rounds this means that
i points to every element in S exactly once. This means that the swap
operation in step 3 modifies the whole of S after N steps, ensuring a fairly
rapid rate of mixing. Note that the movement of i is not dependent on S
and is set to a constant during the set-up phase. Thus i can be considered
public knowledge.

j is not incremented, but has S[i] added to it. Considering S as a pseudo-
random function, j can be thought of as a pseudo-random variable that
points to different elements of S in an unpredictable manner. Importantly,
this variable depends on S, making it private knowledge. It also depends on
the previous value of j, meaning that partial knowledge of S at some point
does not necessarily expose j.

The swap operation in step 3 forms the core of the state change function.
This can be thought of as multiplying the permutation S by a transposition.
Another way of thinking about it is to see S as a deck of cards and the
transposition as a small shuffle. Over time the deck becomes more and
more randomized as individual cards are shuffled. Since the movement of j
and the output are both dependent on S, this randomization helps create
unpredictable behaviour in the output as well as the internal evolution.

It should be noted that the state change function in RC4 is invertible.
That is to say, the current state and the state change function are enough
to determine previous states. Invertability is desirable since contributes to
long cycle lengths. Intuitively if the state change function is not invertible
then information is lost with each application. The amount of information
in the output stream is not more than what is contained in the state, so the
entropy in the output must decrease over time leading to behaviour that is
less random. More formally, a randomly chosen state change function results
in an average cycle length of about 2m/2 where the internal state contains m
bits of information. For a randomly chosen invertible state change function,
the average cycle length is 2m−1 [7]. Although this is no guarantee of security
or even of cycle length, being invertible lends a little credit to the claim of
security.
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2.5 Output Function

The output function is quite simple. If we again consider S as a pseudo-
random function, we first find two pseudo-random numbers, S[i] and S[j],
and then add them and wrap the whole thing in S again. These multiple
levels have several uses. First, S is not actually random so it will have
some biases which could in principle be detected, leading to exposure of
information about the internal state. To smooth out these biases we apply
S several times. Also, we use both i and j to eliminate any information
that could be gleaned about S based on the known input i, or about j
given some partial information about S. Also, we perform an addition, a
linear operation that mixes the whole words but is hard to analyse after the
application of a non-linear operation.

2.6 The Key Schedule

The round algorithm of RC4 is not dependent on any key and requires a
special kind of state. The obvious solution to these inconveniences is to make
the initial state dependent on the key and use an algorithm that prepares
the necessary state. The key schedule algorithm does just this.

The algorithm begins by initializing S to the identity permutation and
setting j to zero. From there it applies what is essentially a modified version
of the state change function a total of N times. The only difference is how j
is incremented. For this we add a key byte to j at each round, cycling over
the length of the key. This particular method allows for a wide range in
key lengths. Also, using the same principles as in the state change function
makes the key schedule easy to analyse.

It should be noted that the key schedule finishes by setting i = j = 0.
This is purely convention since any value between 0 and N−1 would suffice.
In fact, one could leave j as its final value after swapping occurs, which
could possibly increase security by introducing more key dependancies. In
particular, several attacks described below on the beginning of the RC4
output rely on the fact that j is set to a constant. Their effectiveness is
suspect if j changes between keys.

2.7 Discussion

RC4 has attracted much attention because of its simple algorithm that in-
vites analysis. The simplicity of the four line round algorithm also makes for

8



ease of implementation, reducing the likelihood of errors. As well, the num-
ber of operations required is quite small, making it efficient. Further, only
byte operations are required making it efficient when implemented on small
processors such as those found in smart cards, and the memory requirements
are reasonable.

On the other hand, it is not easy or efficient to parallelize RC4 and
the byte operations do not take advantage of the wider busses available on
newer processors. As a result there has been interest recently in adapting
the algorithm to make use of wider busses. For one proposal, see Chapter 6.

Finally, we note that although N is almost universally specified in the
literature as being a power of 2, and most often 256, this is not necessary,
but more of a convenience. (If N = 2n then reduction modulo N can be
accomplished by masking off all but the the lower n bits. If N is some other
value this is not possible.) In fact, in Chapter 7 we describe a variant of
RC4 that uses N = 27.
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Chapter 3

Previous Attacks on RC4

Because of its prominence in applications and its novel structure, RC4 has
been the subject of much research. In this Chapter we explore the literature
on RC4, discussing the attacks that have been developed as well as some
insights into RC4’s structure.

3.1 Types of Attacks

As a stream cipher, RC4 is supposed to mimic the behaviour of random
strings. This means that any attack which distinguishes RC4 outputs from
random strings can be considered a vulnerability. In addition, any attack
which reveals partial or complete key information is a vulnerability. From
an information theoretical point of view, any cipher with a small key is
vulnerable to both these types of attacks, but only careful analysis has
produced attacks on RC4 that are computationally feasible.

3.1.1 Distinguishers

Consider the following situation: An attacker is given a black box that
outputs data. The attacker is told that it either implements RC4 with a
fixed secret key or is a random source. The attacker “wins” if he can guess
the nature of the black box with probability better than half. The amount of
computation required as well as the number of output words provide metrics
on the difficulty of mounting an attack. An attack that aims to win in this
scenario is called a weak distinguisher. There have been many attacks of
this type. The most important is that of Fluhrer and McGrew[6].

Another class of distinguishers, call strong distinguishers has a slightly
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different set-up. The attacker is given a black box as above except that it
has one external control. If the black box implements RC4 then this control
causes a new key to be chosen at random. Subsequent outputs are then
the keystream generated by the new key. If the box is a random source
then the control does nothing. Again the attacker’s goal is to guess whether
the box implements RC4 or a random source with probability better than
one half. The difficulty of mounting such an attack can be measured by the
number of new keys necessary in addition to the amount of computation and
data required. This type of scenario allows us to check for biases introduced
as a result of a weak key schedule or other peculiarities that affect the
beginning of a keystream. Mantin and Shamir [14] developed the first and
most important of these attacks.

3.1.2 Shortcut Attacks

Distinguishing a keystream from a random string has theoretical interest,
but most often does not lead to a complete break of the cipher. For this it
is most often necessary to find the key or the internal state of the cipher.
A brute force attack on the key is always an option but there exists the
possibility that some peculiarity of the algorithm may allow recovery of
internal state information in a way that speeds up the search. We call
such attacks shortcut attacks. The branch and bound attack often referred
to as Knudsen’s attack is the most successful shortcut attack on RC4. In
addition, this attack can be augmented by using the biases that are exploited
in distinguisher attacks.

3.1.3 Related and Weak Key Attacks

It is often the case that an otherwise secure cipher can be successfully at-
tacked by analysing its key schedule. Such attacks fall into several categories.
Weak key attacks identify a class of keys that cause a detectable difference in
the output of the cipher. Related key attacks identify a relationship between
keys that causes a detectable similarity in the two outputs. These attacks
can be used to gather information about the secret key by examining the
output and either identifying the characteristic output of a class of weak
keys (hence reduce the number of keys to search) or comparing the output
with known keys, looking for a relationship with the secret key. Andrew
Roos [22] developed one of the first such attacks on RC4: a set of weak keys
causing a bias in the initial outputs.

Another means of attacking the key schedule of a cipher is to use partial
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information about a key to derive information about the output or addi-
tional information about the key. The famous attack on WEP, developed
by Mantin, Fluhrer and Shamir [5], is of this type.

3.2 Knudsen’s Attack

When considering the possibility of a brute force attack to determine the
internal state of RC4, there are several considerations which are helpful.
First, the internal state at the beginning of the algorithm has i and j fixed
at zero and there are N bytes contained in S. There are in fact fewer than
N bytes of information contained in S since not all possible assignments are
allowed (only permutations). Thus we expect that N bytes of output should
contain enough information to reconstruct the state. If this is not the case
then there must be some bias in the output that accounts for the lack of
information. This is probably not the case since i points to every element
of S in the first N outputs, causing these outputs to be dependent on every
element of S. Based on this reasoning we expect to be able to construct an
algorithm that determines the state given N words of output.

Another important observation is that the round algorithm does not
require complete knowledge of S. In fact, only three elements of S, namely
S[i], S[j] and S[S[i] + S[j]], are affected or used by any particular round of
S. Thus we don’t have to guess the complete state at once in order to test
against some given output.

The above two observations give rise to an algorithm that dramatically
reduces the time necessary to guess the internal state of RC4 given some
output. This algorithm was independently developed by Knudsen et al [10]
and Mister and Tavares [18]. It is a branch and bound type algorithm. It
can begin with some partial information about S or with nothing and will
guess the remaining elements of S until a state that is consistent with the
output is found. Figure 3.1 presents the algorithm found in [18]. The input
to the algorithm is an output stream ct.

The basic idea behind the algorithm is to guess information as late as
possible. If some partial state proves to be inconsistent with the given output
stream, then we can eliminate all states that contain this partial state. We
can think of a tree whose nodes represent partial state information at times
where a guess is required, edges as guesses, and leaves as complete states.
Each time a contradiction is found, a whole subtree and all associated states
are eliminated from consideration. Also, the output stream provides some
information about the state directly, if the correct index is known or guessed.
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Input: Portion of RC4 stream c0, c1, c2, . . .

1. Mark all entries of S as unassigned.

2. Set i = 0, j = 0 and z = 0

3. Repeat the following

(a) i = i + 1
(b) If S[i] is unassigned, branch over all possible values of S[i]
(c) j = j + S[i]
(d) If S[j] is unassigned, branch over all possible values of S[j]
(e) Swap S[i] and S[j]
(f) Set t = S[i] + S[j]
(g) If S[t] is unassigned and cz is not assigned in S, set S[t] = cz

(h) If S[t] 6= cz then there is a contradiction. Close this branch.
(i) z = z + 1
(j) If z equals the length of the output, terminate and output S.

Figure 3.1: Branch and Bound Attack for RC4

There are many implementation details required to make this algorithm
practical. In particular, schemes for keeping track of branches and possible
values for S are required. The author implemented this attack using several
recursive functions and a table indicating whether or not each value was
already assigned in S.

Knudsen et al, in [10] provide some minor improvements to the algorithm
and estimate the complexity of the attack. They estimate that the number
of steps required is typically less than

√
N !. The actual number given for

n = 8 is 2779, as compared to 21684 required for a brute force attack.

Knudsen’s attack, although impractical due to the high complexity, is a
useful theoretical tool since it can be modified to take partial state infor-
mation and some output bytes and provide a complete state. Thus if some
other attack exposes some state information, it can be used in conjunction
with this attack to provide a complete break. Also, if probabilistic infor-
mation about the state is known, this can be used to choose the order in
which the algorithm branches, choosing the most likely branches first and
accelerating the algorithm.
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3.3 Predictive States

The observation was made by Mantin and Shamir [14] that, because only
a few entries of S are used in each round, a relatively small amount of in-
formation about the state can be used to predict output information. In
certain circumstances the amount of information predicted is larger than
expected because the elements of S can be used more than once over several
rounds. There have been several results that make use of these quirks in
order to attack RC4. Mantin and Shamir [14] develop a general description
of attacks that use these quirks. Previously, Fluhrer and McGrew [6] dis-
cussed the same ideas as Mantin and Shamir in a limited context. Before
describing these results we present some terminology introduced by Mantin
and Shamir.

Definition 1. An a-state is a partially specified RC4 state consisting of
values for i, j and a entries of S.

Definition 1 quantifies the amount of information that is specified in some
partial state. Note that there are typically many states that are consistent
with a particular a-state. A particular a-state may have the property that
the RC4 algorithm, when run with any state consistent with the a-state,
always has certain outputs. In this case we say that the a-state predicts
these outputs. The amount of output information predicted is quantified in
the following two definitions:

Definition 2. If all states consistent with a given a-state cause the same
output to be produced in the r-th position then the a-state is said to predict
the r-th output.

Definition 3. If an a-state predicts outputs r1 . . . rb where r1, . . . , rb ≤ 2N
then we say that the a-state is b-predictive.

In general we are interested in b-predictive a-states where b is close to
a. In this situation the maximum amount of output information can be
determined by the information contained in the a-state. It was conjectured
by Mantin and Shamir [14] that a ≥ b for any b-predictive a-state. Paul and
Preneel [19] gave a formal proof.

3.3.1 Uses of Predictive States

Predictive state, in particular those where a is close to b, are useful because
they cause biases in the output. First, we expect that our b outputs will
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occur with probability N−b at any particular point in a random stream. If
RC4 is unbiased, then this means that N−b of the states will produce our
b outputs in the necessary positions. However, we know that every state
compatible with our a-state produces this output and, since there are a + 2
constraints in the a-state, these states account for about N−a−2 of the total
states (for small a). In addition, we expect about N−b of the remaining
states to have the predicted output. This means that the total fraction of
states that cause the predicted output is about

N−a−2 + (1−N−a−2)N−b = N−b(1 + N b−a−2 −N−a−2).

This bias in the states translates directly to a bias in the output. Given
enough output, the output bias can be detected using a statistical test.

Another use is to extract state information from the output. We have
that the probability of the predicted output is N−b(1 + N b−a−2 −N−a−2),
the probability of the a-state occurring is N−a−2, and the probability of
the predicted output given the a-state is 1. Using Bayes rule we calculate
the probability of the a-state occurring, given that the predicted output has
occurred as

N b−a−2

(1 + N b−a−2 −N−a−2)
.

The denominator can be bounded by 1 + N−2 since b ≤ a. Thus the proba-
bility is close to N b−a−2 as opposed to the trivial N−a−2. This information
can be used to improve the branch and bound algorithm. The idea is to
keep a database of a-states and their predicted outputs, comparing outputs
at each time with these predictions. If a predicted output occurs, then any
branches that occur at that time choose information from the corresponding
a-state first, since it has a high probability of being correct.

In their original description of this attack, Mantin and Shamir [14] de-
scribe an attack using a subclass of predictive states known as fortuitous
states. These are a-predictive a-states where the first a outputs are pre-
dicted. They used these states since they are easier to enumerate and find,
allowing for an analysis of the complexity of the attack. They estimate that
for n = 8 the time required is about 2755.2 rather than 2779 for the original
attack as estimated by Knudsen et al (see [10]).

Paul and Preneel [19] further analysed the attack, developing methods
for discovering general predictive states. Their analysis shows that fortuitous
states in general account for the bulk of predictive states. As an example,
there are 297 3-predictive 3-states for n = 8, 290 of which are fortuitous
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states. Thus widening the attack to the general case of predictive states
is not expected to cause a significant improvement in running time. The
estimated decrease in running time when considering the additional 7 3-
states is about 2 percent.

3.3.2 Fluhrer and McGrew’s Distinguisher

Fluher and McGrew [6] developed a weak distinguisher based on digraph
frequencies in the output of RC4. They discovered the a priori distributions
of pairs of consecutive output words (digraphs) and found biases. This was
done by calculating the number of states that are consistent with a particular
digraph. The calculations are only feasible for small N , but the results
proved to be sufficient to discover some biases that are independent of N
and uncover their mechanisms. The results were then extended to larger N .

Fluhrer and McGrew identified twelve digraphs (00 is one example)
whose probabilities are different from the trivial probability and which oc-
cur regardless of the value of n. Two of these digraphs were predicted by
specific partial states that depend on the values of i and j. Each of these
states specified three values in S and can be seen as a 2-predictive 3-state.
In addition, eight more digraphs that occurred with a positive bias were
attributed to classes of 2-predictive 2-states (again, dependent on i and j).
Finally, two digraphs occur with less than expected probability. These are
not explained in terms of predictive states, but in terms of states that fit a
general pattern expected to produce a particular output that fails because
of the particular values used.

The biases in the frequency of the twelve digraphs were used to construct
a weak distinguisher. It is estimated that the size of the output required to
reliably distinguish random output from RC4 output is 230.6 for n = 8. This
could potentially be improved by examining all digraph frequencies, but
experiments on smaller n revealed that the improvement would be small.
For example, for n = 5 about 218.76 words of output using only the twelve
digraphs while using all digraphs improved this to 218.62. It was also sug-
gested that trigraph frequencies could improve this number, however the
computations required to discover the a priori probabilities is prohibitive.

The terminology of fortuitous states was developed by Fluhrer and Mc-
Grew in this same paper. Their approach, looking at digraph probabilities,
led to an examination of the states that immediately predict output values
instead of predicting later outputs. Interestingly, most of the observations
made by Mantin and Shamir [14] about predictive states were also made by
Fluhrer and McGrew about fortuitous states. In particular, they observed
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that these states cause biases that can be used to create a distinguisher
(the main result in their paper), that predicted outputs allow one to guess
internal state information with non-trivial probability, and that this could
be used to speed up Knudsen’s attack. In addition, they developed a means
of enumerating the number of fortuitous states of various lengths.

3.3.3 Mantin and Shamir’s Broadcast Attack

Mantin and Shamir’s discussion of predictive states [14] stems from an exam-
ination of the main result of the paper, a strong bias in the second output
word. Interestingly enough, this doesn’t result from a predictive state in
their definition, but does satisfy a relaxed definition where it is allowed that
the predicted output does not occur with some low probability. The bias is
explained by the following result.

Theorem 1 (Bias in second output word). If the initial state of RC4 sat-
isfies S[2] = 0 and S[1] 6= 2, then the second output word will be 0.

Theorem 1 can be easily checked by the reader by applying the state
change algorithm. Note that this bias is not really a predictive state since it
only specifies what S[1] cannot be. We can modify the theorem to specify
only S[2] = 0 and say that with high probability the output is 0, in which
case the conditions satisfy a relaxed definition of predictive state.

The bias in the output of the second word can be estimated by observing
that there is one constraint on the state (S[1] 6= 2 occurs with probability
close to 1, so we are only concerned with S[2].) Thus for about 1

N of the
states the output will be 0. For the other 1− 1

N states the output will be 0
with probability about 1

N assuming a uniform distribution of outputs. The
resulting probability is about 2

N , which is double the trivial probability.
This bias can be used in several ways. The first and perhaps least useful

way is to extract information about the initial state. The probability of
being correct when the predictive state is guessed is about one half, and
about n bits of information are gathered, making this attack fairly weak,
although it can be used to speed up Knudsen’s attack. A more interesting
use is in a strong distinguisher. Mantin and Shamir claim that by examining
the second word output in about 200 streams (from different keys) RC4 can
be reliably distinguished from random sources (RC4 will show more 0s in
these samples.) This is in sharp contrast with the 230.6 required for Fluhrer
and McGrew’s distinguisher.

The main result of the paper is that if the same message is encrypted
with many keys, then the bias can be used to identify one byte of plaintext.
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The broadcast attack works by finding the frequencies of all second output
words and guessing the most frequently occurring word as the plaintext.
(XORing with 0 doesn’t change the plaintext.) It should be noted that there
are practical applications where the requirements for this attack are met.
In particular, broadcast email and groupware applications could potentially
encrypt the same message under many keys.

3.3.4 Predicting Attacks on RC4

In a recent paper, Mantin [13] extended his earlier work on predictive states.
The first of these extensions is a distinguisher that examines the probability
that a certain digraph occurs twice interspersed with a small number of
outputs. The result is a weak distinguisher that correctly identifies RC4
streams with 0.9 probability using about 229 output. This distinguisher
can also be modified to correctly identify RC4A (described in Section 5.4.5)
using a similar amount of output.

A more interesting extension of predictive states described in the new
paper is recyclable states. These are predictive states that, once they occur,
have a high probability of occurring again N rounds later. Using these states
an attacker can predict future outputs of the RC4 stream when the outputs
corresponding to a recyclable predictive state occur. This is the first attack
that aims to predict future outputs with only partial information about the
internal state.

In addition, it is possible to use recyclable states, as with normal pre-
dictive states, to speed up Knudsen’s attack by providing known state data
at particular points in the output. If about 100 elements are known then
the attack is very fast. One way of learning so many elements is to wait
for the predicted output of a 100 element predictive state. However, this
is a low probability event, requiring about 2800 data before it is observed.
If, instead, a recyclable state of 10 elements occurs and the predicted out-
put occurs 10 times in the output then 100 elements of state information
are learned (although at different times). Although the probability that the
output repeats 10 times is low, it is still higher than the probability of a
100 element predictive state occurring. Mantin estimates that the required
event happens about once in 2290 data, giving a significant speedup over the
attack using predictive states.
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3.4 Biases in the Key Schedule

In addition to insecurities in the round algorithm, there are some attacks
that concentrate on the key schedule. In this Section we consider these
attacks.

3.4.1 Roos’s Class of Weak Keys

One of the earliest public results on RC4 was discovered by Andrew Roos
[22]. By examining the details of the key schedule algorithm, Roos was able
to find a strong bias in the initial state which in turn causes a bias in the first
few output words. This bias is in effect for about 1

256 of keys (the analysis
was done for n = 8), producing a class of weak keys.

The bias stems from the fact that a particular state element is indexed
by j some time during the key schedule with probability about 1−

(
255
256

)256 =
0.631, assuming a uniform distribution on the values of j. This means that a
particular element is swapped only once (when indexed by i) with probability
about 0.37. The value with which it is swapped depends of the value of j
and S[j] at the time of the swap. Note that, early in the algorithm, the
value of S[j] probably has not been swapped out, so S[j] = j. Also, note
that the S[i], when added to j, has not previously been swapped by i and
thus probably has not been swapped and satisfies S[i] = i. If this holds for
all the necessary elements of S then we get j = 1 + 2 + ... + i and S[j] = j.
In this case, after the swap the value of S[i] is

i(i + 1)
2

+
i∑

m=0

k[m mod l].

With probability about 0.37 this value is retained to the end of the algorithm.
For small i the probability that all the necessary events happen is quite

high. Roos conducted experiments that show a steadily decreasing proba-
bility from 0.37 for i = 0 to 0.06 by i = 46. These probabilities show a very
large bias when compared to the uniform probability of 0.004.

In order to take advantage of the bias in the initial state, Roos constructs
what are essentially predictive states: conditions on a small number of state
elements that cause a particular output. In particular, we are interested
in conditions on the first few elements of the state, since these have the
highest bias. Roos describes one such condition, S[1] = 1, in which case we
get i = j = 1 immediately before the swap. The swap does nothing and the
output word is S[2]. The bias predicts that S[1] will be k[0]+ k[1]+ 1, so to
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get S[1] = 1 we want k[0] + k[1] ≡ 0 (mod N). In this case, the most likely
value of S[2], the first word output, is k[2]+3. Numerical experiments show
that this happens in about 0.14 of keys satisfying the conditions, as opposed
to the 0.004 that would be expected in a uniform distribution.

The bias caused in the first output byte is somewhat unique in that in
provides information directly about the key rather than the initial state.
This information can be used to speed up brute force attacks in cases where
the biased output occurs.

3.4.2 Key Schedule Invariance

Fluhrer, Mantin, and Shamir [5] found a more sophisticated class of weak
keys. This weakness depends on how j is changed in the key schedule. The
actual line in the algorithm is

j = j + S[i] + k[i mod l] mod N.

Suppose that i − 1 ≡ j (mod b) for some b, S[i] ≡ i (mod b), and k[i mod
l] ≡ −i − 1 (mod b). Applying first two lines of the round algorithm we
then get j ≡ i (mod b). Now consider the slightly modified key schedule
algorithm given in Figure 3.2. The only difference is that i is updated at
the beginning of the repetition instead of at the end.

Input: Key k of length l

1. i = j = 0

2. Repeat N times

(a) i = i + 1 mod N .
(b) j = j + S[i] + k[i mod l] mod N

(c) Swap S[i] and S[j].

Figure 3.2: Weakened RC4 Key Schedule Algorithm

Further, suppose that we have k[x mod l] ≡ −x− 1 (mod b) for all x. We
also have S[x] ≡ x (mod b) at the beginning of the algorithm for all x since
S begins as the identity permutation. After incrementing i we have i−1 ≡ j
(mod b). Thus j ≡ i (mod b) after changing j. The two elements S[i] = i
and S[j] = j will be swapped. After the swap we have S[i] = j ≡ i (mod b)
and S[j] = i ≡ j (mod b). All of the preconditions mentioned above still
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hold, so we can repeat this process N times. After each repetition and, in
particular, after the last repetition, we have S[i] ≡ i (mod b).

Examining the original key schedule algorithm, the essential difference,
from the point of view of the above property, is that i 6= j initially. How-
ever, this can be repaired by using a slightly different key, described in the
following definition, from [5].

Definition 4. Let l and b be integers and let k be a key of length l. If
k[0] = 1, the most significant bit of k[1] is 1, and k[i] ≡ i (mod b) for all
i 6= 0, then k is called a special b-exact key.

Note that in order to have a special b-exact key of length l it is necessary
that b divides l.

If we have such a key and are using the original key schedule algorithm,
then it is easy to see that the initial problem with i and j is corrected for the
second repetition. However, the first swap affects S[0] and S[k[1]] = S[j],
causing these two entries to violate the condition S[i] ≡ i (mod b). We
can argue, however, that with good probability this event will not cause
problems. The likelihood of this problem being repaired is not good, but a
significant portion of the time no more problems will be introduced.

First note that swap operations will not introduce more problems after i
and j are syncronized. The only way that new problems will be introduced
is if the update of j uses an entry in S that is problematic; such an event
occurs when i points to the value in question. i will never point to S[0]
again, so unless j = 0 at some point, it is unlikely to cause problems. For
S[k[1]], i will eventually reach it, but it is possible that j will point to S[k[1]]
sometime before i reaches S[k[1]]. In this case the problematic entry will be
swapped out with the ith value. After that, unless j again points to it, it
is ‘behind’ i and will no longer cause problems. Since k[1] is at least half
way along (it has 1 as its most significant bit), the probability that j will
point to it sometime before i reaches that position is better than half. Other
unlucky events, like j pointing to the bad entry again, reduce the probability
of success somewhat. Fluhrer et al. calculate this probability as 2

5 .
In order to see how to use this special state, we first look at a modified

round algorithm that doesn’t include the swap operation. (We also ignore
the two bad entries.) Examining the round operation we see that i = j = 0
initially. After the first round we have i = 1 and j ≡ 1 (mod b). After two
rounds we have i = 2 and j ≡ 1+2 (mod b). After m rounds we have i ≡ m
(mod N) and j equivalent to the sum of the first m integers, modulo b. The
output value for the m-th round is S[i+j] where S[i+j] ≡ i+j ≡ m+m(m+1)

2

21



(mod b). This causes an obvious and predictable output (modulo b) with a
short cycle length.

Reintroducing the swap operation and the bad entries, the predicted
output is mostly destroyed. However, much of the state remains the same
from round to round. Thus the predicted output will have a high correlation
with the actual output, at least for the first few output words. Fluhrer et
al. performed experiments to determine how well the predicted output fit
with the actual output. Using b = 2 and a special b-exact key, they report
that 20 bits of output (the least significant bits of the first 20 outputs) were
predicted with probability 2−4.2 instead of the trivial 2−20. Using b = 16, 40
bits (the lower 4 bits of the first 10 outputs) were predicted with probability
2−2.3 instead of 2−40.

3.4.3 Related Key Attack Based on Weak Keys

Suppose that we are given a black box implementing RC4. This box contains
a secret key k0 and allows two external operations. The first requests the
next word in the output stream. The second resets the machine with a new
key k1 such that k1 = k0⊕∆, where ∆ is input to the machine. Our goal is
to devise an attack that discovers information about the secret key.

Fluhrer et. al. [5] devised such an attack, which works using key lengths
of 2l and special 2q-exact keys. It uses two subroutines. The first, called
CheckKey takes as its input a parameter q and a black box described above
and analyses the first few words output from the box. It then decides
whether the key was special 2q-exact or not and returns its decision as its
output. This is a probabilistic operation but, as mentioned in the previous
Section, the differences between random output and the output when using
special exact keys is quite large, giving a good probability of success.

The second subroutine takes three inputs, an integer q ≤ n, an RC4
black box as described above with secret key k0, and a correction factor
∆ such that k0 ⊕ ∆ is special 2q−1-exact. It operates by iterating over all
possible values for the q-th bit in each key byte, forming a new ∆′ from ∆,
and checking whether the resulting key is special 2q-exact by giving ∆′ to
the black box and invoking CheckKey. One such a key is found, the new ∆′

is output.
The above subroutine is modified for q = 1. In this case it completely

guesses k[0] in order to force it to 1. It also guesses the most significant bit of
k[1] as well as the least significant bit. These additional guesses are required
in order to meet the requirements of a special exact key. Also, when q = n
there is only one special 2q-exact key, which can be easily determined. Thus
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we can determine the output it causes and compare this directly with the
output from the black box.

We use the above subroutine by invoking it for each q from 1 to n. At
each stage we determine the ∆ that fixes the bottom q bits of each word
in the key in order to produce a special 2q-exact key. Note that there is
only one possible value for these bottom bits that produces such a key. By
the time we reach q = n we have determined ∆ such that k0 ⊕∆ gives the
unique special 2n-exact key. Thus we have determined the secret key.

The complexity of this attack can be determined by the number of times
that CheckKey is called. For q = 1 it is called on average 2n+l times. This
happens once. For the remaining n − 1 stages it is called on average 2l−1

times, for a total of 2n+l + (n− 1)2l−1 times. For a particular n and desired
probability of success, CheckKey takes a constant amount of time. Thus
the complexity is O(2n+l). For n = 8 and l = 5, giving a 256-bit key this
requires on the order of 240 operations as opposed to 2256 required for a
brute force attack.

It should be noted that 240 operations is considered to be very practical
given even modest computing power. Thus, from a computational stand-
point, this attack poses a threat to the security of RC4. However, the special
situation required is unlikely to occur in practice. Moreover, the threat can
be mostly eliminated by dropping the first N output words for a new key,
reducing the effectiveness of CheckKey.

3.5 IV Weaknesses

IV weaknesses constitute an interesting class of key schedule weaknesses
that, in the case of RC4, lead to practical attacks. IVs, or initialization vec-
tors, are public, message specific information strings that are used to obtain
a session key from a secret key. This is done so that the same keystream is
not used on two messages and yet only one secret key is needed. There are
many different ways of obtaining a session key. There is no method speci-
fied by RC4, so these are perhaps not strictly speaking weaknesses in RC4.
However they lead to the most practical attacks on actual implementations
of RC4 and the only practical attacks that expose the secret key for n = 8.

3.5.1 Methods of Using IVs

There are, of course, numerous ways of combining two data strings to obtain
a third. Some of them lead to obvious relationships between the session and
secret keys. A common procedure used with RC4 is to concatenate the
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IV with the secret key. Another is to XOR the two strings together. The
simple relationships require a robust key schedule to destroy any information
that could be gleaned about the secret key from the resulting keystreams.
Unfortunately, the key schedule used in RC4 leaks information when these
methods are used, resulting in attacks, described by Fluhrer et al. [5] that
expose the secret key. A better method is to use a cryptographic hash
function in order to obscure these relationships. (For example, concatenating
the key with the IV and then hashing with SHA-1 to produce a session key.)
There are no known attacks when such a method is used.

Before examining the attacks described in [5] we discuss some common-
alities. Let Si represent S at the ith step. The first output word depends
on exactly three variables: X = S[0], Y = S[X], and S[X + Y ]. Exam-
ining the key schedule, suppose that the algorithm reaches step i and that
Si[1] = X, Si[1]+Si[Si[1]] = X+Y . If none of the variables get swapped out
in the remaining steps of the key schedule, then the first output word will
be S[X + Y ]. Fluhrer et al. call this a resolved condition and estimate that
none of the critical variables are affected with probability about 0.05. In
the other cases one of the variables is set to a more or less random variable,
causing a uniform distribution on the values of the output. The three at-
tacks described in their paper use known values of certain of these variables
to find information about the key.

IV Concatenated with Key, IV Precedes Key

Suppose we are using a protocol wherein the IV is simply concatenated with
the key, the IV coming first. This corresponds to knowing the first say I
bytes of the key input to the key schedule. Using this information, we run
the key schedule up to step I and examine the resulting state. Examining
the state at this moment we see that in the next step

SI [jI+1] = SI [jI + k[I] + SI [I]]

will be swapped out with SI [I + 1]. Thus after the swap we have

SI+1[I + 1] = SI [jI + k[I] + SI [I]].

SI and jI can be determined by running the key schedule with the known
words of the key. We use the first output byte to determine the actual value
of SI [I + 1] which will provide enough information to deduce k[I].

Suppose that after I steps of the key schedule we have SI [1] < I, SI [1]+
SI [SI [1]] = I + 1. Note that there is a chance (about 0.05 according to
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Fluhrer et al.) that none of these values will be swapped out. This is
because i will not point to S[1] or S[S[1]] again since SI [1] < I. They will
only be swapped out if j points to one of them. Assuming that they are
not swapped out, the first word output will be S[I + 1]. Again, assuming
that S[I + 1] was not swapped out since step I, the first word output will
be SI+1[I + 1]. This provides enough information to determine k[I].

Using the above ideas an attack can be launched in the following way:
First, collect several streams using different IVs and the first word output
from each. Take the IV and, using it, run the key schedule algorithm for-
ward until step I. Check to see if the necessary conditions hold. If they
do, use the first word output along with the key schedule information to
determine the first word of the key. Examining several such cases, there
will be disagreement on what the value should be, but one will occur with
higher frequency (since if a swap disturbing the conditions occurs then the
first output should be essentially random). This, with high probability, will
be the first key word. After this has been determined, we can add it to the
end of the IVs and repeat, attempting to determine the next key word.

IV Concatenated With Key, Key Precedes IV

In the case where the IV appears on the end of the session key, the analysis
is similar, but more detailed. We refer the reader to [5] for a discussion.

3.6 Other Attacks and Analysis

In this Section we present some additional material that deals with specifics
of the RC4 algorithm.

3.6.1 Mironov’s Analysis

Much of the analysis of RC4 take one of two directions: assuming that
the initial state is uniformly random, or carefully analysing the initial state
for weaknesses. Taking a new approach, Mironov [17] creates a model of
the shuffling mechanism used in the key schedule algorithm and analyses
it to discover biases inherent in the method. As well, it has become a
common recommendation to drop the first few output words in order to
avoid Mantin and Shamir’s broadcast attack. Mironov attempts to make
recommendations on exactly how much output should be dropped in order
to protect against possible attacks that take advantage of the nonuniform
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initial state. (Note that Mantin and Shamir’s attack does not depend on
the key schedule.)

Mironov’s analysis uses an idealized model of the key schedule algo-
rithm which consists of an exchange shuffle. This is one of many possible
algorithms for creating a random permutation given a source of random
information. The idea is the same as in RC4’s key schedule. One makes
a pass through all elements in S, swapping each element with a randomly
selected element. This differs from the key schedule algorithm only in that
the second element which is swapped is not selected at random, but rather is
determined by a pseudo-random function that depends on key material and
the current state. Noting that the state changes in a similar way (dropping
the key material) during the round algorithm, Mironov models the state
changes after initialization as simply an extension of the exchange shuffle
used in the key schedule.

Let Pt be the exchange shuffle with t swaps. Mironov summarizes several
combinatorial results from the literature that show the bias of this shuffle
with t = N (the number of swaps in the key schedule). Among these results
is the fact that there is an exponentially large gap (as N →∞) between the
probabilities of the most and least likely resulting permutations. Also, the
expected number of fixed points in a permutation resulting from the shuffle
is lower than that of a random permutation. These results show the biases
that are present in the shuffle, but are not very useful in analysing RC4 since
they are global properties and the outputs from RC4 depend on particular
values in the permutation.

Mironov describes two new distinguishers for permutations resulting
from the exchange shuffle. The first one makes use of the concept of the
sign of a permutation. The sign of a permutation can be defined, among
other ways, as the parity of the number of transpositions in a representa-
tion of the permutation as a product of transpositions. Note that in the
exchange shuffle every swap is a transposition unless the two indices are the
same, resulting in a no-op. The number of times that the two indices are the
same is biased towards zero, resulting in a bias in the sign of the resulting
permutation towards even rather than odd.

This bias is significant (about 0.05 for N = 256), but it is difficult to
use since calculating the sign requires knowledge of the entire permutation.
It is, of course, very difficult to obtain the entire permutation from just the
output of RC4. As an example of a more useful bias, Mironov establishes
that the probability that a given value ends up in a particular position is not
constant for the exchange shuffle, as it should be for a truly random shuffle.
The details are beyond the scope of our explorations, however it should be
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noted that the resulting distinguisher is 60% reliable for P256 but becomes
unreliable for P1024.

The positional bias can be used to show that there is a bias in the first
word output from RC4. The probability that a particular word is output
depends on the probability that S[S[1] + S[S[1]]] equals that word. The
bias in the position of elements in the initial state makes this value biased,
resulting in a distinguisher. This distinguisher can differentiate a random
source from RC4 using about 1600 first output words (for N = 256). Based
on this, Mironov suggests that the first 3N output words be dropped, making
the position bias disappear and this distinguisher unusable.

In order to provide a better guarantee about the non-existence of dis-
tinguishers on the initial state, Mironov analyses the exchange shuffle in
order to determine how many swaps are required to produce a state that
is uniformly random. In order to do this he uses a result that bounds the
probability of distinguishing two distributions based on their variance dis-
tance, which measures the differences in probabilities for collection of events.
Mironov finds that, asymptotically, we need t swaps, where t satisfies

t

N
>

1
2

ln
1
2ε

and ε is the desired upper bound on the probability of distinguishing the
distribution of results of the Pt shuffle from a uniform distribution. A sec-
ond result shows that, for some c, the time required for Pt to achieve an
approximately uniformly random output can be bounded by cN lnN . Ex-
perimentation approximates this value to be about 11.6N for N = 256.

Based on the above results Mironov claims that dropping about 12N
words from the beginning of the output of RC4 likely eliminates the possi-
bility of a strong distinguisher. As a practical precaution, he recommends
dropping 2N or 3N outputs.

3.6.2 Finney’s States

Soon after the RC4 algorithm was leaked, Finney [4] described an interesting
set of states. These are small partial states with the property that they
are linked by a set of short cycles. This is interesting since the large size
of the internal state suggests that the cycle length should be very large.
Fortunately, from a security perspective, these cycles do not occur in normal
RC4 operation. They thus remain a theoretical curiosity.

Consider the partial state given by i = a, j = a + 1 and S[a + 1] = 1 for
some a. In this case, applying the round algorithm results in the following
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conditions on the next state: i = a + 1, j = a + 2, S[a + 2] = 1. Thus
next state is an example of this class of partial states, for a different a. It
is easy to see, then, that all subsequent states will be of this form. In fact,
a short cycle will form. The swap operation moves the 1 forward one step
each round, also moving the entry S[a + 1] to S[a]. Thus the entries other
than 1 migrate down in position as the 1 moves up in position. After N
rounds the 1 has returned to its original position, however the rest of the
entries have shifted one position down. After this happens N − 1 times all
entries will have returned to their original positions. Thus the original state
reoccurs after N(N − 1) rounds, forming a cycle.

Note that all of the states in all possible cycles of the form above match
the partial state originally given for some a. Since each one lies in a cycle
where all the states are of this form, and the round operation is reversible, it
is not possible to go from a state not in this form to one that is. Note that in
the initialization of RC4 we set i = j = 0, which is not in the required form.
Thus these cycles do not happen as part of the normal RC4 operation.

3.6.3 Golic’s Distinguisher

One of the early distinguishing attacks on RC4 was published by Golic [7].
This attack is quite different from other attacks on RC4 in that it uses
techniques that were developed for attacking LFSRs and block ciphers. In
particular, it uses linear analysis. These techniques, first described in [15],
use linear approximations to non-linear functions. Golic’s attack makes use
of the fact that the permutation S in RC4 evolves slowly. At each step
S is closely approximated by S immediately before the swap. Golic also
approximates the least significant bit of S with a linear equation. These two
techniques result in a linear equation relating the least significant output
bits of an output byte and the second byte after. Golic argues that these
two bits are different more often than they are the same.

The bias Golic uses is quite small, requiring about 240 bytes of output
to reliably distinguish RC4 from random sources. This is significantly more
than required for other attacks such as Fluhrer and McGrew’s distinguisher.
However, Golic’s attack is interesting in that the methods used are signifi-
cantly different from the other attacks discussed.

3.6.4 Paul and Preneel’s Distinguisher

After Mantin and Shamir [14] discovered the bias in the second output word
of RC4 others became more interested in the beginning of the stream. Paul
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and Preneel [20] analysed the digraph frequencies for the first two output
bytes, finding that there is a bias against equal bytes. This bias arises from
the fact that if S[1] = 2 initially then the first two output bytes are always
different. (We refer the reader to [20] for a proof of this fact.) For about
1/N of the time, then, the first two output bytes cannot be equal (when
S[1] = 2). The rest of the time (when S[1] 6= 2) they are equal about 1/N
of the time. This results in a probability of about (1− 1/N)/N , or slightly
less than the trivial probability of 1/N .

The bias discovered by Paul and Preneel can be easily used in a strong
distinguisher by observing the distribution of the first two output bytes from
several streams and comparing with the predicted bias. The authors report
that about 224 streams (with different keys) are sufficient to detect the bias.
In addition a similar but smaller bias affects digraphs that occur whenever
i = 0. (The mechanism is the same, but the bias is smaller since j = 0
only with probability 1/N .) This bias can be used in a weak distinguisher,
observing digraphs occurring when i = 0. The authors report that 232

output data is sufficient to detect the bias.

3.7 Conclusions

RC4 can still be considered secure in that there are no practical attacks that
reveal the key or internal state for arbitrary implementations. However,
there are attacks that uncover partial information about the stream and
distinguish it from random data. In addition the IV weaknesses provide
practical attacks in implementations using weak methods of combining IVs
with keys. Care must be taken, therefore, when implementing RC4. In
particular, at least N words of output should be dropped from the beginning
of each stream. This protects against the broadcast attack and the IV
weaknesses. Also, it is prudent to hash the IV with the key instead of
concatenating.

Although the weaknesses discovered in RC4 make it a less than ideal
choice for new applications, it still enjoys widespread use. This, together
with its novel internal structure, continue to make it an interesting topic of
research.
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Chapter 4

Chameleon: A New Cipher
and a New Cryptographic
Primitive

Before studying RC4, the author developed a cipher, called Chameleon,
which turned out to resemble RC4 to a great extent, although it has several
important differences. Chameleon is built from a new cryptographic prim-
itive, called a Mutating S-box, that shares some basic internal structures
with RC4. One key difference, however, is that Chameleon is not a random
number generator. Instead it is an autokey cipher – the plaintext influences
its internal functioning.

In this Chapter we present one version of Chameleon, called Soft-Chameleon.
The strong resemblance between Soft-Chameleon and RC4 invites compar-
isons. After describing Soft-Chameleon, therefore, we attempt to analyse it
in light of the previous work done on RC4. Although many of the attacks
against RC4 are simply not applicable to Soft-Chameleon, some provide new
insights into Chameleon. The results are mixed; in some ways Chameleon
is stronger than RC4 while in others it is weaker.

Later, in chapter 7, we develop Card-Chameleon, which functions es-
sentially identically to Soft-Chameleon but operates using a deck of cards
rather than in software.

4.1 The Mutating S-box

In this Section we develop a new cryptographic primitive, called a mutating
S-box. This primitive will serve as the basis for Card-Chameleon and Soft-
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Chameleon.

4.1.1 Feedback in Block Ciphers

When using block ciphers in building protocols, feedback modes are often
used to increase security. CBC, or cipher block chaining (see [16], Chapter
6), is one such mode. In this mode the ciphertext from the previous block is
combined with the incoming plaintext block through some group operation,
usually XOR, before the cipher is applied. This mode offers several advan-
tages over protocols without feedback because information about changes
in the plaintext is obscured. Notably, a message that differs in one block
will result in a ciphertext that is different from that block onward. In addi-
tion, feedback obscures patterns that may be preserved by a block by block
encryption. This mode of feedback does not protect against attacks on the
underlying cipher, however, since an attacker with plaintext/ciphertext pairs
with feedback can undo the group operation, producing plaintext/ciphertext
pairs in the underlying cipher.

4.1.2 Modelling with Finite State Machines

There is more than one way to model CBC mode using finite state machines.
For one example, let A be a block cipher alphabet and let f(x, k) represent a
block cipher where x ∈ A is the input plaintext and k is a key. Further, let s
be an element from A, and · be a group operation on the alphabet. A finite
state machine is constructed with state s, output function g(x) = f(x · s, k)
and state change function s = g(x). The initial state, often known as the
initialization vector, is any valid block in A.

A more useful model, from our point of view, uses a much larger state.
Let A be the alphabet underlying the block cipher f(x, k). The state consists
of elements {S[a]|a ∈ A}. It is initialized to S[a] = f(a · v, k) where v ∈ A is
equivalent to the initialization vector mentioned above. The output function
is g(x) = S[x] and the state change function assigns S[a] = f(a · g(x), k) for
each a ∈ A.

From a computational standpoint this second model is useless, especially
since modern block ciphers often have alphabets with 2128 or more elements;
the state change function would be impractical to evaluate. However, the
structure reveals some interesting properties. There are two aspects of the
state change function that appear to be somewhat limiting.

The first immediately obvious limiting aspect of the above machine is
that the state information is not used in the state change function; all in-
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formation is simply replaced. The state, however, contains a great deal of
entropy which could be put to good use. One method of taking advantage of
this information is to incorporate S[a] into the state change function using
the group operation. For example, S[a] = f(S[a] · a · g(x), k).

From a cryptographic standpoint there doesn’t appear to be any benefit
to changing any state information other than that which is revealed by the
output function. Since the key is secret an attacker has no information
about the value of any S[a] except S[x] which is output by g(x). (Actually,
if the attacker can get k from x and f(x, k) then all state information can be
calculated.) There is no reason, therefore, to change any state information
except for that which is revealed, which is S[x]. The bijectivity of g must
be preserved, however. One way to accomplish this is to exchange S[x] with
some S[y]. This approach preserves the entropy associated with the rest of
the state information and creates a much simpler state change function.

4.1.3 A Finite State Machine Cryptographic Primitive

Using the ideas above, a simple cipher can be designed. Let A, the input
and output alphabet, be any finite set. Define a finite state machine with
the following elements:

1. A state S consisting of |A| values {S[a]|a ∈ A}.

2. An output function g : A → A defined by g(x) = S[x].

3. A state change function defined by the following steps

(a) Let j = K(k, n) ∈ A.
(b) Exchange S[x] and S[j].

where K is a function with values in A and parameters k, a key, and n, the
number of blocks encrypted. Alternatively, n may be replaced by some other
parameters including added state information. From now on we simply use
K() to denote the value of the function with the appropriate parameters.

The initial state is chosen so that each element of A appears in exactly
one position S[x] with j any element of A. Thus S[x] is simply a permutation
on the elements of A. In fact, the cipher is basically a substitution, an S-box,
except that the substitution table changes with each block encrypted. For
this reason we refer to this structure as a mutating S-box.

Decryption using a mutating S-box uses a similar finite state machine.
The state is the same and the state change function uses the same K func-
tion. The output function takes element x and outputs the value a for which
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S[a] = x. The state change function is the same but uses this value of a
instead of the input value x.

4.1.4 Security

Modern substitution ciphers – that is, block ciphers – use large block sizes
in order to defeat attacks such as frequency analysis and databases of ci-
phertext/plaintext pairs. Perhaps surprisingly, the security of a mutating
S-box is not dependent on having large alphabets. To see this, consider a
mutating S-box on one bit with K(t) a pseudo-random number generator
(PRNG) with t the number of bits encrypted. Suppose an attacker has a
ciphertext along with the first n bits of the corresponding plaintext. At
each bit the attacker can determine the state that arrived at the cipher-
text by comparing with the corresponding plaintext. Thus the attacker has
complete knowledge of the n states in a row. However, unless the attacker
knows the value of K(n) the state after encryption is not known. That is,
the attacker can gain no knowledge about the next bit of plaintext without
knowing the next bit from the PRNG. However, the attacker can deduce
n bits of the pseudo-random sequence. Thus the security of this system is
dependent on the security of the PRNG.

The above case is extreme, not only in terms of the number of alphabet
elements, but also the amount of information known to the attacker. Each
state can be determined solely based on the plaintext/ciphertext pair. With
larger alphabets this is not the case. Consider an alphabet consisting of 256
elements. There are 256! possible values for the initial state. An attacker,
gaining a ciphertext/plaintext pair, knows exactly 1/256 of the information
contained in that state. To guess the next state (which will allow him
to decrypt the next ciphertext block) the attacker must know, not only
the value of K, which specifies how the state changes, but also the current
state. As well, for one bit the attacker simply has to examine the subsequent
plaintext/ciphertext pair to discover the value of j. However, this does not
work for larger alphabets since it takes 255 values to determine the whole
state. Thus larger block sizes protect information about K against attackers.

4.1.5 Attacks

In this Section we consider attacks on the mutating S-box. We consider
two approaches: attempting to first discover the State or attempting to first
discover the keystream used in the state change function.
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Attacks on the State

Assume that the function K and its key are known, along with the plaintext
and ciphertext for a message in which each ciphertext element occurs at
least once. Under these conditions there exists an attack that can recover
the complete state information at a single moment. The algorithm for this
attack is as follows

1. Initialize state elements {S[a]|a ∈ A} with a dummy element z not in
A

2. For each plaintext/ciphertext pair (p, c) in the sequence do the follow-
ing:

(a) Let j = K()

(b) Let S[p] = S[j]

(c) Let S[j] = c

3. When S[a] 6= z for all a ∈ A then done.

In order to reconstruct the state we first notice that, regardless of the
plaintext, S[j] will be assigned the ciphertext element after the substitution
is made. Thus knowing the value of j allows a partial reconstruction of
the state. A sequence of values for j and the ciphertext allows more state
information to be recovered. The assignments made for S[p], where p is the
plaintext, must be taken into account or the recovered state will not remain
in synchronization with the state of the encrypting machine. For this reason
the plaintext is necessary.

The amount of plaintext required for this attack is fairly small since each
ciphertext element need occur only once. To see this note that each alphabet
element occurs exactly once in the state. When the element occurs in the
ciphertext it is assigned to a position in the state. After its position in the
state is known it is always known since if moved its new position is given by
the plaintext and K.

Once a state has been recovered there are two ways an attacker can use
the information. First of all the attacker can run the machine backwards
to recover the initial state. Depending on the exact details of the protocol
this may enable the decryption of subsequent ciphertexts. Another option
is to continue decryption of the ciphertext using the standard decryption
algorithm. This allows an attacker to decrypt a ciphertext where only an
initial part of the plaintext is known.
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This general method can be extended to discover the key k for the K
function along with the initial state. The attacker simply executes the above
algorithm for all possible values of k. After determining the state, the at-
tacker decrypts some more of the ciphertext. Candidate keys will produce
text that matches the actual plaintext. The complexity of this attack is
dependent on the keyspace for k.

Before developing a second attack, consider the state of the mutating
S-box. The actual values of the state are not used except in the output
function. In particular, the state change function does not depend on the
actual values of the state, it merely exchanges values. Thus a permutation
on the values of the state is equivalent to applying the permutation after the
output function. If K and the key are known encrypting with an arbitrary
state will produce a ciphertext which is equivalent to the correct ciphertext
up to a permutation on the alphabet. This equivalence easily produces the
permutation which, applied to the guess for the initial state, reveals the
correct initial state. The condition of equivalence of ciphertexts up to a
permutation on the alphabet can thus be used in a brute force attack to
detect the correct key.

Another, simpler, attack attempts to build the initial state from a large
number of ciphertexts for which plaintexts are available. If the initial state
is the same for all messages then an attacker needs simply to note the first
plaintext/ciphertext pair from each message. Since these come directly from
the initial state they each reveal a small amount of information that can be
used directly to build a copy of the state. The attacker simply builds a
table of initial plaintext/ciphertext pairs. Each plaintext need only occur
once (at the beginning of a message) for an attacker to recover all initial
state information. Note that this does not necessarily reveal information
about the key k used for K.

The information revealed by the above attacks can be limited by using
an initialization vector (IV) to create a unique initial state for each message.
The IV cannot simply be copied into the state, but must be used to modify
some other, secret, initial state. If a key schedule is in use then the IV can
be used as additional key information. Another option is to use a sequence
of alphabet elements as the IV and apply the state change function using
this sequence as a plaintext, ignoring the output. Upon completing this
operation the machine will be in a new state, dependent on the key and IV
used. The same sequence can be prepended to the ciphertext allowing the
receiver to recreate the initial state by applying the state change function.
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Attacks on the State Change Function

Given a known initial state, it is easy to determine the sequence of values
for j by using a chosen plaintext. The attacker creates a message consisting
of one alphabet element, say z, repeated many times. The first element in
the ciphertext, c1 will simply be S[z]. If the second ciphertext element, c2,
is the same, then the first value for j is z. If not, then the value for j is
x where S[x] = c2 in the initial state. After recovering the first value for
j the state change function can be applied to update the state. A similar
examination of c2 and c3 will produce the second value for j. This can be
repeated as many times as necessary. The attacker can then launch a direct
attack on K with the hopes of replicating its values or discovering k.

The above method can be extended to a known plaintext attack by
taking advantage of the uniform distribution of values of K. The attacker,
knowing the initial state, examines the plaintext sequence p1, p2, . . . looking
for the second occurrence of the element p1. If the second occurrence, say
at pi, is close enough to the beginning of the message then there is a good
probability that S[p1] has not changed since the first state change. In that
case ci = S[j] where S[j] and j are the first values. Examining several
messages, the attacker will notice a higher probability of one value occurring
for ci than others, which will reveal the correct guess. The reasoning used
in the previously described attack can then be used to discover j. After this
has been done the same messages can be used to discover the second value
for j by applying the above procedure to p2.

Both of the above attacks can be extended by performing an exhaustive
search of all possible initial states. The correct guess will allow successful
decryption of all messages. For this reason the alphabet size should be large
if there are potential weaknesses in the K function.

The security of a mutating S-box against such attacks is dependent on
one of two things: secrecy of the initial state or a K function that is resistant
to attacks. The first option can only be accomplished by using an initial-
ization vector since attacks described in the previous Section can recover an
initial state without IVs. If an IV is used, however, the security of the K
function can be relaxed.

Further Observations

The previous attacks depended on either knowing or guessing the internal
state or K. If neither is known then there is no known general attack.
However, there are two possible weaknesses that could be exploited.
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The first weakness is that an attacker can observe values of S directly. In
particular, the attacker knows S[p] at every point (if the plaintext is known).
Of course this value is immediately swapped out. After the swap, however,
the attacker knows S[j]. This is not immediately useful since the attacker
does not know j. With a little more information it can become useful.

Suppose that the attacker knows the plaintext and that at some point
two equal outputs occur for inputs pt and pt+1. After the swap we have
S[K(t)] = ct. The next output is S[pt+1]. Since ct = ct+1 and no swaps
have occurred then we have S[K(t)] = S[pt+1]. Since S is a permutation
this means that K(t) = pt+1. Thus the attacker has learned one value of K.

The above observation depends on the attacker knowing both the input
and output for the mutating S-box. If either the input or output is modified
outside the mutating S-box this attack is prevented.

Another observation worth mentioning is that the plaintext is not guar-
anteed to have any particular distribution. Although there are no known
attacks based on this fact, it does have an effect on the internal functioning
of the cipher.

4.1.6 Uses in Protocols

Effective and secure use of mutating S-boxes requires attention be paid to
the attacks outlined above. In particular

1. Initialization vectors should be used. The number of possible initial-
ization vectors should be large to minimize the probability of collisions.
Several collisions on one IV are necessary to launch an attack and this
number is proportional to the size of the alphabet.

2. Smaller alphabets require more secure K functions.

3. The number of keys for K indicates an upper bound on the complexity
of a successful attack.

4. The size of the alphabet indicates an upper bound on the complexity
of an attack that reveals a sequence of values of K( ).

5. A protocol that uses a bare mutating S-box without modifying either
the input or output will have an attack that discovers individual values
of K.

From a computational perspective, the mutating S-box can be very effi-
cient, as evident in the cipher described below. The memory requirements,
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however, can be large. For this reason only the use of small alphabets is prac-
tical. Also, large states will require a large time to fill. Even in applications
where memory is not limited, the state must be filled during initialization
by a key schedule. Large states thus imply low key agility.

4.2 Chameleon: An Example Cipher

The mutating S-box was originally conceived as a means of developing a
hand cipher that could be used with a deck of cards as the only necessary
equipment. The desire was to have a fast cipher that had security com-
parable to computerized ciphers. The result of this development is Card-
Chameleon, whose description can be found in Section 7.1. Interestingly,
the algorithm is easily adaptable to software. The resulting cipher is simple,
efficient and resembles RC4.

Chameleon uses a mutating S-box with a simple K function and an
alphabet consisting of the numbers 0 to N−1 for some N , typically 256. The
output function K is defined by an ordering of the elements of {0, . . . N−1},
with values of K simply cycling through the elements in this order.

In order to avoid the problems mentioned in Section 4.1.5 a modification
is made to the original mutating S-box algorithm. The incoming plaintext
is first modified by applying S. The result is then fed into the mutating
S-box. This has two affects. First, since S is private, an attacker no longer
knows what is input to the mutating S-box. This means that the attack in
Section 4.1.5 no longer applies. In addition, since S is random and changes
over time, the distribution of the data being input to the mutating S-box is
smoothed out.

The encryption algorithm for this version, called Soft-Chameleon (“Soft”
from “Software”), follows. It requires two look-up tables, K and S and one
extra storage byte, j.

Key Schedule

The key mechanism used in Soft-Chameleon is very similar to that of RC4,
with the distinction that K needs to be initialized as well. The shuffle
mechanism is used to derive both the permutation needed for the initial
state and that used for the K function.

The shuffle mechanism simply exchanges pairs of elements where the
position of one element is determined by a counter and the other by a simple
pseudo-random function. The input is a sequence of numbers k[ ] of length
l and a look-up table S[ ].
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1. Let j = 0

2. For i = 0 to N − 1

(a) j = (j + i + k[i mod l]) mod N

(b) Swap S[i] and S[j]

Generating the state is done in the following way. The inputs are the
key k[ ], and an initialization vector v = {vi|0 ≤ i < 16}.

1. Initialize state table S[ ] so that S[i] = i for 0 ≤ i < N

2. Shuffle S[ ] with key k

3. Shuffle S[ ] with key v (i.e. replace k with v, l with 16 and run the
shuffle algorithm)

This algorithm creates an initial state that is dependent on both key and
initialization vector. The algorithm itself works for any key length between
1 and N bytes. Not all keys are distinct. For example, the keys defined by
the ASCII sequences “ab”, “abab”, and “ababab” are all equivalent since
the algorithm cycles over the elements in the sequence.

An N -cycle is required for K. This is accomplished in the following way.
The input is the key k.

1. Initialize table S[ ] so that S[i] = i for 0 ≤ i < N

2. Shuffle S[ ] with key k

3. Set t = S[0]

4. For i = 1 to N − 1

(a) Set K[t] = S[i]

(b) Set t = S[i]

5. K[t] = S[0]

The algorithm begins by creating a permutation of the N elements. Only
one key is used. The permutation created is equivalent to that created in
step 1 of creating the initial state. This fact can be used in a combined
algorithm to speed up the key set-up. Symmetry between the state and
the cycle is not a factor since the initialization vector is used to modify the
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Input: Key k, plaintext p

1. Use the key schedule and key k to derive a permutation on N ele-
ments with cycle length N . Initialize look-up table K[ ] with this
permutation. (K[x] should follow x in the cycle.)

2. Use the key schedule, key k, and initialization vector v to derive a
permutation on N elements. Initialize look-up table S[ ] with this
permutation. (i.e. the permutation takes x to S[x].) Send v as the
first part of the message.

3. Set j = 0

4. For each plaintext letter p do the following:

(a) j = K[j]
(b) t = S[p]
(c) c = S[t]
(d) S[t] = S[j]
(e) S[j] = c

(f) Output c as the next character in the message.

Figure 4.1: Soft-Chameleon Encryption Algorithm

state. The first permutation is used to create another consisting of a cycle
length of N by interpreting the entries in the look-up table as a cycle and
creating entries in another look-up table (K[ ]) appropriately.

Although keys can be as short as one byte, this is, of course, not recom-
mended. 128 bit keys are currently considered to be large enough to protect
against brute force attacks. Low security applications can, of course, use
smaller keys. Implementations should enforce a suitable lower bound on key
length.

Encryption

The encryption algorithm for Soft-Chameleon is given in Figure 4.1

Decryption

Decryption is a little more complicated, requiring another look-up table,
S−1[ ]. The algorithm is given in Figure 4.2.
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1. Use the key schedule and key k to derive a permutation on N elements
with cycle length N . Initialize look-up table K[ ] so that K[x] follows
x in this cycle.

2. Use the key schedule, key k and initialization vector v to derive a
permutation on N elements. Initialize look-up table S[ ] so that x goes
to S[x] in this permutation. Send v as the first part of the message.

3. Initialize look-up table S−1[ ] so that S−1[S[x]] = x.

4. Set j = 0

5. For each ciphertext letter c do the following:

(a) j = K[j]

(b) t = S−1[c]

(c) p = S−1[t]
(d) S[t] = S[j]

(e) S−1[S[j]] = t

(f) S[j] = c

(g) S−1[c] = j

(h) Output p

Figure 4.2: Soft-Chameleon Decryption Algorithm
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4.3 Analysis

The attacks against the mutating S-box are potentially weak points in Soft-
Chameleon. For N = 256 there are 256! ∼ 21684 possible states and cycles.
Obviously these attacks are much more difficult than a brute force attack on
the key unless the key is quite large. The key schedule is flexible, allowing
for long keys if such security is required.

One issue regarding the key schedule is the possibility of working the
shuffling algorithm backwards, using a known key, from a known state to
retrieve the initial state. This becomes an issue since the shuffle algorithm is
used to modify the initial state using a public key, the initialization vector. If
the attacker can determine the state after the initialization vector has been
applied then it is easy to apply the shuffle algorithm backwards to retrieve
the initial state, which will allow decryption of all subsequent messages.

The best method of determining the state after the IV has been applied
(the state at the beginning of encryption) is using a known plaintext attack
with at least N − 1 pairs. These pairs must have been encrypted with the
same IV. The probability of this occurring is quite small since it requires
N − 1 collisions on the same IV. However, there is a weakness in the way
that the IV is used in Soft-Chameleon that defeats the use of IVs as a
mechanism to protect the state before the IV is applied. This attack is
described in Section 4.4.3.

From a programmer’s perspective the Soft-Chameleon algorithm has
some interesting properties. First of all, only 5 instructions are needed to
encrypt a byte (ignoring instructions for input and output). This contrasts
with even the fastest block ciphers which require about 18 instructions per
byte on 32 bit processors or many more on 8 bit processors, and RC4 which
requires 8 (including the XOR with plaintext). As well, all instructions
in Soft-Chameleon operate on 8 bit blocks so there are only 5 instructions
required for any processor that is 8 or more bits wide. The decryption
algorithm, with the addition state information, is less efficient than encryp-
tion. However, at 7 instructions per byte (again excluding input and output
instructions) it is still very fast.

More interestingly, all instructions in both encryption and decryption
are for data movement; only look-ups and assignments are used. This is
in contrast to most modern ciphers which rely heavily on mathematical
constructions such as group and logical operations.

The key schedule, by contrast, is slow compared to other ciphers. The
shuffle algorithm uses nine instructions per pass through the loop (2 addi-
tions, 2 mod, 3 look-up and two assignments) and N passes for a total of
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2304 instructions when N = 256. This is used twice. The result of the first
shuffle can immediately be used to create K[ ] before it is shuffled again.
The creation of K[ ] requires takes 2N instructions. The total, then, is 5120
instructions, assuming all loops are unrolled, for N = 256.

4.4 Attacks on Chameleon Inspired by RC4

In this Section we examine the similarities between RC4 and Chameleon and
investigate the resistance of Chameleon to the attacks designed for RC4.

4.4.1 Similarities Between RC4 and Chameleon

There is a great deal of similarity between RC4 and Chameleon. To start,
the state is quite similar. The permutation S functions in an almost identical
way, providing a pseudo-random function. Also, there is one private counter,
j, that points to different elements of S in a pseudo-random way, and one
public counter, i. These parallel the N -cycle and the plaintext in Chameleon
(in a known-plaintext attack). Finally, the swap operation is identical.

The key schedule is also very similar, which is primarily due to the fact
that this algorithm is one of the simplest methods of generating a random-
like permutation. The only difference in the actual shuffle mechanism is the
line where j is incremented. Here S[i] is replaced with i. Of course there is
more set-up involved in Chameleon, due to the extra information required
for K.

The similarities between these two ciphers invite deeper comparisons
and an attempt to apply the attacks on RC4 to Chameleon. Some of these
attacks are too specific to RC4 to be of use, but others can be modified in
a way that exposes weaknesses.

4.4.2 Branch and Bound Attacks

It is possible to launch an attack that attempts to discover both the initial
state and the state change function at the same time. Rather than a brute
force attack on one of these, a branch and bound algorithm of the type
used in Knudsen’s attack on RC4 can be used to improve the speed of the
search. The concept is analogous to Knudsen’s attack, closing off branches
of possible choices, but the exact details are different. The algorithm is given
in Figure 4.3.

Experiments on small N have shown that our attack on Chameleon, de-
spite its simpler nature, has a higher computational complexity than Knud-
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Input: Some ciphertext with corresponding plaintext

1. j = 0

2. Repeat the following for each plaintext/ciphertext pair (p, c)

(a) If K[j] is not defined then branch over all unassigned values
(b) If S[p] is not defined then branch over all unassigned values
(c) If S[t] is not defined and c is not assigned in S then S[t] = c

(d) If S[t] 6= c then a contradiction is found. Close this branch
(e) Swap S[t] and S[j]

Figure 4.3: Chameleon Branch and Bound Attack Algorithm

sen’s attack for the same N . The complexity is very close to N !, instead of√
N ! as in RC4. A closer examination shows that for our attack there is a

branch for every element of K since there are no equations that allow these
values to be filled in from other information. In Knudsen’s attack, by con-
trast, there are three places where values can be filled in, allowing potential
branch points to be avoided. Also, both S and K must be guessed. These
effects combine to give a much higher complexity. In fact, the complexity
is so high that it is comparable to the best attacks described against the
mutating S-box.

4.4.3 IV Weakness

Although the IV weaknesses in RC4 do not apply directly to Soft-Chameleon,
the idea of using different IVs to gain information about the key turns out
to be fruitful. To see this, we examine how the key schedule uses the IV.

The key schedule initializes the look-up table S to the identity permuta-
tion. Afterwards S is shuffled by the shuffling algorithm using the secret key.
Finally, S is shuffled using the IV. Examining the internals of the shuffling
algorithm, we see that the essential feature is the swap. We can consider this
operation as the multiplication of the permutation S with a transposition
that exchanges i and j. From this it is easy to view the entire shuffling pro-
cess as the multiplication of a sequence of transpositions. Taking a longer
view, the two shufflings performed, using the key and using the IV, can be
considered as the multiplication of one long sequence of transpositions. By
associativity, we can consider this as two permutations multiplied together,
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one formed by shuffling with the key and the other formed by shuffling with
the IV.

Let Sk be the permutation corresponding to shuffling with the secret key
and SI the permutation corresponding to shuffling with the IV. Imagine an
attacker that has collected a series of initial plaintext/ciphertext pairs from
several streams, possibly with different IVs. The attacker can easily derive
the permutation S ◦S from which it is possible to find S with some addition
effort. Now for any particular pair x, y with S[x] = y we have

y = (SI ◦ Sk)[x]

since no swap has been performed at this time. Equivalently we have

S−1
I [y] = Sk[x].

Note that SI is completely determined by the IV, which is public knowl-
edge. Thus the attacker can determine one element of Sk. If sufficiently
many initial plaintext/ciphertext pairs are known the entire table can be
determined.

Once Sk has been determined, one can apply the shuffling algorithm
with the IV from subsequent messages, obtaining the initial state for these
streams. This information can be used to launch an attack attempting to
discover K. Since K does not change with different IVs information from
several streams can be combined in these attacks.

It should be noted that this attack does not affect the IV mechanism used
in Card-Chameleon since thehe mechanism in use there is key dependent. In
particular, the incremented i is replaced with the cycle K, and so SI can no
longer be computed from public knowledge. Thus thehe attack fails. This
suggests a means of strengthening the key schedule for Soft-Chameleon. One
improvement is described in Section 5.3.1.

4.4.4 Key Schedule Invariance Weakness

Since the shuffling mechanism used in Soft-Chameleon is so similar to that in
RC4, there exists the possibility that the weak keys described in Section 3.4.2
also affect Soft-Chameleon. In fact, a closer examination reveals that Soft-
Chameleon is more susceptible because the use of S[i] is replaced with i.
Thus the condition S[i] ≡ i (mod b) is no longer an issue. When considering
the special exact keys the problematic elements in S are no longer of concern
since they can never influence j. For Soft-Chameleon, then, the number of
problem entries in S is always two when using a special exact key.
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Of course in Soft-Chameleon two shufflings occur, one with the key and
one with the IV. For the final permutation to have the invariance property,
then, the IV must also be special-exact in the same manner as the key.

Using the special initial form of S is a little different for Soft-Chameleon
than for RC4. Since the output mechanism depends on the value of the
plaintext it is a little harder to analyse. However, it can be argued in much
the same way that if S has the correct initial form then the first few outputs
will, with high probability, obey S[x] ≡ x (mod b). These events could
easily be detected with known plaintext/ciphertext pairs. In conclusion, the
key invariance attack on RC4 can be modified to attack Soft-Chameleon.

4.4.5 Biases and Other Attacks

Although some of the attacks on RC4 are quite successful when adapted to
Soft-Chameleon, most of the bias attacks are not adaptable because they
rely on particular details about the output mechanism in RC4. Predictive
states, for example, will not be useful for Soft-Chameleon because one key
variable, the plaintext, is not controlled as part of the cipher. In fact any
output string can be created using a suitable choice of plaintext.

4.5 Conclusions

Although there are currently no practical attacks against its main algorithm,
Soft-Chameleon should be regarded as experimental. With further develop-
ment, however, we are confident that a secure, efficient cipher based on the
mutating S-box can be constructed, perhaps with only little modification to
Soft-Chameleon. In particular, the key schedule requires modification.

The mutating S-box shows promise as a tool for use in designing simple,
efficient ciphers. Its main limitation is the memory requirements, which
limit its use to small N . However, this makes it an excellent choice for
designing ciphers for 8-bit machines such as those used in smart cards. The
example cipher, Soft-Chameleon, exemplifies these properties by providing
a cipher that compares favourably with other 8-bit ciphers (namely RC4)
for speed and simplicity.

In addition to being an interesting object of study itself, the mutating
S-box bears a strong resemblance to RC4. By examining their common prop-
erties and how they differ we can better learn about both ciphers with the
goal of developing ciphers that are more secure while retaining the simplicity
and efficiency present in both RC4 and Soft-Chameleon.
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Chapter 5

Modifying RC4

In the previous Chapter we explored Soft-Chameleon and applied the analy-
ses of RC4 to it. In this Chapter we wish to use the insights and techniques
used in Soft-Chameleon, combined with those of RC4 to explore new possi-
bilities for cipher design. We present an abstraction of the two ciphers into a
more general setting and explore some possible applications that this setting
suggests. As well, we develop a new cipher, RC4B, that borrows from both
RC4 and Soft-Chameleon. Finally, we present two other ciphers, RC4A and
VMPC, that were developed as variants of RC4.

5.1 Comparisons

In the previous Chapter we examined the two ciphers, offering one com-
parison between the two. In that comparison, j was equated in the two
ciphers. We now argue that j in Soft-Chameleon behaves more like i in
RC4. Although the former is private and the latter is public, they have two
important similarities. First, they both repeat with cycle length N . This
is in contrast to j in RC4 and the plaintext in Soft-Chameleon, which (po-
tentially) have much less predictability. Also, we can view the plaintext in
Soft-Chameleon as private information, making it seem closer to j in RC4.

Consider i in RC4. It seems to play an important role in that it does
not depend on the state and addresses every element in the state in every
N steps. The latter fact means that the swap operation and the update of j
will affect and be affected by every element of the state within this number
of steps, ensuring that the entire state plays a role in the output within a
short span of time. Since i does not depend on the state, this also means
that a few carefully chosen values in the state cannot cause a short cycle;
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the entire state must play a role.
Clearly i contributes significantly to the security of RC4. However, there

are disadvantages to its particular sequence of values. The fact that it is
simply incremented means that its value can be known by anyone who can
count the number of output words. In practice this means that i must be
considered public knowledge. Another disadvantage is that since i does not
depend on the state it also does not depend on the key. This means that
the state change operation is not key dependent.

Now consider j in Soft-Chameleon. It performs much the same role
as i does in RC4. Since the incoming plaintext can not be guaranteed to
have any particular distribution or visit any particular state element, it is
possible that it only affects a small amount of the state. (For example, if
the plaintext in English text encoded in ASCII, which only uses a small
subset of all 256 byte values.) It becomes a critical property of j that it is
guaranteed to visit every element of the state in a short time, ensuring that
the entire state contributes to the output.

In contrast with i in RC4, j in Soft-Chameleon has one important prop-
erty that affects security: it is key dependent. This means two things. First
of all, j is no longer public knowledge. This becomes quite important since if
somebody knows j and the plaintext then they know all information and can
fairly easily discover the state information (as discussed in Section 4.1.5).
Also, this means that the state change operation is key-dependent.

The natural conclusion from the above comparison is that if we replace
the incrementing of i with a mechanism similar to how j in Soft-Chameleon
behaves, we stand to increase the security of RC4.

5.2 A New Viewpoint

The comparison between Soft-Chameleon and RC4 also suggests a new
means of viewing RC4. We first examine Soft-Chameleon, developing this
new viewpoint and then apply it to RC4.

Suppose we have a finite state machine that is built as follows: The
internal state consists of S, a permutation on N values. The machine takes
two input values, a and b and performs the following operations:

1. output S[b]

2. Swap S[a] and S[b]

We can view this simple machine as taking two streams of values, the a
stream and the b stream, and outputting a new stream that combines them.
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This is, of course, just the mutating S-box as described in Section 4.1.3 (with
a as the plaintext stream and b as the j stream.) However, we take it in a
slightly more general context. One feature to note is that if the a stream
and the output stream are known together with the initial state then the
b stream can be obtained. This corresponds to decryption in the mutating
S-box.

Now consider a slightly more complicated machine. This second machine
has the same internal state and performs the following operations:

1. output S[S[a] + S[b]]

2. Swap S[a] and S[b]

This is a generalization of RC4. Like the previous machine, it takes two
streams and combines them into another stream. Also like the previous
machine, it is possible to discover b from the output stream and a by main-
taining a reverse look-up table which gives S−1. The value b is given by
S−1[S−1[output]−S[a]]. The swap operation can then be performed, result-
ing in the correct state for the next values in the streams. It is interesting
to note that this machine is symmetric with respect to its inputs.

Now that we have these two machines, we examine the different streams
that are actually used in constructing Soft-Chameleon and RC4. First,
consider i in RC4. This is a very basic stream. It is publicly available,
and has a uniform distribution of values but short cycle length. Plaintext
streams are, of course, quite variable. There is no guarantee about the
distribution of their values or any other statistical property. As well, they
must be considered public knowledge when studying anything but the most
basic security properties. The j used in Soft-Chameleon has a short cycle
length but has a uniform distribution of values and is not public. Finally,
the j used in RC4 has somewhat random values and is not public. However,
it is dependent on the internal state of the machine, introducing another
window for attacking S.

After separating the basic machines and input streams, several new pos-
sibilities become apparent. First of all, we can mix different streams and
machines. Some of the combinations will not be secure (for example, replac-
ing the K[ ] cycle in Chameleon with the public i cycle). Others appear to
be more secure. For example, replacing the output function in Chameleon
with that of RC4 appears to be more secure because values of S are not
immediately public and depend on the value of a as well as b. As another
example, we can use the key dependent K[ ] in place of i in RC4, thus cre-
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ating a key dependent round algorithm and reducing the amount of public
information.

Other Uses of the Basic Machines

Another possibility of using these basic machines is in place of other mecha-
nisms that are traditionally used to combine two streams. For example, the
output of RC4 is combined with plaintext using the XOR function. This
has the advantages of being fast and easily reversible. However, it leads to
several attacks. The well known idea of XORing two ciphertexts together to
eliminate the keystream is one example. Also, any attack that determines a
single bit of keystream can be used to determine a bit of plaintext directly.
We can reduce the power of these two attacks by using one of the basic
machines above to combine the keystream with the plaintext.

The mutating S-box, as originally described, is intended for exactly this
application, if stated somewhat differently. Attacks have already been dis-
cussed. Although it appears to be secure against known plaintext attacks
(that is, it is not feasible to determine the internal state or the keystream
given a stream of plaintext and ciphertext) it is vulnerable to chosen plain-
text attacks. In particular, the attack described in Section 4.1.5 could
be modified to determine partial information about the keystream without
knowing the internal state.

Using the basic RC4 machine in this same context appears to be more
secure. However, most of the same attacks apply. If the internal state is
known, for example, it is possible to reconstruct the keystream given some
known plaintext. If we have plaintext word p with ciphertext word c then
we calculate the keystream value k at that moment as

k = S−1[S−1[c]− S[p]]

If the keystream and plaintext (ki and pi) are known the attack becomes
more complex. However, all information necessary to do the swaps is known.
An attacker can proceed by first assigning a variable to each initial value
of S. Each plaintext/ciphertext word gives a restriction on the state. The
plaintext and keystream inputs point to unknown elements of S, but they
can be traced back to one of the initial values of S by reversing the swap
operations. The end result is a collection of conditions on the initial state of
the form Si[x + y] = ci where ci is a ciphertext word and x and y are initial
variables (where again Si represents S at the ith step).

The above observations can be used to build a branch and bound algo-
rithm that attempts to learn the initial state given the keystream, plaintext,
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and ciphertext. Basically we guess values for the initial state as required
and check for a contradiction (two assignments to the state that are not
compatible.) If no contradiction is found we move forward, applying the
algorithm until a contradiction is found or no data remains. It is expected
that this algorithm would have a lower complexity than Knudsen’s attack
on RC4. This is because this new attack is equivalent to Knudsen’s attack
on RC4 with j known as well as i. The amount of information has increased,
so the attack complexity should decrease.

5.3 RC4B

With the ideas from the previous Section in mind, we now develop a variant
of RC4, which we call RC4B, that borrows from Chameleon, resulting in a ci-
pher that is arguably more secure. The basic idea has already been outlined:
replace one of the input streams to the basic RC4 machine with something
else. In this case we replace i with an N -cycle as used in Chameleon. The
result is a state change function that is key dependent and an overall algo-
rithm that hides all information about the internal state.

5.3.1 Key Schedule

Since RC4B uses an N -cycle in addition to the state information used in
RC4, a new key schedule is required. While modifying the algorithm to
provide the necessary state information, we also modify it to strengthen it
against some of the attacks mentioned in Chapter 2.

The new algorithm is given in Figure 5.1. It is inspired by both the RC4
key schedule and that of Soft-Chameleon, with some important differences
from both. It takes two inputs, the key k of length l1 and an initialization
vector v of length l2. The first part of the algorithm (steps 1-3) sets up
S exactly as in RC4. S is then used to derive the N -cycle K (steps 4-6)
instead of passing this as the internal state. Next the whole state is shuffled
again, using the IV instead of the key. Also, instead of using i to control j
and the swaps, the N -cycle is used, with variable j′.

The RC4B key schedule has several properties that make it appear much
more secure than either the RC4 or Soft-Chameleon key schedule. First,
the state is shuffled twice. This helps smooth out the biases observed by
Mironov, as described in Section 3.6.1. Since RC4 is now considered to be
insecure without dropping at least the first N bytes of output, the first N
rounds of keystream generation can effectively be considered to be the part
of the key schedule. In the RC4B key schedule, this discarding is made
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Input: Key k of length l1 and initialization vector v of length l2 = l1 − 1.

1. For i = 0 to N − 1, let S[i] = i.

2. j = 0

3. For i = 0 to N − 1

(a) j = j + S[i] + k[i mod l1] mod N

(b) Swap S[i] and S[j]

4. Set t = S[0]

5. for i = 1 to N − 1

(a) Set K[t] = S[i]
(b) Set t = S[i]

6. K[t] = S[0]

7. j′ = S[j]

8. For i = 0 to N − 1

(a) j′ = K[j′]
(b) j = j + S[j′] + v[i mod l2] mod N

(c) Swap S[j′] and S[j]

9. i = S[j]

Figure 5.1: RC4B Key Schedule Algorithm

explicit. Second, Roos’ set of weak keys is eliminated. The fact that each
element is swapped at least twice, the second time with an element that has
already been swapped (unless i = j at that moment) makes Roos’ analysis
inapplicable.

The invariance weakness in RC4 of Section 3.4.2 resulted from several
coincidences that allowed a specially constructed key to move j in such a
way that the swap preserved the entries of S modulo some b. One of the
conditions that was noted about this is that in order to have a special exact
key of length l we must have b|l. In order to preserve the invariance over both
shuffles we must have a special exact key k and a special exact initialization
vector v. However, by choosing different lengths that are coprime we make
it impossible for this condition to be satisfied for any b other than 1, which
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gives no information. In this way the invariance weakness is eliminated.
The most important weaknesses practical in the key schedule of both

RC4 and Soft-Chameleon stems from a weak usage of the initialization vec-
tor. In the RC4B key schedule the attempt has been made to eliminate these
weaknesses. First, the initialization vector does not interact directly with
the key, as it does in RC4, making it much less likely that attacks based on
weak IVs could expose key material. The IV is used in a shuffle, much like in
Soft-Chameleon, but the shuffle is now key dependent, using K, eliminating
the attack described in Section 4.4.3.

As one final note, i and j are not set to a constant at the end of the key
schedule. j is not modified, leaving it in an effectively random state, and
i is set to S[j], which is also effectively random. This further reduces the
amount of public knowledge about the state.

A careful analysis of Soft-Chameleon and RC4B show that they require
an almost identical initialization (i.e. a permutation and an N -cycle). The
one exception is that i need not be set for Soft-Chameleon. Thus the key
schedule for RC4B can be used as an alternative to the weak key schedule
previously developed for Soft-Chameleon.

5.3.2 RC4B Round Algorithm

The round algorithm for RC4B is given in Figure 5.2. It is essentially the
same as RC4, with one feature borrowed from Soft-Chameleon. The simple
incrementing of i is replaced with the N -cycle K.

1. i = K[i]

2. j = j + S[i] mod N

3. Swap S[i] and S[j]

4. Output S[S[i] + S[j] mod N ]

Figure 5.2: RC4B Round Algorithm

5.4 RC4 Attacks on RC4B

In this Section we consider some of the attacks on RC4 previously described,
giving an analysis of their effectiveness against RC4B.
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5.4.1 Predictive States

Since the public knowledge of i is lost in RC4B, a partial state must include
information about how i changes as well as the current values of i, j, and
some of S. This, first of all, decreases the probability of a particular partial
state occurring. Hence predictive states look like they should have reduced
power. The actual picture is a little more complicated.

A careful examination of some previously known predictive states for
RC4 shows that it is possible to convert many of these states into classes
of predictive states for RC4B where there is one predictive state for each
possible sequence of values for i. This has two implications. First of all, it
means that many of the biases that appear in RC4 also appear in RC4B.
Experimental results show that the digraph distributions have biases similar
to that of RC4. A second implication is that, once a predicted output occurs,
there is a whole class of possible states that could have caused that predicted
output. Thus a considerable amount of guessing may be required to make
use of a predicted output, increasing the complexity of attacks that use these
states. If a predicted output occurs an attacker does not immediately learn
information about the internal state because there are many possible partial
states that would produce the predicted output.

5.4.2 Key Schedule Attacks

The key schedule of RC4B was designed with the attacks on RC4 in mind.
In particular, it was desired that the new key schedule would defeat the
invariance attack, and the attacks using IVs (both in Soft-Chameleon and
in RC4). Both goals are attained using the second shuffling of S with the
initialization vector v. This shuffle uses K instead of incrementing i as
in RC4. Since K is private knowledge, it is not possible to construct a
separate permutation based on the IV as in Soft-Chameleon. Also, since
the IV is not involved directly with the key as in some implementations of
RC4, it should not be possible to gain key information using IV information.
Also, as previously mentioned, using coprime lengths for k and v defeats the
invariance attack.

5.4.3 Early Keystream Attacks

There are several attacks which make use of information gained from the
first few bytes of keystream generated. These attacks rely on the fact that
i and j are both initialized to public constants. In RC4B these constants
are replaced with key dependent variables, thereby limiting the amount of
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information that can be gained from the first keystream bytes. In addition,
more swapping occurs during the key schedule, decreasing the amount of
bias present in the initial state.

5.4.4 Knudsen’s Attack

Knudsen’s attack can be implemented against RC4B with some changes.
The big difference is that now K must be guessed as well. The author has
implemented this attack and done numerical experiments for small N . The
complexity of the attack scales close to N ! rather than

√
N ! as is the case

for RC4. This means that it is possible to use RC4B securely for smaller N
than is possible for RC4. In Chapter 7 we take advantage of this to develop
a card game cipher that uses RC4B with N = 27.

5.4.5 Other Modified RC4 Ciphers

Previously other authors have modified RC4 in an attempt to defeat the
various attacks against it. In this Section we present two such ciphers.

VMPC Stream Cipher

The VMPC stream cipher, described by Zoltak [27] is a straightforward
modification of RC4 that attempts to gain security by replacing the output
function and the j update. The function used is the so called VMPC one
way function. VMPC is actually a family of functions, of which the one
chosen for the output of the stream cipher is

S[S[S[x] + 1]]. (5.1)

The goal of the VMPC is to limit the amount of information that can
be gained about S. The key part is the +1, which is intended to interrupt
cycles in S, forcing an attacker to guess all entries of S. The algorithm is
given in Figure 5.3. K[ ] is a key of length l and V is an initialization vector
of length m.

There are several differences between VMPC and RC4. First of all, the
key schedule is modified, integrating initialization vectors in a way similar
to RC4B and increasing the number of passes as recommended by Mironov.
As well, the update of j has been modified, adding one more use of S to
make j more complex in its movement. In the round algorithm again the
update of j has been modified as has the output function, as mentioned
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1. j = 0

2. For i = 0 to 255, set S[i] = i.

3. For n = 0 to 767

(a) i = n mod 256
(b) j = S[j + S[i] + K[n mod l] mod 256]
(c) Swap S[j] and S[i]

4. For n = 0 to 767

(a) i = n mod 256
(b) j = S[j + S[i] + V [n mod m] mod 256]
(c) Swap S[j] and S[i]

5. i = 0

6. Repeat for each byte output

(a) j = S[j + S[i] mod 256]
(b) Output S[S[(S[j] + 1) mod 256]]
(c) Swap S[i] and S[j]
(d) i = i + 1 mod 256

Figure 5.3: VMPC Stream Cipher

previously. Finally the order has been changed, placing the swap after the
output function.

Many of the vulnerabilities that have been discovered for RC4 have been
avoided in VMPC, learning from the analysis done on RC4. Zoltak, through
statistical analysis, found that the first byte output, element and digraph
probabilities are all unbiased. As well, other more theoretical vulnerabilities
such as those in Mironov’s analysis and Knudsen’s attack have been reduced.
The cost, however, is a more complex algorithm with a lower efficiency.

RC4A

After their analysis of RC4, Paul and Preneel [20] developed a variant of
RC4, called RC4A, which attempts to increase security without decreasing
efficiency. Their approach essentially takes two RC4 instances and crosses
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information between them. They use a state consisting of two look-up tables,
S1 and S2 and three counters, j1, j2, and i.

The key schedule of RC4A is the same as for RC4 except that it is used
twice, once for S1 and S2. It is not specified how the keys for these two uses
of the key schedule are found. They may be derived from a common key
through the use of some pseudo-random number generator. After S1 and S2

are generated i, j1 and j2 are set to 0.

1. i = i + 1 mod N

2. j1 = j1 + S1[i] mod N

3. Swap S1[i] and S1[j1]

4. Output S2[S1[i] + S1[j1] mod N ]

5. j2 = j2 + S2[i] mod N

6. Swap S2[i] and S2[j2]

7. Output S1[S2[i] + S2[j2] mod N ]

Figure 5.4: RC4A Round Algorithm

The round algorithm for RC4A is given in Figure 5.4. The two instances
of RC4 basically operate independently except for the output, which depends
on both instances. Note that each run through the round algorithm produces
two bytes of output. The two instances share i, so there is a slight increase
in efficiency.

The goal behind RC4A was to increase security primarily by increas-
ing the internal complexity of the algorithm. By increasing the number of
variables involved in each output the size of predictive states is increased,
reducing biases. Also, the larger internal state size increases the complexity
of attacks such as Knudsen’s attack. The cost is a large increase in the
memory requirements as well as set-up time.

5.5 Conclusion

Each of the three modified RC4 algorithms, RC4A, RC4B, and VMPC is
modified from RC4 in a different way, making it difficult to directly compare
them. However, we can make some general observations. First, all are
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comparable in speed, owing largely to the great similarity with RC4. Also,
each claims added security against various attacks against RC4. Without
an in depth comparison, however, it is not possible to say which has best
achieved this goal.

The RC4 algorithm is clearly quite flexible. There are many ways of
modifying it, and we have presented three. In addition, there are possibilities
for using portions of the RC4 algorithm in different contexts, making use of
its simple and secure design in other applications.
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Chapter 6

Expanding RC4 to 32 Bits

RC4, although very popular in applications, is becoming less desirable be-
cause of the increasing number of attacks against it. As well, at the time of
its development it was very fast relative to other ciphers, especially among
software ciphers, but its 8-bit nature does not fully take advantage of newer
processors that are widely available. Newer ciphers are often designed with
new processors in mind, making them more efficient. For these reasons in
this Chapter we examine possibilities for new ciphers that aim to be more
efficient and secure than RC4 and yet borrow from its structure and preserve
its simplicity.

There are many possible avenues for this exploration. First, one can at-
tempt to parallelize RC4, taking advantage of the vector operations available
on many processors. Second, one can modify RC4 in a way that preserves
much of its efficiency on 8-bit systems. Finally, one can modify RC4 without
regards to efficiency on 8-bit systems, allowing for much faster implementa-
tions on a more restricted set of processors.

6.0.1 Parallelizing RC4

A close examination of RC4 reveals that it is very difficult to parallelize.
Every instruction is dependent on the results of the immediately previous
instruction. However, it is possible to slightly modify RC4 to gain additional
throughput using the vector computation instructions that are available on
many 32-bit processors.

With the introduction of MMX, SSE, AltiVec and other instruction sets
that implement vector computation, the cryptographer has a new set of
tools to custom-design fast ciphers. Vector computation allows a processor
to perform certain operations on a vector of values rather than on a single
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value, for example, adding two vectors of four 8-bit values rather than two
32-bit values. Also, vector computing implementations often use increased
register sizes (64 or 128 bits). The number of instructions available for these
registers is typically not as large as for regular registers, but instructions
commonly used for ciphers such as addition, bit shifts, and XOR are all
available.

Examining RC4 we see that three of the seven instructions are additions.
Although we cannot perform these together, in general, since they are inter-
dependent, we can take another approach. Instead of running one instance
of RC4, we can run, say, eight instances, each operating independently.
Since the additions of these different instances are independent, they can
be performed simultaneously. The 64-bit registers available on processors
equipped with MMX instructions would be suitable for such an operation
since they can perform eight 8-bit additions simultaneously. The outputs
from these different instances could then be interlaced. The number of in-
structions per byte output would drop from 7 for RC4 to about 4 (3 for the
additions plus 32 = 4(8) for the memory look-ups and assignments for each
8 bytes output.) Running 16 instances in parallel would be feasible when
using 128-bit registers like those available with AltiVec or SSE instruction
sets, further increasing parallelism and hence efficiency.

Note that all the operations in this scheme are 8-bit, although some
are performed by the parallelism of vector computing. Thus 8-bit machines
would not be affected. The one drawback, however, is that the memory
requirements have increased 8-fold. This is, in general, not a concern for
32-bit systems, but may be a factor for limited systems like smart cards. In
such situations, however, the additional efficiency for the 32-bit systems is
probably not a great advantage.

6.0.2 32-Bit Versions of RC4

The most natural way of extending RC4 to larger word sizes is to increase
N . The larger words take a greater advantage of the processing capabilities
of wider processors. However, the memory requirements of the state increase
exponentially with the word size. Coupled with this is the fact that proces-
sors typically operate in 32, 16 and 8 bit word sizes, but nothing in between,
limiting options for a compromise. 8-bit RC4 has a small memory require-
ment and reasonable time to set up a key, but 16-bit RC4 would be useful
only for systems where key agility is not a factor and 32-bit RC4, requiring
16 Gigabytes of memory, would be incredibly limiting (especially since 4 Gi-
gabytes is the maximum amount of memory addressable by Pentium class
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processors.)
One possible means of using 32-bit operations without increasing N or

substantially changing the algorithm is to use a method similar to that de-
scribed in the previous Section using vector operations. However, instead
of preserving the isolation of the different instances of the cipher, the oper-
ations can be made fully 32-bit (or 64-bit for processors so capable). This
is done on the additions only. Instead of adding, say j and S[i] for each
instance separately or together in a vector, the values are packed into two
32-bit registers and added together. This blurs the lines between the differ-
ent instances since carries from lower order bytes can affect the higher order
bytes. As well, the way that the bytes are packed can be modified each
round (in some fixed pattern) so that the bytes cross over from one instance
to another much like in RC4A (see Section 5.4.5). Unlike in RC4A, however,
the additions are carried out together, making the parallelism more explicit.

Although the security of the above cipher would likely be increased,
mostly due to the increased state size and interaction between instances,
the efficiency is likely not going to be increased much. This is because the
instructions for packing the bytes into the 32-bit registers would probably
take more instructions than the simple memory look-ups that would be done
in plain RC4.

Clearly, in order to fully take advantage of the 32-bit operations available
on larger processors, RC4 must be modified in some fundamental way. In
the remainder of this Chapter we develop some ideas that will lead to a 32-
bit version of RC4 that has modest memory requirements and is many times
more efficient that 8-bit RC4 on 32-bit processors with vector processing.

6.1 RC4 as a Pool of Entropy

In the previous Chapters we discussed the idea of the internal state of RC4
as a pseudo-random permutation. Later, when discussing Chameleon, we
introduced the notion of the round-function of Chameleon as removing pub-
licly known parts of the permutation and replacing it with new (pseudo)
randomly selected information. We now wish to expand these notions, re-
moving the restriction that the state contain a permutation.

In the permutation stored in the internal state of RC4 and Chameleon
the randomness is contained in the order that the values appear. The actual
values contain no information, since every possible value for the alphabet
used appears exactly once. If we remove the restriction that the state con-
tains a permutation, then the actual values, in addition to their positions,
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will contain information. We can then draw upon the entropy contained in
the state by looking at some position, reading the value to obtain the infor-
mation. The position chosen, as well as the value stored there, determine
the output. We can then replenish the entropy of the state (since the output
will presumably become public knowledge) by assigning a new value to that
position.

This generalization of the Chameleon idea allows new possibilities when
designing ciphers. In particular, since the restriction that the state be a
permutation has been lifted, there is no particular reason to keep the state
size as N . It can be modified, taking a smaller number of values. This is
of particular interest to us in the design of 32-bit RC4-like ciphers since we
don’t want to have to store 16 Gigabytes of data.

6.2 A First Try

In this Section we attempt to use the above ideas in a cipher. However, the
result is an insecure cipher.

6.2.1 Description

Suppose that we have two streams, a and b that take values in {0 . . . N − 1}
and {0 . . .M − 1}, respectively. Let A[ ] be a list of N values taken from
the M possible values for the b stream. We construct a finite state machine
that does the following;

1. Output A[a]

2. Assign b to A[a]

This simple machine implements the ideas developed in the previous Sec-
tion. It stores a pool of entropy, A[ ], from which outputs are selected and
immediately replaced by new information. Basically, what this machine does
is reorder the outputs of the b stream.

Before the machine can function it requires N initial values to populate
A. These can simply be obtained from the first N outputs of the b stream.

In order to construct a cipher from this machine we need to provide the
streams. To get our 32-bit version we will use N = 28 and M = 232. Before
specifying the exact streams, however, we will explore some security issues.
First of all, what exactly do we gain by using this machine if it requires a
32-bit PRNG? In fact, we need two streams. The increase in security is a
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consequence of the fact that outputs from the b stream are not immediately
public.

6.2.2 Usefulness

Suppose that b is a PRNG that has some desirable properties, namely an
approximately uniform distribution, a long cycle length, and high efficiency.
Suppose further that this PRNG is cryptographically weak and cannot be
further improved without substantially reducing efficiency. (Designing such
ciphers that are cryptographically strong is, of course, a hard problem.)
By adding some additional entropy, in the form of an additional stream,
using the machine described above, we improve security in an important
way: consecutive outputs of the PRNG are not necessarily consecutive in
the output from the machine. In fact, it is not possible to guess when a
particular output from the PRNG will occur in the output from the machine
without knowing the behaviour of the a stream.

As an example of how this is useful, consider two RC4 streams as the
a and b streams. Many of the attacks developed against RC4 would be
defeated because of the loss of position information on particular values
from the b stream. Fluhrer and McGrew’s distinguisher, for example, relies
on a bias in the digraph probabilities of RC4. After hiding the b RC4 stream
behind our machine, the digraphs are no longer preserved, eliminating this
particular bias.1 The bias in the second output byte also becomes much
less useful since the position of the second output byte in the machine’s
output is not known. The key schedule weaknesses which rely on first output
bytes are similarly much less useful. In fact, since virtually all the attacks
previously described depend on knowing the (possibly relative) position of
outputs, they are either defeated or greatly reduced in strength. Of course,
the efficiency is less than half since we need two instances of RC4 in addition
to our machine.

6.2.3 A Weakness

Suppose that the stream used for b is weak in the following way: any two
consecutive outputs determine the internal state and hence the entire stream.
We can then attack the output from the machine described above in order

1Note that digraph biases in the a stream may allow digraphs to be exposed in the b
stream. If the a stream has a bias towards three consecutive equal values, digraphs in the
b stream will be output directly more often, passing b’s bias into the output. However,
the bias will be greatly reduced.
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to determine the b stream. We do this by first collecting N + 1 outputs
from the beginning of the output from the machine. Since only N values
are held in A, at least two of these outputs must have been adjacent in
the output from b. It is then a simple matter to try all N(N − 1) pairs,
determine a candidate b stream, and compare the output. If the correct
stream was chosen then, of the first 2N +1 outputs, N +1 will occur as the
outputs from the machine. If the a stream is constructed in such a way that
it depends on A, then we can run the machine with a candidate machine to
compare outputs directly. Note that there are 2N possible places where the
consecutive outputs could have occurred, meaning a further 2N guesses.

The above attack requires about 2N3 work. If the b stream is stronger,
say requiring l words of output to determine the internal state, then the
attack can be extended. First, in order to guarantee that a sequence of l
consecutive outputs appears, we need to consider (l − 1)N outputs from
the machine. (A smaller number can be used if a small chance of this
not happening is tolerable.) Then ((l − 1)N)!/(l − 1)(N − 1)! ∼ ((l −
1)N)l guesses will guarantee the correct stream is found and a further lN
guesses for possible positions. The total complexity is thus l(l−1)N l+1. For
concreteness, this value is 234.6 for l = 3 and N = 256, 243.6 for l = 4, and
284.9 for l = 7.

In addition to the above attack, it is also important to note that any
bias in the frequency of output words from b will appear in the output from
the machine.

6.3 A More Secure Version

The previously described machine fails in essentially the same way that the
mutating S-box fails to resist chosen plaintext attacks (see Section 4.1.5),
the outputs directly reveal information about the internal state. For the
above machine this means that the revealed information came directly from
the b stream. Although position information has been lost, the actual values
still remain.

The most obvious way to secure the above machine is to isolate the
internal state from the output. One simple way to do this is to take the
sum (modulo M , of course) of two values in the state as the output. This
dramatically reduces the amount of information that can be guessed about
the internal state. The algorithm now requires three streams, a, b, and c,
and is

1. output A[a] + A[b] mod M
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2. Assign c to A[b]

We now have a and b as streams that take N values, and c as the stream
that takes M values. There are, of course, many possible variations on this
basic idea, like using other operations instead of summing, and updating
A[x], where x depends on both a and b.

6.4 Sheet Bend: A 32-Bit Cipher

Using the machine described in the previous Section, we propose a new
cipher, which we call Sheet Bend2.

6.4.1 Description

Our new algorithm is remarkably similar to RC4 in its construction. In
particular, we use the i and j streams from RC4 as the N value streams
(which we called a and b in the previous discussion). For the M value
stream we use a simple PRNG that is efficient on 32-bit machines and has a
fairly uniform output. It is, by itself, insecure. However, it is believed that
in this context it is adequate.

The complete round algorithm is

1. i = i + 1

2. j = j + A[i] mod N

3. Output A[i]⊕A[j]

4. A[j] = c

This should be quite familiar. The i and j are taken directly from RC4. The
swap operation has been eliminated, however, in favour of the update in the
final line. Also, the output function is simpler. This is to avoid outputting
values that are contained in the current state, limiting the information that
can be gained about the PRNG. Also, the order has been modified – the state
is updated after the output. This is so that the output does not necessarily
depend on the current value of the PRNG, further limiting the information
that can be gained about this sensitive piece. Finally, note that the update
uses j instead of i. If i were used, then an attacker would know that exactly

2A Sheet Bend is a knot that is used to tie together two ropes of different diameters.
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the most recent N values from the PRNG are in the state. Since j moves
more randomly, this is much less certain.

The PRNG that we use has two secret values, c1 and c2 as well as two
state values, a and b. a and b take values between 0 and M − 1. c2 will take
odd values between 1 and M − 1 while c1 will be odd and between 1 and
log2 M . The PRNG algorithm is

1. b = b + c2 mod M

2. a = (a �c c1) + b mod M

3. Output a

where �c is a cyclic bit shift to the left. Note that the round operation is
reversible, and hence it can be worked backwards to determine the stream
from the beginning. It is recommended that c1 and c2 be odd in order to
ensure that b visits all possible values and the bits of a are thoroughly mixed.

At this point it is prudent to note that the operation in the round al-
gorithm uses an output function using XOR instead of addition. This is
because addition is used in the PRNG. By using two non-commuting oper-
ations in this way the operation of the PRNG is more protected.

Of course, to get a complete cipher we have to specify M , N and deter-
mine a key schedule. A can be populated with the first N values from the
PRNG, so only a, b, c1 and c2 need come from the key. Since we are intend-
ing to use a 32-bit processor, it makes sense to use M = 232 while N = 256
seems like a sensible choice from the perspective of memory requirements.
We thus need 99 = 2(32) + 31 + 4 bits of information to start the PRNG.
After A is filled, we reset the secret values and initialize i and j with new
values from the PRNG.

The complete algorithm is given in Figure 6.1. Note that � is a bit shift
(not cylic) and is equivalent to multiplying by the corresponding power of
2. Also note that || represents bitwise OR.

6.4.2 Security of the PRNG

It is fairly easy to discover that three consecutive outputs from the PRNG
plus (log2 M)− 1 guesses is enough to determine all the secret information
and hence the entire stream. First c1 is guessed, after which two consecutive
outputs, z0 and z1, can be used to give two conditions on the state at
time 1. Before the state change z0 = a0 and after the state change, z1 is
output, which is z0 �c c1 + b0, determining a0 and b0 with two consecutive
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Input: 107-bit key k

1. Set a = k mod 232, b = k � 32 mod 232

2. Set c1 = 2(k � 64 mod 231) + 1

3. Set c2 = 2(k � 95 mod 24) + 1, i = k � 99

4. Repeat N times

(a) i = i + 1 mod 28

(b) b = b + c1 mod 232

(c) a = a �c c2 + b mod 232

(d) A[i] = a

5. b = b + c1 mod 232, a = a �c c2 + b mod 232

6. Set c1 = a||1

7. b = b + c1 mod 232, a = a �c c2 + b mod 232

8. Set c2 = (a mod 25)||1, i = (a � 5 mod 28)

9. Set j = (a � 13 mod 28)

10. Repeat once for each 32-bit word of output

(a) i = i + 1 mod N

(b) j = j + A[i] mod N

(c) Output A[i] + A[j] mod M

(d) b = b + c2

(e) a = a �c c3 + b

(f) A[j] = a

Figure 6.1: Sheet Bend Algorithm
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outputs. The third output gives c2 since z2, the third output, satisfies
z2 = z1 �c c1 + b1, where the b1 = b0 + c2. Thus c2 is determined.

Note that there is no way to predict further complete outputs given only
two consecutive outputs since each value of c2 will give a different output.
Thus almost all possible outputs will occur. The least significant bit of c2

is known, however, since c2 is always chosen to be odd. Thus the least
significant bit of the output can be predicted.

Suppose that a and b have been determined at some time. Thus the least
significant bit of b can be determined for all times. At any point, then, a
single known a can produce a prediction on the least significant byte of the
next output. Again, this does not extend to further time steps unless the
rest of the output can be determined since otherwise an unknown bit will
be shifted into the lowest position. However, only one bit of information is
required.

Consider, now, the situation where b has been determined at two different
times, separated by some time. It is straightforward, then, to find c2 from
the difference between the b values and the number of times steps between
them. This done by dividing the difference by the number of time steps. If
the number of time steps is even then there will be more than one possible
solution (since there are no inverses of even numbers in ZM for M even) but
these are few in number.

It is possible to eliminate some of the bit determining analysis mentioned
above by allowing c2 to be even. However, in these cases b would always
have the same least significant bit, possibly decreasing the cycle length and
introducing biases into the output (since the least significant digit of a will
either always be the same or opposite the shifted bit from the previous
output.)

Although this PRNG is weak, statistical analysis shows that it has a
fairly uniform output. It is not certain how the weaknesses described above
could be used to attack Sheet Bend, but the security is probably some-
what lower than if no output could be predicted without knowing three
consecutive outputs. It is, of course, possible to modify the PRNG, possibly
replacing it entirely. However, our proposed PRNG is efficient, making it a
good candidate.

6.4.3 Efficiency

Sheet Bend is quite efficient on 32-bit machines. The PRNG requires 3 oper-
ations for each 32-bit value output. The rest of the algorithm requires three
additions, two look-ups and one assignment, for a total of 9 instructions per
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32-bit word output. It thus requires only 2.25 operations per byte of output.
The exact implementations details will affect how many clock cycles this will
take, but it still compares favourably to other stream ciphers optimized for
32-bit machines, such as Rabbit [1] which requires 3.7 cycles per byte.

The efficiency of Sheet Bend can be improved much as RC4 can be by
running two instances in parallel and utilizing vector computation. The
look-ups cannot be parallelized, but all other instructions can be. The total
number of instructions is then 6 instructions for the vector computations
and 6 for the look-ups and assignments, for a total of 12 for each 8 bytes of
output, or 1.5 instructions per byte. This assumes 64-bit registers that can
perform 8-bit and 32-bit additions plus 32-bit rotations. These instructions
have been available on Pentium processors since the introduction of the
MMX instruction set. More recent processors have 128-bit registers that
allow vectors of four 32-bit words to be manipulated. If rotations, additions
are both available then four ciphers could operate in parallel, reducing the
cost to 18 operations for each set of 4 32-bit words output, or slightly less
than one instruction per byte.

6.4.4 Further Modifications

Once the move has been made to vector addition and using several ciphers
in parallel, the next step is to make them interdependent, further increasing
security in much the same way that two interdependent RC4 ciphers con-
tribute to higher security in RC4A (see Section 5.4.5.) For example, the
same A can be used for all ciphers (with different starting i and j to avoid
collisions in the values used). This also reduces the memory requirements.
A perhaps better way of combining the ciphers would be to exchange state
information between the different PRNGs. For example, if two ciphers were
used the b values could be placed in a 64-bit register and a 16-bit shift on
the whole register performed, mixing the information between the two val-
ues. Only one more instruction is required, but the PRNGs now operate
with a much larger effective state size, increasing cycle length and attack
complexity.

If 64-bit registers are available, such as MMX registers, then the entire
algorithm can be made 64-bit. The only operations on 64 bits required are
addition, bit rotations and memory movement, which are available for MMX
registers. This strengthens the cipher by increasing the internal state size,
increasing cycle lengths, and the amount of information required to guess
or acquire for a successful attack, and increasing the key size. It can also,
depending on the implementation details, increase the throughput by up
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to a factor of 2. The next logical step, using 128-bit registers, would gain
similar improvements.

6.4.5 Analysis

The most promising attack on the structure of Sheet Bend involves attempt-
ing to guess the internal state of the PRNG since it is known that only two
consecutive values decrease the complexity of the attack to 235 and three
reduce it to 16.

Suppose that N/2 + 2 outputs have been gathered from the output.
Since each output is the XOR of two words in A and only one entry of A is
replaced per word output, some pairs of output words will be formed with
one operand in common. In fact, N/2 + 1 outputs are enough to guarantee
that this happens. XORing the two outputs together will then produce a
new value which is the XOR of the other two values used to form the two
outputs. We can thus produce more values which are XORs of internal state
values that were originally output.

Another way of using pairs of outputs with an operand in common is
to take advantage of the commonality to guess three outputs together. By
trying all 232 possible values for the common value, three outputs from
the PRNG can be guessed. Note that if they were consecutive, which is
improbable, the PRNG is then compromised. The probability that they
were consecutive is quite small, however; choosing three particular numbers
from a list when picking four values happens with frequency 24N−4, or about
2−27. Once the three values are found, a further 32 guesses are required to
determine c1 in the PRNG. A set of candidate values, producing a candidate
stream, takes at least N values to check. Finding the original pair of outputs
required about N2/4 guesses. The total attack complexity is then about 286.
Note that 64 and 128 bit versions, as described in the previous Section, would
result in a much higher attack complexity.

The predicted security level of Sheet Bend for the 32-bit version is 286 for
a 99-bit key due to the attack described above. Longer keys would not give
greater security. For the 64-bit and 128-bit versions the attack complexity
would be greater than 2128 and thus the ciphers are predicted to have full
strength for a 128-bit key.

Another avenue for attacking Sheet Bend is timing attacks. In particular,
Pentium class processors have different timings for rotations depending on
the amount of rotation. Rotating by one bit takes less time than rotating
by other amounts. Thus an attacker could possibly learn if c1 is 1 or some
other value. The amount of information gathered is relatively small, not
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even one bit of state information on average. In those cases where c1 can be
determined, the previous attack is reduced in complexity to about 281, which
is still considered secure. This timing attack can be eliminated through
careful implementation, for example using MMX registers where all rotations
take the same amount of time.

6.5 Bowline: Another 32-Bit Cipher

In the development of the previous cipher we separated the function of the
PRNG from the rest of the algorithm resulting in a separate, attackable
component with a relatively small internal state. We can reintegrate the
PRNG with the rest of the algorithm, however, to create a new algorithm
that is faster and more cohesive, eliminating the weak isolated component.
We call this new algorithm Bowline3.

The basic idea is to use the internal state A as state information for the
PRNG instead of maintaining a separate state. The algorithm is given in
Figure 6.2. A is a list of N values between 0 and M − 1. i and j take values
between 0 and N − 1. c1 is an odd key-dependent constant between 1 and
N . c2 is an odd key-dependent constant between 1 and M . c3 is an odd
key-dependent constant between 1 and log2 M . Finally, a and b are variables
between 0 and M . The algorithm is given for N = 28 and M = 232

Bowline is different from Sheet Bend in several respects. First, i is not
incremented by 1, but by a key-dependent constant c1. The idea here is
simply to reduce the amount of public information and make the algorithm
more key-dependent. The algorithm for the PRNG is incorporated, but
changed slightly. a and b are eliminated, using elements of A instead, making
the whole algorithm more cohesive and possibly increasing the complexity
of attack; it is no longer sufficient to determine the internal state of the
PRNG, all of A must be determined.

It should be noted that the round operation is reversible. This is often
considered to be a feature of RC4 since it implies that information is not
discarded from the state, potentially increasing the cycle length [7].

When choosing c3 it should be considered that an odd value is likely bet-
ter than an even value. This is because even values will not cause individual
bits to visit all positions, as an odd value would. c2 and c1 should also be
odd so that they are generators of ZM (assuming M is a power of 2).

The key schedule for Bowline was developed with speed as a primary
goal. The key is copied into the state for the original PRNG used with

3A Bowline is a simple knot that doesn’t slip.
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Sheet Bend which is then used to fill A. The constants c1, c2 and c3 along
with i are initialized from further outputs of the PRNG. Finally, the round
algorithm is executed N times, ignoring the output, to reduce biases in the
state.

6.6 Comparing Sheet Bend and Bowline

Although Bowline is derived from Sheet Bend they are quite different in
operation due to the fact that Bowline operates as one unit while Sheet
Bend has two separate components. From a security point of view this
probably means that Sheet Bend is less secure since the PRNG can be
attacked independently of the rest of the algorithm. From an analysis point
of view, however, Sheet Bend is easier to deal with since it has two separate
components, each of which is quite simple. From an efficiency point of view
they are nearly equivalent and both can be easily expanded to use wider
processors to increase the efficiency and security.

6.7 Conclusions

In this Chapter we explored the possibilities for expanding RC4 to take ad-
vantage of wider processors. The possibilities are quite wide. We presented
a generalized concept of RC4 in which the internal state no longer has to
represent a permutation. This generalization greatly expands the possibili-
ties of RC4-like algorithms. We also used this generalization to develop two
example ciphers, Sheet Bend and Bowline.
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Input: 114-bit key k

1. Set a = k mod 232, b = k � 32 mod 232

2. Set c1 = 2(k � 64 mod 27) + 1, c2 = 2(k � 71 mod 231) + 1

3. Set c3 = 2(k � 102 mod 24) + 1, i = k � 106

4. Repeat N times

(a) i = i + c1 mod 28

(b) b = b + c2 mod 232

(c) a = a �c c3 + b mod 232

(d) A[i] = a

5. b = b + c2 mod 232, a = a �c c3 + b mod 232

6. Set c2 = a||1

7. b = b + c2 mod 232, a = a �c c3 + b mod 232

8. Set c1 = a mod 28||1

9. Set c3 = (a � 8 mod 25)||1, i = (a � 13 mod 28)||1

10. Repeat 256 times, ignoring output, then once for each 32-bit word of
output

(a) i = i + c1 mod N

(b) j = j + A[i] mod N

(c) Output A[i] + A[j] mod M

(d) A[j] = A[j] + c2

(e) A[i] = A[i] �c c3 + A[j]

Figure 6.2: Bowline Algorithm
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Chapter 7

Card Game Ciphers

In Neal Stephenson’s novel Cryptonomicon [25] two of the characters ex-
change secret messages using a cipher called “Pontifex” whose mechanism
employs a deck of playing-cards. Pontifex is a real cipher, developed by
Bruce Schneier [24], who calls it Solitaire. The concept of using a deck of
cards as a tool for building ciphers has several appealing qualities. First of
all, there is the coincidence that 52 is twice 26, meaning that such a cipher
can easily use the Latin alphabet without any awkwardness. Also, any al-
gorithm that is to be employed by hand using such a primitive tool has to
be fairly simple itself. Designing a cipher that fits these constraints and is
yet secure offers a significant challenge.

Schneier’s original aim was to design a cipher that would have security
comparable to computerized ciphers. This goal was not met since Solitaire
has a bias (see [3]), however it was successful in that it spawned an interest in
playing-card ciphers. For example, Paul Crowley [2] has developed a cipher
called Mirdek and John Savard [23] has developed another.

There are several operations that are possible on a deck of cards, limited
mainly by imagination. Many useful operations can be found in card games
while others are most directly suited to ciphers. The shuffling and dealing
procedures used in various games can be useful. For example, cutting the
deck is useful, changing the relative position of many cards at once. Cutting
could be extended, as in Solitaire, to a double cut where the deck is divided
into three Sections and two are exchanged. The deck can also be divided
into piles or spread out on a table in various arrangements.

An important difference between card games and ciphers is that the lat-
ter need to be deterministic, at least to some extent, to allow decryption
while games typically rely on randomness. Random operations can be con-
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verted into deterministic ones in several ways. One way is to identify cards
that control the position of a cut or mark out different Sections in the deck.
This is done in Solitaire, where the position of the two jokers is used to
identify how to cut the deck. Another way is to count through the deck to
a certain position. These operations can be somewhat time consuming as
compared to their random counterparts.

Another difference between card games and ciphers is that ciphers have
to manipulate information in a way that can be applied to text. This can
be done by identifying cards with letters (as in Mirdek) or with numbers
(as in Solitaire). The cards can be assigned letters in a straightforward
way, identifying two cards (excluding jokers) with each letter. The use of
numbers is conducive to counting into a deck and other operations, such as
modular arithmetic while letters are more suited to ciphers that manipulate
the plaintext directly.

7.1 Card-Chameleon

As previously mentioned, the mutating S-box described in Chapter 4 was
designed in an attempt to produce a card game cipher that was as secure as
computerized ciphers. There are several features that make it efficient and
convenient for use with playing-cards. First of all, a permutation is easy to
encode in the order of cards. Second, the fact that there are no operations
other than table look-ups and swaps reduces the amount of human compu-
tation that is necessary; swaps and look-ups can be easily accomplished as
described below.

7.1.1 Description of Card-Chameleon

The card game implementation of Chameleon, which we will call Card-
Chameleon to distinguish it from other implementations, uses a standard
deck of 54 cards. Two jokers are optional, being used to add a space char-
acter. If jokers are used, they must be distinguishable. We will assume that
one is red while the other is black. The deck is divided into two sets, the
black cards and the red cards. Each set is mapped onto the cipher alphabet
which consists of 26 letters and a space. The red cards are mapped by or-
dering the cards, ace of hearts to king of hearts followed by ace of diamonds
to king of diamonds, and mapping each card to the letter of the alphabet in
the corresponding position in the alphabetical order. Thus the ace of hearts
is mapped to ‘A’ and the king of diamonds is mapped to ‘Z’. The red joker
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is mapped to space. Similarly, the black cards are ordered, beginning with
the ace of spades, and mapped to the letters.

To begin encrypting, the sending and receiving parties first agree on a
key which consists of an ordering of a complete deck of cards. The sender
encrypts using the algorithm given in Figure 7.1. Decryption uses a similar
process, given in Figure 7.2.

Since the position of spaces is important it is recommended that under-
scores or hyphens be used to mark the positions of spaces to eliminate any
ambiguities.

Conceptually there are two parts to this cipher. The first part is a set of
27 black/red pairs. Each pair describes the value of the S-box for one input.
Moving from a black card to its paired red card is enciphering. Moving from
a red card to its paired black card is the inverse. The second part is the
ordering of the pairs, which is really the same as the ordering of the black
cards. This encodes the cycles of values for j with the current value being
the top card.

7.1.2 Analysis of Card-Chameleon

The key used for Card-Chameleon is an ordered deck of 54 cards. However,
many orderings are equivalent since it is only the ordering of the two subsets,
the reds and the blacks, that matter. The number of non-equivalent keys is
thus (27!)2 ∼ 2186. This is certainly large enough to protect against brute
force attacks. However, there are attacks with lower complexity.

The use of an initialization vector limits the effectiveness of the attacks
described in Section 4.1.5. The number of different initialization vectors
is 27! ∼ 293 which is certainly large enough to avoid collisions, especially
since messages are encrypted by hand. Note that to launch an attack on the
initial state, 26 collisions on one IV are required (the 27th state element can
be determined by elimination.) This number can be reduced by partially
guessing the state. Given the low probability of one collision, however, it is
not likely that any attack based on finding IV collisions would be feasible.

It should be noted that the attack described in Section 4.4.3 does not ap-
ply to Card-Chameleon. This is because, unlike the case of Soft-Chameleon,
the IV does not induce a publicly known permutation on the state in Card-
Chameleon. The IV does induce a permutation, but this permutation is
dependent on the ordering of the black cards (the cycle K[ ]). Since this
ordering is private, key dependent information, the induced cycle cannot be
determined without guessing the ordering.

A closer look at the mechanical aspects of Card-Chameleon reveals some
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1. Take the key deck face up. Deal out two piles face up, placing each red
card on one pile and each black card on the other. Be sure to preserve
the order exactly.

2. Make a new pile, face up, by interleaving the two piles. This is done
starting with the first black card, then the first red card, the second
black card, second red, and so on. The new pile should have a red
card on top and alternate between red and black cards.

3. Create an initialization vector by shuffling the black cards from a spare
deck. (Alternatively, create the initialization vector beforehand from
the same deck, writing down the sequence.) Interpret each card as a
letter and write the sequence down as the first part of the message.
For each card in this sequence do the following steps.

(a) Find the same black card in the key deck.
(b) Look at the red card above this black card. Interpret this as a

letter, t.
(c) Find the black card for the letter t.
(d) Exchange the red card above this black card with the top card.
(e) Move the black card and the next card (red) to the bottom.
(f) Put the top two cards (one red, one black) on the bottom.

4. Encrypt each letter in the plaintext with the following steps

(a) Find the black card in the key deck corresponding to the plaintext
letter.

(b) Look at the red card above this black card. Interpret this as a
letter.

(c) Find the black card in the deck corresponding to this new letter.
(d) Look at the red card above this black card. Interpret this as a

letter and write it down as the ciphertext.
(e) Exchange this red card with the top card (also red).
(f) Move the top two cards (one red, one black) to the bottom.

5. Send the message, which has 27 letters more than the plaintext.

Figure 7.1: Card-Chameleon Encryption Algorithm
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1. Take the key deck face up. Deal out two piles face up, placing each red
card on one pile and each black card on the other. Be sure to preserve
the order exactly.

2. Make a new pile, face up, by interleaving the two piles. This is done
starting with the first black card, then the first red card, the second
black card, second red, and so on. The new pile should have a red
card on top and alternate between red and black cards.

3. The first 27 characters in the message are the initialization vector. For
each letter in the sequence do the following.

(a) Find the black card in the key deck corresponding to the letter.
(b) Look at the red card above this black card. Interpret this as a

letter, t.
(c) Find the black card for the letter t.
(d) Exchange the red card above this black card with the top card.
(e) Move the black card and the next card (red) to the bottom.
(f) Put the top two cards (one red, one black) on the bottom.

4. Decrypt each letter in the ciphertext (28 letters into the message) with
the following steps

(a) Find the red card corresponding to the plaintext letter.
(b) Look at the black card below this red card. Interpret this as a

letter.
(c) Find the red card corresponding to the new letter.
(d) Look at the black card below this red card. Interpret this as a

letter and write it down as the plaintext.
(e) Exchange the red card with the top card (also red).
(f) Move the top two cards (one red, one black) to the bottom.

Figure 7.2: Card-Chameleon Decryption Algorithm
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characteristics that differentiate it from other card based ciphers. In par-
ticular, there is no arithmetic involved. The only operations required are
finding a card in the deck and moving cards. Encrypting or decrypting
letters involves only a few steps, making it quicker.

Since the IV weakness found in Soft-Chameleon does not affect Card-
Chameleon the best know attack is the branch and bound attack. As previ-
ously mentioned in Section 4.4.2 the complexity of this attack is estimated
to be about N !. For Card-Chameleon this is 293, which is more than enough
to be considered secure.

As with any cipher, there is always the possibility of new attacks. Card-
Chameleon, along with Soft-Chameleon, has not been examined by many
people and for this reason further work is necessary before they can be
considered for practical applications.

7.2 Pocket-RC4

In this Section we describe an adaptation of RC4 for use with playing-cards.
We call this new cipher Pocket-RC4.

7.2.1 Description

The permutation that is at the heart of RC4, which can be easily stored in
the ordering of a deck of cards, suggests that a playing-card version would
be feasible. However, Knudsen’s attack is feasible for N = 32, so the most
likely scenarios, using N = 26 or N = 27, do not result in secure ciphers.
For this reason we develop a new playing-card version of RC4, Pocket-RC4.
It is similar to RC4B with N = 27, with a modified key schedule, but uses
several ideas from Card-Chameleon in its implementation. The encryption
algorithm is given in Figure 7.3.

Although Card-Chameleon uses letters in its correspondence with cards,
this is not useful for Pocket-RC4. Instead, the numbers 0 through 26 are used
because the algorithm requires modular arithmetic. The outputs from the
algorithm are numbers modulo 27 which are added to the plaintext, letter
by letter (with a correspondence between letters and space, and numbers),
to form the ciphertext.

In order to use RC4B we must have a means of implementing S. This
is done in exactly the same way as for Card-Chameleon: the red and black
cards are arranged in pairs. In the case of RC4B we don’t have to do reverse
look-ups, but looking up a value in S is done by finding the index in the
black cards and looking at its red partner.
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The key schedule is somewhat different since the key is the deck of cards,
as in Card-Chameleon, rather than a byte string. However, the essence is
the same. A string of 27 letters (and spaces) is used for the initialization
vector. The IV can be chosen in any random way. We suggest shuffling the
deck and drawing cards with replacement.

Decryption is identical except where the initialization vector is con-
cerned. The IV comes from the first 27 letters of the plaintext instead
of being chosen at random. Also, the values are subtracted modulo 27 from
the ciphertext instead of added as is done for the plaintext.

7.2.2 Security

The security of Pocket-RC4 is probably higher than RC4B for the same N
because shuffling a card deck can quickly produce a uniform permutation
while the exchange shuffle is still biased after 2N swaps. Although Pocket-
RC4 has not been studied in any great detail, we can estimate its security
by looking at the results from RC4. There are biases that are detectable,
but it seems unlikely that the amount of output necessary to detect these
biases would be produced by a human with a deck of cards, especially for
any one key. Therefore the most likely threat comes from Knudsen-style
branch and bound attacks.

As mentioned in Section 5.4.4 the complexity for this attack appears to
be slightly lower than N !. For N = 27 this is about 293. Provided that
the estimate is close, this means that this attack is unlikely to be practical
against Pocket-RC4.

7.3 Conclusions

Although playing-cards are not tools that are often used by cryptographers,
the above ciphers show that this area has many possibilities. The pecu-
liarities of playing-card decks, having a convenient number cards and easily
storing a permutation, make them well suited to ciphers such as Chameleon
and RC4. By looking at previously designed and studied ciphers, such as
RC4, it is possible to expand the repertoire of tools for the design of playing-
card ciphers.
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1. Take the key deck face up. Deal out two piles face up, placing each red
card on one pile and each black card on the other. Be sure to preserve
the order exactly.

2. Make a new pile, face up, by interleaving the two piles. This is done
starting with the first black card, then the first red card, the second
black card, second red, and so on. The new pile should have a red
card on top and alternate between red and black cards.

3. Create an initialization vector by shuffling the cards and drawing one
a total of 27 times, producing a sequence of 27 letters. Send this
as the first 27 letters of the ciphertext. (This could be done before
ordering the deck with the key or using a second deck.)

4. For each card in the IV sequence do the following steps.

(a) Find the same black card in the key deck.
(b) Exchange the red card above this black card with the top card.
(c) Move the black card and the next card (red) to the bottom.
(d) Put the top two cards (one red, one black) on the bottom.

5. Set j to the value of the bottom red card.

6. Encrypt each letter in the plaintext with the following steps

(a) Add the value of the top red card to j modulo 27.
(b) Find the black card corresponding to j.
(c) Add the red card above the j black card to the top red card

modulo 27.
(d) Add the plainext letter to this number, modulo 27.
(e) Exchange the two red cards.
(f) Move the top black/red card pair to the bottom.

7. Send the message, which has 27 letters more than the plaintext.

Figure 7.3: Pocket-RC4 Algorithm
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Chapter 8

Future Work and
Conclusions

RC4 has several strengths. Probably the greatest of these is the simplicity
of its round algorithm. It is also quite easy to modify. Compared to many
ciphers, such as DES, it has high efficiency, especially in software.

Possibly the greatest weakness of RC4 and similar ciphers is the time
it takes to complete the key schedule. It is not easy to design a fast key
schedule for these ciphers; the internal state must be filled or shuffled and
the size of the internal state puts a lower bound on the number of operations
required. As well, analysis has shown that the biases caused by insufficient
shuffling in the key schedule can produce biases in the output, making it
even more difficult to have an efficient key schedule.

To see the importance of this issue, consider the amount of time it takes
to complete the key schedule in RC4. Creating the initial permutation
requires about 3 ∗ 256 operations (one assignment, one increment and one
compare for each element in S). The shuffling takes 10∗256 operations (three
additions, one compare, three look-ups and three assignments.) The total is
then about 3300 operations. Using this many operations we could encrypt
about 400 bytes. In a context like Wired Equivalent Privacy (WEP) where
the packets encrypted are small (less than 1500, and often much less) and a
new initialization vector is required for every packet this is quite inefficient.
Designing RC4-like stream ciphers with a very fast key schedule is an area
for future research.

Although the number and strength of attacks against RC4 is increasing,
it still draws interest because of its simplicity. In addition, there is much
room for modification. For example, we provided a 32-bit cipher with a
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round algorithm based on RC4. There is much more work that can be done
in this area. In addition, the possibilities of playing-card ciphers based on
RC4 have only been lightly touched on.

In addition to the work done with RC4 in this thesis we also introduced
Chameleon. This cipher, like RC4, has a simple round algorithm that in-
vites analysis. Also like RC4 there are many possibilities for modifications.
Finally, there are many possibilities for using ideas from both Chameleon
and RC4 in the development of new ciphers such as the methods used in
designing Sheet-Bend and Bowline.
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