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Abstract

We will discuss three ways to bound the chromatic number on a Cayley

graph.

(a) If the connection set contains information about a smaller graph, then

these two graphs are related. Using this information, we will show that

Cayley graphs cannot have chromatic number three.

(b) We will prove a general statement that all vertex-transitive maximal

triangle-free graphs on n vertices with valency greater than n/3 are

3-colourable. Since Cayley graphs are vertex-transitive, the bound of

general graphs also applies to Cayley graphs.

(c) Since Cayley graphs for abelian groups arise from vector spaces, we can

view the connection set as a set of points in a projective geometry. We

will give a characterization of all large complete caps, from which we

derive that all maximal triangle-free cubelike graphs on 2n vertices and

valency greater than 2n/4 are either bipartite or 4-colourable.
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Chapter 1

Introduction

Let G be a group and let C be a subset of G. A Cayley graph X(G, C) is

the graph with vertex set G, and the vertex g is adjacent to the vertex h

if and only if hg−1 ∈ C. The subset C is called the connection set of X.

Sometimes we write X(G, C) as X(C) for convenience, if it is clear what

group we are talking about.

If X(G, C) is undirected and loopless then C is inverse-closed and does

not contain the identity of G. We are only interested in undirected and

loopless Cayley graphs for finite abelian groups.

Cayley graphs play a significant role in the theory of graph homomor-

phisms. It can be shown that every vertex-transitive graph is a retract of

a Cayley graph. Naserasr and Tardif also showed that if there is a graph

homomorphism from a graph X to a Cayley graph Y for an abelian group

with exponent d, then there is a map from the free Cayley graph Zd[X] to

Y that is both a graph homomorphism and a group homomorphism (see

Theorem 4.1.1). Thus we can obtain bounds on the chromatic number of X

or Zp[X]. This method will be discussed in Section 4.

An interesting class of Cayley graphs is the class of cubelike graphs, which

are Cayley graphs on Z
n
2 . Cubelike graphs are closely related to binary codes

and subsets in projective geometry. Let M be a matrix whose columns are

the vectors in the connection set C. Then we can view M as the generator
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matrix of a binary linear code, or the check matrix of its dual code. We can

show that if the code of M has a codeword of weight n then the cubelike

graph X(C) is bipartite. On the other hand, we can view C as a set of

points in a projective geometry. If C corresponds to a complete binary cap

then the graph X(C) is maximal triangle-free. Geometric operations, such

as doubling, deletion, projection, also correspond to graphical operations on

X(C).

In this thesis we will focus on describing the connections among graphs,

codes, and finite geometry. We first present a result from Brandt that all

regular maximal triangle-free graphs with valency more than |V |/3 are 4-

colourable. Payan showed that no cubelike graph has chromatic number

three. These two results imply that all maximal triangle-free cubelike graphs

on 2n vertices with valency more than 2n/3 are bipartite. If we consider the

vectors in C as points in the projective space of dimension n − 1, then

“triangle-free” translates to the fact that C is a cap. Davydov and Tombak

proved that if a complete cap is of size greater than 2n−2 + 2, then it arises

from doubling, and there exists a subspace of codimension two skew to it.

The arguments include lengthy calculations that are hard to understand.

Here we will present the proof in a simpler way. In addition to the result

of Davydov and Tombak, we will also show that if the size of a complete

cap is 2n−2 + 1, then there exists a subspace of codimension two skew to it.

Based on the characterization of complete caps, we can conclude that any

maximal triangle-free cubelike graph on 2n vertices with valency at least

2n/4 is either bipartite, or has chromatic number four.
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Chapter 2

The Basics

Cayley graphs play a significant role in the study of graph homomorphisms.

It can be shown that every vertex-transitive graph is a retract of a Cayley

graph. In this chapter we will discuss the basic properties of Cayley graphs

and provide some examples. The content is mostly taken from Algebraic

Graph Theory, by Chris Godsil and Gordon Royle [7].

2.1 Definitions

We will introduce Cayley graphs and cubelike graphs, and prove some stan-

dard results on Cayley graphs.

Let G be a group and let C be a subset of G. The Cayley graph X(G, C)

is the graph with vertex set G, and the vertex g is adjacent to the vertex h

if and only if hg−1 ∈ C. The subset C is called the connection set of X.

The complete graph Kn is a Cayley graph for the additive group Zn

whose connection set is the set of all non-zero elements of Zn.

The Andrásfai graph And(k) is another example. It is defined as follows:

for any integer k ≥ 1, let G = Z3k−1 denote the additive group of integers

modulo 3k − 1, and let C be the subset of Z3k−1 consisting of the elements

congruent to 1 modulo 3. We denote the Cayley graph X(G, C) by And(k).
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The graph And(2) is isomorphic to the 5-cycle, and And(3) is known as

the Möbius ladder. The graph And(k) is triangle-free and of diameter two,

and the neighbourhoods of any two vertices are distinct. The diameter of a

graph is the maximum distance between two distinct vertices. (It is usually

taken to be infinite if the graph is not connected.)

It is easy to show that Cayley graphs are vertex-transitive.

2.1.1 Theorem. The Cayley graph X(G, C) is vertex transitive.

Proof. For each g ∈ G define the mapping

ρg : x �→ xg.

This mapping defines a permutation of the vertices of X(G, C). It is also

a graph automorphism. To see this, note that

(yg)(xg)−1 = ygg−1x−1 = yx−1,

and so xg is adjacent to yg if and only if x is adjacent to y.

Thus X(G, C) is vertex transitive, since for any two vertices x and y,

the automorphism ρx−1y maps x to y.

Cayley graphs are important because every connected vertex-transitive

graph is a retract of a Cayley graph (see Godsil and Royle [7]).

The following lemma is from Chris Godsil’s colouring notes.

2.1.2 Lemma. Let X(G, C) be a Cayley graph for a group G, and let S be

an independent set of X. If x is adjacent to y, then S−1x ∩ S−1y = ∅.

Proof. Suppose, on the contrary, that s is an element in S−1x∩ S−1y, then

s = a−1x = b−1y,

for some a, b ∈ S, and so

ba−1 = yx−1 ∈ C,

but ba−1 is not in C, since S is an independent set. A contradiction.
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The size of the largest clique in a graph X is denoted by ω(X), and the

size of the largest independent set by α(X). The following corollary is an

easy consequence of Lemma 2.1.2

2.1.3 Corollary. Let X(G, C) be a Cayley graph for an Abelian group G.

Then α(X)ω(X) ≤ |V (X)|.

A Cayley graph is normal if its connection set is closed under conju-

gation. The chromatic number of a graph X is denoted by χ(X). The

following observation is due to Chris Godsil.

2.1.4 Theorem. Let X(G, C) be a normal Cayley graph. If α(X)ω(X) =

|V (X)|, then χ(X) = ω(X).

Proof. Clearly χ(X) ≥ ω(X). Let ω(X) = ω. We will prove that there

exists an ω-colouring of X.

Since X is undirected and normal, it follows that the vertex g is adjacent

to h if and only if g−1 is adjacent to h−1. To see this, suppose that g is

adjacent to h. Then

h−1g = h−1(gh−1)h.

Since C is inverse-closed, it follows that gh−1 ∈ C, and since X is normal,

it follows that h−1Ch = C. Thus h−1g ∈ C, and g−1 is adjacent to h−1.

Let S be an independent set of size α. It follows from the above fact

that the set S−1 is also an independent set.

Let u, v be two adjacent vertices. We have showed in Lemma 2.1.2 that

S−1u ∩ S−1v = ∅. We will show that for every u ∈ X \ S−1, S−1u is an

independent set.

Suppose, on the contrary, that S−1u is not an independent set. Then

there exists p, q ∈ S−1 such that pu is adjacent to qu. Thus

(qu)(pu)−1 = quu−1p−1 ∈ C.

It follows that qp−1 ∈ C, and so p is adjacent to q. But S−1 is an independent

set, a contradiction.
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Let C be a clique of size ω. Since X is vertex-transitive, we can assume

that C contains a vertex v ∈ S−1. Then the set S−1, together with the sets

of the form S−1u where u ∈ C \{v}, form a partition of the vertices in X of

size ω. This partition gives us an ω-colouring of X.

A cubelike graph is a Cayley graph on Z
n
2 . More specifically, it is defined

as follows.

A cubelike graph Xn(C) is the graph whose vertices are the binary vec-

tors in Z
n
2 , and two vertices u and v are adjacent if and only if u + v is an

element in C.

Cubelike graphs are normal, and so Theorem 2.1.4 holds. In fact, all

abelian Cayley graphs are normal. We will show that a cubelike graph is

either complete, in which case the chromatic number is 2n − 1, or else it has

chromatic number at most 2n−1.

2.1.5 Theorem. Let Xn(C) be a cubelike graph on 2n vertices. If it is not

complete, then χ(Xn) ≤ 2n−1.

Proof. Since Xn is not complete, there exists a non-zero vector v /∈ C.

This vector induces a perfect matching in X̄n, in which each matching edge

is of the form x(x + v), where x is a vertex in Xn. The two ends of each

edge in this matching form an independent set of size two in Xn. Hence

χ(Xn) ≤ |V |/2 = 2n−1.

2.2 An Example

The Clebsch graph is a cubelike graph X4(C) where

C = {0001, 0010, 0100, 1000, 1111}.

The Clebsch graph is vertex-transitive by Theorem 2.1.1.

The Clebsch graph is important because it is the unique strongly regular

graph with parameters [16, 5, 0, 4] (see Godsil and Royle [7]).
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Figure 2.1: The Clebsch Graph

Another description of the Clebsch graph X is as follows (see Figure

2.1). The vertices are

V (X) = {z} ∪ S1 ∪ S2,

where the vertices in S1, labelled 1, 2, 3, 4, 5, form an independent set, and

the vertices in S2 induce a copy of the Petersen graph, in which the vertices

are the subsets of the set {1, 2, 3, 4, 5} of size two, and two subsets are

adjacent if they are disjoint.

The special vertex z is adjacent to all vertices in S1. The vertex in S1

labeled {i} is adjacent to all vertices in S2 whose label contains i.

2.2.1 Lemma. Let X be the Clebsch graph. Then α(X) = 5, and every

independent set of size five is the neighbourhood of a vertex.

Proof. Let S be a maximum-size independent set. Since X is vertex-

transitive, we can assume that z ∈ S. The set S \ {z} contains vertices

of distance two from z, and these vertices form an independent set in S2.

A maximum-size independent set in the Petersen graph consists of four ver-

tices whose label contains a common element, say i. And by the description

of X, this independent set is adjacent to the vertex in S1 labeled i. Thus S

is of size five and is in the neighbourhood of the vertex i.

2.2.2 Theorem. Let X be the Clebsch graph. Then χ(X) = 4.
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Proof. Since X has 16 vertices, and α(X) = 5, it follows that

χ(X) ≥ 
16
5
� = 4.

The Petersen graph induced by the vertices in S2 has a 3-colouring C. The

colours are labeled 1, 2, 3. Since the vertices in S1 form an independent set,

they can all be assigned the colour 4. The special vertex z is of distance two

from any vertex in S2, and so we assign colour 1 to z.

2.3 Lexicographic Product

The lexicographic product X[Y ] of two graphs X and Y has vertex set

V (X) × V (Y ) where (x, y) is adjacent to (x′, y′) if and only if

(a) x is adjacent to x′ in X, or

(b) x = x′ and y is adjacent to y′ in Y .

The lexicographic product of any two cubelike graphs is cubelike.

2.3.1 Theorem. Let X be the Clebsch graph. Then χ(X[K4]) = 14.

Proof. We will first describe a 14-colouring of X[K4]. The graph X[K4] can

be constructed from X by replacing each vertex x by a 4-clique Cx, and if

two vertices x and y are adjacent in X, then all vertices in Cx are adjacent

to all vertices in Cy. Thus any colouring of X[K4] corresponds to a colouring

of X where each vertex has four different colours.

We first colour the vertices in the Petersen graph induced by S2. These

vertices are the subsets of the set {1,2,3,4,5} of size two, and two vertices

are adjacent if the subsets are disjoint. The labels of these vertices give us a

colouring of the Petersen graph in which each vertex is coloured two distinct

colours. We can extend this colouring so that each vertex is coloured four

colours as follows. For each vertex {i, j} in S2 we colour it {i, j, i′, j′}. For

the vertices in S1, we assign four colours different from the ones we used in

the vertices in S2. Since the special vertex z is not adjacent to the vertices
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in S2, we can assign any four colours used in S2 to z. Thus we obtain a

14-colouring of X[K4].

We will prove that X[K4] is not 13-colourable using linear programming.

The idea originated with Alastair Farrugia. Suppose, for contradiction, that

X[K4] has a 13-colouring. Since α(X[K4]) = 5, there must be 12 colour

classes of size 5 and one colour class of size 4. We can view this as 13

independent sets that cover each vertex of X four times.

Every independent set of size 5 in X is the neighbourhood of a vertex,

and so we only need to consider the independent set of size 4, denoted S.

Since X is vertex-transitive, we can assume that z is a vertex in S. Then S

contains three vertices that are of distance two from z, and so they are from

the Petersen graph whose vertices are the subsets of size two of {1, 2, 3, 4, 5}.
An independent set of size three in the Petersen

graphs consists either three subsets whose labels contain a common ele-

ment i, or three subsets of the form {i, j}, {j, k} and {k, i}.
Let x be the sum of characteristic vector of the 12 independent sets of

size 5 in X. Since each vertex in X is coloured four different colours, each

entry of x is at most 4. Let y be the characteristic vector of the independent

set of size 4. If A is the adjacent matrix of X then it follows that

1
4
(Ax + y) = 1 (2.1)

where 1 is the all-ones vector. If there exists a 13-colouring, then there

exists an integer solution to (2.1).

The computation for y was carried out by the author, who found that

there is no integer solution for x.
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Chapter 3

Eigenvalue Bound

A Cayley graph X(G, C) is linear if the connection set C is closed under

scalar multiplication. Lovász [9] derived a simple expression for all eigen-

values of linear Cayley graphs. We will use this information to bound the

independence number of a Cayley graph, and thus bound its chromatic num-

ber.

3.1 Characters of Abelian Group

Let G be an abelian group of order n. A character of G is a homomor-

phism from G into the non-zero complex numbers, viewed as a multiplica-

tive groups. The set of all characters of G will be denoted by G∗. The

trivial character is the homomorphism which maps each element of G to 1.

If g ∈ G then gn = 1 and so if φ ∈ G∗ then

1 = φ(gn) = φ(g)n.

Thus φ(g) is an n-th root of unity for all elements g of G and all characters

φ. If φ ∈ G∗ then φ̄ is the character which maps an element g ∈ G onto the

complex conjugate of φ(g). As φ(g)φ̄(g) = 1, we deduce that φ̄(g) = φ−1(g).

If φ and ψ are characters of G then the product φψ maps g in G onto

φ(g)ψ(g). It follows from these observations that G∗ is itself a group, with

the trivial character as the identity element, and φ−1 equals to φ̄.
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3.1.1 Lemma. Let G be an abelian group of order n and let φ be a non-

trivial character of G. Then ∑
g∈G

φ(g) = 0.

Proof. This follows from an observation that, for any non-zero element

a ∈ G, we have∑
g∈G

φ(g) =
∑
g∈G

φ(ag) =
∑
g∈G

φ(a)φ(g) = φ(a)
∑
g∈G

φ(g).

Since φ is non-trivial, it follows that φ(a) �= 1 for some a ∈ G, and so∑
g∈G φ(g) = 0.

3.1.2 Lemma. Let V = (Zq)n be a space of column vectors over the field

Zq, where q is a prime power. If a ∈ V and φ is a non-trivial character of

the additive group of Zq then the mapping

φa : x �→ φ(aT x)

is a character of V , viewed as an abelian group. If a �= b then φa �= φb, and

so all characters of V arise in this way.

Proof. It is routine to check that φa is a character of V . If a and b are

elements of V then ∑
u∈V

φa(u)φ̄b(u) =
∑
u∈V

φa−b(u).

from which it follows that φa and φb are orthogonal if a �= b.

3.2 Eigenvalues of Cayley Graphs

The character table of G is the complex matrix with rows and columns

indexed respectively by the characters and elements of G, and ij-th entry

of the character table equals to the value of the i-th character on the j-th

element of G.
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Let φ be a character of the group G and let C be a subset of G. Define

φ(C) =
∑
v∈C

φ(v).

The following is due to Lovász [9].

3.2.1 Lemma. Let G be a finite abelian group, and let C be a subset of

G\0. Let A be the adjacency matrix of the Cayley graph X(G, C). Then the

rows of the character table H of G are a complete set of eigenvectors for A,

and the eigenvector belonging to the character ψ has the eigenvalue ψ(C).

Proof. For every vertex v ∈ G, we observe that

Aφ(v) =
∑

vw∈E(X)

φ(w) =
∑
c∈C

φ(cv) =
∑
c∈C

φ(c)φ(v) = φ(v)φ(C),

Thus φ is an eigenvector with eigenvalue φ(C). By Lemma 3.1.2, the rows

of H are orthogonal, and so they are distinct eigenvectors.

3.2.2 Lemma. Let V be an n-dimensional vector space over the field Zq

where q is a prime power, and let P be the projective space where the points

are the 1-dimensional subspaces of V . Let S be a subset of P, and let

X be the Cayley graph with vectors in V as vertices, and two vertices are

adjacent if their difference is a coordinate vector of a point in S. Then each

hyperplane H of P corresponds to q− 1 linearly independent eigenvectors of

A(X), each with eigenvalue

q|H ∩ S| − |S|.

The eigenvectors determined by distinct hyperplanes are linearly indepen-

dent.

Proof. Let C be a set of coordinate vectors of the points in S. Then

|C| = (q − 1)|S|. By Lemma 3.2.1, it follows that every character ψ gives

rise to a eigenvector. By Lemma 3.1.2, ψ = φa where φ is a non-trivial

character of Zq, and a ∈ V . If λ ∈ Zq \ 0 then the characters φλa are
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orthogonal and have the same kernel. This kernel determines a hyperplane

a⊥.

The eigenvalue of φλa is given by the following formula,

φλa(C) =
∑
c∈C

φ(λaT c).

Let R be a point in S ∩ H (a 1-dimensional subspace of V ). Then

φλa(x) = φ(λaT x) = 1 for all x ∈ R, and so∑
x∈R\0

φλa(x) = q − 1.

Let P be a point in S \H. Then by Lemma 3.1.1∑
y∈P\0

φλa(y) = −1.

It follows that

φλa(C) = (q − 1)|S ∩ H| − |S \H|
= q|S ∩ H| − |S|.

Linear independence follows from Lemma 3.2.1

3.3 Ratio Bound

We will develop the ratio bound on the independence number of regular

graphs, which we will use in subsequent chapters. This bound is due to

Hoffmann.

3.3.1 Lemma. Let X be a k-regular graph with v vertices and least eigen-

value τ . Then

α(X) ≤ v

1 + k
−τ

. (3.1)
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Proof. Let S be an independent set in X with characteristic vector z. Let

A be the adjacency matrix of X, and let the matrix M be given by

M := A − τI − k − τ

v
J.

The eigenvalues of M are non-negative, and therefore M 
 0. Consequently

0 ≤ zT Mz = zT Az − τzT z − k − τ

v
zT Jz = zT Az − τ |S| − k − τ

v
|S|2.

Since S is independent, it follows that zT Az = 0 and hence we have

k − τ

v
|S|2 ≤ −τ |S|.

This yields the bound of the theorem.

The bound (3.1) is called the ratio bound on the independence number

of X. Since χ(X)α(X) ≥ |V (X)| for any graph X, we see that for k-regular

graphs the previous lemma implies that

χ(X) ≥ 1 +
k

−τ
.
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Chapter 4

Free Cayley Graphs

Free Cayley graphs are introduced by Naserasr and Tardif [11]. Let Y =

(V, E) be a graph with vertex set V and edge set E. Suppose that there is

a graph homomorphism from Y to a Cayley graph X(G, C). Let d be the

exponent of G. The free Cayley graph Zd[Y ] is defined to be the Cayley

graph with vertex set GF = Z
|V |
d and connection set

CF = {ev − ew : vw ∈ E(Y )}

Here ev denotes the vector in Z
|V |
d with 1 in the v-th position and 0 in all

the other positions. We will only deal with simple undirected graphs, so we

can assume that Y is simple and undirected, and so is Zd[Y ].

Free Cayley graphs are interesting because they embed information about

smaller graphs. Suppose that Y is a graph and Zd[Y ] is the free Cayley graph

defined on Y . We can view the connection set of Zd[Y ] as the set of columns

of the incidence matrix of Y . In this section we will discuss the relation-

ship between Y and Zd[Y ], and derive bounds on the chromatic number of

Cayley graphs.

4.1 Free Cayley Graphs

The following observations are due to Naserasr and Tardif [11].
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4.1.1 Theorem. Let Y be a graph and let G be a group with exponent d.

Suppose that there is a graph homomorphism ψ from Y to a Cayley graph

X(G, C). Then there is a map ψ̂ from Zd[Y ] to X which is both a graph and

a group homomorphism.

Proof. Suppose that ψ is a graph homomorphism from Y to X(G, C). If

the vertex v is adjacent to the vertex w in Y , then ψ(v) is adjacent to ψ(w).

In other words, if ew − ev ∈ CF then ψ(ew)ψ(ev)−1 ∈ C.

We extend ψ to a group homomorphism ψ̂ from Zd[Y ] to X. For any an

element of a ∈ Z
|V |
d , we have

a = a1e1 + . . . + anen

where e1, . . . , en are the canonical embedding of the vertices of Y . These

vectors form a set of generators of the group Z
|V |
d .

We define the function ψ̂ on the element a as follows,

ψ̂(a) = a1ψ(e1) + . . . + anψ(en).

The function ψ̂ is well defined and is a group homomorphism from Z
|V |
d

to G. We will show that it is also a graph homomorphism.

Let a, b be two adjacent vertices in the graph Zd[Y ]. Then b − a ∈ C.

Thus b − a = ew − ev for some ev and ew. We have

ψ̂(b)ψ̂(a)−1 = ψ̂(b − a) = ψ̂(ew − ev) = ψ(ew)ψ(ev)−1 ∈ C.

Hence ψ̂(a) is adjacent to ψ̂(b), and so ψ̂ is a graph homomorphism.

4.1.2 Corollary. Let X be a Cayley graph of a group with exponent d. Then

χ(X) = χ(Zd[X]).

Proof. Since X is a subgraph of Zd[X], it follows that χ(X) ≤ χ(Zd[X]).

Moreover, since there is a graph homomorphism from the Cayley graph

X to itself, there is a graph homomorphism from Zd[X] to X, and hence

χ(Zd[X]) ≤ χ(X).
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4.1.3 Corollary. Suppose there is a graph homomorphism X �→ Y . Then

there is a graph homomorphism Zr(X) �→ Zr(Y ).

Proof. Since Y is a subgraph of Zr[Y ], there is a graph homomorphism

X �→ Zr[Y ], and so there is a graph homomorphism Zr[X] �→ Zr[Y ].

4.2 Halved Cubes

Let X denote the n-cube, and let Y denote the graph with vertex set V (X)

where two vertices are adjacent in Y if and only if they are at distance two

in X. The graph Y is not connected, but has two isomorphic components

on 2n−1 vertices. The graph induced by one component is called the halved

n-cube. We can also define the halved n-cube to be the graph on the binary

vectors of length n with even weight, where two such vectors are adjacent if

and only if their sum has weight two. We denote the halved n-cube by 1
2Qn.

Another description of 1
2Qn is the graph obtained from the vertices of

(n− 1)-cube, by joining two vertices if they lie at distance one or two in the

(n− 1)-cube. To see this, delete the last coordinate from each binary vector

of length n with even weight. Two of these truncated vectors are adjacent

if and ony if their sum has weight one or two.

The eigenvalues of 1
2Qn can be computed easily. Let A1 be the adjacency

matrix of the n-cube X, and let A2 be the distance two graph Y of the n-

cube. We have

A2
1 − nI = 2A2,

from which we can determine the eigenvalues of Y . The eigenvalues of X

are the integers n − 2i for i = 1, . . . , n, and therefore the eigenvalues of Y

are the integers

1
2
[(n − 2i)2 − n] =

(
n

2

)
− 2i(n − i).

The following lemma provides one reason why we are interested in the

halved cubes.
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4.2.1 Lemma. Each of the two components of the graph Z2(Kn) is isomor-

phic to 1
2Qn.

Proof. The connection set of Z2(Kn) consists of the columns of the adjacency

matrix of Kn, which is the set of all binary n-bit vectors of weight two. Thus

each of the two (isomorphic) components of Z2(Kn) is isomorphic to 1
2Qn

according to the first definition of 1
2Qn.

Linial, Meshulam and Tarsi proved that the following theorem is true

for 0 ≤ i ≤ 3. Chris Godsil proved two cases using the ratio bound. Here

we will present Godsil’s proof.

4.2.2 Theorem.

χ(Z2(Kn)) ≤ 2�log2(n)�

equality holds if n = 2r − i, where i ∈ {0, 1}.

Proof. If n = 2r then Kn is a cubelike graph on Z
r
2. Since Kn �→ Kn, it

follows that Z2(Kn) �→ Kn. Since Z2(Kn) contains the even vectors in Z
r
2

and that each fibre of this map is an independent set, it follows that the

fibres of this map are the cosets of a linear even binary code with minimum

distance at least four; this must be the extended binary Hamming code.

The halved n-cube has valency
(
n
2

)
. If n = 2m or 2m + 1, then its least

eigenvalue is −m. So if n = 2r, the ratio bounds (see Lemma 3.3.1) on α(X)

is
2n−1

1 + (n
2)
n
2

=
2n−1

2r
= 2n−1−r

and therefore χ(X) ≥ 2r. Since the halved 2r-cube has a 2r-colouring, it

follows that its chromatic number is 2r.

If n = 2r − 1, the ratio bound is still 2n−1−r, and therefore χ(X) ≥ 2r.

Since the halved (n−1)-cube is a subgraph of 1
2Qn, it follows that the halved

(2r − 1)-cube has chromatic number 2r.
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4.3 Folded Cubes

We will introduce folded cubes and show that they have chromatic number

four. If a cubelike graph is not bipartite, then it contains a folded cube and

hence is not 3-colourable.

Folded cubes can be obtained from the n-cubes. Let Qn be an n-cube.

We can view Qn as a graph with the subsets of {1, . . . , n} as its vertices,

where subsets S and T are adjacent if and only if |S � T | = 1. Each subset

S determines a partition (S, S̄) of {1, . . . , n} with two cells. The folded cube

is the graph with these partitions as its vertices, where two partitions are

adjacent if a cell of one is adjacent to a cell of the other in Qn. The folded

3-cube is K4 and the folded 5-cube is the Clebsch graph.

We are interested in two alternative descriptions. Assume n is odd. We

construct a graph on the subsets of {1, . . . , n} with size at most (n − 1)/2.

Two such subsets are adjacent if either:

(a) They differ in size by 1, and one is contained in the other, or

(b) They both have size (n − 1)/2, and they are disjoint.

The folded n-cube can also be described as follows. Take the (n − 1)-

cube Qn−1. We can construct the folded n-cube by adding edges to pairs of

vertices with distance n.

The following observation is due to Chris Godsil.

4.3.1 Theorem. If C is a cycle of 2k + 1 vertices, then each of the two

components of Z2[C] is isomorphic to the folded (2k + 1)-cube.

Proof. Let c1, . . . , c2k+1 be the characteristic vectors of the edges of C.

Consider the matrix A whose columns are the ci’s,

A = [c1 c2 . . . c2k+1].

The first 2k columns are linearly independent and the last column is the

sum of all the other columns.
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There is a linear mapping from the column space of the matrix A to the

column space of the following matrix B,

B = [e1 e2 . . . e2k (e1 + e2 + . . . + e2k)].

where ei is the i-th standard basis vector (with one in the i-th position and

zeros everywhere else). The cubelike graph whose connection set is B is a

folded n-cube according to the last description of the folded cubes.

4.3.2 Theorem. Let X(C) be a cubelike graph with connection set C. If

X(C) is not bipartite then it contains a folded cube.

Proof. If X(C) is not bipartite, then it contains an odd cycle C2k+1. This

cycle corresponds to 2k + 1 vectors in the connection set C. Denote these

vectors v1, v2, . . . v2k+1 where v1 + v2 + . . . + v2k+1 = 0. Let

C ′ = {v1, v2, . . . , v2k+1}

Then the Cayley graph with connection set C ′, which is a subgraph of X,

is isomorphic to a folded cube.

In the next section we will show that the chromatic number of folded

cubes is four. Thus if a cubelike graph is not bipartite, its chromatic number

is at least four.

4.4 Chromatic Number of Folded Cubes

We will show that the chromatic number of Z2[C2k+1] is four. First of all,

since there is a graph homomorphism from C2k+1 to C3, there is a graph

homomorphism from C2k+1 to Z2[C3], and by Theorem 4.1.1, there is a

graph and group homomorphism from Z2[C2k+1] to Z2[C3] = 2K4 (here I

mean two vertex-disjoint copies of K4). Thus Z2[C2k+1] is 4-colourable. We

will show that it is not 3-colourable.

We proceed by showing that any folded cube contains a copy of gener-

alized Mycielski graph whose chromatic number is four.
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Figure 4.1: The Mycielski Graph M2(C5)

We are only interested in the generalized Mycielski graph of odd cycles.

We define it as follows (see Figure 4.1).

Let C2k+1 = {v1, v2, . . . , v2k+1} be an odd cycle of 2k + 1 vertices, and

let d be an integer. The generalized Mycielski graph of C2k+1, denoted

Md(C2k+1), is the graph with vertex set

V = S1 ∪ S2 . . . ∪ Sd ∪ {z}

where

Si = {xi
1, x

i
2 . . . , xi

2k+1}
for 1 ≤ i ≤ d.

The edges are defined as follows. The subgraph induced by S1 is C2k+1.

For 2 ≤ i ≤ d, the vertex vi
j is connected to the vertices vi−1

(j−1) and vi−1
(j+1),

where addition and substraction of the subscripts are taken modula 2k + 1.

The special vertex z is connected to all vertices in Sd.

Payan [12] proved that the chromatic number of Md(C2k+1) is four. We

will present a new version of his proof.

4.4.1 Theorem. χ(Md(C2k+1)) = 4.

Proof. We will develop some tools first.
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Let C = {v1, v2, . . . , v2k+1} be a directed cycle of (2k +1) vertices which

are labeled 1, 2, 3. This labeling may or may not be a proper colouring.

We construct a directed graph T (C) with three vertices 1,2,3 by identifying

the vertices of C labeled by i ∈ {1, 2, 3} into the vertex i. The number of

directed {1, 2, 3}-cycles in T (C) is called the index of the cycle C, denoted

t(C). Clearly t(C) ≥ 0. If t(C) > 0 we know that all three labels 1, 2, 3 are

used.

Let C = {v1, . . . , v2k+1} be a directed cycle of (2k+1) vertices. Consider

the subdivision of C obtained by adding a vertex v′i on each arc vivi+1 where

the addition of the subscripts are taken modula 2k + 1. Let D be the set of

vertices on the arcs of C, i.e., D = {v′i : 1 ≤ i ≤ 2k + 1}. For any colouring

of D with three colours 1, 2, 3 we have t(D) = t(C).

To see this, consider the reduced graph obtained from C by identifying

the vertices of the same colour, let us colour each arc vivi+1 by the colour

given to the vertex v′i. Note that if vi and vi+1 are coloured differently,

then the arc vivi+1 is coloured uniquely. So every directed {1, 2, 3}-cycle on

the vertices in T (C) corresponds to a directed {1, 2, 3}-cycle on the edges.

Hence t(C) = t(D).

Consider an odd cycle C = {v1, . . . , v2k+1} and a colouring of C with

three colours 1, 2, 3. Let P be the distance-two graph of C, i.e.,

P = {v1, v3, . . . , v2k+1, v2, v4, . . . , v2k}.

Then t(P ) > 0.

We prove the above by induction on k. The property is true for the cycle

of length 3. When k > 1 we have two cases.

(a) If C is coloured 1, 2, 3, 1, 2, 3, . . . , 1, 2, 3 then t(P ) = (2k + 1)/3.

(b) C contains three vertices vi, vi+1, vi+2 such that vi and vi+2 have the

same colour. We can assume, without loss of generality, that v1, v2, v3

are coloured 1, 2, 1. Let C ′ be obtained from C by deleting v2 and

identifying v1, v3. Since C has a colouring, so does C ′. Let P ′ be the

distance-two graph of C ′. Then P ′ is obtained from P by deleting v1
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and v2 and adding the arc v2kv3 and v2k+1v4. By induction hypothesis,

t(P ′) > 0. Adding back the vertex v1 on the arc v2kv3 and the vertex

v2 on the arc v2k+1v4 does not decrease the index of the cycle. Hence

t(P ) ≥ t(P ′) > 0.

Now we are ready to prove that the chromatic number of Md(C2k+1) is

four.

The subgraph induced by S1 is C2k+1 and is 3-colourable. Suppose that

we have a 3-colouring of the vertices in any Si, where 1 ≤ i ≤ d − 1. Since

each vertex in Si+1 is adjacent to exactly two vertices in Si, we can extend

this colouring to a 3-colouring of the vertices in Si+1. Thus we obtain a

3-colouring of the vertices in S1 ∪ . . . ∪ Sd. We assign the fourth colour to

the vertex z to get a 4-colouring of Md(C2k+1).

We will also show that Md(C2k+1) does not have a 3-colouring. Consider

any 3-colouring of Md(C2k+1). Since the vertices in S1 form an odd cycle,

we need to use three colours. Thus t(S1) > 0. Let S′
1 be the distance two

graph of S1. Then t(S′
1) > 0. Consider the subdivision graph of S′

1 obtained

by adding vertices on the arcs of S′
1. The vertices on the arcs are exactly

the vertices in S2, and so t(S2) > 0. Similarly we can show that t(S3) > 0

and eventually t(Sd) > 0. Thus the vertices of Sd must use three colours,

and the vertex z must use the forth colour.

The following theorem shows why we are interested in the generalized

Mycielski graph. It was originally proved by Naserasr and Tardif [11], and

was proved again by Gordon Royle in a simpler way. Here we will present

the simpler proof by Gordon Royle.

4.4.2 Theorem. The folded cube Z2[C2k+1] contains Mk(C2k+1).

Proof. Consider the k × (2k + 1) matrix

M =



1 0 0 0 0 0 0 0 0 . . .

1 0 1 0 0 0 0 0 0 . . .

1 0 1 0 1 0 0 0 0 . . .

1 0 1 0 1 0 1 0 0 . . .

. . .


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The i-th row contains i ones in columns 1, 3, . . . , 2i, for 1 ≤ i ≤ k. The

rows of M and their cyclic shifts, together with the zero vector, induce a

copy of Mk(C2k+1), where z is the zero vector, and Si is the cyclic shifts of

the i-th row. It is easy to check that the conditions in the construction of

Mk(C2k+1) are satisfied.

In conclusion, if a cubelike graph is not bipartite then it contains a copy

of Z2[C2k+1] whose chromatic number is four, and therefore no cubelike

graph has chromatic number three.
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Chapter 5

Triangle-free Graphs

Let X be a regular maximal triangle-free graph. We will show that if X has

valency greater than |V (X)|/3 then it is 4-colourable. We will also show that

if X is vertex-transitive then it is 3-colourable. Our discussion is based on

a paper by Brandt [2]. Applying this result to Cayley graphs, we conclude

that if X is a maximal triangle-free Cayley graph on 2n vertices with valency

greater than 2n/3, then X is bipartite.

5.1 Regular Graphs

We will present a version of Brandt’s proof with corrections.

We consider only finite, simple and undirected graphs. If G is a maximal

triangle-free graph, then G has the following properties,

(a) every adjacent pair of vertices has no common neighbour,

(b) every non-adjacent pair of vertices has a common neighbour, and

(c) G has diameter two.

A feasible weight function is a function φ : V �→ R, such that, for every

vertex v,
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Figure 5.1: The subgraph H12

(a) φ(v) ≥ 0, and

(b) φ(N(v)) ≥ 1,

where N(v) denotes the neighbourhood of the vertex v.

The 3-cube Q3 can be obtained from complete bipartite graph K4,4 by

deleting a perfect matching.

The main result of Brandt’s paper is based on the following important

lemma.

5.1.1 Lemma. Let G be a maximal triangle-free graph and let φ be a feasible

weight function. If the total weight is less than 3 then G does not contain

the Q3 as an induced subgraph.

Proof. Suppose, for contradiction, that G has the Q3 as an induced sub-

graph. Let u1, u2, u3, u4 be four vertices on one side of the bipartition of

Q3. Let w1, w2, w3, w4 be four other vertices such that wiui /∈ E(G) and

wiuj ∈ E(G) for all j �= i. Since G has diameter 2, for every pair of vertices

ui, wi, there is a common neighbour vi, which cannot be adjacent to any

further vertex uj , wj (j �= i). Since φ(V (G)) < 3 and φ(N(v)) ≥ 1 for every

v ∈ V (G), there must be a vertex x that is adjacent to more than four

vertices in

V ′ = ∪1≤i≤4{ui, vi, wi}.
To see this, suppose that every vertex in G is adjacent to at most four

vertices of V ′. Let Ti be the set of vertices that has i neighbours in V ′,
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0 ≤ i ≤ 4. In other words, the vertices in Ti are in i neighbourhoods of the

vertices of V ′. If we count the total value of φ on the neighbourhoods of the

vertices in V ′, we count i times the value of φ(Ti). Thus

φ(T1) + 2φ(T2) + 3φ(T3) + 4φ(T4) ≥ 12.

However, since the total weight is less than three, we have

φ(T1) + φ(T2) + φ(T3) + φ(T4) < 3,

which gives us a contradiction.

We have shown that there exists a vertex x in G adjacent to at least five

vertices in V ′. The indices may be chosen such that u1, w1, v2, v3, v4 are the

neighbours of x.

Consider the subgraph H spanned by the 9 vertices
⋃

2≤i≤4{ui, vi, wi}.
Since φ(V (G) < 3 and φ(N(v)) ≥ 1 for every v ∈ V (G), there must be a

vertex y of G being adjacent to four vertices of H which we may assume

to be v2, v3, u4, w4. Since G is triangle-free, no vertex of G can be adjacent

to more than four vertices in the subgraph H12 induced by {x, v2, v3, y} ∪⋃
1≤i≤4{ui, wi} (see Figure 5.1), and hence

φ(V (G)) ≥ 1
4

∑
v∈H12

φ(N(v)) ≥ 3.

A contradiction.

5.1.2 Theorem. Let G be a maximal triangle-free graph and let φ be a

feasible weight function. If the total weight is less than 3 then every inde-

pendent set of maximum weight of G is contained in the neighbourhood of a

vertex.

Proof. Suppose that S is an independent set of maximum weight that is

not contained in the neighbourhood of a vertex. Let S′ be a minimal subset

of S that is not contained in the neighbourhood of a vertex. Since G has

diameter two we get |S′| ≥ 3 and, by the minimality of S′, for every vertex

ui of S′ (1 ≤ i ≤ |S′|) there is a vertex wi ∈ V (G) that is adjacent to all
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vertices of S′ except ui. If |S′| ≥ 4 then we have an induced Q3, which is

impossible by Lemma 5.1.1.

Suppose that |S′| = 3. Let T0 be the set of vertices of G having no

neighbour in S′. Clearly S ⊆ T0. Let T2 be the vertices of G having exactly

two neighbours in S′. Since φ(V (G)) < 3 we have

φ(T1) + 2φ(T2) ≥ 3,

and

φ(T0) + φ(T1) + φ(T2) < 3.

Thus φ(T0) < φ(T2).

Since |S′| = 3, any two vertices in T2 have a common neighbour in S′.
Thus the set T2 is an independent set of larger weight than S, a contradic-

tion.

Let G be a maximal triangle-free graph on n vertices with minimum va-

lency greater than n/3. Let φ be the weight function assigning to each vertex

weight (δ(G))−1. Then G and φ satisfy the hypothesis of Theorem 5.1.2 and

hence every maximum-weight independent set belongs to the neighbour-

hood of a vertex. Since φ is constant this implies that every maximum-size

independent set is contained in the neighbourhood of a vertex.

Two vertices are similar if they have the same neighbourhood. Denote

the similarity class of a vertex v by S(v).

5.1.3 Lemma. Let G be a maximal triangle-free graph of n vertices and

minimum valency more than n/3. Let S be a class of similar vertices of G.

Then there is a set T ⊆ N(S) with |T | ≤ 3 such that ∩v∈T N(v) = S.

Proof. Choose a minimal subset T ⊆ N(S) with ∩v∈T N(v) = S. By the

minimality of T for every vertex vi ∈ T there is a vertex wi /∈ S, being

adjacent to every vertex of T , except vi. If |T | ≥ 4 then ∪1≤i≤4{vi, wi}
induces a Q3. By Lemma 5.1.1, we know that the induced Q3 does not

exist. So |T | ≤ 3.
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A set S ⊆ V (G) is dominating if S ∪ N(S) = V (G). Brandt proved the

following theorem.

5.1.4 Theorem. Let G be a regular maximal triangle-free graph of order n

with degree d > n/3. Then G contains a dominating star K1,t with t ≤ 3.

Proof. Choose a vertex v for which |S(v)| is minimal and let S = S(v). By

Lemma 5.1.3, there must be a minimal subset T = {w1, . . . , wt} ⊆ N(v) of

cardinality t ≤ 3 such that ∩w∈T N(w) = S. We claim that T ′ = {v} ∪ T is

a dominating set of G.

Assume, for contradiction, that there exists a set of vertices R which are

not dominated by T ′. If t = 1 then all neighbours of v are similar, since G

is regular. Suppose t = 2. Since d ≥ n/3, we have

n < d(v) + d(w1) + d(w2) ≤ n − |R| + |S|,

which implies that |R| < |S| and hence R = ∅ by the minimality of S.

Finally assume that t = 3. Since G is d-regular with d > n/3, we have

d + n < 4d ≤ d(v) + d(w1) + d(w2) + d(w3) ≤ n − |R| + |S| + |U |.

where U is the set of vertices that have at least two neighbours in T . Thus

d + n < n − |R| + |S| + |U |

Since every vertex in U has at least two neighbours in T , and T has

three vertices, every pair of vertices in U have a common neighbour in T .

Thus U is an independent set. By Theorem 5.1.2, |U | ≤ d. We have

|R| < |S|

By the minimality of S, we have R = ∅

5.1.5 Corollary. Let G be a d-regular maximal triangle-free graph with n

vertices and valency d > n/3 then G is 4-colourable.

31



Proof. We have shown that G has a dominating star K1,t with t ≤ 3.

Suppose that t = 3, and the vertices in the dominating star are denoted

r, a, b, c with r being the root. Removing the star, we get four neighbour-

hoods N(r), N(a), N(b), N(c). Since G is triangle free, each neighbour-

hood is an independent set, and so we can assign the same colour to all

vertices in a neighbourhood. Let the colours assigned to the vertices in

N(r), N(a), N(b), N(c) be 1, 2, 3, 4, respectively. Then we can colour the

vertices r, a, b, c with 2, 1, 1, 1. It is easy to check that this is a valid colour-

ing.

5.2 Vertex-Transitive Graphs

Let X be a maximal triangle-free graph with n vertices and valency greater

than n/3. We have shown that it is 4-colourable. In this section we will

show that if it is vertex-transitive then it is 3-colourable. The result is due

to Brandt [2].

5.2.1 Lemma. Let G be a maximal triangle-free graph with n vertices and

minimum valency greater than n/3. If a, b are non-adjacent, non-similar

vertices for which |N(a) ∩ N(b)| is as large as possible, then G contains an

edge xy such that xa, yb ∈ E(G) and all vertices in N(a)\N(b) are similar

with x and all vertices in N(b)\N(a) are similar with y.

Proof. Since a and b are not similar, there must be a vertex x ∈ N(a)\N(b).

Since G has diameter two, x must have a neighbour y ∈ N(b) \N(a). We

will first show that all vertices in N(x) ∩ N(b) are similar.

Suppose, for contradiction, that x has a neighbour y′ ∈ N(b)\N(a) that

is not similar to y. Then

d(x) + d(b) + d(y′) + d(y) ≤ n + |N(x) ∩ N(b)| + |N(y) ∩ N(y′)|
≤ n + |N(x) ∩ N(b)| + |N(a) ∩ N(b)|
≤ n + d(b).
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which implies that δ(G) ≤ n/3. A contradiction. Thus all vertices in N(x)∩
N(b) are similar. Similarly we can show that all vertices in N(y)∩N(a) are

similar.

Now we will prove that all vertices in N(b) \ N(a) are adjacent to x.

Suppose, for contradiction, that there exists a vertex y′ ∈ N(b)\N(a) that

is not adjacent to x. Since G has diameter two, y′ is adjacent to a vertex

x′ ∈ N(a)\N(b), and x′ is not adjacent to y (otherwise, x′ is similar to x).

Thus the vertices {a, x, y, b, y′, x′, a} form a 6-cycle C. Moreover, no vertex

is adjacent to three vertices of C. To see this, suppose that there is a vertex

z adjacent to a, y′, y, then z ∈ N(y) ∩ N(a), and so is similar to x, but x

is not adjacent to y′, a contradiction. Hence all vertices are adjacent to at

most two vertices of the 6-cycle, and so

6δ(G) ≤
∑

v∈V (C)

d(v) ≤ 2n

which implies that δ(G) ≤ n/3. A contradiction.

5.2.2 Theorem. Let G be a d-regular maximal triangle-free graph with n

vertices and valency d > n/3. If G has chromatic number at least four, then

there are two vertices y, z ∈ V (G) with |S(y)| �= |S(z)|.

Proof. First observe that if G does not have two non-adjacent non-similar

vertices, then G is the complete multi-partite graph. Suppose that a, b are

two non-adjacent non-similar vertices such that |N(a) ∩ N(b)| is maximal.

Then by Lemma 5.2.1, there is an edge xy where x ∈ N(a) and y ∈ N(b)

such that all vertices in N(a) \ N(b) are similar to x, and all vertices in

N(b)\N(a) are similar to y. If all vertices in G are adjacent to a, x, y then

G is 3-colourable. Thus there exists a vertex z that is not adjacent to a, x, y.

The vertex z is also not adjacent to b, since N(b) ⊆ N(a) ∪ N(x). Let

R = V (G)\ (N(a) ∪ N(b) ∪ N(x) ∪ N(y))
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Then

n − |R| = |(N(a) ∪ N(b) ∪ N(x) ∪ N(y)|
= d(a) + d(b) + d(x) + d(y)

− |N(a) ∩ N(b)| − |N(a) ∩ N(y)| − |N(b) ∩ N(x)|
≥ d(b) + d(x) + d(y) − |S(y)|
> n − |S(y)|.

It follows that |S(y)| > |R| ≥ |S(z)|

5.2.3 Corollary. Let G be a vertex-transitive maximal triangle-free graph

with n vertices and valency d > n/3. Then G is 3-colourable.

Proof. In a vertex-transitive graph, all similarity classes have the same size,

but by Theorem 5.2.2, if G is not 3-colourable then there are two colour

classes of different sizes.

5.3 Cubelike Graphs

Let X be a maximal triangle-free cubelike graph on 2n vertices with valency

2n/3. Since cubelike graphs are vertex-transitive, by Corollary 5.2.3, the

graph X is 3-colourable. We have shown in Section 4 that X cannot have

chromatic number three, and so X is bipartite.

34



Chapter 6

Codes and Cayley Graphs

We have shown that if a cubelike graph X is maximal triangle-free with

valency greater than |V (X)|/3, then it is bipartite, but this is an easy con-

sequence of a general graphical result. Since cubelike graphs arise from

vector spaces, we can use information of codes and finite geometry to obtain

a better bound.

In this chapter we will discuss the connections between codes, Cayley

graphs, and projective geometry. We will first introduce linear qk-colourings

of a Cayley graph, and then describe the connections between binary caps

and cubelike graphs, and after that we will discuss three geometric opera-

tions: doubling, deletion, and projection. All these operations have impli-

cations in Cayley graphs and codes.

6.1 Codes

The following discussions in the next two sections are based on Chris God-

sil’s colouring notes.

Let M be an r × n matrix over Zq, where q is a prime power. If the

columns of M are non-zero and pairwise linearly independent, then M is

called a projective code. The columns of M are the coordinate vectors of
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the points in the projective geometry PG(r− 1, q), with 1-dimensional sub-

spaces as points, and 2-dimensional subspaces as lines. The row space of M

determines a linear [n, r]-code C, and the kernel of M determines a linear

[n, n−r]-code, denote C⊥. Any codeword in C is of the form hT M for some

h ∈ Z
r
q. The weight of this codeword is the number of non-zero entries in

hT M , which is determined by the number of columns of M that lies in the

hyperplane h⊥. We denote this hyperplane by h⊥, since it is the kernel of

the vector hT .

Let X(M) be a Cayley graph defined on the column space of M such

that the vertices are the vectors in Z
r
q, and two vectors v and w are adjacent

if and only if their difference is a multiple of a column of M . This graph is

undirected, and we can assume that the columns of M spans Z
r
q, in which

case X is connected. The vertices in the subspace whose coordinate vector

is a column of M form a clique of size q, and the vertices in a coset of this

subspace also form a clique of size q.

Let φ be a character of Zq. We showed in Section 3 that for any vector

a ∈ Z
r
q, the map

φa(x) = φ(aT x)

is also a character, and that the characters φa completely determine the

eigenvalues of X. The eigenvalue associated with φ0 is (q − 1)n. When

a ∈ Z
r
q \0, the eigenvalue associated with φa is

q|a⊥ ∩ S)| − |S| = q|a⊥ ∩ S| − n,

where S be the set of points in PG(r − 1, q) corresponding to the columns

of M , and a⊥ denotes a hyperplane in PG(r − 1, n). The following lemma

is true.

6.1.1 Lemma. Let M be an r × n matrix. Then the least eigenvalue of the

Cayley graph X(M) is at least −n. The least eigenvalue is −n if and only

if the code of M has a codeword of weight n.
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6.1.2 Theorem. Let M be an r × n matrix, and let X(M) be the Cayley

graph defined on the column space of M . Then X is q-colourable if and only

if there is a codeword of weight n in the code generated by M .

Proof. If the code of M does not have a codeword of weight n then the

least eigenvalue of X is greater than −n. We know that the valency of X is

n(q − 1), and by the ratio bound, it follows that

α(X) <
|V (X)|

1 + n(q−1)
n

=
|V (X)|

q
.

and so χ(X) > q.

On the other hand, let hT M be a codeword of weight n. For any two

vertices v and w, if hT v = hT w then hT (v −w) = 0, and so v −w is not the

scalar multiple of a column of M . Thus the vector h determines a q-colouring

of X.

6.2 Linear qk-Colourings

We will introduce and describe linear qk-colourings of a Cayley graph.

Let S be a set of n points in PG(r − 1, q), where q is a prime power.

The points in S can be represented by a set of non-zero vectors of length r

over Zq, and no two vectors are scalar multiples of each other. Let X(S) be

a Cayley graph whose vertices are the vectors in Z
r
q, and two vertices are

adjacent if and only if their difference is a scalar multiple of a vector in S.

The set S is affine if there is a hyperplane that does not intersect S.

Let M be an r × n matrix whose columns are the coordinate vectors of the

points in S. We call M the matrix of S for convenience. If S is affine then

there is a vector h ∈ Z
r
q such that hT M has weight n, and as we have showed

in Section 6.1, the graph X is q-colourable. Hence we have the following

lemma.

6.2.1 Lemma. The following three statements are equivalent.
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(a) the set S is affine,

(b) the code of M has a codeword of weight n, and

(c) the graph X(S) (or X(M)) is q-colourable.

Let E be an extension field of Zq of order qk. Since M is a matrix in Zq

it is also a matrix in E. The projective geometry PG(r − 1, qk) has more

hyperplanes than PG(r − 1, q), and so if S is not affine in PG(r − 1, q) it

may be affine in PG(r − 1, qk) for some k. The smallest such k is called the

critical exponent.

A hyperplane in PG(r − 1, qk) is the kernel of a k × r matrix H. Hence

if S is affine in E, then each column of HM is non-zero. Let v and w be

two vertices of X, if Hv = Hw then H(v − w) = 0, and so v − w is not

a multiple of a column of M . Thus H determines a qk-colouring of X. In

general, the colouring of X determined by a k × r matrix over Zq is called

a linear qk colouring.

If S is affine in PG(r−1, qk), then there exits hyperplanes H1, H2, . . . , Hk

in PG(r − 1, q) such that

S ∩ H1 ∩ H2 . . . ∩ Hk = ∅.

In coding theory terms, S is affine over E if and only if there exists a set

of k codewords such that the union of their supports has size n. Equivalently,

the set S is affine over E if and only if the Cayley graph X(S) is the union

of k subgraphs, each of which has a linear q-colouring.

6.3 Caps, Codes, and Cubelike Graphs

We will describe the connections among caps, codes, and cubelike graphs.

A cap in PG(r − 1, q), where q is a prime power, is a set of points such

that no three are collinear. A cap S is complete if and only if every point in
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PG(r − 1, q)\S lies in a secant of S. In other words, if a cap S is complete

then it cannot be lengthened, in a sense that no point can be added to S.

When q = 2, a cap in PG(r − 1, 2) is called a binary cap.

We will describe a connection between a coding theory parameter and

complete caps.

Let C be a binary code of length n. The covering radius of C is the

smallest integer r such that every binary vector of length n is within distance

r from at least one codeword.

6.3.1 Theorem. Let S be a binary cap in PG(r−1, 2) of size n, and let C⊥

be its dual code. Then S is complete if and only if C⊥ has covering radius

two.

Proof. Let M be the matrix of S. (Since S is a binary cap, each point has

a unique coordinate vector.) If S is complete then every nonzero vector in

Z
r
2 is either a column of M or is the sum of two columns of M . Let x be a

binary vector of length n that is not in C⊥. Then either Mx = mi where

mi is a column of M , or Mx = mi + mj where mi, mj are two columns of

M . In the first case x is obtained from some codeword by flipping the bit in

the i-th position, and in the second case x is obtained from some codeword

by flipping the bits in both the i-th and the j-th positions.

If C⊥ has covering radius two, then every vector x in Zn
2 is within dis-

tance two of some codeword c. If x is of distance one from c then Mx is a

column of M , and if x is of distance two from c then Mx is the sum of two

columns of M .

Now we will describe the connections between caps and cubelike graphs.

Let S be a binary cap in PG(r−1, 2) of size n, and let X(S) be the cubelike

graph with 2r vertices and connection set S. Then X(S) is triangle-free. To

see this, suppose that X contains a triangle. Since X is vertex-transitive,

we can assume that the three vertices in the triangle are 0, a, and b, where

a, b ∈ S, but since ab is an edge (a + b) ∈ S. However S is a cap and so

(a + b) /∈ S.

39



If S is complete, then X(S) is maximal triangle-free. Brandt proved

that all maximal triangle-free vertex-transitive graphs with n vertices and

valency greater than n/3 are 3-colourable (see Section 4). Naserasr and

Tardif proved that a cubelike graph cannot have chromatic number three

(see Section 5). These results imply that if the cubelike graph X(S) (defined

above) has valency greater than 2r/3 then it is bipartite. If we look at graph

colouring from geometric point of view and study binary caps in PG(r−1, 2),

we can characterize all maximal triangle-free cubelike graphs with 2r vertices

and valency greater than 2r/4, and show that the chromatic number of these

graphs are either two or four (see Section 7).

6.4 Doubling Construction

Let S be a cap in PG(r − 1, 2) of size n. We can extend S to a cap in

PG(r, 2) of size 2n as follows. Embed PG(r − 1, 2) into PG(r, 2), and let

x be a point in PG(r, 2) \ S. If we join x to a point v ∈ S, we obtain a

third point on the line xv. The set of all third points on the lines xv, for

all v ∈ S, together with the points in S, form a cap in PG(r, 2) of size 2n.

This process is called the doubling construction.

Let M be the matrix of a cap S in PG(r−1, 2), and let M ′ be the matrix

of the cap in PG(r, 2) obtained by doubling S. Then M ′ is of the following

form.

M ′ =

(
0 . . . 0 1 . . . 1

M M

)
(6.1)

Let C be the code generated by M , and let C ′ be the code generated by

M ′. Then we call that C ′ is obtained by doubling the code C. It is easy to

see that the distance of C ′ is four.

6.4.1 Lemma. Let S be a binary cap in PG(r − 1, 2). Suppose that S′ is

obtained by doubling S and C ′ is the code of S′. Then the minimum distance

of C ′ is four.
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Proof. Let H be the matrix of S. Then the generator matrix M ′ of the code

C ′ is of the form 6.1. The following four columns(
0
x

)
,

(
0
y

)
,

(
1
x

)
,

(
1
y

)
where x, y are columns of M , are linearly dependent. It is easy to verify

that any three columns of M ′ are linearly independent, since S is a cap.

We will introduce an equivalent concept. Let S be a binary cap in

PG(r − 1, 2) of size n, and let x be a point in PG(r − 1, 2) \S. We call S

periodic with respect to x if x lies in no tangent of S. In other words, for

every point v ∈ S, the line xv is a secant of S.

6.4.2 Theorem. Let S be a cap in PG(r − 1, 2). Then S is obtained by

doubling if and only if the set S is periodic.

Proof. If S is obtained by doubling, then S is periodic by definition. Suppose

that S is periodic with respect to x. Let H be a hyperplane such that x /∈ H.

Then S is obtained by doubling the cap H ∩ S. To see this, consider any

point v ∈ H ∩ S. The third point on the line vx is in S but is not in H.

This definition of periodic set agrees with the definition of periodic sets

for abelian groups introduced by Kemperman [8], since every binary cap in

PG(r−1, 2) can be viewed as a subset of an abelian group Zr
2 . The following

proposition is important (Kemperman [8]).

6.4.3 Proposition. Let F and E be subsets of the additive abelian group

G and

F + E = {f + e : f ∈ F, e ∈ E}.
If |F + E| ≤ |F | + |E| − 2, then the set F + E is a periodic subset.

The following three lemmas are due to Davydov and Tombak [6]. In

their paper the matrix H is the check matrix of some [n, n − r, 4] code of

covering radius two. However, the restriction on the distance (d = 4) does

not play an role in the proof. Here we restate the lemmas in geometric lan-

guage and prove them geometrically, so the notion of distance does not apply.
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6.4.4 Lemma. Let S be a complete cap in PG(r− 1, 2). Let H be a hyper-

plane of PG(r− 1, 2). If H ∩S is periodic with respect to a point x ∈ H \S,

then S is periodic with respect to x.

Proof. Suppose, for contradiction, that S is not periodic with respect to

x. Then there exists a point b1 ∈ S \H such that x + b1 /∈ S. This point

x + b1 does not lie in H, since b1 /∈ H. Since S is complete, it follows that

x + b1 = a1 + b2, where a1, b2 ∈ S. Note that if both a1 and b2 lies in S ∩H

then a1 + b2 lies in H, but it is not the case. Moreover, if a1, b2 lies in S\H,

then a1 + b2 lies in H, since H is a hyperplane that intersects every line.

Thus we can assume that a1 ∈ S ∩ H and b2 ∈ S \H.

Consider the plane xb1 ∨xb2. The lines xa1 and b1b2 intersect in a point

z. Since S ∩H is periodic with respect to x, the point z lies in S. However,

b1 + b2 does not lie in S, since S is a cap in PG(r− 1, 2), a contradiction.

6.4.5 Lemma. Let S be a subset of AG(r − 1, 2). If S is a cap constructed

by doubling, then AG(r − 1, 2)\S is also a cap constructed by doubling.

Proof. Since S is constructed by doubling, there is a vertex x such that the

third point of every line xv, where v ∈ S, is also in S. It is easy to show

that the third point of every line xw, where w ∈ AG(r − 1, 2)\S, is also in

AG(r − 1, 2)\S.

The following lemma is very important.

6.4.6 Lemma. Let S be a complete cap in PG(r − 1, 2) of size at least

2r−2 + 2. If there is a subspace of codimension two skew to S, then S is

periodic, and equivalently, it is constructed by doubling.

Proof. Suppose that H2 be a subspace of codimension two skew to S. Let

A, B, C be the three hyperplanes on H2, and let SA, SB, SC denote the points

of S in A, B, C, respectively. Thus

|SA| + |SB| + |SC | = |S| ≥ 2r−2 + 2. (6.2)
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Consider any two points x ∈ SB and y ∈ SC , then the point x + y lies

in A\H2 and x + y /∈ S. Let S̄A be the set of points in A\H2 but not in S.

Since S is complete, it follows that SB + SC = S̄A. Thus

|SB + SC | = |S̄A| = 2r−2 − |SA|. (6.3)

Combing Equations 6.2 and 6.3 we obtain

|SB + SC | ≤ |SB| + |SC | − 2,

and so the set S̄A = SB + SC is periodic. By Lemma 6.4.5, the set SA is

also periodic, and by Lemma 6.4.4, the set S is periodic. Equivalently, the

cap S is constructed by doubling.

6.5 Doubling a Graph

Let S be a cap in PG(r − 1, 2) and let X(S) be the cubelike graph defined

on S. Let S′ be the cap in PG(r, 2) obtained by doubling S. Then the

cubelike graph Y (S′) is isomorphic to X[K̄2], the lexicographic product of

X with K̄2. The vertices of Y are of the form (v, i) where i ∈ {1, 2} and v

is a vertex of X. Two vertices (v, i) and (w, j) are adjacent if v is adjacent

to w in X. The set {(v, 1) : v ∈ X} induces a copy of S.

Let A be the adjacency matrix of X. Then the adjacency matrix of Y

is of the following form, (
A A

A A

)
6.5.1 Theorem. Let S be a binary cap in PG(r − 1, 2) and let X(S) be

the cubelike graph defined on S. Let S′ be the cap in PG(r, 2) obtained by

doubling S and let Y (S′) be the cubelike graph defined on S′. Then χ(X) =

χ(Y ).

Proof. Since X is a subgraph of Y , it follows that χ(X) ≤ χ(Y ). Suppose

that we have a colouring of X. For each vertex (v, i) in Y , where i ∈ {1, 2},
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we assign the same colour of v in X. It is easy to verify that no adjacent

vertices get the same colour.

In general, χ(G[K̄2]) = χ(G) for any graph G.

6.6 Deletion and Projection

There are three geometric operations: doubling, deletion, and projection.

We have already described doubling. Here we will describe deletion and

projection.

Let S be a cap of PG(r−1, q), and let X(S) be the Cayley graph defined

on the points in S. Let M be the matrix of S and let C be the code generated

by M .

Deleting a point from S corresponds to deleting a column x from M .

In coding theory terms, this operation is called puncturing the code C. In

terms of the Cayley graph X(S), this operation corresponds to deleting

all generators from the connection set that are the scalar multiplies of the

column x.

Projection is described as follows: Suppose that T ⊂ S and let K be the

projective span of T . Assume that dim(K) = k and let H be a subspace

with codimension k. If x ∈ S \K, then x ∨ K spans a space of dimension

k + 1, and this space intersects H in a unique point. The map

φ : x �→ (x ∨ K) ∩ H

is called the projection of S from T .

In the language of matroid theory, projection corresponds to contraction.

Here we require that the subset T be a flat, that is,

span(T ) ∩ S = T ∩ S.

We will only consider projections from a point in S, which is a flat of

dimension 0. Let x be the coordinate vector of this point, and let H be a
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hyperplane not on x, denote h⊥. Let v be the coordinate vector of a point

in S \{x}. Then the line x ∨ v meets H in a unique point. We can take the

coordinate vector of this point to be v − λx, and so

hT (v − λx) = 0.

It is easy to compute that

λ =
hT v

hT x
.

We can assume, without loss of generality, that x = [10 . . . 0]T , and the

hyperplane H is the kernel of the vector [10 . . . 0]. Then each point v ∈ S\x

is mapped to v − [v10 . . . 0]T where v1 is the first coordinate of v.

In the language of coding theory, projection corresponds to shortening.

This process is described as follows. We first find a generator matrix of C

that has a column [10 . . . 0]T . Then delete that column and the first row,

leaving a generator matrix for a linear [n − 1, k − 1]-code C ′. We say that

the code C ′ is obtained by shortening the code C.

We can also describe projection in terms of the Cayley graph X(S)

(same as X(M)). The vertices in the point x (1-dimensional subspace)

form a clique of size q. The cosets of this point also form cliques of size q.

Projection from x corresponds to contracting all the edges in each clique,

i.e, shrinking each clique to one vertex. The resulting graph is called the

coset graph of X(M) with respect to a generator x. If the matrix M is

the adjacency matrix of a smaller graph Y , then projection corresponds to

deleting one vertex from Y .

6.7 Summary

The following table summarizes the connection among a set of points S in

PG(r−1, q), the Cayley graph X(S), and the code C (or the dual code C⊥)

of S.
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S X(S) C or C⊥

There is a subspace linear C contains a codeword

of codimension k qk-colouring of weight n in a

skew to S field of order qk

S is a complete X(S) is a maximal C⊥ has distance

binary cap triangle-free at least four and

cubelike graph covering radius two.

doubling lexicographic product doubling C

deletion deleting a generator puncturing C

projection coset graph shortening C
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Chapter 7

Caps

Recall that a cap in PG(r−1, q), where q is a prime power, is a set of points

that does not contain a line. As we have noted before, complete binary caps

give rise to maximal triangle-free cubelike graphs. In this chapter, we will

prove that all complete large caps are either affine or skew to a subspace of

codimension two, which implies that the corresponding cubelike graphs are

either bipartite or have chromatic number four. A cap in PG(r − 1, 2) is

large if its size is at least 2r−1 + 1.

7.1 Overview

Let S be a binary cap in PG(r − 1, 2) of size n. Then by the definition of

caps, every line intersects S̄, the complement of S. If S̄ is a hyperplane then

S is isomorphic to the affine geometry AG(r−1, 2) and the size of S is 2r−1.

The following result is not difficult to prove.

7.1.1 Theorem. Let S be a complete cap in PG(r−1, 2). Then |S| ≤ 2r−1.

Moreover, |S| = 2r−1 if and only if S is isomorphic to the affine geometry

AG(r − 1, 2).

Proof. Let x be a point in PG(r−1, 2)\S. There are 2r−1 −1 lines through

x. These lines partition the points in PG(r−1, 2)\x into 2r−1−1 pairs. If S

is a cap of maximum size, it must contain two points from one line through
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x, and one point from all the other lines through x. This accounts for 2r−1

points.

We will show that the structure described above is isomorphic to AG(r−
1, 2). We only need to show that S̄ is a subspace. Let v, w be any two

points in PG(r − 1, 2) \S. We can assume, without loss of generality that

v, w �= x. Then v + w = (v + x) + (w + x). Since v, w, x /∈ S, it follows

that (v + x), (w + x) ∈ S and hence (v + x) + (w + x) /∈ S, since S is a

cap. Therefore, S̄ is a hyperplane of size 2r−1 − 1, and S is isomorphic to

AG(r − 1, 2).

Recall that S is affine if there exists a hyperplane skew to it. We have

showed in Section 6 that S is affine if and only if the code of S contains a

codeword of weight n, and if and only if the Cayley graph X(S) has a linear

q-colouring. All binary affine caps are subsets of AG(r − 1, 2), and so they

are not very interesting. The interesting case is when S is not affine.

Segre [13] derived an upper bound on the size of caps that are not affine.

Here we will present his proof. We will first state the following lemma,

whose proof includes lengthy calculations and requires non-trivial knowledge

in algebraic geometry.

7.1.2 Lemma. Suppose that we are given a cap S and a point o /∈ S. Let t

be the number of tangents on a point in S. If there exists at least one secant

through o, then the number of tangents through o is at most t.

Now we are ready to derive the bound on the size of non-affine caps.

7.1.3 Theorem. Let S be a complete cap in PG(r − 1, q), where q is a

prime power and r ≥ 2. If S is not affine then

|S| ≤ |PG(r − 1, q)|
q + 1

.

Proof. We will first show that the number of tangents through any point

on S is the same. Let x be a point on S. Consider a hyperplane H not on

x. Then every line through x intersects H. Any line through x is either a
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secant of S, or a tangent of S. There are |S| − 1 secants, and so the number

of tangents is t = |H| − (|S| − 1).

Let o be a point not on S. By Lemma 7.1.2, it follows that the number

of tangents through o, denote t(o), is at most t. Let l be a tangent to S.

Then counting the pairs {o, l},

|S|tq =
∑
o/∈S

t(o) ≤ t(|PG(r − 1, q)| − |S|).

(To obtain the left hand side, we consider that each point of S has t tangents

on it, and each tangent contains q external points of S.) Thus we obtain

the bound.

Applying this bound to binary caps in PG(r− 1, 2), we get that if a cap

is not affine, then its size is at most 2r−1
3 .

This bound implies that any cubelike graph on 2n vertices with valency

greater than 2n/3 is bipartite. This result agrees with the result of Brandt

(see Section 5).

The bound of Theorem 7.1.3 is best possible in the case when r is four.

The results of Davydov and Tombak [6] on codes implies that all com-

plete caps of size at least 2r−2 + 2 are skew to a subspace of codimension

two, and thus are constructed by doubling. The size of complete large caps

in PG(r−1, 2) are 2r−2 +2r−2−g, where g = 0, 2, 3, . . . , r−2. Their proof is

very complicated with a lot of lengthy calculations. In this chapter we will

explain the ideas in a simpler way.

Bruen and Wehlau [5] strengthened the results of Davydov and Tombak

by adding that all complete caps of size exactly 2r−2 + 1 are also skew to a

subspace of codimension two.

Later, Bruen, Haddad, and Wehlau [4] published another paper describ-

ing a connection between linear binary codes and complete caps of size n in

PG(r − 1, 2), and gave a geometric proof that, if n = 2r−2 + 2r−3, then the

geometric structure of the cap is unique.
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In Section 7.2 we will describe the intersection properties of caps in

PG(r − 1, q), then we will focus on binary caps. We will first characterize

all complete large caps in PG(4, 2), then we will prove that for any fixed k

and sufficiently large r we can find a binary cap in PG(r − 1, 2) that is a

k-block, after that we will sketch the proofs of Davydov and Tombak [6], and

Bruen and Wehlau [5], showing that all large caps are skew to a subspace of

codimension two. The proofs will be explained in a simpler way.

7.2 Caps in PG(3, q)

We will show that the complete cap in PG(3, 2) of size five is unique. We

will also describe the incidence structure of a cap of size q2 + 1 and the

hyperplanes in PG(3, q).

7.2.1 Theorem. Let S be a complete cap in PG(3, 2) that is not affine. If

|S| = 5 then S is unique.

Proof. First of all, no hyperplane in PG(3, 2) contains more than three

points of S. To see this, let H be a hyperplane (the Fano plane, in this case)

that contains four points of S. Then there is a line L in H that contains no

points of S. Consider the two other hyperplanes of PG(3, 2) on L. One of

them must contain no point of S. Thus S is affine, a contradiction.

Since every hyperplane in PG(3, 2) contains at most three points (and at

least one point) of S, every subset of four points in S is linearly independent.

Since PGL(3, 2) acts transitively on sets of four linearly independent vectors,

we can assume, without loss of generality, that S contains the coordinate

vectors,

v1 = 1000, v2 = 0100, v3 = 0010, v4 = 0001.

Since no four points of S are coplanar, the last vector of S is 1111. Hence,

S = {1000, 0100, 0010, 0001, 1111}

is unique.
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In fact, this complete non-affine cap S is the set of points in an ovoid of

PG(3, 2). Of the 15 planes in PG(3, 2), exactly 10 meet the ovoid in three

points and 5 are tangent to it.

7.2.2 Theorem. Let S be a cap in PG(3, q) where q is a prime power.

Suppose that |S| = q2 + 1. Then every hyperplane meets S in either one

point or q + 1 points.

Proof. Let a, b be two distinct points in S. There are q + 1 hyperplanes on

the line ab. (The number q + 1 is obtained by considering the dual space.)

These q + 1 hyperplanes partition the set S \ {a, b} into q + 1 classes. On

average, each class contains

q2 − 1
q + 1

= q − 1

points of S \{a, b}.
On the other hand, let H be a hyperplane (plane, in this case) in PG(3, q)

on the line ab. Then S ∩ H is also a cap. If S ∩ H is complete, then it is

the points of a smooth conic which contains q + 1 points. This conic is not

singular because S is a cap. So

|S ∩ H| ≤ q + 1.

Therefore each hyperplane on ab contains exactly q + 1 points.

The number of hyperplanes that intersect S in q + 1 points is

(q + 1)
(
q2+1

2

)(
q+1
2

) =
(q + 1)(q2 + 1)q2

(q + 1)q
= q(q2 + 1).

The number of tangent hyperplanes is (q2 + 1).

Thus the number of hyperplanes that meet S in either one point or q +1

points is

q(q2 + 1) + (q2 + 1) =
q4 − 1
q − 1

,

which is the total number of hyperplanes in PG(3, q).

For a complete characterization of conics, see Beutelspacher and Rosen-

baum [1].

51



7.3 Complete Caps in PG(4, 2)

Let S be a complete cap in PG(4, 2) of size at least 9. If S is affine then it is

isomorphic to AG(4, 2). If it is not affine then either |S| = 9 or |S| = 10, by

Theorem 7.1.3 (where the bound is computed with r = 5). We treat these

two cases separately.

We first describe a construction of a complete cap in PG(4, 2) of size

9. Let H2 be a subspace of codimension two, and let A, H, B be the three

hyperplanes on H2. Let a be a point in A, and let

SA = {a}.

Let h be a point in H \H2 and define the set

SH = H \ (H2 ∪ {h})

Then the point b = a + h lies in B \H2. Let

SB = {b}.

Define S = SA ∪ SH ∪ SB.

Then S is a complete cap in PG(4, 2) of size 9. We will show that the

structure described above is unique.

We will need the following lemma first (see Davydov and Tombak [6],

Lemma 10).

7.3.1 Lemma. Let S be a complete cap in PG(r − 1, 2) of size exactly

2r−2 + 1, where r ≥ 5. Let H be a hyperplane such that |H ∩S| is maximal.

Then |S \H| ≤ 2r−3 − 1.

7.3.2 Theorem. Let S be a complete cap in PG(4, 2) that is not affine. If

|S| = 9 then it is unique and is of the structure described above.

Proof. Let H be a hyperplane in PG(4, 2) such that |S ∩ H| is maximal.

Since S ∩ H is a cap in H, it follows that |S ∩ H| ≤ 8. By Lemma 7.3.1, it
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follows that |S \H| ≤ 3, and so |S ∩ H| ≥ 6. Put together, we have

6 ≤ |S ∩ H| ≤ 8.

By Theorem 7.1.3, if a cap in PG(3, 2) is not affine, then its size is

at most five. Thus, the small cap S ∩ H is affine, and so S is skew to a

hyperplane of H, denote H2. Clearly H2 is a subspace of codimension two

in PG(4, 2).

Let A, B be the two other hyperplanes on H2. If S∩H is complete, then

|S ∩ H| = 8. Since |S| = 9, one of A, B contains no point of S, and so S is

affine. Thus we can assume that S ∩H is obtained from H \H2 by deleting

one or two points. We will show that only one point is deleted.

Suppose, for contradiction, that H∩S is obtained from H\H2 by deleting

two points x, y. Since S is complete, the point x lies on a secant of S, say

x = a + b. But x cannot lie on any secant of S ∩H, since x /∈ H2. Thus, we

can assume that a ∈ A and b ∈ B. The set

(H ∩ S) ∪ {a, b}
contains 8 points. The point y also lies on some secant of S. Since y /∈ H2,

this secant does not lie in S ∩ H. Since S contains 9 points we can assume

that y lies on the secant ba′ where a′ ∈ A. It follows that

S = (H ∩ S) ∪ {a, b, a′}.
However, the point b′ = a′ + x = a + y does not lie on any secant of S. To

see this, note that b′ does not lie on any secant of S ∩ H, since b′ /∈ H2. It

is also easy to check that b′ does not lie on any secant of S with one end in

S \H. A contradiction.

Therefore, the set S ∩ H is obtained from H \H2 by deleting one point,

and the hyperplanes A, B are tangent hyperplanes. The structure of S is

unique.

Let M be the matrix of the complete non-affine cap in PG(4, 2) of size

9, then M is of the following form,

M =

(
0 . . . 0 1 1

X \{x} 0 x

)
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where the matrix X is the check matrix of the extended Hamming code with

length 8 and 4 check symbols, and x is a column of X. The check matrix

of the extended Hamming code with length n and r check symbols, denote

X(n, r), can be constructed as follows. The first row is an all-ones row. The

columns of the submatrix of X(n, r) obtained by deleting the first row are

the vectors in Z
r−1
2 .

By elementary row operations, we write the matrix M as follows,

00000 1111

10001 0000

01001 1001

00101 0101

00011 0011


(We write M this way just for convenience, since it will be used in the main

proof later.)

Next we will consider complete caps in PG(4, 2) of size 10. We will show

that if they are not affine then they are constructed by doubling.

We need the following lemma first.

7.3.3 Lemma. Let S be a cap in PG(r − 1, 2) that is not affine. If r ≥ 4,

then there exists a hyperplane that contains more than half of the points of

S.

Proof. Consider the incidence structure of hyperplanes and pairs in S. Sup-

pose, for contradiction, that each hyperplane contains at most |S|/2 points

of S. Then it contains at most ( |S|
2

2

)
pairs of S. Since there are 2r − 1 hyperplanes, the total number of pairs of

S that are contained in the hyperplanes is at most

(2r − 1)
( |S|

2

2

)
. (7.1)
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On the other hand, each pair of |S| is contained in exactly 2r−2 − 1

hyperplanes. Hence the total number of pairs of S that are contained in the

hyperplanes is exactly

(2r−2 − 1)
(|S|

2

)
(7.2)

By Theorem 7.1.3, the size of S is at most 2r−1
3 for r ≥ 4. It can be

verified that the bound in (7.1) is strictly less than the bound in (7.2). A

contradiction

7.3.4 Theorem. Let S be a complete cap in PG(4, 2) that is not affine. If

|S| = 10 then it is constructed by doubling.

Proof. Let H be a hyperplane in PG(4, 2) such that |S∩H| is maximal. By

Lemma 7.3.3, it follows that |S∩H| ≥ 6. We know that if a cap in PG(3, 2)

is not affine then its size is at most five, and so S ∩ H is affine in H. In

other words, there is a subspace in PG(4, 2) of codimension two skew to S.

By Lemma 6.4.6, the cap S is constructed by doubling.

7.4 k-Blocks

Tutte [14] defined a k-block over GF (q) to be a subset S such that,

(a) the dimension of any space that contains S is at least k,

(b) every subspace of dimension k contains at least one point of S.

We present a version of Brouwer, Bruen, and Wehlau’s [3] proof that

there exist caps that block all subspaces of fixed codimension.

7.4.1 Theorem. For any k ≥ 0 and sufficiently large r there exists a cap

in PG(r − 1, 2) that is a k-block.

Proof. Let X be a graph with r vertices, and let A be the incidence matrix

of X. It is easy to see that X is triangle-free if and only if no three columns
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of A are linearly dependent over Z2. If X is triangle-free, we can view A

as a matrix whose columns are the coordinate vectors of a binary cap S in

PG(r − 1, 2). As we have showed before, if S is not a k-block, then X has

a linear 2k-colouring. It is well-known (due to Erdös) that there exists a

triangle-free graph with arbitrarily large chromatic number (there is a proof

in Tutte’s book ”Connectivity in Graphs”). Thus for some r (the number

of vertices of X), if the chromatic number of X is larger than 2k, then the

incidence matrix A gives us a cap in PG(r − 1, 2) that is a k-block.

7.5 Large Caps

Recall that a cap in PG(r − 1, 2) is large if its size is at least 2r−2 + 1. We

will prove that if r ≥ 4 then all large complete caps are either affine or skew

to a subspace of codimension two. We will switch back and forth between

coding theory and geometry.

The following lemma is proved by McWilliams and Sloane [10].

7.5.1 Lemma. Suppose that the cap matrix M is represented in the follow-

ing form

M =

 0 . . . 0
w︷ ︸︸ ︷

1 . . . 1

A B


where w is the smallest weight of a codeword in the code generated by M .

Let wA be the smallest weight of a codeword in the code generated by the

matrix A. Then we have 2wA ≥ w.

Proof. Let C be the code generated by the matrix M . Suppose that [u|v] ∈
C where wt(u) = wA. Since [u|v̄] ∈ C, we have

wA + wt(v) ≥ w,

wA + w − wt(v) ≥ w,

and, by adding the two equations, we get 2wA ≥ w.
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The following lemma is crucial in the proof of the main theorem that

all large caps are skew to a subspace of codimension two. We will sketch a

proof of this lemma by Davydov and Tombak. Some lengthy calculations

will be omitted.

7.5.2 Lemma. Let S be a complete cap in PG(r − 1, 2) of size at least

2r−2 + 2, and let H be a hyperplane such that |H ∩ S| is maximal. Suppose

that S ∩ H is contained in a complete cap C in H, and suppose that C is

obtained by an (r−5)-fold doubling of the unique cap of size five in PG(3, 2)

(the ovoid). Then S is skew to a subspace of codimension two in PG(r−1, 2).

Proof. Let M be the matrix of the complete cap S in PG(r − 1, 2) of size

n, where n ≥ 2r−2 + 2. Suppose that

n = 2r−2 + β,

where β ≥ 2. We can represent M in the following forms

M =

 n0︷ ︸︸ ︷
0 . . . 0

w︷ ︸︸ ︷
1 . . . 1

A B

 =


n︷ ︸︸ ︷

0 . . . 01 . . . 1

M1

M0

 =


0 . . . 0 1 . . . 1

A1 B1

A0 B0


where w is the minimum weight of a codeword in the row space of M .

Suppose that the hyperplane H is the kernel of the vector [10 . . . 0]. Let

|S ∩H| = n0. Then the matrix A is an (r − 1)× n0 matrix, and the matrix

B is an (r − 1) × w matrix.

(a) We will show that the row space of M contains a pair of codewords in

which zeros do not occur in identical positions. (This statement is equivalent

to that there exists a subspace of codimension two skew to S.) Let M0 be

the submatrix of M formed by its bottom four rows. We will show that the

pair of codewords satisfying the property is contained in the row space of

M0. The existence of such a pair depends on the type of the columns of M0,

but not on the number of columns of each type. Let A0 be the submatrix of

A formed by it bottom four rows, and let B0 be the submatrix of B formed
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by its bottom four rows. Then M0 = [A0|B0]. Since S ∩H is contained in a

complete cap in H that is obtained by doubling the ovoid in PG(3, 2), and

since the points in the ovoid are

(1000)T , (0100)T , (0010)T , (0001)T, (1111)T ,

it follows that the matrix A0 contains only the columns of the above types

(four vectors of weight one, and one vector of weight four). If B0 contains

only these columns, then there exists a pair of codewords satisfying the

property. Now suppose that B0 contains mi varieties of columns of weight

i, where i = 0, 2, 3. It can be verified that if m2 +m3 ≤ 2 and m0 = 0, there

exists a pair of codewords in which no zeros occur in identical positions. For

example, if m2 = 2 and the columns of B2 are of type (1100)T and (0011)T ,

then there exists a pair of codewords in which no zeros occur in identical

positions.

Thus, to prove the lemma, it suffices to show that

m2 + m3 ≤ 2, m0 = 0.

(b) The columns of the submatrix A are the coordinate vectors of the

points in S ∩ H, which is contained in a complete cap C in H. Let MC

be the matrix of C. Since we are given that C is obtained by successively

doubling of the ovoid in PG(3, 2), and so the matrix MC is of the following

form,

MC =



E E E E E

1 . . . 1 0 . . . 0 0 . . . 0 0 . . . 0 1 . . . 1

0 . . . 0 1 . . . 1 0 . . . 0 0 . . . 0 1 . . . 1

0 . . . 0 0 . . . 0 1 . . . 1 0 . . . 0 1 . . . 1

0 . . . 0 0 . . . 0 0 . . . 0 1 . . . 1 1 . . . 1


where the columns of E form the set of all vectors in Z

r−5
2 .

Since H ∩ S is contained in C, we can assume that the matrix A is of
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the following form,

A =



W1 W2 W3 W4 W5

1 . . . 1 0 . . . 0 0 . . . 0 0 . . . 0 1 . . . 1

0 . . . 0 1 . . . 1 0 . . . 0 0 . . . 0 1 . . . 1

0 . . . 0 0 . . . 0 1 . . . 1 0 . . . 0 1 . . . 1

0 . . . 0 0 . . . 0 0 . . . 0 1 . . . 1 1 . . . 1


where the columns of Wi form a set of 2r−5 − ∆i distinct vectors in Z

r−5
2 ,

for 1 ≤ i ≤ 5.

Let n0 = 5 · 2r−5 − ∆, and so∑
1≤i≤5

∆i = ∆.

Recall that A0 is the submatrix of A formed by its bottom four rows.

Then A0 contains a codeword of weight

2 · 2r−5 − max{∆i + ∆j},

where the maximum is over pairs of indices. (This is true because the sum

of any two rows of A0 is in the row space of A0.)

Let wA be the minimum weight of a codeword in the row space of A.

Then

wA ≤ 2 · 2r−5 − max{∆i + ∆j} ≤ 2r−4 − 2∆/5.

By Lemma 7.5.1, it follows that

n − (5 · 2r−5 − ∆) = w ≤ 2wA ≤ 2r−3 − 4∆/5.

Substituting n = 2r−2 + β we get

∆ ≤ 5(2r−5 − β)
9

. (7.3)

Let Ψ be the set of points in PG(r − 1, 2) \ H but not in S. Since

|S \H| = w, it follows that

|Ψ| = 2r−1 − w.
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Substituting w = n − (5 · 2r−5 − ∆) and n = 2r−2 + β we get

|Ψ| = 13 · 2r−5 − ∆ − β. (7.4)

We will show that if the property

m2 + m3 ≤ 2, m0 = 0

does not hold, then Equation (7.4) is violated.

(c) Since d = 3 ·2r−5 +β+∆ ≥ 3 ·2r−5 +2, there exists at least i columns

of B such that the top k − 5 entries are identical, where i ≥ 4. By adding

the top row of M we can assume that M contains the following submatrix

G =



00000

i≥4︷︸︸︷
1111

00000 0000

. . . . . .

00000 0000

10001

01001 K

00101

00011


Consider the submatrix of G formed by its top row and bottom four

rows, denote G0. Here G0 is the check matrix of some [n, n − 5, 4]-code C0,

where n ≥ 9. This code C0 cannot be the extended Hamming code, since

the all-ones vector is not in the row space of G0. By Theorem 7.1.3 (where

the bound is computed with r = 5), it follows that n = 9, 10. Following the

discussion in Section 7.3, the code C0 is either the unique [9, 9 − 5, 4]-code

of covering radius two, or the [10, 10 − 5, 4]-code of covering radius two, or

obtained from the [10, 10− 5, 4]-code by deleting one column from its check

matrix. We have characterized the first two cases in Section 7.3. In the

third case, we can show that all the codes obtained by deleting one column

from the check matrix are equivalent up to row operations.
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Thus, there are three choices for the submatrix K.

K1 =


0000

1001

0101

0011

 , K2 =


10001

01001

00101

00011

 , K3 =


1000

0100

0010

0001


(d) As a sketch of the proof, we will only discuss the first case. Similar

idea can be applied to the other two cases.

In the first case, where K = K1, the matrix M contains the following

submatrix

N =



0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0 1111
v︷ ︸︸ ︷

1 . . . 1

W1 W2 W3 W4 W5 0000 t1 . . . tv

1 . . . 1 0 . . . 0 0 . . . 0 0 . . . 0 1 . . . 1 0000

0 . . . 0 1 . . . 1 0 . . . 0 0 . . . 0 1 . . . 1 1001 f1 . . . fv

0 . . . 0 0 . . . 0 1 . . . 1 0 . . . 0 1 . . . 1 0101

0 . . . 0 0 . . . 0 0 . . . 0 1 . . . 1 1 . . . 1 0011



=



1111 1 . . . 1

0000 t1 . . . tv

A1 A2 A3 A4 A5 0000

1001 f1 . . . fv

0101

0011


Let Ψi denote the set of points in PG(r − 1, 2)\H but not in S, where

the top coordinate of is one and the bottom four coordinates constitute the

binary representation of the number i. Clearly,

|Ψ| =
15∑
i=0

|Ψi|.

Let Ai be the submatrix of M that corresponds to Wi. Define

Ai + x = {a + x : a ∈ Ai}.
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Note that the bottom four coordinates of the vectors in Ai + x are the

same. If these four coordinates represent the number j, we obtain

Ai + x ⊆ Ψj ,

and so

|Ai| ≤ |Ψj |.

(e) Suppose, for a contradiction, that the condition

m2 + m3 ≤ 2, m0 = 0

is not satisfied. Here we will only consider one case (all the other cases are

proved similarly). Suppose that m0 = 0 is violated.

In the matrix N , we can assume that v = 1 and f1 = 0. Consider the

sets

Ai + x,

where

x ∈ {0100T , 0010T , 0001T , 0111T , 0000T }.

The following table lists the numbers whose binary representations corre-

spond to the bottom four coordinates of the vectors in Ai + x.

A1 + x A2 + x A3 + x A4 + x A5 + x

8, 9, 10, 12, 15 0, 3, 4, 5, 6 0, 2, 3, 5, 6 0, 1, 3, 5, 6 8, 11, 13, 14, 15

If the number k appears in both column Ai + x and column Aj + x in

the above table, then we can use either one of the following two inequalities

|Ai| ≤ Ψk, |Aj | ≤ Ψk.
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Hence we have the following inequalities,

|A1| ≤ Ψi, i = 8, 9, 10, 12

|A2| ≤ Ψi, i = 0, 4

|A3| ≤ Ψi, i = 2, 3

|A4| ≤ Ψi, i = 1, 5, 6

|A5| ≤ Ψi, i = 11, 13, 14, 15

0 ≤ Ψ7.

Therefore, it follows that

|Ψ| =
15∑
i=1

Ψi

≥ 4|A1| + 2|A2| + 2|A3| + 3|A4| + 4|A5|
≥ 16 · 2r−5 − (4∆1 + 2∆2 + 2∆3 + 3∆4 + 4∆5) − 2r−5

≥ 15 · 2r−5 − 4∆

≥ 15 · 2r−5 − ∆ − 3(5 · 2r−5/9)

> 13 · 2r−5 − ∆ − β.

This is a contradiction. It follows that

m0 = 0.

Similarly, we can show that we cannot take

f1 ∈ {(0011)T , (0101)T , (0110)T }.

Now in the matrix N , if f1 = (1100)T , f2 = (1110)T , then m2 + m3 = 3.

Reasoning as before, we have a contradiction. Therefore, the relation is

verified in the first case.

For the other cases, we use similar methods, together with Inequality 7.3

and Equation 7.4 to get a contradiction.
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Therefore, the matrix M contains a pair of codewords in which no zeros

occur in identical positions, and so the cap S is skew to a subspace of

codimension two.

The main theorem of this section states that large caps are either affine,

or there exists a subspace of codimension two skew to it. The original proof

was due to Davydov and Tombak. We sketch the proof as follows.

7.5.3 Theorem. Let S be a complete cap in PG(r−1, 2) of size n ≥ 2r−2+2,

where r ≥ 4 If S is not affine, then there exists a subspace of codimension

two skew to it.

Proof. Let M be the cap matrix of S. Then M is an r × n matrix. We

prove the result by induction on r, the number of rows of M . We have the

following two cases.

(a) When r = 4, the only complete cap of size at least six is the affine space

AG(3, 2). So M is the check matrix of the extended Hamming code of

length 8 and 4 check symbols.

(b) Suppose that S is not affine, and r ≥ 5. We represent the matrix M as

the following form,

M =

 n0︷ ︸︸ ︷
0 . . . 0

w︷ ︸︸ ︷
1 . . . 1

A B


where the first row has the smallest weight w in the code generated by

M .

Since S is not affine, we have 2r−2 + 2 ≤ n < 2r−1. By Lemma 7.3.3,

we have n0 > n/2 ≥ 2r−3 + 1.

Let n0 = 2r−3+α where α ≥ 2. then the matrix A is the matrix of a cap

in PG(r − 2, 2), which is either complete or is contained in a complete

cap D. Let |D| = nD and then

n0 ≤ nD.
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By induction hypothesis, the cap D is skew to a space of codimension

two. By Lemma 6.4.6, the cap D is obtained by successive doubling.

Then we can assume that

nD = 2r−3 + 2r−3−g

where g = 0, 2, 3, . . . , r−3. Note that g �= 1, since the smallest complete

cap that is not affine is the ovoid in PG(3, 2) of size five.

• If g = 0 the cap D is affine, and we are done.

• if g = 2. Then the cap D is a (r − 5)-fold doubling of the ovoid in

PG(3, 2) of size 5, and so by Lemma 7.5.2, the cap S is skew to a

subspace of codimension two.

• If g ≥ 3. Then the cap D is a (r − 3 − g)-fold doubling of a cap in

PG(g + 1, 2) of size 2g + 1, denote this small cap E.

Represent the matrix of E as the following form,

ME =

 0 . . . 0

wE︷ ︸︸ ︷
1 . . . 1

AE BE


where wE is the smallest weight of a codeword in the code generated

by ME . By Lemma 7.3.1, we have wE ≤ 2g−1 − 1. Thus

wD ≤ 2r−3−g(2g−1 − 1) = 2r−4 − 2r−3−g.

By Lemma 7.5.1, it follows that

w ≤ 2 · wD ≤ 2r−3 − 2r−2−g.

Thus

n0 = n − w ≥ 2r−3 + 2r−2−g + 2 > nD.

A contradiction. Hence the case g ≥ 3 is ruled out.

It follows that there exists a subspace of codimension two skew to S, and

by Lemma 6.4.6, the cap S is constructed by doubling.
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7.5.4 Corollary. Let S be a complete cap in PG(r−1, 2) that is not affine.

If |S| ≥ 2r−2 + 2 then |S| = 2r−2 + 2r−2−g where 2 ≤ g ≤ r − 2.

Proof. This result follows from the fact that the smallest complete cap that

is not affine is the unique cap in PG(3, 2) of size five.

The following corollary is due to Bruen and Wehlau.

7.5.5 Theorem. Let S be a complete cap in PG(r − 1, 2) of size 2r−2 + 1.

Then S is skew to a subspace of codimension two.

Proof. Embed S in a hyperplane H in PG(r, 2). Let S′ be a cap in PG(r, 2)

obtained by doubling the cap S. Then |S′| = 2r−1 + 2. By Theorem 7.5.3,

there is a subspace of codimension two skew to S′, denote this subspace

H2. Then the subspace H2 ∩ H is either a hyperplane in H (when H2 is a

subspace of H), or is a subspace of codimension two in H (when H2 is not

a subspace of H).
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