This document is the Accepted Manuscript version of a Published Work that appeared in final form in Analytical Chemistry, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see http://pubs.acs.org/doi/full/10.1021/acs.analchem.5b01849

Solid phase microextraction devices prepared on plastic support and their evaluation as potential single use samplers in bioanalytical applications

Nathaly Reyes-Garcés ^a, Barbara Bojko ^a, Dietmar Hein, Janusz Pawliszyn ^{a,*}

^aDepartment of Chemistry, University of Waterloo, Ontario, Canada N2L 3G1

^bPAS Technology, Magdala, Germany

* Corresponding author: Tel.: +1 519 888 4641; fax: +1 519 746 0435.

E-mail address: Janusz@uwaterloo.ca (J. Pawliszyn).

Supporting Information

Summary

This file contains additional information regarding procedures and data described in the main manuscript. The supporting information herein presented includes the following points: materials and supplies, details about LC-MS/MS conditions, selective reaction monitoring transitions used to quantify and qualify each model compound, inter-device reproducibility results, blank of the new proposed devices, results corresponding to matrix effects estimated using the presented SPME devices, a comparison of absolute recoveries obtained with and without applying an additional polyacrylonitrile layer, an evalution of different rinsing strategies, microscope and SEM images taken after exposing the coated devices to whole blood, evaluation of absolute matrix effect after blood extraction, microscope pictures of thin-film devices prepared on PBT support (side view), transition ratios calculated from the standard and tested matrices (urine, plasma and blood), and average absolute recoveries obtained when using HLB thin-films prepared on PBT.

Materials and supplies

A 250 mL flask-type sprayer, formic acid, PAN, potassium chloride, sodium chloride, potassium phosphate monobasic, and sodium phosphate dibasic were obtained from Sigma-Aldrich (Oakville, ON, Canada). Oasis hydrophilic-lipophilic balance 30 µm sorbent particles (HLB) were obtained from Waters (Milford, MA, USA). Discovery silica-based C18 5 µm particles were gently provided by Supelco Sigma-Aldrich (Bellefonte, PA, USA). N,N-dimethyl formamide (DMF) was purchased from Caledon Labs (Georgetown, ON, Canada). PBT rounded pieces (1.7 mm diameter) were obtained from Professional Analytical System (PAS) Technologies (Magdala, Germany), and PBT film (300 mm width, 2 m length, 0.5 mm thickness) was purchased from VWR international (Mississauga, ON, Canada) and LC-MS grade solvents (acetonitrile, methanol, and water) were purchased from Fischer Scientific.

A phosphate-buffered saline solution (PBS) (pH 7.4) was prepared by adding 8.0 g of sodium chloride, 0.2 g of potassium chloride, 0.2 g of potassium phosphate and 1.44 g of sodium phosphate to 1 L of nanopure water. Pooled human plasma and whole blood from healthy donors in potassium (K₂) ethylenediaminetetraacetic acid (EDTA) were purchased from Lampire Biological Laboratories (Pipersville, PA, USA). Urine samples were collected from two healthy volunteers (one female and one male). Collection of urine from healthy volunteers for this particular study was under the approval of the Office of Research Ethical Board of University of Waterloo.

LC-MS/MS conditions

All the extracts were run using an LC-MS/MS system comprised by an Accela autosampler, an Accela pump and a triple quadrupole mass spectrometer TSQ vantage with a heated electrospray ionization source operating in positive mode (Thermo Scientific, San Jose, USA). For chromatographic separation, a pentafluorophenyl core shell column (1.7 μ m, 2.1 mm × 10 mm) with guard (PFP security guard ultracartridge) was employed (Phenomenex, Torrance, CA, USA). A ternary mobile phase system consisting of 0.1 % formic acid (A), acetonitrile with 0.1 % formic acid (B) and methanol with 0.1 % formic acid (C) was used for LC separation. Gradient elution conditions were set as follows: A, B and C were hold at 90, 5 and 5 %, respectively, for 0.5 min, B and C were linearly increased to 50 % in 6.5 min, then C was increased to 75 % and B decreased to 25% in 5 min and held for 3.5 min. Finally, the column was kept at the initial gradient composition for 2 min. The column temperature was maintained at 35 °C, the total run time was 17.5 min, and the column flow was set at 0.3 mL/min. Samples were stored in the autosampler at 5 °C and the injection volume was 10 μ L. MS analysis was carried out using selective reaction monitoring (SRM) mode (see Table S1) and conditions were optimized by doing direct infusion of the standards. Other parameters were the following: spray voltage = 1300 V, vaporizer temperature = 275°C, sheath gas = 45 units, auxiliary gas = 30 and capillary temperature = 280°C.

Material (geometry)	SPME coating application	Advantages	Disadvantages
Fused silica (fibers)	GC	Inertness, thermal stability, availability and low cost	It can easily break, especially in the point where the coating contacts the fibre plunger.
StableFlex (fused silica coated with a thermally stable polymer) (fibers)	GC	It is more robust than bare fused silica. Provides more stable attachment for some adsorbent coatings.	Thermally stable at maximum 320 °C. Depending on extraction conditions, artefact peaks could appear.
Non-ferrous alloy (nitinol) (fibers)	GC and LC	Flexibility,tensilestrength,shapememoryproperties,thermalstability°C) and inertness.	High cost
Stainless steel (thin-films)	LC	Accessibility and robustness.	Presence of iron can lead to a lower inertness compared to nitinol. Limited flexibility.

Table S1. List of support materials commonly used to manufacture SPME devices

Table S2. Target analytes and physical chemical properties

Compound	Structure	Log P	рКа	Charge at physiological pH ^d
Amphetamine ^a	CH ₃	1.76	10.01	1
Methamphetamine ^a	CH ₃	2.07	10.21	1
Nikethamide⁵		0.33	3.61	0

Salbutamol ^b	HO HO HO	0.64	9.4 and 10.12	1
Propranolol ^ь	OH HZ	3.48	9.67 and 14.09	1
Metoprolol ^b	H ₃ CO H ₃ CO H ₃ CO H ₃ CO H ₃ CO	1.88	9.67 and 14.09	1
17-α-trenboloneª	OH H H H	2.27	-	0
Clenbuterol⁵	CI H ₂ N CI	2.61	9.63 and 14.06	1
Morphine®	HO HO HO ^{W⁴}	0.89	9.12 and 10.26	1
Benzoylecgonine ^a	OH OH O O	2.71	3.15 and 9.54	0
Exemestane [♭]		3.11	-	0

Codeineª	H ₃ C ^{-O} H HO ^{WW}	1.19	9.19 and 13.78	1
Bisoprolol ^b	OH H H N N N N	1.87	9.67 and 14.09	1
Stanozololª	HN N	4.42	2.86	0
Strychnine⁵		1.93	9.27	1
Toremifene ^c		6.56	8.76	1
GW501516°		6.46	2.14 and 3.51	-1

^aThese standards and codeine-d3, oxycodone-d3, cannabidiol-d3, methadone-d3, (\pm) 11-nor-9-carboxy- Δ 9-THC-d3 (THCCOOH-d3)were obtained from Cerilliant Corporation (Round Rock, TX, USA).

^bThese standards and testosterone-d₃ were obtained from Sigma-Aldrich (Oakville, ON, Canada). Salbutamol-d₃ was purchased from CDN Isotopes (Pointe Claire, Quebec, Canada).

^cStandards were obtained from Toronto Research Chemical (Toronto, ON, Canada).

^dMore than 90 % of each analyte is present at that particular ionized form.

	Retention	Parent ion (m/z)	Product	Collisio	Windov	Windows, min	
Compound	time		ion (m/z)	n energy	Start time	End time	S-Lenses
			65,138	36			
Amphetamine	4.73	136.099	91.114	17	3.8	5.8	36
Methamphetamin			91.12	19			
e	5.54	150.112	119.139	9	4.6	6.6	45
		170.4	80.127	29			- /
Nikethamide	2.84	1/9.1	<u>108.102</u>	18	1.8	3.8	/6
Callerateres	0.07	0.40,4.40	<u>148.103</u>	18	4.0		50
Salbutamol	2.37	240.143	166.116	12	1.3	3.3	59
Calbutanal d	2.27	242.14	<u>151.123</u>	18	1.0	2.2	4.4
Salbutamoi-d ₃	2.37	243.10	169.138	12	1.3	3.3	04
Dropropolol	0.51	240 122	<u>116.138</u>	17	0 5	11.0	80
Рюрганою	9.51	200.123	183.116	17	0.5	11.0	07
Motoprolol	6.21	260 14	77.105	50	5.4	74	04
Metoproioi	0.31	200.14	<u>116.146</u>	18		7.7	7 1
Trenholone	5 3 2	271 122	<u>165.106</u>	56	12	6.2	07
Irenbolone	5.52	271.133	199.17	24	7.2	0.2	77
Claphutaral	6 89	277.068	132.1	30	60	80	70
Cleributeroi	0.07		<u>203.049</u>	15	0.0	0.0	/0
Mornhine	1 96	286 119	<u>152.092</u>	61	10	3.0	110
	1.70	200.117	165.101	40	1.0	0.0	
Benzovlecgonine	4.62	290 133	77.141	47	3.5	6.5	93
	4.02	290.133	<u>168.164</u>	18		0.5	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Testosterone-d _o	5 72	292 248	97.135	22	4.5	67	93
	5.72	272.210	109.137	25	1.5	0.7	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Exemestane	6.04	297.173	91.128	39	5.0	7.0	72
			<u>121.118</u>	19			
Codeine	3.84	300.105	<u>152.092</u>	64	2.8	4.8	104
			165.102	42			
Codeine-d₃	3.84	303.149	165.096	41	2.8	4.8	104
			215.138	25			
Methadone-d₃	12.96	313.214	105.091	29	12.0	17.0	87
			268.224	13			
Bisoprolol	7.38	326.16	74.126	27	6.4	8.4	102
			<u>116.135</u>	17			
Stanozolol	6.66	329.229	<u>81.108</u>	44	5.5	7.5	130

Table S3. Transitions monitored for each model compound in positive ionization mode(quantifier transition underlined).

			95.115	38			
Struchning	5 5 2	225 155	156.126	45	16	6.6	136
Surychnine	5.55	333.133	<u>184.129</u>	36	4.0	0.0	
<u>(±)11-nor-9-</u>	6.02	240 142	196.204	27	60	8.0	05
<u>carboxy-∆9-THC-d₃</u>	0.75	340.102	302.282	18	0.0	0.0	70
Toromifono	12.20	406.21	70.157	36	11.0	14.0	108
Iorenniene	12.37	400.21	<u>72.167</u>	24			100
CWE0151/	7.52	454.091	188.079	46	6.5	8.5	108
GW301310			<u>257.068</u>	29			
			123.041	33			
Cannabidiol-d ₃	7.17	318.146			6.0	8.0	82
			196.129	22			
			244.13	28			
Ovycodono-d	1 51	210 119			3.5	5.5	82
Oxycodone-d₃	4.31	313.110	259.155	25			

Figure S1. Inter-device relative standard deviation values (%) obtained from coated rounded PBT pins (n=20). Extractions were performed from PBS spiked at 50 ng mL⁻¹. The extraction time was 45 min.

Figure S2. Blanks run in positive full scan mode (100 – 1000 m/z) using TSQ vantage. A cleaning step was performed by exposing the rounded coated PBT devices to a mixture of organic solvents (2:1:1 v/v methanol:acetonitrile:isopropanol) for 60 min under vortex agitation conditions

Table S4. Evaluation of absolute matrix effects in blank solution coming from desorption of new plastic HLB devices, and in extracts of blank urine and plasma obtained with such plastic devices (n=6, extracts spiked at 50 ng mL⁻¹ and analyzed in positive ionization mode).

	Absolute matrix effects, %						
Compound	Plastic devices blank extract	Plasma blank extract	Urine blank extract				
Morphine	99	106	93				
Salbutamol	100	107	112				
Nikethamide	101	108	108				
Codeine	99	107	88				
Benzoylecgonine	96	110	107				
Amphetamine	95	103	102				
Methamphetamine	100	105	101				
Trenbolone	97	103	81				
Strychnine	94	94	88				
Metoprolol	98	91	95				
Exemestane	95	97	87				
Clenbuterol	99	92	94				
Stanozolol	94	92	93				
Bisoprolol	99	89	79				
GW501516	101	103	103				
Propranolol	99	99	90				
Toremifene	103	107	102				

Table S5. Enrichment factors calculated in the different matrices evaluated.

Compound	Enrichment factors (Cextract/Csample)						
Compound	Urine (RSD, %)	Plasma (RSD, %)	Blood (RSD, %)				
Morphine	0.56 (6)	0.52 (6)	0.62 (4)				
Salbutamol	0.65 (2)	0.21 (6)	0.33 (1)				
Nikethamide	1.03 (3)	0.80 (5)	0.90 (9)				
Codeine	0.90 (7)	0.71 (7)	0.85 (3)				
Benzoylecgonine	0.59 (7)	0.51 (6)	0.42 (7)				
Amphetamine	0.89 (9)	0.39 (7)	0.61 (1)				
Methamphetamine	1.10 (9)	0.60 (8)	0.73 (3)				
Strychnine	1.10 (5)	0.28 (12)	0.53 (4)				
Exemestane	1.41 (3)	0.22 (9)	0.27 (20)				
Trenbolone	1.34 (4)	0.32 (10)	0.47 (11)				
Metoprolol	1.20 (4)	0.69 (13)	0.96 (4)				
Stanozolol	1.59 (6)	0.02 (12)	0.06 (12)				
Clenbuterol	1.33 (8)	0.52 (10)	0.86 (5)				
Bisoprolol	1.12 (7)	0.75 (11)	0.97 (6)				
GW501516	1.44 (7)	0.01 (16)	0.02 (10)				
Propanolol	1.42 (6)	0.29 (7)	0.20 (10)				
Toremifene	1.22 (12)	0.01 (14)	0.04 (12)				

Figure S3. Representative SRM chromatograms corresponding to extracts obtained from urine, plasma and whole blood spiked at LOQ levels. Salbutamol (A), methamphethamine (B), stanozolol (C), clenbuterol (D), GW501516 (E), and toremifene (F).

Figure S4. Comparison of absolute recoveries found using HLB thin films with and without PAN over-coating applied by dipping. Extractions were performed from PBS spiked at 70 ng mL⁻¹. The extraction time was 60 min.

Figure S5. Evaluation of the effect of four different washing step approaches (10 s static, 10 s with vortex, two 5 s steps with vortex and three 5 s steps with vortex) on the final amount desorbed from rounded SPME-HLB-PBT devices (n = 4). Extractions were performed from PBS spiked at 50 ng mL⁻¹ and mixed with 1 M buffer (9:1 ratio). The extraction time was set to 45 min.

Figure S6. Microscope picture and SEM images (30x magnification) taken from SPME-HLB-PBT devices after being exposed for 90 min to whole blood.

	Ionization	Blank blood extract spiked at 50 ppb		Neat solvent, 50 ng mL ⁻¹		Absolute
Compound	mode	Average area counts	RSD, %	Average area counts	RSD, %	matrix effects, %
Morphine	+	790613	6.8	746645	6.5	106
Salbutamol	+	1752803	6.4	1683275	7.4	104
Nikethamide	+	1770978	9.4	1698455	12.0	104
Codeine	+	901379	6.6	865793	6.5	104
Benzoylecgonine	+	2123832	5.5	2011989	5.7	106
Amphetamine	+	613793	7.8	597718	9.7	103
Methamphetamine	+	1472182	7.4	1403228	8.4	105
Strychnine	+	982709	4.9	892247	5.0	110
Exemestane	+	294528	3.8	284409	4.6	104
Trenbolone	+	294309	6.9	290659	7.0	101
Metoprolol	+	810327	7.8	807978	8.2	100
Stanozolol	+	2112271	4.9	2073968	5.3	102
Clenbuterol	+	2884970	6.2	2804007	7.6	103
Bisoprolol	+	4809840	6.2	4617177	6.8	104
GW501516	+	13394571	5.0	12500394	4.8	107
Propranolol	+	3172468	6.0	3189958	7.6	99
Toremifene	+	3873108	6.6	3851666	3.3	101

Table S6. Absolute matrix effects assessed in whole blood

Figure S7. Microscope pictures of PAN-HLB thin films obtained by cutting pieces of 2.3 mm width from a coated flat PBT rectangular piece (8 x 10 cm).

Table S7. Transition ratios calculated from standards and from the tested matrices. Values were calculated by dividing the qualifier transition signal by the quantifier transition. Concentrations of up to 3 times LOQ values were considered for this calculation.

Compound	Transition ratios Qual/Quant				Deviation from standard, %		
Compound	Standard	Urine	Plasma	Blood	Urine	Plasma	Blood
Morphine	0.71	0.74	0.80	0.69	5	14	2
Salbutamol	0.24	0.24	0.29	0.29	2	22	21
Nikethamide	0.26	0.26	0.22	0.26	1	13	1
Codeine	0.82	0.89	0.76	0.87	8	6	7
Benzoylecgonine	0.31	0.29	0.30	0.29	7	4	8
Amphetamine	0.24	0.26	0.20	0.25	7	19	3
Methamphetamine	0.26	0.20	0.24	0.24	25	10	10
Strychnine	0.68	0.64	0.58	0.71	6	15	5
Exemestane	0.72	0.68	0.82	0.75	4	14	5
Trenbolone	0.95	0.90	0.93	1.73	5	2	83
Metoprolol	0.66	0.74	0.71	0.78	13	9	19
Stanozolol	0.45	0.35	0.46	0.49	21	3	11
Clenbuterol	0.44	0.34	0.42	0.42	22	4	4
Bisoprolol	0.16	0.14	0.16	0.17	16	1	7
GW501516	0.26	0.25	0.26	0.26	4	1	2
Propanolol	0.92	0.92	0.88	0.93	0	5	0
Toremifene	0.10	0.10	0.09	0.09	1	12	9

Table S8. Average absolute recoveries obtained when using HLB thin films prepared on PBT support to extract from PBS spiked at 70 ng mL⁻¹ (n=6 thin films).

	No overcoat	ed	Overcoated		
Compound	Abs. recovery,	RSD,	Abs. recovery,	RSD,	
	%	%	%	%	

Salbutamol	38.7	5.2	5.0	7.1
Codeine	83.2	4.4	8.4	5.1
Stanozolol	75.5	1.5	45.9	6.6
Clenbutero				
1	91.7	2.9	12.1	2.3
Bisoprolol	93.9	1.2	10.0	2.9
Propanolol	91.4	2.4	20.5	3.7