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Abstract

We present results on smooth and nonsmooth variational properties of symmet-

ric functions of the eigenvalues of a real symmetric matrix argument, as well as

absolutely symmetric functions of the singular values of a real rectangular matrix.

Such results underpin the theory of optimization problems involving such functions.

We answer the question of when a symmetric function of the eigenvalues allows a

quadratic expansion around a matrix, and then the stronger question of when it is

twice di�erentiable. We develop simple formulae for the most important nonsmooth

subdi�erentials of functions depending on the singular values of a real rectangular

matrix argument and give several examples. The analysis of the above two classes of

functions may be generalized in various larger abstract frameworks. In particular,

we investigate how functions depending on the eigenvalues or the singular values of

a matrix argument may be viewed as the composition of symmetric functions with

the roots of hyperbolic polynomials. We extend the relationship between hyperbolic

polynomials and self-concordant barriers (an extremely important class of functions

in contemporary interior point methods for convex optimization) by exhibiting a

new class of self-concordant barriers obtainable from hyperbolic polynomials.
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Chapter 1

Introduction

In this work we focus on nonsmooth analysis of the singular values of a general linear

transformation between �nite dimensional linear spaces, di�erentiability properties

of the eigenvalues of a �nite dimensional real symmetric linear operator and related

matters. More precisely we will deal with spectral and singular value functions, that

is, symmetric functions of the eigenvalues and absolutely symmetric functions of

the singular values. (See De�nition 6.3.2 and [52, De�nition 4.2 ].) Even though the

eigenvalues and the singular values are invariants of two seemingly di�erent classes

of matrices, symmetric and rectangular, there are some connections between the

two sets of numbers. For example if X is an n�m rectangular matrix (say n � m)

the singular values of X together with their negatives and a few additional zeros

are precisely the eigenvalues of the larger symmetric matrix

R(X) =

0B@ 0 X

XT 0

1CA : (1.1)

1



CHAPTER 1. INTRODUCTION 2

Also the square roots of the eigenvalues of XXT are precisely the singular values of

X, so in the case when X is a square symmetric matrix the singular values are just

the absolute values of the eigenvalues. Despite these connections some results about

the nonsmooth behaviour of singular values are not obvious consequences of the

corresponding results for eigenvalues, as will be explained later in the introduction.

The spectrum of a general symmetric matrix can behave in extremely compli-

cated ways. Generally when the entries of the matrix depend on free parameters,

the diÆculties increase with the number of parameters. The perturbation theory

of the spectrum of a symmetric matrix depending on one parameter is laid out

in detail in the now classical book by T. Kato [41]. In contrast we consider the

eigenvalues of a matrix X while X varies freely over the Euclidean space of n � n

real symmetric matrices Sn, and respectively the singular values of a free n � m

real matrix from the Euclidean space Mn;m. We denote the eigenvalues of X 2 Sn

(counting multiplicities) by �1(X) � �2(X) � ::: � �n(X), and the singular values

of X 2 Mn;m (n � m) by �1(X) � �2(X) � ::: � �n(X). It is well known that at

matrices X that have repeated eigenvalues, say �1(X) = �2(X), these eigenvalues

are nondi�erentiable with respect to X. That is, in order for �i to be di�erentiable

at X we must have �i�1(X) > �i(X) > �i+1(X). This realization brings us to

the �rst important question that we must clarify: is there a better way of de�ning

the n eigenvalue functions (maybe not by ordering them decreasingly) so that we

do not loose smoothness? This question is emphasized by the following example.

Consider the matrix

T (x) =

0B@ 0 x

x 0

1CA
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depending on one parameter x. At every x its set of eigenvalues is given by

f�1(T (x)); �2(T (x))g = fjxj;�jxjg where the functions �1 and �2 are clearly non-

smooth at 0 (where we have repeated eigenvalues). On the other hand at every

point x the set of the eigenvalues is also given by f�1(x); �2(x)g, where �1(x) = x,

�2(x) = �x for every x, and now these functions are smooth. This question has

been completely answered by Rellich in [77] and the answer depends heavily on the

degrees of freedom.

Theorem 1.0.1 (Rellich, 1953). Assume T (x) is n � n symmetric and contin-

uously di�erentiable in an interval I � R of x. Then there exist n continuously

di�erentiable functions �n(x) on I that represent the eigenvalues (counting multi-

plicities) of T (x).

More surprisingly, the above result is optimal in the sense that even if T (x) is

C1 in x the �n(x) need not be C2, see [93]. But in a �nal twist if T (x) symmetric

and analytic on an interval, then the �n(x) may also be chosen to be analytic on

this interval. An equivalent of Rellich's theorem, when the matrix T depends on

two or more parameters, is impossible. Consider for example the matrix

T (x) =

0B@ x1 x2

x2 �x1

1CA ;

where x 2 R2, and assume that there is a neighbourhood U in R2 around 0 such

that for every point x 2 U the set of eigenvalues of T (x) is given by the smooth

(at least di�erentiable) functions f�1(x); �2(x)g. Clearly for every x in R2 the

eigenvalues of T (x) are fkxk;�kxkg. Fix a nonzero point �x 2 U and without loss
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of generality suppose that �1(�x) = k�xk and �2(�x) = �k�xk. Now, take an arbitrary

second nonzero point x̂ 2 U and connect it to �x with smooth curve 
 avoiding the

origin. Moving from �x towards x̂ along 
 both �1(x) and �2(x) will vary smoothly

and neither will become 0. So their signs will stay the same, that is �1(x̂) > 0 and

�2(x̂) < 0, and consequently �1(x̂) = kx̂k and �2(x̂) = �kx̂k. Remembering that

x̂ was arbitrary we see that the last two equalities must hold for every x̂ in U , but

this is a contradiction because these functions are not smooth at the origin.

These diÆculties suggest why in our discussion of the di�erentiability properties

of eigenvalues and singular values we are going to use the broad theory of nonsmooth

analysis. The fact that we are considering symmetric functions of the spectrum is

not a restriction because �i = � Æ �, where

�(x) : Rn ! R

x 7! ith largest element of fx1; :::; xng;

and we have a similar expression for the ith singular value (see Section 6.8). So non-

smooth results for such functions immediately have equivalents for the individual

eigen- or singular values.

Why would somebody interested in optimization be interested in functions of

the spectrum of linear operators? Some of the �rst concrete applications of the per-

turbation theory of eigenvalues were in quantum mechanics [80], [42] where results

like those obtained in Section 4.4 were well known. The following two inequali-

ties are essentially due to John von Neumann [90], who also made fundamental



CHAPTER 1. INTRODUCTION 5

contributions to quantum theory:

trXTY � �(X)T�(Y ); for any X;Y 2 Sn;

trXTY � �(X)T�(Y ); for any X;Y 2Mn;m:

(Using the relationship between the eigenvalues and singular values described in

the beginning one can see that each inequality quickly follows from the other.)

For contemporary proofs of these inequalities, using an optimization approach, as

well as necessary and suÆcient conditions for equality see [52, Theorem 3.5] and

Theorem 6.2.9.

More recently, spectrally de�ned functions have started coming up in various

areas of applied variational mathematics: optimality criteria in experimental design

theory [75], [83], barrier functions in matrix optimization [67], [48], matrix updates

in quasi-Newton methods [22], [94], semide�nite programming [11], potential energy

densities for isotopic elastic materials [16], etc. For a comprehensive account of the

role of eigenvalues and spectral functions in modern optimization the reader may

refer to [55]. The following are just a few examples of spectral functions with their

corresponding symmetric functions that researchers in the above areas encounter.

We start with an important function from convex analysis, [78, pp. 68,148-149].

X 2 Sn 7! F (X) = log(tr eX);

x 2 Rn 7! f(x) = log(ex1 + � � �+ exn):

Next is the largest eigenvalue function, having the �rst order statistic (see [33] for
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an explanation of the name) as its corresponding symmetric function:

X 2 Sn 7! F (X) = �1(X);

x 2 Rn 7! f(x) = maxfx1; :::; xng:

The following spectral function arises in the theory of optimal experimental design,

[75]:

X 2 Sn 7! F (X) =

8><>: trX�1; if X is positive de�nite

+1; otherwise,

x 2 Rn 7! f(x) =

8><>:
1
x1
+ � � � + 1

xn
; if x1 > 0; :::; xn > 0

+1; otherwise.

The following spectral function is fundamental to the development in [68]: it is

the standard self-concordant barrier on the convex cone of positive semide�nite

matrices, and its corresponding symmetric function is the standard self-concordant

barrier on the positive orthant of Rn:

X 2 Sn 7! F (X) = � log det(X);
(1.2)

x 2 Rn 7! f(x) = �
nX
i=1

log(xi):

The square of the Frobenius (Euclidean) norm of a symmetric matrix with corre-

sponding symmetric function - the square of the Euclidean norm in Rn is an obvious
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example:

X 2 Sn 7! F (X) = kXk22;

x 2 Rn 7! f(x) = x21 + � � �x2n:

The last example is update formulae for Quasi-Newton algorithms [72, p. 227]:

X 2 Sn 7! F (X) =

8><>:
tr (X)

n det(X)
; if X is positive de�nite

+1; otherwise,

x 2 Rn 7! f(x) =

8><>:
P

n

i=1 xi

n
Q

n

i=1 xi
; if xi > 0 for all i

+1; otherwise.

A big part of our work deals with the di�erentiability properties of functions F

on the real vector space of symmetric matrices that are orthogonally invariant:

F (UTAU) = F (A); for all A symmetric and U orthogonal:

One can easily see ([49, Proposition 4.1]) that every orthogonally invariant function

is the composition of a symmetric function on Rn and the eigenvalues of the matrix

argument:

F (A) = (f Æ �)(A);

where �(A) = (�1(A); :::; �n(A)). As we mentioned above we call such functions

F spectral. The spectral functions F are in one-to-one correspondence with the

symmetric functions f . A lot of research in recent years shows that properties of
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f are inherited by F and vice versa. The list is long. Let F and f be a pair

of a spectral function and its corresponding symmetric function, and let C be a

symmetric set in Rn. Then, for example:

1. F is lower semicontinuous (l.s.c.) at A if and only if f is at �(A), [48].

2. F is l.s.c. and convex if and only if f is, [18], [48].

3. The symmetric function corresponding to the Fenchel conjugate of F is the

Fenchel conjugate of f , [82], [48]. (A similar statement holds for the recession

function of F , [82].)

4. F is pointed, has good asymptotic behaviour or is a barrier function on the

set ��1(C) if and only if f is on C, [82].

5. F is Lipschitz around A if and only if f is such around �(A), [49]

6. F is (continuously) di�erentiable at A if and only if f is at �(A), [49].

7. F is strictly di�erentiable at A if and only if f is at �(A), [49], [52]. (But this

correspondence doesn't carry over for the Gâteaux derivative.)

8. If f is l.s.c. and convex then F is twice epi-di�erentiable at A relatively to 


if and only if f is twice epi-di�erentiable at �(A) relative to �(
), [86], where


 is an arbitrary epi-gradient.

9. F is a polynomial of the entries of A if and only if f is a polynomial. This is

a consequence of the Chevalley Restriction Theorem, [92, p. 143].

10. F 2 C1 at A , f 2 C1 at �(A), [17].
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11. F is analytic at A if and only if f is at �(A), [88].

On the other hand a variety of smooth and nonsmooth objects of F can be expressed

in terms of the corresponding objects of f . For example, a description of the convex

subdi�erential of F is given in [48]; the Clarke subdi�erential is given in [49],[52];

the regular, approximate, and horizon subdi�erentials are given in [52]; the second

order epi-derivative of a convex F is given in [86].

The results we present in Chapter 4 and Chapter 5 stay in some sense (math-

ematically) between the results in points 6 and 10 from the above list. Indeed, in

Chapter 4 we show that F is twice di�erentiable at A if and only if f is twice di�er-

entiable at �(A), and then we show even more, that the Hessian of F is continuous

at A if and only if the Hessian of f is continuous at �(A), that is, F 2 C2 , f 2 C2.
We also give a concise and easy-to-use formula for the Hessian (see Theorem 4.2.2

and Theorem 4.2.3), while the results in [88] are rather implicit.

Second order di�erentiability is important for optimization because of many

reasons. A few of its applications are Newton's method, second order necessary

optimality conditions, second order suÆcient optimality conditions, and modern

interior point methods.

Several authors have recently been concerned with second order spectral anal-

ysis. For example, A. Seeger, in a related work, expressed his doubts that the

C2-property of f is inherited by F , (see the end of Section 11 in [82]). Also,

H. Bauschke and J. Borwein, in [5], pose a conjecture about the joint convexity of

the Bregman distance associated with a spectral function, and in their opinion the

C2-property of the spectral function and the form of its Hessian will play a crucial
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role for solving it. The results in Chapter 4 are a necessary step towards answering

another conjecture posed by L. Tun�cel [55]: \if the function f is a self-concordant

barrier, is the same true of the spectral function F ?". An example supporting the

conjecture is (1.2). One reason why answering this conjecture may be interesting

is given in [89, Chapter 8]. It is shown there that the spectral barrier, F , from 1.2

has the same barrier parameter as f . If this property is `approximately' preserved

in general then one will be able to obtain self-concordant barrier functions with

`small' parameters on sets with high dimension using the existing lower dimensio-

nal examples. (It is well known that the barrier parameter directly a�ects the speed

of convergence of the underlying interior point method.)

Next, in Chapter 5 we treat a related question and show that a spectral function

F has quadratic expansion at A if and only if f has one at �(A). Many functions

have quadratic expansions. For example a theorem of Alexandrov [1] states that

every �nite, convex function on an open subset of Rn has quadratic expansion

at almost every point. Notice that it is not necessary for a function to be twice

di�erentiable in order to have quadratic expansion. For example the function

f(x) =

8><>: x3 sin(1=x); if x 6= 0

0; if x = 0
(1.3)

has quadratic expansion around x = 0 but is not twice di�erentiable there. On the

other hand being twice di�erentiable at x implies having quadratic expansion at x.

Concluding the topic of di�erentiability properties of spectral functions we give

a �nal glimpse at a part of the picture up to this moment. We present schematically
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C

8
Polynomials

C   - ???k

C 2

Twice Differentiable

Quadratic Expansion

Differentiable

Analytic

Figure 1.1: Some di�erentiability properties

on Figure 1.1, a `chain' of gradually weaker properties that are carried from the

symmetric function to its spectral equivalent and vice versa. The reader should refer

to the list above for a full account. (Note that the property of being C1 is not in
the `chain' because it can not be �tted between the property of being di�erentiable

and the property of having quadratic expansion. For the �gure we tried to select

properties that will make the `chain' as long as possible.)

Another major theme in our work is the nonsmooth analysis of singular values.

In particular we consider the composition of an absolutely symmetric function (see

De�nition 6.3.2) with the singular value map. We call such functions on a rect-

angular matrix argument singular value functions. One of the �rst results about

singular value functions is the characterization, by von Neumann in [90], of all
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unitary invariant norms, that is, norms k � k on Mn;m such that

kUXV k = kXk; for all X 2Mn;m and all unitary matrices U 2Mn; V 2Mm:

He showed that such norms are precisely the compositions of an absolutely sym-

metric function that is also a norm on Rn (such functions are knows as symmetric

gauge functions) with the singular value map.

The singular values are strongly connected with some matrix-optimization prob-

lems. For example, if we want to �nd the nearest rank k matrix to a given ma-

trix X with respect to a given orthogonally invariant norm, k � k, then we form

the singular value decomposition of X, X = UT�V and let Y = UT�V , where

� = Diag (�1(X); �2(X); :::; �n(X)), and � = Diag (0; :::; 0;��k+1(X); :::;��n(X)).

The matrixX+Y is the nearest rank k matrix to X, [36, Section 7.4]. In particular,

if k � k is the spectral norm on Mn;m (that is, kXk = p�1(XTX) = �1(X)), then

�k+1(X) is the distance between X and the nearest rank k matrix. Another curious

minimization fact, that holds for every unitary invariant norm, is:

k�(X)� �(Y )k = minfkX � UTY V k jU 2Mn; V 2Mm orthogonal g:

(It is easy to prove that the left hand side above is greater than or equal to the

right hand side.)

In Chapter 6 we derive the main tools from nonsmooth analysis for singular

value functions (see [79], [65], [39], [40]). It can be viewed as a continuation of

[47]. Its development follows closely that in [52] and in the process we derive some
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of the background tools from [49] in the context of singular values. We go a few

steps further than [52], the additional results being the formula for the Clarke

subdi�erential when the singular value function is only lower semicontinuous and

the formula for the proximal subdi�erential. For a treatment of related singular

values topics see [81].

One may ask if it would be easier to calculate the subdi�erentials of each �i and

then apply the chain rule to f Æ�. One will need to apply Theorem 10.49 from [79]

which in our context says:

@(f Æ �)(X) � [f@(yT�)(X) j y 2 @f(�(X))g:

Similar formulae hold for the regular, and horizon subdi�erentials as well. The prob-

lems with this formula are, �rst, it is not clear whether calculating each @(yT�)(X)

will be a simpler task, and second, it is only a one-sided inclusion. The conditions

for equality require strong assumptions. In our derivations we dispense with these

assumptions throughout, to arrive at compact, closed form expressions that do not

seem easy to derive from the above formula even when it holds with equality.

One may think that another way of deducing the results in this chapter may be

as corollaries of the corresponding results in [52], using the connection between the

eigenvalues and the singular values given in (1.1). One may decide to consider the

function

( ~f Æ �) ÆR(X);

where ~f is appropriate modi�cation of our absolute symmetric function f . But
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whatever the choice of ~f is, the diÆculties listed in the above paragraph may haunt

us here too. Finally, even if we overcome all of these diÆculties, the nice algebraic

structure stemming from the singular value decomposition, and so nicely evident in

our formulae of the subdi�erentials of f Æ � (see Theorem 6.5.1 and its analogies),

may be unrecognizably obscured.

We now steer towards the work done in Chapter 2, where we investigate a

unifying framework for some of the results in this thesis. As we mentioned earlier,

for a symmetric gauge g (necessarily convex) and a symmetric, convex f on Rn the

composite functions

X 2Mn;m 7! g(�(X)); (1.4)

X 2 Sn 7! f(�(X)) (1.5)

are convex. (For g(�(X)) this is due to von Neumann and for f(�(X)) this is due

to Davis.) Not only the convexity of g and f is preserved after the composition, but

some important convex analytic notions for the composition are easily expressed

through the corresponding notions for g and f . Thus for example, the Fenchel

conjugate of the function (1.5) is given elegantly by

(f Æ �)� = f� Æ �;

and the analogous result for g Æ � was shown by von Neumann. These analogies

between the two classes of functions are not accidental. In [50] Lewis gives a set of

axioms and abstractly derives the convexity properties of a special invariant class
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of functions that generalizes both (1.4) and (1.5). Then in [53] he uses semisimple

Lie theory and the Kostant convexity theorem to generalize these properties again.

In Chapter 2 we give a surprising new approach towards uniting the above type of

convexity results via properties of the roots of hyperbolic polynomials.

The theory of hyperbolic polynomials has its origins in partial di�erential equa-

tions, and is connected with the well-posedness of the Cauchy problem. We brie
y

give here a few historical notes about this problem. For more information see Sec-

tions 12.3-12.6 in [34], [35]. Let p : Rn! R be a homogeneous polynomial of degree

m. To every p corresponds a partial di�erential operator p(D), obtained from p by

replacing xk with
�i@
@xk

. For example, to the polynomial

p(x1; :::; xn) = x21 �
nX

k=2

x2
k

corresponds the operator

p(D) = � @2

@x21
+

nX
k=2

@2

@x2
k

:

Then the Cauchy problem is formulated as follows.

De�nition 1.0.2 (Cauchy Problem). Is there a solution u (a distribution, gen-

eralized function) to the equation

p(D)u = f;

with support supp (u) � H for a given function f 2 C10 (H), where H = fx 2
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R
njhx; di � 0g, and d 6= 0 is a direction in Rn such that p(d) 6= 0?

It turns out that the Cauchy problem has a solution (in fact unique) for any such

f if and only if p is a hyperbolic polynomial, de�ned below:

De�nition 1.0.3. A homogeneous polynomial p : Rn ! R is called hyperbolic with

respect to a direction d 2 Rn if p(d) 6= 0 and the polynomial

t 7! p(x+ td);

has only real roots for any x.

The roots �1(x) � �2(x) � � � � � �m(x) of t 7! p(x � td) are called roots or

eigenvalues of the hyperbolic polynomial. The name eigenvalues comes from the

fact that p(X) = det(X), X 2 Sn is a hyperbolic polynomial and its roots are the

eigenvalues of X.

In Chapter 2 we use a result by G�arding [24], saying that the largest root, �1(x),

is always a convex function of x, to prove a generalization of Davis's theorem, that

any symmetric convex function of the roots �(x) of a hyperbolic polynomial is

convex. This result then allows us to derive many elegant inequalities in a uni�ed

fashion. A Fenchel conjugation formula that subsumes the corresponding formulae

for (1.4) and (1.5), is also presented. There is a long section on examples, and for

each example we go in detail over every property of the hyperbolic polynomials that

interests us. Finally in Section 2.6.8 we use one particular hyperbolic polynomial

to rederive von Neumann's singular value example (1.4).

In 1988, Nesterov and Nemirovskii developed a general, polynomial time frame-
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work for convex programming problems, presented in their monograph [68]. This

framework for interior point methods relies on the notion of self-concordant barrier

functions (see the de�nition in Section 3.1). These functions are special, convex

penalty functions which intricately regulate their own behaviour and growth. One of

the most important results in Nesterov and Nemirovskii [68] is that a self-concordant

barrier function exists for every open convex set. They construct such a function,

called the universal barrier. The parameter # (on which every self-concordant func-

tion depends) in their construction has magnitude big-O of the dimension of the

domain space. Because # plays an important role for the convergence speed of

the underlying interior point method the question of �nding computable barrier

functions with small parameters is of fundamental interest.

In Chapter 3 we investigate a relationship between the hyperbolic polynomials

and self-concordant barriers. Every hyperbolic polynomial p(x) with roots �i(x)

has an associated closed convex hyperbolicity cone which is de�ned as

fx 2 Rnj�i(x) � 0 for all ig:

(Actually the convexity of the above cone is equivalent to the convexity of �1(x)

- the largest root of p(x).) G�uler was the �rst to observe the connection between

hyperbolic polynomials and convex optimization. He showed [25] that the hyper-

bolicity cone is a good environment for the modern interior point algorithms [68]

with a natural self-concordant barrier on it, � log p(x), with parameter m - the

degree of homogeneity of p.

A crucial example of a self-concordant barrier in contemporary optimization
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is the function � log det (�), which is an m-self-concordant barrier for the cone of

m �m symmetric positive de�nite matrices, a set of dimension m(m + 1)=2 (see

[68]). The main result in Chapter 3 is that �m log(p(x)� 1) is a `shifted' m2-self-

concordant barrier on a corresponding subset of the hyperbolicity cone of p. As

a consequence we get for example, that �m log(det (�) � 1) is a `shifted' m2-self-

concordant barrier on a corresponding subset of the positive de�nite cone. Even

though our function, �m log(p(x) � 1), seems `close' to G�uler's, � log p(x), our

proof turns out to be a lot more complicated than the proof of Theorem 4.1 in [27].

Furthermore, in the last section of this chapter we show that our result cannot

be deduced as an elementary consequence (in some sense) of G�uler's result, that

� log p(x) is a self-concordant barrier.

Another way to look at spectral and singular value functions is as functions on a

symmetricmatrix argument, or rectangular matrix argument respectively, invariant

under a closed group of orthogonal transformations of the linear space Sn, or Mn;m

respectively: that is, for all X in the domain of F we have

F - spectral function , F (UTXU) = F (X); 8U 2 O(n);

F - singular value function , F (UT

n
XUm) = F (X); 8(Un; Um) 2 O(n) �O(m):

In Chapter 7 we treat a class of functions having a di�erent invariant property.

We consider functions on Rn�R invariant under orthogonal transformations (U; 1),

that is, for all (x; t) in the domain of such a function we have

g : Rn�R! R
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g(Ux; t) = g(x; t); 8U 2 O(n):

We call functions having this property Lorentz invariant functions because (U; 1)

are all the orthogonal transformations that preserve the Lorentz cone, f(x; t) 2
R
n�Rjt� kxkg. Such functions can be decomposed as g = f Æ�, where f : R2! R

is symmetric and

�(x; t) : Rn�R! R2

�(x; t) =
1p
2
(t+ kxk; t� kxk):

The mapping � allows several interpretations. It may either be viewed as the

\eigenvalue" map of the roots of a hyperbolic polynomial, when the direction of

hyperbolicity is taken to be (
p
2; 0; :::; 0), see Example 2.6.5, or it can be viewed

as the eigenvalue map of an element in the Jordan algebra of quadratic forms with

respect to a certain Jordan frame, see [95, Example 8.3.12].

For Lorentz invariant functions we derive all the smooth and nonsmooth prop-

erties that interested us in the previous chapters. We want to emphasize that the

interest here is not necessarily that the results are crucial in their own right, but to

draw out the algebraic analogies with the earlier results. These analogies suggest

that a uni�ed setting should exist. Deeper investigations into a generalization using

Jordan algebras may be a point of a future research, see Chapter 8.

In conclusion we would like to say that Chapter 2 is based on a joint paper

with H. Bauschke, O. G�uler and A. Lewis [6], to appear in the Canadian Journal of

Mathematics. A paper based on Chapter 3 is submitted to Mathematical Program-
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ming, Series A, [57]. A paper based on Chapter 4 is submitted to SIAM Journal of

Matrix Analysis, [56]. A paper based on Chapter 5 is submitted to Linear Algebra

and Its Applications, [58]. Papers based on Chapter 6 and Chapter 7 are still in

preparation for submission.



Chapter 2

Hyperbolic Polynomials

2.1 Notation

We write Rm

++ (resp. Rm

+) for the set fu 2 Rm : ui > 0;8ig (resp. fu 2 Rm :

ui � 0;8ig. The closure (resp. boundary, convex hull, linear span) of a set S is

denoted clS (resp. bd S, convS, spanS). A cone is a nonempty set that contains

every nonnegative multiple of all its members; it thus always contains 0. If u 2 Rm

then by either �u or u# we will denote the vector u with its coordinates arranged

decreasingly; also, �U = U# := f�u : u 2 Ug, for every subset U of Rm. If u 2 Rm,

then juj will denote (ju1j; :::; jumj). The transpose of a matrix (or vector) A is

denoted AT . The identity matrix or map is written I. Suppose Y is an arbitrary

Euclidean space with inner product h�; �i and h : Y ! [�1;+1] is convex, then h�

(resp. @h, rh, domh) stands for the Fenchel conjugate (resp. subdi�erential map,

gradient map, domain) of h. (Rockafellar's monograph [78] is the standard reference

for these notions from convex analysis.) Higher order derivatives are denoted by

21
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rkh. If U � X, then the positive polar cone is U+ := fx 2 X : hx;Ui � 0g. If A is

a linear operator between Euclidean spaces, then its transpose is written AT . The

range of a map � is denoted by ran �. Finally, if A;B are two subsets of X, then

d(A;B) := inffka� bk : a 2 A; b 2 Bg is the distance between A and B.

2.2 Background

We assume throughout the this chapter that

X is a �nite-dimensional real vector space.

This section contains a selection of important facts on hyperbolic polynomi-

als from G�arding's fundamental work [24], and a deep inequality on elementary

symmetric functions.

For all missing proofs and references the reader should refer to our paper [6].

2.2.1 Hyperbolic polynomials and eigenvalues

De�nition 2.2.1 (Homogeneous Polynomial). Suppose p is a nonconstant po-

lynomial on X and m is a positive integer. Then p is homogeneous of degree

m, if p(tx) = tmp(x), for all t 2 R and every x 2 X.

De�nition 2.2.2 (Hyperbolic Polynomial). Suppose that p is a homogeneous

polynomial of degree m on X and d 2 X with p(d) 6= 0. Then p is hyperbolic

with respect to d, if the polynomial t 7! p(x+ td) (where t is a scalar) has only

real zeros, for every x 2 X.
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De�nition 2.2.3 (\Eigenvalues and Trace"). Suppose p is hyperbolic with re-

spect to d 2 X of degree m. Then for every x 2 X, we can write

p(x + td) = p(d)

mY
i=1

(t+ �i(x))

and assume without loss of generality that �1(x) � �2(x) � � � � � �m(x). The

corresponding map X ! Rm

# : x 7! (�1(x); : : : ; �m(x)) is denoted by � and called

the eigenvalue map (with respect to p and d). We say that �i(x) is the i
th

largest eigenvalue of x (with respect to p and d) and de�ne the sum of the

k largest eigenvalues by �k :=
P

k

i=1 �i, for every 1 � k � m. The function �m

is called the trace.

The eigenvalues f�i(x)g are thus the roots of the polynomial t 7! p(x � td).

It follows readily that the trace �m is linear (see also the paragraph following

Proposition 2.2.19).

Unless stated otherwise, we assume throughout the chapter that

p is a hyperbolic polynomial of degree m with respect to d;

with eigenvalue map� and �k :=
P

k

i=1 �k;

for every 1 � k � m. The notions \eigenvalues" and \trace" are well-motivated by

the the following example.

The Hermitian matrices. Let X be the real vector space of them�m Hermitian

matrices and p := det. Then p is hyperbolic of degree m with respect to d := I

and � maps x 2 X to its eigenvalues, arranged decreasingly. Thus for every 1 �
k � m, the function �k is indeed the sum of the k largest eigenvalues and �m is the
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(ordinary) trace.

As we go, we will point out what some of the results become in the impor-

tant case of the Hermitian matrices. Details and further examples are provided in

Section 2.6.

We now introduce the notion of isomorphic triples, which will simplify the anal-

ysis of homogeneous polynomials in Section 2.6 considerably.

De�nition 2.2.4. Suppose p (resp. q) is a homogeneous polynomial on X (resp.

Y ) and d 2 X (resp. e 2 Y ). If there exists a linear one-to-one map � from X onto

Y with p = q Æ� and �(d) = e, then we say that the triple (X; p; d) is isomorphic

to (Y; q; e) (by �), and we write (X; p; d) ' (Y; q; e).

It is clear that the binary operation ' de�nes an equivalence relation on all

triples. The following basic properties are easy to verify.

Proposition 2.2.5. Suppose (X; p; d) is isomorphic to (Y; q; e) by �. Then:

1. The degrees of p and q coincide.

2. p is hyperbolic with respect to d if and only if q is hyperbolic with respect to e.

3. If p (resp. q) is hyperbolic with respect to d (resp. e) with corresponding

eigenvalue map � (resp. �), then � = � Æ �.

Many examples of hyperbolic polynomials can be obtained as described below.

Proposition 2.2.6.

1. If q is hyperbolic with respect to the same d, then so is pq.
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2. If m > 1, then q(x) := d

dt
p(x + td)

��
t=0

= rp(x)[d] is hyperbolic with respect

to d.

3. If Y is a subspace of X and d 2 Y , then the restriction pjY is hyperbolic with

respect to d.

The technique of Proposition 2.2.6.(2) has a higher order analog, see Proposi-

tion 2.2.19 below. Given a hyperbolic polynomial on Rn, we can construct a related

one on Rn�1 as follows.

Proposition 2.2.7. Suppose p is hyperbolic with respect to d 2 Rn with eigenvalue

map �. Assume that di 6= 0 and de�ne q on Rn�1 by

q(y1; : : : ; yn�1) = p
�
y1; : : : ; yn�1;

yi

di
dn
�
:

Then q is hyperbolic with respect to e := (d1; : : : ; dn�1) and its eigenvalue map �

satis�es �(y1; : : : ; yn�1) = �
�
y1; : : : ; yn�1;

yi

di
dn
�
.

Proof. Straightforward.

The following property of the eigenvalues is well-known [24, Equation (2)] and

easily veri�ed.

Proposition 2.2.8. For all r; s 2 R and every 1 � i � m:

�i(rx+ sd) =

8>><>>:
r�i(x) + s; if r � 0;

r�m+1�i(x) + s; otherwise.
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It follows that the eigenvalue map � is positively homogeneous (�(tx) = t�(x),

for all t � 0 and every x 2 X) and continuous (the zeros of a polynomial are

continuous with respect to the coeÆcients; see, for instance, [73, Appendix A]).

G�arding showed that the largest eigenvalue map is sublinear, that is, positively

homogeneous and convex.

Theorem 2.2.9 (G�arding). The largest eigenvalue map �1 is sublinear.

We continue with the example we started on page 23

The Hermitian matrices (continued). It is well-known that the largest eigenvalue

map is convex in this case; see, for instance, [32].

2.2.2 Hyperbolicity cone

De�nition 2.2.10 (Hyperbolicity Cone). The hyperbolicity cone of p with

respect to d, written C(d) or C(p; d), is the set fx 2 X : p(x+ td) 6= 0;8t � 0g.

We can write the hyperbolicity cone in terms of the eigenvalue map as follows.

Proposition 2.2.11. C(d) = fx 2 X : �m(x) > 0g. Hence C(d) is an open convex

cone that contains d with closure clC(d) = fx 2 X : �m(x) � 0g. If c 2 C(d), then
p is hyperbolic with respect to c and C(c) = C(d).

Proof. G�arding [24, Section 2].

Remark 2.2.12. Note that �m(x) > 0 if and only if �1(�x) < 0 by Proposi-

tion 2.2.8. Hence G�arding's result (Theorem 2.2.9) implies the convexity of C(d).

In fact, the two results are equivalent. To see why, suppose �rst C(d) is a convex
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cone. Fix x and y in X and observe that x��m(x)d and y��m(y)d both belong to

clC(d). By assumption, (x+ y)� (�m(x) + �m(y))d 2 clC(d). On the other hand,

the smallest t such that (x+ y) + td belongs to clC(d) is ��m(x+ y). Altogether,

�m(x) + �m(y) � �m(x+ y) and the concavity of �m (or convexity of �1) follows.

De�nition 2.2.13 (Complete Hyperbolic Polynomial). p is complete if

fx 2 X : �(x) = 0g = f0g:

The following result, which follows easily from Proposition 2.2.5.(3), considers

the concepts just introduced for isomorphic triples.

Proposition 2.2.14. Suppose (X; p; d) is isomorphic to (Y; q; e) by �. Then:

1. C(q; e) = �(C(p; d)).

2. p is complete if and only if q is.

Proposition 2.2.15. Suppose p is hyperbolic with respect to d, with corresponding

eigenvalue map � and hyperbolicity cone C(d). Then

fx 2 X : �(x) = 0g = fx 2 X : x+ C(d) = C(d)g

= fx 2 X : p(tx+ y) = p(y);8y 2 X;8t 2 Rg:

Consequently, fx 2 X : �(x) = 0g = clC(d) \ (�clC(d)). Therefore, p is complete

if and only if clC(d) is a pointed cone.

It is always possible to �nd a restriction of p that is complete: indeed, d 62 fx 2
X : �(x) = 0g; consequently, if Y is any subspace of X which contains d and is
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algebraically complemented to fx 2 X : �(x) = 0g, then pjY is hyperbolic with

respect to d (Proposition 2.2.6.(3)) and complete.

Example 2.2.16. We let X = Rn, p(x) =
P

j
xj and d = (1; 1; : : : ; 1) in X. Then

p is hyperbolic with respect to d of degree m = 1 and �(x) = 1
n

P
n

j=1 xj. It follows

that p is complete only when n = 1.

The Hermitian matrices (continued). The hyperbolicity cone of p = det with

respect to d = I is the set of all positive de�nite matrices. The polynomial p = det is

complete, since every nonzero Hermitianmatrix has at least one nonzero eigenvalue.

2.2.3 Elementary symmetric functions

De�nition 2.2.17 (Symmetric Function). A function f on Rm is symmetric,

if f(u1; :::; um) = f(u�(1); :::; u�(m)), for all permutations � of f1; : : : ;mg and every

u 2 Rm.

De�nition 2.2.18 (Elementary Symmetric Functions). For any given inte-

ger k = 1; 2; : : : ;m, the map Ek : Rm ! R de�ned by u 7! P
i1<���<ik

Q
k

l=1 uil is

called the kth elementary symmetric function on Rm. We also set E0 := 1.

Proposition 2.2.19. For every x 2 X and all t 2 R,

p(x+ td) = p(d)

mY
i=1

(t+ �i(x)) = p(d)

mX
i=0

Ei(�(x))t
m�i
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and for every 0 � i � m,

p(d)Ei(�(x)) =
1

(m� i)!
rm�ip(x)[d; d; : : : ; d| {z }

m�i times

]:

If 1 � i � m, then Ei Æ � is hyperbolic with respect to d of degree i.

Proposition 2.2.19 gives a very transparent proof of the linearity of trace: indeed,

�m = E1Æ� is a homogeneous (hyperbolic) polynomial of degree 1 and hence linear.

We also note that the elementary symmetric functions themselves are hyper-

bolic:

Example 2.2.20. Let X = Rm and d = (1; 1; : : : ; 1) 2 Rm. Then for every

1 � k � m, the kth elementary symmetric function Ek is hyperbolic of degree k

with respect to d.

2.2.4 An inequality in elementary symmetric functions

The following inequality was discovered independently by McLeod [62] and by

Bullen and Marcus [13, Theorem 3]. We are interested in it mainly because of

the two corollaries that follow it.

Proposition 2.2.21. (McLeod, 1959; Bullen and Marcus, 1961) Suppose 1 � k �
l � m and u; v 2 Rm

++. Set q := (El=El�k)
1=k. Then

q(u+ v) > q(u) + q(v);

unless u and v are proportional or k = l = 1, in which case we have equality.
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Bullen and Marcus's proof relies on an inequality by Marcus and Lopes ([59,

Theorem 1], which is the case k = 1 in Proposition 2.2.21. (Proofs can also be

found in [7, Theorem 1.16], [14, Section V.4], and [64, Section VI.5].)

We record two interesting consequences of Proposition 2.2.21.

Corollary 2.2.22. (Marcus and Lopes's [59, Theorem 2]) The function �E1=m
m is

sublinear on Rm

+, and it vanishes on bdRm

+.

Recall that a function h is called logarithmically convex, if log(h) is convex. The

function q in Proposition 2.2.21 is concave (\strictly modulo rays"), which yields

logarithmic and strict convexity of 1=q:

Proposition 2.2.23. Suppose q is a function de�ned on Rm

++. Consider the fol-

lowing properties:

(i) the range of q is contained in (0;+1);

(ii) q(ru) = rq(u), for all r > 0 and every u 2 Rm

++;

(iii) q(u+ v) � q(u) + q(v), for all u; v 2 Rm

++;

(iv) if u; v 2 Rm

++ with q(u+ v) = q(u) + q(v), then v = �u, for some � > 0.

Suppose q satis�es (i){(iii). Then 1=q is logarithmically convex. If furthermore (iv)

holds, then 1=q is strictly convex.

Corollary 2.2.24. Suppose 1 � k � l � m. Then the function (El�k=El)
1=k

is symmetric, positively homogeneous, and logarithmically convex. Moreover, the

function is strictly convex on Rm

++ unless l = 1 and m � 2.
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2.3 Convexity

This section is the core of the chapter and that is why we are going to include the

proofs of the main results here.

2.3.1 Sublinearity of the sum of the largest eigenvalues

Theorem 2.3.1. Suppose q is a homogeneous symmetric polynomial of degree n

on Rm, hyperbolic with respect to e := (1; 1; : : : ; 1) 2 Rm, with eigenvalue map �.

Then

q Æ �

is a hyperbolic polynomial of degree n with respect to d and its eigenvalue map is

� Æ �.

Proof. For simplicity, write ~p for q Æ �.
Step 1: ~p is a polynomial on X. Indeed, since q(y) is a symmetric polynomial on

R
m, it is (by, e.g., [38, Proposition V.2.20.(ii)]) a polynomial in E1(y); : : : ; Em(y).

On the other hand, by Proposition 2.2.19, Ei Æ � is hyperbolic with respect to d of

degree i, for 1 � i � m. Altogether, ~p(x) = q(�(x)) is a polynomial on X.

Step 2: ~p is homogeneous of degree n. Indeed, since q is symmetric and homo-

geneous, and in view of Proposition 2.2.8, we obtain ~p(tx) = q(�(tx)) = tn~p(x), for

all t 2 R and every x 2 X.

Step 3: ~p(d) 6= 0. Again using Proposition 2.2.8, we have ~p(d) = q(�(d)) =

q(e) 6= 0.
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Step 4: ~p is hyperbolic with respect to d. Using once more Proposition 2.2.8,

we write for every x 2 X and all t 2 R:

~p(x+ td) = q(�(x+ td)) = q(�(x) + te) = q(e)

nY
k=1

(t+ �k(�(x))):

The next example is easy to check.

Example 2.3.2. Fix 1 � k � m, set e := (1; 1; : : : ; 1) 2 Rm, and let

q(u) :=
Y

1�i1<i2<���<ik�m

kX
l=1

uil:

Then q is a homogeneous symmetric polynomial on Rm of degree
�
m

k

�
, hyperbolic

with respect to e, and its eigenvalues are f 1
k

P
k

l=1
uil : 1 � i1 < i2 < � � � < ik �

mg. In particular, the largest eigenvalue of q is the weighted sum of the k largest

components of u.

We now present our main result, the generalization of Theorem 2.2.9: the sum

of the largest eigenvalues is sublinear. This readily implies local Lipschitzness of

each eigenvalue map (see also [91]).

Corollary 2.3.3. For every 1 � k � m, the function �k is sublinear and �k is

locally Lipschitz.

Proof. Fix 1 � k � m, de�ne q as in Example 2.3.2, and consider ~p := q Æ �. By
Theorem 2.3.1 and Example 2.3.2, the largest eigenvalue of ~p is equal to 1

k
�k(x).

Now Theorem 2.2.9 yields the sublinearity of �k. Finally, recall that every convex

function is locally Lipschitz ([78, Theorem 10.4]), hence so is each �i. So �1 is
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locally Lipschitz. If k � 2, then �k = �k��k�1 is | as the di�erence of two locally

Lipschitz functions | locally Lipschitz, too.

The Hermitian matrices (continued). Here it is well known that the sum of the

k largest eigenvalues is a convex function and that the kth largest eigenvalue map

is locally Lipschitz; see, for instance, [32].

Remark 2.3.4. Consider the polynomial ~p in the proof of Corollary 2.3.3 in the

context of the Hermitian matrices. Then

(�1)(mk ) ~p(x� t

k
I) = det(tI ��k(x));

where �k(x) denotes the kth additive compound of x. (See [61, Section 19.F] for

more on compound matrices.)

Corollary 2.3.5. The function wT�(�) is sublinear, for every w 2 Rm

# .

Proof. Write wT� =
P

m

i=1 wi�i = wm�m +
P

m�1
i=1 (wi � wi+1)�i and then apply

Corollary 2.3.3.

Note that we can rewrite Corollary 2.3.5 quite arti�cially as wT (�(x + y) �
�(x)) � �wT�(y), for all x; y 2 X and w 2 Rm

# . It would be interesting to �nd out

about the following generalization:

Open Problem 2.3.6 (Lidskii's Theorem). Decide whether or not

wT (�(x+ y)� �(x)) � �wT�(y); for all x; y 2 X and w 2 Rm .
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If this condition is satis�ed, then we say that Lidskii's theorem holds for the

triple (X; p; d). Lidskii's theorem, in the case when x and y are symmetricmatrices,

and � is the map of their eigenvalues, is a central result in matrix perturbation

theory, see [9, Section III.4].

The condition means that the vector �(y) \majorizes" the vector �(x+y)��(x),
for all x; y 2 X; see [61, Proposition 4.B.8]. (The interested reader is referred to

[61] for further information on majorization.)

The Hermitian matrices (continued). Lidskii's theorem does hold for the Her-

mitians. A recent and very complete reference is Bhatia's [9]; see also [51] for a

new proof rooted in nonsmooth analysis.

In Section 2.6, we point out that Lidskii's theorem holds for all our examples.

It will be convenient to have the following simple result ready:

Proposition 2.3.7. Suppose (X; p; d) is isomorphic to (Y; q; e). Then Lidskii's

theorem holds for (X; p; d) if and only if it does for (Y; q; e).

2.3.2 Convexity of composition

Proposition 2.3.8. Suppose f : Rm! [�1;+1] is convex and symmetric. Sup-

pose further u; v 2 Rm

# and u � v 2 (Rm

# )
+. Then f(u) � f(v). Moreover: if f

is strictly convex on conv f(u�(1); :::; u�(m)) : � is a permutation of f1; : : : ;mgg and
u 6= v, then f(u) > f(v).

Proof. Imitate the proof of [50, Theorem 3.3] and consider [50, Example 7.1]. See

also [61, 3.C.2.c on page 68].
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Theorem 2.3.9 (Convexity). Suppose x; y 2 X, � 2 (0; 1), and f : Rm !
[�1;+1] is convex and symmetric. Then

f(�(�x + (1� �)y)) � f(��(x) + (1 � �)�(y))

and hence the composition f Æ � is convex. If f is strictly convex and ��(x) + (1�
�)�(y) 6= �(�x+ (1 � �)y), then f(�(�x + (1 � �)y)) < f(��(x) + (1� �)�(y)).

Proof. (See also [50, Proof of Theorem 4.3].) Fix an arbitrary w 2 Rm

# . Set

u := ��(x) + (1 � �)�(y) and v := �(�x + (1 � �)y). Then both u and v belong

to Rm

# . By Corollary 2.3.5, wT� is convex on X. Therefore, wT�(�x+ (1� �)y) �
�wT�(x)+(1��)wT �(y); equivalently,wT (u�v) � 0. It follows that u�v 2 (Rm

# )
+.

By Proposition 2.3.8, f(u) � f(v), which is the second displayed statement. The

convexity of f Æ � follows. Finally, the \If" part is implied by the above and the

\Moreover" part of Proposition 2.3.8.

The Hermitian matrices (continued). In this case, the convexity of the compo-

sition is attributed to Davis [18]; see also [48, Corollary 2.7].

Another consequence is G�arding's inequality; see [25, Lemma 3.1].

Corollary 2.3.10 (G�arding's Inequality). Suppose p(d) > 0. Then function

x 7! �(p(x))1=m is sublinear on the hyperbolicity cone C(d), and it vanishes on its

boundary.

Proof. By Corollary 2.2.22, the function �E1=m
m is sublinear and symmetric on

R
m

+. Hence, by Theorem 2.3.9, the function x 7! �(Em(�(x))
1=m is sublinear on
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fx 2 X : �(x) � 0g = clC(d). The result follows, since p(x) = p(d)Em(�(x)), for

every x 2 X.

The Hermitian matrices (continued). Corollary 2.3.10 implies the Minkowski

Determinant Theorem: m

p
det(x+ y) � m

p
detx+ m

p
det y, whenever x; y 2 X are

positive semi-de�nite.

Corollary 2.3.11. Suppose x; y 2 X. Then:

1. k�(x+ y)k � k�(x) + �(y)k.

2. k�(x+ y)k2 � k�(x)k2 � k�(y)k2 � 2h�(x); �(y)i.

Moreover, equality holds in 1 or 2 if and only if �(x + y) = �(x) + �(y).

Proof. (1):Let w := �(x + y) 2 Rm

# . Then, using Corollary 2.3.5 and the Cauchy-

Schwarz inequality in Rm, we estimate

k�(x+ y)k2 = wT�(x+ y) � wT (�(x) + �(y))

� kwkk�(x) + �(y)k = k�(x+ y)kk�(x) + �(y)k:

The inequality follows. The condition for equality follows from the condition for

equality in the Cauchy-Schwarz inequality.

(2): The condition is equivalent to (1).

2.4 Making X Euclidean

So far X has been an arbitrary vector space. We are free to de�ne a norm on it

as we wish. To be absolutely precise then, the hyperbolic polynomials, p(x), on X



2.4. MAKING X EUCLIDEAN 37

have to be viewed as polynomials in n linear functionals (xi = xi(x); i = 1; 2; :::; n)

on X.

De�nition 2.4.1. De�ne k � k : X ! [0;+1) : x 7! k�(x)k and

h�; �i : X �X ! R : (x; y) 7! 1
4
kx+ yk2 � 1

4
kx� yk2:

Theorem 2.4.2. Suppose p is complete. Then X equipped with h�; �i is a Euclidean
space with induced norm k � k.

Proof. We have

kxk2 = k�(x)k2 =
mX
i=1

�i(x)
2 = (E1(�(x)))

2 � 2E2(�(x)):

Propositions 2.2.8 and 2.2.19 imply that k � k2 is a homogeneous polynomial of

degree 2 on X. Since k � k � 0 and p is complete, Corollary 2.3.11 says that the

equality above indeed de�nes a norm. Because k�k2 is a homogeneous polynomial of

degree 2 on X this norm originates trivially from an inner product. The formula for

the inner product follows from the Polarization Identity in linear algebra: hx; yi =
1
4
kx+ yk2 � 1

4
kx� yk2.

Remark 2.4.3. The Euclidean norm k � k de�ned in De�nition 2.4.1 is precisely

the Hessian norm used in interior point methods and thus well-motivated. To see

this, assume that p is complete and recall that the hyperbolic barrier function is

de�ned by F (x) := � ln(p(x)). The Hessian norm at x is then given by

kxk2
d
:= r2F (d)[x; x] :=

@2

@t2
F (tx+ d)

����
t=0

:
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For t positive and suÆciently small, we have p(tx+ d) = p(d)
Q

m

i=1(1 + t�i(x)) and

hence (after taking logarithms)

F (d+ tx) = F (d)�
mX
i=1

ln(1 + t�i(x)):

Expand the left (resp. right) side of this equation into a Taylor (resp. log) series.

Then compare coeÆcients of t2 to conclude r2F (d)[x; x]=2! = k�(x)k2=2. Thus

k � kd = k � k. (It looks as if the right hand side is independent of the direction d,

but this is not the case since the eigenvalues � implicitly depend on it.) Further

information can be found in [25]; see, in particular, [25, equation 16].

The norm constructed above has the pleasant property that any isomorphism

to another triple is actually an isometry:

Proposition 2.4.4. Suppose p is complete and the triple (X; p; d) is isomorphic to

the triple (Y; q; e) by �. Then � is an isometry from X onto Y .

Proposition 2.4.5 (Sharpened Cauchy-Schwarz). Suppose p is complete. The

following inequality then holds

hx; yi � h�(x); �(y)i � kxkkyk; for all x; y 2 X.

For necessary and suÆcient conditions for equality see [6, Theorem 6.6].

Proof. By the Cauchy-Schwarz inequality in Rm and Corollary 2.3.11.(ii),

2h�(x); �(y)i � k�(x+ y)k2 � k�(x)k2 � k�(y)k2
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= kx+ yk2 � kxk2 � kyk2

= 2hx; yi:

The Hermitian matrices (continued). The inner product on the Hermitian ma-

trices is precisely what one would expect: hx; yi = trace (xy). The sharpening of

the Cauchy-Schwarz inequality is due to von Neumann; see [48, Theorem 2.2] and

the discussion therein.

We can now re�ne Theorem 2.3.9.

Theorem 2.4.6 (Strict Convexity). Suppose p is complete and the function f :

R
m ! [�1;+1] is strictly convex and symmetric. Then the composition f Æ � is

strictly convex on X.

Theorem 2.4.6 can be used to recover transparently a recent result by Krylov

(see [45, Theorem 6.4.(ii)]).

Corollary 2.4.7. Suppose p(d) > 0. Then each of the following functions is convex

on the hyperbolicity cone C(d):

� ln p; ln
Em�1 Æ �
Em Æ � ;

Em�1 Æ �
Em Æ � :

If p is complete, then each of these functions is strictly convex.

Krylov's result is closely related to parts of G�uler's recent work on hyperbolic

barrier functions. It suggests a simple approach to G�uler's result [25, Theorem 6.1]

stated below. The functions F and g below play a crucial role in interior-point
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methods as they allow the construction of long-step interior-point methods using

the hyperbolic barrier function F .

Corollary 2.4.8. Suppose p(d) > 0 and c belongs to the hyperbolicity cone C :=

C(d). De�ne

F : C ! R : x 7! � ln(p(x)) and g : C ! R : x 7! �(rF (x))(c):

Then F and g are convex on C. If p is complete, then both F and g are strictly

convex.

The Hermitian matrices (continued). The statement on F corresponds to strict

convexity of the function x 7! � ln det(x) on the cone of positive semi-de�nite

Hermitian matrices; this result is due to Fan [21].

Remark 2.4.9. It is worthwhile to point out that Krylov [45] and G�uler derived

their results from hyperbolic function theory whereas we here \piggyback" on in-

equalities in elementary symmetric functions. The latter approach is far more ele-

mentary.

2.5 Convex calculus

In this section we present the convex calculus results for hyperbolic polynomials

from [6]. We include them for completeness of the exposition, but for brevity we

omit the proofs and the details. For de�nitions of Fenchel conjugate and convex

subgradients see the last chapter.
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De�nition 2.5.1 (Isometric Hyperbolic Polynomial). We say p is isometric

(with respect to d), if for every y; z 2 X, there exists x 2 X such that

�(x) = �(z) and �(x+ y) = �(x) + �(y):

Isometricity depends only on equivalence classes of triples:

Proposition 2.5.2. Suppose (X; p; d) is isomorphic to (Y; q; e). Then p is isomet-

ric if and only if q is.

It is clear that if p is isometric, then ran � is a closed convex cone contained in

R
m

# . Examples shows that the range of � may be nonconvex in general [6].

The Hermitian matrices (continued). Here ran� = Rm

# and and it is easy to see

that p = det is isometric.

Theorem 2.5.3 (Fenchel Conjugacy). Suppose that f : Rm ! (�1;+1] is

symmetric. Then (f Æ �)� � f� Æ �. If p is isometric and f(Pran�u) � f(u), for

every u 2 (domf)#, then (f Æ �)� = f� Æ �.

The assumption that f(Pran�u) � f(u), for every u 2 (domf)# is important: in

Section 2.6, we present an isometric hyperbolic polynomial and a convex symmetric

function f with (f Æ �)� 6= f� Æ �.

Corollary 2.5.4. Suppose p is isometric and f : Rm ! (�1;+1] is symmetric.

Suppose one of the following conditions holds:

1. (domf) \Rm

# � ran�.



2.5. CONVEX CALCULUS 42

2. ran � = Rm

# .

3. f is convex and Pran�u 2 conv f(u�(1); :::; u�(m)) : � permutes f1; : : : ;mgg,
for every u 2 (dom f) \Rm

# .

Then (f Æ �)� = f� Æ �.

Theorem 2.5.5 (Subgradients). Suppose p is isometric, ran� = Rm

# , and f :

R
m! (�1;+1] is convex and symmetric. Let x; y 2 X. Then

y 2 @(f Æ �)(x) if and only if �(y) 2 @f(�(x)) and hx; yi = h�(x); �(y)i.

Consequently, �
�
@(f Æ �)(x)� = @f(�(x)).

The Hermitian matrices (continued). Theorem 2.5.5 corresponds to [48, Theo-

rem 3.2].

Corollary 2.5.6 (Di�erentiability). Suppose p is isometric, ran � = Rm

# , and

f : Rm ! (�1;+1] is convex and symmetric. Let x; y 2 X. Then f Æ � is

di�erentiable at x and y = r(f Æ�)(x) if and only if f is di�erentiable at �(x) and

fy0 2 X : �(y0) = rf(�(x)); hx; y0i = h�(x); �(y0)ig = fyg.

Corollary 2.5.7 (Variational Description of �k). Let p be isometric, and sup-

pose ran � = Rm

# . Let 1 � k � m. Then for every x 2 X,

�k(x) = max
y:�(y)�0;�m(y)=k;�1(y)�1

hx; yi

and @�k(x) = fy 2 X : hx; yi = �k(x); �(y) � 0; �m(y) = k; �1(y) � 1g.
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The Hermitian matrices (continued). Corollary 2.5.7 is a direct generalization

of the variational formulations due to Rayleigh and Ky Fan; see [32, Section 2] for

more details.

2.6 Examples of hyperbolic polynomials

2.6.1 R
n

Consider the vector space

X = Rn;

the polynomial

p(x) =

nY
i=1

xi;

and the direction

d = (1; 1; :::; 1):

Then p is a hyperbolic and complete with eigenvalue map

�(x) = x#:

The induced norm and inner product in X are just the standard Euclidean ones in

R
n. We have ran� = Rn

# and p is isometric. In this case the sharpened Cauchy-

Schwarz inequality (Proposition 2.4.5) reduces to the well-known Hardy-Littlewood-
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P�olya inequality (see [28, Chapter X]).

xTy � xT# y#

and [6, Theorem 6.6] gives necessary and suÆcient conditions for equality, which

in this case holds if and only if vectors x and y can be simultaneously ordered

with the same permutation. Since ran� = Rn

#, Corollary 2.5.4 shows that for every

symmetric function f : Rn! (�1;+1] we have

(f Æ �)� = f� Æ �:

Also Lidskii's Theorem holds, because �(x) is the ordered set of eigenvalues of the

symmetric matrix Diag(x) (see [9, page 69]).

2.6.2 Hermitian matrices

In this section we summarize the example we have followed throughout the chapter

so far. Consider the vector space Hn (of n � n Hermitian matrices), and denote

the ordered eigenvalues of a matrix x 2 Hn by ~�1(x) � ~�2(x) � ::: � ~�n(x). In

the case of Hermitian matrices, the Frobenius [36, page 291] norm can be de�ned

by kxkF = k~�(x)k, where the last norm is the standard Euclidean norm in Rn. Let

X = Hn;
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the polynomial be

p(x) = detx;

and the direction be

d = I:

Then p is a hyperbolic and complete with eigenvalue map

�(x) = ~�(x):

The induced norm and inner product in X are given by

kxk2 = kxk2
F
;

hx; yi = trxy:

Clearly we have ran� = Rn

# and p is isometric. In this case the sharpened Cauchy-

Schwarz inequality (Proposition 2.4.5) reduces to Fan's inequality:

trxTy � ~�(x)T ~�(y)

and equality holds if and only if the matrices x and y can be simultaneously unitarily

diagonalized (with eigenvalues in decreasing order), which is due to Theobald. (For

the conditions for equality see for example [6, Theorem 6.6] or [52].) Since ran� =

R
n

#, Corollary 2.5.4 implies that for every symmetric function f : Rn ! (�1;+1]

we have

(f Æ �)� = f� Æ �:



2.6. EXAMPLES OF HYPERBOLIC POLYNOMIALS 46

It is well known that Lidskii's theorem holds in this case, see [9, Section III.4].

Note that there is an entirely analogous example on the space of n by n real

symmetric matrices.

2.6.3 Singular values

Consider the vector space Mn;m (of n by m real matrices). We assume n � m

and denote the singular values of a matrix x in Mn;m by �1(x) � �2(x) � ::: �
�n(x). The Frobenius norm [36, page 291 & page 421] is de�ned by kxkF =

k�(x)k, where the last norm is the standard Euclidean norm in Rn, and �(x) =

(�1(x); �2(x); :::; �n(x)). Now consider the vector space

X =Mn;m �R;

In order to study the singular values we consider the polynomial

p(x; �) = det (�2In � xxT ) (x 2Mn;m; � 2 R);

and the direction

d = (0; 1):

Then p is a hyperbolic and complete polynomial, with eigenvalue map

�(x; �) = (� + �1(x); �+ �2(x); :::; �� �2(x); �� �1(x)):
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The induced norm and inner product are given by

k(x; �)k2 = 2n�2 + 2kxk2
F
;

h(x; �); (x; �)i = 2n�� + 2tr xTy;

for (x; �) and (y; �) inX. Clearly we have ran� � R2m
# . Also it is easy to see, using

the Singular Value Decomposition Theorem [36, Theorem 7.3.5] that p is isometric.

Notice that in this case the sharpened Cauchy-Schwarz inequality (Proposition

2.4.5) reduces to

trxTy � �(x)T�(y);

and Theorem 6.6 in [6] shows equality holds if and only if x and y have a simulta-

neous `ordered' singular value decomposition (that is, there are unitary matrices U

and V such that x = U(Diag �(x))V and y = U(Diag �(y))V ). This is the classical

result known as `von Neumann's Lemma' (see for example [37, page 182]). (For a

di�erent proof of von Neumann's result see Theorem 6.2.9.)

Note that when n = 1 we get the Lorentz Cone example which is discussed

below. An analogous example can be obtained by considering the vector space

X = C n;m �R.

We now show that for some functions in the singular value case we have (fÆ�)� 6=
f� Æ �. Equality in this case seems to depend on much more algebraic structure,

see [53], and Corollary 2.5.4. Consider the symmetric function

f(u) = max
1�i�n

ui:
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Then

f�(v) =

8><>: 0;
P

n

i=1 vi = 1; vi � 0

+1; otherwise.

Now let n = 2. Then ran� = f�e + (�; 
;�
;��) j� � 
 � 0g. Let v =

1
4
(3; 1; 1;�1) 2 ran�. Let y 2 X be such that �(y) = v. It is straightforward

to check that h�(z); �(y)i = �1(z) 8 z 2 X. It follows from the sharpened Cauchy-

Schwarz inequality (Proposition 2.4.5) that hz; yi � �1(z) 8 z 2 X. Then

(f Æ �)�(y) = ��1(y) = sup
z 2X

fhz; yi � �1(z)g = 0:

On the other hand clearly

(f� Æ �)(y) = f�(v) = +1:

Finally we show that Lidskii's theorem holds for this example. For each w 2 Rn,

let us denote the coordinates of the vector �w by �w = (w[1]; :::; w[n]). We say that

vector y weakly majorizes vector x, both in Rn, if the following inequalities hold

kX
i=1

x[i] �
kX
i=1

y[i]; for all k = 1; :::; n:

We denote the above relationship by x �w y. We also say that a matrix P is partial

permutation matrix if it has at most one nonzero entry in each row and column,

and these nonzero entries (if any) are all 1. A well know result is the following

theorem.
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Theorem 2.6.1. If x �w y, then x is a convex combination of vectors Piy, for

some partial permutation matrices Pi.

Proof. Combine Theorem 3.2.6 and Theorem 3.2.10 from [37].

We also need Theorem 3.4.5 from [37]:

Theorem 2.6.2. For any matrices x and y in Mn;m (n � m) the vector �(y)

weakly majorizes j�(x+ y)� �(x)j.

(For more on weak majorization and a proof of the above theorem using tools

from nonsmooth analysis see Section 6.9.)

In order to show Lidskii's theorem for the roots of the hyperbolic polynomial in

this example, we have to show that for all (x; �); (y; �) 2 X

wT (�(x+ y; �+ �)� �(x; �)) � �wT�(y; �) 8w 2 R2n:

This is equivalent to

wT
��
�(x+ y); (��(x+ y))#

�� ��(x); (��(x))#�� � wT

#

�
�(y); (��(y))#

�
;

for all w 2 R2n. This in turn is equivalent to

(w1 � w2n)(�1(x+ y)� �1(x)) + (w2 � w2n�1)(�2(x+ y)� �2(x)) + � � �

+ (wn � wn+1)(�n(x+ y)� �n(x))

� (w[1] � w[2n])�1(y) + (w[2] � w[2n�1])�2(y) + � � �+ (w[n] � w[n+1])�n(x):
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for each w 2 R2n. Let

U := (w[1] � w[2n]; w[2] �w[2n�1]; :::; w[n]� w[n+1])

V := (w1 � w2n; w2 � w2n�1; :::; wn� wn+1)


 := (�1(x+ y)� �1(x); �2(x+ y)� �2(x); :::; �n(x+ y)� �n(x))

Æ := (�1(y); �2(y); :::; �n(y)):

Clearly U 2 Rn := Rn

# \ Rn

+. Then U is a linear combination with positive coeÆ-

cients of the vectors ti = (1; :::; 1| {z }
i times

; 0; :::; 0) 2 Rn, that is

U =

nX
j=1

�jtj; �j � 0 8j:

Moreover, it can easily be checked that U weakly majorizes V , so by Theorem 2.6.1

we can write

V =
X
i

�i(PiU); �i � 0;
X
i

�i = 1;

with each Pi a partial permutation matrix. From Theorem 2.6.2 we have that

(Pitj)
T
 � (Pitj)

T j
j � tT
j
Æ for all i and j. Then

V T
 =
X
i

X
j

�i�j(Pitj)
T
 �

X
i

X
j

�i�jt
T

j
Æ

=

�X
i

�i

��X
j

�jt
T

j

�
Æ =

�X
i

�i

�
UT Æ = UT Æ;
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which is what we want.

2.6.4 Absolute reordering

Consider the vector space

X = Rn�R:

Let the polynomial be

p(x; �) =

nY
i=1

(�2 � x2
i
);

and the direction be

d = (0; 1):

Then p is a hyperbolic and complete with eigenvalue map

�(x; �) = ((jxj)#; (�jxj)#) + �e;

where jxj = (jx1j; jx2j; : : : ; jxnj), and e = (1; 1; : : : ; 1) 2 R2n. If kxk2 denotes the
standard Euclidean norm in Rn, then the induced norm and inner product in X

are given by

k(x; �)k2 = 2kxk22 + 2n�2;

h(x; �); (y; �)i = 2

nX
i=1

xiyi + 2n��:

Clearly ran� � R2n
# and it is not diÆcult to see again that p is isometric. In

this case the sharpened Cauchy-Schwarz inequality (Proposition 2.4.5) reduces to
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the well-known inequality (see [50, section 7])

xTy � (jxj#)T jyj#

and Theorem 6.6 in [6] shows equality holds if and only if jxj# = P(�)x and jyj# =
P(�)y can be simultaneously ordered with the same signed permutation matrix: a

permutation matrix in which some of the nonzero entries may be multiplied by �1.
(For a direct proof of the above inequality see Lemma 6.2.8.)

Note that the similarities with the previous example are not accidental. This

example corresponds to the subspace (Diag Rn) � R of Mn;m � R. So we can

immediately see that for some functions f we have (f Æ�)� 6= f� Æ �. Also, because
jxj# = �(Diag(x)), one sees, from the corresponding part in the previous example,

that Lidskii's Theorem holds.

2.6.5 Lorentz cone

Let the vector space be

X = Rn;

and the polynomial be

p(x) = xTAx = x21 � x22 � � � � � x2
n
;

where A = Diag(1;�1;�1; :::;�1) 2Mn (n�n real matrices). Let the direction be

d = (d1; d2; :::; dn) 2 X such that d21 > d22 + � � �+ d2
n
:
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Then p is a hyperbolic and complete with eigenvalue map

�(x) =

 
xTAd+

p
D(x)

p(d)
;
xTAd�

p
D(x)

p(d)

!
; (2.1)

where D(x) = (xTAd)2 � p(x)p(d) is the discriminant of p(x + td) considered as a

quadratic polynomial in t. (The fact that D(x) � 0 for each x, and so that p(x) is

hyperbolic, is the well-known Aczel inequality, see [63, p.57].) The induced norm

and inner product are given by

kxk2 = 2
2(xTAd)2 � p(x)p(d)

p(d)2
; and

hx; yi = 4(xTAd)(yTAd)� 2(xTAy)p(d)

p(d)2
;

for x and y in X.

We now show that the mapping � : X ! R2
# is onto. Indeed, �x (t1; t2) 2 R2

#,

and let l be an arbitrary, �xed nonzero vector from fdg? � X. (The reader can

easily verify that l 2 fdg? if and only if lTAd = 0.) Set

� :=
1

2
(t1 + t2); and v :=

s
�p(d)
p(l)

�
t1 � t2

2

�
l: (2.2)

Then we have �(�d + v) = (t1; t2). Above we have to make sure that p(l) < 0.

Indeed, because the discriminant of p(x) is always nonnegative we get that p(l) �
0. If p(l) = 0, then this together with lTAd = 0, and dtAd > 0 gives us the

three relations: l21 = ~lT~l; d1l1 = ~dT~l; d21 >
~dT ~d, where we have used the notation

~x = (x2; :::; xn), and the dot product in the relations is the usual one in Rn�1.
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Notice that ~l 6= 0 since otherwise l = 0. Then from the Cauchy-Schwarz inequality

we get

jd1l1j2 = j ~dT~lj2 � j ~dT ~djj~lT~lj < d21l
2
1;

which is a contradiction.

We now show that p is isometric. Fix two vectors y, z in X. Let (t1; t2) := �(z),

and y = ad + l, where a 2 R and l 2 fdg?. De�ne � and v as in Equation (2.2)

and set x := �d + v. Then the above paragraph shows that �(x) = �(z). So we

only have to show that �(x+ y) = �(x)+�(y). In order to do that it is enough, by

Equation (2.1), to show that
p
D(x+ y) =

p
D(x) +

p
D(y). We easily compute

that D(x) =
�
t1�t2
2

�2
p(d)2 and D(y) = �(lTAl)p(d) and the rest follows quickly.

Notice that in this case the sharpened Cauchy-Schwarz inequality (Proposition

2.4.5) becomes

(xTAd)(yTAd)� (xTAy)p(d) �
p
D(x)D(y);

and Theorem 6.6 in [6] gives the necessary and suÆcient condition for equality.

Let us show one interesting equivalent form of this sharpened Cauchy-Schwarz

inequality.

Corollary 2.6.3 (Sharpened Cauchy-Schwarz). Let x; y; d 2 Rn and d21 >

d22 + � � � d2n, then p
D(x+ y) �

p
D(x) +

p
D(y);

where D(x) is de�ned on top of the previous page.
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Proof. Because both sides are positive, we can raise the inequality to the second

power and substitute the de�nition of D(x) from the previous page. After canceling

several terms we end up exactly with what we originally called sharpened Cauchy-

Schwarz inequality, see above.

Note 2.6.4. Note that the inequality in the last corollary may be viewed as a mea-

sure of how the gap in Aczel's inequality behaves under perturbation. See earlier in

this subsection for the de�nition of Aczel's inequality.

That Lidskii's Theorem holds for the polynomial p(x) in the direction f =

(1; 0; :::; 0) 2 Rn is clear from the corresponding discussion in Section 2.6.3. For

arbitrary direction d such that, d21 > d22 + � � � d2n, any w 2 R2, and x, y 2 Rn we

must show

wT (�(x+ y)� �(x)) � �wT�(y):

Using Formula (2.1) for the eigenvalues we see that we have to prove equivalently

that

wT (
p
D(x + y)�

p
D(x);�

p
D(x + y) +

p
D(x))T � �wT (

p
D(y);�

p
D(y))T :

(2.3)

We consider two cases.

Case 1. If w1 � w2 then w = �w and inequality (2.3) becomes

(w1 � w2)(
p
D(x) +

p
D(y) �

p
D(x + y)) � 0:

This is immediate from Corollary 2.6.3.
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Case 2. If w1 < w2 then w = (w1; w2) and �w = (w2; w1) and inequality (2.3)

becomes

(w2 � w1)(
p
D(y) +

p
D(x + y)�

p
D(x)) � 0:

Notice that D(y) = D(�y) and use Corollary 2.6.3.

This �nally proves that Lidskii's Theorem holds for the roots of the Lorentz

hyperbolic polynomial.

2.6.6 Standard hyperbolic triples

We note that if Y is a subspace of Hs (for some positive integer s), d 2 Y and

d � 0, then q(y) := det y is a hyperbolic polynomial over Y with respect to the

direction d. Indeed q(y + td) = det (d) det (d�
1
2yd�

1
2 + tI) and all the eigenvalues

of d�
1
2yd�

1
2 are real numbers because it is a hermitian matrix. The triples of this

type, (Y; q; d), will be called standard hyperbolic triples.

Many of our examples are isomorphic to a standard hyperbolic triple. For

the example in Section 2.6.1, consider the map �(x) = Diag(x). Then clearly

p(x) = det �(x). For the example in Section 2.6.2 it is clear. For the example in

Section 2.6.4 the following map gives the isomorphism:

(x; �) 7!

0BBBBBBBBBB@

� x1 : : : 0 0

x1 � : : : 0 0

...
...

. . .
...

...

0 0 : : : � xn

0 0 : : : xn �

1CCCCCCCCCCA
:
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In general though it is not true that every hyperbolic triple is isomorphic to a

standard hyperbolic triple. In Section 2.6.3 take n = 1, m = 4, which also produces

a hyperbolic polynomial of the type discussed in Section 2.6.5. That is, consider

for example X = R5,

p(x) = x20 � x21 � x22 � x23 � x24; d = (1; 0; 0; 0; 0):

Suppose there is a linear isomorphism � : X ! Y � Hs, such that p(x) = det�(x),

and �(d) � 0. Because p is homogeneous of degree 2 we have t2p(x) = p(tx) =

det�(tx) = det t�(x) = ts det�(x). Hence we see that s = 2. By the linearity of �,

there are vectors a; b; c; f 2 R5 such that for every x 2 R5 we have

p(x) = det

0B@ aTx bTx+ icTx

bTx� icTx fTx

1CA :

There is a nonzero vector x 2 R5 such that x0 = 0, and x ? spanfa; b; cg. So

0 6= �kxk2 = p(x) = det�(x) = 0, a contradiction.

We need the following fact on two occasions below.

Proposition 2.6.5. If A and C are symmetric matrices such that det(A) 6= 0 then

det

0B@ A B

BT C

1CA = det(A) det(C �BTA�1B):

The example in Section 2.6.3 is `almost' isomorphic to a standard hyperbolic
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triple. Indeed, consider the mapping � : Mn;m �R ! Hn+m de�ned by:

(x; �) 7�!

0B@ �Im xT

x �In

1CA ;

then �m�np(x; �) = det�(x; �). (This equality holds also in the case when � = 0.

One needs to consider the two cases n = m and n < m separately.)

Finally, consider a slight variation of the example in Section 2.6.3, the hyperbolic

polynomial

p(x; �) = det(�2Im � xTx)

with respect to d = (0; 1), where again x 2 X = Mn;m � R. Then the mapping

� : Mn;m � R ! H2m de�ned by:

(x; �) �!

0BBBB@
�Im�n 0 0

0 �In x

0 xT �Im

1CCCCA
gives an isomorphism between (X; p; d) and a standard hyperbolic triple. The fact

that p(x; �) = det �(x; �) follows from the identity:

det

0BBBB@
�Im�n 0 0

0 �In x

0 xT �Im

1CCCCA = det(�2Im � xxT ):
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Again, when � = 0 the conclusion of the above identity still holds, one just

needs to consider the two cases n = m and n < m separately.

Of course the counterexample above doesn't disprove the conjecture made in

[46], which concerns polynomials in three variables:

Conjecture 2.6.1. Every p(x1; x2; x3) hyperbolic with respect to (0; 0; 1), can be

expressed as p(x1; x2; x3) = det(x1A+ x2B + x3I) for some symmetric matrices A

and B.

It is worth mentioning that the above conjecture holds when the polynomial

is in only two variables. Indeed, suppose p(x1; x2) is homogeneous of degree n

and hyperbolic with respect to (0; 1). So the polynomial in t, t 7! p(x1; x2 + t)

has only real roots, for every (x1; x2). If we let (x1; x2) = (1; 0) we can see that

p(1; t) =
Q

n

i=1(t+ai), where faig are real numbers independent of x1 and x2. Using
that p(x1; x2 + t) = xn1p(1; (x2 + t)=x1) and letting t = 0 we see that p(x1; x2) =Q

n

i=1(x2 + aix1). The statement is now clear.

2.6.7 The degree 2 case

In this section we show that every complete hyperbolic polynomial of degree two is

isometric. Let the vector space be

X = Rn:
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We will assume that p(x) is a hyperbolic polynomial of degree two with respect to

a vector d. Without loss of generality, we write

p(x) = xTAx;

where A 2 Hn. Proposition 2.2.5 implies that if S : X ! X is a nonsingular

linear transformation, then q(y) := p(Sy) is hyperbolic with respect to l = S�1d.

The next lemma follows also from the fact that p is complete if and only if its

hyperbolicity cone is pointed, see Proposition 2.2.15.

Lemma 2.6.6. If p(x) = xTAx is hyperbolic, then p is complete if and only if A

is nonsingular.

Proof. Because of Proposition 2.2.15, the linearity space of p(x) in our case is

fx 2 X : (tx+ y)TA(tx+ y) = yTAy; 8y 2 X; 8t 2 Rg

= fx 2 X : xTAx t2 + 2xTAy t = 0 8y 2 X; 8t 2 Rg

= fx 2 X : xTAx = 0 and xTAy = 0 8y 2 Xg

= fx 2 X : Ax = 0g = f0g;

if and only if A is nonsingular.

Proposition 2.2.14 now says that if p(x) is a complete hyperbolic polynomial

with respect to d, and S : X ! X is a nonsingular linear transformation, then

q(y) := p(Sy) is also a complete hyperbolic polynomial with respect to l = S�1d.
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Lemma 2.6.7. Let p(x) = xTAx be a complete, hyperbolic polynomial, with respect

to d of degree two. Then the symmetric matrix A is nonsingular and has exactly

(n� 1) eigenvalues of one sign, and 1 eigenvalue with the opposite sign.

Proof. The nonsingularity of A follows from the previous lemma. Now, because

p(x) is hyperbolic with respect to d, we have that the discriminant of the quadratic

function

t 7! (x+ td)TA(x+ td);

(dTAx)2 � (dTAd)(xTAx) is nonnegative 8x 2 X. This inequality implies two

things. First A cannot be positive de�nite because then the Cauchy-Schwarz in-

equality for the scalar product de�ned by A contradicts the nonnegativity of the

discriminant. Similarly, A cannot be negative de�nite. Without loss of generality

we can assume that that dTAd > 0, so for every x in the (n � 1)-dimensional or-

thogonal complement (with respect to the usual inner product) of the vector Ad we

have 0 � xTAx. This implies that A has at least (n � 1) nonpositive eigenvalues,

but none of them can be zero, so A has (n � 1) strictly negative eigenvalues. The

last eigenvalue must be strictly positive, because A cannot be negative semide�nite.

The case dTAd < 0 is handled analogously.

Now, Proposition 2.5.2 says that if p(x) is an isometric, complete hyperbolic

polynomial with respect to d, and S : X ! X is a nonsingular linear transforma-

tion, then q(y) := p(Sy) is also an isometric, complete, hyperbolic polynomial with

respect to l = S�1d.
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Let p(x) = xTAx be isometric with respect to d. Without loss of generality we

can assume that p(d) > 0. By Sylvester's theorem (see for example [36], Theorem

4.5.8), there exists a nonsingular transformation x = Sy of the variable x such that

q(y) := p(Sy) has the form: q(y) = y21 � y22 � � � � y2n. Moreover, from the above,

q(y) is hyperbolic with respect to S�1d. Because the subsection about the Lorentz

cone showed that q(y) = y21 � y22 � � � � � y2
n
is isometric with respect to any d in a

hyperbolicity cone of q, and C(q; l) = S�1(C(p; d)) we have answered the question

about isometricity for the whole class of hyperbolic polynomials of degree two.

2.6.8 Unitarily invariant norms

In this section we derive a well known theorem of von Neumann about unitarily

invariant norms as a consequence of the convexity results in this chapter.

In 1937, von Neumann [90] gave a famous characterization of unitarily invariant

matrix norms (that is, norms f on Cm�n satisfying f(uxv) = f(x) for all unitary

matrices u and v and matrices x in Cm�n). His result states that such norms are

precisely the functions of the form g Æ �, where the components of the map

x 2 Cm�n 7! �(x) 2 Rm

are the singular values �1(x) � �2(x) � ::: � �m(x) of x (assuming m � n)

and g is a norm on Rm, that is invariant under sign changes and permutations of

components. Proof of this can be found also in [36, Theorem 7.4.24].

Lemma 2.6.8. For x; y; ! 2 Rm, such that !1 � !2 � ::: � !m � 0, and � 2 [0; 1],
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we have

h!; j�x + (1� �)yj#i � h!; �jxj# + (1 � �)jyj#i:

Proof. Apply Corollary 2.3.5, with w = (!1; !2; :::; !m; 0; :::; 0) 2 R2m
# , to the roots

of the hyperbolic polynomial given in Section 2.6.4

Now de�ne H : R2n ! Rn by

H(u) = 1
2
(v1 + v2; v3 + v4; : : : ; v2n�1 + v2n);

where v = juj#.

Lemma 2.6.9. For u; v 2 R2n, z 2 Rn such that z1 � z2 � ::: � zn � 0, and

� 2 [0; 1] we have

hz;H(�u + (1� �)v)i � hz; �H(u) + (1 � �)H(v)i:

Proof. Apply Lemma 2.6.8 with m = 2n and !2i�1 = !2i = zi.

Now suppose g : Rn 7! (�1;+1] is convex and absolutely symmetric (that is,

g(x) = g(jxj#); 8x).

Lemma 2.6.10. g(H(�u+ (1 � �)v)) � �g(H(u)) + (1 � �)g(H(v)).

Proof. Apply Theorem 3.3 from [50] to Lemma 2.6.9.

Now de�ne f : R2n 7! (�1;+1] by f(u) = g(H(u)).

Lemma 2.6.11. The function f is absolutely symmetric and convex.
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Proof. Notice that H(juj#) = H(u). Consequently,

f(juj#) = g(H(juj#)) = g(H(u)) = f(u); 8u:

So f is absolutely symmetric. The convexity follows from Lemma 2.6.10.

Theorem 2.6.12 (Von Neumann). The function g Æ � is convex.

Proof. Using Section 2.6.3 where X =Mn;m�R, p(x; �) = det(�2I�xxT ), and d =
(0; 1), we have that �(x; 0) = (�1(x); :::; �n(x);��n(x); :::;��1(x)). So H(�(x; 0)) =

�(x). Then �nally g(�(x)) = f(�(x; 0)), which, because of Theorem 2.3.9, is convex

in x.



Chapter 3

Self-concordant barriers for

hyperbolic means

In this chapter we demonstrate an application of hyperbolic polynomials in convex

optimization. (The necessary background on hyperbolic polynomials was given in

Chapter 2.) Our main result here will be to show how one can construct a class

of self-concordant barriers using hyperbolic polynomials. We begin with necessary

background about self-concordant barriers. Section 3.3 contains the main result.

Some examples and applications in convex optimization conclude the chapter.

3.1 Self-Concordant barriers

We begin by giving the de�nition of a self-concordant barrier function. Let E be

a �nite-dimensional real vector space and Q be an open nonempty convex subset

of E. A function F : Q ! R is called a self-concordant barrier if it is three times

65
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continuously di�erentiable, convex and satis�es the conditions

jD3F (x)[h; h; h]j � 2 (D2F (x)[h; h])3=2; (3.1)

F (xr)! 1 for any sequence xr ! x 2 bdQ; and (3.2)

jDF (x)[h]j �
p
# (D2F (x)[h; h])1=2; (3.3)

for all h 2 E, x 2 Q. Here # � 1 is a �xed constant depending on the function

F only, and DkF (x)[h; :::; h] = d
k

dtk
F (x+ th)

���
t=0

is the k-th directional derivative

at x along the direction h. The constant # is called the parameter of the barrier

function: smaller parameters ensure that the interior point method using F runs

faster. For short we call F a #-self-concordant barrier.

If in addition clQ is a cone and instead of conditions (3.1), (3.2), and (3.3) the

function F satis�es conditions (3.1), (3.2), and

F (tx) = F (x)� # log(t); for all x 2 Q; t > 0; (3.4)

we say F is a #-normal barrier. In fact conditions (3.1), (3.2), and (3.4) imply

condition (3.3), see [68, Corollary 2.3.2].

Note 3.1.1.Observe that if F is #-self-concordant then kF is k#-self-concordant

for any constant k � 1.

3.2 Hyperbolic polynomials & hyperbolicity cone

1. Hyperbolic Polynomials. In this chapter we investigate further properties
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of hyperbolic polynomials. The reader should consult Section 2.2 for the necessary

de�nitions and background results. There is only one di�erence in notation. If p

is hyperbolic with respect to d, that is, the polynomial t 7! p(x + td) (where t is

a scalar) has only real zeros for every x 2 E, the negatives of these roots will be

denoted by ti(x; d) = ti(x), and then we can write

p(x + td) = p(d)

mY
i=1

(t+ ti(x; d)):

For convenience we state brie
y our main examples from the previous chapter that

we will follow up with the present developments.

(a) E = Rn. The polynomial

p(x) =

nY
i=1

xi

is hyperbolic with respect to the direction d = (1; :::; 1). (cf. Section 2.6.1.)

(b) E = Rn. The polynomial

p(x) = x21 �
nX
i=2

x2
i

is hyperbolic with respect to the direction d = (1; 0; :::; 0). (cf. Section 2.6.5.)

(c) E = Sn (the set of n� n symmetric matrices). The polynomial

p(X) = detX

is hyperbolic with respect to the direction d = I. (cf. Section 2.6.2.)

(d) E =Mp;q �R (where Mp;q is the space of p � q real matrices, and we assume
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q � p). The polynomial

p(X; r) = det (XTX � r2Iq) (X 2Mp;q; r 2 R)

is hyperbolic with respect to the direction d = (0; 1). (cf. Section 2.6.3.)

2. Hyperbolicity cone. Recall that the hyperbolicity cone of p with respect

to d, written C(p; d), is the set fx 2 E : p(x+ td) 6= 0; 8t � 0g. In other words

C(p; d) = fx 2 E : ti(x) > 0; 1 � i � mg:

From now on the hyperbolicity cone will be denoted C(p). We now return to the

examples in the previous subsection and identify the hyperbolicity cone in each

case.

(a) The hyperbolicity cone is the interior of the positive orthant:

fx 2 Rn : xi > 0; 1 � i � ng:

(b) The hyperbolicity cone is the Lorenz cone:

�
x 2 Rn :

q
x22 + � � � x2n < x1

�

(c) The hyperbolicity cone is the cone, Sn

++, of n � n symmetric positive de�nite

matrices.
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(d) The hyperbolicity cone is the interior of the operator norm epigraph

f(X; r) 2Mp;q �R : j�i(X)j < r; 1 � i � qg;

where �1(X); :::; �q(X) are the singular values of the matrixX [6, Section 7.3].

3.3 A shifted self-concordant barrier

We begin with a trivial lemma.

Lemma 3.3.1. For any real numbers t1; :::; tm, the following inequality holds:

�����
mX
i=1

t3
i

����� �
� mX

i=1

t2
i

�3=2

:

The next theorem is our key result in this section.

Theorem 3.3.2. Let p be a hyperbolic polynomial (homogeneous of degree m) with

hyperbolicity cone C(p). Let a � 0 be a real number and

C>a(p) = fx 2 C(p) : p(x) > ag:

Then the function

f(x) = �m log(p(x)� a)

is an m2�self-concordant barrier on the set C>a(p).

Proof. The case a = 0 was proved in [25]. Notice also that condition (3.2) holds

trivially.
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Step 0. For x 2 C>a(p) and h 2 Rn, we can write

p(x+ th) = tmp

�
h +

1

t
x

�
= tmp(x)

mY
i=1

�
1

t
+ ti(h; x)

�
= p(x)

mY
i=1

(1 + tti):

What is important is that the roots ti = ti(h; x) do not depend on the variable

t. Di�erentiating both sides of the above representation we get the directional

derivative of p(x) in the direction of h, which is used below repeatedly:

d

dt
p(x + th) = p(x+ th)

mX
i=1

ti

1 + tti
:

Step 1. Observe that in the case a 6= 0 we only need to prove self-concordance

for a = 1, because we can make the linear substitution x = a1=my to obtain

f(a1=my) = �m log(p(y)� 1) �m log(a):

(See for example [68, p.148].) So we assume from now on that a = 1.

We now compute the directional derivatives of f along the direction h, using

the representation from above

f(x+ th) = �m log

�
p(x)

mY
i=1

(1 + tti)� 1

�
:

For short we introduce the notation

� = p(x)� 1; C1 =

mX
i=1

ti; C2 =

mX
i=1

t2
i
; C3 =

mX
i=1

t3
i
; (3.5)
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and observe that in our situation, for x 2 C>1(p), we have � > 0. Elementary

calculation shows

Df(x)[h] = �m(�+ 1)

�
C1;

D2f(x)[h; h] =
m(�+ 1)

�2
C2
1 +

m(�+ 1)

�
C2; and

D3f(x)[h; h; h] = �m(�+ 1)(� + 2)

�3
C3
1 �

3m(� + 1)

�2
C1C2 � 2m(�+ 1)

�
C3:

We want to prove that inequalities (3.1) and (3.3) hold for every h 2 Rn and

x 2 C>1(p).

Step 2. We start with inequality (3:3), which in the new notation is

����m(�+ 1)

�
C1

���� � m

�
m(�+ 1)

�2
C2
1 +

m(�+ 1)

�
C2

�1=2

:

After squaring both sides and dividing by m2(�+1)

�
we get

(� + 1)

�
C2
1 �

m

�
C2
1 +mC2;

so we want to show

� + 1�m

�
C2
1 � mC2:

The Cauchy-Schwarz inequality gives us C2
1 � mC2 so since m � 1 we obtain

�+ 1�m

�
C2
1 � m

�+ 1�m

�
C2 � mC2;

as required.
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Step 3. Now we turn our attention to inequality (3:1). With the new notation,

this is

m

����(�+ 1)(� + 2)C3
1

�3
+
3(� + 1)C1C2

�2
+
2(� + 1)C3

�

����
� 2

�
m(�+ 1)

�2
C2
1 +

m(�+ 1)

�
C2

�3=2

:

We multiply both sides by �3

m(�+1)
to get

��(�+ 2)C3
1 + 3�C1C2 + 2�2C3

�� � 2
p
m(�+ 1)

�
C2
1 + �C2

�3=2
:

Since this inequality is homogeneous of degree 3 in the vector (t1; t2; :::; tm), we may

assume without loss of generality that C1 = �1. We distinguish two cases.

Step 3:a. Suppose we have C1 = +1. The inequality becomes

��2 + � + 3�C2 + 2�2C3

�� � 2
p
m�+m (1 + �C2)

3=2
:

We now square both sides and expand:

4 + �2 + 9�2C2
2 + 4�4C2

3 + 4� + 12�C2 + 8�2C3 + 6�2C2 + 4�3C3 +

12�3C2C3 � 4m� + 12m�2C2 + 12m�3C2
2 + 4m�4C3

2 + 4m + 12m�C2

+ 12m�2C2
2 + 4m�3C3

2 :
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Regrouping gives

0 � (4mC3
2 � 4C2

3 )�
4 + (4mC3

2 + 12mC2
2 � 4C3 � 12C2C3)�

3

+ (12mC2
2 + 12mC2 � 6C2 � 8C3 � 9C2

2 � 1)�2 (3.6)

+ (12mC2 + 4m � 12C2 � 4)�+ (4m� 4):

We show now that all the coeÆcients are positive. Using Lemma 3.3.1 and the fact

m � 1, C2 � 1
m

this becomes clear for the coeÆcients of �4, � and the constant

term. Further, for the coeÆcient of �3 using Lemma 3.3.1 we have

4mC3
2 + 12mC2

2 � 4C3 � 12C2C3 � 4mC3
2 + 12mC2

2 � 4C
3=2
2 � 12C

5=2
2

= C
3=2
2 (4mC

3=2
2 + 12mC

1=2
2 � 4� 12C2):

Consider the polynomial q(s) := 4ms3 � 12s2 + 12ms � 4. Its derivative q0(s) =

12(ms2� 2s+m) is nonnegative, so q is increasing. Using the fact that 1p
m
� C

1=2

2

we get

q
�
C

1=2

2

� � q

�
1p
m

�
=

4
p
m

m
� 12

m
+
12m

p
m

m
� 4m

m

=
4(
p
m� 1) + 8(m

p
m� 1) + 4m(

p
m� 1)

m
� 0;

which shows that the coeÆcient of �3 is positive. For the coeÆcient of �2, using

Lemma 3.3.1, we have

12mC2
2 + 12mC2 � 6C2 � 8C3 � 9C2

2 � 1
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� 12mC2
2 + 12mC2 � 6C2 � 8C

3=2

2 � 9C2
2 � 1

= 9(m� 1)C2
2 + 6(m� 1)C2 + (mC2 � 1) + C2(3mC2 � 8C

1=2

2 + 5m):

The quadratic polynomial 3ms2 � 8s + 5m is strictly positive in the case when

m � 2, and the fact that C2 � 1
m

then implies that the last coeÆcient above is

positive. In the case when m = 1 we have C2 = 1 and one immediately sees that

the coeÆcient of �2 is actually zero. The fact that all coeÆcients of the quadratic

polynomial on the right hand side of inequality (3.6) are positive implies that the

inequality holds for all � � 0, which is what we wanted to prove.

Step 3:b. Suppose on the other hand we have C1 = �1. The inequality becomes

��(�2)� �� 3�C2 + 2�2C3

�� � 2
p
m�+m (1 + �C2)

3=2
:

Again we square both sides and expand to obtain

4 + �2 + 9�2C2
2 + 4�4C2

3 + 4� + 12�C2 � 8�2C3 + 6�2C2 � 4�3C3 �

12�3C2C3 � 4m� + 12m�2C2 + 12m�3C2
2 + 4m�4C3

2 + 4m + 12m�C2

+ 12m�2C2
2 + 4m�3C3

2 :

Regrouping gives

0 � (4mC3
2 � 4C2

3)�
4 + (4mC3

2 + 12mC2
2 + 4C3 + 12C2C3)�

3

+ (12mC2
2 + 12mC2 � 6C2 + 8C3 � 9C2

2 � 1)�2

+ (12mC2 + 4m� 12C2 � 4)� + (4m� 4):
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Now, if C3 > 0 then we can see analogously (even more simply than in Step 3:a)

that all coeÆcients of the quadric polynomial are positive. If C3 < 0 then we use

Lemma 3.3.1 to obtain C3 � �C3=2

2 and again proceed as in Step 3:a.

3.4 Examples

Following our examples from Section 3.2, we obtain the following applications of

the main result.

(a) For any natural number m the function

f(x1; :::; xm) = �m log

� mY
i=1

xi � 1

�

is an m2-self-concordant barrier on the set

(
x 2 Rm :

mY
i=1

xi > 1; xi > 0; 1 � i � m

)
:

In particular when m = 2 this result follows from Proposition 5.3.2 in [68].

(b) The function

f(x; y) = �2 log(y2 � kxk2 � 1)

is a 4-self-concordant barrier on the set

n
(y; x) 2 R�Rn�1 : y �

p
kxk2 + 1

o
:

This result can also be found in [68]. (See the proof of Proposition 5.4.3 and
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make the linear substitution t ! z � 1, y ! z + 1 in the function 	.) In

fact, [68] proves that � log(y2�kxk2�1) is a 2-self-concordant barrier on the

same set.

(c) A more interesting example is the function

f(X) = �m log(detX � 1);

which is an m2-self-concordant barrier on the set

fX 2 Sm

++ : detX > 1g:

(d) The function

f(X; r) = �2q log(det (XTX � r2Iq)� 1)

is a (2q)2-self-concordant barrier on the set

f(X; r) 2Mp;q �R : det (XTX � r2Iq) > 1& j�1(X)j < rg:

3.5 Application: hyperbolic means

A hyperbolic mean is a function of the form p(x)1=m, where p is a hyperbolic po-

lynomial of degree m, and the domain is the hyperbolicity cone C(p). Hyperbolic

means are positively homogeneous and concave [25, Lemma 3.1]. Examples include
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the geometric mean (
Q

m

i=1 xi)
1=m, and the function

X 2 Sm

++ 7! (detX)1=m:

A natural approach to applying interior point methods to convex programs involv-

ing hyperbolic means is to use a self-concordant barrier for the hypograph of the

mean, the convex cone

H(p) = f(x; t) 2 Rn�R : x 2 C(p); 0 < tm < p(x)g:

The following result provides such a barrier.

Theorem 3.5.1. For a suitable positive real � (for example � = 400), if p is a

hyperbolic polynomial of degree m then

(x; t) 7! ��m
�
log

�
p(x)

tm
� 1

�
+ 2m log t

�

is a 2�m2-normal barrier for the hypograph, H(p), of the hyperbolic mean.

Proof. Apply Proposition 5.1.4 in [68] to Theorem 2.2.

As a simple-minded illustration, suppose we want to solve the problem

sup p(x)
1
m + hc; xi

s.t. Ax = b

x 2 C(p),
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for some linear map A and given b and c. Rewrite this problem in the equivalent

form

sup t+ hc; xi
s.t. t < p(x)

1
m

Ax = b

x 2 C(p),

and �nally into the form

max h~c; ~xi
s.t. ~A~x = b

~x 2 H(p),

where ~c := (c; 1), ~x := (x; t), ~A(x; t) := Ax. We have an easily computable self-

concordant (logarithmically homogeneous) barrier for the cone H(p), so we can

design an interior point algorithm to solve this hyperbolic mean maximization prob-

lem. Using this result we can as well easily model convex programs with constraints

involving hyperbolic means, since x 2 C(p) satis�es an inequality of the form

hc; xi � p(x)1=m < b

if and only if there exists positive real t satisfying

hc; xi � t < b; tm < p(x):

In [68, p.239], Nesterov and Nemirovskii show how to model convex programs in-

volving the geometric mean or (det (�))1=m by semide�nite programming. It is inter-
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esting to compare their approach to this idea. Their approach involves additional

variables (O(m2) variables to model det (�)1=m, for example), whereas this idea is

direct and applies to any hyperbolic mean. On the other hand, extremely eÆcient

algorithms are now available for semide�nite programming (see for example [2],

[85]).

3.6 Relationship with G�uler's result

As wementioned above, in [25] G�uler proved that� log(q(x)) is an n-self-concordant

barrier on C(q) for any hyperbolic polynomial q of degree n. (G�uler attributes the

observation to Renegar.) In this concluding section we want to show that our result

cannot be deduced by an aÆne restriction of this fact. In other words we want to

show that we cannot take a self-concordant barrier of the above type, restrict it to

an aÆne subspace and obtain the self-concordance of �m log(p(x) � 1).

Consider the following special case of Theorem 3.3.2:

�3 log(x3 � 1) is self-concordant on (1;+1):

To deduce this from [25] we would need a hyperbolic polynomial q with respect to

d with hyperbolicity cone C(q) and vectors a and b such that

(x3 � 1)3 = q(a+ xb); for all x 2 R; and

1 < x 2 R, a+ xb 2 C(q):
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When x = 0 we immediately get q(a) = �1. We can also conclude that b 2 clC(q)

which is a closed convex cone. Since d 2 C(q), an open convex cone, we have for all

small enough real � > 0, that b+ �d 2 C(q), so the polynomial q is hyperbolic with

respect to b+ �d as well. That is, for all small enough � > 0 the polynomial (in x)

q(a+ x(b+ �d)) has only real, nonzero roots. Clearly if q(a+ xb) = (x3 � 1)3 then

n � 9. We divide both sides of this equality by xn, and setting t := 1=x obtain

q(at+ b) = tn�9 � 3tn�6 + 3tn�3 � tn = tn�9(1 � t3)3:

Using the fact that q(a + x(b + �d)) has nonzero roots and applying the same

substitution as above we get that the polynomial (in t) t 7! q(at+ b+ �d) has only

real roots. Now, for � close to zero, the degree of the polynomial q(at+ b + �d) is

constant, and so its roots approach the roots of q(at+b) as � approaches zero. This

is a contradiction with the fact that q(at+ b) has a complex root.

3.7 An alternative approach

Our approach up to here originated with [57]. A subsequent approach, [66] uses

more sophisticated theory to obtain a broader version of Theorem 3.3.2. Here we

describe brie
y the details. Let Q be an open, pointed, convex cone and let the

function F : Q! R satisfy conditions (3.1), (3.2), and (3.3). We need the following

de�nition [68, De�nition 5.1.2].

De�nition 3.7.1. Let � be nonnegative real. A function A : Q ! R is called

�-compatible with the barrier F if
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(i) A is C3 on Q.

(ii) A is concave with respect to clQ.

(iii) For all x 2 Q, h 2 E, we have

D3A(x)[h; h; h] � �3�D2A(x)[h; h]
p
D2F (x)[h; h]:

We also need the following result, a special case of [68, Proposition 5.1.7].

Theorem 3.7.2. Assume A is �-compatible with F , with � � 1. Then the function

	(x) = �2f� log(1 +A(x)) + F (x)g

is a �2(#+ 1)-self-concordant barrier on the domain fx 2 QjA(x) > �1g.

A calculation shows that A(x) := �eF (x) is a p#+ 20-compatible with F , so

setting � =
p
#+ 20 we have that

	(x) = �(#+ 20) log(e�F (x) � 1);

is a (# + 20)(# + 1)-self-concordant barrier on the domain fx 2 QjF (x) < 0g.
When p is a hyperbolic polynomial of degree m and F (x) = � log(p(x)) we have

# = m and the above result follows from Theorem 3.3.2 using Note 3.1.1 with

k = (# + 20)=#. (In fact Theorem 3.3.2 does a bit better.) We conclude with the

equivalent of Theorem 3.5.1.
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Theorem 3.7.3. For a suitable positive real � (for example � = 400), if � logH(x)

is a #-normal barrier on Q then

(x; t) 7! ��2(#+ 20)

�
log

�
H(x)

t#
� 1

�
+ 2(#+ 1) log(t)

�
;

is a 2�2(#+ 20)(#+ 1)-normal barrier on the domain
�
(x; t)j0 < t# < H(x)

	
:

Proof. Notice �rst that H(tx) = t#H(x) for all x 2 Q, t > 0. Then let F (x) :=

� logH(x) in the above paragraph and apply Proposition 5.1.4 in [68] to the func-

tion 	(x).

We would like to comment that the constant � = 400, in Theorem 3.5.1 and

Theorem 3.7.3 can be improved using the results in [23].



Chapter 4

Twice Di�erentiable Spectral

Functions

In this chapter we show that a symmetric function f is twice di�erentiable at

the point �(A) if and only if the corresponding spectral function f Æ � is twice

di�erentiable at A. Moreover we will show that f 2 C2 around �(A) if and only if

(f Æ �) 2 C2 around A.

4.1 Notation and preliminary results

In what follows Sn will denote the Euclidean space of all n�n symmetric matrices

with inner product hA;Bi = tr (AB) and for A 2 Sn, �(A) = (�1(A); :::; �n(A))

will be the vector of its eigenvalues ordered in nonincreasing order. (All vectors

in this and the following chapters are assumed to be column vectors unless stated

otherwise.) By O(n) we will denote the set of all n � n orthogonal matrices. For

83
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any vector x in Rn, Diagx will denote the diagonal matrix with the vector x on the

main diagonal, and �x will denote the vector with the same entries as x ordered in

nonincreasing order, that is �x1 � �x2 � � � � � �xn. Let R
n

# denote the set of all vectors

x in Rn such that x1 � x2 � � � � � xn. Let also the operator diag : Sn ! R
n be

de�ned by diag (A) = (a11; :::; ann). In this chapter fMmg1m=1 will denote a sequence

of symmetric matrices converging to 0, and fUmg1m=1 will denote a sequence of

orthogonal matrices. We describe sets in Rn and functions on Rn as symmetric if

they are invariant under coordinate permutations. Thus f : Rn ! R will denote a

function, de�ned on an open symmetric set, with the property

f(x) = f(Px) for any permutation matrix P and any x 2 domainf:

We denote the gradient of f by rf or f 0, and the Hessian by r2f or f 00. Vectors

are understood to be column vectors, unless stated otherwise. Whenever we denote

by � a vector in Rn

# we make the convention that

�1 = � � � = �k1 > �k1+1 = � � � = �k2 > �k2+1 � � � �kr ; (k0 = 0; kr = n):

We de�ne a corresponding partition

I1 := f1; 2; :::; k1g; I2 := fk1 + 1; k1 + 2; :::; k2g; :::; Ir := fkr�1 + 1; :::; krg;
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and we call these sets blocks. We denote the standard basis in Rn by e1; e2; :::; en,

and e is the vector with all entries equal to 1. We also de�ne corresponding matrices

Xl := [ekl�1+1; :::; ekl]; for all l = 1; :::; r;

For an arbitrary matrix A, Ai will denote its i-th row (a row vector), and Ai;j will

denote its (i; j)-th entry.

De�nition 4.1.1 ([49]). We say that the vector � 2 Rn block re�nes the vector

b 2 Rn if �i = �j implies bi = bj for all i,j 2 f1; :::; ng. Equivalently

P� = � ) Pb = b for all P 2 P (n):

(In all of our preliminary results the matrixA will be a diagonal matrix, Diag�.)

We need the following result.

Lemma 4.1.2. Let f : Rn ! R be a symmetric function, twice di�erentiable at

the point � 2 Rn

#, and let P be a permutation matrix such that P� = �. Then

1. rf(�) = P Trf(�), and

2. r2f(�) = P Tr2f(�)P .
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In particular we have the representation

r2f(�) =

0BBBBBBB@

a11E11 + bk1J1 a12E12 � � � a1rE1r

a21E21 a22E22 + bk2J2 � � � a2rE2r

...
...

. . .
...

ar1Er1 ar2Er2 � � � arrRrr + bkrJr

1CCCCCCCA
;

where the Euv are matrices of dimensions jIuj � jIvj with all entries equal to one,

(aij)
r

i;j=1 is a real symmetric matrix, b := (b1; :::; bn) is a vector which is block re�ned

by �, and Ju is an identity matrix of the same dimensions as Euu.

Proof. Just apply twice the chain rule to the equality f(�) = f(P�) in order to

get parts 1 and 2. To deduce the block structure of the Hessian, consider the block

structure of permutation matrices P such that P� = �: then, when we permute

the rows and the columns of the Hessian in the way de�ned by P , it must stay

unchanged.

Using the notation of this lemma, we de�ne the matrix

B := r2f(�) �Diag b = (aijEij)
r

i;j=1: (4.1)

Note 4.1.3. We make the convention that if the i-th diagonal block in the above

representation has dimensions 1�1 then we set aii = 0 and bki = f 00
kiki

(�). Otherwise

the value of bki is uniquely determined as the di�erence between a diagonal and an

o�-diagonal element of this block. Note also that the matrix B and the vector b

depend on the point � and the function f .
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Lemma 4.1.4. For � 2 Rn

# and a sequence of symmetric matrices Mm ! 0 we

have that

�(Diag �+Mm)
T = �T +

�
�(XT

1 MmX1)
T ; :::; �(XT

r
MmXr)

T
�
+ o(kMmk):

Proof. Combine Lemma 5.10 in [52] and Theorem 3.12 in [32].

The following is our main technical tool.

Lemma 4.1.5. Let fMmg be a sequence of symmetric matrices converging to 0,

such that Mm=kMmk converges to M . Let � be in Rn

# and Um ! U 2 O(n) be a

sequence of orthogonal matrices such that

Diag �+Mm = Um

�
Diag�(Diag �+Mm)

�
UT

m
; for all m = 1; 2; :::: (4.2)

Then the following properties hold.

1. The orthogonal matrix U has the form

U =

0BBBBBBB@

V1 0 � � � 0

0 V2 � � � 0

...
...

. . .
...

0 0 � � � Vr

1CCCCCCCA
;

where Vl is an orthogonal matrix with dimensions jIlj � jIlj for all l.

2. If i 2 Il then
lim
m!1

1 �P
p2Il (U

i;p

m
)
2

kMmk = 0:
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3. If i and j do not belong to the same block then

lim
m!1

(U i;j

m
)
2

kMmk = 0:

4. If i 2 Il then
V i

l

�
Diag �(XT

l
MXl)

�
(V i

l
)T =M i;i:

5. If i; j 2 Il, and p 62 Il then

lim
m!1

U i;p

m
U j;p

m

kMmk = 0:

6. For any indices i 6= j such that i; j 2 Il,

lim
m!1

P
p2Il

U i;p

m
U j;p

m

kMmk = 0:

7. For any indices i 6= j such that i; j 2 Il,

V i

l

�
Diag �(XT

l
MXl)

�
(V j

l
)T =M i;j :

8. For any three indices i, j, p in distinct blocks,

lim
m!1

U i;p

m
U j;p

m

kMmk = 0:
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9. For any two indices i, j such that i 2 Il, j 2 Is, where l 6= s,

lim
m!1

�
�kl

P
p2Il

U i;p

m
U j;p

m

kMmk + �ks

P
p2Is U

i;p

m
U j;p

m

kMmk
�
=M i;j:

Proof. 1. After taking the limit in equation (4.2) we are left with

(Diag �)U = U(Diag �):

The described representation of the matrix U follows.

2. Let us denote

hm =
�
�(XT

1 MmX1)
T ; :::; �(XT

r
MmXr)

T
�T
: (4.3)

We use Lemma 4.1.4 in equation (4.2) to obtain

Diag �+Mm = Um(Diag �)U
T

m
+ Um(Diag hm)U

T

m
+ o(kMmk);

and the equivalent form

UT

m
(Diag �)Um + UT

m
MmUm = Diag �+Diag hm + o(kMmk):

We now divide both sides of these equations by kMmk and rearrange:

Diag �� Um(Diag�)U
T

m

kMmk = � Mm

kMmk +
Um(Diag hm)U

T

m

kMmk + o(1); (4.4)
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and

Diag �� UT

m
(Diag �)Um

kMmk =
UT

m
MmUm

kMmk � Diag hm

kMmk � o(1): (4.5)

Notice that the right hand sides of these equations converge to a �nite limit

as m increases to in�nity. If we call the matrix limit of the right hand side of

the �rst equation L, then clearly the limit of the second equation is �UTLU .

We are now going to prove parts 2 and 3 together inductively, by dividing

the orthogonal matrix Um into the same block structure as U . We begin by

considering the �rst row of blocks of Um.

Let i be an index in the �rst block, I1. Then the limit of the (i; i)-th entry in

the matrix at the left hand side of equation (4.4) is

lim
m!1

�
�k1

�
1�P

p2I1 (U
i;p

m
)
2
�
�Pr

s=2 �ks
P

p2Is (U
i;p

m
)
2
�

kMmk = Li;i: (4.6)

Now recall that

Li;i = �M i;i + V i

1 (Diag�(X
T

1 MX1))(V
i

1 )
T ;

and because V1 is an orthogonal matrix, notice that

X
i2I1

Li;i = �tr (XT

1 MX1) +
X
i2I1

V i

1 (Diag �(X
T

1 MX1))(V
i

1 )
T

= �tr (XT

1 MX1) +
X
i2I1

�i(X
T

1 MX1)
X
j2I1

(V j;i

1 )2
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= �tr (XT

1 MX1) +
X
i2I1

�i(X
T

1 MX1)

= 0:

We now sum equation (4.6) over all i in I1 to get

lim
m!1

�
�k1

�
jI1j �

P
i;p2I1 (U

i;p

m
)
2
�
�Pr

s=2 �ks
P

i2I1; p2Is (U
i;p

m
)
2
�

kMmk = 0:

Notice here, that the coeÆcients in front of the �kl , l = 1; 2; :::; r in the

numerator sum up to zero. That is,

jI1j �
X
i;p2I1

�
U i;p

m

�2 � rX
s=2

X
i2I1; p2Is

�
U i;p

m

�2
= 0:

So let us choose a number � such that

(� + �e)k1 > 0 > (�+ �e)k1+1;

and add � to every coordinate of the vector � thus \shifting" it. The coordi-

nates of the shifted vector that are in the �rst block are strictly bigger than

zero, and the rest are strictly less than zero. By our comment above, the last

limit remains true if we \shift" � in this way. If we rewrite the last limit for

the \shifted" vector, because all summands are positive, we immediately see

that we must have

lim
m!1

jI1j �
P

i;p2I1 (U
i;p

m
)
2

kMmk = 0
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and

lim
m!1

P
i2I1; p2Is (U

i;p

m
)
2

kMmk = 0; for all s = 2; ::; r:

The �rst of these limits can be written as

lim
m!1

P
i2I1

�
1 �P

p2I1 (U
i;p

m
)
2
�

kMmk = 0;

and because all the summands are positive, we conclude that

lim
m!1

1�P
p2I1 (U

i;p

m
)
2

kMmk = 0; for all i 2 I1:

The second of the limits implies immediately that

lim
m!1

(U i;p

m
)
2

kMmk = 0; for any i 2 I1, p 62 I1.

Thus we proved part 2 for i 2 I1 and part 3 for the cases speci�ed above.

Here is a good place to say a few more words about the idea of the proof.

As we said, we divide the matrix Um into blocks complying with the block

structure of the vector � (exactly as in part 1 for the matrix U). We proved

part 2 and 3 for the elements in the �rst row of blocks of this division. What

we are going to do now is prove the same thing for the �rst column of blocks.

In order to do this we �x an index i in I1 and consider the (i; i)-th entry in
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the matrix at the left hand side of equation (4.5), and take the limit:

lim
m!1

�k1

�
1�P

p2I1 (U
p;i

m
)
2
�
�Pr

s=2 �ks
P

p2Is (U
p;i

m
)
2

kMmk

= �(UTLU)i;i: (4.7)

Using also the block-diagonal structure of the matrix U , we again have

X
i2I1

(UTLU)i;i =
X
i2I1

Li;i = 0:

So we proceed just as before in order to conclude that

lim
m!1

1�P
p2I1 (U

p;i

m
)
2

kMmk = 0; for all i 2 I1;

and

lim
m!1

(Up;i

m
)
2

kMmk = 0; for any i 2 I1, p 62 I1. (4.8)

We are now ready for the second step of our induction. Let i be an index in

I2. Then the limit of the (i; i)-th entry in the matrix at the left hand side of

equation (4.4) is

lim
m!1

1

kMmk

�
� �k1

X
p2I1

�
U i;p

m

�2
+ �k2

�
1�

X
p2I2

�
U i;p

m

�2 ��
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rX
s=3

�ks

X
p2Is

�
U i;p

m

�2�
= Li;i:

Analogously as above we have

X
i2I2

Li;i = 0;

so summing the above limit over all i in I2 we get

lim
m!1

1

kMmk

�
� �k1

X
i2I2; p2I1

�
U i;p

m

�2
+ �k2

�
jI2j �

X
i;p2I2

�
U i;p

m

�2 ��
rX

s=3

�ks

X
i2I2; p2Is

�
U i;p

m

�2�
= 0:

We know from (4.8) that

lim
m!1

P
i2I2; p2I1 (U

i;p

m
)
2

kMmk = 0:

So now we choose a number � such that

(�+ �e)k2 > 0 > (�+ �e)k2+1

and as before exchange � with its shifted version. Just as before we conclude

that

lim
m!1

1 �P
p2I2 (U

i;p

m
)
2

kMmk = 0; for all i 2 I2;
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and

lim
m!1

(U i;p

m
)
2

kMmk = 0; for any i 2 I2, p 62 I2.

We repeat the same steps for the second column of blocks in the matrix Um

and so on inductively until we exhaust all the blocks. This completes the

proof of parts 2 and 3.

4. For the proof of this part, one needs to consider the (i; i)-th entry of the

right hand side of equation (4.4). Because the diagonal of the left hand side

converges to zero (by 2 and 3), taking the limit proves the statement in this

part.

5. This part follows immediately from part 3.

6. Taking the limit in equation (4.4) gives

lim
m!1

�
X
s6=l

�ks

P
p2Is U

i;p

m
U j;p

m

kMmk � �kl

P
p2Il

U i;p

m
U j;p

m

kMmk = Li;j;

where Li;j is the (i; j)-th entry of the limit of the right hand side of equation

(4.4). Note that the coeÆcients of �ks again sum up to zero:

X
s6=l

X
p2Is

U i;p

m
U j;p

m
+
X
p2Il

U i;p

m
U j;p

m
= 0;

because Um is an orthogonal matrix. Now by part 5 we have

0 = lim
m!1

�
X
s6=l

P
p2Is U

i;p

m
U j;p

m

kMmk = lim
m!1

P
p2Il

U i;p

m
U j;p

m

kMmk ;
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as required, and moreover Li;j = 0.

7. The statement of this part is the detailed way of writing the fact, proved in

the previous part, that Li;j = 0.

8. This part follows immediately from part 3. (In fact the expression in part 8

is identical to the one in part 5, re-iterated with di�erent index conditions for

later convenience.)

9. We again take the limit of the (i; j)-th entry of the matrices on both sides of

equation (4.4).

lim
m!1

�
�
X
t6=l;s

�kt

P
p2It U

i;p

m
U j;p

m

kMmk � �kl

P
p2Il

U i;p

m
U j;p

m

kMmk �

�ks

P
p2Is U

i;p

m
U j;p

m

kMmk
�
= Li;j:

By part 8 we have that all but the l-th and the s-th summand above converge

to zero. On the other hand

Li;j = lim
m!1

�
� Mm

kMmk +
Um(Diaghm)U

T

m

kMmk
�i;j

= �M i;j + U i

�
lim
m!1

Diag hm

kMmk
�
(U j)T

= �M i;j;

because U i and U j are rows in di�erent blocks and (Diag hm)=kMmk converges
to a diagonal matrix.

Now we have all the tools to prove the main result of the chapter.
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4.2 Twice di�erentiable spectral functions

In this section we prove that a symmetric function f is twice di�erentiable at

the point �(A) if and only if the corresponding spectral function f Æ � is twice

di�erentiable at the matrix A.

Recall that the Hadamard product of two matrices A = [Ai;j] and B = [Bi;j] of

the same size is the matrix of their elementwise product A ÆB = [Ai;jBi;j]. Let the

symmetric function f : Rn! R be twice di�erentiable at the point � 2 Rn

#, where

�1 = � � � = �k1 > �k1+1 = � � � = �k2 > �k2+1 � � � �kr ; (k0 = 0; kr = n):

We de�ne the vector b(�) = (b1(�); :::; bn(�)) as in Lemma 4.1.2. Speci�cally, for

any index i, (say i 2 Il for some l 2 f1; 2; :::; rg) we de�ne

bi(�) =

8><>:
f 00
ii
(�); if jIlj = 1:

f 00
pp
(�) � f 00

pq
(�); for any p 6= q 2 Il:

Lemma 4.1.2 guarantees that the second case of this de�nition doesn't depend on

the choice of p and q. We also de�ne the matrix A(�):

Ai;j(�) =

8>>>>><>>>>>:
0; if i = j:

bi(�); if i 6= j but i; j 2 Il:
f 0
i
(�)�f 0

j
(�)

�i��j
; otherwise.

(4.9)

For simplicity, when the argument is understood by the context, we will write just
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bi and Ai;j. The following lemma is Theorem 1.1 in [49].

Lemma 4.2.1. Let A 2 Sn and suppose �(A) belongs to the domain of the sym-

metric function f : Rn! R. Then f is di�erentiable at the point �(A) if and only

if f Æ � is di�erentiable at the point A. In that case we have the formula

r(f Æ �)(A) = U
�
Diagrf(�(A))�UT ;

for any orthogonal matrix U satisfying A = U
�
Diag �(A)

�
UT .

We recall some standard notions about twice di�erentiability. Consider a func-

tion F from Sn to R. Its gradient at any point A (when it exists) is a linear

functional on the Euclidean space Sn, and thus can be identi�ed with an element

of Sn, which we denote rF (A). Thus rF is a map from Sn to Sn. When this map

is itself di�erentiable at A we say F is twice di�erentiable at A. In this case we can

interpret the Hessian r2F (A) as a symmetric, bilinear function from Sn � Sn into

R. Its value at a particular point (H;Y ) 2 Sn�Sn will be denoted r2F (A)[H;Y ].

In particular, for �xed H, the function r2F (A)[H; �] is again a linear functional on

Sn, which we consider an element of Sn, for brevity denoted by r2F (A)[H]. When

the Hessian is continuous at A we say F is twice continuously di�erentiable at A.

In that case the following identity holds:

r2F (A)[H;H] =
d2

dt2
F (A+ tH)

����
t=0

:

The next theorem is a preliminary version of our main result.
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Theorem 4.2.2. The symmetric function f : Rn! R is twice di�erentiable at the

point � 2 Rn

# if and only if f Æ � is twice di�erentiable at the point Diag�. In that

case the Hessian is given by

r2(f Æ �)(Diag �)[H] = Diag
�r2f(�)[diagH]

�
+A ÆH: (4.10)

Hence

r2(f Æ �)(Diag �)[H;H] = r2f(�)[diagH;diagH] + hA;H ÆHi;

where A is de�ned in (4.9).

Proof. It is easy to see that f must be twice di�erentiable at the point � whenever

f Æ � is twice di�erentiable at Diag� because by restricting f Æ � to the subspace

of diagonal matrices we get the function f . So the interesting case is the other

direction. Let f be twice di�erentiable at the point � 2 Rn

# and suppose on the

contrary that either f Æ� is not twice di�erentiable at the point Diag�, or equation

(4.10) fails. De�ne a linear operator � by

�(H) := Diag
�
(r2f(�)(diagH)

�
+A ÆH:

(Lemma 4.2.1 tells us that f Æ� is at least di�erentiable around Diag�.) So, for this

linear operator � there is an � > 0 and a sequence of symmetric matrices fMmg1m=1
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converging to 0 such that

kr(f Æ �)(Diag �+Mm)�r(f Æ �)(Diag �)��(Mm)k
kMmk > �

for all m = 1; 2; :::. Without loss of generality we may assume that the sequence

fMmg1m=1 is such that Mm=kMmk converges to a matrix M , because some sub-

sequence of fMmg1m=1 surely has this property. Let fUmg1m=1 be a sequence of

orthogonal matrices such that

Diag � +Mm = Um

�
Diag �(Diag �+Mm)

�
UT

m
; for all m = 1; 2; ::::

Without loss of generality we may assume that Um ! U 2 O(n), or otherwise we

will just take subsequences of fMmg1m=1 and fUmg1m=1. The above inequality shows

that for every m there corresponds a pair (or more precisely at least one pair) of

indices (i; j) such that

j�r(f Æ �)(Diag �+Mm)�Diagrf(�)��(Mm)
�i;jj

kMmk >
�

n
: (4.11)

So at least for one pair of indices, call it again (i; j), we have in�nitely many

numbers m for which (i; j) is the corresponding pair, and because if necessary we

can again take a subsequence of fMmg1m=1 and fUmg1m=1 we may assume without

loss of generality that there is a pair of indices (i; j) for which the last inequality

holds for all m = 1; 2; :::. De�ne the symbol hm again by equation (4.3). Notice

that using Lemma 4.2.1, Lemma 4.1.4, and the fact that rf is di�erentiable at �,
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we get

r(f Æ �)(Diag � +Mm) = Um

�
Diagrf(�(Diag �+Mm))

�
UT

m

= Um

�
Diagrf(�+ hm + o(kMmk))

�
UT

m

(4.12)

= Um(Diag (rf(�) +r2f(�)hm + o(kMmk)))UT

m

= Um(Diagrf(�))UT

m
+ Um(Diag (r2f(�)hm))U

T

m
+ o(kMmk):

We consider three cases. In every case we are going to show that the left hand side

of inequality (4.11) actually converges to zero, which contradicts the assumption.

Case I. If i = j, then using equation (4.12) the left hand side of inequality (4.11)

is less that or equal to

jU i

m

�
Diagrf(�)�(U i

m
)T � f 0

i
(�)j

kMmk +

jU i

m

�
Diagr2f(�)hm

�
(U i

m
)T � �r2f(�)(diagMm)

�
i
j

kMmk
+ o(1):

We are going to show that each summand approaches zero as m goes to in�nity.

Assume that i 2 Il for some l 2 f1; :::; rg. Using the fact that the vector � block

re�nes the vector rf(�) (Lemma 4.1.2, part 1) the �rst term can be written as

1

kMmk

�����f 0kl(�)�1�X
p2Il

�
U i;p

m

�2 ��X
s:s6=l

f 0
ks
(�)
X
p2Is

�
U i;p

m

�2����� :
We apply now Lemma 4.1.5 parts 2 and 3 to the last expression.
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We now concentrate on the second term above. Using the notation of equation

(4.1) (that is, r2f(�) = B +Diag b) this term is less than or equal to

jU i

m

�
Diag (Bhm)

�
(U i

m
)T � �B(diagMm)

�
i
j

kMmk
(4.13)

+
jU i

m

�
Diag ((Diag b)hm)

�
(U i

m
)T � �(Diag b)(diagMm)

�
i
j

kMmk :

As m approaches in�nity, we have that U i

m
! U i. We de�ne the vector h to be:

h := lim
m!1

hm

kMmk =
�
�(XT

1 MX1)
T ; :::; �(XT

r
MXr)

T
�T
:

So taking limits, expression (4.13) turn into:

jU i
�
Diag (Bh)

�
(U i)T � �B(diagM)

�
i
j

+jU i
�
Diag ((Diag b

�
h))(U i)T � �(Diag b)(diagM)

�
i
j:

We are going to investigate each absolute value separately and show that they are

both actually equal to zero. For the �rst, we use the block structure of the matrix

B (see Lemma 4.1.2) and the block structure of the vector h to obtain

(Bh)j =

rX
s=1

aqstr (X
T

s
MXs); when j 2 Iq:

Using the fact that i 2 Il and that Vl is orthogonal we get

U i
�
Diag (Bh)

�
(U i)T =

�
V i

l
XT

l

��
Diag (Bh)

��
Xl(V

i

l
)T
�
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= V i

l

�
XT

l
(Diag (Bh))Xl

�
(V i

l
)T

=
� rX

s=1

alstr (X
T

s
MXs)

�� jIljX
s=1

(V i;s

l
)2
�

=

rX
s=1

alstr (X
T

s
MXs)

= (BdiagM)i;

which shows that the �rst absolute value is zero. For the second absolute value, we

use the block structure of the vector b, to write

(Diag b)h =
�
bk1�(X

T

1 MX1)
T ; :::; bkr�(X

T

r
MXr)

T
�T
:

In the next to the last equality below we use part (4) of Lemma 4.1.5:

U i
�
Diag ((Diag b)h)

�
(U i)T =

�
V i

l
XT

l

��
Diag ((Diag b)h)

��
Xl(V

i

l
)T
�

= V i

l

�
XT

l
(Diag ((Diag b)h))Xl

�
(V i

l
)T

= V i

l

�
Diag bkl�(X

T

l
MXl)

�
(V i

l
)T

= bklM
i;i

=
�
(Diag b)(diagM)

�
i
:

We can see now that the second absolute value is also zero.

Case II. If i 6= j but i; j 2 Il for some l 2 f1; 2; :::rg, then using equation (4.12)
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the left hand side of inequality (4.11) becomes

jU i

m

�
Diagrf(�)�(U j

m
)T + U i

m

�
Diag (r2f(�)hm)

�
(U j

m
)T � bklM

i;j

m
j

kMmk + o(1):

Using the fact that � block re�nes vector rf(�), we can write the �rst summand

in the absolute value as

1

kMmk
�X

s 6=l

f 0
ks
(�)
X
p2Is

U i;p

m
U j;p

m
+ f 0

kl
(�)
X
p2Il

U i;p

m
U j;p

m

�
:

We use parts 5 and 6 of Lemma 4.1.5 to conclude that this expression converges to

zero. We are left with

jU i

m

�
Diag (r2f(�)hm)

�
(U j

m
)T � bklM

i;j

m
j

kMmk :

Substituting above r2f(�) = B +Diag b we get

jU i

m

�
Diag (Bhm)

�
(U j

m
)T + U i

m

�
Diag ((Diag b)hm)

�
(U j

m
)T � bklM

i;j

m
j

kMmk
:

Recall the notation from Lemma 4.1.2 used to denote the entries of the matrix B.

Then the limit of the �rst summand above can be written as

lim
m!1

jU i

m

�
Diag (Bhm)

�
(U j

m
)T j

kMmk = jU i
�
Diag (Bh)

�
(U j)T j

=

rX
s=1

�� rX
l=1

asl tr (X
T

l
MXl)

�X
p2Is

U i;pU j;p

�
= 0;
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because clearly
P

p2Is U
i;pU j;p = 0 for all s 2 f1; 2; :::rg. We are left with the

following limit

lim
m!1

jU i

m

�
Diag ((Diag b)hm)

�
(U j

m
)T � bklM

i;j

m
j

kMmk
= jU i

�
Diag ((Diag b)h)

�
(U j)T � bklM

i;jj:

Using Lemma 4.1.5 part 7 we observe that the last absolute value is zero.

Case III. If i 2 Il and j 2 Is, where l 6= s, then using equation (4.12), the left

hand side of inequality (4.11) becomes (up to o(1))

jU i

m

�
Diagrf(�)�(U j

m
)T + U i

m

�
Diagr2f(�)hm

�
(U j

m
)T � f

0
k
l

(�)�f 0
ks
(�)

�kl
��ks

M i;j

m
j

kMmk :

We start with the second term above. Its limit is

lim
m!1

U i

m

�
Diag (r2f(�)hm)

�
(U j

m
)T

kMmk = U i
�
Diag (r2f(�)h)

�
(U j)T = 0;

because in our case, U i has nonzero coordinates where the entries of U j are zero.

We are left with

lim
m!1

�����U i

m

�
Diagrf(�)�(U j

m
)T

kMmk � f 0
kl
(�) � f 0

ks
(�)

�kl � �ks

M i;j

m

kMmk

����� : (4.14)
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We expand the �rst term in this limit.

U i

m

�
Diagrf(�)�(U j

m
)T

kMmk = f 0
kl
(�)

P
p2Il

U i;p

m
U j;p

m

kMmk +

f 0
ks
(�)

P
p2Is U

i;p

m
U j;p

m

kMmk +
X
t6=l;s

f 0
kt
(�)

P
p2It U

i;p

m
U j;p

m

kMmk :

Using Lemma 4.1.5 part 8 we see that the third summand above converges to zero

as m goes to in�nity. Part 9 of the same lemma tells us that

lim
m!1

M i;j

m

kMmk = lim
m!1

�
�kl

P
p2Il

U i;p

m
U j;p

m

kMmk + �ks

P
p2Is U

i;p

m
U j;p

m

kMmk
�
:

In order to abbreviate the formulae we introduce the following notation

�l
m
:=

P
p2Il U

i;p

m
U j;p

m

kMmk ; for all l = 1; 2; :::; r:

Substituting everything in (4.14) we get the following equivalent limit:

lim
m!1

�����f 0kl(�)�lm + f 0
ks
(�)�s

m

�
� f 0

kl
(�)� f 0

ks
(�)

�kl � �ks

�
�kl�

l

m
+ �ks�

s

m

����� :
Simplifying we get

lim
m!1

(�l
m
+ �s

m
)
f 0
ks
(�)�kl � f 0

kl
(�)�ks

�kl � �ks
:

Notice now that
rX

l=1

�l
m
= 0; for all m;
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because Um is an orthogonal matrix and the numerator of the above sum is the

product of its i-th and the j-th row. Next, Lemma 4.1.5, part 8 says that

lim
m!1

X
t6=l;s

�t
m
= 0;

so

lim
m!1

(�l
m
+ �s

m
) = 0;

which completes the proof.

We are �nally ready to give and prove the full version of our main result.

Theorem 4.2.3. Let A be an n � n symmetric matrix. The symmetric function

f : Rn ! R is twice di�erentiable at the point �(A) if and only if the spectral

function f Æ � is twice di�erentiable at the matrix A. Moreover in this case the

Hessian of the spectral function at the matrix A is

r2(f Æ �)(A)[H] = W
�
Diag

�r2f(�(A))diag ~H
�
+A Æ ~H

�
W T ;

where W is any orthogonal matrix such that A =W
�
Diag �(A)

�
W T , ~H = W THW ,

and A = A(�(A)) is de�ned by equation (4.9). Hence

r2(f Æ �)(A)[H;H] = r2f(�(A))[diag ~H;diag ~H] + hA; ~H Æ ~Hi:

Proof. Let W be an orthogonal matrix which diagonalizes A in an ordered fashion,

that is

A = W
�
Diag �(A)

�
W T :
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Let Mm be a sequence of symmetric matrices converging to zero, and let Um be a

sequence of orthogonal matrices such that

Diag �(A) +W TMmW = Um

�
Diag �(Diag �(A) +W TMmW )

�
UT

m
:

Then using Lemma 4.2.1 we get

r(f Æ �)(A+Mm)

= r(f Æ �)�W (Diag�(A) +W TMmW )W T
�

= r(f Æ �)�WUm(Diag �(Diag �(A) +W TMmW ))UT

m
W T

�
= WUm

�
Diagrf(�(Diag �(A) +W TMmW ))

�
UT

m
W T :

We also have that

r(f Æ �)(A) = W
�
Diagrf(�(A))�W T ;

and W TMmW ! 0, as m goes to in�nity. Because W is an orthogonal matrix we

have kWXW Tk = kXk for any matrix X. It is now easy to check the result by

Theorem 4.2.2.

4.3 Continuity of the Hessian

Suppose now the symmetric function f : Rn ! R is twice di�erentiable in a neigh-

bourhood of the point �(A) and its Hessian is continuous at the point �(A). Then
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f Æ � as we saw above will be twice di�erentiable in a neighbourhood of the point

A, and in this section we are going to show that r2(f Æ�) is also continuous at the
point A.

We de�ne a basis, fHijg, on the space of symmetric matrices. If i 6= j all the

entries of the matrix Hij are zeros, except the (i; j)-th and (j; i)-th, which are one.

If i = j we have one only on the (i; i)-th position. It suÆces to prove that the

Hessian is continuous when applied to any matrix of the basis. We begin with a

lemma treating, in some sense, all special cases at once.

Lemma 4.3.1. Let � 2 Rn

# be such that

�1 = � � � = �k1 > �k1+1 = � � � = �k2 > �k2+1 � � � �kr ; (k0 = 0; kr = n):

and let the symmetric function f : Rn ! R be twice continuously di�erentiable at

the point �. Let f�mg1
m=1 be a sequence of vectors in Rn converging to �. Then

lim
m!1

r2(f Æ �)(Diag �m) = r2(f Æ �)(Diag �):

Proof. For every m there is a permutation matrix Pm such that P T

m
�m = �m. (See

the beginning of Section 4.1 for the meaning of the bar above a vector.) But there

are �nitely many permutation matrices (namely n!) so we can form n! subsequences

of f�mg such that any two vectors in a particular subsequence can be ordered in

descending order by the same permutation matrix. If we prove the lemma for every

such subsequence we will be done. So without loss of generality we may assume

that P T�m = �m for every m, and some �xed permutation matrix P . Clearly for
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all large enough m, we are going to have

�m
k1
> �m

k1+1; �m
k2
> �m

k2+1; � � � ; �mkr�1
> �m

kr�1+1;

Consequently the matrix P is block-diagonal with permutation matrices on the

main diagonal, and dimensions matching the block structure of �, so P� = �.

Consider now the block structure of the vectors f�mg. Because there are �nitely

many di�erent block structures, we can divide this sequence into subsequences such

that the vectors in a particular subsequence have the same block structure. If we

prove the lemma for each subsequence we will be done. So without loss of generality

we may assume that the vectors f�mg have the same block structure for every m.

Next, using the formula for the Hessian in Theorem 4.2.3 we have

r2(f Æ �)(Diag �m)[Hij ] =

P
�
Diag

�r2f(�m)diag (P THijP )
�
+A(�m) Æ (P THijP )

�
P T ;

and Lemma 4.1.2 together with Theorem 4.2.2 give us

r2(f Æ �)(Diag �)[Hij ] = Diag
�r2f(�)diagHij

�
+A(�) ÆHij

= P
�
Diag

�r2f(�)diag (P THijP )
�
+

A(�) Æ (P THijP )
�
P T :

These equations show that without loss of generality it suÆces to prove the lemma

only in the case when all vectors f�mg are ordered in descending order, that is, the
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vectors �m all block re�ne the vector �. In that case we have

r2(f Æ �)(Diag �m)[Hij] = Diag
�r2f(�m)diagHij

�
+A(�m) ÆHij ;

and

r2(f Æ �)(Diag �)[Hij ] = Diag
�r2f(�)diagHij

�
+A(�) ÆHij :

We consider four cases.

Case I. If i = j then

lim
m!1

r2(f Æ �)(Diag �m)[Hij] = lim
m!1

Diag
�r2f(�m)ei

�
= Diag

�r2f(�)ei
�

= r2(f Æ �)(Diag �)[Hij ];

just because r2f(�) is continuous at �.

Case II. If i 6= j, but belong to the same block for �m, then i, j will be in the

same block of � as well and we have

lim
m!1

r2(f Æ �)(Diag �m)[Hij] = lim
m!1

bi(�
m)Hij

= bi(�)Hij

= r2(f Æ �)(Diag �)[Hij];
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again because r2f(�) is continuous at �.

Case III. If i and j belong to di�erent blocks of �m but to the same block of �,

then

lim
m!1

r2(f Æ �)(Diag �m)[Hij] = lim
m!1

f 0
i
(�m)� f 0

j
(�m)

�m
i
� �m

j

Hij;

and

r2(f Æ �)(Diag �)[Hij ] = bi(�)Hij :

So we have to prove that

lim
m!1

f 0
i
(�m)� f 0

j
(�m)

�m
i
� �m

j

= f 00
ii
(�)� f 00

ij
(�):

(See the de�nition of bi(�) in the beginning of Section 4.2.) For every m we de�ne

the vectors _�m and ��m coordinatewise as follows

_�m
p
=

8><>: �m
p
; p 6= i

�m
j
; p = i

; ��m
p
=

8>>>><>>>>:
�m
p
; p 6= i; j

�m
j
; p = i

�m
i
; p = j:

Because �i = �j we conclude that both sequences f _�mg1
m=1 and f��mg1m=1 converge

to �, because f�mg1
m=1 does so. Below we are applying the mean value theorem
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twice:

f 0
i
(�m)� f 0

j
(�m)

�m
i
� �m

j

=
f 0
i
(�m)� f 0

i
( _�m) + f 0

i
( _�m)� f 0

j
(�m)

�m
i
� �m

j

=
(�m

i
� �m

j
)f 00

ii
(�m) + f 0

i
( _�m)� f 0

j
(�m)

�m
i
� �m

j

= f 00
ii
(�m) +

f 0
i
( _�m)� f 0

i
(��m) + f 0

i
(��m)� f 0

j
(�m)

�m
i
� �m

j

= f 00
ii
(�m) +

(�m
j
� �m

i
)f 00

ij
(�m) + f 0

i
(��m)� f 0

j
(�m)

�m
i
� �m

j

= f 00
ii
(�m)� f 00

ij
(�m);

where �m is a vector between �m and _�m, and �m is a vector between _�m and ��m.

Consequently �m ! �, and �m ! �. Notice that vector ��m is obtained from �m by

swapping the i-th and the j-th coordinate. Then using the �rst part of Lemma 4.1.2

we see that f 0
i
(��m) = f 0

j
(�m). Finally we just have to take the limit above and use

again the continuity of the Hessian of f at the point �.

Case IV. If i and j belong to di�erent blocks of �m and to di�erent blocks of �,

then

lim
m!1

r2(f Æ �)(Diag �m)[Hij ] = lim
m!1

f 0
i
(�m)� f 0

j
(�m)

�m
i
� �m

j

Hij

=
f 0
i
(�)� f 0

j
(�)

�i � �j
Hij

= r2(f Æ �)(Diag �)[Hij ];

because rf(�) is continuous at � and the denominator is never zero.



4.3. CONTINUITY OF THE HESSIAN 114

Now we are ready to prove the main result of this section.

Theorem 4.3.2. Let A be an n � n symmetric matrix. The symmetric function

f : Rn ! R is twice continuously di�erentiable at the point �(A) if and only if the

spectral function f Æ � is twice continuously di�erentiable at the matrix A.

Proof. We know that f Æ � is twice di�erentiable at A if and only if f is twice

di�erentiable at �(A), so what is left to prove is the continuity of the Hessian.

Suppose that f is twice continuously di�erentiable at �(A) and that fÆ� is not twice
continuously di�erentiable at A. That is, the Hessian r2(f Æ �) is not continuous
at A. Take a sequence, fAmg1m=1, of symmetric matrices converging to A such that

for some � > 0 we have

kr2(f Æ �)(Am)�r2(f Æ �)(A)k > �;

for all m. Let fUmg1m=1 be a sequence of orthogonal matrices such that

Am = Um

�
Diag �(Am)

�
UT

m
:

Without loss of generality we may assume that Um ! U , where U is orthogonal

and then

A = U
�
Diag �(A)

�
UT :

(Otherwise we take subsequences of fAmg and fUmg.) Using the formula for the
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Hessian given in Theorem 4.2.3 and Lemma 4.3.1 we can easily see that

lim
m!1

r2(f Æ �)(Am)[H] = r2(f Æ �)(A)[H];

for every symmetric H. This is a contradiction.

The other direction follows from the chain rule after observing

f(x) = (f Æ �)(Diag x):

This completes the proof.

4.4 Example and Conjecture

As an example, suppose we require the second directional derivative of the function

fÆ� at the point A in the directionB. That is, we want to �nd the second derivative

of the function

g(t) = (f Æ �)(A+ tB);

at t = 0. Let W be an orthogonal matrix such that A = W (Diag �(A))W T . Let

~B = W TBW . We di�erentiate twice:

g00(t) = r2(f Æ �)(A+ tB)[B;B]:

Using Lemma 4.2.1 and Theorem 4.2.3 at t = 0 we get

g(0) = f(�(A))
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g0(0) = tr
�
~BDiagrf(�(A))�

g00(0) = r2(f Æ �)(�(A))[diag ~B;diag ~B] + hA; ~B Æ ~Bi

=

nX
i;j=1

f 00
ij
(�(A))( ~Bi;i)( ~Bj;j) +

X
i6=j

�
i
=�

j

bi( ~B
i;j)2

+
X
i;j

�i 6=�j

+
X
i; j

�i 6= �j

f 0
i
(�(A))� f 0

j
(�(A))

�i(A)� �j(A)
( ~Bi;j)2;

In principle, if the function f is analytic, this second directional derivative can also

be computed using the implicit formulae from [88]. Some work shows that the

answers agree.

As a �nal illustration, consider the classical example of the power series expan-

sion of a simple eigenvalue. In this case we consider the function f given by

f(x) = �xk := the k-th largest entry in x;

and the matrix

A = Diag �;

where � 2 Rn

# and

�k�1 > �k > �k+1:

Then we have

f 0(�) = ek; and f 00(�) = 0;

so for the function g(t) = �k(Diag� + tB) our results show the following formulae
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(familiar in perturbation theory and quantum mechanics):

g(0) = �k

g0(0) = Bk;k

g00(0) =
X
j 6=k

1

�k � �j
(Bk;j)2 +

X
i6=k

�1
�i � �k

(Bi;k)2

= 2
X
j 6=k

1

�k � �j
(Bk;j)2:

This agrees with the result in [41, p. 92]. As we will see in the next chapter, this

result can be written using the notion of the Moore-Penrose generalized inverse.

We conclude with the following natural conjecture.

Conjecture 4.4.1. A spectral function f Æ� is k-times di�erentiable at the matrix

A if and only if its corresponding symmetric function f is k-times di�erentiable at

the point �(A). Moreover, f Æ � is Ck if and only if f is Ck.



Chapter 5

Quadratic expansions of spectral

functions

In this chapter we relax the assumptions from Chapter 4. We assume that the

symmetric function f has a quadratic expansion at the point �(A) and we show

that this happens if and only if f Æ � has a quadratic expansion at A. Notice that

having a quadratic expansion is a weaker property than being twice di�erentiable.

5.1 Notation and de�nitions

We use the notation from the previous chapters. The following de�nition explains

the main property that interests us here.

De�nition 5.1.1. We say that a function f : Rn ! R has a weak quadratic

expansion at the point x if there exists a vector rf(x) and a symmetric matrix

118
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r2f(x) such that for small h 2 Rn

f(x+ h) = f(x) + hrf(x); hi+ 1

2
hh;r2f(x)hi + o(khk2);

and a strong quadratic expansion at the point x if

f(x+ h) = f(x) + hrf(x); hi+ 1

2
hh;r2f(x)hi +O(khk3):

The vector h is called a perturbation vector.

A few comments on this de�nition are necessary. Clearly having strong quadra-

tic expansion implies the weak quadratic expansion. We want to alert the reader

that a function may not be twice di�erentiable at the point x but still possesses a

strong quadratic expansion at that point. (See, for example, (1.3) in the Introduc-

tion.) It is clear that if the function has quadratic expansion at the point x then it

is di�erentiable at x and its gradient is the vector rf(x) from the above de�nition.

If the function has weak quadratic expansion, then there is a unique vector rf(x),
and a short elementary argument shows that there is a unique symmetric matrix

r2f(x) (the Hessian) for which the expansion holds. There is a slight abuse of

notation when we call r2f(x) the Hessian of f , but no danger of confusion exists

because when f is twice di�erentiable at x the symmetric matrix r2f(x) is exactly

the Hessian. Finally, another way to write the strong quadratic expansion of a

function f , consistent with [68], is

f(x + h) = f(x) +rf(x)[h] + 1

2
r2f(x)[h; h] +O(khk3): (5.1)
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We give some less common notation which will be used throughout the chapter.

It is taken directly from [87]. We are interested in quadratic expansions of matrix

functions f Æ � around a matrix A. Let H 2 Sn be the perturbation matrix. We

assume \block structure" of the vector �(A) given by (cf. page 84)

�1(A) = � � � = �k1 (A) > � � � > �kl�1+1(A) = � � � = �m(A) = � � � = �kl(A)

> � � � �kr (A); (k0 = 0; kr = n):

That is, the eigenvalue �m(A) lies in the l'th block of equal eigenvalues. Let X =

[x1; :::; xn] be an orthogonal matrix such that XTAX = Diag �(A) (so xi is a unit

eigenvector corresponding to �i(A)) and let

Xl = [xkl�1+1; :::; xkl]:

Let Ul = [v1; :::; vkl�kl�1 ] be a (kl � kl�1)� (kl � kl�1) orthogonal matrix such that

UT

l
(XT

l
HXl)Ul = Diag �(XT

l
HXl):

Set Hl := XT

l
HXl, 1 � l � r, and suppose

�1(Hl) = � � � = �tl;1(Hl) > � � � > �tl;j�1+1(Hl) = � � ��m�kl�1
(Hl) � � �

= �tl;j (Hl) > � � ��tl;s
l

(Hl); (tl;0 = 0; tl;sl = kl � kl�1)

Finally let

Ul;j = [vtl;j�1+1; :::; vtl;j]:
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We should point out that Xl = Xl(A;m), and Ul;j = Ul;j(A;H;X;m) but from now

on we will write only Xl and Ul;j to simplify the notation.

By Ay we denote the Moore-Penrose generalized inverse of the matrix A. For

more information on the topic see [84, p.102]. But for our needs, because we will

be working only with symmetric matrices, the concept can be quickly explained.

First, (Diagx)
y
i;j
is equal to 1=xi if i = j and xi 6= 0, and is 0 otherwise. Second, for

any orthogonal matrix U , that diagonalizes A, we have Ay = (UDiag�(A)UT )y :=

U(Diag�(A))yUT .

5.2 Supporting results

Let A be in Sn and its eigenvalues have the following block structure

�1(A) = � � � = �k1(A) > �k1+1(A) = � � � = �k2 (A) > �k2+1(A) � � � � � � �kr (A);

where kr = n. All our results in this chapter rest on the fact that for every block

l = 1; :::; r, the following two functions have quadratic expansions at A:

�kl(�) =
klX
i=1

�i(�)

Sl(�) =
klX

i=kl�1+1

�2
i
(�):

We are going to give three justi�cations of this fact and two of them will show that

these functions are even analytic at A. For every indexm = 1; :::; n and every block
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l = 1; :::; r de�ne the functions

fm(x) =

mX
i=1

�xi

sl(x) =

klX
i=kl�1+1

�x2
i
:

The function fm is the sum of them largest entries in x. The functions fm and sl(x)

are symmetric. (A function f is symmetric if f(x) = f(Px) for any permutation

matrix P . We denote the set of all n�n permutation matrices by P (n).) It is clear

that if the point x is such that �xm > �xm+1 then fm is linear near x. In particular,

for points x near �(A) the functions fkl(x) and sl(x) are both polynomials in the

entries of x. Notice also that

�kl(�) = (fkl Æ �)(�)

Sl(�) = (sl Æ �)(�):

The �rst justi�cation comes from our result in Theorem 4.2.3.

Theorem 5.2.1. The symmetric function f : Rn! R is twice di�erentiable at the

point �(A) if and only if f Æ � is twice di�erentiable at the point A.

The second justi�cation is from [88, Theorem 2.1].

Theorem 5.2.2. Suppose f : Rn ! R is a function analytic at the point �(A) for

some A in Sn. Suppose also f(Px) = f(x) for every permutation matrix, P, for

which P�(A) = �(A). Then the function f Æ � is analytic at A.



5.2. SUPPORTING RESULTS 123

For the third justi�cation we use the standard algebraic fact that every symmetric

polynomial in several variables can be written as a polynomial in the elementary

symmetric functions. We also use the following result [3]. Until the end of this

section only, �i(X) will denote an arbitrary eigenvalue of a matrixX, not necessarily

the i'th largest one.

Theorem 5.2.3 (Arnold 1971). Suppose that the matrix A 2 C n�n has q eigen-

values �1(A); :::; �q(A) (counting multiplicities) in an open set 
 � C , and the other
n � q eigenvalues are not in 
. Then for all matrices X in a neighbourhood of A

there are holomorphic mappings S : C n�n ! C
q�q and T : C n�n ! C

(n�q)�(n�q)

such that

X is similar to

0B@ S(X) 0

0 T (X)

1CA ;

and S(A) has eigenvalues �1(A); :::; �q(A).

Using Arnold's theorem we can prove that in fact the functions �kl and Sl are

holomorphic around A.

Theorem 5.2.4. For every symmetric polynomial p : C q ! C , the function (p Æ
�)(S(X)) is analytic around A.

Proof. It suÆces to prove the theorem in the case of an elementary symmet-

ric polynomial, since any symmetric polynomial is a polynomial in the elemen-

tary symmetric functions (see for example [38, Proposition V.2.20.(ii)]). First we

show that (p Æ �)(S(X)) is holomorphic around A by using Arnold's theorem.

By continuity of the eigenvalues, for every i = 1; :::; n we can de�ne functions
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�i : Cn�n ! C such that for matrices X near A, if f�i(X)gn
i=1 are the eigenvalues

of X then f�i(X)gq
i=1 are the eigenvalues of S(X). So the elementary symmetric

functions of �1(X); :::; �q(X) are the coeÆcients of the characteristic polynomial

det (�I � S(X)). Consequently they are holomorphic around A. Finally, we con-

sider the case when A is a real symmetric matrix, and we restrict ourselves to a

neighbourhood of real symmetric matrices around A. Because for matrices X in

this neighbourhood the values of (p Æ �)(S(X)) are real, one can easily see that the

holomorphic expansion around A reduces to an analytic (real) expansion.

5.3 Quadratic expansion of spectral functions

Our goal in this section is to prove the main result of the chapter. Not surprisingly

the form of the Hessian is the same as the one given in Theorem 4.2.3.

Theorem 5.3.1 (Quadratic Expansion). The symmetric function f : Rn ! R
has a strong quadratic expansion at the point x = �(Y ) (Y 2 Sn) if and only if

f Æ � has a strong quadratic expansion at Y , and in that case

r(f Æ �)(Y )[H] = tr
�
~HDiagrf(�)�

r2(f Æ �)(Y )[H;H] =

nX
p;q=1

~hppf
00

pq
(�)~hqq +

X
p 6=q

�p=�q

bp~h
2
pq
+

X
p;q:�p 6=�q

f 0
p
(�) � f 0

q
(�)

�p � �q
~h2
pq
;

where � = �(Y ), ~H = UTHU , Y = U(Diag �)UT , U orthogonal, and the vector

b is de�ned in Lemma 5.3.7. The analogous result holds for the weak quadratic
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expansion.

We will only talk about strong quadratic expansions in this chapter: the devel-

opment for the weak version is analogous. We need the following result from [87,

Remark 6].

Lemma 5.3.2. Every eigenvalue, �m(Y ), of a symmetric matrix, Y , has the fol-

lowing expansion in the direction of the symmetric matrix H:

�m(Y + tH) = �m(Y ) + t�m�kl�1
(XT

l
HXl)

(5.2)+
t2

2
�m�kl�1�tl;j�1

�
2UT

l;j
XT

l
H(�m(Y )I � Y )yHXlUl;j

�
+O(t3);

where the meaning of Xl and Ul;j is explained in the previous section.

Next we give a technical lemma that will allow us to cut down on the notation.

We use De�nition 4.1.1.

Lemma 5.3.3. Let � 2 Rn be such that

�1 = � � � = �k1 > �k1+1 = � � � = �k2 > �k2+1 � � ��kr ; (k0 = 0; kr = n);

and let the vector b 2 Rn be block re�ned by �. Let H 2 Sn be an arbitrary matrix

and Xi = [eki�1+1; :::; eki] for every i = 1; :::; r. Then we have the identities:

hH; bkl(�klI �Diag �)yHXlX
T

l
i =

klX
p=kl�1+1

nX
q=1

�q 6=�p

bp

�p � �q
h2
pq
:

�
H;

rX
i=1

bki(�kiI �Diag �)yHXiX
T

i

�
=

X
p;q:�p>�q

bp � bq

�p � �q
h2
pq
:
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Proof. The productXiX
T

i
is an n�nmatrix with zero entries, except (XlX

T

l
)p;p = 1

for p = ki�1 + 1; :::; ki. Thus the columns of HXiX
T

i
are zero vectors, except the

columns with indexes p = ki�1 + 1; :::; ki which are equal to the corresponding

columns of H. The matrix bki(�kiI �Diag �)y is equal to

Diag

�
bki

�ki � �1
; :::;

bki
�ki � �ki�1

; 0; :::; 0;
bki

�ki � �ki+1

; :::;
bki

�ki � �kr

�
:

Consequently we have

hH; bki(�kiI�Diag �)yHXiX
T

i
i =

kiX
p=ki�1+1

nX
q=1

�q 6=�p

bki
�ki � �q

h2
qp

=

kiX
p=ki�1+1

� ki�1X
q=1

�bp
�q � �p

h2
qp
+

nX
q=ki+1

bp

�p � �q
h2
qp

�
;

and the two identities can now be easily obtained.

Our �rst goal is to �nd a formula for the Hessian of �kl, 1 � l � r. We denote

the standard basis in Rn by e1,e2,...,en. As a byproduct in the following lemma we

derive a formula for the derivative of the function �kl at the point Diag �. This

formula appeared many times in the literature: see for example Corollary 3.10 in

[32], or the proof of Corollary 3.3 in [48]. The expression for the Hessian is also

known, see Formula (3.28) in [74] or [19] for a di�erential geometry argument, here

we present yet another way of deriving it.
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Lemma 5.3.4. For a real vector � 2 Rn, such that

�1 = � � � = �k1 > �k1+1 = � � � = �k2 > �k2+1 � � ��kr ; (k0 = 0; kr = n);

the function

�kl(�) =
klX
i=1

�i(�)

is analytic at the matrix Diag� with �rst and second derivatives satisfying

r�kl(Diag �)[H] = tr

�
H Diag

klX
i=1

ei
�

r2�kl(Diag �)[H;H] = 2

klX
p=1

nX
q=kl+1

h2
qp

�p � �q

= tr

�
2H

lX
i=1

(�kiI �Diag �)yHXiX
T

i

�
;

where Xi = [eki�1+1; :::; eki].

Proof. The fact that �kl is analytic at the point Diag� follows from Section 5.2.

Next, summing equations (5.2) with Y = Diag �, for m = 1; :::; kl and using the

fact that X = I (so Xi = [eki�1+1; :::; eki]), we get

�kl(Diag� + tH) =

klX
i=1

�i(Diag �+ tH) = �kl(Diag �) + t

lX
i=1

tr (XT

i
HXi)

+
t2

2

lX
i=1

siX
j=1

ti;j�ti;j�1X
v=1

�v(2U
T

i;j
XT

i
H
�
�kiI �Diag �)yHXiUi;j

�
+O(t3)

= �kl(Diag �) + thDiag
klX
i=1

ei;Hi
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+
t2

2

lX
i=1

siX
j=1

tr
�
2UT

i;j
XT

i
H(�kiI �Diag �)yHXiUi;j

�
+O(t3):

We concentrate on the double sum above.

lX
i=1

siX
j=1

tr
�
2UT

i;j
XT

i
H(�kiI �Diag �)yHXiUi;j

�
=

=

lX
i=1

siX
j=1

tr
�
2XT

i
H(�kiI �Diag �)yHXiUi;jU

T

i;j

�
=

lX
i=1

tr

�
2XT

i
H(�kiI �Diag �)yHXi

siX
j=1

Ui;jU
T

i;j

�

=

lX
i=1

tr
�
2XT

i
H(�kiI �Diag �)yHXi

�
= tr

�
2H

lX
i=1

(�kiI �Diag �)yHXiX
T

i

�

=

klX
p=1

nX
q=1

�q 6=�p

2

�p � �q
h2
qp

= 2

klX
p=1

nX
q=kl+1

h2
qp

�p � �q
:

The next to the last equality follows from Lemma 5.3.3, with b = (2; :::; 2), while

the last equality after canceling all terms with opposite signs. By the uniqueness

of the Hessian in the quadratic expansion of a function, we conclude that the last

expression above must be indeed the Hessian.

Note 5.3.5. Notice that the Hessian above is a positive semide�nite quadratic

form. This is not a surprise since a well known result of Fan [21] says that �m
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is a convex function for all m = 1; :::; n.

Lemma 5.3.6. For a real vector � 2 Rn, such that

�1 = � � � = �k1 > �k1+1 = � � � = �k2 > �k2+1 � � � �kr (k0 = 0; kr = n);

the function

Sl(�) =
klX

m=kl�1+1

�2
m
(�)

is analytic at the matrix Diag �, with �rst and second derivatives satisfying

rSl(Diag �)[H] = 2�kl tr

�
H Diag

klX
i=kl�1+1

ei
�

r2Sl(Diag �)[H;H] = 2

klX
p;q=kl�1+1

h2
qp
+ 4

klX
p=kl�1+1

nX
q=1

�p 6=�q

�p

�p � �q
h2
qp

= hH; 2XlX
T

l
HXlX

T

l
+ 4�kl(�klI �Diag �)yHXlX

T

l
i;

where Xl = [ekl�1+1; :::; ekl].

Proof. The analyticity of S(�) at the point Diag � follows from Section 5.2. Next,

summing the squares of equations (5.2) with Y = Diag �, for m = 1; :::; kl and using

the fact that X = I (so Xi = [eki�1+1; :::; eki]), we get

klX
m=kl�1+1

�2
m
(Diag � + tH) =

klX
m=kl�1+1

�
�kl + t�m�kl�1

(XT

l
HXl)

+
t2

2
�m�kl�1�tl;j�1

�
2UT

l;j
XT

l
H(�klI �Diag �)yHXlUl;j

�
+O(t3)

�2

= (kl � kl�1)�
2
kl
+ t2

klX
m=kl�1+1

�2
m�kl�1

(XT

l
HXl)
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+ 2t�kl

klX
m=kl�1+1

�m�kl�1
(XT

l
HXl)

+ t2�kl

slX
j=1

tl;j�tl;j�1X
v=1

�v
�
2UT

l;j
XT

l
H(�klI �Diag �)yHXlUl;j

�
+O(t3):

We recall the fact that for every symmetric n� n matrix Q we have

nX
i=1

�2
i
(Q) = hQ;Qi:

We use this fact to evaluate the second summand in the formula above.

klX
m=kl�1+1

�2
m�kl�1

(XT

l
HXl) = hXT

l
HXl;X

T

l
HXli = hH;XlX

T

l
HXlX

T

l
i:

Observe as in Lemma 5.3.4 that for the fourth summand in the formula above we

have

slX
j=1

tl;j�tl;j�1X
v=1

�v
�
2UT

l;j
XT

l
H(�klI �Diag �)yHXlUl;j

�
=

slX
j=1

tr
�
2UT

l;j
XT

l
H(�klI �Diag �)yHXlUl;j

�
= tr

�
2XT

l
H(�klI �Diag�)yHXl

�
:

Substituting everything in the original formula we get

klX
m=kl�1+1

�2
m
(Diag �+ tH) = (kl � kl�1)�

2
kl
+ t2hH;XlX

T

l
HXlX

T

l
i +
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2t�klhDiag
klX

i=kl�1+1

ei;Hi+ t2�klhH; 2(�klI �Diag �)yHXlX
T

l
i+O(t3)

= (kl � kl�1)�
2
kl
+ 2t�klhDiag

klX
i=kl�1+1

ei;Hi +

t2

2
hH; 2XlX

T

l
HXlX

T

l
+ 4�kl(�klI �Diag �)yHXlX

T

l
i+O(t3):

Using Lemma 5.3.3, with b = 4�, we conclude that

r2Sl(Diag �)[H;H] = 2

klX
p;q=kl�1+1

h2
qp
+ 4

klX
p=kl�1+1

nX
q=1

�p 6=�q

�p

�p � �q
h2
qp
:

By the uniqueness of the Hessian in the quadratic expansion of a function, we

conclude that the last expression above must be indeed the Hessian.

The lemma below is a repetition of Lemma 4.1.2. The proof given there doesn't

apply here because we cannot di�erentiate twice. That is why for completeness we

repeat the whole bit.

Lemma 5.3.7. Let f : Rn ! R be a symmetric function having quadratic expan-

sion at the point � 2 Rn

#, where

�1 = � � � = �k1 > �k1+1 = � � � = �k2 > �k2+1 � � � �kr ; (k0 = 0; kr = n);

and let P be a permutation matrix such that P� = P . Then

1. rf(�) = P Trf(�), and

2. r2f(�) = P Tr2f(�)P .
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In particular we can write

r2f(�) =

0BBBBBBB@

a11E11 + bk1I1 a12E12 � � � a1rE1r

a21E21 a22E22 + bk2I2 � � � a2rE2r

...
...

. . .
...

ar1Er1 ar2Er2 � � � arrRrr + bkrIr

1CCCCCCCA
;

where each Euv is a (ku � ku�1)� (kv � kv�1) matrix of all ones, (aij)
r;r

i;j=1 is a real

symmetric matrix, b := (b1; :::; bn) is a real vector which is block re�ned by �, and

Iu is a square identity matrix of the same dimensions as Euu. We also de�ne the

following matrix

A := r2f(�)�Diag b = (aijEij)
r

i;j=1:

Before we give the proof, some comments about the above representation are

necessary.

1. We make the convention that if the i-th diagonal block in the above represen-

tation has dimensions 1� 1 then we set aii = 0 and bki = f
00

kiki
(�). Otherwise

the value of bki is uniquely determined as the di�erence between a diagonal

and an o�-diagonal element of this block.

2. Note that the matrix A and the vector b depend on the point around which

we form the quadratic expansion (in this case �) and on the function f .

Proof. We have

f(� + h) = f(�) + hrf(�); hi + 1

2
hh;r2f(�)hi +O(khk3):



5.3. QUADRATIC EXPANSION OF SPECTRAL FUNCTIONS 133

Let P be a permutation matrix such that P� = �. Then

f(P (� + h)) = f(�) + hrf(�); Phi + 1

2
hPh;r2f(�)Phi +O(kPhk3)

= f(�) + hP Trf(�); hi+ 1

2
hh; (P Tr2f(�)P )hi +O(khk3):

Using the fact that f is symmetric gives us that f(P (�+h)) = f(�+h) so rf(�) =
P Trf(�). Subtracting the above two equalities we obtain

r2f(�) = P Tr2f(�)P; 8P 2 P (n) s.t. P� = �: (5.3)

The claimed block structure of r2f(�) is now easy to check.

Note 5.3.8. Observe that equation (5.3) holds for arbitrary � 2 Rn.

Lemma 5.3.9. The vector � block re�nes r2f(�)�.

Proof. Suppose P� = �. Then using twice Equation (5.3) and the above note, we

get

Pr2f(�)� = P (P Tr2f(�)P )� = r2f(�)P� = r2f(�)�:

Lemma 5.3.10. Let � 2 Rn

# be such that

�1 = � � � = �k1 > �k1+1 = � � � = �k2 > �k2+1 � � ��kr (k0 = 0; kr = n):

Suppose � block-re�nes a vector b 2 Rn. Then bT� is analytic at the matrix Diag �
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with quadratic expansion:

bT�(Diag �+H) = bT�+ hDiag b;Hi +
X

p;q:�p>�q

bp � bq

�p � �q
h2
qp
+O(kHk3):

Proof. Because the vector � block-re�nes the vector b there exist reals b01,b
0
2,...,b

0
r

with

bj = b0
i
whenever ki�1 + 1 � j � ki; i = 1; 2; :::; r:

We obtain

bT�(�) =
rX

i=1

b0
i

kiX
j=ki�1+1

�j(�) =
rX

i=1

b0
i

�
�ki(�)� �ki�1

(�)�:
Now applying Lemma 5.3.4 and Lemma 5.3.3 gives the result.

Lemma 5.3.11. Let f : Rn! R be a symmetric function having quadratic expan-

sion at the point � 2 Rn

#, where

�1 = � � � = �k1 > �k1+1 = � � � = �k2 > �k2+1 � � ��kr (k0 = 0; kr = n):

Then the following matrix functions on Sn,

1. F (�) := rf(�)T�(�),

2. H(�) := �Tr2f(�)�(�),

3. G(�) := �(�)Tr2f(�)�(�),

have quadratic expansions at the matrix Diag�.
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Proof. Later we will need the formulae, giving the quadratic expansions of these

functions, derived in the following proof. Notice that the �rst two parts follow

immediately from the previous two lemmas. So we can write, up to O(kHk3),

F (Diag�+ H) � rf(�)T�+ hDiagrf(�);Hi +
X

p;q:�p>�q

f 0
p
(�)� f 0

q
(�)

�p � �q
h2
qp
;

H(Diag �+ H) � �Tr2f(�)� + hDiagr2f(�)�;Hi

+
X

p;q:�p>�q

(�Tr2f(�))p � (�Tr2f(�))q

�p � �q
h2
qp
:

(iii) Because of the block structure of r2f(�) described in Lemma 5.3.7, we

have

�(�)Tr2f(�)�(�) =
rX

i;j=1

aij(�ki(�)� �ki�1
(�))(�kj(�)� �kj�1

(�)) +
rX

l=1

bklSl(�);

where the matrix (aij)
r

i;j=1, vector b, and Sl(�) are de�ned in Lemma 5.3.7 and

Lemma 5.3.6. Now by Lemma 5.3.4

�kl(Diag � +H)� �kl�1
(Diag �+H) =

klX
i=kl�1+1

�i + hDiag
klX

i=kl�1+1

ei;Hi

+
1

2
hH; 2(�klI �Diag �)yHXlX

T

l
i +O(kHk3)

=

klX
i=kl�1+1

�i +

klX
i=kl�1+1

hii +

klX
i=kl�1+1

hH; (�klI �Diag�)yHei(ei)T i+O(kHk3):



5.3. QUADRATIC EXPANSION OF SPECTRAL FUNCTIONS 136

We can evaluate the �rst summand in the above representation of the function G(�).

rX
i;j=1

aij(�ki(Diag� +H)� �ki�1
(Diag � +H))

� (�kj (Diag �+H)� �kj�1
(Diag �+H))

= �TA�+ (diagH)TA(diagH) + 2�TA(diagH)

+ 2hH;
nX

i;j=1

�iA
i;j(�jI �Diag�)yHej(ej)T i+O(kHk3)

= �TA�+ 2hDiagA�;Hi+ hH;DiagA(diagH)i

+ 2hH;
nX

i;j=1

�iA
i;j(�jI �Diag�)yHej(ej)T i+O(kHk3);

where diag : Sn ! Rn de�ned by diag (H) = (h11; :::; hnn) is the conjugate operator

of Diag : Rn! Sn. On the other hand Lemma 5.3.6 gives us:

rX
l=1

bklSl(Diag �+H) =

rX
l=1

bkl

�
(kl � kl�1)�

2
kl
+ 2�klhDiag

klX
i=kl�1+1

ei;Hi

+ hH;XlX
T

l
HXlX

T

l
+ 2�kl(�klI �Diag�)yHXlX

T

l
i
�
+O(kHk3)

= �T (Diag b)�+ 2hDiag (Diag b)�;Hi + hH;
rX
l=1

bklXlX
T

l
HXlX

T

l
i

+ hH; 2
nX

i;j=1

�i(Diag b)
i;j(�jI �Diag �)yHej(ej)T i +O(kHk3):

Adding these two formulae together we �nally get:

�(Diag �+H)Tr2f(�)�(Diag � +H) = �Tr2f(�)� + 2hDiagr2f(�)�;Hi

+ hH;DiagA(diagH)i+ hH;
rX

l=1

bklXlX
T

l
HXlX

T

l
i
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+ hH; 2
nX

j=1

�
�Tr2f(�)

�
j
(�jI �Diag�)yHej(ej)T i+O(kHk3)

= �Tr2f(�)� + 2hDiagr2f(�)�;Hi + hH;DiagA(diagH)i

+
X

p;q:�p=�q

bph
2
pq
+ 2

X
p;q:�p>�q

(�Tr2f(�))p � (�Tr2f(�))q

�p � �q
h2
qp
+O(kHk3):

In the last equality we used Lemma 5.3.9 and Lemma 5.3.3.

Now we are ready to prove a preliminary case of Theorem 5.3.1, namely, that

it holds at X = Diag �, (� 2 R#) and to give a formula for the Hessian of f Æ � at

that point. The results for the gradient of f Æ � that we will obtain along the way

were �rst obtained in [49].

Theorem 5.3.12. Let f : Rn ! R be a symmetric function having quadratic ex-

pansion at the point � 2 Rn

#, where

�1 = � � � = �k1 > �k1+1 = � � � = �k2 > �k2+1 � � ��kr (k0 = 0; kr = n):

Then f Æ � has quadratic expansion at the point Diag�, with

r(f Æ �)(Diag �)[H] = tr (HDiagrf(�))

r2(f Æ �)(Diag �)[H;H] =

nX
p;q=1

hppf
00

pq
(�)hqq

+
X
p 6=q

�p=�q

bph
2
pq
+

X
p;q:�p 6=�q

f 0
p
(�)� f 0

q
(�)

�p � �q
h2
pq

(with b de�ned by Lemma 5.3.7).
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Note 5.3.13. Corollary 5.3.14 will show that the requirement that � 2 Rn

# can be

omitted. For a matrix representation of the above formula combine equation (5.4)

below, and the �rst identity in Lemma 5.3.3.

Proof. We are given that

f(x) = f(�) +rf(�)T (x� �) +
1

2
(x� �)Tr2f(�)(x � �) +O(kx� �k3);

so after letting x = �(Diag � +H) and using the fact that

�(Diag �+H) = �(Diag �) +O(kHk)

we get

(f Æ �)(Diag � +H) = f(�) +rf(�)T�(Diag � +H)�rf(�)T�

+
1

2
�(Diag �+H)Tr2f(�)�(Diag �+H) � �Tr2f(�)�(Diag �+H)

+
1

2
�Tr2f(�)� + O(kHk3):

Substituting the three expressions in the proof of Lemma 5.3.11 we obtain

(f Æ �)(Diag �+H) = (f Æ �)(Diag �) + hDiagrf(�);Hi

+
1

2
hH;DiagA(diagH) +

rX
l=1

bklXlX
T

l
HXlX

T

l
i (5.4)

+
X

p;q:�p>�q

f 0
p
(�)� f 0

q
(�)

�p � �q
h2
qp
+O(kHk3):

Recall that Xl = [ekl�1+1; :::; ekl]. In order to obtain the representation given in the
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theorem one has to use the de�nition of A and b = (b1; :::; bn) given in Lemma 5.3.7

and the note that follows it.

Proof of Theorem 5.3.1. Suppose f has quadratic expansion at the point

�(Y ), and choose any orthogonal matrix U = [u1 : : : un] that gives the ordered

spectral decomposition of Y , Y = U
�
Diag �(Y )

�
UT . Here we actually have A =

A(�(Y )) and bi = bi(�(Y )). While in formula (5.4) we had A = A(�) and bi = bi(�),

to make the formulae here easier to read we will write again simply A and bi. Then

we have, using Formula (5.4) and some easy manipulations,

(f Æ �)(Y+H) = (f Æ �)(Diag �(Y ) + UTHU)

= (f Æ �)(Y ) + hDiagrf(�(Y )); UTHUi

+
1

2
hUTHU;DiagA(diagUTHU) +

rX
l=1

bklXlX
T

l
UTHUXlX

T

l
i

+
X
p;q

�p(Y )>�q(Y )

f 0
p
(�(Y ))� f 0

q
(�(Y ))

�p(Y )� �q(Y )
((UTHU)qp)2 +O(kHk3);

where Xl = [ekl�1+1; :::; ekl].

Corollary 5.3.14. Theorem 5.3.12 holds for arbitrary � 2 Rn, where

b(�) := Pb(��); (5.5)

and P is a permutation matrix, such that P T� = ��.

Proof. Pick a permutation matrix P such that P T� = �� and let � be the permuta-

tion associated with it, that is �� = (��(1); :::; ��(n)), or in other words Pei = e�(i).
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We have that f has quadratic expansion at the point �, that is

f(� + h) = f(�) + hrf(�); hi + 1

2
hh;r2f(�)hi +O(khk3):

Using the fact that f is symmetric we obtain

f(�� + P Th) = f(P T (�+ h)) = f(� + h)

= f(�) + hrf(�); hi + 1

2
hh;r2f(�)hi +O(khk3)

= f(��) + hP Trf(�); P Thi+ 1

2
hP Th; P Tr2f(�)PP Thi +O(kP Thk3):

So f has quadratic expansion at the point �� as well, and we have the relationships:

rf(��) = P Trf(�)
(5.6)

r2f(��) = P Tr2f(�)P:

We have Diag� = P (Diag ��)P T . Applying Theorem 5.3.1 with Y = Diag � and

U = P , and using Equations (5.6) and (5.5) we get

r2(f Æ �)(Diag �)[H;H] =

nX
p;q=1

h�(p)�(p)f
00
pq
(��)h�(q)�(q)

+
X
p6=q

��p=��q

bp(��)h
2
�(p)�(q) +

X
��p 6=��q

f 0
p
(��)� f 0

q
(��)

��p � ��q
h2
�(p)�(q)

=

nX
p;q=1

hppf
00
pq
(�)hqq +

X
p6=q

�p=�q

bp(�)h
2
pq
+
X
�p 6=�q

f 0
p
(�)� f 0

q
(�)

�p � �q
h2
pq
:
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The invariance of the formula for the gradient is shown in a similar manner. See

also [49].

5.4 Strongly convex functions

As we mentioned in the introduction, a symmetric function f is convex if and only

if f Æ � is convex. The analogous result also holds for essential strict convexity [48,

Corollary 3.5]. Here we study yet a stronger property. Speci�cly, in this section we

show that if a symmetric, convex function f has a quadratic expansion at the point

x = �(Y ) then the symmetric matrix r2f(x) is positive de�nite, if and only if the

same is true for the bilinear operator r2(f Æ �)(Y ).

Lemma 5.4.1. If a function f : Rn! R is symmetric, strictly convex, and di�er-

entiable at the point �

�1 = � � � = �k1 > �k1+1 = � � � = �k2 > �k2+1 � � � �kr ; (kr = n):

then its gradient satis�es

f 0
p
(�) � f 0

q
(�)

�p � �q
> 0 for all p, q such that �p 6= �q.

Proof. Because f is strictly convex and di�erentiable at �, for every x 2 Rn (� 6= x)

we have that (see for example [76, Theorem 2.3.5])

hrf(�); x� �i < f(x)� f(�):
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Suppose �p 6= �q. Let P be the permutation matrix that transposes p and q only.

Then we have

(f 0
q
(�)� f 0

p
(�))(�p � �q) = hrf(�); P� � �i < f(P�) � f(�) = 0:

Lemma 5.4.2. Let f : Rn ! R be a symmetric function having quadratic expan-

sion at �, where

�1 = � � � = �k1 > �k1+1 = � � � = �k2 > �k2+1 � � � �kr ; (kr = n):

If the Hessian r2f(�) is positive de�nite then the vector b = (b1; :::; bn), de�ned in

Lemma 5.3.7, has strictly positive entries.

Proof. It is well known that every principal minor in a positive de�nite matrix is

positive de�nite. Fix an index 1 � i � n. If �i�1 > �i > �i+1 then from the

representation of the matrix r2f(�) in Lemma 5.3.7 and the note after it, it is

clear that bi > 0. Suppose now that i is in a block of length at least 2. Then some

principal minor of r2f(�) of the form

0B@ a+ bi a

a a+ bi

1CA
is positive de�nite, and the result follows.

Theorem 5.4.3. Let f : Rn ! R be a symmetric, strictly convex function having
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quadratic expansion at �

�1 = � � � = �k1 > �k1+1 = � � � = �k2 > �k2+1 � � � �kr ; (kr = n):

Then the symmetric matrix r2f(�) is positive de�nite if and only if the bilinear

operator r2(f Æ �)(Diag �) is positive de�nite.

Note 5.4.4. In fact by Alexandrov's Theorem, if a function is convex it has quadra-

tic expansion at almost every point of its domain [1]. For a proof of Alexandrov's

Theorem in English see [20, Theorem 1, Section 6.4].

Proof. Suppose �rst that the symmetric matrix r2f(�) is positive de�nite. Take a

symmetric matrix H 6= 0. Then we have

nX
p;q=1

hppf
00

pq
(�)hqq � 0;

because r2f(�) is positive de�nite,

2

rX
l=1

bkl

X
ki�1<p<q�ki

h2
pq
� 0;

follows from Lemma 5.4.2, and

2
X

p;q:�p>�q

f 0
p
(�)� f 0

q
(�)

�p � �q
h2
pq
� 0;

which follows from Lemma 5.4.1. Now because H 6= 0 at least one of the above

inequalities will be strict.
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In the other direction the argument is easy: take H = Diag x, for 0 6= x 2 Rn

in the formula for r2(f Æ �)(Diag �) given in Theorem 5.3.12 to get immediately

xTr2f(�)x > 0.

Theorem 5.4.5. If f : Rn ! R is a symmetric, strictly convex function having

quadratic expansion at the point Y , then r2f(�(Y )) is positive de�nite if and only

if r2(f Æ �)(Y ) is.

Proof. The proof of this theorem is now clear since r2(f Æ�)(Y ) is positive de�nite
if and only if r2(f Æ �)(Diag �(Y )) is.

5.5 Examples

Notice that examples analogous to those below can also be addressed using the

theory in the previous chapter.

Example 5.5.1. Let g be a function on a scalar argument. Consider the following

separable symmetric function with its corresponding spectral function:

f(x1; :::; xn) =

nX
i=1

g(xi)

(f Æ �)(Y ) =
nX
i=1

g(�i(Y )):

Then if g has quadratic expansion at the points x1; :::; xn so does f at x = (x1; :::; xn)

and we have

rf(x) = (g0(x1); :::; g
0(xn))

T ;
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r2f(x) = Diag (g00(x1); :::; g
00(xn));

b(x) = (g00(x1); :::; g
00(xn))

T :

Suppose g has quadratic expansion at each entry of the vector � 2 Rn

# that satis�es

�1 = � � � = �k1 > �k1+1 = � � � = �k2 > �k2+1 � � � �kr ; (kr = n):

Then Theorem 5.3.12 says that

r2(f Æ �)(Diag �)[H;H] =

nX
p=1

g00(�p)h
2
pp
+
X
p6=q

�p=�q

g00(�p)h
2
pq

+
X

p;q:�p 6=�q

g0(�p)� g0(�q)

�p � �q
h2
pq

=
X

p;q:�p=�q

g00(�p)h
2
pq
+

X
p;q:�p 6=�q

g0(�p)� g0(�q)

�p � �q
h2
pq
:

Let us de�ne the following notation consistent with [9, Section V.3]. For any

di�erentiable function h de�ned on a subset of R de�ne the `divided di�erence'

h[1](�; �) =

8><>:
h(�)�h(�)

��� ; if � 6= �

h0(�); if � = �:

If � is a diagonal matrix with diagonal entries �1,...,�n, we denote by h
[1](�) the

n� n symmetric matrix matrix whose (i; j)-entry is h[1](�i; �j).

Using this notation, for the function h = g0, we clearly have

r2(f Æ �)(Diag �)[H;H] = hH;h[1](Diag �) ÆHi;
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(5.7)

r2(f Æ �)(Y )[H;H] = hUTHU; h[1](Diag �(Y )) Æ (UTHU)i;

where Y = U(Diag �(Y ))UT , U orthogonal, and X Æ Y = (xijyij)
n

i;j=1 is the

Hadamard product of matrices X and Y .

Let us extend the domain of the function h to include a subset of the symmetric

matrices in the following way. If � = Diag (�1; :::; �n) is a diagonal matrix whose

entries are in the domain of h, we de�ne h(�) = Diag (h(�1); :::; h(�n)). If Y is

a symmetric matrix with eigenvalues �1; :::; �n in the domain of h, we choose an

orthogonal matrix U such that Y = U�UT and de�ne h(Y ) = Uh(�)UT . (Notice

that the de�nition of h(Y ) doesn't depend on the choice of the orthogonal matrix

U .) In this way we can de�ne h(Y ) for all symmetric matrices with eigenvalues in

the domain of h. Then the formulae for the gradient in Theorem 5.3.1 says that

for h = g0 we have

r(f Æ �)(Y ) = h(Y ):

Thus Equations (5.7) are just the formulae for the derivative rh given in Theo-

rem V.3.3 in [9].

Example 5.5.2. Now we specialize the above example even more. The following

spectral function �nds many applications in semide�nite programming. Consider

the symmetric and strictly convex function and corresponding spectral function:

f : x 2 Rn

++ 7! �
nX
i=1

log xi;
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f Æ � : A 2 Sn

++ 7! �lnDet (A):

(Here Sn

++ denotes the set of all positive de�nite symmetric matrices.) Then The-

orem 5.3.12 says that for � 2 Rn

# such that

�1 = � � � = �k1 > �k1+1 = � � � = �k2 > �k2+1 � � � �kr ; (kr = n);

we have

r2(f Æ �)(Diag �)[H;H] =

nX
p=1

h2
pp

�2
p

+
X
p 6=q

�p=�q

h2
pq

�2
p

+
X

p;q:�p 6=�q

h2
pq

�p�q

=

n;nX
p;q=1;1

h2
pq

�p�q

= tr ((Diag �)�1H(Diag �)�1H):

The last equality may easily be veri�ed. In general, for an arbitrary symmetric

matrix A, we get

r2(f Æ �)(A)[H;H] = tr (A�1HA�1H):

This agrees with the standard formula for the second derivative of the function

�lnDet (A). (See for example [68, Proposition 5.4.5].) Moreover the result in

Section 5.4 tells us that

A � 0 implies tr (A�1HA�1H) > 0 for all 0 6= H 2 Sn;

and this result is trivial since tr (A�1HA�1H) = tr
�
(A�1=2HA�1=2)2

�
. (A � 0
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means that the matrix A is positive de�nite.)

The reader can refer to Section 4.4 for more examples.

5.6 The Eigenvalues of r2(f Æ �)

A natural question one may ask is: Is there any relationship between the eigenvalues

of r2f(�(Y )) and those of r2(f Æ �)(Y )? This section shows that locally such a

relationship will be quite weak, although more globally they are closely related. Let

Y be a symmetric matrix such that

�1(Y ) = � � � = �k1(Y ) > � � � > �kl�1+1(Y ) = � � � = �m(Y ) = � � � = �kl(Y )

> � � � �kr (Y ); (k0 = 0; kr = n):

Using the representation given in Theorem 5.3.1 and Corollary 5.3.14 one can easily

see that the n(n+1)

2
eigenvalues of r2(f Æ �)(Y ) are

� f�i
�r2f(�(Y ))

�ji = 1; :::; ng. (These are just the eigenvalues of r2f(�(Y ))

with the same multiplicities.)

� bkl is an eigenvalue for every l = 1; :::; r with multiplicity (kl�kl�1)(kl�kl�1�
1)=2.

� f 0
k
l

(�(Y ))�f 0
ks
(�(Y ))

�k
l
(Y )��ks(Y )

is an eigenvalue with multiplicity (kl � kl�1)(ks � ks�1) for

every ordered pair (�kl(Y ); �ks(Y )) such that �kl(Y ) > �ks(Y ).
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So we can immediately conclude that

�max

�r2(f Æ �)(Y )� � �max

�r2f(�(Y ))
�

(5.8)

�min

�r2f(�(Y ))
� � �min

�r2(f Æ �)(Y )�:
We are going to show now that the above inequalities may be strict.

Example 5.6.1. Consider the convex function

f(x; y) :=
x2 + y2

4
+
cos 2x+ cos 2y

8
;

and the point

� = (2�; �) 2 R2
#:

Then

rf(x; y) =

0B@ x

2
� sin 2x

4

y

2
� sin 2y

4

1CA ; r2f(x; y) =

0B@ sin2 x 0

0 sin2 y

1CA :

Using the representation in Theorem 5.3.12 we get

r2f(�) = 0; r2(f Æ �)(Diag �)[H;H] = h212;

where

H =

0B@ h11 h12

h12 h22

1CA :
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Then clearly

�max

�r2(f Æ �)(Diag �)� = 1 > �max

�r2f(�)
�
= 0:

In order to demonstrate a strict inequality between the smallest eigenvalues one

needs to consider the function �f(x; y) at the same point �.

Even though we may not have equalities in (5.8) at a particular matrix Y , if

we consider the eigenvalues of r2f(�(Y )) and r2(f Æ �)(Y ) as Y varies over an

orthogonally invariant (see below) convex set, we can see that they vary within the

same bounds. More precisely we have the following theorem. To make its proof

precise, we need the main result from the previous chapter and [48] saying that: A

symmetric function f is C2 if and only if f Æ� is, and f is convex if and only if f Æ�
is.

Theorem 5.6.2. Let C be a convex and symmetric subset of Rn, and let f : C ! R
be a symmetric, C2 function. Then

min
y2C

�min(r2f(y)) = min
Y 2��1(C)

�min(r2(f Æ �)(Y )): (5.9)

Proof. The following implications are easy to see.

�min(r2f(y)) � �; 8y 2 C

, f � �

2
k � k2 convex

,
�
f � �

2
k � k2

�
Æ � convex
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, f Æ � � �

2
k � k22 convex

, �min(r2(f Æ �)(Y )) � �; 8Y 2 C:

Remark 5.6.3. If we multiply both sides of Equation (5.9) by �1 we will get

max
y2C

�max(r2f(y)) = max
Y 2��1(C)

�max(r2(f Æ �)(Y )):



Chapter 6

Nonsmooth analysis of singular

values

The singular values of a rectangular matrix have many properties analogous to the

eigenvalues of a square matrix. In this chapter we are interested in the �rst order

behaviour of functions of the singular values of a rectangular matrix variable. The

singular values, like the eigenvalues, are not smooth functions of the entries of the

matrix. That is why in order to gain insight into their behaviour we need to use

the tools of the nonsmooth variational analysis [79].

We give formulae for the approximate subdi�erential, Clarke subdi�erential (in

both cases when the underlying function is Lipschitz or just lower semicontinuous),

horizon subdi�erential, regular subdi�erential, and proximal subdi�erential of func-

tions of singular values. We also give several applications of the developed theory.

We compute the subdi�erentials of �k - the k-th largest singular value of a matrix.

Finally, we show how Lidskii's theorem for singular values follows easily from the

152
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nonsmooth theory.

We follow the terminology and notation of [79], and the whole chapter closely

follows the analogous development for eigenvalues in [52]. There are obvious paral-

lels between the notation, techniques, and results there and here which suggest that

there is a general theoretic framework that encompasses them both. (See Chapter 7

for another class of functions that may be part of the general theoretic framework.)

For convenience we state the singular value decomposition theorem. (For details

and more results, see [36, Chapter 3].)

Theorem 6.0.4 (Singular Value Decomposition). Let A 2 Mn;m(C ) be given

and q = minfn;mg. There is a matrix � = (�ij) 2 Mn;m(R) with �ij = 0 for

all i 6= j, and �11 � �22 � : : : �qq � 0, and two unitary matrices V 2 O(n) and

W 2 O(m) such that A = V �W �. If A 2 Mn;m(R), then V and W may be taken

to be real orthogonal.

The numbers �11 � �22 � : : : �qq � 0 are unique for the matrix A and are called

singular values of A.

In this chapter we consider only real matrices. There are completely analogous

results for complex matrices.

6.1 The approximate subdi�erential

This section gives the relevant background of nonsmooth analysis.

De�nition 6.1.1 (Regular Subgradient). Given a Euclidean space E (by which

we mean, a �nite-dimensional real inner-product space), a function f : E !
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[�1;+1], and a point x in E at which f is �nite, an element y of E is a regular

subgradient of f at x if it satis�es

f(x+ z) � f(x) + hy; zi + o(z) as z! 0 in E:

As usual, o(�) denotes a real-valued function de�ned on a neighbourhood of the

origin in E, and satisfying limz!0 kzk�1o(z) = 0. The set of regular subgradients

is denoted @̂f(x) and is called the regular subdi�erential. It is easy to show that it

is always closed and convex.

This de�nition is just a one-sided version of the classical (Fr�echet) derivative.

A weakness this natural concept of subdi�erential possesses is that even for well-

behaved functions f it may be empty, see for example Proposition 6.8.1. The idea

of the approximate subdi�erential enhances the regular subdi�erential by gathering

information from the regular subdi�erentials at points near x as well.

De�nition 6.1.2 (Approximate Subgradient). A vector y of E is an (approx-

imate) subgradient if there is a sequence of points xr in E approaching x with

values f(xr) approaching the �nite value f(x), and a sequence of regular subgradi-

ents yr in @̂f(xr) approaching y.

The set of all subgradients is the (approximate) subdi�erential @f(x).

De�nition 6.1.3 (Horizon Subgradient). A vector y of E is a horizon sub-

gradient if there is a sequence of points xr in E approaching x with values f(xr)

approaching the �nite value f(x), a sequence of reals tr decreasing to 0, and a

sequence of regular subgradients yr in @̂f(xr) for which try
r approaches y.



6.1. THE APPROXIMATE SUBDIFFERENTIAL 155

The set of horizon subgradients is denoted @1f(x). If f(x) is in�nite then the

sets @f(x) and @̂f(x) are de�ned to be empty, and @1f(x) to be f0g. The reader
can verify that @f(x) and @̂f(x) are always closed sets, and we have the inclusion

(@̂f(x))1 � @1f(x) (where C1 denotes the recession cone of a closed convex set).

De�nition 6.1.4 (Clarke Regularity, Corollary 8.11 [79]). If the function f

is �nite at the point x with at least one subgradient there then it is (Clarke) reg-

ular at x if it is lower semicontinuous near x, every subgradient is regular, that is

@̂f(x) = @f(x), and furthermore

@1f(x) = (@̂f(x))1:

De�nition 6.1.5 (Clarke Subgradients). For a function f which is locally Lip-

schitz around x, convex combinations of subgradients are called Clarke subgradi-

ents.

The set of Clarke subgradients is the Clarke subdi�erential @cf(x). (This de�-

nition is equivalent to the standard one in [15] - see for example [39, Theorem 2].)

De�nition 6.1.6 (Contingent Cone). Let L be a subset of the space E, and �x

a point x in E. An element d of E belongs to the contingent cone to L at x,

written K(Ljx), if either d = 0 or there is a sequence (xr) in L approaching x with

kxr � xk�1(xr � x) approaching kdk�1d.

De�nition 6.1.7 (Negative Polar Cone). The (negative) polar of a subset

H of E is the set

H� = fy 2 E : hx; yi � 0 8x 2 Hg:
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We use the following easy and standard result later.

Proposition 6.1.8 (Normal Cone). Given a function f : E ! [�1;+1] and a

point x0 in E, any regular subgradient of f at x0 is negative polar to the contingent

cone of the level set L = fx 2 E : f(x) � f(x0)g at x0; that is

@̂f(x0) � (K(Ljx0))�:

Proof. See [52, Proposition 2.1].

In this chapter we are interested in functions that are invariant under certain

orthogonal transformations of the space E. A linear transformation g on the space

E is orthogonal if it preserves the inner product:

hgx; gyi = hx; yi for all elements x and y of E:

Such linear transformations form the orthogonal group O(E). A function f on E

is invariant under a subgroup G of O(E) if f(gx) = f(x) for all points x in E and

transformations g in G.

In the following proposition, f 0(�; �) denotes the usual directional derivative:

f 0(x; z) = lim
t#0

f(x+ tz)� f(x)

t
; (when well-de�ned)

for elements x and z of E.

Proposition 6.1.9 (Subgradient Invariance). If f : E ! [�1;+1] is in-

variant under a subgroup G of O(E), then any point x in E and transformation g
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in G satisfy @f(gx) = g@f(x). Corresponding results hold for regular, horizon, and

(if f is Lipschitz around x) Clarke subgradients, and f is regular at the point gx if

and only if it is regular at x. Furthermore, for any element z of E, the directional

derivative f 0(gx; gz) exists if and only if f 0(x; z) does, and in this case the two are

equal.

Proof. See [52, Proposition 2.2].

This section ends with a lemma which is useful in the later analysis of regularity.

For its proof see [52, Lemma 2.3].

Lemma 6.1.10 (Recession). For any nonempty closed convex subset C of E,

closed subgroup H of O(E), and transformation g in O(E), the set gHC is closed,

and if it is also convex then its recession cone is gH(C1).

6.2 The normal space

We need a little bit of di�erential geometry. De�nitions for the relevant notions

in this section can be found in the following two elementary introductions into the

subject [12], [4].

If M is a di�erential manifold and m 2 M , then TmM will denote the tangent

space to M at the point m.

Lemma 6.2.1 (Manifold Sum). LetM andM 0 be di�erential manifolds, and let

p; p0 denote the projections of M �M 0 onto M;M 0 respectively. Then the function

� : T(a;a0)(M �M 0) 7! TaM � Ta0M
0
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de�ned by w 7! (dp; dp0)w is an isomorphism.

Proof. See [12, Proposition 4.5.1].

Theorem 6.2.2 (Quotient Manifold). If H is a closed subgroup of a Lie group

G then either H is open in G (and the quotient set topology on G=H is discrete)

or G=H admits the structure of a quotient manifold of G.

Proof. See [12, Proposition 12.9.4].

Theorem 6.2.3 (Orbit Submanifold). Suppose G is a Lie transformation group

on a Hausdor� manifold M . If the stabilizer Gm is not an open subgroup of G, then

the mapping

�m : G=Gm !M; de�ned by

g(Gm) 7! gm; for g in G;

is an imbedding of the quotient manifold G=Gm into M . Moreover, the orbit Gm in

M can be given the structure of a submanifold of M di�eomorphic to G=Gm under

�m.

Proof. See [12, Proposition 13.3.1 & Proposition 13.3.2].

Let O(n) be the Lie group of n � n real orthogonal matrices, and let O(n;m)

denote the Cartesian product O(n) � O(m), which is also a Lie group. An easy

calculation shows that the tangent space to O(n) at the identity matrix I, is just

the subspace of skew-symmetric matrices, A(n). Consequently from Lemma 6.2.1

we see that T(In;Im)O(n;m) = A(n)�A(m).
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Throughout the whole chapter we will assume that n and m are natural numbers

and n � m. Consider the action of the group O(n;m) on the Euclidean spaceMn;m

(of n�m real matrices, with the inner product hX;Y i = trXTY ), de�ned by

(Un; Um):X = UT

n
XUm; for all (Un; Um) in O(n;m) and X in Mn;m:

For a �xed matrix X in Mn;m, the orbit

O(n;m):X = fUT

n
XUm : (Un; Um) 2 O(n;m)g

is just the set of n �m matrices with the same singular values as X. Here is then

the key fact. (For related results see [52, Theorem 3.1], [8, Proposition 14.1].)

Theorem 6.2.4 (Normal Space). The orbit O(n,m).X is a submanifold of the

space Mn;m, with tangent space

TXO(n;m):X = fXZm � ZnX : Zn 2 A(n) and Zm 2 A(m)g (6.1)

and normal space

(TXO(n;m):X)? = fY 2Mn;m : XTY and XY T symmetricg: (6.2)

Proof. Part I. The tangent space. Consider the stabilizer

O(n;m)X = f(Un; Um) 2 O(n;m) : UT

n
XUm = Xg:
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It is well known that there is a bijection � between the sets O(n;m)=O(n;m)X and

O(n;m):X de�ned by:

(Un; Um)(O(n;m)X) 7! UT

n
XUm; for (Un; Um) in O(n;m);

Clearly O(n;m)X is a closed subgroup of O(n;m) (it is closed under limit oper-

ations). So from Theorem 6.2.3 it follows that the map � is a di�eomorphism,

and hence its di�erential d� is an isomorphism between the corresponding tangent

spaces

T(In;Im)(O(n;m)X)(O(n;m)=O(n;m)X) and TX(O(n;m):X):

Consider, on the other hand, the quotient map

� :O(n;m)! O(n;m)=O(n;m)X ; de�ned by

(Un; Um) 7! (Un; Um)(O(n;m)X); for all (Un; Um) in O(n;m):

Then Theorem 6.2.2 tells us that � is a submersion, and this implies that its dif-

ferential d�

d� : T(In;Im)(O(n;m))! T(In;Im)(O(n;m)X)(O(n;m)=O(n;m)X )

is onto. Now consider a third map

 :O(n;m)! O(n;m):X; de�ned by

(Un; Um) 7! UT

n
XUm; for all (Un; Um) in O(n;m):
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Since  = � Æ �, the chain rule gives d = d� Æ d�, that is

(d )T(In;Im)(O(n;m)) = TX(O(n;m):X):

But as we noted above T(In;Im)(O(n;m)) = A(n) � A(m). Now we show that

(d )(Zn; Zm) = XZm � ZnX. De�ne the map

� :Mn �Mm !Mn;m

�(U; V ) = UTXV;

where Mn, Mm, and Mn;m have their standard di�erential structure. Let d� be its

di�erential at (In; Im). Then because TM(Mn) =Mn for each M 2Mn it is easy to

see that

d� :Mn �Mm !Mn;m

d�(U; V ) = UTX +XV:

We have that O(n) � O(m) is a submanifold of Mn �Mm, so the tangent space

T(In;Im)(O(n) � O(m)) is isomorphic to a vector subspace of T(In;Im)(Mn �Mm).

Also the end of Theorem 6.2.3 implies that the tangent space TX(O(n;m):X) is

isomorphic to a vector subspace of TX(Mn;m). If � is the natural injection of O(n)�
O(m) into Mn � Mm, then from the de�nitions  = � Æ �. So d = d� Æ d�,
but (d�)(Zn; Zm) = (Zn; Zm) for each (Zn; Zm) in A(n) � A(m), and we obtain

(d )(Zn; Zm) = (d�)(Zn; Zm) = ZT

n
X +XZm = XZm � ZnX, as we claimed.



6.2. THE NORMAL SPACE 162

Part II. The normal space. If a matrix Y in Mn;m satis�es XTY = Y TX,

and XY T = Y XT , then for any matrices Zn 2 A(n), and Zm 2 A(m) we have

hY;XZm � ZnXi = trY T (XZm � ZnX)

= tr (Y TXZm)� tr (Y TZnX)

= tr (Y TXZm)� tr (XY TZn):

We will show now that tr (Y TXZm)=0. Indeed

tr (Y TXZm) = tr (Y TXZm)
T = tr (ZT

m
XTY ) = �tr (ZmX

TY )

= �tr (ZmY
TX) = �tr (Y TXZm);

so tr (Y TXZm)=0. Analogously we get tr (XY TZn) = 0, so Y 2 (TXO(n;m):X)?.

Conversely suppose that trY T (XZm � ZnX) = 0 for all Zn 2 A(n) and Zm 2
A(m). For each Zn 2 A(n) we have

tr (Y TZnX) = tr (XY TZn) = tr (XY TZn)
T = tr (ZT

n
Y XT ) = �tr (ZnY X

T );

that is

tr (XY TZn) = �tr (ZnY X
T ):

Let Zm = 0. Then our assumption becomes tr (XY TZn) = 0 and consequently we

have tr (ZnY X
T ) = 0 and so is their di�erence:

tr (XY TZn � ZnY X
T ) = 0:
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Choosing Zn = XY T � Y XT gives

0 = tr
�
XY T (XY T � Y XT )� (XY T � Y XT )Y XT

�
= tr

�
XY T (XY T � Y XT )

�� tr
�
Y XT (XY T � Y XT )

�
= tr (XY T � Y XT )(XY T � Y XT ) = �tr (XY T � Y XT )T (XY T � Y XT );

whence XY T = Y XT . Analogously by choosing �rst Zn = 0 and then Zm =

Y TX �XTY we obtain XTY = Y TX.

Throughout the entire chapter all vectors are considered to be column vectors

unless stated otherwise. We denote the cone of vectors x in Rn satisfying x1 �
x2 � ::: � xn by Rn

#. We denote the standard basis in Rn by e1; e2; :::; en. For any

vector x in Rn we denote by �x the vector with the same entries as x ordered in

nonincreasing order. Let P (n) denote the set of all n � n permutation matrices.

(Those matrices that have only one nonzero entry in every row or column, which

is 1.) Let P(�)(n) denote the set of all n� n signed permutation matrices. (Those

matrices that have only one nonzero entry in every row or column, which is �1.)
If P(�) 2 P(�)(n) then we will denote by jP(�)j the permutation matrix obtained

from P(�) by taking the absolute values of its entries. If x is a vector in R
n then jxj

will denote the vector (jx1j; jx2j; :::; jxnj)T and x2 will denote the vector (x21; :::; x
2
n
)T .

Finally if x; y 2 Rn then x�y = (x1y1; :::; xnyn). We will need the following standard

lemma in our proofs (see [48]).



6.2. THE NORMAL SPACE 164

Lemma 6.2.5. Any vectors x and y in Rn satisfy the inequality

xTy � �xT �y:

Equality holds if and only if some matrix Q in P (n) satis�es Qx = �x and Qy = �y.

For any matrixX 2Mn;m, we denote by X
i;j its (i; j)-th entry, and by �1(X) �

�2(X) � ::: � �n(X) its singular values, also we de�ne the vector �(X) =

(�1(X); �2(X); :::; �n(X))T . If the matrix X 2 Mn;n is symmetric, then we de-

note by �1(X) � �2(X) � ::: � �n(X) its eigenvalues, and de�ne the vector

�(X) = (�1(X); �2(X); :::; �n(X))T . For any vector x in Rn let Diagx denote the

matrix with entries (Diagx)i;i = xi for all i, and (Diagx)i;j = 0 for i 6= j. We

want to draw the readers attention to the fact that sometimes Diagx will denote

an n�mmatrix, sometimes n�n and sometimesm�m (this in case x 2 Rm), but

there will be no confusion because the context will make clear which is the case.

De�nition 6.2.6 (Simultaneous Decomposition). We say that two matrices

X and Y inMn;m have a simultaneous ordered singular value decomposition

if there is an element (Un; Um) in O(n;m) such that X = UT

n
(Diag�(X))Um and

Y = UT

n
(Diag�(Y ))Um.

We need to introduce more notation that will be used only in the proof of the

next lemma. Let M be a matrix in Mn;m, and 1 � i1 < i2 < ::: < ir � n,

1 � j1 < j2 < ::: < js � m be given numbers. Then M(i1; i2; :::; ir; j1; j2; :::; js)

will denote the minor of M (with dimensions r� s) obtained at the intersection of

the rows with indexes i1; i2; :::; ir, and columns with indexes j1; j2; :::; js. If v is a
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vector in Rn then we will use similar notation to denote a subvector of v. That is,

a subvector of v formed by the entries with indexes 1 � i1 < i2 < ::: < ir � n will

be denoted by v(i1; i2; :::; ir). Finally M(i; �) will denote the row of M with index

i (these are row vectors), and M(�; i) will denote the column of M with index i.

The following lemma gives a necessary and suÆcient condition for two matrices to

`almost' have a simultaneous ordered singular value decomposition. For a necessary

and suÆcient condition for simultaneous ordered singular value decomposition see

Theorem 6.2.9.

Lemma 6.2.7. Two matrices Y and Z in Mn;m satisfy ZTY = Y TZ and ZY T =

Y ZT if and only if there exists an element (Un; Um) in O(n;m) and a signed per-

mutation matrix P(�) in P(�)(n) such that

Y = UT

n
(DiagP(�)�(Y ))Um; Z = UT

n
(Diag �(Z))Um: (6.3)

Proof. In the \if" direction the result is clear. For the converse, suppose �rst that

n = m and Y and Z are nonsingular. We will divide the proof into several reduction

stages. It is well known that the eigenvalues of Y TZ are just the eigenvalues of

ZY T counting multiplicities. Then because they are both symmetric, there are two

orthogonal matrices A and B in O(n) such that Y TZ = AT�A and ZY T = BT�B,

where � = Diag �(Y TZ). Consequently Y TZ = (ATB)(ZY T )(BTA). We make the

substitution: �Y = (ATB)Y and �Z = (ATB)Z. Then we have

�Y T �Z = Y TZ = (ATB)(ZY T )(BTA) = �Z �Y T ;
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that is �Y T and �Z commute. Hence also �Y and �ZT commute. Next, because �Y T and

�Z commute with the symmetric matrix �Y T �Z it follows that every eigenspace (all

eigenvectors corresponding to one �xed eigenvalue) of �Y T �Z is invariant under �Y T

and �Z. Thus if Vn is an orthogonal matrix in O(n), whose columns are eigenvectors

of �Y T �Z so that all eigenvectors corresponding to the same eigenvalues occur one

after another, then both V T

n
�Y TVn and V T

n
�ZVn must be block diagonal (recall that

eigenvectors corresponding to di�erent eigenvalues are orthogonal):

V T

n
�Y TVn = Diag ( �Y T

1 ;
�Y T

2 ; :::;
�Y T

l
); V T

n
�ZVn = Diag ( �Z1; �Z2; :::; �Zl);

where �Y T

i
, �Zi 2 Mni

, 1 � ni � n, n1 + n2 + � � �nl = n, and each �Y T

i
�Zi = �Zi

�Y T

i
=

�iIni, where �1; �2; :::; �l are the distinct (all of them are nonzero) eigenvalues of

the symmetric matrix �Y T �Z. For each i choose a singular value decomposition

�Zi = RT

i
DiSi (Ri, Si - orthogonal, Di - diagonal), and observe �Y T

i
= ST

i
(�iD

�1
i
)Ri.

Note that the absolute values of the diagonal entries of �iD
�1
i

are the singular values

of �Y T

i
. So we reduced Y and Z to l pairs of matrices �Yi and �Zi that satisfy (6.3).

Clearly the singular values of Z are the same as the singular values of �Z and are

the union of diagonal entries of D1; :::;Dl. Let P be a permutation matrix in P (n)

such that Diag�(Z) = P TDiag (D1; :::;Dl)P . Then retracing back the reductions

one sees that the lemma holds in the case when n = m and the matrices Y , Z are

nonsingular. Decomposition (6.3) holds with

UT

n
= BTAVnDiag

�
RT

1 ; :::; R
T

l

�
P; Um = P T

�
Diag (S1; :::; Sl)

�
V T

n
:
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We now consider the general case n � m. First we observe that the symmetric

matrices Y TY and ZTZ commute. Indeed

(ZTZ)(Y TY ) = ZT (Y ZT )Y = (ZTY )(ZTY )

= (Y TZ)(Y TZ) = Y T (ZY T )Z = (Y TY )(ZTZ):

Analogously one sees that the pair of symmetric matrices Y Y T and ZZT also

commute. It is well known that the eigenvalues of Y TY are just the eigenvalues

of Y Y T plus m � n additional zeros. Hence there is a matrix Vm in O(m) and a

matrix Vn in O(n) that simultaneously diagonalize the above two pairs respectively

(for any matrix Y , the eigenvalues of Y Y T are the singular values of Y squared):

V T

n
(Y Y T )Vn = Diag�2(Y ); V T

m
(Y TY )Vm = Diag (�2(Y )T ; 0; :::; 0| {z }

m�n

)T ;

V T

n
(ZZT )Vn = DiagPn�

2(Z); V T

m
(ZTZ)Vm = DiagPm(�

2(Z)T ; 0; :::; 0| {z }
m�n

)T ;

where Pn is a permutation matrix in P (n), and Pm is in P (m). Now we make the

substitution:

Ŷ = V T

n
Y Vm; Ẑ = V T

n
ZVm:

Observe that:

Ŷ T Ẑ = V T

m
Y TZVm = V T

m
ZTY Vm = ẐT Ŷ ;
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and similarly one checks that Ŷ ẐT = ẐŶ T . Moreover we have that

Ŷ Ŷ T = Diag�2(Y ); Ŷ T Ŷ = Diag (�2(Y )T ; 0; :::; 0| {z }
m�n

)T (6.4)

and

ẐẐT = DiagPn�
2(Z); ẐT Ẑ = DiagPm(�

2(Z)T ; 0; :::; 0| {z }
m�n

)T : (6.5)

Next, we investigate the structure of the matrices Ŷ and Ẑ. Let the ranks

of Ŷ and Ẑ be k and l respectively, and let Ŷ (i1; :::; ik; j1; :::; jk) and respec-

tively Ẑ(t1; t2; :::; tl; p1; p2; :::; pl) be nonsingular minors. Let I = fi1; i2; :::; ikg,
J = fj1; j2; :::; jkg, T = ft1; t2; :::; tlg, P = fp1; p2; :::; plg. Equation (6.4) tells us

that the rows and the columns of Ŷ are mutually orthogonal. If we take a row,

ri of Ŷ , such that i 62 I then ri is a linear combination of rows with indexes from

the set I. Multiplying this linear combination by ri gives that r
T

i
ri = 0. Similar

argument for the columns imply that all the entries of Ŷ that don't belong to the

minor Ŷ (i1; :::; ik; j1; :::; jk) are zero. The same arguments apply to Ẑ.

Let A = I \ T , B = TnI, C = PnJ and D = P \ J , see Figure 6.1. Take an
index i in the set B. From the above paragraph we have that the i-th row of Ŷ

is the zero vector: Ŷ (i; �) = 0. So we get Ŷ (i; �)Ẑ(x; �)T = 0 for all 1 � x � n.

But because of the relationship Ŷ ẐT = ẐŶ T we get that Ẑ(i; �)Ŷ (x; �)T = 0 for

all 1 � x � n. So in particular the vector Ẑ(i; �)(J) (that is, the subvector of the
i-th row of Ẑ formed from the entries with indexes in J) is orthogonal to all the

vectors Ŷ (x; �)(J) for all x 2 I. But the last set of vectors form the nonsingular
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Z(T;P)

Y(I;J)

T

P

J

A

B

I

DC

Z, Y 

Figure 6.1: The sets I,J,T,P and A,B,C,D.

minor of Ŷ . So Ẑ(i; �)(J) = 0. We already knew that Ẑ(i; �)(JnD) = 0 so what

we get in addition is that Ẑ(i; �)(D) = 0, and this applies for every i in B. So all

the entries of the submatrix Ẑ(B;D) of the nonsingular minor Ẑ(T ;P ), are zero.

Completely analogously but now choosing an index from the set C and using the

relationship Ŷ T Ẑ = ẐT Ŷ one sees that all the entries of the submatrix Ẑ(A;C) of

the nonsingular minor Ẑ(T ;P ), are zero.

Next, we want to show that jAj = jDj and jCj = jBj. If jCj < jBj, then the

submatrix Ẑ(B;C) has linearly dependent rows. But then the rows of Ẑ(B;P ) are

linearly dependent and this contradicts that fact that Ẑ(T ;P ) is nonsingular. If

now jCj > jBj, then the columns of Ẑ(B;C) are linearly dependent, and so will

be the columns of Ẑ(T ;C), so we get again the same contradiction. So jCj = jBj,
and because jAj+ jBj = l and jCj+ jDj = l we obtain that jAj = jDj as well. In
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summary, we proved that the nonsingular minor of Ẑ is block diagonal:

Ẑ(T ;P ) = Diag
�
Ẑ(B;C); Ẑ(A;D)

�
:

Completely analogously we obtain the same result for Ŷ . That is the nonsingular

minor of Ŷ is block diagonal:

Ŷ (I;J) = Diag
�
Ŷ (A;D); Ŷ (InA;JnD)�:

Now, because Ŷ ẐT = ẐŶ T and Ŷ T Ẑ = ẐT Ŷ one easily sees that

Ŷ (A;D)Ẑ(A;D)T = Ẑ(A;D)Ŷ (A;D)T ; and

Ŷ (A;D)T Ẑ(A;D) = Ẑ(A;D)T Ŷ (A;D):

Moreover Ŷ (A;D), Ẑ(A;D) are square and nonsingular. So from the �rst part

of the proof they have simultaneous singular value decomposition as described

in the lemma. Next, we �nd (four) orthogonal matrices that give the singular

value decomposition of Ŷ (InA;JnD) and Ẑ(B;C) and because (InA) \ B = ;
and (JnD) \ C = ; it is not diÆcult to see how we can obtain the singular value

decomposition described in the lemma.

In what follows, for a vector x in Rn, we write x̂ for the vector in Rn with the

same entries as jxj arranged in nonincreasing order. Note that �(Diagx) = x̂. The

following lemma follows as a particular case of the more general framework in [50,

Theorem 2.2 & Example 7.2]: we give a direct proof here.
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Lemma 6.2.8. For any vectors x and y in Rn we have the inequality

xTy � x̂T ŷ: (6.6)

with equality if and only if there is a signed permutation matrix P(�) in P(�)(n)

such that P(�)x = x̂ and P(�)y = ŷ.

Proof. It is clear that the inequality holds since

xTy � jxjT jyj � x̂T ŷ;

where the last inequality follows from Lemma 6.2.5. The condition for equality

in one direction is clear too. Now suppose we have equalities above. Because

jxjT jyj = x̂T ŷ, from Lemma 6.2.5, there is a permutation matrix Q in P (n) such

that Qjxj = x̂ and Qjyj = ŷ.

Let I be the n � n identity matrix. The fact that we have the equality xTy =

jxjT jyj makes it possible to assign signs to the nonzero entries of I so that if I(�)

is the so-formed matrix, we have I(�)x = jxj and I(�)y = jyj. For every index i,

1 � i � n, we assign the signs as follows:

if xi = 0 and yi = 0 set I i;i
(�) = 1;

if xi = 0 and yi 6= 0 set I
i;i

(�) =sign (yi);

if xi 6= 0 and yi = 0 set I
i;i

(�) =sign (xi);

if xi 6= 0 and yi 6= 0, in order for the equality to hold we must have sign (xi) =

sign (yi), so set I i;i
(�) = sign (xi). We have that QI(�)x = x̂ and QI(�)y = ŷ; let

P(�) = QI(�).
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The Normal Space Theorem (6.2.4) will be extremelyuseful to us in the following

sections. However we can immediately demonstrate its importance by deriving

next a famous inequality due to von Neumann [37, p. 182]. The following theorem

may be viewed as a necessary and suÆcient condition for two matrices to have a

simultaneous ordered singular value decomposition.

Theorem 6.2.9 (Von Neumann's Trace Theorem). Any matrices X and Y

in Mn;m satisfy the inequality trXTY � �(X)T�(Y ). Equality holds if and only if

X and Y have a simultaneous ordered singular value decomposition.

Proof. For �xed X and Y , consider the optimization problem

� = sup
Z2O(n;m):X

trY TZ: (6.7)

Observe �rst that there is an element (Un; Um) in O(n;m) satisfying the equality

Y = UT

n
(Diag �(Y ))Um. Then choosing Z = UT

n
(Diag �(X))Um shows that � �

�(X)T�(Y ).

Next, since the orbit O(n;m):X is compact, problem (6.7) has an optimal so-

lution, Z = Z0 say, and any such Z0 by stationarity must satisfy

Y ? TZ0
(O(n;m):X) (= TZ0

(O(n;m):Z0)):

The Normal Space Theorem now shows that the matrices Y and Z0 satisfy Z
T

0 Y =

Y TZ0 and Z0Y
T = Y ZT

0 . Then by Lemma 6.2.7, there is an element (Un; Um) in
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O(n;m), and a signed permutation matrix P(�) in P(�)(n) such that

Y = UT

n
(DiagP(�)�(Y ))Um; Z0 = UT

n
(Diag �(Z0))Um: (6.8)

Hence using Lemma 6.2.5 we get

� = trY TZ0 = �(Z0)
TP(�)�(Y ) � �(Z0)

T jP(�)j�(Y )

� �(Z0)
T�(Y ) = �(X)T�(Y ) � �:

Thus we can conclude that � = �(X)T�(Y ) and, using Lemma 6.2.8, there ex-

ists a signed permutation matrix R in P(�)(n) such that RP(�)�(Y ) = �(Y ) and

R�(Z0) = �(Z0). Plugging this into equations (6.8) we get that

Y = UT

n

�
DiagRT�(Y )

�
Um; Z0 = UT

n

�
DiagRT�(Z0)

�
Um:

But �
DiagRT�(Y )

�
= RT (Diag �(Y ))

0B@ jRT j 0

0 Im�n;m�n

1CA ;

and there is a similar equation involving Z0. The theorem follows.

This section ends with two simple linear-algebraic results which are useful later.

Proposition 6.2.10 (Simultaneous Square Conjugacy). For any vectors x,

y, u, v in Rn, there is a matrix U in O(n) with

Diag x = UT (Diag u)U and Diag y = UT (Diag v)U



6.2. THE NORMAL SPACE 174

if and only if there is a matrix P in P (n) with x = Pu and y = Pv.

Proof. See [52, Proposition 3.8].

Proposition 6.2.11 (Simultaneous Rectangular Conjugacy). For vectors x,

y, u, and v in Rn, there is an element (Un; Um) in O(n;m) with

Diag x = UT

n
(Diag u)Um and Diag y = UT

n
(Diag v)Um

if and only if there is a matrix P(�) in P(�)(n) with x = P(�)u and y = P(�)v.

Proof. In one direction the proof is easy. In the other direction we divide it into

four steps. First we note that

(Diag x)(Diagx)T = UT

n
(Diag u)(Diagu)TUn

(Diag y)(Diag y)T = UT

n
(Diag v)(Diag v)TUn

So from Proposition 6.2.10, there is a permutation matrix P1 in P (n) such that

x2 = P1u
2; and y2 = P1v

2:

This implies that the number of zero entries in the vector u is equal to the number

of zero entries in the vector x, and the permutation is such that if P1e
i = ej then

juij = jxjj and jvij = jyjj.
Second we have that

(Diag x)(Diagx)T = UT

n
(Diag u)(Diagu)TUn
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(Diag x)(Diag y)T = UT

n
(Diag u)(Diag v)TUn

Again according to the previous proposition, there is a permutation matrix P2 in

P (n) such that

x2 = P2u
2 and x � y = P2(u � v):

Third, let �1 and �2 be the permutations corresponding to the permutation

matrices P1 and P2, that is, Pje
i = e�j(i) for all j = 1; 2 and i = 1; :::; n. We use �1

and �2 to form a new permutation � (with corresponding permutation matrix P )

in the following way:

�(i) =

8><>: �1(i) if ui = 0

�2(i) if ui 6= 0:

Because P2 also matches the zero entries of u one-to-one onto the zero entries of x,

the above construction is well de�ned.

In the last step we show that we can turn P into a signed permutation matrix

P(�) with the desired properties and such that jP(�)j = P . If �(i) = j (this of

course means P j;i = 1), then:

If ui = 0 and vi = 0 then we set P j;i

(�) = P j;i = 1.

If ui = 0 and vi 6= 0 then set P j;i

(�) = sign (vi)sign (yj).

If ui 6= 0 and vi = 0 then set P j;i

(�) = sign (ui)sign (xj).

If ui 6= 0 and vi 6= 0 then set again P j;i

(�) = sign (ui)sign (xj).

It is easily veri�ed that x = P(�)u and y = P(�)v.
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6.3 Simultaneous Diagonalization

Proposition 6.3.1. (Orthogonally Invariant & Absolutely Symmetric)The

following two properties of a function F :Mn;m ! [�1;+1] are equivalent:

1. F is orthogonally invariant; that is, any matrices X in Mn;m, Un in O(n),

and Um in O(m) satisfy F (UT

n
XUm) = F (X).

2. F = f Æ � for some absolutely symmetric function f : Rn ! [�1;+1] (that

is, any vector x in Rn and matrix P in P(�)(n) satisfy f(Px) = f(x)).

Proof. Elementary.

As we discussed in the Introduction, the singular value functions are important

in various areas.

De�nition 6.3.2 (Singular Value Function). A singular value function is

an extended-real-valued function de�ned on Mn;m of the form f Æ� for an absolutely

symmetric function f : Rn! [�1;+1].

Theorem 6.3.3 (Symmetricity). If a matrix Y in Mn;m is a subgradient or a

horizon subgradient of a singular value function at a matrix X in Mn;m, then X

and Y satisfy XTY = Y TX and Y TX = XTY . Furthermore, if the singular value

function is Lipschitz around X, and Y is a Clarke subgradient there, then again

XTY = Y TX and Y TX = XTY .

Proof. Call the singular value function F , and assume �rst that the subgradient

Y is regular. By the Normal Cone Proposition (6.1.8), the constancy of F on the
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orbit O(n;m):X shows

Y 2 �K(fZ : F (Z) � F (X)gjX)
��

� �K(O(n;m):XjX)
��

=
�
TX(O(n;m):X)

�?
:

The result follows from the Normal Space Theorem (6.2.4).

Next, let Y be an (approximate) subgradient of F at X. By the de�nition, there

is a sequence of matricesXr inMn;m approaching X with a corresponding sequence

of regular subgradients Yr in @̂F (Xr), approaching Y . By the above paragraph we

have

XTY = lim
r

XT

r
Yr = lim

r

Y T

r
Xr = Y TX:

The relationship Y TX = XTY is similar.

If Y is a horizon subgradient then there is a sequence Yr approaching Y and

real numbers tr decreasing to 0 such that trYr approaches Y . Thus, together with

the sequence Xr in Mn;m approaching X we have

XTY = lim
r

XT

r
trYr = lim

r

trY
T

r
Xr = Y TX:

Using De�nition 6.1.5, when the singular value function is locally Lipschitz then

any Clarke subgradient is a convex combination of subgradients, and since every

subgradient satis�es the two properties in the theorem, so must any convex combi-

nation.

Hence if a matrix Y in Mn;m is a subgradient of some singular value function at
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the matrix X in Mn;m then by Lemma 6.2.7 we get that

Y = UT

n

�
DiagP(�)�(Y )

�
Um; X = UT

n

�
Diag �(X)

�
Um;

for some element (Un; Um) in O(n;m), and some P(�) in P(�)(n). Consequently, by

the Subgradient Invariance Proposition (6.1.9) applied to the space Mn;m with the

action of the group O(n;m), the matrix DiagP(�)�(Y ) must be a subgradient at

Diag �(X). Consequently in order to characterize when a matrix Y is a subgradient

of a singular value function at a matrix X, it is enough to consider the case when

X and Y are both diagonal (by which we mean Xi;j = 0 if i 6= j). In one direction

this is not too hard, and we show it below.

Proposition 6.3.4. Any vectors x and y in Rn, and singular value function f Æ �
satisfy

Diag y 2 @(f Æ �)(Diagx)) y 2 @f(x):

Corresponding results hold for regular and horizon subgradients.

Proof. As in the previous theorem we show �rst that the claim holds when Diag y

is a regular subgradient of f Æ � at Diagx. For small vectors z in Rn we obtain

f(x+ z) = f(jx+ zj)

= (f Æ �)(Diagx+Diag z)

� (f Æ �)(Diag x) + tr (Diag y)T (Diag z) + o(Diag z)

= f(jxj) + yTz + o(z)

= f(x) + yTz + o(z);
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whence y 2 @̂f(x).
Next, if Diag y 2 @(f Æ �)(Diagx), then there is a sequence of matrices Xr in

Mn;m approaching Diagx, with f(�(Xr)) approaching f(�(Diagx)), and a sequence

of regular subgradients Yr in @̂(f Æ �)(Xr) approaching Diag y. By Theorem 6.3.3

there is a sequence of elements (U r

n
; U r

m
) of O(n;m) and a sequence of matrices P r

(�)

in P(�)(n) such that

Xr = (U r

n
)T
�
DiagP r

(�)�(Xr)
�
U r

m
and Yr = (U r

n
)T
�
Diag �(Yr)

�
U r

m
(6.9)

for every r. The Subgradient Invariance Proposition (6.1.9) now shows that

Diag �(Yr) 2 @̂(f Æ �)
�
DiagP r

(�)�(Xr)
�
;

whence by the �rst part �(Yr) 2 @̂f(P r

(�)�(Xr)).

The groups O(n;m) and P(�) are compact. So without loss of generality we

can assume that (U r

n
; U r

m
) approaches an element (Un; Um) in O(n;m) and P r

(�)

approaches P(�) in P(�)(n). Moreover, because P(�)(n) is a discrete group, the

elements of the sequence P r

(�) will be equal to P(�) for big enough r's. Hence from

equation (6.9), taking the limit and rearranging we get

Un(Diag x)U
T

m
= Diag (P(�)�(Diagx)); and

(6.10)

Un(Diag y)U
T

m
= Diag �(Diag y):

Since P r

(�)�(Xr) approaches P(�)�(Diagx), with f(P r

(�)�(Xr)) = f(�(Xr)) ap-
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proaching f(�(Diagx)) = f(P(�)�(Diagx)), and �(Yr) 2 @̂f(P r

(�)�(Xr)) approa-

ches �(Diag y), then �(Diag y) belongs to @f(P(�)�(Diag x)).

Combining Equation (6.10) and Proposition 6.2.11, there exists a signed permu-

tation matrix P̂(�) such that x = P̂(�)P(�)�(Diag x), y = P̂(�)�(Diag y). Applying

the Subgradient Invariance Proposition (6.1.9) again, this time to the space Rn

with the group P(�)(n), we get that y belongs to @f(x) as we claimed.

In the case when Diag y is a horizon subgradient, the calculations are analogous.

6.4 Directional derivatives of singular values

The aim of this section is to prove the reverse implication of the one stated in

Proposition 6.3.4. The main diÆculty is to show that for vectors x and y in Rn and

a singular value function f Æ � we have

y 2 @̂f(x)) Diag y 2 @̂(f Æ �)(Diagx): (6.11)

After that, to prove the same implication for the (approximate) subdi�erential

will be easy. We need two propositions whose proofs can be found in [47, Corol-

lary 2.6 and Theorem 3.1]. One may also want to compare the following two results

with Theorem 2.3.9 and Corollary 2.5.6 respectively.

Proposition 6.4.1 (Characterization Of Convexity). Suppose that the func-

tion f : Rn! (�1;+1] is absolutely symmetric. Then the corresponding singular

value function f Æ � is convex and lower semicontinuous on Mn;m if and only if f
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is convex and lower semicontinuous.

Proposition 6.4.2 (Gradient Formula). If a function f : Rn ! (�1;+1]

is convex and absolutely symmetric, then the corresponding convex, orthogonally

invariant function f Æ � is di�erentiable at the matrix X if and only if f is di�er-

entiable at �(X). In this case

r(f Æ �)(X) = UT

n

�
Diagrf(�(X))

�
Um;

for any matrices Un in O(n) and Um in O(m) with X = UT

n

�
Diag �(X)

�
Um.

For each integer k = 0; 1; 2; :::; n we de�ne the function Sk : Mn;m ! R by

Sk(M) =
P

k

i=1 �i(M), the sum of the k largest singular values of the matrixM . For

convenience we de�ne S0 = 0. It is well known result of Fan that Sk is a convex (even

sublinear) function (see also [36]). One can see this also using Proposition 6.4.1.

We de�ne a new symbol Rn := (Rn

#\Rn

+). To simplify the notation in the following

few lemmas, if x is a vector from Rn we will de�ne xn+1 = 0.

Lemma 6.4.3. The function f : Rn ! (�1;+1) de�ned by f(x) =
P

k

i=1 x̂i

(k � n) is di�erentiable at any point � 2 Rn such that �k > �k+1, and its derivative

is

rf(�) =
kX
i=1

ei:

Proof. Set v :=
P

k

i=1 e
i. For all vectors x with suÆciently small norm we have

f(�+x) =
P

k

i=1 �i+xi. So for all suÆciently small vectors x 6= 0, f(�+x)�f(�)�hv;xi
kxk =

0. Consequently rf(�) =Pk

i=1 e
i.
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Lemma 6.4.4. Fix an integer k, 1 � k � n. For any real vector x in Rn such that

x̂k > x̂k+1 the function Sk is di�erentiable at Diagx with gradient

rSk(Diag x) = UT

n

�
Diag

kX
i=1

ei
�
Um;

where Un and Um are any orthogonal matrices such that Diagx = UT

n
(Diag x̂)Um.

Note 6.4.5. Of course one can choose the matrices Un and Um in such a way

that Un is a signed permutation matrix, P(�), and Um is the block diagonal matrix

Diag (jP(�)j; Im�n;m�n).

Proof. The function f : Rn ! (�1;+1) de�ned by f(y) =
P

k

i=1 ŷi is easily

seen to be absolutely symmetric and convex. From Lemma 6.4.3 it is also di�eren-

tiable at the point �(Diagx) = x̂. So by Proposition 6.4.2 it follows that f Æ � is

di�erentiable at Diagx. But (f Æ�)(M) = Sk(M) for each M inMn;m, so Sk is dif-

ferentiable at Diagx and the formula for its gradient follows from Proposition 6.4.2

and Lemma 6.4.3.

Lemma 6.4.6. For any vector w in Rn, the function wT� is convex, and any vector

x in Rn satis�es Diagw 2 @(wT�)(Diagx).

Proof. The absolutely symmetric continuous function f : Rn! Rde�ned by f(z) =

wT ẑ is convex because it is the maximum of a family of convex (linear in this case)

functions

f(z) = maxfwTP(�)z : P(�) 2 P(�)(n)g;

by Lemma 6.2.8. Then by Proposition 6.4.1 we obtain that f Æ � is convex. To

prove the claim about the subgradient it is enough to show that any matrix Z in
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Mn;m satis�es

tr (Diagw)(Z �Diagx) � wT�(Z)� wTx;

or in other words, tr (Diagw)Z � wT�(Z). This inequality follows from von Neu-

mann's Theorem (6.2.9).

For any vector x in Rn, we denote by P(�)(n)x the stabilizer of x in the group

P(�)(n), that is

P(�)(n)x = fP(�) 2 P(�)(n) : P(�)x = xg:

Lemma 6.4.7. If x is a vector in Rn, and w is a vector in Rn such that the stabi-

lizer P(�)(n)x is a subgroup of P(�)(n)w, then the function wT�(�) is di�erentiable
at Diagx with

r(wT�)(Diagx) = Diagw;

Proof. Suppose that the structure of vector x is

x1 = ::: = xk1 > xk1+1 = ::: = xk2 > ::: > xkr+1 = ::: = xkr+1
= 0; (kr+1 = n):

(The proof of the lemma is the same even if xn > 0.) Since the stabilizer P(�)(n)x

is a subgroup of P(�)(n)w, there exist reals �1, �2,...,�r,�r+1 with

wi = �j whenever kj�1 < i � kj ; j = 1; 2; :::; r;
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where �r+1 = 0 and we set k0 = 0. We obtain

wT�(X) =

r+1X
j=1

�j

kjX
i=kj�1+1

�i(X) =

r+1X
j=1

�j
�
Skj(X) � Skj�1

(X)
�
:

Let P 1
(�) = In and P

2 = Im the identity matrices of the indicated dimension. Then

applying Lemma 6.4.4 gives

r(wT�)(Diagx) =

r+1X
j=1

�jI
T

n

�
Diag

kjX
i=1

ei �Diag

kj�1X
i=1

ei
�
Im

=

� rX
j=1

�j Diag

kjX
i=kj�1+1

ei
�

= Diagw;

as required.

The following theorem, which will be used in proving implication (6.11), gives

information about the directional derivatives of singular values. The adjoint of the

linear map Diag : Rn !Mn;m is the map diag :Mn;m ! Rn, taking a matrix M to

a vector with components Mi;i (1 � i � n).

Theorem 6.4.8 (Singular Value Derivatives). Any vector x in Rn and matrix

M in Mn;m satisfy

diagM 2 conv
�
P(�)(n)x�

0(Diagx;M)
�
: (6.12)

Proof. Assume �rst that xn = 0. Partition the set of integers f1; 2; :::; ng into
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consecutive blocks I1,I2,...,Ir,Ir+1, so that xi = xj if and only if the indices i and j

belong to the same block. Let us agree that xi 2 Ir+1 if and only if xi = 0. We are

going to say that an entry of x belongs to a particular block if its index is in that

block. With respect to these blocks, write any vector y in Rn in the form

y =

r+1M
i=1

yi; where yi 2 RjIij for each i:

The stabilizer P(�)(n)x consists of matrices permuting the entries of x in a block

Ii, (for every �xed i, 1 � i � r) among themselves (without sign changes) and

permuting the entries of x belonging to the block Ir+1 among themselves (with

possible sign changes).

Assume that relation (6.12) fails. Then there exists a hyperplane separating

diagM from conv
�
P(�)(n)x�

0(Diag x;M)
�
. That is, some vector y in Rn satis�es

yTdiagM > yTP(�)�
0(Diag x;M); for all P(�) in P(�)(n)x: (6.13)

Let ~y denote the vector �r

i=1y
i � dyr+1. There is a vector v in Rn with equal

components within every block Ii (1 � i � r) and vj = 0 whenever j 2 Ir+1 (that

is, P(�)(n)x is a subgroup of P(�)(n)v) so that v+ ~y lies in Rn. Lemma 6.4.6 shows

that

Diag (v + ~y) 2 @�(v + ~y)T�
�
(Diag x);

which in turn means that for any T in Mn;m and any real t, using the de�nition of
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a convex subgradient for the matrix Diagx + tT

tr
�
(tT )T(Diag (v + ~y))

� � �(v + ~y)T�
�
(Diag x+ tT )� �(v + ~y)T�

�
(Diag x):

Dividing by t and letting it go to 0+ we arrive at

tr
�
T T (Diag (v + ~y))

� � (v + ~y)T�0(Diag x;T ); (6.14)

for any matrix T in Mn;m. On the other hand, Lemma 6.4.7 shows that

tr
�
T T(Diag v)

�
= vT�0(Diag x;T ): (6.15)

Subtracting equation (6.15) from inequality (6.14) gives

tr
�
T T (Diag ~y)

� � ~yT�0(Diag x;T ): (6.16)

If we set diagM =: w = �rw
r, then there is a matrix Q in P(�)(n)x satisfying

diagQTM

0B@ jQj 0

0 Im�n;m�n

1CA = �r

i=1w
i �[wr+1:

Choosing the matrix T in inequality (6.16) to be T = QTM

0B@ jQj 0

0 Im�n;m�n

1CA
and using Lemma 6.2.5 repeatedly and Lemma 6.2.8 shows

yTw � ��r

i=1 y
i
�
T
��r

i=1 w
i
�
+ dyr+1

T
[wr+1
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= tr
�
T T (Diag ~y)

�
� ~yT�0(Diag x;T )

= ~yT�0(Diagx;M):

In the last equality we used the Subgradient Invariance Proposition (6.1.9). But

now choosing the matrix P(�) 2 P(�)(n)x in inequality (6.13) so that P T

(�)y = ~y

gives a contradiction.

Assume now xn > 0. Then the reader can verify that the proof works again if

we think that the block Ir+1 is empty.

Another result that we will need is that the singular value map � can be ex-

panded in a �rst order series, and this expansion stays valid when the direction

varies freely. In other words we have the following lemma.

Lemma 6.4.9. Given a matrix X in Mn;m, small matrices M in Mn;m satisfy

�(X +M) = �(X) + �0(X;M) + o(M):

Proof. The above �rst order expansion is true for any continuous convex function.

For a proof of this fact see [31, Lemma VI.2.1.1]. In our case �i is the di�erence of

the two convex functions
P

i

j=1 �j and
P

i�1
j=1 �j (see Lemma 6.4.6). So it is true for

�i as well.

Finally we prove the implication (6.11). Notice though, that we require x to be

in Rn. In the corollary that follows we remove this condition.
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Theorem 6.4.10. For any vectors x in Rn and y in Rn, and any singular value

function f Æ �,
y 2 @̂f(x)) Diag y 2 @̂(f Æ �)(Diagx):

Proof. By the Subgradient Invariance Proposition (6.1.9), every element of the

�nite set P(�)(n)xy is a regular subgradient of f at x. The convex hull of this set,

which we denote by �, has support function given by

Æ��(z) = maxfzTP(�)y : P(�) 2 P(�)(n)xg; for all z in Rn:

This function is sublinear, with global Lipschitz constant kyk.
Fix a real � > 0. The de�nition of regular subgradients implies, for small vectors

z in Rn,

f(x+ z) � f(x) + Æ��(z)� �kzk: (6.17)

On the other hand, using the previous lemma (6.4.9), small matrices Z in Mn;m

must satisfy

k�(Diagx+ Z)� x� �0(Diag x;Z)k � �kZk;

and hence, by inequality (6.17),

f
�
�(Diagx+Z)

�
= f

�
x+ (�(Diag x+ Z)� x)

�
� f(x) � �k�(Diagx+ Z)� xk

+ Æ��
�
�0(Diag x;Z) + [�(Diagx+ Z)� x� �0(Diag x;Z)]

�
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� f(x) + Æ��
�
�0(Diag x;Z)

�� (1 + kyk)�kZk;

using the Lipschitz property of � and the Lipschitzness of Æ��. The Singular Value

Derivatives Theorem (6.4.8) implies

diagZ 2 conv
�
P(�)(n)x�

0(Diagx;Z)
�
: (6.18)

Since the polytope � is obviously invariant under the group P(�)(n)x, so is its

support function, whence

Æ��
�
P(�)�

0(Diag x;Z)
�
= Æ��

�
�0(Diag x;Z)

�
;

for any matrix P(�) in P(�)(n)x. This combinedwith the convexity of Æ
�
� and relation

(6.18), demonstrates

Æ��(diagZ) � Æ��(�
0(Diag x;Z)):

Continuing the argument above we have

f(�(Diagx+ Z)) � f(x) + Æ��(diagZ)� (1 + kyk)�kZk

� f(x) + yTdiagZ � (1 + kyk)�kZk

= f(x) + hDiag y; Zi � (1 + kyk)�kZk;

and since � was arbitrary, the result follows.

Corollary 6.4.11 (Diagonal Subgradients). For any vectors x and y in Rn and
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any singular value function f Æ �,

y 2 @f(x), Diag y 2 @(f Æ �)(Diagx):

Corresponding results hold for regular and horizon subgradients. If f is Lipschitz

around �(X) then the implication `)' also holds for Clarke subgradients.

Proof. We prove only the implication `)', because the opposite direction is Prop-

osition 6.3.4. Again we �rst show it in the case when y is a regular subgradient.

Fixing a matrix P(�) in P(�)(n) satisfying x̂ = P(�)x, the assumption y 2 @̂f(x)

implies P(�)y 2 @̂f(P(�)x), by the Subgradient Invariance Proposition (6.1.9). Now

we can apply the previous result:

P T

(�)(Diag y)

0B@ jP(�)j 0

0 Im�n;m�n

1CA = Diag (P(�)y) 2 @̂(f Æ �)(Diag (P(�)x))

= @̂(f Æ �)

0B@P T

(�)(Diag x)

0B@ jP(�)j 0

0 Im�n;m�n

1CA
1CA ;

and the result follows by applying the Subgradient Invariance Proposition again.

Now suppose y 2 @f(x), so there is a sequence of vectors xr in Rn approaching

x, with f(xr) approaching f(x), and a sequence of regular subgradients yr 2 @̂f(xr)
approaching y. Hence Diagxr approaches Diagx with f(�(Diag xr)) approaching

f(�(Diag x)), and by the above argument, each matrix Diag yr is a regular subgra-

dient of f Æ � at Diagxr. Since Diag yr approaches Diag y, the result follows. The

horizon subgradient case is almost identical.



6.5. THE MAIN RESULT 191

If the function f is Lipschitz around �(X) and y is a Clarke subgradient at x,

then y is a convex combination of subgradients yi 2 @f(x). Since by the above

argument each matrix Diag yi is a subgradient of f Æ� at X, and Diag y is a convex

combination of these matrices, Diag y must be a Clarke subgradient.

Note 6.4.12. We prove the converse implication `(' in the Clarke case in Sec-

tion 6.6.

6.5 The main result

We present the main result of the chapter in this section. It is an easy formula

describing the subgradients of any singular value function in terms of its underlying

absolutely symmetric function. The proof reduces the general case to the diagonal

case developed in the previous section.

Theorem 6.5.1 (Subgradients). The (approximate) subdi�erential of a singular

value function f Æ � at a matrix X in Mn;m is given by the formula

@(f Æ �)(X) = O(n;m)X :Diag @f(�(X)); (6.19)

where

O(n;m)X = f(Un; Um) 2 O(n;m) : (Un; Um):Diag�(X) = Xg:

The sets of regular and horizon subgradients satisfy corresponding formulae.
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Proof. For any vector y in @f(�(X)), the Diagonal Subgradients Corollary (6.4.11)

shows

Diag y 2 @(f Æ �)(Diag�(X)):

Now, for any element (Un; Um) of O(n;m) such that UT

n
(Diag�(X))Um = X, the

Subgradient Invariance Proposition (6.1.9) implies

UT

n
(Diag y)Um 2 @(f Æ �)(UT

n
(Diag �(X))Um) = @(f Æ �)(X):

All this showed the inclusion @(f Æ �)(X) � O(n;m)X :Diag @f(�(X)).

For the opposite inclusion, take a subgradient Y in @(f Æ �)(X). By the

Symmetricity Theorem (6.3.3) it satis�es the relationships: Y TX = XTY and

Y XT = XY T . Hence by Lemma 6.2.7 there exists an element (Un; Um) in O(n;m)

and a signed permutation matrix P(�) in P(�)(n) such that

X = UT

n
(Diag �(X))Um and Y = UT

n
(DiagP(�)�(Y ))Um:

Then the Subgradient Invariance Proposition (6.1.9) shows

DiagP(�)�(Y ) 2 @(f Æ �)(Diag �(X));

whence P(�)�(Y ) 2 @f(�(X)), by the Diagonal Subgradient Corollary. Thus the

matrix Y belongs to the right-hand-side set above, as required. The arguments for

regular and horizon subgradients are similar.

Note 6.5.2. Same result holds for Clarke subgradient - see Section 6.6. In the case
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when f is lower semicontinuous see Section 6.7.

Corollary 6.5.3 (Unique Regular Subgradients). A singular value function

f Æ � has a unique regular subgradient at a matrix X in Mn;m if and only if f

has a unique regular subgradient at �(X).

Proof. Suppose f has unique regular subgradient y at �(X). Then by the sub-

di�erential formula (6.19) we get that every matrix in the nonempty convex set

@̂(f Æ �)(X) has the same norm, namely kyk, and therefore this set is a singleton.

The converse is obvious.

When f is Lipschitz around �(X), then f Æ� is strictly di�erentiable at X if and

only if f strictly di�erentiable at �(X). The proof follows from the above corollary

and Note 6.5.2, because in the Lipschitz case f is strictly di�erentiable at x if and

only if @cf(x) = f�g, that is, if and only if the Clarke subdi�erential is a singleton.

In that case � is the strict derivative of f at x [10, Exercise 6.4.7].

Corollary 6.5.4 (Fr�echet Di�erentiability). A singular value function f Æ� is

Fr�echet di�erentiable at a matrix X inMn;m if and only if f is Fr�echet di�erentiable

at �(X).

Proof. This follows immediately from Corollary 6.5.3, since a function h is Fr�echet

di�erentiable at a point if and only if both h and �h have unique regular subgra-

dients there.

Corollary 6.5.5 (Regularity). Suppose the absolutely symmetric function f is

�nite at �(X) (for a matrix X in Mn;m) with @f(�(X)) 6= ;. Then the singular
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value function f Æ � is (Clarke) regular at X if and only if f is (Clarke) regular at

�(X).

Proof. Recall that f Æ � is lower semicontinuous around X if and only if f is lower

semicontinuous around �(X).

De�nition 6.1.4 says that if @f(�(X)) 6= ;, then f is regular at �(X) if and only

if it is lower semicontinuous around �(X) and the following conditions hold

@f(�(X)) = @̂f(�(X)); and (6.20)

(@̂f(�(X)))1 = @1f(�(X)): (6.21)

On the other hand, by the same de�nition, f Æ � is regular at X if and only if it is

lower semicontinuous around X and the following conditions hold

@(f Æ �)(X) = @̂(f Æ �)(X); and (6.22)

(@̂(f Æ �)(X))1 = @1(f Æ �)(X): (6.23)

By formula (6.19) and its regular analogue, condition (6.20) implies condition

(6.22). Conversely, by the Subgradient Invariance Proposition (6.1.9), condition

(6.22) is equivalent to

@(f Æ �)(Diag�(X)) = @̂(f Æ �)(Diag �(X));

and condition (6.20) follows by the Diagonal Subgradient Corollary (6.4.11).

Applying the Recession Lemma (6.1.10) to the regular version of formula (6.19),
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noting that the set of regular subgradients is always closed and convex, and assum-

ing that (6.21) holds, implies that

(@̂(f Æ �)(X))1 = O(n;m)X:[Diag @̂f(�(X))]1

= O(n;m)X:Diag [@̂f(�(X))]1

= O(n;m)X:Diag @1f(�(X))

= @1(f Æ �)(X):

So condition (6.21) implies condition (6.23), by the horizon version of formula (6.19)

used in the last equality.

On the other hand, by the Subgradient Invariance Proposition (6.1.9), condition

(6.23) is equivalent to

(@̂(f Æ �)(Diag �(X)))1 = @1(f Æ �)(Diag�(X)):

Using the Diagonal Subgradients Corollary again and the above equality we obtain

Diag (@̂f(�(X)))1 = (Diag @̂f(�(X)))1

= (@̂(f Æ �)(Diag�(X)) \DiagRn)1

= (@̂(f Æ �)(Diag�(X)))1 \DiagRn

= @1(f Æ �)(Diag�(X)) \DiagRn

= Diag @1f(�(X)):

Condition (6.21) follows.
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Corollary 6.5.6 (Strict Di�erentiability). A singular value function f Æ � is

strictly di�erentiable at a matrix X in Mn;m if and only if the function f is strictly

di�erentiable at �(X).

Proof. Strict di�erentiability of f at �(X) is equivalent by [79, Thm 9.18] to con-

tinuity in a neighbourhood and regularity of both f and �f at �(X). The result

follows by the Regularity Corollary (6.5.5).

The Subgradients Theorem (6.5.1) can be written in graphical form. The graph

of the subdi�erential is the set

Graph @f = f(x; y) 2 Rn�Rn : y 2 @f(x)g:

De�ne a binary operation � : O(n;m)� (Rn�Rn)!Mn;m �Mn;m by

(Un; Um) � (x; y) = ((Un; Um):Diagx; (Un; Um):Diag y):

Corollary 6.5.7 (Subdi�erential Graphs). The graph of the subdi�erential of

a singular value function f Æ � is given by the formula

Graph @(f Æ �) = O(n;m) �Graph @f:

Analogous formulae hold for the subdi�erentials @̂, @1, and (in the locally Lipschitz

case) @c.

Proof. Suppose �rst that the pair of matrices (X;Y ) lies in Graph @(f Æ �). This
happens exactly when Y 2 @(f Æ �)(X). Using the Subgradients Theorem (6.5.1),
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this implies that there is a vector y in @(f(�(X)) and an element (Un; Um) in

O(n;m)X satisfying Y = (Un; Um):Diag y. Hence (X;Y ) = (Un; Um):(�(X); y).

Conversely, for a pair of vectors (x; y) in Graph @f and an element (Un; Um)

in O(n;m), y lies in @f(x), whence Diag y 2 @(f Æ �)(Diagx), by the Diagonal

Subgradients Corollary (6.4.11). The Subgradient Invariance Proposition now im-

plies (Un; Um):Diag y 2 @(f Æ �)((Un; Um):Diagx), or in other words (Un; Um) �
(x; y) 2Graph @(f Æ �). The arguments for the other subdi�erentials are exactly

analogous.

The regular subgradients of a convex function are exactly the usual convex

subgradients [79, Proposition 8.12]. It is also known that in the case of an absolutely

symmetric function f , f is convex if and only if f Æ� is. (See [50, Theorem 4.3 and

Example 7.5].) With this in mind the following corollary is easily deduced from the

Subgradients Theorem. An independent proof can be found in [47, Corollary 2.5].

Corollary 6.5.8 (Convex Subgradients). Let the function f be absolutely sym-

metric and convex. Consider the corresponding convex singular value function f Æ�.
The matrix Y is a (convex) subgradient of f Æ� at X if and only if �(Y ) is a (con-

vex) subgradient of f at �(X) and the two matrices X and Y admit simultaneous

ordered singular value decomposition.

6.6 Clarke subgradients - the Lipschitz case

As we said in Note 6.5.2 the Subgradients Theorem (6.5.1) can be extended word by

word to the case of the Clarke subdi�erential. The problem is the missing converse
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in the Diagonal Subgradients Corollary (6.4.11). In this section we �ll this gap. We

need some notation and a few lemmas.

If X is a square symmetric matrix (that is X 2 S(n)) then �(X) will denote its

eigenvalues arranged in nonincreasing order. The following lemma, whose proof is

similar to the proof of Lemma 6.4.6 and can be found in [52, Lemma 5.2], is needed

below.

Lemma 6.6.1. For any vector w in Rn

#, the function w
T� is convex on S(n), and

any vector x in Rn

# satis�es Diagw 2 @(wT�)(Diagx).

The following lemma should be compared to Lemmas 6.4.6, Lemma 6.6.1, and

Corollary 2.3.5. Its proof is immediate.

Lemma 6.6.2. 1. For any vector w in Rn

# the function wT� is sublinear.

2. For any vector w in Rn the function wT� is sublinear.

A subset C of the Euclidean space E is invariant under a subgroup of O(E)

if gC = C for all transformations g in G. If the function f : Rn ! [�1;+1] is

absolutely symmetric then the regular subdi�erential of f at a point x in Rn is a

convex set, invariant under the stabilizer P(�)(n)x (by the Subgradient Invariance

Proposition (6.1.9)).

Given a partitioning of the set f1; 2; :::; ng, into r+1 blocks I1,I2,...,Ir+1, of one

or several consecutive integers we, write any vector y in Rn in the form

y =

r+1M
l=1

yl; where yl 2 RjIlj for each l:
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For matrices U l in MjIlj for each 1 � l � r, and U r+1 in either MjIr+1j or in

MjIr+1j;jIr+1j+m�n, we write Diag (U
l) for the block diagonal matrix

0BBBBBBB@

U1 0 � � � 0

0 U2 � � � 0

...
...

. . .
...

0 0 � � � U r+1

1CCCCCCCA
It is clear that Diag (U l) will be either an n � n square or an n � m rectangular

matrix , depending on the dimensions of U r+1, and it will be clear from the context

which is the case.

Suppose we are given the following subgroups of P(�)(n) and O(n;m) respec-

tively:

~P (n) = fDiag (P l) : P l 2 P (jIlj); 1 � l � r and P r+1 2 P(�)(jIr+1j)g;
~O(n;m) = f�Diag (U l);Diag (V l)

�
: U l = V l 2 O(jIlj); 1 � l � r and

U r+1 2 O(jIr+1j); V r+1 2 O(jIr+1j+m� n)g:

Notice, for any vector y in Rn satisfying yi = yj , i; j in some Il, and yi =

0 , i 2 Ir+1, the group ~P (n) is the stabilizer in P(�)(n) of y, and the group

~O(n;m) is the stabilizer in O(n;m) of Diag y. (See Equation 6.26.)

Lemma 6.6.3 (Sum Of Invariant Sets). If the sets C; D � Rn are convex and



6.6. CLARKE SUBGRADIENTS - THE LIPSCHITZ CASE 200

invariant under the group ~P (n) then

~O(n;m):DiagC + ~O(n;m):DiagD = ~O(n;m):Diag (C +D):

Proof. Diagonalizing each block for 1 � l � r and applying the singular value

decomposition theorem to the last, (r + 1)st, block proves the equality

~O(n;m):DiagC = fDiag (X l) : �r

l=1�(X
l)� �(Xr+1) 2 Cg: (6.24)

Let

X = Diag (X l) 2 ~O(n;m):DiagC; and

Y = Diag (Y l) 2 ~O(n;m):DiagD:

We wish to show

X + Y 2 ~O(n;m):Diag (C +D);

or equivalently, by identity (6.24),

�r

l=1�(X
l + Y l) � �(Xr+1 + Y r+1) 2 C +D:

Since identity (6.24) shows �r

l=1�(X
l) � �(Xr+1) lies in the convex set C and

�r

l=1�(Y
l)� �(Y r+1) lies in the convex set D, it suÆces to show

�r

l=1 �(X
l + Y l)� �(Xr+1 + Y r+1) 2

conv ( ~P (n)(�r

l=1�(X
l)� �(Xr+1))) + conv ( ~P (n)(�r

l=1�(Y
l)� �(Y r+1))):



6.6. CLARKE SUBGRADIENTS - THE LIPSCHITZ CASE 201

If this fails then there is a separating hyperplane separating the point from the set.

That is, there exists a vector z = �lz
l satisfying

hz; �r

l=1�(X
l + Y l)� �(Xr+1 + Y r+1)i

> max hz; conv ( ~P (n)(�r

l=1 �(X
l)� �(Xr+1)))

+ conv ( ~P (n)(�r

l=1�(Y
l)� �(Y r+1)))i

= max hz; ~P (n)(�r

l=1�(X
l)� �(Xr+1))i

+max hz; ~P (n)(�r

l=1�(Y
l)� �(Y r+1))i:

But then Lemmas 6.2.5, 6.2.8 and 6.6.2 show

rX
l=1

hzl; �(X l + Y l)i+ hzr+1; �(Xr+1 + Y r+1)i

>

rX
l=1

hzl; �(X l)i + hdzr+1; �(Xr+1)i

+

rX
l=1

hzl; �(Y l)i+ hdzr+1; �(Y r+1)i

=

rX
l=1

hzl; �(X l) + �(Y l)i+ hdzr+1; �(Xr+1) + �(Y r+1)i

�
rX

l=1

hzl; �(X l + Y l)i+ hdzr+1; �(Xr+1 + Y r+1)i

�
rX

l=1

hzl; �(X l + Y l)i+ hzr+1; �(Xr+1 + Y r+1)i;

which is a contradiction.
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Corollary 6.6.4 (Convex Invariant Sets). If the set C � Rn is convex and

invariant under the group ~P (n) then the set of matrices ~O(n;m):DiagC is convex.

Proof. We just have to apply the above lemma to the sets

C1 = �C D1 = (1 � �)C;

where � is a number in [0; 1].

Lemma 6.6.5. If the set C � Rn is invariant under the group ~P (n), then the

following equality holds

conv ( ~O(n;m):DiagC) = ~O(n;m):Diag (convC):

Proof. It is clear that ~O(n;m):DiagC � ~O(n;m):Diag (convC), and the latter set

is convex because of Corollary 6.6.4. Consequently

conv ( ~O(n;m):DiagC) � ~O(n;m):Diag (convC):

The opposite inclusion is trivial.

Theorem 6.6.6 (Clarke Subgradients). The Clarke subdi�erential of a locally

Lipschitz singular value function f Æ� at a matrix X inMn;m is given by the formula

@c(f Æ �)(X) = O(n;m)X :Diag @cf(�(X)); (6.25)
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where

O(n;m)X = f(Un; Um) 2 O(n;m) : (Un; Um):Diag�(X) = Xg:

Proof. Assume �rst X = Diag x for a vector x in Rn. After that the general case

will follow easily by the Subgradient Invariance Proposition (6.1.9). Let

x1 = ::: = xk1 > xk1+1 = ::: = xk2 > xk2+1::: = xkr > xkr+1 = ::: = xkr+1
= 0;

where kr+1 = n. Partition the set f1; 2; :::; ng into r + 1 blocks: I1 = f1; 2; :::; k1g,
I2 = fk1 + 1; :::; k2g,..., Ir+1 = fkr + 1; :::; kr+1g.

We are going to compute the group O(n;m)Diagx. If (Un; Um) is in O(n;m)Diagx,

then we have

(Diag x)(Diagx)TUn = Un(Diag x)(Diag x)
T

(Diag x)T (Diag x)Um = Um(Diag x)
T (Diag x);

which shows that Un =Diag (U l), where U l 2 O(jIlj) for 1 � l � r + 1, and

Um =Diag (V l), where V l 2 O(jIlj) for 1 � l � r, and V r+1 2 O(jIr+1j +m � n).

Now from the identity

UT

n
(Diag x) = (Diag x)UT

m

one sees that U l = V l for each 1 � l � r. So we obtain

O(n;m)Diag x = ~O(n;m): (6.26)



6.6. CLARKE SUBGRADIENTS - THE LIPSCHITZ CASE 204

Since x is invariant under the group ~P (n) the convex set @cf(x) is also invariant

under ~P (n), by the Subgradient Invariance Proposition (6.1.9). Corollary 6.6.4 now

shows that the set ~O(n;m):Diag @cf(x) is convex.

The Subgradient Theorem (6.5.1) now gives us

@c(f Æ �)(Diag x) = conv @(f Æ �)(Diagx) = conv ( ~O(n;m):Diag @f(x)):

Using the easily established fact

~O(n;m):Diag @f(x) � ~O(n;m):Diag @cf(x)

and the convexity of the right hand side, we see that

conv ( ~O(n;m):Diag @f(x)) � ~O(n;m):Diag @cf(x):

On the other hand from @cf(x) = conv @f(x) one can immediately see that the

reverse inclusion holds as well:

~O(n;m):Diag @cf(x) = ~O(n;m):Diag (conv @f(x))

= ~O(n;m):conv (Diag @f(x))

� conv ( ~O(n;m):(Diag @f(x))

= conv @(f Æ �)(Diagx)

= @c(f Æ �)(Diag x):
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The result follows.

For completeness we would like to state and prove the Clarke version of the

Diagonal Subgradient Corollary.

Corollary 6.6.7 (Diagonal Clarke Subgradients). For any vectors x and y in

R
n and any singular value function f Æ �,

y 2 @cf(x), Diag y 2 @c(f Æ �)(Diagx):

Proof. We already know that the implication `)' holds, and was proved in the

Diagonal Subgradients Corollary (6.4.11). To see the reverse implication choose a

diagonal matrix Diag y 2 @c(f Æ�)(Diagx). Then the Clarke Subgradients Theorem
above shows the existence of an element (Un; Um) in O(n;m) and a vector z in

@cf(x̂) such that Diag y = (Un; Um):Diag z and Diag x = (Un; Um):Diag x̂. By the

Simultaneous Rectangular Conjugacy Proposition (6.2.11), there is a matrix P(�) in

P(�)(n) with y = P(�)z and x = P(�)x̂, and the result follows from the Subgradient

Invariance Proposition (6.1.9).

6.7 Clarke subgradients - the lower semicontinu-

ous case

In this section we extend our previous result on Clarke subgradients to the non-

Lipschitz case.
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A function f is called lower semicontinuous if its graph

epi f = f(x; �) 2 Rn�R j f(x)� �g

is a closed subset of Rn+1. Let C � Rn and x 2 C. A vector v is a regular normal

to C at x, written v 2 N̂C(x), if lim sup
z!0

hv;x+zi
jx+zj � 0. A vector v is a normal to

C at x, written v 2 NC(x), if there is a sequence of points x
r in C approaching x,

and a sequence of regular normals vr in N̂C(x
r) approaching v. The set of Clarke

subgradients of a function f at x, @cf(x), is de�ned by

@cf(x) = fv j (v;�1) 2 cl convNepif (x; f(x))g;

and is called Clarke subdi�erential. It can be shown that if f is locally Lipschitz

around x then this de�nition coincides with the de�nition given at the beginning,

so there will be no danger of confusion. (See [79, Theorem 9.13 (b) and Theo-

rem 8.49].) If f is lower semicontinuous around x then we have the formula (see

[79, Theorem 8.9]):

Nepif (x; f(x)) = f�(v;�1) j v 2 @f(x); � > 0g[f(v; 0) j v 2 @1f(x)g: (6.27)

Notice that this cone is closed.

Lemma 6.7.1. If f is lower semicontinuous around x we have the representation

@cf(x) = cl (conv @f(x) + conv @1f(x)):
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In particular when the cone @1f(x) doesn't contain lines we have simpler

@cf(x) = conv @f(x) + conv @1f(x):

Proof. De�ne the sets

K1 = f(v; 0) j v 2 @1f(x)g;

K2 = f�(v;�1) j v 2 @f(x); � > 0g; and

L = fx 2 Rn+1 jxn+1 = �1g:

Then by (6.27) we get

convNepif (x; f(x)) = convK1 + convK2;

and by the de�nition of the set L

(convK1 + convK2) \ L = f(v;�1) j v 2 conv @1f(x) + conv @f(x)g:

Let us see on the other hand that the following equality holds

(cl convNepif (x; f(x))) \ L = cl (convNepif (x; f(x)) \ L):

Indeed, take a point (v;�1) in (cl convNepif (x; f(x))) \ L. So there is a sequence

(vr; �r) in convNepif (x; f(x)), approaching (v;�1). For big enough r, we have

�r < 0. Then
�
v
r

j�rj ;
�
r

j�rj

�
=
�

v
r

j�r j ;�1
�
is in convNepif (x; f(x)) \ L, approaching
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(v;�1). So (v;�1) is in cl (convNepif(x; f(x))\L). The opposite inclusion is clear.
So

f(v;�1) j v 2 @cf(x)g = (cl convNepif (x; f(x))) \ L

= cl f(v;�1) j v 2 conv@1f(x) + conv @f(x)g

= f(v;�1) j v 2 cl (conv@1f(x) + conv @f(x))g;

and we are done. In the other case, we have that the cone @1f(x) doesn't contain

lines if and only if Nepif(x; f(x)) doesn't contain lines. Then by [79, Theorem 3.15]

cl convNepif (x; f(x)) = convNepif (x; f(x))

and the second formula becomes clear.

We now prove a proposition that resembles Proposition 6.4.1 and exhibits an-

other property of absolutely symmetric functions that is preserved after composition

with �.

Proposition 6.7.2 (Characterization of Sublinearity). Suppose the function

f : Rn ! (�1;+1] is absolutely symmetric. Then the corresponding singular

value function is sublinear and lower semicontinuous on Mn;m if and only if f is

sublinear and lower semicontinuous.

Proof. One way to prove this proposition is to use Proposition 6.4.1 and the fact

that f is sublinear if and only if it is convex and positively homogeneous, plus the

fact that � is positively homogeneous.
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Let (UÆ
n
; UÆ

m
) be an arbitrary, �xed element of the set O(n;m)X . Then the repre-

sentation O(n;m)X = (UÆ
n
; UÆ

m
)O(n;m)Diag�(X) holds. (Recall that O(n;m)Diag�(X)

denotes the stabilizer of the matrix Diag �(X) in the group O(n;m).) Notice that

the matrices in the stabilizer O(n;m)Diag�(X) have the same structure as those in

the set ~O(n;m) in Lemma 6.6.3 and Corollary 6.6.4. Let now f be an absolutely

symmetric function. Then f is lower semicontinuous if and only if f Æ � is lower

semicontinuous. Using (in this order) Lemma 6.7.1, Theorem 6.5.1, Lemma 6.6.5,

Corollary 6.6.4, Lemma 6.6.3, simple limiting argument using the fact that the

set O(n;m)X is compact (when exchanging it with 'cl'), and using everywhere the

above representation, we get:

@c(f Æ �)(X) = cl
�
conv @1(f Æ �)(X) + conv@(f Æ �)(X)

�
= cl

�
convO(n;m)X :Diag @1f(�(X)) + convO(n;m)X:Diag @f(�(X))

�
= cl

�
O(n;m)X:convDiag @1f(�(X)) +O(n;m)X :convDiag @f(�(X))

�
= cl

�
O(n;m)X:

�
convDiag @1f(�(X)) + convDiag @f(�(X))

��
= O(n;m)X :cl

�
convDiag @1f(�(X)) + convDiag @f(�(X))

�
= O(n;m)X :Diag cl

�
conv @1f(�(X)) + conv @f(�(X))

�
= O(n;m)X :Diag @c(f(�(X)):

This proves the following theorem.

Theorem 6.7.3. If X 2 Mn;m and f is an absolutely symmetric function and

lower semicontinuous around �(X). Then f Æ � is lower semicontinuous around X
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and

@c(f Æ �)(X) = O(n;m)X :@c(f(�(X));

where

O(n;m)X = f(Un; Um) 2 O(n;m) : (Un; Um):Diag�(X) = Xg:

Analogous argument proves the corresponding result for spectral functions of

symmetric matrices - a result left unproven in [52].

6.8 Absolute order statistics & individual singu-

lar values

In this section we want to present a useful application of the Subgradient Theorem

(6.5.1). We are going to calculate the approximate and Clarke subdi�erentials of

an individual singular value �k(�). The availability of such formulas may be useful

in further research in matrix perturbation theory.

We start by de�ning the absolutely symmetric function corresponding to the

r-th singular value. The kth absolute order statistic 'k : R
n! R is de�ned to be

'k(x) = kth largest element of fjx1j; jx2j; :::; jxnjg

(or in other words 'k(x) = (x̂)k). It clearly satis�es the relation 'k(x) = �k(Diag x).

To apply the Subgradient Theorem, note that �k = 'k Æ �. Thus we must �rst
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compute the subdi�erential of 'k. We de�ne the function sign (x) as

sign (x) =

8><>: 1; if x � 0;

�1; if x < 0:

Proposition 6.8.1. At any point x in Rn, the regular subgradients of the kth ab-

solute order statistic are described by

@̂'k(x) =

8>>>><>>>>:
conv f�ei : xi = 0g; if 'k�1(x) > 'k(x) = 0;

conv f(sign (xi))ei : jxij = 'k(x)g; if 'k�1(x) > 'k(x) 6= 0;

;; otherwise;

and @1'k(x) = f0g.

Proof. De�ne the set of indices I = fi : jxij = 'k(x)g, and consider several cases.

If the inequality 'k�1(x) > 'k(x) holds then clearly, close to the point x, the

function 'k is given by w 2 Rn 7! maxi2I jwij. The subdi�erential at x of this

second function (which is convex) is convf�ei : jxij = 'k(x)g if 'k(x) = 0 or is

conv f(sign (xi))ei : jxij = 'k(x)g if 'k(x) 6= 0. (See [78, Theorem 23.8].)

On the other hand, in the case 'k�1(x) = 'k(x), suppose y is regular subgradi-

ent, and so satis�es

'k(x+ z) � 'k(x) + yTz + o(z); as z ! 0:

Here we consider two subcases whose argumentation slightly di�er from one another.

Assume �rst that 'k�1(x) = 'k(x) = 0. For any index i in I, all small positive
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Æ satisfy 'k(x+Æe
i) = 'k(x) and 'k(x�Æei) = 'k(x), from which we deduce yi = 0

for each i in I. But also

'k

�
x+ Æ

X
i2I

ei
�
= 'k(x) + Æ; and

'k

�
x� Æ

X
i2I

ei
�
= 'k(x) + Æ;

which leads to the contradiction
P

i2I yi = 1. So @̂'k(x) = ;.
Second, suppose we have 'k�1(x) = 'k(x) > 0. For any index i in I, all

small positive Æ satisfy 'k(x + Æ(sign (xi))e
i) = 'k(x), from which we deduce

(sign (xi))yi � 0, but also

'k

�
x� Æ

X
i2I

(sign (xi))e
i

�
= 'k(x)� Æ;

which leads to the contradiction
P

i2I(sign (xi))yi � 1. Again we must have hadP
i2I yi = 1.

The horizon subdi�erential is easy to see, since 'k is Lipschitz.

For a vector y in Rn we de�ne

supp y = fi : yi 6= 0g:

The number of elements in this set is then jsupp yj.

Theorem 6.8.2 (kth Absolute Order Statistic). The Clarke subdi�erential of
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the kth absolute order statistic 'k at a point x in Rn is given by

@c'k(x) =

8><>: conv f�ei : xi = 0g; if 'k(x) = 0

conv f(sign (xi))ei : jxij = 'k(x)g; otherwise ;

whereas the (approximate) subdi�erential is given by

@'k(x) = fy 2 @c'k(x) : jsupp yj � �g; where (6.28)

� = 1� k + jfi : jxij � 'k(x)gj:

Regularity holds if and only if 'k�1(x) > 'k(x).

Proof. We begin by proving Equation (6.28). Every vector z in a small enough

neighbourhood around x will have the property that ẑi = ẑj ) x̂i = x̂j for all

i and j. That is why by using Proposition 6.8.1 one can easily see that for all

z in that neighbourhood @̂'k(z) is contained in the set in the right hand side of

Equation (6.28). Because this set is closed, after taking limits we see that @'k(x)

is contained in it as well.

We now show the opposite inclusion. Take a vector y in the right hand side of

(6.28) and an index set J such that

jJ j = n � �;

j 2 J ) yj = 0;

fi : jxij > 'k(x)g [ fi : jxij < 'k(x)g � J:
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It can easily be seen that for small enough Æ we have

'k�1

�
x+ Æ

X
i2J

(sign (xi))e
i

�
> 'k

�
x+ Æ

X
i2J

(sign (xi))e
i

�
= 'k(x):

Finally using Proposition 6.8.1 we see that

y 2

8><>: conv f�ei : i 62 Jg
conv f(sign (xi))ei : i 62 Jg

9>=>; = @̂'k

�
x+ Æ

X
i2J

(sign (xi))e
i

�
;

whence by taking limits we conclude that y 2 @'k(x). The formulas for the Clarke
case follow by taking convex hulls. The regularity claim follows by Proposition 6.8.1.

Finally the subdi�erentials of the singular value function �k(X) are given by

the following corollary.

Corollary 6.8.3 (Singular Value Subgradients). The Clarke subdi�eren-

tial of the kth singular value �k at a matrix X in Mn;m is given by

@c�k(X) =

8><>: conv f�uvT : (u; v) 2 �k(X)g; if �k(X) = 0

conv fuvT : (u; v) 2 �k(X)g; otherwise ;

where

�k(X) = f(u; v) 2 Rn�Rm j kuk = kvk = 1;XXTu = �2
k
(X)u;XTXv = �2

k
(X)vg:
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On the other hand the (approximate) subdi�erential is given by

@�k(X) = fY 2 @c�k(X) : rank Y � �g; where

� = 1� k + jfi : �i(X) � �k(X)gj:

Regularity holds if and only if �k�1(X) > �k(X).

Proof. First we deduce the formula for the Clarke subdi�erential. Fix a matrix X.

Suppose �rst that �k(X) = 0. By Theorem 6.6.6 we get

@c�k(X) = (UÆ
n
; UÆ

m
)O(n;m)Diag�(X):

�
Diag convf�ei : �i(X) = �k(X)g�;

where (UÆ
n
; UÆ

m
) is a �xed element of O(n;m)X . The set f�ei : �i(X) = �k(X)g is

clearly invariant under the subgroup, ~P (n), of P(�)(n) that stabilizes �(X). Then

by Lemma 6.6.5 and recalling the O(n;m)Diag�(X) = ~O(n;m) we obtain

@c�k(X) = (UÆ
n
; UÆ

m
)conv ~O(n;m):

�
Diag f�ei : �i(X) = �k(X)g�

= convO(n;m)X :
�
Diag f�ei : �i(X) = �k(X)g�

= conv f�uvT : �k(X)g:

The case �k(X) > 0 is analogous, keeping in mind that sign�i(X) = 1 for all i. The

(approximate) subdi�erential formula and the condition for regularity also follow

easily now.
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6.9 Lidskii's theorem for weak majorization - via

nonsmooth analysis

Lidskii's theorem (for weak majorization) states (see [37, Theorem 3.4.5]) that any

matrices X and Y in Mn;m satisfy

j�(X + Y )� �(X)j �w �(Y ):

The symbol �w denotes weak majorization: for two vectors x and y in Rn we say

that y weakly majorizes x, and write x �w y if
P

k

i=1 �xi �
P

k

i=1 �yi for k = 1; 2; :::; n.

Clearly x �w y if and only if P1x �w P2y (for any permutation matrices P1 and

P2).

In this section we show how this form of Lidskii's theorem can be easily derived

from the results obtained in the chapter. We need an equivalent characterization

of weak majorization.

Lemma 6.9.1. If x and y be any two vectors in Rn, then the following conditions

are equivalent:

1. jxj �w jyj;

2. x 2 conv (P(�)(n)y);

3. for every vector w in Rn we have wTx � ŵT ŷ.

Proof. The equivalence of (1) and (2) is the content of [60, Theorem 1.2]. Suppose
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now (2) holds. Then for all w in Rn,

wTx � max
P(�)2P(�)(n)

(wTP(�)y) = ŵT ŷ:

If (3) holds but x 62 conv (P(�)(n)y), then there is a separating hyperplane, that is,

there is a vector z in Rn such that

zTx > max
P(�)2P(�)(n)

(zTP(�)y) = ẑT ŷ;

a contradiction.

Fix w in Rn and consider the absolutely symmetric function de�ned by

f(x) = wT x̂: (6.29)

The function f is clearly Lipschitz. If x has coordinates all nonzero with distinct

absolute values, then f is di�erentiable at x and rf(x) = P(�)w for some P(�) 2
P(�)(n). The set of all such vectors x (whose entries are nonzero with distinct

absolute values) has a complement in Rn with measure zero. On the other hand

we have the following theorem (see [15, Theorem 2.5.1]).

Theorem 6.9.2 (Intrinsic Clarke Subdi�erential). Let the function f be Lip-

schitz near x, and suppose S is any set of Lebesgue measure 0 in Rn. Then

@cf(x) = conv flim rf(xi) jxi ! x; xi 62 Sg:
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(It is well known that if f is Lipschitz in a neighbourhood of x then f is di�erentiable

almost everywhere in that neighbourhood.)

From this theorem we get that the function de�ned in (6.29) satis�es

@cf(x) � conv (P(�)(n)w):

We need another theorem, [15, Theorem 2.3.7].

Theorem 6.9.3 (Mean-Value Theorem). Let x and y be vectors in Rn, and

suppose that f is Lipschitz on an open set containing the line segment [x; y]. Then

there exists a point u in (x; y) such that

f(x)� f(y) 2 h@cf(u); x� yi:

We have that wT�(�) = (f Æ�)(�) is Lipschitz, then there is a matrix Q inMn;m,

between the matrices X and X + Y , and a matrix T in @c(wT�)(Q) such that:

wT
�
�(X + Y )� �(X)

�
= tr (T TY ) � �(T )T�(Y );

where the last inequality is the von Neumann's theorem (6.2.9). On the other hand

applying formula (6.25) and the above inclusion we get

�(T ) 2 conv (P(�)(n)w):

Consequently �(T )T�(Y ) � ŵT�(Y ). We have thus shown that for every vector w
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in Rn we have

wT
�
�(X + Y )� �(X)

� � ŵT�(Y ):

Lidskii's theorem follows from Lemma 6.9.1.

6.10 Proximal subgradients

In this section we show that the formula in the main result of this chapter also

holds in the case of proximal subgradients.

De�nition 6.10.1 (Proximal Subgradients). A vector y is called a proximal

subgradient of a function f : Rn ! R at x, a point where f(x) is �nite, if there

exist � > 0 and Æ > 0 such that

f(x+ z) � f(x) + hy; zi � 1

2
�kzk2 when kzk � Æ:

The set of all proximal subgradients will be denoted with @pf(x).

It is clear from the de�nition that

@pf(x) � @̂f(x): (6.30)

Lemma 6.10.2 (Proximal Subgradients Invariance). If the function f : E !
[�1;+1] (E is an Euclidean space) is invariant under a subgroup G of O(E), then

any point x in E and transformation g in G satisfy @pf(gx) = g@pf(x).

Proof. Suppose �rst y 2 @pf(x), so there is a � > 0 such that all z in E suÆciently

close to 0 satisfy f(x + z) � f(x) + hy; zi � 1
2
�kzk2. Using the invariance of f we
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get

f(gx+ z) = f(x+ g�1z)

� f(x) + hy; g�1zi � 1

2
�kg�1zk2

= f(gx) + hgy; zi � 1

2
�kzk2;

so gy 2 @pf(gx). One can easily see that @pf(gx) = g@pf(x).

6.10.1 A preliminary result

Our aim in this auxiliary section will be to prove the identity

�(X +M) = �(X) + �0(X;M) +O(kMk2): (6.31)

Note that this identity is more powerful than the one in Lemma 6.4.9 in the sense

that it implies the one in Lemma 6.4.9. First of all from [36, Theorem 4.3.1] we

have that

�(X +M) = �(X) +O(kMk): (6.32)

We will use the following notation and results from [87]. If A is n � n symmetric

matrix, its eigenvalues are all real and we can arrange them in nonincreasing order

�1(A) � � � � �i�1(A) > �i(A) = � � � �l(A) � � � = �j(A) > �j+1(A) � � � � �n(A);
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where i � l � j and �l(A) is the l-th largest eigenvalue of A (counting multiplicity

of each of them). The following proposition is an easy consequence of equation

(6.32) and Proposition 1.4 in [87].

Proposition 6.10.3. Let A 2 S(n) and U 2 O(n) be such that

UTAU = Diag (�1(A); :::; �n(A)) (U = [u1; :::; un]):

If we set U1 := [ui; :::; uj] then

�l(A+ E) = �l(A) + �l�i+1(U
T

1 EU1) +O(kEk2):

Fix X 2 Mn;m. Let M 2 Mn;m be a perturbation matrix. Let the singular value

decomposition of X be X = V T
�
Diag�(X)

�
W . Let

A :=

0B@ 0 X

XT 0

1CA ; E :=

0B@ 0 M

MT 0

1CA ;

It is well known (see [36, Theorem 7.3.7]) that the eigenvalues of the matrix A are

(�1(X); :::; �n(X); 0; :::; 0;��n(X); :::;��1(X)) with m � n zeros in between. Set

S = Diag�(X) 2Mn;n and choose orthogonal U with

UTAU = Diag (S; 0;�S):

We apply the above proposition to the l-th eigenvalue of A, 1 � l � n, using the



6.10. PROXIMAL SUBGRADIENTS 222

matrices A, E, and U to get

�l(X +M) = �l(A+ E)

= �l(A) + �l�i+1(U
T

1 EU1) +O(kEk2)

= �l(X) + �l�i+1(U
T

1 EU1) +O(kMk2):

Formula (6.31) now follows.

6.10.2 Proximal subgradients

Following the standard reduction ideas we �rst prove a simpler version of the the-

orem we want.

Lemma 6.10.4 (Diagonal Proximal Subgradients). For any vectors x in Rn,

y in Rn and any singular value function f Æ � we have

y 2 @pf(x), Diag y 2 @p(f Æ �)(Diagx):

Proof. Suppose �rst that Diag y is a proximal subgradient. Then there are � > 0

and Æ > 0 such that for all vectors z in Rn such that kzk < Æ we have

f(x+ z) = (f Æ �)(Diagx+Diag z)

� (f Æ �)(Diagx) + tr (Diag y)(Diag z)� 1

2
�kDiag zk2

= f(x) + hy; zi � 1

2
�kzk2;

so y 2 @pf(x). (In this case we didn't use that x 2 Rn.)
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In the opposite direction, let y 2 @pf(x). By Lemma 6.10.2, every element of

the �nite set P(�)(n)xy is a proximal subgradient of f at x. We consider the support

function of the convex hull of this set (which we denote by �).

Æ��(z) = maxfzTP(�)y : P(�) 2 P(�)(n)xg; for all z in Rn:

This function is sublinear, with global Lipschitz constant kyk. The de�nition of

proximal subgradients implies that there are numbers � > 0 and Æ > 0 such that

for all vectors z in Rn satisfying kzk < Æ we have

f(x+ z) � f(x) + Æ��(z)�
1

2
�kzk2: (6.33)

On the other hand using the result from the previous subsection, suÆciently small

matrices Z in Mm;n must satisfy

k�(Diag x+ Z)� x� �0(Diag x;Z)k � KkZk2:

Therefore by inequality (6.33), together with the Lipschitzness of Æ�� and �, we get

f(�(Diagx+ Z)) = f(x+ (�(Diagx+ Z)� x))

� f(x)� 1

2
�k�(Diagx+ Z)� xk2

+ Æ��(�
0(Diag x;Z) + [�(Diagx+ Z)� x� �0(Diag x;Z)])

� f(x) + Æ��(�
0(Diag x;Z))�

�
1

2
�+Kkyk

�
kZk2;
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Recall that by the Singular Value Derivatives Theorem (6.4.8) we have

diagZ 2 conv
�
P(�)(n)x�

0(Diagx;Z)
�
: (6.34)

Since the polytope � is invariant under the group P(�)(n)x, so is its support func-

tion, consequently

Æ��
�
P(�)�

0(Diag x;Z)
�
= Æ��

�
�0(Diag x;Z)

�
;

for any matrix P(�) in P(�)(n)x. The convexity of Æ
�
�, its invariance property, and

relation (6.34), imply that

Æ��(diagZ) � Æ��(�
0(Diag x;Z)):

We continue the chain of inequalities above:

f(�(Diagx+ Z)) � f(x) + Æ��(diagZ)�
�
1

2
� +Kkyk

�
kZk2

� f(x) + yTdiagZ �
�
1

2
� +Kkyk

�
kZk2

= f(x) + hDiag y; Zi �
�
1

2
�+Kkyk

�
kZk2;

so the result follows.

We are now ready to prove again the formula that pervades the whole chapter in

the case of proximal subdi�erentials.
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Theorem 6.10.5. The proximal subdi�erential of any singular value function f Æ�
at a matrix X in Mn;m is given by the formula

@p(f Æ �)(X) = O(n;m)X :Diag @pf(�(X));

where

O(n;m)X = f(Un; Um) 2 O(n;m) : (Un; Um):Diag�(X) = Xg:

Note 6.10.6. It is also worth mentioning that much the same argument proves

the corresponding result for spectral functions of symmetric matrices - a result left

unproven in [52].

Proof. For any vector y in @pf(�(X)), the Diagonal Proximal Subgradients Lemma

(6.10.4) shows

Diag y 2 @p(f Æ �)(Diag �(X));

and now, for any element (Un; Um) in O(n;m)X , from the Proximal Subgradients

Invariance Lemma (6.10.2) we get

(Un; Um):Diag y 2 @p(f Æ �)((Un; Um):Diag�(X)) = @p(f Æ �)(X);

and we are done with showing the inclusion "�". We now show the opposite

inclusion "�". Let Y 2 @p(f Æ �)(X). Because @p(f Æ �)(X) � @̂(f Æ �)(X) �
@(f Æ �)(X), Theorem 6.3.3 shows that XTY = Y TX and Y TX = XTY and then
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by Lemma 6.2.7 we get that

Y = UT

n
(DiagP(�)�(Y ))Um; X = UT

n
(Diag �(X))Um;

for some element (Un; Um) in O(n;m), and some P(�) in P(�)(n). Consequently

(Un; Um) 2 O(n;m)X . Lemma 6.10.2 shows that

DiagP(�)�(Y ) 2 @p(f Æ �)(Diag�(X)):

Finally the Diagonal Proximal Subgradients Lemma (6.10.4) gives us

P(�)�(Y ) 2 @pf(�(X)):

Thus the matrix Y belongs to the set O(n;m)X :Diag @pf(�(X)).



Chapter 7

Lorentz Invariant Functions

In this �nal chapter, we derive all the major results from the previous chapters but

this time for functions that are invariant under linear orthogonal transformations

preserving the Lorentz cone. We call such functions Lorentz invariant. Our moti-

vation for considering such functions originates in [68, Proposition 5.4.3]. Lorentz

invariant functions are the composition of a symmetric function on two variables

and the eigenvalues of the hyperbolic polynomial p(x) = x20� x21 � � � � � x2
n
. There

are clear similarities between Lorentz invariant functions, eigenvalue functions and

singular value functions, which suggest that there is a broader framework (see

Chapter 8 for possible ideas) capturing all these examples.

7.1 Notation

We are going to denote the set of all orthogonal n � n matrices by O(n). Let

the function g(x; t) be de�ned on an open subset of Rn � R, taking values in R.

227
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Let the function f(a; b) be de�ned on an open subset of R2. We will think of all

n-dimensional vectors as column vectors, and the inner product of two (n + 1)-

dimensional vectors, (x; t) and (y; r) will naturally be

h(x; t); (y; r)i = xTy + tr:

Throughout the entire chapter we assume that

g(Ux; t) = g(x; t); for all U 2 O(n); (7.1)

and

f(a; b) = f(b; a): (7.2)

We call a function g with property (7.1) Lorentz invariant because it is invariant

under the linear orthogonal transformations preserving the Lorentz cone f(x; t) 2
R
n � Rjt � kxkg. Functions f with property (7.2) are called symmetric. Clearly

the domain of f must be a symmetric subset of R2. (A subset A of R2 is symmetric

if (a; b) 2 A ) (b; a) 2 A.) We also de�ne the following function

�(x; t) : Rn�R! R2

�(x; t) =
1p
2
(t+ kxk; t� kxk):

The following lemma is easily established.

Lemma 7.1.1. (Lorentz Invariant Functions) The next two properties of a
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function g : Rn�R! R are equivalent:

1. g is Lorentz invariant.

2. g = f Æ � for some symmetric function f : R2! R.

If g = f Æ � we say that f is the symmetric function corresponding to g. It is

easily seen that the correspondence g $ f is one-to-one and in order to extract the

corresponding symmetric function f , given g, we set

f(a; b) = g

�
a� bp

2
; 0; :::; 0;

a+ bp
2

�
: (7.3)

Property (7.1) assures us that f(a; b) is symmetric.

The aim of this chapter is to establish how a variety of properties of the function

f are transfered to the function g and vice versa. Every one of the following

sections deals with one particular property. We conclude this section with another

elementary fact.

Lemma 7.1.2. If f is lower semicontinuous then so is f Æ �.

7.2 Fenchel conjugation

For a function F : Rn ! (�1;+1], the Fenchel conjugate F � : Rn ! [�1;+1]

is the function

F �(y) = sup
x2Rn

fxTy � F (x)g:

It is well known that F � is lower semicontinuous and convex (see [78]). In this

section we prove the following formula.
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Theorem 7.2.1. Let f : R2! (�1;+1] be a symmetric function. Then

(f Æ �)� = f� Æ �: (7.4)

Proof. Let y 6= 0. From the de�nition we have

(f Æ �)�(y; r) = sup
(x;t)2Rn+1

fh(y; r); (x; t)i � (f Æ �)(x; t)g

= sup
(a;b)2R2

sup
(x; t) s.t.

t + kxk =
p
2a

t� kxk =
p
2b

fh(y; r); (x; t)i � f(a; b)g

= sup
(a;b)2R2

��
(y; r);

�
y

kyk
a+ bp

2
;
a� bp

2

��
� f(a; b)

�
= sup

(a;b)2R2

�
kyka+ bp

2
+ r

a� bp
2
� f(a; b)

�
= sup

(a;b)2R2

���
r + kykp

2
;
r � kykp

2

�
; (a; b)

�
� f(a; b)

�
= (f� Æ �)(y; r):

The case when y = 0 is clear.

An alternative proof of this theorem uses Theorem 5.5 and the example in Sec-

tion 7.5 in [6]. One may also deduce the above result from Corollary 2.5.4 and

Example 2.6.5.

7.3 Convexity

The following theorem is the main result of this section.
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Theorem 7.3.1. Let f : R2 ! (�1;+1] be symmetric, convex and lower semi-

continuous, and f Æ � be its corresponding Lorentz function. Then f Æ � is convex

and lower semicontinuous.

Proof. If f � +1 then f Æ � � +1 and the theorem is clear. Suppose f as-

sumes some �nite values. Then since f > �1 we have that f�� = f (see [78,

Theorem 12.2]). Also since f� is symmetric because of [78, Corollary 12..3.1], using

(7.4), we have

f Æ � = f�� Æ � = (f� Æ �)�:

Consequently f Æ� is the conjugate of the function f� Æ�, so it is convex and lower

semicontinuous.

Note 7.3.2. The proof of above theorem can be also deduced from Theorem 3.9 and

the example in Section 7.5 in [6]. An alternative way would be using Theorem 2.3.9

and Example 2.6.5.

7.4 Convex subdi�erentials

Let f : R2 ! (�1;+1]. For every point (a; b) such that f(a; b) < +1 we de�ne

the subdi�erential of f at (a; b),

@f(a; b) = f(a0; b0) 2 R2jf(a; b) + f�(a; b) = h(a; b); (a0; b0)ig:

The set @f(a; b) is a singleton f(a0; b0)g if and only if f is di�erentiable at the point

(a; b) with gradient rf(a; b) = (a0; b0) (see [78, Theorem 25.1]). If f is convex then
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also

@f(a; b) = fvjf(c; d)� f(a; b) � hv; (c; d)� (a; b)i; 8(c; d)g:

The following result gives a formula for the subgradient of the composition f Æ�.

Theorem 7.4.1. Suppose f : R2 ! (�1;+1] is symmetric, convex, and lower

semicontinuous. Then (y; r) 2 @(f Æ�)(x; t) if and only if �(y; r) 2 @f(�(x; t)) and
xTy = kxkkyk.

Proof. Suppose �rst (y; r) 2 @(f Æ �)(x; t). Then using formula (7.4) we get

xTy + rt = h(y; r); (x; t)i

= (f Æ �)(x; t) + (f Æ �)�(y; r)

= (f Æ �)(x; t) + (f� Æ �)(y; r)

= f

�
t+ kxkp

2
;
t� kxkp

2

�
+ f�

�
r + kykp

2
;
r � kykp

2

�
� 1

2

�
(t+ kxk)(r + kyk) + (t� kxk)(r � kyk)�

= rt+ kxkkyk:

So we must have equality above. This means two things: (a) �(y; r) 2 @f(�(x; t))
and (b) xTy = kxkkyk. In the other direction the proof is clear by reversing the

steps above.

The above result is also a particular case of Theorem 2.5.5 applied to Exam-

ple 2.6.5.
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7.5 Di�erentiability

In this section we prove that f is di�erentiable if and only if f Æ � is.

Theorem 7.5.1. Let f be symmetric and de�ned on an open symmetric subset of

R
2. Then f is di�erentiable at the point �(x; t) if and only if f Æ � is di�erentiable

at (x; t). In that case we have the formulae

rx(f Æ �)(x; t) =

8><>:
f
0
1(�(x;t))�f

0
2(�(x;t))p

2kxk
x; if x 6= 0

0; if x = 0;

and

d

dt
(f Æ �)(x; t) = 1p

2
(f 01(�(x; t)) + f 02(�(x; t))):

Proof. Suppose �rst that f is di�erentiable at the point �(x; t). If x 6= 0 the

theorem and the formulae are trivial and follow from the chain rule. So let us

assume now that x = 0. Let h = (h1; h2) 2 Rn�R and

d :=

�
0; :::; 0;

1p
2

�
f 01(t=

p
2; t=

p
2) + f 02(t=

p
2; t=

p
2)
�� 2 Rn�R:

Then

lim
h!0

j(f Æ �)((0; t) + (h1; h2))� (f Æ �)((0; t))� dThj
khk =

lim
h!0

jf(�(h1; t+ h2))� f(�(0; t))� h2(f
0
1(�(0; t)) + f 02(�(0; t)))=

p
2j

khk :
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The fact that f is di�erentiable at �(0; t) = (t=
p
2; t=

p
2) gives us

f(�(h1; t+ h2)) = f(�(0; t)) + f 01(�(0; t))
h2 + kh1kp

2
+

f 02(�(0; t))
h2 � kh1kp

2
+ o(khk):

Using the fact that for a symmetric function f , f 01(�(0; t)) = f 02(�(0; t)) and substi-

tuting above we see that the limit is zero, that is, r(f Æ �)(0; t) = d.

The proof in the other direction is easy using formula (7.3).

7.6 Continuity of the gradient

Theorem 7.6.1. Let f be symmetric and de�ned on an open symmetric subset of

R
2. Then f Æ � is continuously di�erentiable at the point (x; t) if and only if f is

continuously di�erentiable at �(x; t).

Proof. Suppose that f is continuously di�erentiable at �(x; t). The theorem is clear

if x 6= 0. So suppose x = 0. Let f(xn; tn)g be a sequence of points approaching

(0; t). We need only prove that r(f Æ �)(xn; tn) approaches r(f Æ �)(0; t). We

consider two particular cases. The general case easily follows by combining these

two cases.

Case 1. If xn = 0 for all n. Then using the formula in Theorem 7.5.1 we obtain

lim
n!1

r(f Æ �)(0; tn) = lim
n!1

�
0; :::; 0;

1p
2

�
f 01(�(0; tn)) + f 02(�(0; tn))

��
=

�
0; :::; 0;

1p
2

�
f 01(�(0; t)) + f 02(�(0; t))

��
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= r(f Æ �)(0; t);

by the continuity of rf at �(0; t).

Case 2. If xn 6= 0 for all n. Using again the formula in Theorem 7.5.1 for the

derivative with respect to t we obtain

lim
n!1

(f Æ �)0
t
(xn; tn) = lim

n!1

1p
2

�
f 01(�(xn; tn)) + f 02(�(xn; tn))

�
=

1p
2

�
f 01(�(0; t)) + f 02(�(0; t))

�
= (f Æ �)0

t
(0; t):

Now, for the derivative with respect to xi we get

lim
n!1

(f Æ �)0
xi
(xn; tn) = lim

n!1

xi
np

2kxnk
�
f 01(�(xn; tn))� f 02(�(xn; tn))

�
= 0;

because xi
n
=kxnk is bounded, and the continuity of rf at �(0; t) gives us

lim
n!1

(f 01(�(xn; tn))� f 02(�(xn; tn)) = f 01(�(0; t))� f 02(�(0; t)) = 0:

(The last equality follows from the fact that f is symmetric.)

The opposite direction of the theorem is easy.

7.7 The \decomposition" functions

This is a supplementary section in which we de�ne the functions dz and d�
z
and

summarize some of their properties which we will use frequently. We call them
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decomposition functions because they describe how the subgradients of f Æ � are

composed from (or decomposed into) subgradients of f .

De�nition 7.7.1. For every nonzero vector z in Rn we de�ne the map

dz : R
n�R! R2;

dz(y; t) =
1p
2

�
t+

zTy

kzk ; t�
zTy

kzk
�
:

In cases when the direction (y; t) is �xed and clear from the context we will denote

dz(y; t) for short by dz.

De�nition 7.7.2. For every nonzero vector z in Rn we de�ne the map

d�
z
: (Rn n f0g)�R2! Rn�R;

d�
z
(a; b) =

�
z

kzk
a� bp

2
;
a+ bp

2

�

The following lemma gives some properties of the maps dz and d
�
z
that we will

use.

Lemma 7.7.3. Let z and w be nonzero vectors in Rn.

1. The maps dz(�) and d�z(�) are linear and conjugate to each other.

2. For every point (
1; 
2) in R
2

dwd
�
z
(
1; 
2) =

1 + Æ

2
(
1; 
2) +

1 � Æ

2
(
2; 
1);
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where Æ = w
T
z

kwkkzk 2 [�1; 1]. In particular when w = z we have

dzd
�
z
(
1; 
2) = (
1; 
2):

3. For every point (y; r) in Rn�R such that y = az for some a 2 R

d�
z
dz(y; r) = (y; r):

Proof. Let z be a nonzero vector in Rn, (y; r) 2 Rn�R, and (a; b) 2 R2. Then

hdz(y; r); (a; b)i =
�

1p
2

�
r +

zTy

kzk ; r �
zTy

kzk
�
; (a; b)

�
=
a+ bp

2
r +

a� bp
2

zTy

kzk
= h(y; r); d�

z
(a; b)i:

The second and the third part are easy.

Lemma 7.7.4. Let A and B be symmetric subsets of R2. The sets

D(A) = fd�
z
(
1; 
2)j(
1; 
2) 2 A; 0z 6= 0g;

C(A) = f(y; r)jdz(y; r) 2 A; 8z 6= 0g;

satisfy the following properties.

1. If A is convex then

(a) If (x; t) is in D, then (Æx; t) is in D for every Æ 2 [�1; 1].
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(b) D is a convex set.

(c) D = C.

(d) If B is also convex, then cl (D(A) +D(B)) = clD(A+B).

2. For any A we have

(a) convD(A) = D(convA).

(b) D(clA) = clD(A).

Proof. Part 1a. Let (x; t) = d�
z
(
1; 
2) for some (
1; 
2) in A, and z 6= 0. Because

the set A is symmetric, (
2; 
1) is in A. Because A is convex, we get that for every

� 2 [0; 1] the vector (�
1 + (1� �)
2; �
2 + (1� �)
1) is in A. Thus

d�
z

�
�
1 + (1� �)
2; �
2 + (1� �)
1

�
=

�
z

kzk

1 � 
2p

2
(2� � 1);


1 + 
2p
2

�
= (x(2�� 1); t) 2 D;

for all � 2 [0; 1]. We now have to set Æ := 2� � 1 for � 2 [0; 1].

Part 1b. Notice that for any two points (
1; 
2) and (Æ1; Æ2) in A and � 2 [0; 1],

we have (�
1 + (1� �)Æ1; �
2 + (1� �)Æ2) is in A and so for every z 6= 0

�
z

kzk
�(
1 � 
2) + (1� �)(Æ1 � Æ2)p

2
;
�(
1 + 
2) + (1� �)(Æ1 + Æ2)p

2

�
2 D: (7.5)

Take two points, (x1; t1) and (x2; t2) in D, and a number � 2 (0; 1). We want

to show that (�x1 + (1� �)x2; �t1 + (1� �)t2) is also in D. Suppose

(x1; t1) = d�
z1
(
1; 
2); (x2; t2) = d�

z2
(Æ1; Æ2)
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for some (
1; 
2) and (Æ1; Æ2) in A, z1 6= 0 and z2 6= 0. Set

z� := �

1 � 
2p

2

z1

kz1k + (1 � �)
Æ1 � Æ2p

2

z2

kz2k ;

and notice that

kz�k � �
j
1 � 
2jp

2
+ (1� �)

jÆ1 � Æ2jp
2

:

Then

�(x1; t1) + (1 � �)(x2; t2) =

�
z�;

�(
1 + 
2) + (1 � �)(Æ1 + Æ2)p
2

�
:

If z� = 0 then from (7.5) and part 1a with Æ = 0 we see that

�(x1; t1) + (1� �)(x2; t2) 2 D:

Suppose now z� 6= 0. Choose one of the points (
1; 
2), (
2; 
1) in A, and one

of the points (Æ1; Æ2), (Æ2; Æ1) in A so that inclusion (7.5) and part 1a now say that

for all z 6= 0 and Æ 2 (0; 1)

�
z

kzk
�j
1 � 
2j+ (1 � �)jÆ1 � Æ2jp

2
Æ;
�(
1 + 
2) + (1� �)(Æ1 + Æ2)p

2

�
2 D:

Let Æ now be a number in (0; 1) such that

�j
1 � 
2j+ (1 � �)jÆ1 � Æ2jp
2

Æ = kz�k:
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Putting it all together we obtain

�(x1; t1) + (1 � �)(x2; t2) =

�
z�

kz�kkz�k;
�(
1 + 
2) + (1� �)(Æ1 + Æ2)p

2

�
2 D:

This shows that D is a convex set.

Part 1c. Suppose (y; r) 2 C. If y = 0 then clearly (y; r) 2 D. If y 6= 0,

set (
1; 
2) := dy(y; r) 2 A. Then by Lemma 7.7.3 part 3 (y; r) = d�
y
dy(y; r) =

d�
y
(
1; 
2). So C � D.
Suppose now (y; r) 2 D. That is (y; r) = d�

z
(
1; 
2) for some (
1; 
2) in A and

some z 6= 0. Let ẑ be an arbitrary nonzero vector and set Æ := z
T
ẑ

kzkkẑk 2 [�1; 1].
Then by Lemma 7.7.3 part 2 we have

dẑ(y; r) = dẑd
�
z
(
1; 
2) =

1 + Æ

2
(
1; 
2) +

1 � Æ

2
(
2; 
1) 2 A;

because A is symmetric and convex. So D � C.
Part 1d. By part 1b we have that both D(A)+D(B) and D(A+B) are convex

sets. It is clear that the latter set is contained in the former. So

cl (D(A) +D(B)) � clD(A +B):

Then, in order to show that they are equal it suÆces to show that the support

function of the �rst set is not larger than the support function of the second set.

max
z1;z2 6=0

fh(x; t);(d�
z1
(
1; 
2) + d�

z2
(Æ1; Æ2))ij(
1; 
2) 2 A; (Æ1; Æ2) 2 Bg

= maxfh(x; t); (d�
x
(
1; 
2) + d�

x
(Æ1; Æ2))ij(
1; 
2) 2 A; (Æ1; Æ2) 2 Bg
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= maxfh(x; t); d�
x
(
1 + Æ1; 
2 + Æ2)ij(
1; 
2) 2 A; (Æ1; Æ2) 2 Bg

= maxfh(x; t); d�
x
(
1; 
2)ij(
1; 
2) 2 A+Bg:

(Actually the two support functions are equal.)

Part 2a. If (x; t) 2 convD(A), then there exist points (
i1; 

i

2) in A, nonzero

vectors zi 2 Rn, and nonnegative numbers �i, i = 1; :::; k, satisfying
P

k

i=1 �i = 1

such that

(x; t) = �1d
�
z1
(
11 ; 


1
2) + � � �+ �kd

�
zk
(
k1 ; 


k

2 ):

Let z be an arbitrary nonzero vector in Rn. De�ne Æiz :=
z
T

i
z

kzikkzk
2 [�1; 1]. Then

by Lemma 7.7.3 part 1 and part 2 we get

dz(x; t) = �1

1 + Æ1z

2
(
11 ; 


1
2) + �1

1 � Æ1z

2
(
12; 


1
1) + � � �

� � � + �k
1 + Ækz

2
(
k1 ; 


k

2 ) + �k
1 � Ækz

2
(
k2 ; 


k

1 ):

Consequently dz(x; t) 2 convA for every z 6= 0. So (x; t) 2 C(convA) = D(convA),
by part 1c. The opposite inclusion D(convA) � convD(A) is easy.

Part 2b. Let fdxr (
r1; 
r2)g be a sequence in D(A) approaching a vector (z; s).

Since the unit sphere in Rn is compact, we can �nd a subsequence r0 such that

xr0=kxr0k converges to a unit vector x. For this subsequence we have j
r1 � 
r2j !
p
2kzk and 
r1+
r2 !

p
2s. Consequently f(
r1; 
r2)g is bounded so there is a subse-

quence r00 for which f(
r001 ; 

r
00

2 )g ! (
1; 
2) 2 clA. So fdx
r00
(
r

00

1 ; 

r
00

2 )g approaches
fdx(
1; 
2)g which is in D(clA). This shows that for an arbitrary set A we have

the inclusion D(clA) � clD(A). The opposite inclusion is easy.
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7.8 Clarke directional derivative & subdi�eren-

tial - the Lipschitz case

Suppose in this section that the function f is Lipschitz near x, that is, there exists

a scalar K such that the following holds

jf(x00)� f(x0)j � Kkx00 � x0k; for all x00; x0 close to x:

For Lipschitz functions the Clarke directional derivative [15] is de�ned for a direction

v at the point x to be

fÆ(x; v) = lim sup
y!x; �#0

f(y + �v)� f(y)

�
:

The di�erence quotient above, for y close to x and � to 0, is bounded above by

Kjvj, so fÆ(x; v) is well de�ned and �nite.

A property of the Clarke directional derivative that we will need and may be

found in [15, p. 64] is that for every pair (x; v)

fÆ(x; v) = lim sup
y!x

fhrf(y); vijy is s.t. rf(y) existsg:

In other words, there exists a sequence fxng approaching x such that f is di�eren-

tiable at each xn and

hrf(xn); vi ! fÆ(x; v): (7.6)
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The Clarke subdi�erential @cf(x) is de�ned as follows

@cf(x) = f�jhv; �i � fÆ(x; v) for all vg:

The set @cf(x) is compact, nonempty and convex. If f is convex and �nite on a

neighbourhood of x then @cf(x) = @f(x), and if f is continuously di�erentiable

at x then @cf(x) = frf(x)g. In this sense the Clarke generalized gradient uni�es

these two properties.

Now let us return to our symmetric, bivariable function f , which we now require

to be Lipschitz. We are going to �nd a formula expressing the Clarke subdi�erential

of f Æ � in terms of the Clarke subdi�erential of f .

The following lemma is elementary and shows how the Clarke directional deri-

vative of f Æ � changes under Lorentz orthogonal transformations of the argument

and the direction.

Lemma 7.8.1. Let (x; t) be a point in the domain of f Æ �, (y; r) be a direction,

and U be a orthogonal matrix. Then

(f Æ �)Æ((x; t); (y; r)) = (f Æ �)Æ((Ux; t); (Uy; r)):

Proof.

(f Æ �)Æ((x; t); (y; r)) = lim sup
(z;s)!(x;t);�#0

f(�((z; s) + �(y; r)))� f(�(z; s))

�

= lim sup
(z;s)!(x;t);�#0

f(�((Uz; s) + �(Uy; r))) � f(�(Uz; s))

�

= (f Æ �)Æ((Ux; t); (Uy; r)):
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Theorem 7.8.2 (Clarke Directional Derivative). Let (x; t) be a point in the

domain of f Æ �, (y; r) be a direction. Then if x = 0

(f Æ �)Æ((0; t); (y; r)) = maxffÆ(�(0; t); dz(y; r))j0 6= z 2 Rng: (7.7)

Note 7.8.3. For the case when x 6= 0 see Corollary 7.8.6.

Proof. We have that there is a sequence of points f(xn; tn)g approaching (0; t) such
that

(f Æ �)Æ((x; t); (y; r)) = lim
n!1

hr(f Æ �)(xn; tn); (y; r)i:

In order to evaluate r(f Æ �) using Theorem 7.5.1 we need to know whether xn is

zero or not. That is why we consider two subcases and the general situation follows

easily from them.

Subcase 1.a Suppose xn = 0 for all n. Denote

�n := �(0; tn):

Recall that f 01(�n) = f 02(�n). Fix an arbitrary vector 0 6= z 2 Rn. Then we have

(f Æ �)Æ((0; t); (y; r))

= lim
n!1

hr(f Æ �)(xn; tn); (y; r)i
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= lim
n!1

��
0;
f 01(�n) + f 02(�n)p

2

�
; (y; r)

�
= lim

n!1
hrf(�n); �(0; r)i

= lim
n!1

�
rf(�n); �(0; r) +

�
zTyp
2kzk ;�

zTyp
2kzk

��
� fÆ(�(0; t); dz(y; r))):

Subcase 1.b Suppose xn 6= 0 for all n and limn!1 xn=kxnk = z=kzk. Set

�n := �(xn; tn):

Then, we have

(f Æ �)Æ((0; t);(y; r))

= lim
n!1

hr(f Æ �)(xn; tn); (y; r)i

= lim
n!1

��
f 01(�n)� f 02(�n)p

2kxnk
xn;

f 01(�n) + f 02(�n)p
2

�
; (y; r)

�
= lim

n!1

f 01(�n)� f 02(�n)p
2kxnk

xT
n
y +

f 01(�n) + f 02(�n)p
2

r

= lim
n!1

f 01(�n)

�
rp
2
+

xT
n
yp

2kxnk

�
+ f 02(�n)

�
rp
2
� xT

n
yp

2kxnk

�
= lim

n!1

�
rf 0(�n);

�
rp
2
+

zTyp
2kzk;

rp
2
� zTyp

2kzk

��
� fÆ(�(0; t); dz(y; r)):

All this shows that if x = 0 then

(f Æ �)Æ((0; t); (y; r)) � supffÆ(�(0; t); dz(y; r)j0 6= z 2 Rng:
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To show the opposite inequality, �x a nonzero vector z 2 Rn. There is a sequence

of points f(an; bn)g approaching �(0; t) such that

fÆ(�(0; t); dz(y; r)) = lim
n!1

hrf(an; bn); dz(y; r)i:

There is an in�nite subsequence of f(an; bn)g that satis�es one of the three possi-
bilities

1. an0 = bn0 for all n
0.

2. an0 > bn0 for all n
0.

3. an0 < bn0 for all n
0.

For this subsequence we still have

fÆ(�(0; t); dz) = lim
n0!1

hrf(an0 ; bn0); dzi:

So without loss of generality we may assume that f(an; bn)g satis�es one of the

three possibilities and we consider three separate cases.

Subcase 2.a Suppose an = bn for all n. Recall that in this case we have

f 01(an; an) = f 02(an; an). So

fÆ(�(0; t); dz) = lim
n!1

hrf(an; an); dz(y; r)i

= lim
n!1

f 01(an; an) + f 02(an; an)p
2

r

= lim
n!1

hr(f Æ �)(0; an); (y; r)i

� (f Æ �)Æ((0; t); (y; r)):
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Subcase 2.b Suppose an > bn for all n. De�ne the sequence of vectors in R
n:

zn :=

�
an � bn

2
; 0; :::; 0

�
;

(notice that kznk = (an � bn)=2) and let U be an orthogonal matrix such that

lim
n!1

Uzn

kznk =
z

kzk : (7.8)

Then

fÆ(�(0; t); dz(y; r)) = lim
n!1

hrf(an; bn); dzi

= lim
n!1

�
f 01(an; bn)� f 02(an; bn)p

2kzk z; y

�
+
f 01(an; bn) + f 02(an; bn)p

2
r:

= lim
n!1

�
f 01(an; bn)� f 02(an; bn)p

2kznk
zn; U

Ty

�
+
f 01(an; bn) + f 02(an; bn)p

2
r

= lim
n!1

�
r(f Æ �)

�
zn;

an + bn

2

�
; (UTy; r)

�
� (f Æ �)Æ((0; t); (UTy; r))

= (f Æ �)Æ((0; t); (y; r));

where in the last equality we used Lemma 7.8.1.

Subcase 2.c Suppose an < bn for all n. This case is analogous to the previous

one but there are few minor di�erences. De�ne the sequence of vectors in Rn:

zn :=

�
bn � an

2
; 0; :::; 0

�
;

(notice that kznk = (bn�an)=2) and let U be an orthogonal matrix satisfying (7.8).
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(In the fourth equality below we use the fact that f 01(an; bn) = f 02(bn; an).) Then

fÆ(�(0; t);dz(y; r)) = lim
n!1

hrf(an; bn); dz(y; r)i

= lim
n!1

�
f 01(an; bn)� f 02(an; bn)p

2kzk z; y

�
+
f 01(an; bn) + f 02(an; bn)p

2
r:

= lim
n!1

�
f 01(an; bn)� f 02(an; bn)p

2kznk
zn; U

Ty

�
+
f 01(an; bn) + f 02(an; bn)p

2
r

= lim
n!1

�
r(f Æ �)

�
� zn;

an + bn

2

�
; (UTy; r)

�
� (f Æ �)Æ((0; t); (UTy; r))

= (f Æ �)Æ((0; t); (y; r));

where again in the last equality we used Lemma 7.8.1.

We now turn our attention to the problem of characterizing the Clarke subgra-

dient, @c(f Æ �)(x; t). We need a lemma whose proof is straightforward.

Lemma 7.8.4. If x 6= 0 then the mapping �(x; t) is strictly di�erentiable and its

strict derivative, rs�(x; t), is dx. That is

lim
(x0;t0)!(x;t); �#0

�((x0; t0) + �(y; r))� �(x0; t)

�
= hdx; (y; r)i = dx(y; r):

Theorem 7.8.5. The Clarke subgradient at the point (x; t) of any Lorentz invari-

ant function f Æ�, locally Lipschitz around the point (x; t), is given by the formulae

1. if x 6= 0 then

@c(f Æ �)(x; t) = fd�
x
(
1; 
2)j(
1; 
2) 2 @cf(�(x; t))g;
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2. if x = 0 then

@c(f Æ �)(0; t) = fd�
z
(
1; 
2)j(
1; 
2) 2 @cf(�(0; t)); z 6= 0g:

Proof. Case 1 When x 6= 0, then by Lemma 7.8.4, � is strictly di�erentiable at

(x; t) with strict derivative dx. Moreover, dx is a surjective linear map. So we can

apply the chain rule for the Clarke subdi�erential [15, Theorem 2.3.10], which in

our situation holds with equality:

@c(f Æ �)(x; t) = @cf(�(x; t)) Æ dx:

Now, if (v; p) 2 @c(f Æ �)(x; t) and (y; r) 2 Rn � R, then there is a subgradient

(
1; 
2) 2 @cf(�(x; t)) such that

h(v; p); (y; r)i = ((
1; 
2) Æ dx)(y; r) = h(
1; 
2); dx(y; r)i = hd�
x
(
1; 
2); (y; r)i;

by Lemma 7.7.3. So

@c(f Æ �)(x; t) � fd�
x
(
1; 
2)j(
1; 
2) 2 @cf(�(x; t))g;

the other inclusion is now clear.

Case 2 Let us denote �rst

D := fd�
z
(
1; 
2)j(
1; 
2) 2 @cf(�(0; t)); z 6= 0g:
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We are going to prove the second part of the theorem in two steps. First we will

show that @c(f Æ �)(x; t) = convD and next that convD = D.
Two closed convex sets are equal whenever their support functions are the same.

The support function for the set convD is

maxfh(y; r); (z; s)ij(z; s) 2 convDg

= maxfh(y; r); (z; s)ij(z; s) 2 Dg

= max

�
zTy

kzk

1 � 
2p

2
+

1 + 
2p

2
rj(
1; 
2) 2 @cf(�(0; t)); z 6= 0

�
= maxfhdz(y; r); (
1; 
2)ij(
1; 
2) 2 @cf(�(0; t)); z 6= 0g

= maxfmaxfhdz(y; r); (
1; 
2)ij(
1; 
2) 2 @cf(�(0; t))g j z 6= 0g

= maxffÆ(�(0; t); dz(y; r)) j z 6= 0g

= (f Æ �)Æ((0; t); (y; r));

which is the support function of the Clarke subdi�erential at the point (0; t) (see

[15, Proposition 2.1.2]). The last equality above follows from Theorem 7.8.2. So

cl convD = @c(f Æ �)(x; t);

because @c(f Æ �)(x; t) is a closed set [15, Proposition 2.1.2]. The fact that f is

a symmetric function implies that @cf(�(0; t)) is symmetric set (use [15, Theo-

rem 2.3.10]). The fact that convD = D, follows from Lemma 7.7.4 part 1b, and D
is closed by the same lemma, part 2b.

Corollary 7.8.6 (Clarke Directional Derivative, cont.). Let (x; t) be a point
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in the domain of f Æ �, (y; r) be a direction. Then if x 6= 0,

(f Æ �)Æ((x; t); (y; r)) = fÆ(�(x; t); dx(y; r)):

Proof. Use again [15, Proposition 2.1.2] - the fact that (f Æ �)Æ((x; t); (y; r)) is the
support function of @c(f Æ �)(x; t).

7.9 Second order di�erentiability

In this section, let f be twice di�erentiable at the point (a; b). This means that

f is di�erentiable in a neighbourhood of this point and the �rst derivative, rf ,
is di�erentiable again at (a; b). The question that we are going to answer now is

whether g := f Æ� is twice di�erentiable at any point (x; t) such that �(x; t) = (a; b).

Clearly, when x 6= 0 elementary calculus shows that g is twice di�erentiable. It turns

out that this is always the case and we prove the following theorem.

Theorem 7.9.1. f is twice di�erentiable at �(x; t) if and only if g := f Æ� is twice

di�erentiable at (x; t). In that case we have

1. If x 6= 0 then

g00
xixj

(x; t) =
xixj

2kxk2 (f
00
11 � f 0012 � f 0021 + f 0022) +

Æijkxk2 � xixjp
2kxk3 (f 01 � f 02);

g00
txi
(x; t) =

xi

2kxk(f
00
11 � f 0012 + f 0021 � f 0022);

g00
xit
(x; t) =

xi

2kxk(f
00
11 + f 0012 � f 0021 � f 0022);

g00
tt
(x; t) =

1

2
(f 0011 + f 0012 + f 0021 + f 0022);
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where all second derivatives of f are evaluated at �(x; t), and Æij is 1 if i = j

and 0 otherwise,

2. If x = 0, then

g00
xixj

(0; t) =

8><>:
1
2
(f 0011 � f 0012 � f 0021 + f 0022); if i = j;

0 otherwise,

g00
txi
(0; t) = 0;

g00
xit
(0; t) = 0;

g00
tt
(0; t) =

1

2
(f 0011 + f 0012 + f 0021 + f 0022):

Proof. The veri�cation of part (1) is straightforward. Denote

Hii :=
1

2
(1;�1)r2f(�(0; t))

0B@ 1

�1

1CA ; for i = 1; :::; n;

Htt :=
1

2
(1; 1)r2f(�(0; t))

0B@ 1

1

1CA ;

H :=

0BBBBBBB@

H11 : : : 0 0

...
. . .

...
...

0 : : : Hnn 0

0 : : : 0 Htt

1CCCCCCCA
:

Let hT := (h1; h2) := (h11; ::::; h
n

1; h2) be a vector in Rn � R. Using Theorem 7.5.1
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we form the di�erence quotient

lim
h!0

krg(h1; t+ h2)�rg(0; t)�Hhk
khk ;

and are going to show that the limit is 0. We consider each coordinate separately.

Two cases are necessary: one for the coordinates from 1 to n and one for the

(n+ 1)st coordinate.

Case a. Suppose i 2 f1; :::; ng. Then the di�erence quotient becomes

lim
h!0

jg0
i
(h1; t+ h2)� g0

i
(0; t)�Hiih

i

1j
khk :

We use Theorem 7.5.1 to evaluate the derivatives g0
i
. Notice that if h1 = 0 the limit

is obviously 0. So suppose that h1 6= 0. Then the limit becomes

lim
h!0

j h
i

1p
2kh1k

(f 01(�(h1; t+ h2))� f 02(�(h1; t+ h2)))� h
i

1

2
(f 0011 � f 0012 � f 0021 + f 0022)j

khk ;

where the second derivatives of f are evaluated at �(0; t). Because f 01 and f
0
2 exist

in a neighbourhood of �(0; t) and are di�erentiable at �(0; t) we have

f 01(�(h1; t+ h2)) = f 01(�(0; t)) + f 0011(�(0; t))
h2+ kh1kp

2
(7.9)

+ f 0012(�(0; t))
h2� kh1kp

2
+ o(khk)

f 02(�(h1; t+ h2)) = f 02(�(0; t)) + f 0021(�(0; t))
h2+ kh1kp

2
(7.10)

+ f 0022(�(0; t))
h2� kh1kp

2
+ o(khk)
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Because f is symmetric we have that at the point �(0; t) f 01 = f 02, f
00
12 = f 0021, and

f 0011 = f 0022. Substituting the two expansions into the last limit shows that it is indeed

0.

Case b. Suppose i = n+ 1 Then the di�erence quotient becomes

lim
h!0

jg0
t
(h1; t+ h2)� g0

t
(0; t)�Htth2j

khk :

The arguments are analogous to the previous case. We again use Theorem 7.5.1 to

evaluate the derivative g0
t
and then expansions (7.9) and (7.10).

7.10 Continuity of the Hessian

Theorem 7.10.1. f is twice continuously di�erentiable at �(x; t) if and only if

g := f Æ � is at (x; t).

Proof. This is clearly the case when x 6= 0. We are going to show that for any

sequence of vectors (xn; tn) approaching (0; t), r2g(xn; tn) approaches r2g(0; t).

Considering r2g(0; t) as a matrix, we are going to prove the convergence for each

entry. We again consider two cases and the general situation follows easily from

them.

Case I. Suppose xn = 0 for all n. This case is actually quite trivial and follows

directly from the continuity of r2f at the point �(0; t).

Case II. Suppose xn 6= 0 for all n. First, directly from the continuity of r2f



7.10. CONTINUITY OF THE HESSIAN 255

at the point �(0; t) and the formulae given in Theorem 7.9.1 we have

lim
n!1

g00
xit
(xn; tn) = lim

n!1
g00
txi
(xn; tn) = 0

lim
n!1

g00
tt
(xn; tn) = g00

tt
(0; t):

So the interesting part is to prove that limn!1 g00
xixj

(xn; tn) = g00
xixj

(0; t). Denote

�n+� :=
1p
2
(tn + kxnk; tn � kxnk) = �(xn; tn);

�n++ :=
1p
2
(tn + kxnk; tn + kxnk);

�n�+ :=
1p
2
(tn � kxnk; tn + kxnk):

Because f is symmetric f 01(�
n

�+)� f 02(�
n

+�) = 0. First consider the limit (applying

the mean value theorem):

lim
n!1

1p
2kxnk

�
f 01(�(xn; tn))� f 02(�(xn; tn))

�
= lim

n!1

1p
2kxnk

�
f 01(�

n

+�)� f 01(�
n

++) + f 01(�
n

++)� f 01(�
n

�+)
�

= lim
n!1

�
� f 0012

�
tn + kxnkp

2
; �(n)

�
+ f 0011

�
�(n);

tn + kxnkp
2

��
;

where �(n) and �(n) are numbers between
tn�kxnkp

2
and tn+kxnkp

2
. We can now evaluate

the above limit using the continuity of r2f :

lim
n!1

1p
2kxnk

�
f 01(�(xn; tn))� f 02(�(xn; tn))

�
=

1

2

�
f 0011(�(0; t))� f 0012(�(0; t))� f 0021(�(0; t)) + f 0022(�(0; t))

�
:



7.11. POSITIVE DEFINITE HESSIAN 256

Finally, using the formula for g00
xixj

given in Theorem 7.9.1 we can immediately

conclude that

lim
n!1

g00
xixj

(xn; tn)

=
Æij

2

�
f 0011(�(0; t))� f 0012(�(0; t))� f 0021(�(0; t)) + f 0022(�(0; t))

�
= g00

xixj
(0; t):

7.11 Positive de�nite Hessian

We begin with a simple lemma and the main result of this section follows next.

Lemma 7.11.1. If f , de�ned on an open subset of R2, is a strictly convex and

symmetric function and a > b then f 01(a; b) > f 02(a; b).

Theorem 7.11.2. If f is twice di�erentiable then r2f is positive de�nite at the

point �(x; t) if and only if r2(f Æ �) is positive de�nite at (x; t).

Proof. We use the formulae in Theorem 7.9.1 to give a matrix representation of the

Hessian of f Æ �. We de�ne the following 2 � (n+ 1) matrix

X :=
1p
2

0B@ x

kxk � x

kxk

1 1

1CA ;

and the (n+ 1)� (n+ 1) matrix

M :=
1p
2kxk

0B@ In � xxT

kxk2 0

0 0

1CA ;
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where In is the n� n identity matrix.

Case I. When x 6= 0 the Hessian of f Æ � can be written as

r2(f Æ �)(x; t) = Xr2f(�(x; t))XT +Mrf(�(x; t))

0B@ 1

�1

1CA :

For any nonzero vector (y; r) we have

(y; r)
�r2(f Æ �)(x; t)�(y; r)T =

1

2
dx(y; r)

�r2(f Æ �)(x; t)�dx(y; r)T
+

1p
2kxk3

�kyk2kxk2 � (xTy)2
��
f 01(�(x; t))� f 02(�(x; t))

�
:

Now using the Lemma we can see that the above expression is strictly positive.

Case II. In the case when x = 0, then the Hessian of f Æ� is a diagonal matrix

and the fact that it is positive de�nite can be easily seen.

In the other direction the proof is also easy: one has to consider vectors y that

are collinear to x.

7.12 The regular and proximal subdi�erentials

For the de�nitions of the regular and the proximal subgradients refer to Section 6.1

and Section 6.10 respectively.

Let now f be our symmetric function on R2 and g := f Æ �. We are going to

give formulae for @̂g(x; t) in terms of @̂f . The next lemma lists a few properties of

the map �(x; t). By Rn

� we denote the cone of vectors x in Rn satisfying x1 � x2 �
::: � xn.
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Lemma 7.12.1. 1. For any vector w in R2
� the function wT� is convex and any

point (x; t) in Rn�R satis�es d�
x
(w) 2 @(wT�)(x; t).

2. The directional derivative �0((x; t); (y; r)) is given by

�0((x; t); (y; r)) =

8><>: dx(y; r); if x 6= 0

�(y; r); if x = 0:

3. The map � is Lipschitz with global constant 1.

4. Given a point (x; t) in Rn�R, small points (z; s) satisfy

�((x; t) + (z; s)) = �(x; t) + � 0((x; t); (z; s)) +O(k(z; s)k2):

Proof. 1. The convexity is elementary. To check the second half we need to

verify that

wT�(y; r)� wT�(x; t) � hd�
x
(w1; w2); (y � x; r � t)i

which expanded and simpli�ed is equivalent to

w1 �w2p
2

(kyk � kxk) � xT (y � x)

kxk
w1 � w2p

2
:

After cancelation, the last inequality follows from the Cauchy-Schwarz in-

equality.

2. This part is a straightforward veri�cation.
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3. For any points (x; t) and (z; s) we have

k�((x; t) + (z; s))� �(x; t)k

=
1p
2
k(t+ s+ kx+ zk; t+ s� kx+ zk)� (t+ kxk; t� kxk)k

=
1p
2
k(s+ kx+ zk � kxk; s� (kx+ zk � kxk))k

=
p
s2 + (kx+ zk � kxk)2

�
p
s2 + kzk2

= k(z; s)k:

4. Suppose �rst that x 6= 0. Then using part 2 of this lemma and several times

the Cauchy-Schwarz inequality we get

k�((x; t) + (z; s))� �(x; t)� �0((x; t); (z; s))k2

=
1

2





(kx+ zk � kxk � xTz

kxk ;�kx+ zk+ kxk+ xT z

kxk )




2

=

�
kx+ zk � kxk � xTz

kxk

�2

= O(kzk4) = O(k(z; s)k4);

where the next to the last equality holds since rk � k(x) = x

kxk.

The case x = 0 is easy.

Let L be a subset or Rm and �x a point x in Rm. An element d belongs to the

contingent cone to L at x, denoted K(Ljx), if either d = 0 or there is a sequence
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fxrg in L approaching x with (xr � x)=kxr � xk approaching d=kdk. The negative
polar of a subset H or Rm is the set

H� = fy 2 Rmjhx; yi � 0 8x 2 Hg:

We use the following lemmas from [52, Proposition 2.1, Proposition 2.2].

Lemma 7.12.2. Given a function f : Rm ! [�1;+1] and a point x0 in Rm,

any regular subgradient of f at x0 is polar to the contingent cone of the level set

L = fx 2 E : f(x) � f(x0)g at x0; that is

@̂f(x0) � (K(Ljx0))�:

Lemma 7.12.3. If the function f : Rm! [�1;+1] is invariant under a subgroup

G of O(m), then any point x in Rm and transformation g in G satisfy @̂f(gx) =

g@̂f(x). Corresponding results hold for the proximal, approximate, horizon and

Clarke subgradients (see next sections).

We de�ne the action of the orthogonal group O(n) on Rn�R by

U:(x; t) = (Ux; t); for every U 2 O(n):

For a �xed point (x; t) in Rn�R we de�ne the orbit

O(n):(x; t) = f(Ux; t)jU 2 O(n)g:

If x 6= 0, this orbit is just a n � 1 dimensional sphere with radius kxk at level t in
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R
n�R. So it is a n� 1 dimensional manifold and one can easily calculate that its

tangent and normal spaces at the point (x; t) are

T(x;t)(O(n):(x; t)) = f(y; 0)jyTx = 0g

N(x;t)(O(n):(x; t)) = f(ax; b)j(a; b) 2 R2g:

If x = 0 then

T(0;t)(O(n):(0; t)) = f0g

N(0;t)(O(n):(0; t)) = R
n+1:

Now, using these observations and Lemma 7.12.2 we can say some more about

@̂(f Æ �)(x; t) in the case when x 6= 0.

Lemma 7.12.4. If x 6= 0 and (y; r) 2 @̂(f Æ �)(x; t) then (y; r) = (ax; r) for some

a 2 R.

Proof.

(y; r) 2 @̂(f Æ �)(x; t))

(y; r) 2 (K(f(z; s)j(f Æ �)(z; s) � (f Æ �)(x; t)gj(x; t)))�

� (K(O(n):(x; t)j(x; t)))�

= N(x;t)(O(n):(x; t)):

The following is the main theorem of this section.
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Theorem 7.12.5. The regular subdi�erential of any Lorentz invariant function

f Æ � at the point (x; t) is given by the formulae:

1. If x 6= 0 then

@̂(f Æ �)(x; t) = fd�
x
(
1; 
2)j(
1; 
2) 2 @̂f(�(x; t))g;

2. If x = 0 then

@̂(f Æ �)(0; t) = fd�
z
(
1; 
2)j(
1; 
2) 2 @̂f(�(0; t)); z 6= 0g:

Similar formulae hold as well for the proximal subdi�erential.

Proof. Case 1. This case follows immediately from the chain rule [79, Exer-

cise 10.7].

Case 2 Let x = 0. Suppose (y; r) 2 @̂(f Æ �)(0; t), let z := (z1; z2) 2 R2 be

small, and let w be an arbitrary nonzero vector. Then

f(�(0; t) + (z1; z2)) = (f Æ �)
�
(0; t) +

�
w

kwk
z1 � z2p

2
;
z1 + z2p

2

��
� (f Æ �)(0; t) + wTy

kwk
z1 � z2p

2
+ r

z1 + z2p
2

+ o(kzk)

= f(�(0; t)) + hdw(y; r); (z1; z2)i+ o(kzk):

Consequently dw(y; r) 2 @̂f(�(0; t)) for all w 6= 0.

In the opposite direction suppose that dw(y; r) 2 @̂f(�(0; t)) for all w 6= 0. If
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y = 0 then for any point (z; s) close to 0 we have

(f Æ �)((0; t)+(z; s))

= f(�(0; t) + (�((0; t) + (z; s))� �(0; t)))

� f(�(0; t)) + hdw(0; r); (�((0; t) + (z; s))� �(0; t))i+ o(k(z; s)k)

= f(�(0; t)) + rs+ o(k(z; s)k)

= (f Æ �)(0; t) + h(0; r); (z; s)i + o(k(z; s)k):

so (0; r) 2 @̂(f Æ �)(0; t).
If y 6= 0 then for w = y we have dy(y; r) 2 @̂f(�(0; t)). Let (z; s) be a point

close to 0. Then

(f Æ �)((0; t)+(z; s))

= f(�(0; t) + (�((0; t) + (z; s))� �(0; t)))

� f(�(0; t)) + hdy(y; r); (�((0; t) + (z; s))� �(0; t))i+ o(k(z; s)k)

= f(�(0; t)) + kykkzk+ rs+ o(k(z; s)k)

� (f Æ �)(0; t) + h(y; r); (z; s)i+ o(k(z; s)k):

Consequently (y; r) 2 @̂(f Æ �)(0; t). So we showed that

@̂(f Æ �)(0; t) = f(y; r)jdz(y; r) 2 @̂f(�(0; t));8z 6= 0g:

The stated version follows from Lemma 7.7.4 part 1c.

The proof for the proximal subdi�erential is essentially identical.
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7.13 The approximate and horizon subdi�eren-

tial

For the de�nitions of the approximate and the horizon subgradients refer to Sec-

tion 6.1.

Theorem 7.13.1. The approximate subdi�erential of any Lorentz invariant func-

tion f Æ � at the point (x; t) is given by the formulae:

1. If x 6= 0 then

@(f Æ �)(x; t) = fd�
x
(a; b)j(a; b) 2 @f(�(x; t))g;

2. If x = 0 then

@(f Æ �)(0; t) = fd�
z
(a; b)j(a; b) 2 @f(�(0; t)); z 6= 0g:

Similar formulae hold for the horizon subgradient.

Proof. Part I. x 6= 0. This case follows immediately from the chain rule [79,

Exercise 10.7].

Part II. x = 0. Suppose (y; r) 2 @(fÆ�)(0; t). By de�nition, there is a sequence
of points (xq; tq) approaching (0; t) with (f Æ�)(xq; tq) approaching (f Æ�)(0; t), and
a sequence of regular subgradients (yq; rq) approaching (y; r) such that (yq; rq) 2
@̂(f Æ �)(xq; tq).
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Case II.1.a. Suppose xq = 0 for all q. Then Theorem 7.12.5 says that (yq; rq) =

d�
zq
(aq; aq) such that (aq; aq) 2 @̂f(�(0; tq)), for some zq 6= 0. Because (yq; rq)

approaches (y; r) we get that y = 0 and aq ! a := r=
p
2. So (0; r) = (0;

p
2a) =

d�
z
(a; a) for any z 6= 0 and (a; a) 2 @f(�(0; t)).
Case II.1.b. Suppose xq 6= 0 for all q. Then Theorem 7.12.5 says that (yq; rq) =

d�
xq
(aq; bq) such that (aq; bq) 2 @̂f(�(xq; tq)). Let us choose a subsequence q0 for

which xq0=kxq0k converges to a unit vector z. Then we have that jaq0�bq0j approaches
p
2kyk and aq0 + bq0 approaches

p
2r, that is, (aq0; bq0) is bounded sequence so if

necessary we may choose a convergent subsequence q00. Then (aq00; bq00) ! (a; b) 2
@f(�(0; t)) and (y; r) = d�

z
(a; b).

Case II.1.c. Suppose the sequence xq has in�nitely many elements that are

equal to 0 and in�nitely many elements that are not equal to 0. Let fxqg =

fxq0g [ fxq00g, where xq0 6= 0 and xq00 = 0. We now choose any of the subsequences

q0 or q00 and apply the corresponding subcase above.

Suppose �nally that (y; r) = d�
z
(a; b) for some (a; b) 2 @f(�(0; t)) and some

z 6= 0. By the de�nition of approximate subgradients there is a sequence (cq; dq)

approaching �(0; t), with f(cq; dq) approaching f(�(0; t)), and a sequence of regular

subgradients (aq; bq) approaching (a; b) and such that (aq; bq) 2 @̂f(cq; dq). We have

three possible cases.

Case II.2.a. Suppose �rst that there is an in�nite subsequence q0 such that

cq0 > dq0 for all q
0. Then d�

z
(cq0; dq0) approaches d

�
z
(�(0; t)) = (0; t), with f(cq0 ; dq0) =

(f Æ �)(d�
z
(cq0; dq0)) approaching f(�(0; t)) = (f Æ �)(0; t) and regular subgradients

(aq0; bq0) 2 @̂f(�(d�
z
(cq0; dq0))). If we set zq0 :=

z

kzk
c
q0�dq0p

2
, then Theorem 7.12.5 says
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that d�
z
q0
(aq0; bq0) 2 @̂(f Æ �)(d�

z
(cq0 ; dq0)). Notice that zq0=kzq0k converges to z=kzk,

so d�
z
q0
(aq0; bq0) approaches d

�
z
(a; b) = (y; r), so (y; r) is in @(f Æ �)(0; t).

Case II.2.b. There is an in�nite subsequence q0 such that cq0 < dq0 for all q
0. Let

us repeat, in a slightly di�erent way, what we know. We have that (y; r) = d��z(b; a)

where (b; a) 2 @f(�(0; t)) (see Lemma 7.12.3) and z 6= 0. We are given also that

the sequence (dq0 ; cq0) approaches �(0; t), with f(dq0 ; cq0) approaching f(�(0; t)),

and the sequence of regular subgradients (bq0; aq0) approaches (b; a) and is such that

(bq0; aq0) 2 @̂f(dq0 ; cq0) (by Lemma 7.12.3 again). It is clear now that this case is like

the previous one.

Case II.2.c. Suppose �nally that there is an in�nite subsequence q0 such

that cq0 = dq0 for all q0. Then d�
z
(cq0 ; dq0) approaches d�

z
(�(0; t)) = (0; t), with

f(cq0 ; dq0) = (f Æ �)(d�
z
(cq0; dq0)) approaching f(�(0; t)) = (f Æ �)(0; t) and regular

subgradients (aq0; bq0) 2 @̂f(�(d�
z
(cq0; dq0))). But then by Theorem 7.12.5 we have

that d�
z
(aq0; bq0) 2 @̂(f Æ�)(0;

p
2dq0) = @̂(f Æ�)(d�

z
(cq0; dq0)) and approaches d�

z
(a; b),

and we are done.

The proof of the formulae for the horizon subgradient is analogous.

7.14 Clarke subgradients - the lower semicontin-

uous case

For the de�nition and notation of the Clarke subgradient for a lower semicontinuous

function refer to Section 6.7. Recall that if h is lower semicontinuous around �x then
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we have the formula (see [79][Theorem 8.9]):

Nepih(�x; h(�x)) = f�(v;�1) j v 2 @h(�x); � > 0g [ f(v; 0) j v 2 @1h(�x)g:

We need Lemma 6.7.1 and we restate it below for convenience.

Lemma 7.14.1. If h is lower semicontinuous around �x we have the representation

@ch(�x) = cl (conv @h(�x) + conv @1h(�x)):

In particular when the cone @1h(�x) is pointed we have simpler

@ch(�x) = conv@h(�x) + conv @1h(�x):

Clearly f is lower semicontinuous if and only if f Æ� is such. As may be expected

we have the following theorem.

Theorem 7.14.2. The Clarke subdi�erential of any lower semicontinuous, Lorentz

invariant function f Æ � at the point (x; t) is given by the formulae:

1. If x 6= 0 then

@c(f Æ �)(x; t) = fd�
x
(a; b)j(a; b) 2 @cf(�(x; t))g;

2. If x = 0 then

@c(f Æ �)(0; t) = fd�
z
(a; b)j(a; b) 2 @cf(�(0; t)); z 6= 0g:
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Proof. Suppose �rst that x = 0. Let A := @f(�(x; t)) and B := @1f(�(x; t)).

Using Lemma 7.7.4 and Lemma 7.14.1 we get

@c(f Æ �)(x; t) = cl (conv @(f Æ �)(x; t) + conv @1(f Æ �)(x; t))

= cl (convD(A) + convD(B))

= cl (D(convA) +D(convB))

= clD(convA+ convB)

= D(cl (convA+ convB))

= D(@cf(�(x; t)):

The case x 6= 0 is analogous.

We end the chapter with a conjecture analogous to the one made by L. Tun�cel,

[55].

Conjecture 7.14.1. If f : R2! �R is symmetric and �-self-concordant barrier, is

the same true for f Æ �?

An example supporting the conjecture is:

Example 7.14.3. The function

f(a; b) = � ln a� ln b

is a 2-self-concordant barrier on R2, and so is

(f Æ �)(x; t) = � ln(t2 � kxk2) + ln 2
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on Rn+1. See [68, Proposition 5.4.3].



Chapter 8

Future Research

The following is a list of ideas, written to serve mainly as a stimulus for future

research. The order of the items is somewhat indicative of the degree of interest we

have in these questions. We were told, during the time of writing the corrections

of this work, that A. Nemirovskii, already answered positively one of the questions

posed in item (2) below, about the self-concordancy of f Æ �.

1. How do we compute r3(f Æ �)?

2. Can we use the result from (1) to prove or disprove L. Tun�cel's conjecture, [55].

A question even more general is: Is a symmetric self-concordant barrier of

the roots �(x) of a hyperbolic polynomial, self-concordant for any hyperbolic

polynomial? In particular, if f(x; y) is a symmetric, self-concordant barrier on

R
2 is the same true for f Æ�, where � is the map de�ned in Chapter 7? Finally,

an even more restricted question is: If f is a symmetric, self-concordant

barrier on R, is the same true for f(kxk) on Rn?

270
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3. Knowing the results fromChapter 4 and (1), can one see a pattern forrk(fÆ�)
and prove the conjecture posed at the end of Chapter 4? (Maybe some ideas

from [17] will be helpful.)

4. Will the result from (1) be useful to prove the questions about Bregman

distance (a kind of generalized metric used in proximal algorithms) formulated

by Bauschke and Borwein in [5]?

5. Given a set valued mapping S : Rn ) R
m which is symmetric, what can

we say about relating graphical derivatives DS(�(X); �y) and D(S Æ �)(X; �y).
How about relating the coderivatives D�S(�(X); �y) and D�(S Æ�)(X; �y)? (See

[79, p.324] for the de�nitions.)

6. Try to extend the group invariance/Eaton triple setting [50], (using Niezgoda's

papers [69], [70], [71], showing the relevant subgroup is always a re
ection

group) to the nonconvex case.

7. Investigate further the properties of the class of self-concordant barrier func-

tions de�ned in Chapter 3 to see if they can be used in the more practical

long-step interior point methods. (Follow the development in [25], [27].)

8. Theorem 3.3.2 says that for every hyperbolic polynomial p(x) of degree m,

�m log(p(x) � a) is m2-self-concordant barrier. A natural question is, what

is the optimal, that is, the minimal parameter � for which this function is a

self-concordant barrier. Clearly m � � � m2.

9. Compose the universal barrier function, [68], on a symmetric convex set C,
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with the eigenvalue map �, and compare its properties with those of the

universal barrier function on ��1(C), [26].

10. Think about Lidskii's conjecture for the roots of hyperbolic polynomials, as

formulated in Open Problem 2.3.6. (Maybe the techniques in [41], [43], and

[44] will be useful.)

11. What can one say about the C2 properties of f Æ � when � is the eigenvalue

map of a hyperbolic polynomial (f symmetric)?

12. See if the results in Chapter 6 and Chapter 7 can be generalized in the Jordan

algebra framework or within the framework developed by Raphael A. Hauser

in [29] and [30].

13. Attempt the three questions at the end of [54].

14. Finally, there is always Conjecture 2.6.1 to keep one busy.



Index of Notation

� ;: the empty set

� R: the real numbers

� �R: the extended real numbers

� N: the natural numbers

� Rn: the n-dimensional real vector

space

� Rn

#: the cone of all vectors x 2 Rn

satisfying x1 � x2 � ::: � xn

� Rn

+: the cone of vectors with posi-

tive entries

� Rn

++: cone of vectors with strictly

positive entries

� Rn: = Rn

# \Rn

+

� XT : the transpose of matrix X

� X�: the conjugate of matrix X

� Xy: Moore-Penrose generalized in-

verse of matrix X

� X i;j : the (i; j)-entry of matrix X

� X � 0: matrix X is positive semi-

de�nite

� X � 0: matrix X is positive de�-

nite

� A(n): n � n real skew-symmetric

matrices

� Hn: n� n Hermitian matrices

� I, In: n� n identity matrix

� Sn: n� n real symmetric matrices

� Sn

+: n � n real symmetric positive

semide�nite matrices

� Sn

++: n�n real symmetric positive

de�nite matrices

273
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� Mn: square n� n real matrices

� Mn;m: rectangular n �m real ma-

trices

� O(n): n�n real orthogonal matri-

ces

� O(n;m): Cartesian productO(n)�
O(m)

� P (n): n � n permutation matrices

� P(�)(n): n� n signed permutation

matrices

� �(X): the vector of eigenvalues of

X 2 Sn ordered in nonincreasing

order

� �(X): the vector of singular val-

ues of X 2Mn;m ordered in nonin-

creasing order

� O(n;m):X = fUT

n
XUmj(Un; Um)2

O(n;m)g orbit of X 2Mn;m under

the action of the group O(n;m)

� O(n;m)X = f(Un; Um) 2 O(n;m)j
UT

n
XUm = Xg stabilizer of X 2

Mn;m in the group O(n;m).

� e1; :::; en: the standard basis of Rn

� e: the all 1's vector

� jxj: absolute value of x 2 R

� jxj = (jx1j; :::; jxnj): vector x 2 Rn

with its entries replaced by abso-

lute values

� jXj = (jxijj): matrix X 2 Mm;n

with its entries replaced by abso-

lute values

� �x: the vector with the same entries

as x ordered in decreasing order

� x#: the same as �x

� x[i]: the i-th coordinate of vector �x

� x̂: the vector in Rn with the same

entries as jxj ordered in nonincreas-
ing order

� x2 = (x21; :::; x
2
n
): x 2 Rn
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� x � y = (x1y1; :::; xnyn): x; y 2 Rn

� �r

i=1x
i: direct sum of vectors xi

� kxk: Euclidean norm for x 2 Rn

� hx; yi: the canonical inner product,
x; y 2 Rn

� x � y: vector y majorizes x, that

is,
P

k

i=1 �xi �
P

k

i=1 �yi, for k = 1; :::;

n� 1, and
P

n

i=1 �xi =
P

n

i=1 �yi

� x �w y: vector y weakly majorizes

x, that is,
P

k

i=1 �xi �
P

k

i=1 �yi, for

k = 1; :::; n

� hX;Y i = trXTY : canonical inner

product, X;Y 2Mn;m

� X Æ Y = (xijyij)
n

i;j=1: Hermitian

product of matrices

� C1: continuously di�erentiable

� Ck: k-times continuously di�eren-

tiable

� C�: negative polar cone of set C

� C+: positive polar cone of set C

� �C := f�c : c 2 Cg

� C#: the same as �C

� C n D = fx 2 Cjx 62 Dg: relative
complement

� d(C;D) = inffkc� dk : c 2 C; d 2
Dg: the distance between sets C

and D

� clC: closure of set C

� intC: interior of set C

� bdC: the boundary of the set C

� convC: convex hull of set C

� spanC: the linear span of the vec-

tors in C

� Diagx: the matrix with vector x

on the main diagonal and zeros ev-

erywhere else

� diagX: the vector formed by the

main diagonal entries of matrix X

in Mm;n
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� dom f : domain of function f

� epi f = f(x; �)j� � f(x)g: epi-

graph of function f

� Graph f = f(x; y)jy 2 f(x)g: the

graph of (multi) function f

� rankX: rank of matrix X

� sign (x): the sign of the number x

� supp y = fi : yi 6= 0g: support of

vector y

� trX: trace of matrix X 2Mn

� C1: horizon cone

� d�: di�erential of map �

� Æ��: the support function of set �

� f Æ g: composition of functions f

and g

� f�: Fenchel conjugate of f

� f��: Fenchel biconjugate of func-

tion f

� rf(x): gradient of function f at

point x

� r2f(x): Hessian of function f at

point x

� rkf(x): k-th derivative of f

� f 0
i
(x): the i-th partial derivative of

f at x

� f 0(x; y): directional derivative of f

at x in the direction of y

� f 00
ij
: the (i; j)-th second partial de-

rivative

� @f(x): the (approximate) subdif-

ferential at point x

� @̂f(x): the regular subdi�erential

at point x

� @1f(x): the horizon subdi�eren-

tial at point x

� �@f(x): the Clarke subdi�erential

at the point x for a lower semicon-

tinuous function f
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� @cf(x): the Clarke subdi�erential

at point x for a locally Lipschitz

function f

� @pf(x): the proximal subdi�eren-

tial at point x

� TC(x): tangent cone to set C at

point x

� NC(x): normal cone to set C at

point x

� N̂C(x): regular normal cone to set

C at point x
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