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Summary

Many association tests have been proposed for rare variants, but the choice of a powerful test is un-
certain when there is limited information on the underlying genetic model. Proposed methods use
either linear statistics, which are powerful when most variants are causal and have the same direction
of effect, or quadratic statistics, which are more powerful in other scenarios. To achieve robust-
ness, it is natural to combine the evidence of association from two or more complementary tests. To
this end, we consider the minimum-p and Fisher’s methods of combining P-values from linear and
quadratic statistics. Extensive simulation studies show that both methods are robust across models
with varying proportions of causal, deleterious, and protective rare variants, allele frequencies, and
effect sizes. When the majority (>75%) of the causal effects are in the same direction (deleterious
or protective), Fisher’s method consistently outperforms the minimum-p and the individual linear and
quadratic tests, as well as the optimal sequence kernel association test, SKAT-O. When the individual
test has moderate power, Fisher’s test has improved power for 90% of the ∼5000 models considered,
with >20% relative efficiency gain for 40% of the models. The maximum absolute power loss is 8%
for the remaining 10% of the models. An application to the GAW17 quantitative trait Q2 data based
on sequence data of the 1000 Genomes Project shows that, compared with linear and quadratic tests,
Fisher’s test has comparable power for all 13 functional genes and provides the best power for more
than half of them.

Keywords: Robust methods; Fisher’s method; Rare variants; Complex traits; Next-generation se-
quencing; 1000 genome project
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1 INTRODUCTION

Rare variants play an important role in studies of complex human diseases and traits, and next-generation
sequencing technology provides rich data for analysis [Cirulli and Goldstein, 2010]. This recent focus
on rare variants has produced numerous genotype-phenotype association testing strategies based on ag-
gregating information across multiple SNPs. They include, among others, proposals by Morgenthaler
and Thilly [2007], Li and Leal [2008], Madsen and Browning [2009], Bansal et al. [2010], Han and
Pan [2010], Hoffmann et al. [2010], Morris and Zeggini [2010], Price et al. [2010], Yi and Zhi [2011],
Neale et al. [2011], Wu et al. [2011], Lin and Tang [2011], Lee et al. [2012a]. Basu and Pan [2011] and
Derkach et al. [2012] review the many test statistics that have been proposed. Their work shows that the
tests can be considered within a unified framework, with methods divided into two classes: tests based
on linear composite statistics, which are powerful against very specific alternative hypotheses [e.g., Li
and Leal, 2008; Madsen and Browning, 2009; Morgenthaler and Thilly, 2007; Morris and Zeggini, 2010;
Price et al., 2010] and tests based on quadratic statistics, which are designed to have reasonable power
across a wide range of alternatives [e.g., Lee et al., 2012a; Neale et al., 2011; Wu et al., 2011]. Sev-
eral papers have also considered using adaptive weighting of the rare variants under study, based on the
observed phenotype and genotype data. For linear statistics [e.g., Han and Pan, 2010; Hoffmann et al.,
2010; Lin and Tang, 2011; Yi and Zhi, 2011], it can be shown analytically that these adaptive methods
are operationally similar to using quadratic statistics, unless (correct) prior information on SNP effect
is available [Derkach et al., 2012]. We note as well that score statistics obtained from random effect
regression models lead to quadratic statistics [Basu and Pan, 2011; Goeman et al., 2006].

Tests within the linear class or the quadratic class perform rather similarly, but there are substantial
differences in power between linear and quadratic tests [e.g., Basu and Pan, 2011; Derkach et al., 2012;
Han and Pan, 2010; Lin and Tang, 2011]. More specifically, linear tests can outperform quadratic tests if
all or almost all SNPs under consideration are causal variants and their effects are in the same direction.
However, tests based on linear statistics can perform poorly when there are both protective and deleterious
SNPs, and more generally, when a substantial portion of the SNPs is neutral. It is becoming evident
that “the power of recently proposed statistical methods depend strongly on the underlying hypotheses
concerning the relationship of phenotypes with each of these three factors [proportions of causal variants,
and direction of the associations (deleterious, protective, or both)]. No method demonstrates consistently
acceptable power despite this large sample size, and the performance of each method depends upon the
underlying assumption of the relationship between rare variants and complex traits”, as concluded by
Ladouceur et al. [2012]. Robustness, therefore, is critical and consequential when our knowledge about
the genetic architecture of rare variants is still incomplete [Cirulli and Goldstein, 2010].

Basu and Pan [2011] recommended that both linear and quadratic statistics be used in settings where
prior information is limited. In this report, we propose hybrid association test statistics that borrow
strength from each class of tests by combining them via Fisher’s method or the minimum-p approach.
We show that both hybrid statistics are robust across genetic models with respect to power, and in some
situations Fisher’s statistics can outperform linear and quadratic statistics with a relative efficiency gain of
more than 100%. The advantages of the proposed methods are demonstrated through extensive simulation

http://onlinelibrary.wiley.com/doi/10.1002/gepi.21689/full
http://olabout.wiley.com/WileyCDA/Section/id-828039.html
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studies of over 10,000 different models with varying proportions of causal, deleterious, and protective rare
variants; variant frequencies; effect sizes; and the relationships between variant frequencies and effect
sizes, for studies of both binary and quantitative traits, as well as an application to the Genetic Analysis
Workshop 17 (GAW17) simulated quantitative trait Q2 data based on the mini-exome sequence data that
were provided by the 1000 Genomes Project [Almasy et al., 2011; 1000 Genomes Project Consortium,
2010]. We also compare the two tests with SKAT-O [Lee et al., 2012a], the optimal sequence kernel
association test that uses the minimal P-value of a family of tests that are based on weighted averages
of a linear statistic and the original SKAT quadratic statistic [Wu et al., 2011], and we show that the
proposed hybrid statistics have better power than SKAT-O.

2 MATERIALS AND METHODS

2.1 METHODS

To formulate the testing problem, we assume that a group of J SNPs labeled j = 1, . . . , J and a (quanti-
tative or binary) phenotype Y for n subjects are under consideration. Let Yi be the phenotype value, and
Xij be the genotype value of the ith subject representing the number of copies of the rare allele for the
jth SNP. In practice, Xij = 0 or 1 because of the low frequency of the rare allele. Most statistics [e.g.,
Lin and Tang, 2011; Neale et al., 2011; Wu et al., 2011] for testing association between Yi and Xij in the
absence of other factors can be written in terms of

Sj =

∑n
i=1(Yi − Ȳ )Xij√

(
∑n

i=1Xij) (1−
∑n

i=1Xij/n)
=

∑n
i=1(Yi − Ȳ )Xij√
mj(1−mj/n)

, j = 1, . . . , J , (1)

where mj =
∑n

i=1Xij is the total number of copies of the rare allele of SNP j, approximately equal
to the number of subjects carrying the rare allele of SNP j. The statistic S = (S1, . . . , SJ)′ is also the
scaled score statistic from linear or logistic regression models relating Yi and Xi = (Xi1, . . . , XiJ)′ [e.g.,
Basu and Pan, 2011; Lin and Tang, 2011; Wu et al., 2011], and it has an expectation of 0 under the null
hypothesis of no association, H0: Yi is independent of Xi .

Linear statistics that have been proposed take the general form

WL =
J∑
j=1

wjSj = w′S . (2)

where wj is a prespecified weight for SNP j and w = (w1, . . . , wJ)′. Quadratic statistics take the form

WQ = S′AS , (3)

where A is a positive definite (or semidefinite) symmetric matrix [Basu and Pan, 2011; Derkach et al.,
2012; Lin and Tang, 2011; Wu et al., 2011].

Let p L be the two-sided P-value obtained fromWL to allow for either positive or negative association
statistic under the alternative hypothesis. Let pQ be the P-value obtained from WQ as Prob(WQ ≥
observed value) under H0, because for quadratic statistics only large values of WQ provide evidence
against H0. To combine information from the linear and quadratic statistics, we propose to use Fisher’s
method to combine P-values from WL and WQ, using

WF = −2 log(pL)− 2 log(pQ) (4)
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as the association test statistic. Large values of WF correspond to small values of pL and/or pQ and
indicate evidence against the null hypothesis of no association. If pL and pQ are independent under
H0, then WF is distributed as χ2

4. However, WL and WQ (thus pL and pQ) are not independent except
asymptotically when J → ∞. Simulations described below and Supporting Information Tables S1
and S2 show that the χ2

4 approximation is inadequate for realistic settings. Thus we assess statistical
significance in finite samples using a novel permutation distribution approach described in the Appendix.

Another way to combine evidence from two or more tests is through the minimum-p approach. Here
we consider

WM = min(pL, pQ) . (5)

The minimum-p principle has been proposed by many authors, [e.g., Lee et al., 2012a; Lin and Tang,
2011], each considering a different set of tests. For example, the recent SKAT-O statistic [Lee et al.,
2012a] is the minimal P-value of a family of tests that are based on weighted averages of a linear statistic
and the quadratic SKAT statistic, with weights ranging from 0 (using the quadratic statistic only) to 1
(using the linear statistic only). EREC [Lin and Tang, 2011] can be considered as a special case of
SKAT-O. We focus on the simple minimum-p statistic of (5) and the Fisher’s statistics, but we compare
them with SKAT-O in the Discussion section below and in the Supporting Information.

For symmetric case-control studies or studies of normally distributed traits, the statisticWM is asymp-
totically distributed as J →∞ underH0 as min{U1, U2}, where U1 and U2 are two independent Unif(0,1)
variables. As with WF , asymptotic approximations may not provide satisfactory P-values in many prac-
tical situations, and once again we rely on permutation-based P-values.

The general problem of combining information from test statistics has been studied by several authors
[e.g., Loughin, 2004; Owen, 2009; Stouffer, 1949]. They show that no single approach is best (most
powerful) under all circumstances. [Owen, 2009] gave a careful comparison of (4) and (5), and found
that if one of the original statistics has low power and the other high power,WM is a better hybrid statistic.
On the other hand, if both tests have reasonable power, Fisher’s statistic WF is a better choice.

2.2 SIMULATION MODELS

We conducted extensive simulation studies to examine the finite sample performance of linear, quadratic,
minimum-p, and Fishers test statistics. We considered association studies for both quantitative and bi-
nary traits. Here, we focus on quantitative traits for which simulations can be conducted efficiently to
study a large number (over 10,000) of genetic models. Results from case-control studies are provided as
Supporting Information and are discussed below in the final Discussion section.

To provide numerical comparisons of power, we consider for simplicity the case where Xj indicates
the presence (1) or absence (0) of the minor allele, and let

Yi = β0 + β1Xi1 + · · ·+ βJXiJ + ei , for i = 1, . . . , n , (6)

with ei ∼ N(0, σ2), so the hypothesis of no association H0 becomes β = (β1, . . . , βJ)′ = 0. We first
assume that theXij’s are mutually independent Bernoulli variables with P (Xij = 1) = pj , approximately
twice the minor allele frequency (MAF) of SNP j, for j = 1, . . . , J . We later consider Xij obtained from
the sequence data of the 1000 Genomes Project [1000 Genomes Project Consortium, 2010], which are
not mutually independent.

The specific linear and quadratic statistics considered here are WL in (2) with w = 1,

WL = 1′S =
J∑
j=1

Sj , (7)
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and WQ in (3) with A = I ,

WQ = S′S =
J∑
j=1

S2
j , (8)

where Sj is defined in (1). Because Sj is an MAF-scaled score statistic, the linear statistic (7) is the same
as the MAF-weighted linear statistic proposed by [Madsen and Browning, 2009] and the quadratic statis-
tic (8) is equivalent to Hotelling’s statistic [Derkach et al., 2012]. Although other linear and quadratic
statistics could be considered, we focus on WL and WQ because within-class difference in power is
substantially smaller than the between-class difference [Basu and Pan, 2011; Derkach et al., 2012; Lin
and Tang, 2011], and the latter is the subject of interest here. Moreover, extensive simulation results in
Basu and Pan [2011] show that WL and WQ have good power among the classes of linear and quadratic
statistics, respectively.

Under the normal model (6), the work of Derkach et al. [2012] shows that, when mj in (1) equals its
expected value npj ,

Sj ∼ N(µj, σ
2) ,

µj =
√
nβj

√
pj(1− pj) ,

and the variance explained by each SNP j is approximately

EVj =

(
β
√
pj(1− pj)

)2
σ2

Moreover, WQ has a noncentral χ2
J,ncQ

distribution under an alternative H1 for which β 6= 0 and the
power of WQ is a function of the noncentrality parameter, which is

ncQ =
∑
j

µ2
j

σ2
= n

∑
j

EVj .

W 2
L has a noncentral χ2

1,nCL
distribution under H1 and

ncL =

(∑
j µj

)2∑
j σ

2
= n

(∑
j sign(βj)

√
EVj

)2
J

.

Therefore, the power of both statistics depends only on sample size n, the number of SNPs J , variance
explained by each SNP EVj , its direction of effect sign(βj) (for linear statistics only), and type 1 error α.
It is important to note that effect size βj , MAF pj/2, and the total phenotypic variance σ2 do not directly
affect power once EVj is known or specified. However, also note that EVj = (βj

√
pj(1− pj))2/σ2,

and therefore the models considered here implicitly assume that, for a specified EVj level, variants with
smaller MAFs tend to have bigger effect sizes (i.e., the “MAF-effect-dependent” model assumption).
Later we discuss additional simulation studies assuming that MAFs and effect sizes are mutually inde-
pendent (i.e., the “MAF-effect-independent” model assumption).

To evaluate the accuracy of the asymptotic null distributions of the proposed hybrid statistics, WF

and WM , in finite samples in terms of J , we considered J = 10, 20, 30, 40, 50, or 100 and EVj ≡ 0, for
all j = 1, . . . , J . (Sample size n is not a factor under the normal assumption and under H0.) For each
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combination, we generated S = (S1, . . . , SJ)′ from S = N(0, σ2I) independently 106 times. Without
loss of generality, we assumed σ2 = 1 because σ2 does not affect the size or power of the tests once
EVj is specified. For each simulated replicate, we calculated pL for WL based on N(0, 1) and pQ for WQ

based on χ2
J , then combined the two P-values to obtain WF and WM . Finally, we calculate pF for WF

based on χ2
4 and pM for WM based on min(U1, U2), with U1 and U2 assumed independent. Note that the

χ2
4 approximation for WF and min(U1, U2) for WM are only used here for assessing the accuracy of the

asymptotic null distributions. For all power comparisons below, we used empirical critical values that are
based on the results from this study for quantitative traits or on the permutation method (Appendix) for
case-control and application studies.

Table 1: Parameters and parameter values of simulated models for studies of quantitative or binary traits.
The MAF-effect-dependent model assumes that variants with smaller MAFs tend to have bigger effect
sizes; the MAF-effect-independent model assumes that MAF and effect sizes are mutually independent

To evaluate power of the statistics under a broad range of scenarios, we independently generated
10,000 different models as described in Table 1 for studies of quantitative traits under the MAF-effect-
dependent assumption. For each combination of parameter values (i.e., one of the 10,000 models), we
generated Sj from N(0, σ2) for JN neutral variants, from N(

√
n
√
EVj, σ

2) for JD deleterious variants,
and from N(−

√
n
√
EVj, σ

2) for JP protective variants, independently 10,000 times (i.e., 10,000 data
replicates for each of the 10,000 models). We calculated pL for WL based on N(0, 1), pQ for WQ based
on χ2

J , then combined the two P-values to obtain WF and WM . We then determined if pF for WF and
pM for WM were less than a given α value by comparing WF and WM with the empirical critical values
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from Supporting Information Tables S2 and S4, respectively. This ensures that the tests have the correct
type 1 error α. Finally, we estimated power by the proportion of the 10,000 data replicates that had pL,
pQ, pM , and pF less than α, respectively, for WL, WQ, WM , and WF .

2.3 APPLICATION DATA

Similar to many earlier studies of rare variants, the simulating models considered so far assumed that
genotypes of a group of rare variants Xj , j = 1, . . . , J , are mutually independent, although the tests
themselves do not require this. One rationale is that rare variants act independently. The independence
assumption also allows for evaluation of a large number of different models, as well as systematic pre-
sentation and understanding of the results. However, the general conclusions made so far are not affected
by the independence assumption. As a proof of principle, we also analyzed the GAW17 data for which
multiple phenotypes were simulated based on the “mini-exome” sequence data provided by the 1000
Genomes Project [Almasy et al., 2011; 1000 Genomes Project Consortium, 2010].

We analyzed quantitative trait Q2 that is influenced by 72 SNPs in 13 genes but not by other covariates
[Almasy et al., 2011]. We used data from the n = 321 unrelated Asian subjects (Han Chinese, Denver
Chinese, and Japanese). Because we excluded SNPs that had MAF >5% or were monomorphic within
the Asian sample, VNN1 had no causal rare variant but it was kept in the analysis to serve as a negative
control. The choice to focus on SNPs with MAF ≤ 5% was made because this thresholding (almost)
does not affect the number of causal SNPs (70 of the 72 causal SNPs have MAF ≤ 5% in the range of
(0.16.1.4%)), but it reduces the number of neutral SNPs in a gene, so that the proportion of the causal
variants is high enough to have meaningful power comparisons for at least some of the 13 genes (Table
2).

The GAW17 data include 200 replicates (same genotype data but different phenotype data indepen-
dently simulated based on the true genotype-phenotype association model), and for each, we calculated
permutation-based P-values for the four tests using the method described in the Appendix, based on 104
permutations. We estimated power for α = 0.05 by the proportion of the 200 replicates for which the
empirical P-values are≤ 0.05 for each test. The choice of the liberal type 1 error level 0.05 was based on
the overall low power of detecting these genes due to small sample size, small genetic effect, extremely
small MAF, or the low proportion of the causal variants within a gene. Because power estimated from
200 replicates is highly variable, comparisons should be focused on the first group of eight genes for
which the maximum power is 10% or more.

3 RESULTS

3.1 SIMULATION RESULTS

The empirical type 1 error rates for WL and WQ, as expected, were very close to the nominal level
because of the assumption of normality (results not shown). Therefore, pL and pQ used to obtain the WF

and WM statistics were “honest” P-values. However, WF has a slight inflation of type 1 error around
0.06 for α = 0.05, and a large inflation of 5 · 10−4 for α = 10−4, worse for smaller J , and better for
bigger J as expected (Supporting Information Table S1). This reflects the nonindependency of WL and
WQ under H0 with small J . The empirical type 1 error rates for WM were consistent with the nominal
levels considered (Supporting Information Table S3). However, this does not hold in general, e.g., for
non-normally distributed traits with small sample sizes or case-control studies. Therefore, in practice
P-values should be obtained empirically. The Appendix provides an efficient permutation scheme that
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Table 2: Power of the four test statistics applied to the GAW17 sequence data provided by the 1000
Genomes Project. The four statistics are linear WL in (7), quadratic WQ in (8), minimum-p WM in (5),
and Fisher’s WF in (4). The 13 genes presented here are all the causal genes for simulated quantitative
trait Q2. VNN1 does not have causal variants because one of the two causal variants has MAF 26%
and the other is not polymorphic within the Asian sample (n = 321). VNN1 is kept in the analysis to
serve as a negative control. All causal variants were designed by GAW17 to have the same direction of
effects (minor alleles were associated with higher Q2 values). The average genetic effect is the average
of regression coefficient β values of the causal variants used to simulate Q2 (effects are independent of
populations by the GAW17 design). Genes are ordered according to the maximum power of Fisher’s test.
Powers shown vary considerably due to inherent factors and estimation based only on 200 replicates, and
the 13 genes are separated into different groups
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provides correct P-values for WL, WQ, WF , and WM simultaneously, which is used for our simulation
and application studies.

Figure 1 shows the empirical power of the four test statistics compared to the maximum power.
Sample size is 1000 and type 1 error is α = 10−4. (Results for n = 500 and 2000 at α = 10−4 are in
Supporting Information Figs. S2 and S3, respectively and are characteristically similar; results for other
α levels, 0.05, 10−2, and 10−3 are also similar and not shown.) Several observations can be made from
Figure 1.

• The maximum power is often achieved by the Fisher’s test: this occurs in 75% of the 10,000
simulated models.

• Both linear and quadratic tests have large variability in power reflecting the wide variation in the
simulated models. Power of the linear test is more than 5% below the maximum power for 52%
of the 10,000 models; when the maximum power is around 60%, power of the linear test can be as
low as 15%. Power of the quadratic test is more than 5% below the maximum power for 53% of
the 10,000 models; when the maximum power is around 60%, power of the quadratic test can be
as low as 20%.

• Both Fisher’s and minimum-p test statistics are robust in terms of power. However, Fisher’s test
consistently outperforms the minimum-p test, and it can have substantially better power than the
individual linear and quadratic tests.

• When either the linear or quadratic test has moderate power, Fisher’s test has improved power. For
example, among the 10,000 models simulated, the power of linear or quadratic test is at least 20%
for 4,903 models, and Fisher’s test has improved power for 90% of the 4,903 models. The relative
efficiency gain is at least 20% for 40% of the 4,903 models (and at least 50% for 10% of the 4,903
models). Among the 380 of the 4,903 models for which Fisher’s test has less power, the maximum
absolute power loss is 8%.

To better understand the impact of the various parameters, Figure 2 presents the same results from
a different perspective showing the individual power as a function of the number of causal variants JC
(large scale of the X-axis) and the number of deleterious variants JD (small scale of the X-axis), when
the total number of rare variants is J = 30 (see Supporting Information Figs. S1a-S1d for J = 10, 20, 40,
and 50). It is clear that power of all tests highly depend on the percentage of causal SNPs in the group
of SNPs investigated. For example, among the 10,000 models simulated, to achieve power of 50% or
greater, the average proportion of causal SNPs is 81% (SE = 13%, min = 42%) for the linear test, 81%
(SE = 12%, min = 50%) for the quadratic test, 80% (SE = 14%, min = 42%) for the minimum-p test, and
77% (SE = 15%, min = 36%) for Fisher’s test. For the 2005 models with J = 30 shown in Figure 2, a
proportion of 80% being causal means JC = J · pC = 24 on the large scale of the X-axis.

To further demonstrate the differential consequences of effect directions on different tests, Figure 3
shows the individual power for the 75 models that have JC = 24 casual variants of the J = 30 total
variants. The X-axis in Figure 3 shows the number of deleterious variants out of the 24 casual ones,
ranging from JD = JC · pD = 24 · 75% = 18 to JD = 24 · 100% = 24. Although the linear test can
outperform the quadratic test by a large margin for some models, it is highly sensitive to the direction
of effects. For example, for models in Figure 3 where all 24 causal SNPs are deleterious (JD = 24,
JP = 0), power of the linear test is over 90% compared to ∼60% for the quadratic test (power of the
minimum-p and Fisher’s tests are also over 90%). However, if 4 of the 24 causal SNPs are protective
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Figure 1: Empirical power of the four test statistics compared to the maximum power for 10,000 inde-
pendently generated models for studies of quantitative traits under the MAF-effect-dependent assumption
as described in Table 1. The four statistics are linear WL in (7), quadratic WQ in (8), minimum-p WM

in (5), and Fisher’s WF in (4). For each genetic model, the maximum power among the four statistics
and the statistic that provides the maximum power are recorded (black triangle for WL , black diamond
for WQ, blue square for WM , and red circle for WF ), and it is compared with power of individual statis-
tics. Sample size n = 1000 and type 1 error α = 10−4. Results for n = 500 and 2000 are in Supporting
Information Figures. S2 and S3, respectively.
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Figure 2: Empirical individual power of the four test statistics for the 2005 of the 10,000 models in
Figure 1 with J = 30 total number of rare variants. The large scale of the X-axis shows the number of
causal variants in the range of JC = J · pC = 30 · 10% = 3 to JC = 30 · 100% = 30. The small scale of
the X-axis shows the number of deleterious variants JD out of the total of JC causal variants in the range
of JD = JC · pC = Jc · 75% to JD = JC · 100%, depending on the actual number of causal variants in a
model. The 2005 models are a subset of the 10,000 models generated as described in Table 1 and Figure
1. Results of other J values are in Supporting Information Figures. S1a–S1.
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Figure 3: Empirical individual power of the four test statistics for the 75 of the 2005 models in Figure
2 with JC = 24 causal variants out of total J = 30 rare variants. The X-axis shows the number of
deleterious variants JD out of the total of JC = 24 causal variants in the range of JD = JC · pD =
24 · 75% = 18 to JD = 24 · 100% = 24. Other details are Figures. 1 and 2 and Table 1.
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(JD = 20, JP = 4), power for the linear test drops to ∼40% while power of the quadratic test remains at
∼60% (power of the minimum-p is∼60% and power of Fisher’s test is∼70%). Both the minimum-p and
Fisher’s tests are robust because they combine information from the complementary linear and quadratic
tests, and the relationship between their power and the various parameters is similar. One noticeable
difference is that power of the minimum-p test is constrained between power of the linear and quadratic
tests, while Fisher’s test does not have such a restriction.

3.2 APPLICATION RESULTS

Results in Table 2 are consistent with our previous conclusions. (1). Performance of individual linear
and quadratic tests can be highly variable depending on the model. For example, power of the linear
and quadratic tests for SIRT1 are 44% and 39%, respectively, while power of the two tests for BCHE
are 29% and 39%, respectively. The example of BCHE also shows that even when all causal variants
have the same direction of effect, quadratic tests can outperform linear tests if the proportion of the
causal variants is low (5 out 15 for BCHE). (2). The minimum-p and Fisher’s hybrid statistics are both
robust, and Fisher’s test consistently outperforms the minimum-p test. (3). Fisher’s test not only provides
comparable power for all genes analyzed but often it is the most powerful test, with appreciable power;
e.g., the power of Fisher’s test is 50% for SIRT1 and 45% for BCHE.

Some authors have reported problems related to the GAW17 data and some of the published analyses.
For example, Tintle et al. [2011] noted Two main causes emerged: population stratification and long-
range correlation (gametic phase disequilibrium) between rare variants. These issues however do not
affect our analyses, because we used the samples from the Asian population only and we assessed the
statistical significance of the tests using a permutation-based method as described in the Appendix.

4 DISCUSSION

As discussed above, the genetic models considered in Table 1 and Figure 1 directly specify EVj , the
variance explained by a rare variant, which implicitly assumes that rarer variants have bigger genetic
effects. We also investigated models where MAFs and genetic effects are independent of each other
(Table 1; Quantitative traits under the MAF-effect-independent assumption). Results are presented in
Supporting Information Figure S4 and are very similar to those in Figure 1.

We also conducted extensive simulation studies of case-control studies. Briefly, the distribution of Yi
given Xi is Bernoulli with

Prob(Y1 = 1|Xi) =
eβ0+

∑
j βjXij

1 + eβ0+
∑

j βjXij
,

where Xij are mutually independent Bernoulli variables as in the quantitative setting. Without loss of
generality, β0 = −2.1922 so that Prob(Y1 = 1|Xi = 0) = 0.1. Other parameters are described in Table
1, separately under the MAF-effect-dependent or -independent assumption. For each combination of
parameter values, a sample was obtained by first generating genotypeXi for each subject. The case (Y =
1) and control (Y = 0) status were assigned based on the probabilities from the logistic model, Prob(Yi =
1|Xi), allowing for the case-control design. This was done independently 1000 times to estimate power
of the four tests for each of the 500 models independently generated. Due to non-normality, pL and pQ,
P-values of the linear and quadratic statistics, were also obtained empirically via 106 permutations (see
the Appendix). Results are in Supporting Information Figure S5 (MAF-effect dependent) and Supporting
Information Figure S6 (MAF-effect independent), and they are similar to each other and similar to those
in Figure 1 for quantitative traits.
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The models considered so far do not restrict all causal variants to have the same direction of effect,
but do assume the majority of the causal variants have the same direction (without loss of generality,
deleterious) with pD = JD/JC ∼ Unif(0.75, 1). Although this is more plausible than the scenario when
deleterious and protective variants are equally likely among the causal ones, we also investigated models
for which pD ∼ Unif(0.5, 0.75); all other parameters were generated as described in Table 1. For such
models, the linear test has little power in most cases while the quadratic test has much better power,
as expected. Results of quantitative traits under the MAF-effect-dependent assumption are in Figure 4
(results of other types of studies as described in Table 1 are characteristically similar and not shown).
The maximum power was achieved by the quadratic test in 94% of 10,000 simulated models; for the
remaining 6% of the models the maximum power was achieved by Fisher’s test. Consequently, although
both minimum-p and Fisher’s tests are reasonably robust, the minimum-p statistic is close to best statistic
for each model and is a better hybrid statistic, consistent with the findings of Owen [2009].

In some settings, a test of no association may be based on a regression model with several environ-
mental or population stratification covariates [e.g., Lin and Tang, 2011]. Because adjusting for covariates
is performed at the individual linear and quadratic test statistic level, the calculation of the proposed
hybrid statistics remains the same as in (5) for the minimum-p statistic and in (4) for Fisher’s statistic.
However, covariates adjustment could affect the computation of P-values for the hybrid tests. Simple
permutation procedures are not valid unless SNP genotypes are independent of both the response Y and
covariates. Several authors [e.g., Lee et al., 2012a; Lin and Tang, 2011] have proposed parametric boot-
strap to obtain P-values in the presence of covariates. The parametric bootstrap approach combined with
the joint resampling methodology as discussed in the Appendix can be used for our hybrid test statis-
tics. For large sample size, an alternative for obtaining valid P-values is numerical calculation. In that
case, vector S is (approximately) distributed as multivariate normal and hence can be generated. Further
research is needed on robust ways to obtain P-values in the presence of covariates.

The goal of this study is to show that combing evidence of association from complementary linear
and quadratic tests can lead to robust and more powerful tests. As a proof of principle, we used the MAF-
weighted linear statistic WL in (7) and Hotelling’s statistic WQ in (8), and we assumed that there are no
other influencing factors. However, the concept can be extended to any two or more complementary
tests. The power of such hybrid statistics depends on the power of the original individual tests and the
dependency between the tests under the null hypothesis of no association H0. An interesting question
is whether one could further improve robustness by combining the P-values from the minimum-p and
Fisher’s tests, however, this is beyond the scope of this work.

Recently, Lee et al. [2012a] developed an optimal sequence kernel association test, SKAT-O, extend-
ing the work of Wu et al. [2011] that proposed the quadratic SKAT test. The SKAT-O uses the minimum-p
principle by considering a family of tests based on weighted averages of a linear statistic and SKAT. We
evaluated the empirical power of SKAT-O using the existing R-package [Lee et al., 2012b] under the var-
ious scenarios as outlined in Table 1. In the case of quantitative traits, we observed the Fisher’s statistic
performs better than SKAT-O, when the proportion of deleterious SNPs is from Unif(0.75, 1) (Support-
ing Information Fig. S7, n = 1000, α = 10−4). Similar results were also seen in the case-control study
where we used SKAT-O with suggested adjustment for small sample size (Supporting Information Fig.
S9, ncases = ncontrols = 500, α = 10−4). However, when the proportion of deleterious SNPs is from
Unif (0.5,0.75), the proposed minimum-p statistic outperforms SKAT-O and Fisher’s statistic because the
latter two statistics lose power when one of the tests has little to no power (Supporting Information Fig.
S8 for quantitative traits and Supporting Information Fig. S10 for binary traits). We also observed that
SKAT-O has a slight inflated empirical type 1 error, therefore results for SKAT-O presented here are a
little too optimistic. Nevertheless, the general conclusions hold.
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Figure 4: Empirical power of the four test statistics compared to the maximum power for 10,000 in-
dependently generated models for which the proportion of deleterious SNPs among the causal ones is
generated from Unif (0.50, 0.75). All other parameters are described in Table 1 for studies of quantitative
traits under the MAF-effect-dependent assumption, and they are the same as the ones used for Figure 1.
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In summary, the proposed minimum-p and Fisher’s hybrid test statistics provide much needed ro-
bustness in terms of power for association tests of rare variants, by combining information from the
complementary linear and quadratic test statistics. Statistical significance of the hybrid statistics can be
obtained efficiently using the same permutation-based method often required for the existing linear and
quadratic statistics, without the need for additional permutations. The minimum-p statistic is attractive if
one believes that causal rare variants are equally likely to be deleterious and protective. However, for the
plausible scenario when the majority of the causal variants have the same direction of effect (either dele-
terious or protective), Fisher’s test consistently outperforms methods that use the minimum-p principle
[e.g., the simple minimum-p test considered here and SKAT-O Lee et al., 2012a], and it often provides
considerably better power than the individual linear and quadratic tests. The general concept of using
Fisher’s method to combine information from two or more existing but complementary methods applied
to the same data, beyond the traditional setting of meta-analysis of multiple data resources, can be readily
extended and is useful in many other scientific studies.
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APPENDIX

An efficient permutation-based method that provides empirical P-values, simultaneously, for the linear,
quadratic, minimum-p, and Fisher’s tests

Here, we describe an efficient permutation-based method that provides empirical P-values, pL, pQ, pM ,
and pF , simultaneously, for tests based on WL , WQ , WM , and WF , respectively. This approach is novel,
but similar in spirit to methods used for nonparametric estimation of copula functions [Genest and Rivest,
1993].

For a given dataset, let Y = (Y1, . . . , Yn)′ be the (binary or quantitative) phenotype values for n
subjects, Xj = (X1j, . . . , Xnj)

′, j = 1, . . . , J be the corresponding genotype values for a group of J
SNPs under study. Let WL,obs be the observed linear statistic calculated, e.g., as in Equation (7), and
WQ,obs be the observed quadratic statistic calculated, e.g., as in Equation (8). Due to sparsity or non-
normality, asymptotic approximations often do not provide satisfactory P-values in practical settings, so
resampling-based methods are recommended by many authors [e.g., Basu and Pan, 2011; Lin and Tang,
2011; Neale et al., 2011].

To preserve the possible dependence present in the observed genotypes between SNPs, a permuted
dataset under the null of no association is obtained by permuting the phenotype. Let Y k, k = 1, . . . , K
be the K independently permuted phenotype vectors and W k

L and W k
Q be the corresponding linear and

quadratic statistics for the kth permuted dataset. “Honest” P-values for the linear and quadratic tests



Derkach A, Lawless JF, Sun L 17

using the observed data are obtained, respectively, as

pL =
∑
k

I(W 2
L,k ≥ W 2

L,obs)/K ,

pQ =
∑
k

I(W 2
Q,k ≥ W 2

Q,obs)/K ,

where I(·) indicates if the statistic from the kth permutated sample is greater than or equal to the observed
statistic. The observed test statistics of WM and WF are, respectively,

WM,obs = min(pL, pQ) ,

WF,obs = −2 log(pL)− 2 log(pQ) .

To empirically assess the statistical significance of WM,obs and WF,obs without additional permutations,
let

pkL = Rank(|W k
L|)/K, k = 1, . . . , K ,

be the empirical P-value of the linear test using the kth permuted sample, where Rank(|W k
L|) is the rank

of |W k
L| among all K linear statistics calculated based on the K permuted samples. (Other choices are

possible, e.g., pkL = (Rank(|W k
L|) − 0.5)/K but results are not practically different; P-values for linear

statistics are two-sided to allow for either positive or negative association statistic under the alternative
hypothesis.) Similarly, we calculate

pkQ = Rank(W k
Q)/K , k = 1, . . . , K .

The WM and WF statistics using the K permuted datasets are, respectively,

W k
M = min(pkL, p

k
Q) , k = 1, . . . , K ,

W k
F = −2 log(pkL)− 2 log(pkQ) , k = 1, . . . , K .

Finally, “honest” P-values of the minimum-p and Fisher tests for the observed data are obtained, respec-
tively, as

pM =
∑
k

I(W k
M ≤ WM,obs)/K ,

pF =
∑
k

I(W k
F ≥ WF,obs)/K .

The size ofK depends on the particular application. For the GAW17 data, K = 104 because P-values
were large and power were assessed at α = 0.05. For the simulation studies,K = 106 because power was
assessed at α as low as 10−4. For a more stringent type 1 error control (e.g., 10−6 = 0.05/50, 000 genes or
bins/groups of rare variants) suitable for whole-genome analysis of rare variants, computational burden
can be an issue, common to all genome-wide analyses that require permutations to assess statistical
significance. For extremely sparse data, permutation-based methods are also known to be conservative.
For example, in the extreme case of a case-control study of one single SNP, if there was only one copy of
of the rare allele present in the sample, there would be only two distinct test statistics among all possible
permutated datasets, resulting in permutation-based P-values being 0, 0.5, or 1. Randomized P-values
are often recommended to circumvent the problem, but additional research is needed.
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