
Consensus Fold Recognition by Predicted Model

Quality

by

Libo Yu

A thesis

presented to the University of Waterloo

in fulfilment of the

thesis requirement for the degree of

Master of Mathematics

in

Computer Science

Waterloo, Ontario, Canada, 2004

c© Libo Yu 2004

I hereby declare that I am the sole author of this thesis. This is a true copy of

the thesis, including any required final revision, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Protein structure prediction has been a fundamental challenge in the biological field.

In this post-genomic era, the need for automated protein structure prediction has

never been more evident and researchers are now focusing on developing computa-

tional techniques to predict three-dimensional structures with high throughput.

Consensus-based protein structure prediction methods are state-of-the-art in

automatic protein structure prediction. A consensus-based server combines the

outputs of several individual servers and tends to generate better predictions than

any individual server. Consensus-based methods have proved to be successful in

recent CASP (Critical Assessment of Structure Prediction).

In this thesis, a Support Vector Machine (SVM) regression-based consensus

method is proposed for protein fold recognition, a key component for high through-

put protein structure prediction and protein function annotation. The SVM first

extracts the features of a structural model by comparing the model to the other

models produced by all the individual servers. Then, the SVM predicts the quality

of each model. The experimental results from several LiveBench data sets confirm

that our proposed consensus method, SVM regression, consistently performs better

than any individual server. Based on this method, we developed a meta server, the

Alignment by Consensus Estimation (ACE).

iii

Acknowledgments

I wish to thank my supervisor, Dr. Ming Li, for his guidance, encouragement,

patience, and financial support, which has been a tremendous help for me over the

past two years. I also want to thank my cosupervisor, Dr. Jinbo Xu, for the many

hours of discussions we had in which he showed his enthusiasm, and knowledge of

science. I would also like to thank the readers of my thesis, Dr. Forbes Burkowski

and Dr. Brendan J. McConkey, for their time and constructive advice. Finally,

special thanks go to my parents and brother for their long-distance support.

iv

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Challenge . 3

1.3 Goals . 4

1.4 Organization . 5

2 Background 6

2.1 Introduction to Protein Structure 7

2.2 Protein Structure Prediction . 13

2.3 Ab Initio Folding . 14

2.4 Comparative Modeling . 15

2.5 Fold Recognition . 16

2.6 Consensus . 17

2.7 Support Vector Machine Regression (SVMR) 18

v

3 Survey of Consensus Prediction 24

3.1 Introduction . 24

3.2 Selector-Type Meta Servers . 26

3.3 Assembler-Type Meta Servers . 28

3.4 Difference between Consensus Server and Individual Servers 30

4 New Meta Server : Alignment by Consensus Estimation (ACE) 31

4.1 Feature Extraction . 32

4.2 ACE Implementation . 37

5 Experimental Results and Conclusions 41

5.1 LiveBench Tests . 41

5.2 Experiment Setup . 42

5.3 Sensitivity . 44

5.4 Specificity . 48

5.5 CASP6 Evaluation . 50

5.6 Conclusion and Future Work . 52

5.7 Acknowledgement . 53

vi

List of Figures

2.1 Schematic diagram of an amino acid 7

2.2 Peptide bond in a polypeptide chain 8

2.3 Backbone of one α helix in the α2β2-hemoglobin, with two different

representations, drawn by RasMol 9

2.4 Backbone of antiparallel β sheet of ribonuclease with two different

representations, drawn by RasMol 10

2.5 Backbone of three-strand parallel β sheet of flavodoxin with two

different representations, drawn by RasMol 11

2.6 3D structure of Indole-3-Glycerol Phosphate Synthase, drawn by

RasMol. 12

2.7 Quaternary structure of Hemoglobin Rothschild, drawn by RasMol. 12

4.1 Top model reported by RAPTOR for target T0196 in CASP6 . . . 38

4.2 How ACE makes a prediction. 40

vii

List of Tables

5.1 MaxSub scores of ACE with three component servers used. The

number of targets is shown under the name of each data set. One

data set is used for training and the other three for testing. The

average testing result for each data set is calculated and summed. . 45

5.2 Sensitivity (MaxSub score) comparison with three component servers

and other meta servers. The results of 3D-Jury are derived from the

same three component servers: FFAS03, 3D-PSSM and FUGUE2.

The results of all the other servers are taken from LiveBench. Pcon’s

results are only available for LiveBench 5-7. 46

5.3 MaxSub scores of ACE obtained with six component servers. 47

5.4 Sensitivity comparison of ACE, six component servers, and the meta

servers: Pcon and 3D-Jury. The results of 3D-Jury are derived from

the same six component servers. The results of all the other servers

are taken from LiveBench. 48

5.5 Specificity of ACE, obtained with three component servers. 49

5.6 Specificity comparison between ACE and its three component servers

and other meta servers. 50

viii

5.7 Specificity of the ACE, obtained with six component servers. 51

5.8 Specificity comparison between the ACE and its six component servers

and other meta servers. 52

ix

Chapter 1

Introduction

1.1 Motivation

Proteins form our bodies. They make up cells and organs. Proteins also play an

important role in biological processes. They perform a big variety of tasks: from

breaking down food to fighting off diseases. Biologists are exploring protein function

and how they govern the activities of body cells. Based on this, researchers can

synthesize useful proteins such as enzymes and new drugs.

It is known that the significant feature of a protein is its ability to fold into

the right shape for carrying out a particular function. In this sense, identifying

a protein’s shape, or structure, is pivotal for the understanding of the protein’s

biological function and its role in health and diseases. Since the 1950s, determin-

ing a protein’s structure has been a fundamental challenge in the biological field

[1]. Experimental methods have been developed to solve protein structures, such

as X-ray crystallography or nuclear magnetic resonance spectroscopy (NMR). Both

methods have drawbacks. In some cases, it is impossible to crystallize a protein,

1

and NMR can be applied to small and medium-sized molecules only. In addition,

both methods are costly and time-consuming, since it often takes months to ex-

perimentally determine a single structure. Consequently, the number of available

protein sequences has increased much faster than the number of solved structures

due to advances in the molecular biology field in the past few years. In addition,

the demands from biologists to solve protein structures with high throughput have

increased.

People will fully utilize structural genomics only if automated, reliable tools are

available to model proteins’ structures from known structures. Although researchers

have been working on protein structure prediction for decades, limited progress

has been made in this area. Clearly, the human predictors’ expertise must be

reproduced and automated. Therefore, researchers have begun to utilize computers

to help predict protein structures. The challenge lies in understanding the complex

relationship between structures and sequences [2].

Recently, with the development of computational science and availability of

high-performance computing facilities, various computational methods have been

proposed to predict protein structures, based on known protein structures. Com-

pared with experimental techniques, computational approaches are relatively cheap

and efficient.

In recent years, many automatic protein structure prediction servers that use

different methodologies have been set up [3, 4]. These automatic servers can be

divided into four categories according to their prediction methods: ab initio, ho-

mology modeling, fold recognition, and consensus. Within each category, imple-

mentations differ from server to server. For instance, for fold recognition servers, a

scoring function is usually required to measure the the alignment accuracy between

a target sequence and a template. There are different ways to design the scor-

2

ing function, leading to significant differences in performance. Even for the same

scoring function, different parameter values often result in different templates and

alignments[5]. Each method has pros and cons. In experiments, no single server

can generate the best predictions for all the targets, and the best predictions are

often made by different servers [4]. So, a practical question is whether we can

build a server by combining individual servers to generate better outputs? In other

words, given a set of individual servers, if we can always somehow produce a better

prediction from the outputs of the individual servers, we can build a more power-

ful server and the individual servers serve as component servers. This is the idea

behind consensus servers, which are also called meta servers.

1.2 Challenge

The outputs of component servers are produced by using different methodologies or

scoring functions. Therefore, it is not practical to develop a more effective scoring

function to identify the model with the best possible quality, which can otherwise be

implemented in an individual server. Meta servers should make use of the fact that

their inputs are the outputs of their component servers. Improvements are antic-

ipated by using different consensus algorithms. The simplest consensus algorithm

is majority voting which is based on the assumption that if most of the servers

make the same prediction for a target it is likely that the consensus prediction

has the best structural quality. Our objective is to extract more information from

input models and then apply advanced consensus algorithms for a better predic-

tion. One choice is to use machine learning techniques which have been successfully

applied in many bioinformatics applications. For example, Neural Networks (NN)

3

and Support Vector Machines (SVMs) have been used in fold recognition to select

templates. To achieve the best performance with machine learning methods, we

must extract effective features or patterns, a challenging task.

In addition, we can surmise that if we use more component servers, possibly

we may have better candidate models in the collected inputs. However, it becomes

challenging to identify the best model from the larger candidate set. Consequently,

the number of component servers is critical for a meta server. Also, if all the individ-

ual servers have poor performance, we cannot expect any significant improvement

from the consensus output. The performance of meta servers is highly dependent on

the number of component servers and the performance of each component server.

Some meta servers have been developed and assessed by the LiveBench tests [4, 6]

and CAFASPs [3, 7]. It turns out that meta servers perform exceptionally well,

surpassing the best individual servers, especially in specificity. In spite of that, the

consensus algorithms used by these servers are quite simple and straightforward.

Also, more advanced machine learning techniques can be applied to further improve

meta servers’ performance.

1.3 Goals

In light of the previous discussion, our goal is to extract effective features from

input models, and apply advanced machine learning techniques to predict model

quality, from which consensus outputs are selected. The consensus outputs should

be superior to the outputs of any component server, in terms of sensitivity and

specificity. In addition, the performance of a meta server should be more robust

than that of its component servers.

4

1.4 Organization

The rest of this thesis is organized as follows. Chapter 2 is a brief introduction

to protein structure and protein structure prediction methods, including ab initio,

comparative modeling, and fold recognition. The basis of the proposed consen-

sus algorithm, Support Vector Machine regression, is also introduced in detail in

Chapter 2. In chapter 3, various consensus algorithms and different types of meta

servers are investigated and compared. Chapter 4 presents our new meta server,

the Alignment by Consensus Estimation (ACE). The components of the proposed

meta server are addressed in detail, including feature extraction and implementa-

tion details. The experimental results obtained with the LiveBench data and some

conclusions are reported in Chapter 5.

5

Chapter 2

Background

A protein is a chain of amino acids, but it is not the linear molecule that the amino

acid string suggests. Each protein folds into a unique three-dimensional struc-

ture. The folded structure can serve as modules for building up large assemblies

such as virus particles or muscle fibres. In addition, protein structure determines

protein function, because protein molecules with closely matched shapes are more

likely to associate with each other. For example, an enzyme is a protein that cat-

alyzes biochemical reactions. The function of an enzyme relies on the structure of

its active site, whose shape allows the enzyme to associate with other molecules.

The active site also has some chemical properties which help form bonds with

other molecules. Many diseases, including Alzheimer’s and Bovine Spongiform En-

cephalopathy (madcow disease), are now known to result from the proteins that

have folded into an incorrect shape [8].

Protein folding involves the formation of local structural motifs such as he-

lices and sheets (secondary structures), and the arrangement of these individual

6

Cα

R

N

H

H

H

C’

O

OH

Figure 2.1: Schematic diagram of an amino acid

structures into an overall three-dimensional configuration (tertiary structure). It is

believed that genomes encode the precise, three-dimensional shapes of thousands

of proteins by using linear sequences. The underlying principle is still not fully

understood. In this chapter, the basic units of protein structures will be examined.

2.1 Introduction to Protein Structure

An amino acid is the foundation on which a protein is built. An amino acid includes

one central carbon atom (Cα), to which are bounded one amino group (NH2), a

carboxyl group (COOH), a hydrogen atom (H), and a side chain (R), as shown

in Figure 2.1. What distinguishes one amino acid from another is the side chain.

There are 20 different side chains that are commonly seen in proteins, resulting in

20 standard amino acids. Two amino acids can be joined by the formation of a

peptide bond when the carboxyl group (COOH) of one amino acid condenses with

the amino group of another amino acid. One water molecule is eliminated during

the process. The formation of successive peptide bonds creates a main chain or

backbone, to which various side chains are attached. Peptide bonds are depicted

7

Cα

R

H

N C’

H O

N

H

Cα

H

C’

O

R

Figure 2.2: Peptide bond in a polypeptide chain

in Figure 2.2.

Protein structure can be broken down into four levels: primary structure, sec-

ondary structure, tertiary structure, and quaternary structure. An amino acid

sequence is called the primary structure. The different regions of the amino acid

sequence form secondary structures such as alpha helices or beta sheets. A tertiary

structure is formed by folding these structural units into a compact globular unit.

For a multi-chain protein, the chains are arranged in a quaternary structure.

One of the most important discoveries found about protein structure has been

that the interior of a protein is hydrophobic. By packing hydrophobic side chains

into the inside of a protein, it has a hydrophobic core and a hydrophilic surface.

However, there is a problem when a protein chain folds into a hydrophobic core.

To pack all the side chains into the core, burying the main chain under the sur-

face cannot be avoided. The main chain is hydrophilic and has one hydrogen bond

doner NH and one hydrogen bond acceptor C ′ = O for each peptide. In a hy-

drophobic environment, the main chain peptide polarity must be neutralized by

forming hydrogen bonds. This is achieved by arranging the main chain into regu-

lar secondary structures under the surface of the protein molecule. There are two

primary types of secondary structures: alpha helices and beta sheets which are

illustrated in Figure 2.3 and 2.4. Both have hydrogen bonds, connecting the NH

8

Figure 2.3: Backbone of one α helix in the α2β2-hemoglobin, with two different

representations, drawn by RasMol

and COOH groups on the main chain. Secondary structures formed in this way

are stable and comparatively inflexible.

An α helix is a classic element of a protein structure, and the most abundant

type of secondary structures. It was first discovered in 1951 by Linus Pauling at

the California Institute of Technology [9]. An α helix is characterized by the spiral

conformation of a polypeptide chain. Within an α helix, the main-chain N and

O atoms are connected by hydrogen bonds. An α helix has 3.6 residues per turn,

which corresponds to 5.4Ȧ with hydrogen bonds between the C ′ = O group of

residue n and the NH group of n+ 4. The most common place to find an α helix

is along the surface of a protein molecule, with one side of the helix contacting the

solution and the other side contacting the hydrophobic core of the protein.

In contrast to an α helix, which is formed by one continuous segment of a

polypeptide chain, a β sheet is composed of several nonadjacent regions of a polypep-

tide chain as shown in Figure 2.4 and Figure 2.5. These regions are usually called

β strands, which are aligned adjacent to each other. It is the hydrogen bonds that

9

Figure 2.4: Backbone of antiparallel β sheet of ribonuclease with two different

representations, drawn by RasMol

connect the C ′ = O groups from one β strand and the NH groups from another β

strand. Depending on the relative directions of two interacting beta strands, beta

sheets are found in two forms: Antiparallel or Parallel.

The secondary structures in a protein structure compose the hydrophobic core

of the molecule and are connected by loop regions of various lengths and shapes.

The loop regions are at the surface of the protein molecule and exposed to the

solvent. They can form hydrogen bonds with water molecules.

A tertiary structure is the overall three-dimensional structure of a polypeptide

chain, including the overall arrangement of secondary structures and loops in a

protein structure. A major driving force in determining the tertiary structures of

10

Figure 2.5: Backbone of three-strand parallel β sheet of flavodoxin with two differ-

ent representations, drawn by RasMol

globular proteins is the hydrophobic effect. A polypeptide chain folds so that the

side chains of the nonpolar amino acids are buried within the structure and the

side chains of the polar residues are exposed on the outer surface. An example of

a protein tertiary structure is represented in Figure 2.6.

The fundamental unit of a tertiary structure is a domain which is defined to be

a polypeptide chain or part of a polypeptide chain that folds independently into a

tertiary structure. Domains are also units of function. The different domains of a

protein have different functions and one protein can have one or several domains.

Some proteins have multiple chains and form a quaternary structure, which

consists of several identical polypeptide chains which function independently or

cooperatively. An example of a quaternary structure is given in Figure 2.7.

11

Figure 2.6: 3D structure of Indole-3-Glycerol Phosphate Synthase, drawn by Ras-

Mol.

Figure 2.7: Quaternary structure of Hemoglobin Rothschild, drawn by RasMol.

12

2.2 Protein Structure Prediction

One of the challenges of the post-genomic era is to computationally predict the

three-dimensional structures of proteins encoded in genome sequences. As a result

of various sequencing and structural genomic projects, the full genomes for more

than 100 organisms are known; for more than 60 of these, the data are publicly

available and contribute about 250,000 protein sequences. The number of entirely

sequenced genomes is expected to continue growing exponentially for several years.

This explosion of sequence information has widened the gap between the number of

the protein sequences deposited in public databases, e.g. Protein Data Bank [10],

and the experimental characterization of the corresponding proteins.

For protein structure prediction, computational techniques and biological knowl-

edge are applied to predict the tertiary structure of a protein, given its amino acid

sequence. To achieve this, secondary structures and residue-residue contacts must

be predicted first. Structural prediction is expected to be fast and accurate and

to provide some insight into protein function and also facilitate the annotation of

open reading frames (ORFs) or genes with unknown functions.

In recent years, automatic structure prediction has significantly progressed. A

large number of fully automated structural prediction servers have been developed,

and are available to the research community. The servers cover various prospectives

of structural prediction. To promote the research in this area, some community-

wide experiments have been carried out. The biennial Critical Assessment of Struc-

ture Prediction (CASP) provides a great opportunity for establishing the current

state of the art in protein structure prediction, reflecting the progress made during

the intervening two years and indicating where future efforts should be made. From

1994 to 2004, six CASP experiments have been completed [11, 12, 13]. In the Crit-

13

ical Assessment of Fully Automated Structure Prediction (CAFASP) experiments,

the performance of fully automated servers for structure prediction is assessed by

blind tests. Since the first CAFASP at CASP3, more and more fully automatic web

servers have been developed, and great progress has been made in automatic pro-

tein structure prediction. In CAFASP3 (2002), the number of participants almost

doubled compared to the number in CAFASP2 [3, 7].

The methodologies used in automatic servers can be divided into three general

strategies: ab initio, comparative modeling, and fold recognition. In the following

sections, we will go though the pros and cons of these three categories.

2.3 Ab Initio Folding

Ab initio folding methods build the 3D structure of a protein from its sequence

without using any templates. Ab initio protein folding has traditionally been an

area of purely academic interest with relatively slow progress.

Generally, it is assumed that a protein folds to a global minimum-energy confor-

mation. In order to find such a conformation, researchers simulate protein folding

by doing standard molecular dynamic simulation with a physically reasonable po-

tential function. This approach has a long history and is still popular but one

obvious problem is that it is computationally expensive. In addition, due to the

inadequacies of current potential functions, the likehood that a native state will be

found at a global minimum-energy conformation is significantly reduced [14].

Another approach to do ab initio folding is direct conformation space search.

For this approach, the successful prediction of the native structure of a protein

requires both an efficient sampling of the conformational space, and an energy

14

function that recognizes the native conformation as the lowest in energy. However,

exhaustive conformation space search is still formidable due to current computing

speeds. To deal with that, researchers have attempted to reduce the search space

by simplifying models or restraining the conformation space.

It has been observed that ab initio folding cannot perform consistently for all

classes of proteins. In fact, ab initio folding totally fails for proteins longer than

150 residues [14]. In spite of that, for short proteins that do not have structural

templates and significant homology, ab initio folding is a valid solution.

2.4 Comparative Modeling

To date, the most successful methods for protein structure prediction are homology-

based comparative modeling and fold recognition. The former exploits the evolu-

tionary relationships between proteins and produces structural models of unknown

proteins by using the known structures of their homologues as templates. The

underlying premise for comparative modeling is that if a set of proteins are ho-

mologous, then their three-dimensional structures are more conserved than their

primary sequences.

Based on this, given a target sequence, first, its homologous proteins (templates)

are found from a structure database by doing pair-wise sequence alignments. Some

computer tools such as PSI-BLAST can be used. Then, a multiple sequence align-

ment is built from the target sequence and the templates. The most conserved

segments in the multiple sequence alignment are identified. After the conserved

regions of the target are modeled, the structurally divergent regions are modeled.

Next, the loop conformations are assigned and then, the structural model is refined.

15

The quality of the generated models depends on the extent of the structural

conservation between the target and the templates, the servers’ ability to identify

homologous templates, the quality of the sequence-structure alignments and the

ability to predict the conformation of loop regions and nonconserved regions. Com-

parative modeling is the most reliable structure prediction method on the basis of

known three-dimensional structures. The CASP evaluation results show that the

models, obtained with comparative modeling, are usually sufficiently accurate for

designing experiments, because the biologically important regions of a structure

are typically more accurately modeled than the rest of the structure. In spite of

that, when there is no significant homology or only distant homology found for

a given protein sequence, comparative modeling fails or gives partially accurate

3D structural models [15]. FFAS03 [16], SUPERF PP [17], 3D-JIGSAW [18], and

PDB-BLAST [19] are good examples of comparative modeling servers.

2.5 Fold Recognition

Fold recognition methods are for those targets which do not have significant homol-

ogy with any known structure, but have the same fold as some known structures.

Unlike sequence-only comparisons, these methods take advantage of the extra in-

formation that is available from 3D structure information. Protein threading is

based on two observations. One is that the number of different folds in nature is

fairly small, and the other is that, according to the statistics of the PDB, 90% of

the new structures, submitted to the PDB from 2001 to 2003, have structural folds

that are similar to the ones in the PDB [10]. Thus, given a protein sequence, it is

likely that a fold can be found from which to build its three-dimensional structure.

16

By using the statistical knowledge of the relationship between structures and

sequences, fold recognition methods predict the 3D structure of a given protein

sequence. For that, a structure template database must be constructed first. Also,

a scoring function is required to measure the fitness of a sequence and a structure

template in an alignment, based on the known relationships between sequences

and structures. After the target sequence is aligned to each template structure

in the structure template database by optimizing the scoring function, the best-fit

template is identified. The structural model of the target sequence is then built

from the best alignment of the target sequence with the selected template.

The completeness of the template database used influences the performance of

fold recognition greatly. In addition, when a target belongs to a new fold, fold

recognition methods cannot produce a reliable prediction [6]. Some well developed

fold recognition servers are: RAPTOR [20, 21], FFAS04, 3D-PSSM [18], FUGUE3

[22], PROSPECT [23], Sam-T02 [24], among others.

2.6 Consensus

From the analysis of the proceeding methods, it can be seen that each of three

categories of methods has its advantages and disadvantages. No single method

is consistently effective for all the classes of targets, as has also been observed in

experiments [7]. It is noteworthy that these methods are complementary to each

other, since different methods are effective for different types of targets. If different

methodologies are combined by using consensus algorithms, we can build a meta

server with a more reliable prediction and more stable performance.

17

2.7 Support Vector Machine Regression (SVMR)

Approximating a real-valued function from a finite set of samples is the linchpin

in many areas. Commonly used techniques for such tasks are linear regression,

or logistic regression, but they are often not sufficient to approximate complex

functions with high nonlinearity. In such cases, nonlinear regression methods should

be adopted to improve approximation accuracy. For our application, we use Support

Vector Machine Regression (SVMR) to approximate the functional relationship

between the features of a model and its structural quality.

Developed by Vapnik et al. in the 1970s, the SVM is a set of supervised learning

methods, applicable to both classification and regression [25]. First, let us examine

SVM classifiers. For a training task and a set of training data, the machine learner

attempts to achieve the best generalization performance. A machine learner that is

over-trained with a training set remembers too much detail from the training set and

a machine that is not well-trained cannot capture enough features of the training

set. Neither generalizes well. A machine learner must seek a balance between the

accuracy attained on that particular set of training data and the capacity of the

machine learner, that is, the ability of the machine to learn a training set without

errors. The concept has been mathematically formulated into SVM models.

Let us look at a simple case of SVM classifiers: a linear SVM is trained on

separable data. Given training data {xi, yi}, i = 1, · · · , n, yi ∈ {−1, 1}, xi ∈ Rm,

suppose there is a hyperplane that separates the positive from negative examples.

The points x on the hyperplane satisfies w · x + b = 0, where w is normal to

the hyperplane. |b|/‖w‖ is the perpendicular distance from the hyperplane to the

origin, and ‖w‖ is the Euclidean norm of w. Let d+(d−) be the shortest distance

from the separating hyperplane to the closest positive (negative) example. Define

18

the ”margin” of the hyperplane to be d+ + d−. For the linear separable case,

the SVM algorithm simply looks for a separating hyperplane with the maximum

margin. The goal of maximizing the margin is motivated by attempts to bound

generalization error. The analysis of the boundaries of the constraints shows that

when ‖w‖ is minimized, the margin is maximized. This can be formulated into an

optimization problem as follows.

Minimize 1
2
‖w‖2

Subject to







w · xi + b ≥ +1 for yi = +1

w · xi + b ≤ −1 for yi = −1

(2.1)

The above formulae can be extended to accommodate nonseparable cases and

they can also be transformed into a nonlinear form. SVM classifiers turn out to have

excellent generalization performance and are successfully applied in many areas

such as pattern recognition and information retrieval [26]. For fold recognition,

SVM classifiers are first used by RAPTOR, a state-of-the-art fold recognition server

developed by Jinbo Xu et al. [20, 21]. After a target sequence has been threaded to

each structure template in RAPTOR’s template database, features are extracted

from each sequence-structure alignment and an SVM classifier is trained to select

the best template. It is shown that the SVM method has great advantage over the

conventional Z-score method. RAPTOR participated in CAFASP3 and was ranked

1st among the individual servers [7].

When the SVM is applied in regression and time series prediction applications,

it also exhibits excellent performance [27]. The model, produced by the Support

Vector Machine classification, depends on only a subset of training data, because

the cost function for building the model ignores training points that lie within the

margin. Similarly, a model produced by the Support Vector Machine Regression

(depends on only a subset of training data, because the cost function for building

19

the model ignores any training data that is close (within a threshold ε) to the

model prediction. We will start with the linear SVM regression which is simple and

straightforward.

Linear SVM Regression For the training data {xi, yi} , i = 1, · · · , n, in our

application, xi ∈ Rm is a model feature vector and yi ∈ R1 is a model quality score.

In ε-SV regression, our goal is to look for a function f(x) = w · x + b that has, at

most, ε deviation from the actual obtained yi for all the training data points. Here,

w is a vector in Rm and (·) represents inner product. For the SVM regression, w

plays a role similar to that in the SVM classification. By minimizing ‖w‖, the width

of the tube around the output curve of the approximating function is maximized.

Mathematically, this is formulated as a convex optimization problem [26]:

Minimize 1
2
‖w‖2

Subject to







yi − w · xi − b ≤ ε

w · xi + b− yi ≤ ε

(2.2)

The assumption in (2.2) is that there exists such a function f that approximates

all the pairs (xi, yi) with ε precision; that is, the convex optimization problem is

feasible. Sometimes, however, this can not be guaranteed. Therefore, slack variables

ξi, ξ
∗
i are introduced to cope with, otherwise, infeasible solutions of the optimization

problem (2.2). Thus,

Minimize 1
2
‖w‖2 + C

∑l

i=1 (ξi + ξ∗i)

Subject to



















yi − w · xi − b ≤ ε+ ξi

w · xi + b− yi ≤ ε+ ξ∗i

ξi, ξ
∗
i ≥ 0

(2.3)

where C penalizes the amount to which deviations that are larger than ε are toler-

ated.

20

By introducing Lagrange multipliers λi and λ∗i (i = 1, · · · , l), we can construct

a Lagrange function from the objective function and the corresponding constraints,

L = ‖w‖2 + C
l

∑

i=1

(ξi + ξ∗i)−
l

∑

i=1

λi(ε+ ξi − yi + w · xi + b)

−

l
∑

i=1

λ∗i (ε+ ξ∗i + yi − w · xi − b)−
l

∑

i=1

(ηiξi + η∗i ξ
∗
i) (2.4)

where λi, λ
∗
i , ηi, η

∗
i ≥ 0.

According to the Karush-Kuhn-Tucker (KKT) condition, a dual formulation

(2.5) of the original optimization problem, (2.2), can be obtained from the Lagrange

function,

Maximize
LD ≡ −1

2

∑l

i,j=1 (λi − λ∗i)(λj − λ∗j)(xi · xj)

−ε
∑l

i=1 (λi + λ∗i) +
∑l

i=1 yi(λi − λ∗i)

Subject to







∑l

i=1 (λi − λ∗i) = 0

λi, λ
∗
i ∈ [0, C]

(2.5)

where C penalizes the amount to which deviations that are larger than ε are toler-

ated.

By solving (2.5), we have:

w =
l

∑

i=1

(λi − λ∗i)xi

f(x) =
l

∑

i=1

(λi − λ∗i)(xi · x) + b (2.6)

In an optimal solution, the training data for which λi > 0 are called support

vectors (SVs). Note that w is a linear combination of the SVs xi. In a sense, the

complexity of a function’s representation by SVs is independent of the dimension-

ality of the input space Rm, and depends only on the number of the SVs. Also, the

21

SVs appear only in the form of a dot product with x in the trained SVM machine.

When calculating f(x), we need not compute w explicitly. The dual formulation

provides the key for extending the SVMR to nonlinear functions.

Nonlinear SVM Regression To make an SVMR nonlinear, a straightforward

way is to map xi to a higher dimension space and then apply the standard SVMR

algorithm. Now, the SVMR model has the following form:

Maximize
LD ≡ −1

2

∑l

i,j=1 (λi − λ∗i)(λj − λ∗j)(φ(xi) · φ(xj))

−ε
∑l

i=1 (λi + λ∗i) +
∑l

i=1 yi(λi − λ∗i)

Subject to







∑l

i=1 (λi − λ∗i) = 0

λi, λ
∗
i ∈ [0, C]

(2.7)

The drawback is that the SVM in this form can easily become computationally

prohibitive when the dimension is high. A less expensive way to achieve this is to

make an implicit mapping via a kernel function. Instead of defining φ(·) explicitly,

an implicit mapping is determined by defining κ(x, xi) = φ(x) · φ(xi), directly,

without knowing φ(·) [26]. κ(x, xi) is called the kernel function, and allows us to

rewrite the SVMR model as follows:

Maximize
LD ≡ −1

2

∑l

i,j=1 (λi − λ∗i)(λj − λ∗j)κ(xi, xj)

−ε
∑l

i=1 (λi + λ∗i) +
∑l

i=1 yi(λi − λ∗i)

Subject to







∑l

i=1 (λi − λ∗i) = 0

λi, λ
∗
i ∈ [0, C]

(2.8)

The expansion of the function f(·) in this case is:

f(x) =
l

∑

i=1

(λi − λ∗i)κ(x, xi) + b (2.9)

There is no universally-accepted rule to select κ. It is problem-specific. Typically, a

kernel function must satisfy the Mercer’s conditions to guarantee that the quadratic

22

program is convex [26]:

(1) κ(x, x) = 0

(2) κ(x, y) = κ(y, x) = 0

(3) κ(x, y) + κ(y, z) ≥ κ(x, z)

Some commonly seen kernel functions are linear kernels, polynomial kernels,

Radial Basis Function (RBF) kernels and multi-layer perception kernels [26]:

κ(x1, x2) = cx1x2 + c0

κ(x1, x2) = (x1x2 + 1)d

κ(x1, x2) = exp(−‖x1 − x2‖
2/2σ2)

κ(x1, x2) = tanh(ax1x2 + c)

(2.10)

23

Chapter 3

Survey of Consensus Prediction

Before consensus was applied to protein tertiary structure prediction, it had already

been used in other areas, including multiple classifier aggregation, the optimization

of database queries, and data fusion. Not surprisingly, consensus has also been used

extensively in bioinformatics applications, such as genome assembly and protein

secondary structure prodiction.

3.1 Introduction

In the CAFASP experiments, it has been observed that for different targets, the

best predictions are often made by different servers. No single server can reliably

generate the best models for all the targets [3, 7]. In CAFASP, each server submits

its top ten models and only the top model is taken into consideration for the perfor-

mance evaluation. Often, the best quality model is not the top one in the submitted

24

ranking list. Even for the same fold recognition server, setting different values for

parameters in the scoring function can lead to different templates and models [5].

Consequently a practical question is whether different methods or scoring functions

can be combined for better predictions.

Consensus fold recognition was first applied in some individual servers rather

than meta servers. INBGU [28] utilized five different scoring functions to scan its

fold library, respectively, which in fact was composed of five component servers.

By combining the scores and ranks, obtained with different scoring functions for

the same fold in the library, a more sensitive score was obtained for each fold and

the best possible fold was identified. 3D-PSSM [18] threaded a query sequence to

each entry in its template database three times by using a different position specific

matrix each time. Only the maximum of three obtained scores was used as the final

score. When INBGU and 3D-PSSM were evaluated in CAFASP3, they performed

very well [7]. However, only the simplest consensus methods such as averaging or

selecting the maximum were employed by these servers.

The idea of combining the outputs of individual servers was first successfully

applied in CASP4 by a human group, the CAFASP-CONSENSUS. It can be viewed

as a human meta server. The four human experts derived predictions by inspect-

ing and analyzing the outputs from the automated fold recognition servers running

in the parallel CAFASP2. It turned out that the CAFASP-CONSENSUS outper-

formed all the individual servers in the CAFASP2 and ranked seventh among the

human predictors in CASP4 [12]. This, however, requires a great deal of human

intervention: the human predictors must gather the input models from the indi-

vidual servers, and use software to evaluate the models, select the best model from

the collected inputs, improve the model manually, or determine whether or not

correct predictions can be obtained. One strategy is to apply a number of inde-

25

pendent servers to arrive at a prediction from the top ranking predictions. It is

desirable to automate these procedures and relieve human predictors from the te-

dious tasks. This led to the development of the first automated consensus server,

Pcon [29], which turned out to perform better than any individual server, especially

in specificity [6].

Meta servers can be divided into two categories, based on the strategies to

obtain a prediction: the selector and the assembler. A selector meta server selects

one model from the collected input models by some algorithm and reports the

selected model as the output. As mentioned, the first model in the ranking list,

submitted by a server, may not be the best model in the list. Selector meta servers

attempt to identify the best model from the ranking list. One possible approach

is to predict the quality of each of the input models, and based on this quality an

output is selected, as we will see in the following examples. Assembler meta servers

go beyond the selection of models. A hybrid model is assembled by combining the

structural fragments of collected input models. This approach is believed to be

more sensitive and produce more accurate models [30]. In the following section, we

will review some meta servers of both types.

3.2 Selector-Type Meta Servers

Following the success of the CAFASP-CONSENSUS group in CASP4, the first

automatic consensus server, named Pcon, was constructed by Lundstrom et al.

in 2001 [29]. Pcon attempts to reproduce the consensus procedures that were

followed by the human predictors, and uses neural networks to predict the quality

of input models. Pcon receives, as inputs, the top ten models from each of its

26

six component servers (GenTHREADER, SamT98, INBGU, FFAS, 3D-PSSM and

pdbBLAST). Each input model has a confidence score, which is reported by one of

the component servers and is used as one feature to be fed to the neural networks.

To obtain other features, each input model is compared with other models by using

a structure superimposition algorithm. Based on the confidence scores and the

structural similarities of the input models, the quality of each model is predicted by

the neural networks. Because the confidence scores are specific to each component

server and do not have same scale and distribution, an individual neural network

is required for each component server. There are six neural networks in Pcon.

The final prediction is based on the outputs of the six networks. If several servers

predict a particular fold, Pcon will assign a high score to it. It is easy to add

a new server to Pcon with this configuration. Pcon turns out to perform better

than any of its component servers, especially in specificity [6]. A newer version

of the meta server, derived from Pcon, is Pmodeler, which predicts the quality

of a model by combining the output scores of Pcon and ProQ. ProQ is a neural

network-based tool that predicts the quality of a protein model from the intrinsic

structural parameters computed from the model. With ProQ, a small but significant

improvement is observed [31].

Since the development of the first meta server, several new meta servers have

been proposed. One of them is the 3D-Jury system, which was developed by Rych-

lewski et al. [32]. 3D-Jury selects its output from the input models by using different

scoring schemes. Unlike Pcon, 3D-Jury does not use machine learning techniques;

thus, no training procedure is required, which makes 3D-Jury simple and flexible.

The 3D-Jury compares the input models with each other by using MaxSub, and a

similarity score is obtained for each pair of models. Then, a score for each model

is calculated as the prediction of the model quality, based on the pair-wise Max-

27

Sub scores. The 3D-Jury system can be operated in two modes whose scores are

calculated in different ways. In the best-model-mode (3D-Jury-Single), only one

model from each server is used to calculate a prediction. In the all-model-mode

(3D-Jury-All), all the models from each server are used. The scores are calculated

by using the follow formulae:

3D − Jury − all(Ma,b) =
1

1 +Nn

N
∑

i=1,i6=a

n
∑

j=1

sim(Ma,b,Mi,j) (3.1)

3D − Jury − single(Ma,b) =
1

1 +N

N
∑

i=1,i6=a

n
max
j=1
{sim(Ma,b,Mi,j)} (3.2)

where

sim(Ma,b,Mi,j): the similarity score between model Ma,b and Mi,j ,

Ma,b: the bth model from server a,

Mi,j : the jth model from server i,

N : the total number of servers,

n: the number of top ranking models reported by server i (maximum ten).

3D-Jury was evaluated in the LiveBench 6 program. It is shown that 3D-Jury

has a high sensitivity and specificity for both easy and hard targets [6].

3.3 Assembler-Type Meta Servers

Some meta servers can assemble a new model from the structural fragments of

input models. 3D-SHOTGUN was the first meta server that is capable of assem-

bling a new hybrid model from input models [33]. It incorporates some strategies

28

that human predictors have successfully applied. By comparing the input struc-

ture models, the recurrent structural similarities are identified, from which hybrid

models are assembled. Scores are assigned to the hybrid models by combining the

original model scores and structural similarities among them. It is believed that

these two steps render the new server more sensitive and specific than any of its

component servers. Two new meta servers (3DS3 and 3DS5) have been developed

by using the 3D-SHOTGUN method. One has three component servers and the

other has five component servers. In CAFASP3, both servers were ranked among

the three most sensitive and specific meta servers [7]. In spite of the success with

this approach, it has been observed that the hybrid models, assembled by the 3D-

SHOTGUNmethod, contain a number of nonnative-like structural fragments due to

the assembly procedure. This is due to the fact that the assembly is residue-based.

Therefore, an automatic refinement method is being developed.

Robetta is a meta server that is unlike either of the previous two types. Robetta

was originally an ab initio server that built models by using a fragment insertion pro-

tocol without utilizing any template or any homology information. Later, Robetta

was upgraded so that if a template is found for a given target, the template-based

approach is used to build a structural model; if there is no template, the fragment

insertion method is employed to build the model. The fragment insertion method

is also used in the context of the template-based approach for loop regions. Each

input protein sequence is classified as a de novo or template-based target by using

PSI-BLAST and Pcon2. After the classification, an appropriate method is applied

to build a model [34]. In this sense, Robetta is a meta server that is different from

the previous two types of meta servers. Rosetta was evaluated in CASP3, CASP4

and CASP5, and turned out to be very successful [11, 12, 13]. In CAFASP3, it was

ranked first among meta servers [7].

29

3.4 Difference between Consensus Server and In-

dividual Servers

The inputs of meta servers are the outputs of their component servers. Therefore,

the superior performance of meta servers is dependent on the performance of the

component servers. The quality of input models significantly influences the outputs

of meta servers. There are three cases, depending on the inputs: The first exists if

most of the component servers make good predictions; For the second, none of the

component servers attains any significant prediction; The third case occurs when

only a few component servers make good predictions. In the first case, it is easy for

meta servers to make an equivalently good prediction or an even better prediction.

In the second case, it is almost impossible for meta servers to come up with an

improved prediction. The third case exists where consensus can make a difference.

It is possible for meta servers to differentiate between good predictions and poor

predictions in this case by using consensus algorithms. Thus, when most or part of

the component servers make good predictions, meta servers can make significantly

improved predictions.

To achieve the best performance for a meta server, it is necessary to include

individual servers with the best performance. However, it is not enough to include

as many good-performance individual servers as possible. The combinations of

component servers are also important, and the included component servers should

be complementary to each other to guarantee stable performance for all the classes

of targets. This topic has not been researched previously.

30

Chapter 4

New Meta Server : Alignment by

Consensus Estimation (ACE)

Selector-type meta servers have a high sensitivity and specificity as proven by Pcon

and 3D-Jury. Here, we want to develop a selector meta server to combine multiple

individual servers. Input models of the meta server are the outputs generated by

the component servers with various scoring functions. Therefore, it is not practical

to attempt to design a more effective scoring function as a direct prediction of model

quality, which, otherwise, can be used in an individual server. Some researchers

attempt to compute intrinsic structure features (stereochemical parameters) from

a model and predict model quality by using machine learning-based approaches.

One example is ProQ which computes structural parameters of a model from its

3D coordinates, and then use neural networks to predict the MaxSub score of the

model from the computed structural parameters [35]. However, the performance

31

of ProQ is not satisfactory. Another way to predict model quality is to compare a

model with other models by using some structure comparison tool to obtain a score

as the quality prediction of the model. This is how 3D-Jury predicts model quality.

Pcon has gone one step further and uses neural networks to predict model quality.

After some simple features are extracted from a model, the confidence score of the

model and the features are fed to the neural networks to predict the model quality.

Our goal is to extract effective features through structural comparisons as 3D-Jury

did, and use more advanced machine learning techniques to predict model quality

by which to select an output.

In this chapter, we will introduce a new meta server, Alignment by Consensus

Estimation (ACE), a selector-type meta server that extracts the features from a

model through structural comparisons. The Support Vector Machine Regression

(SVMR) is adopted to train a model and predict the quality of a structure model.

We will explore the techniques used by ACE in detail in this chapter.

4.1 Feature Extraction

Features are crucial for machine learning-based meta predictors, and influence the

performance of meta servers significantly. First, let us look at what features Pcon

has used. Pcon uses both the reported confidence score and the number of similar

models. Specifically, it compares a model with all other models and counts the

number of models whose similarity scores are over a specific cutoff. Pcon also

extracts the same types of features from the templates of the reported models

by doing structure comparisons. The structure comparison tool used in Pcon is

LGscore which is alignment independent. For the 3D-Jury system, the 3D-Jury-All

32

and 3D-Jury-Single scores are very efficient and good candidates for our features.

For our meta server, all the features are extracted from the structural com-

parisons of input models, similar to 3D-Jury. The confidence scores reported by

component servers are not used as features. This simplifies the complexity of the

meta server and training process because there is no need to train an SVMR model

for each component server and set up a jury mechanism. We also do not use the

templates of input models to extract features because experimental results indicate

that features obtained from the templates by structural comparisons are not effec-

tive. Using ineffective features can introduce noise to a meta server and degrade

the performance. Next the features used in ACE will be presented.

After the top ten models, reported by each component server, are collected, all

the models are compared with each other, and a similarity score is obtained for

each pair, representing the structural similarity between the two models. MaxSub

has been used to structurally compare two models. The quality score of a model

is calculated by MaxSub as well, and serves as the objective function of the SVM

regression. MaxSub is a program originally developed to measure the quality of

a single model by structurally comparing the model with the corresponding real

structure obtained experimentally. MaxSub is a sequence-dependent quality as-

sessment tool that identifies the maximum superimposable (within 3.5Ȧ) subset of

Cα atoms of a model and an experimental structure. As a result, a normalized

score respresenting the quality of the model is produced. MaxSub can also be used

to measure the structural similarity between two models [36]. It is the official tool

used in the LiveBench and CAFASP tests [4, 7]. The features used in ACE are

defined as follows:

sim(Ma,b,Mi,j): the MaxSub similarity score between model Ma,b and Mi,j

Ma,b: the bth model reported by server a

33

Mi,j : the jth model reported by server i

N : the total number of servers

n: the total number of top models reported by each server

Feature 1 is specific for each model. First, compare modelMa,b with all the models,

reported by the other servers and then calculate the average score as follows:

1

(N − 1)n

N
∑

i=1,i6=a

n
∑

j=1

sim(Ma,b,Mi,j) (4.1)

Feature 2 is also specific for each model. First, compare model Ma,b with all the

models from one of the other servers respectively, and then select the maximum

score. Repeat this procedure for each of the other servers. Finally, calculate the

average of the selected maximum scores. Mathematically,

1

N − 1

N
∑

i=1,i6=a

n
max
j=1
{sim(Ma,b,Mi,j)} (4.2)

Feature 3 is different from feature 1 and 2 and is composed of a set of subfeatures

rather than one feature. In addition, feature 3 is not model-specific, but target-

specific, that is, for each target protein, feature 3 is different and all the models

predicted for the same target protein have the same feature 3. To obtain feature 3,

the similarity between the predictions made by every two servers must be calculated.

Thus, for N servers, there are C2
N subfeatures. The disadvantage is that if N is

very large, C2
N grows quickly. Later, we will demonstrate that a large N may not

be a good choice for the SVMR model. For server a and i, the similarity between

the predictions made by them is represented by:

1

n2

n
∑

b=1

n
∑

j=1

sim(Ma,b,Mi,j) (4.3)

Feature 1 is viewed as model-level voting and a rough measure of model qual-

ity. Also, we assume that the most accurate model has more similarities with the

34

other models than a less accurate model does. Therefore, one possible approach

to estimate the quality of a model is to compare it with all the models from the

other servers, which is the basis for feature 1. Note that feature 1 is very similar

to 3D-Jury-Single (3.1). The difference between (4.1) and (3.1) is that in (4.1), the

models from the same server as Ma,b are ignored. The reason for this is that it has

been observed in experiments that the models, reported by the same server, are

more likely to be similar to each other even if all of them are poorly predicted. So,

including the models from the same server in the sum introduces bias and degrades

the effectiveness of the proposed feature.

Feature 2 is server-level voting and a different way to estimate the quality of

a model though structural comparisons. Unlike feature 1, feature 2 uses only one

model from each server. Feature 2 is very similar to (3.2). The difference between

(3.2) and (4.2) is that in (4.2) the maximum score obtained from the same server

is ignored. The reason is similar to that for feature 1. Because feature 2 uses only

one model from each server for calculating the sum, it is not as stable as feature 1

but more sensitive.

Feature 1 and 2 are principal and feature 3 is an auxiliary feature. Feature 3

represents the similarity between the two sets of structural predictions made by any

two servers for a particular target protein. This can help in some cases to estimate

the performance of different servers with respect to the same target protein, which

can indirectly help to differentiate between models in some cases. For instance,

suppose there are three servers, a, b and c. Assume at any time, the majority of the

servers make correct predictions. If we know that for a particular target, servers a

and b have similar predictions, but servers b and c, and servers c and a do not, then

it is possible that server c makes poor predictions for this target. Thus, feature 3

does facilitate the estimation of model quality in some cases. Note that all these

35

features are calculated by averaging many similarity scores; that is, these features

are obtained from raw scores in a statistical way. In this sense, if more models are

involved in structural comparisons, the variations of the proposed features can be

reduced and the performance can be improved. That is why all the top ten models

from each server are utilized.

Because structural comparisons can be conducted in different ways, different

features can be extracted accordingly. For example, we can compare one model

with the top model from each of the other servers, or compare each model with all

the models from each of the other servers. In addition, some other features can be

derived from sequence alignments such as gap numbers, gap length, target length,

and template length. It is also possible to generate some features by using soft-

ware such as PROCHECK and WHATIF to measure the stereochemical quality of

structural models. The software can calculate some structural parameters from the

coordinates of a protein structure, such as torsion angles, hydrogen bond energies,

all of which have been shown to correlate with model quality. The distributions

of these parameters are calculated from the solved protein structures stored in the

PDB so that some staticstics about a model’s stereochemical quality can be cal-

culated to provide a simple guide to the reliability of the structure [37]. A similar

idea has also been implemented in ProQ by using machine learning techniques to

predict the quality of a model. ProQ uses neural networks to predict the MaxSub

score or LGscore of a protein model according to the computed intrinsic parameters

of the model such as atom-atom contact, solvent accessibility surfaces [35].

In spite of the abundance of available features, not all the features are equally

effective. When ineffective features are used to train the SVM, they can introduce

noise and degrade the performance significantly. The proposed features are tested

and refined through a trial-and-error process. We explored different combinations

36

of the features mentioned above and eventually arrived at the features that are

currently used in ACE.

4.2 ACE Implementation

ACE is particularly designed to participate in large-scale evaluations. The assump-

tion is that the results of individual servers are available for download from some

website. In CAFASP3 [7], individual servers had 48 hours to make a prediction. and

meta servers were allowed 96 hours to make a prediction. And all the submissions

were publicly available on the CAFASP website. Consequently meta servers down-

loaded all the required results of individual servers from the website and carried

out their consensus algorithms.

After a target is given, the first thing ACE needs to do is to download all the

structure models submitted by its component servers from some website, together

with alignment files. GNU wget is used by ACE to download data from the internet.

wget is a free software package for retrieving data using HTTP, HTTPS and FTP,

the most widely-used internet protocols. It is a non-interactive commandline tool,

so it may easily be launched from the commandline. For training, the PDB files of

all the targets must be downloaded from the PDB website by using wget as well.

The second step is to extract features through structure comparisons. MaxSub

is used in ACE to do structure comparisons. Because MaxSub is not very stable,

to avoid the program from being suspended, MaxSub is launched as a child process

of the main process and timed. If MaxSub is still not terminated after some time

threshold, it is killed by the main process.

For the CAFASP and LiveBench data sets, all the models fed to MaxSub are

37

Figure 4.1: Top model reported by RAPTOR for target T0196 in CASP6

preprocessed ones. That is, only the modeled regions of a structure are compared

by MaxSub. The nonmodeled regions are removed from the structure. The advan-

tage is that nonmodeled parts can have different shapes, which will influence the

superimpositions obtained with MaxSub. For instance, if modeler is used to build

a 3D model from an alignment, nonmodeled regions will be modeled as sticks by

default and they will stick out from the molecular surface as shown in Figure 4.1.

If the nonmodeled regions are not removed, they will cause large RMSD.

In the training stage, the quality of a model (its MaxSub score) is obtained

38

by comparing the model to the real structure with MaxSub. The real structure is

generally one chain of a protein. So the coordinates of the chain must be extracted

from the downloaded PDB file which generally stores the coordinates of multiple

chains of a protein. Otherwise, the MaxSub score obtained is not correct.

After the features of all the models are obtained, the next step is to preprocess

the data. The purpose is to let the SVMR model achieve the best performance. In

the training stage, the mean and standard error of each feature are calculated and

all the features are normalized. These means and standard errors are then stored.

In the testing stage, the features in the testing data are normalized with respect to

the means and standard errors of the training data.

For training, the preprocessed features and the MaxSub scores of models are

fed to the SVMR. Then, after training, the trained model is stored in a file. For

testing, the preprocessed features are fed to the trained SVMR model and an output

is generated for each model.

The last step is to rank the SVMR outputs for all the models and select the

model with the maximum SVMR output as the prediction made by ACE.

The operation of ACE can be represented by the flowchart in Figure 4.2

39

Receive
Input

Preprocessing

Run
SVMR

Extract
Features

Sort
Outputs

Download
Models

Prediction

Figure 4.2: How ACE makes a prediction.

40

Chapter 5

Experimental Results and

Conclusions

In the proceeding chapter, we have introduced the SVMR and the features that are

extracted by ACE. In this chapter, we will investigate some experimental results

on the performance of the proposed consensus algorithm in terms of sensitivity and

specificity. For this purpose, we will use the publicly available LiveBench data sets.

Besides comparing the performance of ACE with that of its component servers, we

will also compare ACE with 3D-Jury and Pcon.

5.1 LiveBench Tests

The LiveBench project [38] is a continuous benchmarking program. Each week

selected new PDB proteins are submitted to participating fold recognition servers,

41

and the results are collected and evaluated by using automated model assessment

programs. The LiveBench program has two principal goals:

1. The program provides a simple evaluation of structure prediction servers from

the point of view of a potential user. The evaluation of the sensitivity and

specificity of available servers can help a user to develop sequence analysis

strategies and to assess the confidence of obtained predictions.

2. The program offers a simple weekly procedure for the prediction service

providers, which can help to locate possible problems and tune the meth-

ods for the best performance.

In the LiveBench tests, each server submits its top ten models as the predictions

for one target. For N servers, we will collect 10N models for each target. For each

submitted model, both its structure file and alignment file are available. The main

advantage of the LiveBench is the fast evaluation cycle and easy access of data. All

the data are publicly available on the website (http://bioinfo.pl/LiveBench/).

The disadvantage of the LiveBench tests is that these tests are not completely

blind since some servers update their template databases synchronously with the

PDB.

5.2 Experiment Setup

To test the performance of our new consensus algorithm, the LiveBench 5∼8 data

were downloaded to train the SVMR model and test it. At the time of the ex-

periments, LiveBench 8 was incomplete, with only 148 targets. As mentioned, the

42

LiveBench tests are not completely blind. Some servers submitted the experimen-

tal structure of a target as their predictions, or built models from the experimental

structure. To reduce biases and errors, we removed such trivial predictions by

preprocessing downloaded data.

After preprocessing, the proposed features were extracted from each model by

comparing the model with other models by MaxSub. Thus, four sets of data were

obtained, corresponding to LiveBench 5∼8, with a different number of targets in

each data set. In the following context, the four data sets will be referred to

as LiveBench5, LiveBench6, LiveBench7, and LiveBench8, respectively. To test

the performance of our meta server, a four-fold cross validation was used in our

experiments. Specifically, one data set was used to train an SVMR model and the

trained model was tested by the other three data sets. This was repeated four

times, once for each data set for training.

The software that was used to train our SVMR model is SVMlight which was

developed by Thorsten Joachim [27]. To obtain the best performance, a proper

kernel function must be selected. After the comparisons are considered by experi-

ments, a RBF kernel was used as the option for the SVM software. The RBF kernel

has the following form:

κ(x1, x2) = exp(−‖x1 − x2‖
2/2σ2) (5.1)

There are two parameters that are tunable for the kernel function: σ and a cost-

factor. Different combinations of the two parameters were explored to best tune the

SVMR model. To obtain the best performance, all the features were normalized

before being used to train the SVMR model. The testing data were also normalized

with respect to the means and standard errors of the training data. The perfor-

mance of a server is normally measured in terms of sensitivity and specificity.

43

5.3 Sensitivity

Sensitivity is defined as the sum of the MaxSub scores of the top models for all

the targets. First, we collected the results of three individual servers: FFAS03[16],

3D-PSSM [18], and FUGUE2 [22]. To evaluate our method more objectively, it

is desirable to include individual servers that are comparable to each other. We

did not use our own RAPTOR server which significantly outperformed others in

CAFASP3 [7]. The top ten models from each server were collected so there were

30 input models for each target. By comparing the models with each other, all the

features were generated and the RBF kernel was used in the SVMR. There are two

tunable parameters in the SVM regression model. The parameters with the best

performance were used in our experiments.

In Table 5.1, it is evident that no matter which data set is used for training, our

SVMR method consistently exhibits stable sensitivity on all the test sets and the

variation of the data in each column is very small. The sum of the MaxSub scores on

the four LiveBench data sets is 498.27. A comparison with the sensitivity of 3D-Jury

and the component servers is presented in Table 5.2. It is evident that 3D-Jury-All

has poor performance, which is not even as good as some component servers. Both

ACE and 3D-Jury-Single perform better than any component server. For ACE, its

sensitivity is superior to that of any component server by approximately 8%. For

the same three component servers, the sensitivity of ACE is higher than that of

3D-Jury-Single by 6%. Also, the sensitivity of ACE is approximately 10% better

than that of Pcon in LiveBench 5∼7. Moreover, the performance of any component

server is not as stable as that of our meta server. For example, FFAS03 performs

well in LiveBench 5∼7, but poorly in LiveBench 8. In contrast, 3D-PSSM does

not perform as well as FFAS03 in LiveBench 5∼7, but much better than FFAS03

44

Table 5.1: MaxSub scores of ACE with three component servers used. The number

of targets is shown under the name of each data set. One data set is used for

training and the other three for testing. The average testing result for each data

set is calculated and summed.

Training LiveBench5 LiveBench6 LiveBench7 LiveBench8 Sum of

Data Set 78 98 115 148 Average

LiveBench 5 —– 77.31 93.18 257.53 —–

LiveBench 6 73.59 —– 91.73 256.57 —–

LiveBench 7 73.15 75.35 —– 256.87 —–

LiveBench 8 73.15 74.47 91.89 —– —–

Average 73.30 75.71 92.27 256.99 498.27

in LiveBench 8. With the proposed consensus algorithm, the performance of our

meta server is consistently stable.

Based on the previous three servers, FFAS03, 3D-PSSM, and FUGUE2, we

conducted another experiment with three additional servers: INBGU [28], SU-

PERF PP [17], and mGenTHREADER [39]. The results are provided in Table 5.3.

We expected to achieve better performance by using more servers because more

candidates were available. The experimental results from six servers are surpris-

ingly worse than those of three servers for our meta server, ACE. In spite of this,

ACE is still superior to any component server. When more servers are included,

a meta server is more likely to collect even better models in its inputs. When

45

Table 5.2: Sensitivity (MaxSub score) comparison with three component servers

and other meta servers. The results of 3D-Jury are derived from the same three

component servers: FFAS03, 3D-PSSM and FUGUE2. The results of all the other

servers are taken from LiveBench. Pcon’s results are only available for LiveBench

5-7.

Training LiveBench5 LiveBench6 LiveBench7 LiveBench8 Sum

Data Set 78 98 115 148 Score

FFAS03 69.68 66.30 88.97 234.52 459.97

3D-PSSM 58.97 61.62 81.47 252.17 454.23

FUGUE2 59.53 63.54 79.71 233.59 436.37

Pcon 62.79 68.65 83.77 —– —–

3D-Jury-all 44.24 57.80 64.52 191.38 357.94

3D-Jury-single 64.09 65.36 88.26 250.08 467.79

ACE 73.30 75.71 92.27 256.99 498.27

more models are collected, this brings two problems. First, if some poor quality

models are included, they will contaminate the extracted features, which will re-

sult in performance degradation. Secondly, the capability of the learning machine

is not unlimited. When more candidates are to be considered, it becomes more

challenging for the learning machine to select the best one from the candidates.

For meta servers that use statistical methods, the performance is enhanced and

46

Table 5.3: MaxSub scores of ACE obtained with six component servers.

Training LiveBench5 LiveBench6 LiveBench7 LiveBench8 sum of

data set 78 98 115 148 average

LiveBench 5 —– 63.15 92.57 253.44 —–

LiveBench 6 69.22 —– 90.37 253.39 —–

LiveBench 7 68.47 68.52 —– 255.81 —–

LiveBench 8 67.30 69.11 90.94 —– —–

Average 68.33 66.93 91.29 254.21 480.76

becomes more stable, as more servers are included. When the number of servers

exceeds some threshold, the performance of such meta servers will no longer vary

significantly with the number of component servers. 3D-Jury is such an example.

When six servers are used, its performance is improved significantly as observed

in Table 5.4. This is the principal difference between machine learning-based meta

servers and statistical method-based meta servers.

Table 5.4 summarizes the comparison with 3D-Jury and the six individual

servers. In this case, ACE and 3D-Jury-Single have very similar performances

and have higher sensitivities than any component server, whereas ACE does not

have an obvious advantage over 3D-Jury-Single. Note that for 3D-Jury-All and 3D-

Jury-Single, when the number of servers increases, their performance is improved

significantly.

47

Table 5.4: Sensitivity comparison of ACE, six component servers, and the meta

servers: Pcon and 3D-Jury. The results of 3D-Jury are derived from the same six

component servers. The results of all the other servers are taken from LiveBench.

data LiveBench5 LiveBench6 LiveBench7 LiveBench8 sum

set 78 98 115 148 score

FFAS)3 69.68 66.30 88.97 234.52 459.97

3D-PSSM 58.97 61.62 81.47 252.17 454.23

FUGUE2 59.53 63.54 79.71 233.59 436.37

INBGU 61.56 46.63 79.25 219.22 406.66

SUPERF PP 40.34 50.02 58.67 186.72 335.75

MGenTHREADER 58.52 68.04 70.98 237.40 434.94

Pcon 62.79 68.65 83.77 —– —–

3D-Jury-all 64.09 65.36 88.26 250.08 467.79

3D-Jury-single 68.56 65.59 91.52 256.41 482.08

ACE 68.33 66.93 91.29 254.17 480.76

5.4 Specificity

In addition to the sensitivity of servers, specificity is also important for high-

throughput automated structure prediction servers. High sensitivity and specificity

48

are desirable goals, but are difficult to achieve simultaneously. In this study, speci-

ficity was calculated by the method applied by CAFASP3 [7] as follows: (1) Rank

models by their confidence scores (SVM outputs). Note that only the top one model

for each target is considered here; (2) Count the number of the correct predictions

before the firstK false positives TP (K); (3) Calculate the average of TP (K), K=1,

2, · · · , 5 as the specificity of the server. Here, a correct model is defined as a model

which has at least 40 Cα atoms that can be superimposed on the native structure

within 3.0 Ȧ by using the MaxSub program [6].

Table 5.5: Specificity of ACE, obtained with three component servers.

Training LiveBench5 LiveBench6 LiveBench7 LiveBench 8

data set 78 98 115 148

LiveBench 5 —– 18.20 24.00 59.80

LiveBench 6 18.00 —– 24.00 59.80

LiveBench 7 18.00 19.00 —– 59.80

LiveBench 8 18.00 19.00 24.00 —–

Average 18.00 18.73 24.00 59.80

The specificity of ACE was calculated with the same three component servers by

using four fold cross validation. The results are listed in Table 5.5 and a comparison

with 3D-Jury, Pcon and the component servers is shown in Table 5.6. We can see

that the specificity of ACE is significantly higher than that of 3D-Jury-All and

3D-Jury-Single. Also, the specificity of ACE is higher than that of any component

server and Pcon. The specificity of ACE was also calculated when six individual

49

Table 5.6: Specificity comparison between ACE and its three component servers

and other meta servers.

Training LiveBench5 LiveBench6 LiveBench7 LiveBench 8

data set 78 98 115 148

FFAS03 18.00 17.00 23.00 56.60

3D-PSSM 15.80 16.80 20.40 57.00

FUGUE2 18.00 16.60 17.60 57.79

Pcon 16.00 19.00 22.00 —–

3D-Jury-All 12.00 15.20 16.00 54.00

3D-Jury-Single 15.40 15.60 17.80 59.60

ACE 18.00 18.73 24.00 59.80

servers were used. The results in Table 5.7 and Table 5.8 indicate that when six

servers are used, the specificity of ACE drops as its sensitivity does. Even though

the specificity is still better than that of 3D-Jury-All, it is no longer higher than

that of any individual server.

5.5 CASP6 Evaluation

In this section, we will present ACE’s performance in the CASP6 evaluation. Un-

like the LiveBench tests, the CASP experiments are totally blind. Participants of

50

Table 5.7: Specificity of the ACE, obtained with six component servers.

Training LiveBench5 LiveBench6 LiveBench7 LiveBench8

data set 78 98 115 148

LiveBench 5 —– 14.80 20.60 59.60

LiveBench 6 15.00 —– 21.20 59.40

LiveBench 7 15.00 15.60 —– 59.60

LiveBench 8 15.00 15.60 21.20 —–

Average 15.00 15.33 21.00 59.53

CASPs are either human groups or automatic servers. It is the largest scale blind

test of structure prediction servers in the community. The structures of testing se-

quences are unknown until the end of the test. In CASP6, both individual servers

and meta servers must submit the prediction for each target sequence within 48

hours after the sequence was released. In CASP6, ACE mainly used RAPTOR,

3D-PSSM, FUGUE3, FFAS04, SamT02, and mGenTHREADER.

Each server can submit up to five models for each target. Global Distance

Test (GDT) scores are used to measure model quality. The GDT score of a model

represents the percentage of residues in the model that are close to those in the

template. “Closeness” means within 0.5Ȧ, or 1.0Ȧ, or 1.5Ȧ, ... , or 10.0Ȧ. Human

groups and automatic servers were ranked together in the final ranking list. The

top 16 groups turn out to be human groups. BAKER-ROBETTA is ranked 17th

and ACE is ranked 18th. So ACE is the second in the ranking list of meta servers.

51

Table 5.8: Specificity comparison between the ACE and its six component servers

and other meta servers.

Training LiveBench5 LiveBench6 LiveBench7 LiveBench 8

data set 78 98 115 148

FFAS03 18.00 17.00 23.00 56.60

3D-PSSM 15.80 16.70 20.40 57.00

FUGUE2 18.00 16.60 17.60 56.20

INBGU 18.00 19.00 24.00 55.79

SUPERF PP 18.00 18.73 24.00 59.80

MGenTHREADER 18.00 18.73 24.00 59.80

3D-Jury-All 16.40 14.8 18.20 58.60

3D-Jury-Single 15.00 15.20 21.20 58.80

ACE 15.00 15.33 21.00 59.53

5.6 Conclusion and Future Work

In this study, we introduce an SVM regression-based approach to build the protein

fold recognition meta server, Alignment by Consensus Estimator (ACE). ACE ex-

tracts features from each protein structure model by structural comparisons, and

predicts model quality by applying SVM regression. All the structure models,

generated by individual servers, are ranked according to the predicted model qual-

52

ity, from which an output is selected. Test experiments were conducted on the

LiveBench data and experimental results show that our meta server is more sensi-

tive and specific than the component servers, and slightly better than 3D-Jury and

Pcon, when not many individual servers are available for consensus. This feature is

very desirable, since collecting the prediction results of many servers is not a trivial

task. Also, there are not many structure prediction servers that provide unlimited

and consistent service to the community. There is still the problem of finding the

best combination of individual servers to produce the best prediction. This topic

has not been studied before in the community and is our future research topic. The

work in this study will be published for the APBC Conference (Singapore, Jan.

2005).

5.7 Acknowledgement

The author wishes to thank the developers of all the servers, FFAS03, SUPERF PP,

3D-PSSM, FUGUE2, INBGU, MGenTHREADER, Pcon and 3D-Jury, and the

developers of the LiveBench experiments, which provide an excellent platform for

benchmarking a new server. Our research is supported by the National Science

and Engineering Research Council of Canada, CITO’s Champion of Innovation

Program, the Killam Fellowship, and the Canada Research Chair Program.

53

Bibliography

[1] Carl Branden and John Tooze. Introduction to protein structure. GarLand

Publishing Inc., 1995.

[2] Molecular Modeling: A Method for Unraveling Protein Structure and Func-

tion. http://www.ncbi.nlm.nih.gov/about/primer/molecularmod.html, 2004.

[3] Daniel Fischer, Arne Elofsson, and Leszek Rychlewski. The 2000 Olympic

Games of protein structure prediction; fully automated programs are being

evaluated vis-a-vis human teams in the protein structure prediction experiment

CAFASP3. Protein Engineering, 13(10):667–670, October 2000.

[4] Janusz M. Bujnicki, Arne Elofsson, Daniel Fischer, and Leszek Rychlewski.

LiveBench-2: Large-scale automated evaluation of protein structure prediction

servers. Proteins: Structure, Function and Genetics Suppl, 5:184–191, 2001.

[5] Jinbo Xu. Protein Structure Prediction by Linear Programming. PhD thesis,

University of Waterloo, 2003.

[6] Leszek Rychlewski, Daniel Fischer, and Arne Elofsson. LiveBench-6: Large-

scale evaluation of protein structure prediction servers. Proteins: Structure,

Function and Genetics, 53:542–547, 2003.

54

[7] Daniel Fischer, Leszek Rychlewski, Roland L. Dunbrack, Angel R. Ortiz, and

Arne Elofsson. CAFASP3: The third critical assessment of fully automated

structure prediction methods suppl. Proteins: Structure, Function and Genet-

ics, 6(53):503–516, October 2003.

[8] The three-dimension structure of a protein structure is crucial to its function.

http://www.wellcome.ac.uk/en/genome/thegenome/hg03b001.html, 2003.

[9] Linus Pauling, RoBert Corey, and Herman Brandson. The structure of pro-

teins; two hydrogen-bonded helical configurations of the polypeptide chain.

Proc Natl Acad Sci U S A, 37(4):205–11, 1951.

[10] Protein Data Bank. http://www.rcsb.org/pdb/holdings.html, 2003.

[11] John Moult, Tim Hubbard, Krzysztof Fidelis, and Jan T. Pedersen. Criti-

cal assessment of methods on protein structure prediction (CASP)-round III.

Proteins: Structure, Function and Genetics Suppl, 37(3):2–6, December 1999.

[12] John Moult, Krzysztof Fidelis, Adam Zemla, and Tim Hubbard. Critical as-

sessment of methods on protein structure prediction (CASP)-round IV. Pro-

teins: Structure, Function and Genetics Suppl, 45(5):2–7, December 2001.

[13] John Moult, Krzysztof Fidelis, Adam Zemla, and Tim Hubbard. Critical as-

sessment of methods on protein structure prediction (CASP)-round V. Pro-

teins: Structure, Function and Genetics Suppl, 53(6):334–339, October 2003.

[14] Richard Bonneau and David Baker. Ab initio protein structure prediction:

progress and prospects. Annual Review Biophysics Biomolecular Structure,

30:173–89, 2001.

55

[15] Anna Tramontano and Veronica Morea. Assessment of homology-based pre-

dictions in CASP5. Proteins: Structure, Function and Genetics, 53:352–368,

2003.

[16] Leszek Rychlewski, Lukasz Jaroszewski, Weizhong Li, and Adam Godzik.

Comparison of sequence profiles. strategies for structural predictions using se-

quence information. Protein Science, 9:232–241, 2000.

[17] Julian Gough and Cyrus Chothia. SUPERFAMILY: HMMs representing all

proteins of known structure. SCOP sequence searches, alignments, and genome

assignments. Nuclear Acids Research, 30(1):268–272, 2002.

[18] Lawrence A. Kelley, Robert M. MacCallum, and Michael J.E. Sternberg. En-

hanced genome annotation using structural profiles in the program 3D-PSSM.

Journal of Molecular Biology, 299(2):499–520, 2000.

[19] Stephen F. Altschul, Thomas L. Madden, Alejandro A. Schaffer, Jinghui

Zhang, Zheng Zhang, Webb Miller, and David J. Lipman. Gapped BLAST and

PSI-BLAST: a new generation of protein database search programs. Nucleic

Acids Research, 25:3389–3402, 1997.

[20] Jinbo Xu, Ying Xu, Dongsup Kim, and Ming Li. RAPTOR: Optimal protein

threading by linear programming. Journal of Bioinformatics and Computa-

tional Biology, 2003.

[21] Jinbo Xu and Ming Li. Assessment of RAPTOR’s linear programming ap-

proach in CAFASP3. Proteins: Structure, Function and Genetics Suppl.,

53(6):579–84, 2003.

[22] Jiye Shi, Tom L. Blundell, and Kenji Mizuguchi. FUGUE: Sequence-

structure homology recognition using environment-specific substitution tables

56

and structure-dependent gap penalties. Journal of Molecular Biology, 310:243–

257, 2001.

[23] Ying Xu, Dong Xu, and Edward C. Uberbacher. An efficient computational

method for globally optimal threadings. Journal of Computational Biology,

5(3):597–614, 1998.

[24] Kevin Karplus, Christian Barrett, and Richard Hughey. Hidden Markov mod-

els for detecting remote protein homologies. Bioinformatics, 14(10):846–856,

1998.

[25] Vladimir Vapnik. The Nature of Statistical Learning Theory. Springer, 1995.

[26] Alex J. Smola and Bernhard Schölkopf. A tutorial on support vector regression.

Technical report, 1998.

[27] Thorstem Joachims. Making large-scale support vector machine learning prac-

tical. MIT Press, Cambridge, MA, 1998.

[28] Daniel Fischer. Hybrid fold recognition: Combining sequence derived proper-

ties with evolutionary information. pages 119–130, Hawaii, 2000. Biocomput-

ing: Proceedings of the 2000 Pacific Symposium, World Scientific Publishing

Co.

[29] Jesper Lundström, Leszek Rychlewski, Janusz Bunnicki, and Arn Elofsson.

Pcons: A neural-netwrok-based consensus predictor that improves fold recog-

nition. Protein Science, 10:2354–2362, 2001.

[30] Janusz M. Bujnicki and Daniel Fisher. ’meta’ approaches to protein structure

prediction. Nucleic Acids and Molecular Biology, 14:23–33, 2004.

57

[31] Björn Wallner, Huisheng Fang, and Arne Elofsson. Automatic consensus-

based fold recognition using Pcons, ProQ, and Pmodeller. Proteins: Structure,

Function and Genetics Suppl, 6:534–541, 2003.

[32] Krzysztof Ginalski, Arne Elofsson, Daniel Fischer, and Leszek Rychlewski.

3D-Jury: a simple approach to improve protein structure predictions. Bioin-

formatics, 19(8):1015–1018, 2003.

[33] Iris Sasson and Daniel Fischer. Modeling three-dimensional protein structures

for CASP5 using the 3D-SHOTGUN meta-predictors. Proteins: Structure,

Function and Genetics, 53:389–394, 2003.

[34] Kim T. Simons, Charles Kooperberg, Enoch Huang, and David Baker. Assem-

bly of protein tertiary structures from fragments with similar local sequences

using simulated annealing and Bayesian scoring functions. Molecular Biology,

268(1):209–225, 1997.

[35] Björn Wallner and Arne Elofsson. Can correct protein models be identified?

Protein Science, 12(5):1073–1086, 2003.

[36] Naomi Siew, Arne Elofsson, Leszek Rychlewski, and Daniel Fischer. MaxSub:

An automated measure for the assessment of protein structure prediction qual-

ity. Bioinformatics, 16(9):776–785, 2000.

[37] Anne Louise Morris, Malcolm W. MacArthur, E. Gail Hutchinson, and

Janet M. Thornton. Stereochemical quality of protein structure coordinates.

Proteins: Structure, Function, and Genetics, 12:345–364, 1992.

[38] LiveBench Tests. http://bioinfo.pl/livebench.

58

[39] David T. Jones. GenTHREADER: An efficient and reliable protein fold recog-

nition method for genomic sequences. Journal of Molecular Biology, 287:797–

815, 1999.

59

