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Abstract

We present results on smooth and nonsmooth variational properties of symmet-
ric functions of the eigenvalues of a real symmetric matrix argument, as well as
absolutely symmetric functions of the singular values of a real rectangular matrix.
Such results underpin the theory of optimization problems involving such functions.
We answer the question of when a symmetric function of the eigenvalues allows a
quadratic expansion around a matrix, and then the stronger question of when it is
twice differentiable. We develop simple formulae for the most important nonsmooth
subdifferentials of functions depending on the singular values of a real rectangular
matrix argument and give several examples. The analysis of the above two classes of
functions may be generalized in various larger abstract frameworks. In particular,
we investigate how functions depending on the eigenvalues or the singular values of
a matrix argument may be viewed as the composition of symmetric functions with
the roots of hyperbolic polynomials. We extend the relationship between hyperbolic
polynomials and self-concordant barriers (an extremely important class of functions
in contemporary interior point methods for convex optimization) by exhibiting a

new class of self-concordant barriers obtainable from hyperbolic polynomials.
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Chapter 1

Introduction

In this work we focus on nonsmooth analysis of the singular values of a general linear
transformation between finite dimensional linear spaces, differentiability properties
of the eigenvalues of a finite dimensional real symmetric linear operator and related
matters. More precisely we will deal with spectral and singular value functions, that
is, symmetric functions of the eigenvalues and absolutely symmetric functions of
the singular values. (See Definition 6.3.2 and [52, Definition 4.2 |.) Even though the
eigenvalues and the singular values are invariants of two seemingly different classes
of matrices, symmetric and rectangular, there are some connections between the
two sets of numbers. For example if X is an n X m rectangular matrix (say n < m)
the singular values of X together with their negatives and a few additional zeros

are precisely the eigenvalues of the larger symmetric matrix

R(X) = C (1.1)
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Also the square roots of the eigenvalues of X X7 are precisely the singular values of
X, so in the case when X is a square symmetric matrix the singular values are just
the absolute values of the eigenvalues. Despite these connections some results about
the nonsmooth behaviour of singular values are not obvious consequences of the
corresponding results for eigenvalues, as will be explained later in the introduction.

The spectrum of a general symmetric matrix can behave in extremely compli-
cated ways. Generally when the entries of the matrix depend on free parameters,
the difficulties increase with the number of parameters. The perturbation theory
of the spectrum of a symmetric matrix depending on one parameter is laid out
in detail in the now classical book by T. Kato [41]. In contrast we consider the
eigenvalues of a matrix X while X varies freely over the Euclidean space of n x n
real symmetric matrices S”, and respectively the singular values of a free n x m
real matrix from the Euclidean space M, ,,,. We denote the eigenvalues of X € 5"
(counting multiplicities) by A1 (X) > Aa(X) > ... > A, (X), and the singular values
of X € My (n <m) by 01(X) > 03(X) > ... > 0,(X). It is well known that at
matrices X that have repeated eigenvalues, say A;(X) = A\y(X), these eigenvalues
are nondifferentiable with respect to X. That is, in order for A; to be differentiable
at X we must have A\,_1(X) > XN (X) > Ay1(X). This realization brings us to
the first important question that we must clarify: is there a better way of defining
the n eigenvalue functions (maybe not by ordering them decreasingly) so that we
do not loose smoothness? This question is emphasized by the following example.

Consider the matrix
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depending on one parameter z. At every x its set of eigenvalues is given by
{M(T(2)), A2(T(x))} = {|z|, —|x|} where the functions Ay and A, are clearly non-
smooth at 0 (where we have repeated eigenvalues). On the other hand at every
point x the set of the eigenvalues is also given by {u (@), p2(x)}, where py(x) = 2,
p2(x) = —a for every x, and now these functions are smooth. This question has
been completely answered by Rellich in [77] and the answer depends heavily on the

degrees of freedom.

Theorem 1.0.1 (Rellich, 1953). Assume T(x) is n X n symmetric and contin-
wously differentiable in an interval I C R of x. Then there exist n continuously

differentiable functions pn(x) on I that represent the eigenvalues (counting multi-

plicities) of T'(x).

More surprisingly, the above result is optimal in the sense that even if T'(x) is
C™ in x the w,(z) need not be C?, see [93]. But in a final twist if T'(x) symmetric
and analytic on an interval, then the u,(x) may also be chosen to be analytic on
this interval. An equivalent of Rellich’s theorem, when the matrix 7' depends on

two or more parameters, is impossible. Consider for example the matrix

where ¥ € R? and assume that there is a neighbourhood U in R? around 0 such
that for every point « € U the set of eigenvalues of T'(x) is given by the smooth
(at least differentiable) functions {uy(z),u2(z)}. Clearly for every z in R? the

eigenvalues of T'(x) are {||z||,—||z]|}. Fix a nonzero point & € U and without loss
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of generality suppose that p1(z) = ||#|| and pa(z) = —||2||. Now, take an arbitrary
second nonzero point & € U and connect it to  with smooth curve 4 avoiding the
origin. Moving from # towards & along v both p; () and gz(x) will vary smoothly
and neither will become 0. So their signs will stay the same, that is p;(2) > 0 and
p2(2) < 0, and consequently pq(2) = ||Z|| and p2(&) = —||#||. Remembering that
T was arbitrary we see that the last two equalities must hold for every z in U, but
this is a contradiction because these functions are not smooth at the origin.
These difficulties suggest why in our discussion of the differentiability properties
of eigenvalues and singular values we are going to use the broad theory of nonsmooth
analysis. The fact that we are considering symmetric functions of the spectrum is

not a restriction because A\; = ¢ o A\, where

o) :R" =R

T ith largest element of {1, ...,2,},

h

and we have a similar expression for the it singular value (see Section 6.8). So non-
smooth results for such functions immediately have equivalents for the individual
eigen- or singular values.

Why would somebody interested in optimization be interested in functions of
the spectrum of linear operators? Some of the first concrete applications of the per-
turbation theory of eigenvalues were in quantum mechanics [80], [42] where results

like those obtained in Section 4.4 were well known. The following two inequali-

ties are essentially due to John von Neumann [90], who also made fundamental
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contributions to quantum theory:

tr X7V < M X)PAN(Y), for any X, Y € S,

tr X7V < o(X) o(Y), for any X,Y € M, ,.

(Using the relationship between the eigenvalues and singular values described in
the beginning one can see that each inequality quickly follows from the other.)
For contemporary proofs of these inequalities, using an optimization approach, as
well as necessary and sufficient conditions for equality see [52, Theorem 3.5] and
Theorem 6.2.9.

More recently, spectrally defined functions have started coming up in various
areas of applied variational mathematics: optimality criteria in experimental design
theory [75], [83], barrier functions in matrix optimization [67], [48], matrix updates
in quasi-Newton methods [22], [94], semidefinite programming [11], potential energy
densities for isotopic elastic materials [16], etc. For a comprehensive account of the
role of eigenvalues and spectral functions in modern optimization the reader may
refer to [55]. The following are just a few examples of spectral functions with their
corresponding symmetric functions that researchers in the above areas encounter.

We start with an important function from convex analysis, [78, pp. 68,148-149].

X € 5" F(X) =log(tre*),

r€R"— f(z) =log(e™ +---+€™).

Next is the largest eigenvalue function, having the first order statistic (see [33] for
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an explanation of the name) as its corresponding symmetric function:

X € 8" F(X) = M(X),

r €R"— f(x) = max{xy,..., 2.}

The following spectral function arises in the theory of optimal experimental design,

[75]:

tr X~!. if X is positive definite
XeS"— F(X)=

+00, otherwise,

xL_I_...—I_xL7 if$1>07...7xn>0
reR"— flz) = ' "

+00, otherwise.

The following spectral function is fundamental to the development in [68]: it is
the standard self-concordant barrier on the convex cone of positive semidefinite
matrices, and its corresponding symmetric function is the standard self-concordant

barrier on the positive orthant of R™:

X eS"— F(X)=—logdet(X),

re€R"— f(z) =— Zlog(:z;,»).

The square of the Frobenius (Euclidean) norm of a symmetric matrix with corre-

sponding symmetric function - the square of the Euclidean norm in R™ is an obvious
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example:

X e = F(X) = | XI5,

xER”Hf(:z;):xf—l-'--x

n*

The last example is update formulae for Quasi-Newton algorithms [72, p. 227]:

tr(X) if X is positive definite
X € 5™ F(X) _ ndet(X)
+00, otherwise,
n%lil x;,, i z; >0 for all :
r€R"— flz) = =1
+00, otherwise.

A big part of our work deals with the differentiability properties of functions F

on the real vector space of symmetric matrices that are orthogonally invariant:

F(UTAU) = F(A), for all A symmetric and U orthogonal.

One can easily see ([49, Proposition 4.1]) that every orthogonally invariant function
is the composition of a symmetric function on R™ and the eigenvalues of the matrix

argument:

F(A) = (f o A)(A),

where AM(A) = (M(A), ..., \u(A)). As we mentioned above we call such functions
F spectral. The spectral functions F' are in one-to-one correspondence with the

symmetric functions f. A lot of research in recent years shows that properties of
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f are inherited by F' and vice versa. The list is long. Let F' and f be a pair

of a spectral function and its corresponding symmetric function, and let C' be a

symmetric set in R™. Then, for example:

10

. F is lower semicontinuous (l.s.c.) at A if and only if f is at A(A), [48].

F is lis.c. and convex if and only if f is, [18], [48].

The symmetric function corresponding to the Fenchel conjugate of F' is the
Fenchel conjugate of f, [82], [48]. (A similar statement holds for the recession
function of F, [82].)

. F is pointed, has good asymptotic behaviour or is a barrier function on the

set A™H(C) if and only if f is on C, [82].
F is Lipschitz around A if and only if f is such around A(A4), [49]
F is (continuously) differentiable at A if and only if f is at A(A), [49].

F is strictly differentiable at A if and only if f is at A(A), [49], [52]. (But this

correspondence doesn’t carry over for the Gateaux derivative.)

If fis Ls.c. and convex then F' is twice epi-differentiable at A relatively to €2
if and only if f is twice epi-differentiable at A(A) relative to A(€2), [86], where

0 is an arbitrary epi-gradient.

F is a polynomial of the entries of A if and only if f is a polynomial. This is

a consequence of the Chevalley Restriction Theorem, [92, p. 143].

FeC®at As felC™at A(A4), [17].



CHAPTER 1. INTRODUCTION 9

11. F is analytic at A if and only if f is at A(A), [88].

On the other hand a variety of smooth and nonsmooth objects of F' can be expressed
in terms of the corresponding objects of f. For example, a description of the convex
subdifferential of F' is given in [48]; the Clarke subdifferential is given in [49],[52];
the regular, approximate, and horizon subdifferentials are given in [52]; the second
order epi-derivative of a convex F' is given in [86].

The results we present in Chapter 4 and Chapter 5 stay in some sense (math-
ematically) between the results in points 6 and 10 from the above list. Indeed, in
Chapter 4 we show that F'is twice differentiable at A if and only if f is twice differ-
entiable at A(A), and then we show even more, that the Hessian of F' is continuous
at A if and only if the Hessian of f is continuous at A(A), that is, F € C* & f € C*
We also give a concise and easy-to-use formula for the Hessian (see Theorem 4.2.2
and Theorem 4.2.3), while the results in [88] are rather implicit.

Second order differentiability is important for optimization because of many
reasons. A few of its applications are Newton’s method, second order necessary
optimality conditions, second order sufficient optimality conditions, and modern
interior point methods.

Several authors have recently been concerned with second order spectral anal-
ysis. For example, A. Seeger, in a related work, expressed his doubts that the
C%-property of f is inherited by F, (see the end of Section 11 in [82]). Also,
H. Bauschke and J. Borwein, in [5], pose a conjecture about the joint convexity of
the Bregman distance associated with a spectral function, and in their opinion the

C%-property of the spectral function and the form of its Hessian will play a crucial
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role for solving it. The results in Chapter 4 are a necessary step towards answering
another conjecture posed by L. Tuncel [55]: “if the function f is a self-concordant
barrier, is the same true of the spectral function F7”. An example supporting the
conjecture is (1.2). One reason why answering this conjecture may be interesting
is given in [89, Chapter 8]. It is shown there that the spectral barrier, F', from 1.2
has the same barrier parameter as f. If this property is ‘approximately’ preserved
in general then one will be able to obtain self-concordant barrier functions with
‘small’ parameters on sets with high dimension using the existing lower dimensio-
nal examples. (It is well known that the barrier parameter directly affects the speed
of convergence of the underlying interior point method.)

Next, in Chapter 5 we treat a related question and show that a spectral function
F has quadratic expansion at A if and only if f has one at A(A). Many functions
have quadratic expansions. For example a theorem of Alexandrov [1] states that
every finite, convex function on an open subset of R™ has quadratic expansion
at almost every point. Notice that it is not necessary for a function to be twice

differentiable in order to have quadratic expansion. For example the function

sin(1l/z), ifx#0
flz) = (1.3)

0, ifx=0
has quadratic expansion around x = 0 but is not twice differentiable there. On the
other hand being twice differentiable at « implies having quadratic expansion at x.

Concluding the topic of differentiability properties of spectral functions we give

a final glimpse at a part of the picture up to this moment. We present schematically
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Differentiable

Quadratic Expansion

Twice Differentiable

C2

ckoo»

CCD

Analytic

Polynomials

Figure 1.1: Some differentiability properties

on Figure 1.1, a ‘chain’ of gradually weaker properties that are carried from the
symmetric function to its spectral equivalent and vice versa. The reader should refer
to the list above for a full account. (Note that the property of being C' is not in
the ‘chain’ because it can not be fitted between the property of being differentiable
and the property of having quadratic expansion. For the figure we tried to select
properties that will make the ‘chain’ as long as possible.)

Another major theme in our work is the nonsmooth analysis of singular values.
In particular we consider the composition of an absolutely symmetric function (see
Definition 6.3.2) with the singular value map. We call such functions on a rect-
angular matrix argument singular value functions. One of the first results about

singular value functions is the characterization, by von Neumann in [90], of all
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unitary invariant norms, that is, norms || - || on M, , such that

IUXV] = ||X]|], for all X € M,,,, and all unitary matrices U € M,,, V € M,,.

He showed that such norms are precisely the compositions of an absolutely sym-
metric function that is also a norm on R™ (such functions are knows as symmetric
gauge functions) with the singular value map.

The singular values are strongly connected with some matrix-optimization prob-
lems. For example, if we want to find the nearest rank & matrix to a given ma-
trix X with respect to a given orthogonally invariant norm, || - ||, then we form
the singular value decomposition of X, X = UTSV and let Y = UTAV, where
Y = Diag (01(X), 02(X), ..., 0n(X)), and A = Diag (0, ..., 0, —op4+1(X), ..., —on(X)).
The matrix X +Y is the nearest rank k matrix to X, [36, Section 7.4]. In particular,
if || - || is the spectral norm on M, ,, (that is, || X|| = \/m = 01(X)), then
ok+1(X) is the distance between X and the nearest rank k& matrix. Another curious

minimization fact, that holds for every unitary invariant norm, is:

|o(X) = o(Y)|| = min{||X = U'YV||U € M,,V € M, orthogonal }.

(It is easy to prove that the left hand side above is greater than or equal to the
right hand side.)

In Chapter 6 we derive the main tools from nonsmooth analysis for singular
value functions (see [79], [65], [39], [40]). It can be viewed as a continuation of

[47]. Its development follows closely that in [52] and in the process we derive some
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of the background tools from [49] in the context of singular values. We go a few
steps further than [52], the additional results being the formula for the Clarke
subdifferential when the singular value function is only lower semicontinuous and
the formula for the proximal subdifferential. For a treatment of related singular
values topics see [81].

Omne may ask if it would be easier to calculate the subdifferentials of each o; and
then apply the chain rule to foo. One will need to apply Theorem 10.49 from [79]

which in our context says:

O(foo)(X) C U{ay"o)(X) |y € 0f(o(X))}.

Similar formulae hold for the regular, and horizon subdifferentials as well. The prob-
lems with this formula are, first, it is not clear whether calculating each d(y’ o )(X)
will be a simpler task, and second, it is only a one-sided inclusion. The conditions
for equality require strong assumptions. In our derivations we dispense with these
assumptions throughout, to arrive at compact, closed form expressions that do not
seem easy to derive from the above formula even when it holds with equality.

Omne may think that another way of deducing the results in this chapter may be
as corollaries of the corresponding results in [52], using the connection between the
eigenvalues and the singular values given in (1.1). One may decide to consider the

function

(f o A) o R(X),

where f is appropriate modification of our absolute symmetric function f. But
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whatever the choice of f is, the difficulties listed in the above paragraph may haunt
us here too. Finally, even if we overcome all of these difficulties, the nice algebraic
structure stemming from the singular value decomposition, and so nicely evident in
our formulae of the subdifferentials of f o o (see Theorem 6.5.1 and its analogies),
may be unrecognizably obscured.

We now steer towards the work done in Chapter 2, where we investigate a
unifying framework for some of the results in this thesis. As we mentioned earlier,
for a symmetric gauge ¢ (necessarily convex) and a symmetric, convex f on R” the

composite functions

X e Mym— g(o(X)), (1.4)

X € 8" F(AX)) (1.5)

are convex. (For g(o(X)) this is due to von Neumann and for f(A(X)) this is due
to Davis.) Not only the convexity of ¢ and f is preserved after the composition, but
some important convex analytic notions for the composition are easily expressed
through the corresponding notions for g and f. Thus for example, the Fenchel

conjugate of the function (1.5) is given elegantly by

(fod) = [0,

and the analogous result for g o ¢ was shown by von Neumann. These analogies
between the two classes of functions are not accidental. In [50] Lewis gives a set of

axioms and abstractly derives the convexity properties of a special invariant class
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of functions that generalizes both (1.4) and (1.5). Then in [53] he uses semisimple
Lie theory and the Kostant convexity theorem to generalize these properties again.
In Chapter 2 we give a surprising new approach towards uniting the above type of
convexity results via properties of the roots of hyperbolic polynomials.

The theory of hyperbolic polynomials has its origins in partial differential equa-
tions, and is connected with the well-posedness of the Cauchy problem. We briefly
give here a few historical notes about this problem. For more information see Sec-
tions 12.3-12.6 in [34], [35]. Let p : R™ — R be a homogeneous polynomial of degree
m. To every p corresponds a partial differential operator p(D), obtained from p by

—120
axk .

replacing zj with For example, to the polynomial

n
play, ., xn) = :1;% — sz
k=2

corresponds the operator

n

62 2
p(D) = _61'2 —I_Zalj

Then the Cauchy problem is formulated as follows.

Definition 1.0.2 (Cauchy Problem). Is there a solution w (a distribution, gen-

eralized function) to the equation

p(D)u = f,

with support supp (u) C H for a given function f € C(H), where H = {x €
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R"[{x,d) > 0}, and d # 0 is a direction in R™ such that p(d) # 07

It turns out that the Cauchy problem has a solution (in fact unique) for any such

f if and only if p is a hyperbolic polynomial, defined below:

Definition 1.0.3. A homogeneous polynomial p : R™ — R is called hyperbolic with

respect to a direction d € R™ if p(d) # 0 and the polynomial

t— plax +td),

has only real roots for any x.

The roots Aj(x) > Aa(x) > -+ > Aju(a) of t — p(a — td) are called roots or
eigenvalues of the hyperbolic polynomial. The name eigenvalues comes from the
fact that p(X) = det(X), X € §" is a hyperbolic polynomial and its roots are the
eigenvalues of X.

In Chapter 2 we use a result by Garding [24], saying that the largest root, A;(x),
is always a convex function of z, to prove a generalization of Davis’s theorem, that
any symmetric convex function of the roots A(x) of a hyperbolic polynomial is
convex. This result then allows us to derive many elegant inequalities in a unified
fashion. A Fenchel conjugation formula that subsumes the corresponding formulae
for (1.4) and (1.5), is also presented. There is a long section on examples, and for
each example we go in detail over every property of the hyperbolic polynomials that
interests us. Finally in Section 2.6.8 we use one particular hyperbolic polynomial
to rederive von Neumann’s singular value example (1.4).

In 1988, Nesterov and Nemirovskii developed a general, polynomial time frame-
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work for convex programming problems, presented in their monograph [68]. This
framework for interior point methods relies on the notion of self-concordant barrier
functions (see the definition in Section 3.1). These functions are special, convex
penalty functions which intricately regulate their own behaviour and growth. One of
the most important results in Nesterov and Nemirovskii [68] is that a self-concordant
barrier function exists for every open convex set. They construct such a function,
called the universal barrier. The parameter ¥ (on which every self-concordant func-
tion depends) in their construction has magnitude big-O of the dimension of the
domain space. Because ¢ plays an important role for the convergence speed of
the underlying interior point method the question of finding computable barrier
functions with small parameters is of fundamental interest.

In Chapter 3 we investigate a relationship between the hyperbolic polynomials
and self-concordant barriers. Every hyperbolic polynomial p(x) with roots A;(x)

has an associated closed convex hyperbolicity cone which is defined as

{z € R"|A\;(x) > 0 for all ¢}.

(Actually the convexity of the above cone is equivalent to the convexity of Ai(x)
- the largest root of p(x).) Giiler was the first to observe the connection between
hyperbolic polynomials and convex optimization. He showed [25] that the hyper-
bolicity cone is a good environment for the modern interior point algorithms [68]
with a natural self-concordant barrier on it, —log p(x), with parameter m - the
degree of homogeneity of p.

A crucial example of a self-concordant barrier in contemporary optimization
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is the function —log det (), which is an m-self-concordant barrier for the cone of
m X m symmetric positive definite matrices, a set of dimension m(m + 1)/2 (see
[68]). The main result in Chapter 3 is that —mlog(p(z) — 1) is a ‘shifted” m*-self-
concordant barrier on a corresponding subset of the hyperbolicity cone of p. As
a consequence we get for example, that —mlog(det (-) — 1) is a ‘shifted” m?-self-
concordant barrier on a corresponding subset of the positive definite cone. Even
though our function, —mlog(p(x) — 1), seems ‘close’ to Giiler’s, —logp(x), our
proof turns out to be a lot more complicated than the proof of Theorem 4.1 in [27].
Furthermore, in the last section of this chapter we show that our result cannot
be deduced as an elementary consequence (in some sense) of Giiler’s result, that
—log p(x) is a self-concordant barrier.

Another way to look at spectral and singular value functions is as functions on a
symmetric matrix argument, or rectangular matrix argument respectively, invariant
under a closed group of orthogonal transformations of the linear space S™, or M,, .,

respectively: that is, for all X in the domain of F' we have

F - spectral function < F(UTXU) = F(X), YU € O(n),

F - singular value function < F(U'XU,,) = F(X), Y(Uy,,Un) € O(n) x O(m).

In Chapter 7 we treat a class of functions having a different invariant property.
We consider functions on R™ x R invariant under orthogonal transformations (U, 1),

that is, for all (x,¢) in the domain of such a function we have

g:R"XR—-R
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g(Ux,t) = g(x,t), VU € O(n).

We call functions having this property Lorentz invariant functions because (U, 1)
are all the orthogonal transformations that preserve the Lorentz cone, {(x,t) €
R™"xR|t > ||z||}. Such functions can be decomposed as g = fof3, where f : R? - R

is symmetric and

B(z,t): R" x R — R?

Bla,t) = %m el = ).

The mapping 8 allows several interpretations. It may either be viewed as the
“eigenvalue” map of the roots of a hyperbolic polynomial, when the direction of
hyperbolicity is taken to be (\/5,0, ..,0), see Example 2.6.5, or it can be viewed
as the eigenvalue map of an element in the Jordan algebra of quadratic forms with
respect to a certain Jordan frame, see [95, Example 8.3.12].

For Lorentz invariant functions we derive all the smooth and nonsmooth prop-
erties that interested us in the previous chapters. We want to emphasize that the
interest here is not necessarily that the results are crucial in their own right, but to
draw out the algebraic analogies with the earlier results. These analogies suggest
that a unified setting should exist. Deeper investigations into a generalization using
Jordan algebras may be a point of a future research, see Chapter 8.

In conclusion we would like to say that Chapter 2 is based on a joint paper
with H. Bauschke, O. Giiler and A. Lewis [6], to appear in the Canadian Journal of

Mathematics. A paper based on Chapter 3 is submitted to Mathematical Program-
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ming, Series A, [57]. A paper based on Chapter 4 is submitted to STAM Journal of
Matrix Analysis, [56]. A paper based on Chapter 5 is submitted to Linear Algebra
and Its Applications, [58]. Papers based on Chapter 6 and Chapter 7 are still in

preparation for submission.



Chapter 2

Hyperbolic Polynomials

2.1 Notation

We write RY, (resp. R7T) for the set {v € R™ : u; > 0,Vi} (resp. {u € R™:
u; > 0,Yi}. The closure (resp. boundary, convex hull, linear span) of a set S is
denoted cl S (resp. bd S, conv S, span S). A cone is a nonempty set that contains
every nonnegative multiple of all its members; it thus always contains 0. If u € R™
then by either u or u; we will denote the vector u with its coordinates arranged
decreasingly; also, U = U} := {u : u € U}, for every subset U of R™. If u € R™,
then |u| will denote (|u1], ..., |um|). The transpose of a matrix (or vector) A is
denoted AT. The identity matrix or map is written I. Suppose Y is an arbitrary
Euclidean space with inner product (-,-) and h : ¥ — [—o00, +00] is convex, then h*
(resp. Oh, Vh, dom h) stands for the Fenchel conjugate (resp. subdifferential map,
gradient map, domain) of h. (Rockafellar’s monograph [78] is the standard reference

for these notions from convex analysis.) Higher order derivatives are denoted by

21
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V*h. If U C X, then the positive polar cone is Ut :={z € X : (z,U) > 0}. If Ais
a linear operator between Euclidean spaces, then its transpose is written AT. The

range of a map A is denoted by ran A. Finally, if A, B are two subsets of X, then
d(A,B) :=inf{|la — b|| : « € A, b € B} is the distance between A and B.

2.2 Background

We assume throughout the this chapter that

X is a finite-dimensional real vector space.

This section contains a selection of important facts on hyperbolic polynomi-
als from Garding’s fundamental work [24], and a deep inequality on elementary
symmetric functions.

For all missing proofs and references the reader should refer to our paper [6].

2.2.1 Hyperbolic polynomials and eigenvalues

Definition 2.2.1 (Homogeneous Polynomial). Suppose p is a nonconstant po-
lynomial on X and m is a positive integer. Then p is homogeneous of degree

m, if p(tz) = t"p(x), for all t € R and every x € X.

Definition 2.2.2 (Hyperbolic Polynomial). Suppose that p is a homogeneous
polynomial of degree m on X and d € X with p(d) # 0. Then p is hyperbolic
with respect to d, if the polynomial t — p(x 4 td) (where t is a scalar) has only

real zeros, for every v € X.
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Definition 2.2.3 (“Eigenvalues and Trace”). Suppose p is hyperbolic with re-

spect to d € X of degree m. Then for every x € X, we can write
ple +td) = p(d H (t 4+ A
=1

and assume without loss of generality that A(x) > Ao(x) > -+ > Ap(x). The
corresponding map X — R 1z = (Ai(2),... ,An(2)) is denoted by A and called
the eigenvalue map (with respect to p and d). We say that \;(z) is the i'h
largest eigenvalue of x (with respect to p and d) and define the sum of the
k largest eigenvalues by o) := Ele X, for every 1 < k < m. The function o,

1s called the trace.

The eigenvalues {\;(x)} are thus the roots of the polynomial ¢t — p(x — td).
It follows readily that the trace o, is linear (see also the paragraph following
Proposition 2.2.19).

Unless stated otherwise, we assume throughout the chapter that

p is a hyperbolic polynomial of degree m with respect to d,
Ak,

with eigenvalue mapA and oy := Zle

for every 1 < k < m. The notions “eigenvalues” and “trace” are well-motivated by

the the following example.

The Hermitian matrices. Let X be the real vector space of the m x m Hermitian
matrices and p := det. Then p is hyperbolic of degree m with respect to d := I
and A maps x € X to its eigenvalues, arranged decreasingly. Thus for every 1 <

k < m, the function oy, is indeed the sum of the k largest eigenvalues and o,, is the
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(ordinary) trace.

As we go, we will point out what some of the results become in the impor-
tant case of the Hermitian matrices. Details and further examples are provided in
Section 2.6.

We now introduce the notion of isomorphic triples, which will simplify the anal-

ysis of homogeneous polynomials in Section 2.6 considerably.

Definition 2.2.4. Suppose p (resp. ¢) is a homogeneous polynomial on X (resp.
Y)andd € X (resp. e € Y). If there exists a linear one-to-one map ®© from X onto
Y with p = qo ® and ®(d) = e, then we say that the triple (X, p,d) is isomorphic

to (Y,q,e) (by @), and we write (X, p,d) ~ (Y, q,€).

It is clear that the binary operation ~ defines an equivalence relation on all

triples. The following basic properties are easy to verify.
Proposition 2.2.5. Suppose (X, p,d) is isomorphic to (Y, q,¢e) by ®. Then:
1. The degrees of p and q coincide.
2. p 1s hyperbolic with respect to d if and only if q is hyperbolic with respect to e.

3. If p (resp. q) is hyperbolic with respect to d (resp. e) with corresponding

eigenvalue map X (resp. ), then A = o @.
Many examples of hyperbolic polynomials can be obtained as described below.
Proposition 2.2.6.

1. If q is hyperbolic with respect to the same d, then so is pq.
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2. If m > 1, then ¢(x) := %p(:p + td)‘t:o = Vp(x)[d] is hyperbolic with respect
to d.

3. IfY is a subspace of X and d € Y, then the restriction ply is hyperbolic with

respect to d.

The technique of Proposition 2.2.6.(2) has a higher order analog, see Proposi-
tion 2.2.19 below. Given a hyperbolic polynomial on R", we can construct a related

one on R 1 as follows.

Proposition 2.2.7. Suppose p is hyperbolic with respect to d € R™ with eigenvalue

map X. Assume that d; # 0 and define g on R"™! by

qY1 - s Yn1) = 2(Y1s - s Ynr, Body).
Then q is hyperbolic with respect to e := (dy,... ,dn—1) and its eigenvalue map p
satisfies (Y, ... s Yno1) = )\(yl, ey Ynels Z—idn).
Proof. Straightforward. O

The following property of the eigenvalues is well-known [24, Equation (2)] and

easily verified.

Proposition 2.2.8. For allr,s € R and every 1 < < m:

rAi(x) + s, if > 0;
Ai(re 4 sd) =

FAmy1—i(®) + 8, otherwise.
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It follows that the eigenvalue map A is positively homogeneous (A(tx) = tA(x),
for all + > 0 and every @ € X) and continuous (the zeros of a polynomial are
continuous with respect to the coeflicients; see, for instance, [73, Appendix A]).

Garding showed that the largest eigenvalue map is sublinear, that is, positively

homogeneous and convex.
Theorem 2.2.9 (Garding). The largest eigenvalue map Ay is sublinear.

We continue with the example we started on page 23
The Hermitian matrices (continued). It is well-known that the largest eigenvalue

map is convex in this case; see, for instance, [32].

2.2.2 Hyperbolicity cone

Definition 2.2.10 (Hyperbolicity Cone). The hyperbolicity cone of p with
respect to d, written C(d) or C(p,d), is the set {x € X : p(x + td) # 0,¥t > 0}.

We can write the hyperbolicity cone in terms of the eigenvalue map as follows.

Proposition 2.2.11. C(d) = {z € X : \,(z) > 0}. Hence C(d) is an open convex
cone that contains d with closure clC(d) ={x € X : \p(x) > 0}. If ¢ € C(d), then

p is hyperbolic with respect to ¢ and C(c) = C(d).
Proof. Garding [24, Section 2]. O

Remark 2.2.12. Note that A\, (x) > 0 if and only if \(—x) < 0 by Proposi-
tion 2.2.8. Hence Garding’s result (Theorem 2.2.9) implies the convexity of C(d).

In fact, the two results are equivalent. To see why, suppose first C(d) is a convex
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cone. Fiz x and y in X and observe that x — A\p,(x)d and y — A, (y)d both belong to
clC(d). By assumption, (x +y) — (Am(2) + An(y))d € c1C(d). On the other hand,
the smallest t such that (x + y) + td belongs to c1C(d) is —An(x + y). Altogether,

Am () + A (y) < A + y) and the concavity of Ap, (or convexity of A1) follows.

Definition 2.2.13 (Complete Hyperbolic Polynomial). p is complete if

{z € X : Az) =0} ={0}.

The following result, which follows easily from Proposition 2.2.5.(3), considers

the concepts just introduced for isomorphic triples.

Proposition 2.2.14. Suppose (X, p,d) is isomorphic to (Y, q,e) by ®. Then:
1. C(q,e)=2(C(p,d)).
2. p is complete if and only if q is.

Proposition 2.2.15. Suppose p is hyperbolic with respect to d, with corresponding

eigenvalue map X and hyperbolicity cone C(d). Then

{zeX : Mae)=0}={ereX :2+C(d)=C(d)}

={z e X :p(te +y) =p(y),Vy € X,Vt € R}.

Consequently, {x € X : M) =0} = c1C(d) N (=clC(d)). Therefore, p is complete

if and only if clC(d) is a pointed cone.

It is always possible to find a restriction of p that is complete: indeed, d & {x €

X : Ax) = 0}; consequently, if YV is any subspace of X which contains d and is
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algebraically complemented to {z € X : A(x) = 0}, then p|y is hyperbolic with

respect to d (Proposition 2.2.6.(3)) and complete.

Example 2.2.16. Welet X =R", p(z) =) ;xj andd = (1,1,...,1) in X. Then
p is hyperbolic with respect to d of degree m = 1 and A(z) = L E] (2. It follows

that p is complete only when n = 1.

The Hermitian matrices (continued). The hyperbolicity cone of p = det with
respect to d = I is the set of all positive definite matrices. The polynomial p = det is

complete, since every nonzero Hermitian matrix has at least one nonzero eigenvalue.

2.2.3 Elementary symmetric functions

Definition 2.2.17 (Symmetric Function). A function f on R™ is symmetric,
if flur, oo tm) = f(Un(1ys oo Un(my), for all permutations m of {1,...,m} and every

u € R™,

Definition 2.2.18 (Elementary Symmetric Functions). For any given inte-
ger k. =1,2,....m, the map E; : R™ — R defined by u — Ei1<m<ik Hle U;, 18

called the k'' elementary symmetric function on R™. We also set Ey :=1.

Proposition 2.2.19. For every x € X and all t € R,

plz + td) = p(d ﬁ t+ Xi(x)) = p(d) Y Ei(A(x)t"™
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and for every 0 <1 < m,

PDE(NE) = oy V)l )

m—1 times
If1 <1 <m, then E; o X is hyperbolic with respect to d of degree 1.

Proposition 2.2.19 gives a very transparent proof of the linearity of trace: indeed,

om = E10\ is a homogeneous (hyperbolic) polynomial of degree 1 and hence linear.

We also note that the elementary symmetric functions themselves are hyper-

bolic:

Example 2.2.20. Let X = R™ and d = (1,1,...,1) € R™.  Then for every
1 <k < m, the k™ elementary symmetric function Ej is hyperbolic of degree k

with respect to d.

2.2.4 An inequality in elementary symmetric functions

The following inequality was discovered independently by McLeod [62] and by
Bullen and Marcus [13, Theorem 3]. We are interested in it mainly because of

the two corollaries that follow it.

Proposition 2.2.21. (McLeod, 1959; Bullen and Marcus, 1961) Suppose 1 < k <

[ <m and u,v € RY . Set q:= (El/El_k)l/k. Then

q(u+v) > q(u) + q(v),

unless u and v are proportional or k =1 =1, in which case we have equality.
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Bullen and Marcus’s proof relies on an inequality by Marcus and Lopes ([59,
Theorem 1], which is the case & = 1 in Proposition 2.2.21. (Proofs can also be
found in [7, Theorem 1.16], [14, Section V.4], and [64, Section VI.5].)

We record two interesting consequences of Proposition 2.2.21.

Corollary 2.2.22. (Marcus and Lopes’s [59, Theorem 2]) The function —EN™ s

sublinear on R, and it vanishes on bd R

Recall that a function & is called logarithmically convez, if log(h) is convex. The
function ¢ in Proposition 2.2.21 is concave (“strictly modulo rays”), which yields

logarithmic and strict convexity of 1/¢:

Proposition 2.2.23. Suppose q is a function defined on R}, . Consider the fol-
lowing properties:

(1) the range of q is contained in (0, +00);

(ii) q(ru) = rq(u), for all r > 0 and every u € RY ;

(iii) q(u+v) > q(u) + q(v), for all u,v € R ;

(i) if u,v € RY L with q(u+v) = q(u) + ¢(v), then v = pu, for some p > 0.
Suppose q satisfies (i)—(iit). Then 1/q is logarithmically convex. If furthermore (iv)

holds, then 1/q is strictly convez.

Corollary 2.2.24. Suppose 1 < k < 1 < m. Then the function (Ei_y]E)"/*
s symmetric, positively homogeneous, and logarithmically convex. Moreover, the

function is strictly conver on R}, unless [ =1 and m > 2.
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2.3 Convexity

This section is the core of the chapter and that is why we are going to include the

proofs of the main results here.

2.3.1 Sublinearity of the sum of the largest eigenvalues

Theorem 2.3.1. Suppose q is a homogeneous symmetric polynomial of degree n
on R™, hyperbolic with respect to e := (1,1,...,1) € R™, with eigenvalue map .
Then

qoA

s a hyperbolic polynomial of degree n with respect to d and its eigenvalue map is

oA

Proof. For simplicity, write p for g o A.

Step 1: pisapolynomial on X. Indeed, since ¢(y) is a symmetric polynomial on
R™, it is (by, e.g., [38, Proposition V.2.20.(ii)]) a polynomial in E4(y),... , E.(y).
On the other hand, by Proposition 2.2.19, E; o X is hyperbolic with respect to d of
degree 1, for 1 <1 < m. Altogether, p(x) = ¢(A(x)) is a polynomial on X.

Step 2: p is homogeneous of degree n. Indeed, since ¢ is symmetric and homo-
geneous, and in view of Proposition 2.2.8, we obtain p(tx) = ¢(A(tz)) = t"p(x), for
all t € R and every z € X.

Step 3: p(d) # 0. Again using Proposition 2.2.8, we have p(d) = ¢(A(d)) =

q(e) # 0.
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Step 4: p is hyperbolic with respect to d. Using once more Proposition 2.2.8,

we write for every x € X and all t € R:

n

Bl +td) = q(Mx + td)) = q(A(x) + te) = qle) [ [t + m(A(2))). -

The next example is easy to check.

Example 2.3.2. Fiz 1 <k <m, set e:=(1,1,...,1) € R™, and let

q(u) = H Z Ui,

1511<12<<lk5m =1
Then q is a homogeneous symmetric polynomial on R™ of degree (TZ), hyperbolic
with respect to e, and its eigenvalues are {%Ele w, 1 <y <ag <o < <

m}. In particular, the largest eigenvalue of q is the weighted sum of the k largest

components of u.

We now present our main result, the generalization of Theorem 2.2.9: the sum
of the largest eigenvalues is sublinear. This readily implies local Lipschitzness of

each eigenvalue map (see also [91]).

Corollary 2.3.3. For every 1 < k < m, the function o is sublinear and M\ is

locally Lipschitz.

Proof. Fix 1 < k < m, define ¢ as in Example 2.3.2, and consider p := go A. By
Theorem 2.3.1 and Example 2.3.2, the largest eigenvalue of p is equal to %O'k(l').
Now Theorem 2.2.9 yields the sublinearity of o%. Finally, recall that every convex

function is locally Lipschitz ([78, Theorem 10.4]), hence so is each o,. So A; is
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locally Lipschitz. If & > 2, then A\, = o) — op_1 is — as the difference of two locally

Lipschitz functions — locally Lipschitz, too. O

The Hermitian matrices (continued). Here it is well known that the sum of the
k largest eigenvalues is a convex function and that the k" largest eigenvalue map

is locally Lipschitz; see, for instance, [32].

Remark 2.3.4. Consider the polynomial p in the proof of Corollary 2.3.3 in the

context of the Hermitian matrices. Then

m

(—1)(F)j(a — LT) = det(t] — Ay(x)),
where Ag(x) denotes the k'™ additive compound of x. (See [61, Section 19.F] for
more on compound matrices. )
Corollary 2.3.5. The function wl \(+) is sublinear, for every w € RY".

Proof. Write wTA = S w;\; = w0, + E:Zl(w, — w;41)o; and then apply

Corollary 2.3.3. U

Note that we can rewrite Corollary 2.3.5 quite artificially as w!(Az + y) —
Mz)) < wlA(y), for all z,y € X and w € RY". It would be interesting to find out

about the following generalization:

Open Problem 2.3.6 (Lidskii’s Theorem). Decide whether or not

wi Mz +y) — Ma)) <wlMy), foralz,y€ X and w € R™ .
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If this condition is satisfied, then we say that Lidskii’s theorem holds for the
triple (X, p,d). Lidskii’s theorem, in the case when = and y are symmetric matrices,
and A is the map of their eigenvalues, is a central result in matrix perturbation
theory, see [9, Section III.4].

The condition means that the vector A(y) “majorizes” the vector A(x+y)—A(x),
for all @,y € X; see [61, Proposition 4.B.8]. (The interested reader is referred to

[61] for further information on majorization.)

The Hermitian matrices (continued). Lidskii’s theorem does hold for the Her-
mitians. A recent and very complete reference is Bhatia’s [9]; see also [51] for a

new proof rooted in nonsmooth analysis.

In Section 2.6, we point out that Lidskii’s theorem holds for all our examples.

It will be convenient to have the following simple result ready:

Proposition 2.3.7. Suppose (X,p,d) is isomorphic to (Y,q,e). Then Lidskii’s
theorem holds for (X, p,d) if and only if it does for (Y, q,¢€).

2.3.2 Convexity of composition

Proposition 2.3.8. Suppose f : R™ — [—00, +00] is convex and symmetric. Sup-
pose further u,v € R and u —v € (RY)*. Then f(u) > f(v). Moreover: if f

is strictly convex on conv {(Un(1), ..., Un(m)) : T is @ permutation of {1,... ,m}} and

u # v, then f(u) > f(v).

Proof. Imitate the proof of [50, Theorem 3.3] and consider [50, Example 7.1]. See

also [61, 3.C.2.c on page 68]. O
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Theorem 2.3.9 (Convexity). Suppose z,y € X, o € (0,1), and f : R™ —

[—o0, +00] is conver and symmetric. Then

FAlaz + (1= a)y)) < flad(z) + (1 = a)A(y))

and hence the composition f o X is convex. If f is strictly convex and aX(x)+ (1 —

a)Ay) # Maw + (1 = a)y), then f(AMaz + (1 —a)y)) < flaA(z) + (1 — a)A(y)).

Proof. (See also [50, Proof of Theorem 4.3].) Fix an arbitrary w € RT. Set
u = aXz)+ (1 —a)Ay) and v := Aoz + (1 — a)y). Then both u and v belong
to R}". By Corollary 2.3.5, wl ) is convex on X. Therefore, wl A(az + (1 — a)y) <
awT A(x)+(1—a)w! A(y); equivalently, w! (u—v) > 0. It follows that u—v € (R)*.
By Proposition 2.3.8, f(u) > f(v), which is the second displayed statement. The
convexity of f o A follows. Finally, the “If” part is implied by the above and the

“Moreover” part of Proposition 2.3.8. U
The Hermitian matrices (continued). In this case, the convexity of the compo-

sition is attributed to Dawvis [18]; see also [48, Corollary 2.7].

Another consequence is Garding’s inequality; see [25, Lemma 3.1].

Corollary 2.3.10 (Garding’s Inequality). Suppose p(d) > 0. Then function
x = —(p(x))Y/™ is sublinear on the hyperbolicity cone C(d), and it vanishes on its

boundary.

Proof. By Corollary 2.2.22, the function —EY™ is sublinear and symmetric on

R?. Hence, by Theorem 2.3.9, the function = —(E,,(A(x))Y/™ is sublinear on



2.4. MAKING X EUCLIDEAN 36

{z € X : XMx) >0} = clC(d). The result follows, since p(x) = p(d)En(A(x)), for

every v € X. O

The Hermitian matrices (continued). Corollary 2.3.10 implies the Minkowski

Determinant Theorem: ’Vdet(:z; +y) > Vdetz + {/dety, whenever x,y € X are

positive semi-definite.
Corollary 2.3.11. Suppose x,y € X. Then:
LMz + )| < [Ma) + A
2 @+ ) = 1A = AP < 20A(2), Ay)).-
Moreover, equality holds in 1 or 2 if and only if Mz +y) = Ma) + A(y).

Proof. (1):Let w := Mz +y) € RT". Then, using Corollary 2.3.5 and the Cauchy-

Schwarz inequality in R™, we estimate

Mz + )" = w' Az +y) < w' (Mz) + Aly))

< [lellliAte) + Al = 1Az + 9)l[lAG) + Aty)]l-

The inequality follows. The condition for equality follows from the condition for
equality in the Cauchy-Schwarz inequality.

(2): The condition is equivalent to (1). O

2.4 Making X Euclidean

So far X has been an arbitrary vector space. We are free to define a norm on it

as we wish. To be absolutely precise then, the hyperbolic polynomials, p(z), on X
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have to be viewed as polynomials in n linear functionals (z; = @;(z), 1 =1,2,...,n)
on X.
Definition 2.4.1. Define ||-||: X — [0,+00) : @ — ||A(2)]| and

() X xX =2 R:(2,y) = Hla+yl)* = 3z -yl

Theorem 2.4.2. Suppose p is complete. Then X equipped with (-,-) is a Euclidean

space with induced norm || - ||.

Proof. We have
HMVZHN¢W2ZE:&@VZWENMﬁﬁf—QEﬂM@)

Propositions 2.2.8 and 2.2.19 imply that || - ||* is a homogeneous polynomial of
degree 2 on X. Since || - || > 0 and p is complete, Corollary 2.3.11 says that the
equality above indeed defines a norm. Because ||-]|? is a homogeneous polynomial of
degree 2 on X this norm originates trivially from an inner product. The formula for
the inner product follows from the Polarization Identity in linear algebra: (z,y) =
il 4yl = glle —yl*. 0
Remark 2.4.3. The Euclidean norm || - || defined in Definition 2.4.1 is precisely
the Hessian norm wused in interior point methods and thus well-motivated. To see
this, assume that p is complete and recall that the hyperbolic barrier function is

defined by F(x) := —1In(p(x)). The Hessian norm at x is then given by

2

0
lelf3 = VP(@)w ] = 5o F(te +d)

t=0
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For t positive and sufficiently small, we have p(tx +d) = p(d) [[i—,(1 + tAi(x)) and
hence (after taking logarithms)
F(d+tx)=F(d) = > In(l +tAi(x)).

=1

Expand the left (resp. right) side of this equation into a Taylor (resp. log) series.
Then compare coefficients of t* to conclude V?*F(d)[z,z]/2! = ||A(2)||*/2. Thus
|- lla =1-1|. (It looks as if the right hand side is independent of the direction d,
but this is not the case since the eigenvalues A implicitly depend on it.) Further

information can be found in [25]; see, in particular, [25, equation 16].

The norm constructed above has the pleasant property that any isomorphism

to another triple is actually an isometry:

Proposition 2.4.4. Suppose p is complete and the triple (X, p,d) is isomorphic to

the triple (Y,q,¢e) by ®. Then ® is an isometry from X onto Y.

Proposition 2.4.5 (Sharpened Cauchy-Schwarz). Suppose p is complete. The

following inequality then holds

(z,y) < (M), Ay)) < ll=llllyll,  forallz,ye X.

For necessary and sufficient conditions for equality see [6, Theorem 6.6].

Proof. By the Cauchy-Schwarz inequality in R™ and Corollary 2.3.11.(ii),

2(M(x); A(y)) = Mz + )lI* = @)1 = 1A )1
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=llz +yl* = [l=|* = Iyl

= 2(x,y). 0

The Hermitian matrices (continued). The inner product on the Hermitian ma-
trices is precisely what one would expect: (x,y) = trace (xy). The sharpening of
the Cauchy-Schwarz inequality is due to von Neumann; see [48, Theorem 2.2] and

the discussion therein.
We can now refine Theorem 2.3.9.
Theorem 2.4.6 (Strict Convexity). Suppose p is complete and the function f :

R™ — [—o0, +0o0] is strictly convex and symmetric. Then the composition f o X is

strictly conver on X.

Theorem 2.4.6 can be used to recover transparently a recent result by Krylov

(see [45, Theorem 6.4.(ii)]).

Corollary 2.4.7. Suppose p(d) > 0. Then each of the following functions is convex

on the hyperbolicity cone C(d):

Em—lo)\ Em—lo)\
E,o\’ E, o\~

—Ilnp, In

If p is complete, then each of these functions is strictly conves.

Krylov’s result is closely related to parts of Giler’s recent work on hyperbolic
barrier functions. It suggests a simple approach to Giiler’s result [25, Theorem 6.1]

stated below. The functions F' and ¢ below play a crucial role in interior-point
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methods as they allow the construction of long-step interior-point methods using

the hyperbolic barrier function F.

Corollary 2.4.8. Suppose p(d) > 0 and ¢ belongs to the hyperbolicity cone C :=
C(d). Define

F:C—oR:axw— —Inpx) and ¢g:C —=R:x— —(VF(x))(c).

Then F and g are conver on C. If p is complete, then both F and g are strictly

conver.

The Hermitian matrices (continued). The statement on F' corresponds to strict
convexity of the function x — —Indet(x) on the cone of positive semi-definite

Hermitian matrices; this result is due to Fan [21].

Remark 2.4.9. [t is worthwhile to point out that Krylov [45] and Giler derived
their results from hyperbolic function theory whereas we here “piggyback” on in-
equalities in elementary symmetric functions. The latter approach is far more ele-

mentary.

2.5 Convex calculus

In this section we present the convex calculus results for hyperbolic polynomials
from [6]. We include them for completeness of the exposition, but for brevity we
omit the proofs and the details. For definitions of Fenchel conjugate and convex

subgradients see the last chapter.
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Definition 2.5.1 (Isometric Hyperbolic Polynomial). We say p is isometric

(with respect to d), if for every y,z € X, there exists © € X such that

AMz)=Az) and Mz +y)=Az)+ A(y).

Isometricity depends only on equivalence classes of triples:

Proposition 2.5.2. Suppose (X, p,d) is isomorphic to (Y, q,e). Then p is isomet-

ric iof and only if q is.

It is clear that if p is isometric, then ran A is a closed convex cone contained in
R, Examples shows that the range of A may be nonconvex in general [6].
The Hermitian matrices (continued). Here ran A = RT" and and it is easy to see

that p = det is isometric.

Theorem 2.5.3 (Fenchel Conjugacy). Suppose that f : R™ — (—o0,400] is
symmetric. Then (f o \)* < f*o A, If p is isometric and f(Puanau) < f(u), for

every u € (dom f)y, then (foA)* = f*o .

The assumption that f(Panau) < f(u), for every u € (dom f), is important: in
Section 2.6, we present an isometric hyperbolic polynomial and a convex symmetric

function f with (foA)* # f*o A

Corollary 2.5.4. Suppose p is isometric and f : R™ — (—o0,+o0] is symmetric.

Suppose one of the following conditions holds:

1. (dom f) "R C ran A.
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2. ran \ = RT.

8. f is conver and Peaniu € conv {(Un(1), .., Un(m)) : T permutes {1,... ,m}},

for every u € (dom f) N R
Then (foA)* = f oA

Theorem 2.5.5 (Subgradients). Suppose p is isometric, ran A = RY', and f :

R™ — (—o0, +00] is conver and symmetric. Let x,y € X. Then
y € O(f o X)) if and only if My) € 0f(A(x)) and (x,y) = (A(x), A(y)).

Consequently, )\[a(f o )\)(:1;)] = 0f(A(x)).

The Hermitian matrices (continued). Theorem 2.5.5 corresponds to [48, Theo-

rem 3.2].

Corollary 2.5.6 (Differentiability). Suppose p is isometric, ran A = R7", and
f:R™ = (—o0,400] is conver and symmetric. Let v,y € X. Then fo X is

differentiable at x and y = V(foX)(x) if and only if f is differentiable at M\(x) and
{v e X: A(y) = VI(A@)), (2, y") = (M), My'))} = {v}
Corollary 2.5.7 (Variational Description of o). Let p be isometric, and sup-

poseran A = RY". Let 1 <k < m. Then for every v € X,

MO = 0o e Y

and doi(z) ={y € X : (z,y) = on(x), My) = 0,0m(y) =k, Mi(y) < 1}
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The Hermitian matrices (continued). Corollary 2.5.7 is a direct generalization
of the variational formulations due to Rayleigh and Ky Fan; see [32, Section 2] for

more details.

2.6 Examples of hyperbolic polynomials

2.6.1 R"

Consider the vector space

the polynomial

3

=1

and the direction

d=(1,1,..,1).

Then p is a hyperbolic and complete with eigenvalue map
Ax) = .

The induced norm and inner product in X are just the standard Euclidean ones in
R". We have ran A = R} and p is isometric. In this case the sharpened Cauchy-

Schwarz inequality (Proposition 2.4.5) reduces to the well-known Hardy-Littlewood-
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Pélya inequality (see [28, Chapter X]).
aly < xfw

and [6, Theorem 6.6] gives necessary and sufficient conditions for equality, which
in this case holds if and only if vectors x and y can be simultaneously ordered
with the same permutation. Since ran A = RY, Corollary 2.5.4 shows that for every

symmetric function f : R" — (—o0, +00] we have

(foA) = f o

Also Lidskii’s Theorem holds, because A(x) is the ordered set of eigenvalues of the

symmetric matrix Diag(x) (see [9, page 69]).

2.6.2 Hermitian matrices

In this section we summarize the example we have followed throughout the chapter
so far. Consider the vector space H" (of n x n Hermitian matrices), and denote
the ordered eigenvalues of a matrix + € H" by 5\1(:1;) > 5\2(:1;) > > S\n(:zj) In
the case of Hermitian matrices, the Frobenius [36, page 291] norm can be defined

by ||z||F = ||5\(:1;)||, where the last norm is the standard Euclidean norm in R"™. Let

X = H",
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the polynomial be

p(x) = detz,

and the direction be

d =1

Then p is a hyperbolic and complete with eigenvalue map

Ax) = 5\(:1;)

The induced norm and inner product in X are given by

]* = [l

(2.5} = tray.

Clearly we have ran A = R and p is isometric. In this case the sharpened Cauchy-

Schwarz inequality (Proposition 2.4.5) reduces to Fan’s inequality:

tra’y < Ma)"AMy)

and equality holds if and only if the matrices x and y can be simultaneously unitarily
diagonalized (with eigenvalues in decreasing order), which is due to Theobald. (For
the conditions for equality see for example [6, Theorem 6.6] or [52].) Since ran A =
R, Corollary 2.5.4 implies that for every symmetric function f : R" — (—oc0, +o0]

we have

(foA)" = froA
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It is well known that Lidskii’s theorem holds in this case, see [9, Section IIL.4].
Note that there is an entirely analogous example on the space of n by n real

symmetric matrices.

2.6.3 Singular values

Consider the vector space M, ., (of n by m real matrices). We assume n < m
and denote the singular values of a matrix x in M, ,, by o1(z) > o9(z) > ... >
on(x). The Frobenius norm [36, page 291 & page 421] is defined by ||z||r =
|lo(x)||, where the last norm is the standard Euclidean norm in R", and o(z) =

(o1(x), 02(x), ..., 00(x)). Now consider the vector space

X = M,,, xR,

In order to study the singular values we consider the polynomial

plx,a) = det (a*I, — z2’) (v € My, €R),

and the direction

d=(0,1).

Then p is a hyperbolic and complete polynomial, with eigenvalue map

AMz,a) = (a+o1(x),a+ oz2(x), ...y — 02(2), a0 — o1(2)).
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The induced norm and inner product are given by

(2, )]l = 2na® + 2]jx|,

{((x,a),(x,0)) = 2naf + 2tr aly,

for (z, @) and (y, ) in X. Clearly we have ran A C R}™. Also it is easy to see, using
the Singular Value Decomposition Theorem [36, Theorem 7.3.5] that p is isometric.
Notice that in this case the sharpened Cauchy-Schwarz inequality (Proposition
2.4.5) reduces to

tr :L'Ty < U(:L')Ta(y),

and Theorem 6.6 in [6] shows equality holds if and only if # and y have a simulta-
neous ‘ordered’ singular value decomposition (that is, there are unitary matrices U
and V such that @ = U(Diago(x))V and y = U(Diago(y))V ). This is the classical
result known as ‘von Neumann’s Lemma’ (see for example [37, page 182]). (For a
different proof of von Neumann’s result see Theorem 6.2.9.)

Note that when n = 1 we get the Lorentz Cone example which is discussed

below. An analogous example can be obtained by considering the vector space

X=C,, xR.

We now show that for some functions in the singular value case we have (fol)* #
f* o A Equality in this case seems to depend on much more algebraic structure,

see [53], and Corollary 2.5.4. Consider the symmetric function
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Then

0, E:l: Ul'Zl,U,'ZO
) = 1

400, otherwise.

Now let n = 2. Then ran A = {ae + (8,v,—v,—0)|F > v > 0}. Let v =
i(3,1,1,—1) € ranA. Let y € X be such that A(y) = v. It is straightforward

to check that (A(2), A(y)) = Ai(2) Vz € X. It follows from the sharpened Cauchy-

Schwarz inequality (Proposition 2.4.5) that (z,y) < A(z) Vz € X. Then

(Fo N*(y) = Xi(y) = sup {{z ) — Mi(2)} = 0.

z€X

On the other hand clearly

(fTeoM(y) = f7(v) = Foo.

Finally we show that Lidskii’s theorem holds for this example. For each w € R",
let us denote the coordinates of the vector w by w = (wpy, ..., wpn)). We say that

vector y weakly majorizes vector x, both in R"™, if the following inequalities hold

k

k
Zx[i] < Zy[i], forall £=1,....n.
=1

=1

We denote the above relationship by o <, y. We also say that a matrix P is partial
permutation matriz if it has at most one nonzero entry in each row and column,
and these nonzero entries (if any) are all 1. A well know result is the following

theorem.
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Theorem 2.6.1. If © <, y, then = is a convex combination of vectors Py, for

some partial permutation matrices P;.
Proof. Combine Theorem 3.2.6 and Theorem 3.2.10 from [37]. O

We also need Theorem 3.4.5 from [37]:

Theorem 2.6.2. For any matrices x and y in M, (n < m) the vector o(y)

weakly majorizes |o(x +y) — o(x)].

(For more on weak majorization and a proof of the above theorem using tools

from nonsmooth analysis see Section 6.9.)

In order to show Lidskii’s theorem for the roots of the hyperbolic polynomial in

this example, we have to show that for all (z,a), (y,5) € X
wl Mz +y,a+B)— Mz, a)) <wl Ay, 8) VweR™
This is equivalent to

w' ((o(z +y), (=o(z+y))y) = (o(2), (=0 (2))))) < wi(o(y), (= (y))),

for all w € R?". This in turn is equivalent to

(w1 —waa)(o1(x + y) — o1(x)) + (w2 — wap—1)(02(x +y) — o2(2)) + -+
+ (wn — Wngr)(on(z +y) — on(2))

< (wpy — wea)o1(y) + (W) — wine1)o2(y) + -+ + (W) — Wg)on().
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for each w € R?™. Let

U = (W) — Wza]s W[2] = Wi2n—1]s s W] — Wa1])
V= (w1 — Wap, W2 — Wop-1, .-, Wn — wn+1)
vi=(o1(x +y) —o1(x), o2(x + y) — 02(), ..y on(z + y) — on(2))

§:=(01(y), o2(y); - on(y))-

Clearly U € RY := RTNR}. Then U is a linear combination with positive coeffi-

cients of the vectors t;, = (1,...,1,0,...,0) € R", that is
neud
1 times

U= Zozjtj, Oy Z 0 V]
7=1

Moreover, it can easily be checked that U weakly majorizes V', so by Theorem 2.6.1

we can write

V:Z@(PzU)a Bi >0, Zﬁi =1,

with each P; a partial permutation matrix. From Theorem 2.6.2 we have that

(Pit;)Ty < (Pit;)"|y| <tlé for all i and j. Then

VT7 = Z Z 6i04]‘(Pit]‘)T’)/ < Z Z 6iajt;5
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which is what we want.
2.6.4 Absolute reordering
Consider the vector space
X = R"xR.
Let the polynomial be
pz,a) = [J(a* = 2}),
=1
and the direction be
d = (0,1).

Then p is a hyperbolic and complete with eigenvalue map

Mz, a) = (([z])y, (=[z]))) + ae,
where |z| = (|z1], |22, ..., |2a]), and e = (1,1,...,1) € R**. If ||z||> denotes the

standard Euclidean norm in R"”, then the induced norm and inner product in X

are given by

(2 )]l = 2f|[]; + 2na”,

<($,oz),(y,ﬁ)> — QZx,y,—l—Qnaﬁ

=1

Clearly ran A C Rf” and it is not difficult to see again that p is isometric. In

this case the sharpened Cauchy-Schwarz inequality (Proposition 2.4.5) reduces to
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the well-known inequality (see [50, section 7])

ey < (lz[) " lyly

and Theorem 6.6 in [6] shows equality holds if and only if |z|, = P_yz and |y|; =
P_yy can be simultaneously ordered with the same signed permutation matriz: a
permutation matrix in which some of the nonzero entries may be multiplied by —1.
(For a direct proof of the above inequality see Lemma 6.2.8.)

Note that the similarities with the previous example are not accidental. This
example corresponds to the subspace (Diag R") x R of M, ., x R. So we can
immediately see that for some functions f we have (f o A)* # f*o A. Also, because

|z|, = o(Diag(x)), one sees, from the corresponding part in the previous example,

that Lidskii’s Theorem holds.

2.6.5 Lorentz cone

Let the vector space be

X =R",
and the polynomial be
plr)=a"Av=af —aj — - — a7,
where A = Diag(1,—1,—1,...,—1) € M,, (n X n real matrices). Let the direction be

d=(dy,dy,....,d,) € X such that d > d5+---+d>.
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Then p is a hyperbolic and complete with eigenvalue map

Mz) = (:1; Ad++/D(z) = Aal—dD(ac))7 (2.1)

p(d) ’ p(d)

where D(z) = (2T Ad)? — p(z)p(d) is the discriminant of p(x + td) considered as a
quadratic polynomial in ¢. (The fact that D(x) > 0 for each x, and so that p(x) is
hyperbolic, is the well-known Aczel inequality, see [63, p.57].) The induced norm

and inner product are given by

2(a” Ad)? — p(x)p(d)

z]|* =2 () , and
(o) = 4(z" Ad)(y" Ad) — 2(=" Ay)p(d)
’ p(d)? ’

for x and y in X.
We now show that the mapping A : X — R7 is onto. Indeed, fix (t1,%;) € R},
and let [ be an arbitrary, fixed nonzero vector from {d}* C X. (The reader can

easily verify that [ € {d}* if and only if [TAd = 0.) Set

‘—l an vi= —@ b=t
a:=S(ti+t), and v: p(l)( . )z. (2.2)

Then we have A(ad 4+ v) = (t1,t3). Above we have to make sure that p({) < 0.
Indeed, because the discriminant of p(x) is always nonnegative we get that p(l) <
0. If p(I) = 0, then this together with T Ad = 0, and d'Ad > 0 gives us the
three relations: [ = Tl dily = d'1; di > dTd, where we have used the notation

& = (wq,...,7,), and the dot product in the relations is the usual one in R".
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Notice that l~7§ 0 since otherwise [ = 0. Then from the Cauchy-Schwarz inequality

we get

dyly|2 = [dTI)? < |d7d||IT]| < 302,

which is a contradiction.

We now show that p is isometric. Fix two vectors y, z in X. Let (¢1,t2) := A(2),
and y = ad + [, where ¢« € R and [ € {d}*. Define a and v as in Equation (2.2)
and set @ := ad + v. Then the above paragraph shows that A(z) = A(z). So we

only have to show that A(z +y) = A(x) + A(y). In order to do that it is enough, by

Equation (2.1), to show that \/D(z + y) = \/D(z) + v/D(y). We easily compute
that D(x) = (%)zp(al)2 and D(y) = —(IT Al)p(d) and the rest follows quickly.
Notice that in this case the sharpened Cauchy-Schwarz inequality (Proposition

2.4.5) becomes
(27 Ad)(y" Ad) — (" Ay)p(d) < \/D(x)D(y),

and Theorem 6.6 in [6] gives the necessary and sufficient condition for equality.
Let us show one interesting equivalent form of this sharpened Cauchy-Schwarz

inequality.

Corollary 2.6.3 (Sharpened Cauchy-Schwarz). Let z,y,d € R" and d? >

d2+---d%, then

VD(x +y) < /D(x) +VDly),

where D(x) is defined on top of the previous page.
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Proof. Because both sides are positive, we can raise the inequality to the second
power and substitute the definition of D(x) from the previous page. After canceling
several terms we end up exactly with what we originally called sharpened Cauchy-

Schwarz inequality, see above. O

Note 2.6.4. Note that the inequality in the last corollary may be viewed as a mea-
sure of how the gap in Aczel’s inequality behaves under perturbation. See earlier in

this subsection for the definition of Aczel’s inequality.

That Lidskii’s Theorem holds for the polynomial p(x) in the direction f =
(1,0,...,0) € R™ is clear from the corresponding discussion in Section 2.6.3. For
arbitrary direction d such that, d? > d% + ---d?, any w € R? and z, y € R" we

must show

w' Mz +y) — Az)) < 0" My).

Using Formula (2.1) for the eigenvalues we see that we have to prove equivalently

that

w'(v/D(x +y) —/D(x),—/D(x +y)+ /D(x))" <w”(\/D(y),—/D(y))".

(2.3)

We consider two cases.

Case 1. If w; > wy then w = w and inequality (2.3) becomes

(wy —w2)(v/D(@) + /D) — /Dl +9)) > 0.

This is immediate from Corollary 2.6.3.
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Case 2. If w; < wy then w = (wy,ws) and w = (w2, w;) and inequality (2.3)

becomes

(1w —w1)(v/D(y) + /Dl +y) — VD)) > 0.

Notice that D(y) = D(—y) and use Corollary 2.6.3.
This finally proves that Lidskii’s Theorem holds for the roots of the Lorentz

hyperbolic polynomial.

2.6.6 Standard hyperbolic triples

We note that if YV is a subspace of H* (for some positive integer s), d € Y and
d > 0, then ¢(y) := det y is a hyperbolic polynomial over ¥ with respect to the
direction d. Indeed ¢(y 4 td) = det (d) det (d_%yd_% + tI) and all the eigenvalues
of d_%yd_% are real numbers because it is a hermitian matrix. The triples of this
type, (Y, ¢, d), will be called standard hyperbolic triples.

Many of our examples are isomorphic to a standard hyperbolic triple. For
the example in Section 2.6.1, consider the map ¢(x) = Diag(x). Then clearly
p(x) = det ¢(x). For the example in Section 2.6.2 it is clear. For the example in

Section 2.6.4 the following map gives the isomorphism:

o T 0 0

T « 0 0
(z,a) =

0 0 a T,
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In general though it is not true that every hyperbolic triple is isomorphic to a
standard hyperbolic triple. In Section 2.6.3 take n = 1, m = 4, which also produces
a hyperbolic polynomial of the type discussed in Section 2.6.5. That is, consider

for example X = R>,

p(x) =2 —af —aj—ai—al, d=(1,0,0,0,0).

Suppose there is a linear isomorphism ¢ : X — Y C H?, such that p(x) = det ¢(x),
and ¢(d) = 0. Because p is homogeneous of degree 2 we have t’p(z) = p(tz) =
det ¢(tx) = detto(x) = t° det ¢(x). Hence we see that s = 2. By the linearity of ¢,

there are vectors a, b, ¢, f € R® such that for every x € R® we have

alz o +iclx
p(x) = det
blo—iclx fra

There is a nonzero vector * € R® such that o = 0, and @ 1 span{a,b,c}. So
0 # —||z||* = p(z) = det ¢(x) = 0, a contradiction.

We need the following fact on two occasions below.

Proposition 2.6.5. If A and C are symmetric matrices such that det(A) # 0 then

A B
det = det(A) det(C — BTA_IB).
BT C

The example in Section 2.6.3 is ‘almost’ isomorphic to a standard hyperbolic
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triple. Indeed, consider the mapping ¢ : M, ,,, x R — H"*™ defined by:

al, 7
(r,a) — ,
x  ol,

then o™ "p(x, ) = det p(x, o). (This equality holds also in the case when a = 0.

One needs to consider the two cases n = m and n < m separately.)

Finally, consider a slight variation of the example in Section 2.6.3, the hyperbolic

polynomial

plz,a) = det(a?l,, — z'z)

with respect to d = (0,1), where again © € X = M, ,, x R. Then the mapping
® : M,n, x R — H*" defined by:

al,,_, 0 0
(x,a) — 0 al, =z

0 T al,

gives an isomorphism between (X, p,d) and a standard hyperbolic triple. The fact

that p(z, o) = det ®(z, o) follows from the identity:

al,_, 0 0
det 0 al, =« = det(a*I,, — zaT).
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Again, when a = 0 the conclusion of the above identity still holds, one just
needs to consider the two cases n = m and n < m separately.
Of course the counterexample above doesn’t disprove the conjecture made in

[46], which concerns polynomials in three variables:

Conjecture 2.6.1. Every p(xq, 2, x3) hyperbolic with respect to (0,0,1), can be
expressed as p(xy1, x2,x3) = det(x1 A + 22 B + x3I) for some symmetric matrices A

and B.

It is worth mentioning that the above conjecture holds when the polynomial
is in only two variables. Indeed, suppose p(x1,x2) is homogeneous of degree n
and hyperbolic with respect to (0,1). So the polynomial in ¢, t — p(x1, 29 + t)
has only real roots, for every (zq,x2). If we let (21,22) = (1,0) we can see that
p(1,t) =[], (t+a;), where {a;} are real numbers independent of z; and 5. Using
that p(xy, 29 +t) = afp(l, (xe + t)/x1) and letting ¢t = 0 we see that p(ay,xy) =

[T (x2 + a;x1). The statement is now clear.

2.6.7 The degree 2 case

In this section we show that every complete hyperbolic polynomial of degree two is

isometric. Let the vector space be
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We will assume that p(x) is a hyperbolic polynomial of degree two with respect to

a vector d. Without loss of generality, we write

pla) = 2" Ax,

where A € H". Proposition 2.2.5 implies that if S : X — X is a nonsingular
linear transformation, then ¢(y) := p(Sy) is hyperbolic with respect to | = S~'d.
The next lemma follows also from the fact that p is complete if and only if its

hyperbolicity cone is pointed, see Proposition 2.2.15.

Lemma 2.6.6. If p(z) = 2T Az is hyperbolic, then p is complete if and only if A

s nonsingular.

Proof. Because of Proposition 2.2.15, the linearity space of p(x) in our case is

{z € X:(te+y) Atz +y) =y Ay, Vy € X, Vt € R}
={reX:zTAcvt* + 22T Ayt =0 Vy € X, Vt € R}
={recX:2TAr =0and 2T Ay = 0 Vy € X}

={r e X :Ax =0} = {0},

if and only if A is nonsingular. O

Proposition 2.2.14 now says that if p(x) is a complete hyperbolic polynomial
with respect to d, and S : X — X is a nonsingular linear transformation, then

q(y) := p(Sy) is also a complete hyperbolic polynomial with respect to [ = S~'d.
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Lemma 2.6.7. Let p(x) = 27 Az be a complete, hyperbolic polynomial, with respect
to d of degree two. Then the symmetric matriz A is nonsingular and has exactly

(n — 1) eigenvalues of one sign, and 1 eigenvalue with the opposite sign.

Proof. The nonsingularity of A follows from the previous lemma. Now, because
p(x) is hyperbolic with respect to d, we have that the discriminant of the quadratic

function

t s (2 +td)T Az + td),

(dT Az)? — (dT Ad)(#T Az) is nonnegative Vo € X. This inequality implies two
things. First A cannot be positive definite because then the Cauchy-Schwarz in-

equality for the scalar product defined by A contradicts the nonnegativity of the

discriminant. Similarly, A cannot be negative definite. Without loss of generality
we can assume that that d? Ad > 0, so for every z in the (n — 1)-dimensional or-
thogonal complement (with respect to the usual inner product) of the vector Ad we
have 0 > zT Az. This implies that A has at least (n — 1) nonpositive eigenvalues,
but none of them can be zero, so A has (n — 1) strictly negative eigenvalues. The
last eigenvalue must be strictly positive, because A cannot be negative semidefinite.

The case dT Ad < 0 is handled analogously. 0

Now, Proposition 2.5.2 says that if p(x) is an isometric, complete hyperbolic
polynomial with respect to d, and S : X — X is a nonsingular linear transforma-
tion, then ¢(y) := p(Sy) is also an isometric, complete, hyperbolic polynomial with

respect to [ = S71d.
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Let p(z) = 2T Az be isometric with respect to d. Without loss of generality we
can assume that p(d) > 0. By Sylvester’s theorem (see for example [36], Theorem
4.5.8), there exists a nonsingular transformation @ = Sy of the variable x such that
q(y) := p(Sy) has the form: ¢(y) = yf — y2 — ---y>. Moreover, from the above,
q(y) is hyperbolic with respect to S™'d. Because the subsection about the Lorentz
cone showed that ¢(y) = yi — y3 — -+ — y? is isometric with respect to any d in a
hyperbolicity cone of ¢, and C(q,l) = S~ C(p,d)) we have answered the question

about isometricity for the whole class of hyperbolic polynomials of degree two.

2.6.8 Unitarily invariant norms

In this section we derive a well known theorem of von Neumann about unitarily

invariant norms as a consequence of the convexity results in this chapter.

In 1937, von Neumann [90] gave a famous characterization of unitarily invariant
matrix norms (that is, norms f on C™*" satisfying f(uxv) = f(a) for all unitary
matrices v and v and matrices # in C™*"). His result states that such norms are

precisely the functions of the form ¢ o o, where the components of the map

r e C"" — o(x) € R™

are the singular values oy(x) > o9(x) > ... > op(x) of @ (assuming m < n)
and ¢ is a norm on R™, that is invariant under sign changes and permutations of

components. Proof of this can be found also in [36, Theorem 7.4.24].

Lemma 2.6.8. Forz,y,w € R™, such thatw; > wy > ... > w, >0, and X € [0, 1],
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we have

(w; [Ae + (1= Myly) < {w, Alefy + (1 = A)yly)-

Proof. Apply Corollary 2.3.5, with w = (wy,ws, ..., W, 0,...,0) € Rfm, to the roots

of the hyperbolic polynomial given in Section 2.6.4 O

Now define H : R?*" — R" by

H(u) = %(U1 + V2, V3 + V4, .. V2ot F V2n),

where v = |ul;.

Lemma 2.6.9. For u,v € R?", z € R" such that z; > 2z, > ... > 2z, > 0, and

A € [0,1] we have

(z, HAu 4+ (1 = X)) < (2, \H(u) + (1 — N)H(v)).

Proof. Apply Lemma 2.6.8 with m = 2n and wy,_; = wy; = z;. O

Now suppose ¢ : R" — (—o0, +00] is convex and absolutely symmetric (that is,

o(z) = gllel,), V).

Lemma 2.6.10. g(H(Au+ (1 — A)v)) < Ag(H(u)) 4+ (1 — N)g(H(v)).

Proof. Apply Theorem 3.3 from [50] to Lemma 2.6.9. O
Now define f : R** s (—o0, +00] by f(u) = g(H(u)).

Lemma 2.6.11. The function f is absolutely symmetric and convez.
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Proof. Notice that H(|u|,) = H(u). Consequently,

Fuly) = g(H(|uly)) = g(H(u)) = f(u), Vu.

So f is absolutely symmetric. The convexity follows from Lemma 2.6.10. U
Theorem 2.6.12 (Von Neumann). The function g o o is convez.

Proof. Using Section 2.6.3 where X = M,, ,,, xR, p(z, o) = det(a?I—z2T), and d =
(0,1), we have that A(x,0) = (oy(2), ..., on(2), —on(2), ..., —o1(x)). So H(A(x,0)) =
o(x). Then finally g(o(x)) = f(A(x,0)), which, because of Theorem 2.3.9, is convex

n . O



Chapter 3

Self-concordant barriers for

hyperbolic means

In this chapter we demonstrate an application of hyperbolic polynomials in convex
optimization. (The necessary background on hyperbolic polynomials was given in
Chapter 2.) Our main result here will be to show how one can construct a class
of self-concordant barriers using hyperbolic polynomials. We begin with necessary
background about self-concordant barriers. Section 3.3 contains the main result.

Some examples and applications in convex optimization conclude the chapter.

3.1 Self-Concordant barriers

We begin by giving the definition of a self-concordant barrier function. Let E be
a finite-dimensional real vector space and () be an open nonempty convex subset

of E. A function F : @ — R is called a self-concordant barrier if it is three times

65
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continuously differentiable, convex and satisfies the conditions

DS ()bl < 2(D*F(a)h i)Y, (31)
F(z") — oo for any sequence " — x € bd @), and (3.2)
DE@)[H| < VI(D*F(e)h k), (33)

for all h € E, © € (). Here ¥ > 1 is a fixed constant depending on the function
F only, and D*F(z)[h,....,h] = Z—ZF(J} + th) . is the k-th directional derivative
at x along the direction i. The constant ¢ is called the parameter of the barrier
function: smaller parameters ensure that the interior point method using F' runs
faster. For short we call F' a -self-concordant barrier.

If in addition cl @ is a cone and instead of conditions (3.1), (3.2), and (3.3) the

function F' satisfies conditions (3.1), (3.2), and
F(tx) = F(x) — dlog(t), forall x € Q, t >0, (3.4)

we say F' is a ¥-normal barrier. In fact conditions (3.1), (3.2), and (3.4) imply
condition (3.3), see [68, Corollary 2.3.2].

Note 3.1.1. Observe that if F' is U-self-concordant then kF s kU-self-concordant

for any constant k > 1.

3.2 Hyperbolic polynomials & hyperbolicity cone

1. Hyperbolic Polynomials. In this chapter we investigate further properties



3.2. HYPERBOLIC POLYNOMIALS & HYPERBOLICITY CONE 67

of hyperbolic polynomials. The reader should consult Section 2.2 for the necessary
definitions and background results. There is only one difference in notation. If p
is hyperbolic with respect to d, that is, the polynomial ¢ — p(a 4 td) (where ¢ is
a scalar) has only real zeros for every x € E, the negatives of these roots will be

denoted by t;(x,d) = t;(x), and then we can write

p(x + td) = p(d) [ J(t + tilx,
=1

For convenience we state briefly our main examples from the previous chapter that

we will follow up with the present developments.

(a) £ =R" The polynomial

3

Z;
=1

is hyperbolic with respect to the direction d = (1,...,1). (cf. Section 2.6.1.)

(b) £ = R". The polynomial

is hyperbolic with respect to the direction d = (1,0,...,0). (cf. Section 2.6.5.)

(c) E = 5" (the set of n x n symmetric matrices). The polynomial

p(X)=det X

is hyperbolic with respect to the direction d = I. (cf. Section 2.6.2.)

(d) E=M,, xR (where M, , is the space of p X ¢ real matrices, and we assume
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g < p). The polynomial
p(X,r) =det (XTX — ') (X € M,,, r €R)

is hyperbolic with respect to the direction d = (0,1). (cf. Section 2.6.3.)

2. Hyperbolicity cone. Recall that the hyperbolicity cone of p with respect
to d, written C(p,d), is the set {x € E: p(x 4+ td) # 0, V¢ > 0}. In other words

Clp,dy={z € E:t;(x)>0,1<i<m}.

From now on the hyperbolicity cone will be denoted C(p). We now return to the
examples in the previous subsection and identify the hyperbolicity cone in each

case.

(a) The hyperbolicity cone is the interior of the positive orthant:

{r eR":2;>0,1<1<n}.

(b) The hyperbolicity cone is the Lorenz cone:

{xER”:«/x%—I—---xfl<x1}

(c) The hyperbolicity cone is the cone, ST, of n X n symmetric positive definite

matrices.
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(d) The hyperbolicity cone is the interior of the operator norm epigraph
{(X,T) € Mp7q XR: |0-1(X)| < T 1 S i S Q}v

where 01(X), ..., 04(X) are the singular values of the matrix X [6, Section 7.3].

3.3 A shifted self-concordant barrier

We begin with a trivial lemma.
Lemma 3.3.1. For any real numbers tq, ..., t,, the following inequality holds:

(59"

=1

>r
=1

The next theorem is our key result in this section.

Theorem 3.3.2. Let p be a hyperbolic polynomial (homogeneous of degree m) with

hyperbolicity cone C(p). Let a > 0 be a real number and
Csa(p) ={z € C(p) : p(x) > a}.
Then the function
flz) = —mlog(p(x) —a)

is an m*—self-concordant barrier on the set Csq(p).

Proof. The case a = 0 was proved in [25]. Notice also that condition (3.2) holds

trivially.
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Step 0. For « € Cs,(p) and h € R", we can write

plx +th) = tmp<h + %:1;) =t"p(x) ﬁ (% + t,»(h,:z;)) = p(x) ﬁ(l + tt;).

What is important is that the roots t; = ¢;(h, ) do not depend on the variable
t. Differentiating both sides of the above representation we get the directional

derivative of p(x) in the direction of h, which is used below repeatedly:

d (o 4 th)
— X
a?

Step 1. Observe that in the case a # 0 we only need to prove self-concordance

1/m

for a« = 1, because we can make the linear substitution * = a'/™y to obtain

f(al/my) = —mlog(p(y) — 1) — mlog(a).

(See for example [68, p.148].) So we assume from now on that ¢ = 1.
We now compute the directional derivatives of f along the direction h, using

the representation from above

f(:z;—l—th):—mlog< Hl—l—tt )

For short we introduce the notation

o = p(l’) — ]_, Cl == it“ Cz == it?, 03 == it?, (35)
=1 =1 =1
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and observe that in our situation, for © € Csi(p), we have a > 0. Elementary

calculation shows

D)l = - e,
D*f(x)[h, h] = WCE Lt e
D (oo = et 0t 2 Imla fl e, 2mlet L,

We want to prove that inequalities (3.1) and (3.3) hold for every h € R" and
z € Cs1(p).

Step 2. We start with inequality (3.3), which in the new notation is

Ci

o o o

me+l) | (mlat]) , mlat]) 1/2.
e n(t e e

m?2(a+1)

e

After squaring both sides and dividing by we get

1
(at )012 < @012 + mCy,
o o

so we want to show
a+1—m

(a4

The Cauchy-Schwarz inequality gives us C2 < mC, so since m > 1 we obtain
m
———C, <m0y,

as required.
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Step 3. Now we turn our attention to inequality (3.1). With the new notation,

this is

3
. (o + 1)(0;—|— 2)C; N 3(a+1)C1C N 2(a+1)Cs

o o o

3/2
< 2<m<a7j1>clz . M@ |
o

(a4

We multiply both sides by —=

3
W to get

(0 +2)C3 4300105 +20°Cy| < 2/m{a 1 1) (CF + aCs) """

Since this inequality is homogeneous of degree 3 in the vector (¢1,t, ..., 1), We may
assume without loss of generality that Cy = +1. We distinguish two cases.

Step 3.a. Suppose we have C; = +1. The inequality becomes
‘2 + a4+ 3aCy + 20z203‘ <2vma+m (1 + ozCz)S/z )

We now square both sides and expand:

4 4 o + 92°C7 + 4a*C3 + 4a + 12aC; + 8a°Cs + 6a°Cy + 40°Cs +
126°CyC5 < 4ma + 12ma®Csy + 12ma3022 + 4moz4C§ + 4m + 12maCy

+ 12ma2022 + 4moz3C§.
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Regrouping gives

0 < (4mC3 —4C3)a* + (4mC35 +12mC; — 4Cs — 12C,C3)a”
4+ (12mC3 + 12mCy — 6Cy — 8C5 — 9C5 — 1)a’ (3.6)

+ (12mCy +4m — 12Cy — 4)a + (4m — 4).

We show now that all the coefficients are positive. Using Lemma 3.3.1 and the fact
m>1, Cy > # this becomes clear for the coefficients of a*, a and the constant

term. Further, for the coefficient of o® using Lemma 3.3.1 we have

AnmC3 + 12mC2 — 4C; — 120,C5 > 4mC3 + 12mC2 — 4037 — 1205/

= O (4mC3* 4 12mCy* — 4 — 120,).

Consider the polynomial ¢(s) := 4ms® — 12s* + 12ms — 4. Its derivative ¢'(s) =
12(ms® — 2s +m) is nonnegative, so ¢ is increasing. Using the fact that \/I—E < 021/2

we get

1 4 12 12 4
q<c;/2>2q( ): Vi 12 12mym Am

Vm m m m m
_ A=)+ S8(mym = 1) +dmlm =)

which shows that the coefficient of o? is positive. For the coefficient of a?, using

Lemma 3.3.1, we have

12mC2 + 12mCy — 6Cy — 8Cs — 9C2 — 1
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> 12mC2 + 12mC, — 6C, — 8CS* —9C2 — 1

= 9(m —1)C2 + 6(m — 1)Cy + (mCy — 1) + C3(3mCy — 8CY* + 5m).

The quadratic polynomial 3ms? — 8s + 5m is strictly positive in the case when
m > 2, and the fact that Cy > % then implies that the last coefficient above is
positive. In the case when m = 1 we have Cy = 1 and one immediately sees that
the coefficient of o? is actually zero. The fact that all coefficients of the quadratic
polynomial on the right hand side of inequality (3.6) are positive implies that the
inequality holds for all o > 0, which is what we wanted to prove.

Step 3.b. Suppose on the other hand we have Cy = —1. The inequality becomes
‘(—2) —a—3aCy + 20z203‘ <2vma+m (14 ozCz)3/2.
Again we square both sides and expand to obtain

4 + o + 9a°C7 + 4a*C3 + 4a + 12aC; — 8a’Cs + 6a’Cy — 40°Cy —
1262C5C5 < 4ma + 12ma?Csy + 12m0z3022 + 4moz4C§ + 4m + 12maCy

+ 12ma2022 + 4moz3C§.
Regrouping gives

0 < (4mC3 —4C5)a* + (4mC3 + 12mC; + 4C5 + 120, C5)a”
+ (12mC3 + 12mCy — 6C;y + 8Cs — 9C3 — 1)a’

+ (12mCy 4+ 4m — 12C; — 4)a + (4m — 4).
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Now, if C3 > 0 then we can see analogously (even more simply than in Step 3.a)
that all coefficients of the quadric polynomial are positive. If C3 < 0 then we use

Lemma 3.3.1 to obtain C5 > _C;a/z and again proceed as in Step 3.a. U

3.4 Examples

Following our examples from Section 3.2, we obtain the following applications of

the main result.

(a) For any natural number m the function

flz1, ..., xm) = —mlog (H:L', — 1)

=1

is an m?2-self-concordant barrier on the set

{xERm:Haji>1,xi>0,1§i§m}.

=1
In particular when m = 2 this result follows from Proposition 5.3.2 in [68].

(b) The function

flz,y) = —2log(y® — ||=|* — 1)

is a 4-self-concordant barrier on the set

{v.2) eRx Ry > IalP +1}

This result can also be found in [68]. (See the proof of Proposition 5.4.3 and
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make the linear substitution ¢ — z — 1, y — 2z + 1 in the function ¥.) In

fact, [68] proves that —log(y* — ||z||* — 1) is a 2-self-concordant barrier on the

same set.

(¢) A more interesting example is the function
f(X)=—mlog(det X — 1),
which is an m?-self-concordant barrier on the set

{X eS8y 1det X > 1}

(d) The function
f(X,r) = —2¢log(det (XTX —r2I,) — 1)

is a (2¢)*self-concordant barrier on the set

{(X,r) € My x R:det (XTX —72L) > 1& |0y (X)] < 7).

3.5 Application: hyperbolic means

A hyperbolic mean is a function of the form p(x)'/™, where p is a hyperbolic po-
lynomial of degree m, and the domain is the hyperbolicity cone C(p). Hyperbolic

means are positively homogeneous and concave [25, Lemma 3.1]. Examples include
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the geometric mean (], #;)/™, and the function

1 Y

X €57 s (det X)Mm™.

A natural approach to applying interior point methods to convex programs involv-
ing hyperbolic means is to use a self-concordant barrier for the hypograph of the

mean, the convex cone
H(p)={(z,t) eR"xR:2€ C(p), 0 <t™ < p(x)}.

The following result provides such a barrier.

Theorem 3.5.1. For a suitable positive real p (for example p = 400), if p is a

hyperbolic polynomial of degree m then

(ort) = =y 1og (A2 1) + 210

tm
is a 2um?-normal barrier for the hypograph, H(p), of the hyperbolic mean.

Proof. Apply Proposition 5.1.4 in [68] to Theorem 2.2. O

As a simple-minded illustration, suppose we want to solve the problem

1

sup pla)% + (e,)
st. Ax=0>
x € C(p),
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for some linear map A and given b and ¢. Rewrite this problem in the equivalent

form
sup t+ (¢, x)

st t < p(x)w

and finally into the form
max (¢, )

st. Ar=25b

where ¢ := (¢, 1), & := (a,t), A(x,t) := Ax. We have an easily computable self-
concordant (logarithmically homogeneous) barrier for the cone H(p), so we can
design an interior point algorithm to solve this hyperbolic mean maximization prob-
lem. Using this result we can as well easily model convex programs with constraints

involving hyperbolic means, since # € C(p) satisfies an inequality of the form
(e,2) — p(x)™ < b
if and only if there exists positive real ¢ satisfying
(c,x)y —t <b, " <p(x).

In [68, p.239], Nesterov and Nemirovskii show how to model convex programs in-

volving the geometric mean or (det (-))/™ by semidefinite programming. It is inter-
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esting to compare their approach to this idea. Their approach involves additional
variables (O(m?) variables to model det (-)'/™, for example), whereas this idea is
direct and applies to any hyperbolic mean. On the other hand, extremely efficient
algorithms are now available for semidefinite programming (see for example [2],

[85]).

3.6 Relationship with Giiler’s result

As we mentioned above, in [25] Giiler proved that — log(g(x)) is an n-self-concordant
barrier on C(q) for any hyperbolic polynomial ¢ of degree n. (Giiler attributes the
observation to Renegar.) In this concluding section we want to show that our result
cannot be deduced by an affine restriction of this fact. In other words we want to
show that we cannot take a self-concordant barrier of the above type, restrict it to
an affine subspace and obtain the self-concordance of —mlog(p(x) —1).

Consider the following special case of Theorem 3.3.2:
—310g(:1;3 — 1) is self-concordant on (1, 400).

To deduce this from [25] we would need a hyperbolic polynomial ¢ with respect to

d with hyperbolicity cone C(g¢) and vectors ¢ and b such that

(2° —1)°> = g(a + xb), for all z € R, and

l<zeRe a+zbe C(g).
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When ¢ = 0 we immediately get g(a) = —1. We can also conclude that b € c1C(q)
which is a closed convex cone. Since d € C(q), an open convex cone, we have for all
small enough real € > 0, that b+ ed € C(q), so the polynomial ¢ is hyperbolic with
respect to b+ ed as well. That is, for all small enough € > 0 the polynomial (in z)
q(a+ (b + ed)) has only real, nonzero roots. Clearly if ¢(a + 2b) = (2® — 1)? then

n > 9. We divide both sides of this equality by 2", and setting ¢ := 1/x obtain
qlat +b) = "7 = 3" £ 3" — " =" (1 — °)°.

Using the fact that ¢(a + x(b 4 ed)) has nonzero roots and applying the same
substitution as above we get that the polynomial (in ¢) ¢ — ¢(at 4+ b+ ed) has only
real roots. Now, for € close to zero, the degree of the polynomial g(at 4+ b+ ed) is
constant, and so its roots approach the roots of ¢(at +b) as € approaches zero. This

is a contradiction with the fact that g(at + b) has a complex root.

3.7 An alternative approach

Our approach up to here originated with [57]. A subsequent approach, [66] uses
more sophisticated theory to obtain a broader version of Theorem 3.3.2. Here we
describe briefly the details. Let () be an open, pointed, convex cone and let the
function F': Q — R satisfy conditions (3.1), (3.2), and (3.3). We need the following
definition [68, Definition 5.1.2].

Definition 3.7.1. Let 8 be nonnegative real. A function A : Q — R is called

B-compatible with the barrier F if
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(1) AisC? on Q.
(i1) A is concave with respect to cl@Q).

(i) For allx € Q, h € E, we have

D3 A(2)[h, h,h] < —33D* A(x)[h, h]/D*F(x)[h, h].

We also need the following result, a special case of [68, Proposition 5.1.7].

Theorem 3.7.2. Assume A is 3-compatible with F', with 3 > 1. Then the function

U(x) = p*{—log(1 + A(x)) + F(x)}

is a 3*(9 + 1)-self-concordant barrier on the domain {x € Q|A(x) > —1}.

A calculation shows that A(x) := —ef@ is a /) + 20-compatible with F, so
setting 5 = v/ 4+ 20 we have that

U(x) = —(J +20) log(e_F(x) - 1),

is a (¥ 4 20)(¥ 4 1)-self-concordant barrier on the domain {# € Q|F(x) < 0}.
When p is a hyperbolic polynomial of degree m and F(xz) = —log(p(x)) we have
Y = m and the above result follows from Theorem 3.3.2 using Note 3.1.1 with
E = (94 20)/d. (In fact Theorem 3.3.2 does a bit better.) We conclude with the

equivalent of Theorem 3.5.1.
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Theorem 3.7.3. For a suitable positive real i (for ezample p = 400), if —log H(x)

s a v-normal barrier on () then

(2,1) = —p2 (9 + 20) <1og <Ht(f) _ 1) 120 + 1)10g(t)>,

is a 2p%(V + 20)(V + 1)-normal barrier on the domain {(:L',t)|0 <t < H(:z;)} )

Proof. Notice first that H(tx) = t’H(z) for all z € Q, t > 0. Then let F(z) :=
—log H(x) in the above paragraph and apply Proposition 5.1.4 in [68] to the func-
tion U(x). O

We would like to comment that the constant p = 400, in Theorem 3.5.1 and

Theorem 3.7.3 can be improved using the results in [23].



Chapter 4

Twice Differentiable Spectral

Functions

In this chapter we show that a symmetric function f is twice differentiable at
the point A(A) if and only if the corresponding spectral function f o A is twice
differentiable at A. Moreover we will show that f € C* around A(A) if and only if

(f o A) € C* around A.

4.1 Notation and preliminary results

In what follows 5™ will denote the Euclidean space of all n x n symmetric matrices
with inner product (A, B) = tr(AB) and for A € 5", AM(A) = (M(A),..., \(4))
will be the vector of its eigenvalues ordered in nonincreasing order. (All vectors
in this and the following chapters are assumed to be column vectors unless stated

otherwise.) By O(n) we will denote the set of all n x n orthogonal matrices. For

83
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any vector x in R”, Diag x will denote the diagonal matrix with the vector = on the
main diagonal, and & will denote the vector with the same entries as x ordered in
nonincreasing order, that is ¥y > &9 > -+ > z,,. Let RY denote the set of all vectors
x in R” such that 1 > z9 > -+ > z,,. Let also the operator diag: 5™ — R" be
defined by diag (A) = (a11, ..., @nn). In this chapter {M,,}>°_, will denote a sequence
of symmetric matrices converging to 0, and {U,}o_; will denote a sequence of
orthogonal matrices. We describe sets in R™ and functions on R” as symmetric if
they are invariant under coordinate permutations. Thus f : R"™ — R will denote a

function, defined on an open symmetric set, with the property

f(z) = f(Px) for any permutation matrix P and any = € domain f.

We denote the gradient of f by V£ or f’, and the Hessian by V2f or f”. Vectors
are understood to be column vectors, unless stated otherwise. Whenever we denote

by p a vector in R} we make the convention that

fin =0 = Uy > gt =0 = g > kgt [l (ko =0, kr = n).

We define a corresponding partition

_[1 = {1,2, ...,kl}, _[2 = {kl + ]_,kl + 2, ...,kz}, ceey _[,« = {k,«_l + ]_, ...,k,«},
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and we call these sets blocks. We denote the standard basis in R™ by ¢!, e2, ..., e,

and e is the vector with all entries equal to 1. We also define corresponding matrices

Xy = [ehntl M), forall I=1,..., 7,

For an arbitrary matrix A, A’ will denote its i-th row (a row vector), and A" will
denote its (7, 7)-th entry.
Definition 4.1.1 ([49]). We say that the vector u € R" block refines the vector
be R™ if u; = py implies b; = b; for all i,j € {1,...,n}. Equivalently
Pu=up = Pb=>b forall P € P(n).
(In all of our preliminary results the matrix A will be a diagonal matrix, Diag (.)
We need the following result.

Lemma 4.1.2. Let f : R® — R be a symmetric function, twice differentiable at

the point p € RY, and let P be a permutation matriz such that Py = p. Then
1. Vf(p) = P'V f(n), and

2. V2 f(u) = PTN2f(u)P.
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In particular we have the representation

ay B+ by, i a2 Eo e ary By,
sz(u) _ ag1 By agaFay + b, Jy - agr By,
arlErl ar2Er2 e arrRrr —I' bkr Jr

where the E,, are matrices of dimensions |I,| x |I,| with all entries equal to one,
(aij)i =1 is a real symmetric matriz, b := (by, ..., by) is a vector which is block refined

by w1, and J, is an identity matriz of the same dimensions as E,,.

Proof. Just apply twice the chain rule to the equality f(u) = f(Pu) in order to
get parts 1 and 2. To deduce the block structure of the Hessian, consider the block
structure of permutation matrices P such that Py = p: then, when we permute
the rows and the columns of the Hessian in the way defined by P, it must stay

unchanged. O

Using the notation of this lemma, we define the matrix

B :=V?*f(p) — Diagb = (a;; Eij) (4.1)

.
2,7=1"

Note 4.1.3. We make the convention that if the 1-th diagonal block in the above
representation has dimensions 1 X1 then we set a;; = 0 and by, = fllc/lkl(/“‘) Otherwise
the value of by, is uniquely determined as the difference between a diagonal and an
off-diagonal element of this block. Note also that the matrix B and the vector b

depend on the point u and the function f.
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Lemma 4.1.4. For i € R} and a sequence of symmetric matrices M, — 0 we

have that
A(Diag i+ M) = 1 + (NI ML X, o XM X)) + of| Mo

Proof. Combine Lemma 5.10 in [52] and Theorem 3.12 in [32]. O

The following is our main technical tool.

Lemma 4.1.5. Let {M,,} be a sequence of symmetric matrices converging to 0,
such that M, /|| M| converges to M. Let p be in RY and U, — U € O(n) be a

sequence of orthogonal matrices such that
Diag yt + M,, = Uy, (Diag \(Diag pt + M,,))UL, for all m =12, .... (4.2)

Then the following properties hold.

1. The orthogonal matriz U has the form

Vi 0 -+ 0

0 Vy -+ 0
U= ,

0o 0 - V

where Vi is an orthogonal matriz with dimensions || x |I;| for all 1.

2. If1 € I; then
i,p\2
]_1]_’]_’]_ 1 - Epe[l (Ump)

=0.
m—o0 [
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. If 1 and 5 do not belong to the same block then

i,7\2
iy (Uit’)

= 0.
moo || My

If v € I} then

Vi (Diag A( X M X)) (V)T = M.

Afu, g€, and p € I then

) Usryip
lim -2 ™

moo || M|

0.

. For any indices 1 # j such that 1,5 € I,

LP[]IP
li Epell Um Um .

1m = 0.
m=oo [ M|
For any indices © # j such that v,j € I,

Vi’ (Diag M(X] M X)) (V)T = M™.

For any three indices v, j, p in distinct blocks,

) Usrliip
lim -2

= 0.
movee || My

88
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9. For any two indices 1, j such that v € I}, 7 € I, where [ # s,

lim ZPEIZ U:’;pUT]’;p ZPEIS UTZT’lpUT]T;p _ Mi,j
STV Hhe M '

Proof. 1. After taking the limit in equation (4.2) we are left with
(Diag 1)U = U(Diag ).

The described representation of the matrix U follows.

2. Let us denote
b = (MXT M, X)), XM, X)) (4.3)
We use Lemma 4.1.4 in equation (4.2) to obtain
Diag ut + M,, = U,,(Diag ;1)UL + U,.(Diag b ) UL + o(|| M, ]),
and the equivalent form
UL (Diag 1)Uy, + UL M,,U,, = Diag s + Diag hp, + o(|| M ]]).

We now divide both sides of these equations by ||M,,|| and rearrange:

Diag yt — U,,(Diag u)UL M., U..(Diag h,, ) UL
[ M| [ M| [ M|
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and

Diag it — UL (Diag 1)U, _ UL M, U, _ Diaghm o(1)
|| Mo | || Mo | || M|

(4.5)

Notice that the right hand sides of these equations converge to a finite limit
as m increases to infinity. If we call the matrix limit of the right hand side of

the first equation L, then clearly the limit of the second equation is —UT LU.

We are now going to prove parts 2 and 3 together inductively, by dividing
the orthogonal matrix U,, into the same block structure as U. We begin by

considering the first row of blocks of U,,.

Let ¢ be an index in the first block, I;. Then the limit of the (7,7)-th entry in
the matrix at the left hand side of equation (4.4) is
</’Lk1 <1 - Epefl (UTZ;Lp)2> - E;:Z Mk, Epefs (UTZ;Lp)2>

lim =L".  (4.6)
m—co || M |

Now recall that
L* = —M" + Vi (Diag \(X{ MX1))(V)",
and because V) is an orthogonal matrix, notice that

DL = (XX 4 YV (Diag X M)V
iely el
= —tr (X M) + Y N(XTMX) Y (1)

€l JEL
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= —tr (X{MX) + ) N(XTMXy)
iEIl
= 0.

We now sum equation (4.6) over all ¢ in [ to get

e (100 S U)) = Tt e per, U))

oo [ M|

Notice here, that the coefficients in front of the pg,, [ = 1,2,...,r in the

numerator sum up to zero. That is,

LIRS ST DD SR

1L,pElL s=2 1€l ,p€l;

So let us choose a number « such that

(b +ae)y > 0> (u+ ae) 41,

and add « to every coordinate of the vector p thus “shifting” it. The coordi-
nates of the shifted vector that are in the first block are strictly bigger than
zero, and the rest are strictly less than zero. By our comment above, the last
limit remains true if we “shift” g in this way. If we rewrite the last limit for
the “shifted” vector, because all summands are positive, we immediately see
that we must have

lim |‘[1| - Ei,pefl (Url;zp)z

=0
m—o0 1M
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and

; 2
]_lm 2161171?613 (U;ﬁp)
m—o0 || Mo |

=0, forall s=2, .7

The first of these limits can be written as

T (1= Sper WiR)?) Y

oo [ M|

and because all the summands are positive, we conclude that

10\ 2
lim 1-— Epefl (UT;Lp)

=0, forall: e I.
m—co || M |

The second of the limits implies immediately that

,p 2
Ly Ua)
m=oo || My |

=0, forany: € I, p & I4.

Thus we proved part 2 for ¢+ € I; and part 3 for the cases specified above.

Here is a good place to say a few more words about the idea of the proof.
As we said, we divide the matrix U, into blocks complying with the block
structure of the vector p (exactly as in part 1 for the matrix U'). We proved
part 2 and 3 for the elements in the first row of blocks of this division. What
we are going to do now is prove the same thing for the first column of blocks.

In order to do this we fix an index ¢ in ; and consider the (7,7)-th entry in
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the matrix at the left hand side of equation (4.5), and take the limit:

i (1 Spen (U5)°) = i i Sy, (U5
lim

= —(UTLU)™. (4.7)

Using also the block-diagonal structure of the matrix U, we again have
Y (UTLvyt =) 1M =o.
el el

So we proceed just as before in order to conclude that

N2
1Y (U
1m
m—o0 || Mo |

=0, forall: e I,

and

P2
i (i)

m—co || M |

=0, forany: € I, p & . (4.8)

We are now ready for the second step of our induction. Let : be an index in
I;. Then the limit of the (7,¢)-th entry in the matrix at the left hand side of

equation (4.4) is

i i 0 (- X )

reh pel



4.1. NOTATION AND PRELIMINARY RESULTS 94

Z,,Lk > ) ) -1

pel.
Analogously as above we have
iEIQ

so summing the above limit over all ¢ in [; we get

(e X @ (8- X @))-

€lr,pely 1,p€l>

Z,,Lk > @) -o.

1€lr, pel;
We know from (4.8) that

].lm 21612 th (Ul p)

= 0.
m—o0 [

So now we choose a number « such that
(b +ae)r, > 0> (u+ ae)i,4

and as before exchange p with its shifted version. Just as before we conclude

that
: 2
1= T, (Ui)
11T
m—ro0 || M|

=0, for all s € I,
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and

lim iy

=0, forany: € I, p & I.
m—o0 [| M|

We repeat the same steps for the second column of blocks in the matrix U,
and so on inductively until we exhaust all the blocks. This completes the

proof of parts 2 and 3.

. For the proof of this part, one needs to consider the (i,¢)-th entry of the

right hand side of equation (4.4). Because the diagonal of the left hand side
converges to zero (by 2 and 3), taking the limit proves the statement in this

part.

. This part follows immediately from part 3.

. Taking the limit in equation (4.4) gives

Uipyiep S Ueyie
li pEI . pEl] .
moe Z’“"“ 1M H M !

where L' is the (7, 7)-th entry of the limit of the right hand side of equation

(4.4). Note that the coefficients of yx, again sum up to zero:

S S i+ Y v o,

S;ﬁl pEIs pEIl

because U,, is an orthogonal matrix. Now by part 5 we have

S o UieUie S e UirUz?
0= lim — p€le T Ty, RS M T m
Y 1M move | Mal|

m—0o0

s#£L
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as required, and moreover LW = (.

7. The statement of this part is the detailed way of writing the fact, proved in

the previous part, that L/ = 0.

8. This part follows immediately from part 3. (In fact the expression in part 8
is identical to the one in part 5, re-iterated with different index conditions for

later Convenience.)

9. We again take the limit of the (7, j)-th entry of the matrices on both sides of

equation (4.4).

Mo t#s t ||M || l ||Mm||
EpEI Ui7pUj7p

pg, =P ™ > = [,
[ M |

By part 8 we have that all but the [-th and the s-th summand above converge

to zero. On the other hand

¥ ) M,, Um(Diaghm)UT>”
LY = lim (— + =
mroo \ || M| || M|
> : Diag h,, :
= —M”’—I—U’(hm )(U])T
m—roo || M|
= —_2\4—1"‘747

because U and U7 are rows in different blocks and (Diag h,,, )/||M,.|| converges

to a diagonal matrix. O

Now we have all the tools to prove the main result of the chapter.
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4.2 Twice differentiable spectral functions

In this section we prove that a symmetric function f is twice differentiable at
the point A(A) if and only if the corresponding spectral function f o A is twice
differentiable at the matrix A.

Recall that the Hadamard product of two matrices A = [4"] and B = [B"/] of
the same size is the matrix of their elementwise product Ao B = [A" B"7]. Let the

symmetric function f : R"™ — R be twice differentiable at the point ¢ € R}, where

P = ey > k1 = = [y > g1 s (ko =0, kr = n).

We define the vector b(p) = (by(p),...,bu(pt)) as in Lemma 4.1.2. Specifically, for

any index ¢, (say ¢ € [; for some [ € {1,2,...,r}) we define

am if 1] = 1.

13

f(e) — £ (), for any p# q € I

bi(p) =

Lemma 4.1.2 guarantees that the second case of this definition doesn’t depend on

the choice of p and ¢q. We also define the matrix A(u):

0, =
A () = 4 bi(p), if i but i€ L 9
M7 otherwise.
Hi— [

For simplicity, when the argument is understood by the context, we will write just
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b; and A". The following lemma is Theorem 1.1 in [49].

Lemma 4.2.1. Let A € S™ and suppose A(A) belongs to the domain of the sym-
metric function f:R™ — R. Then f is differentiable at the point A\(A) if and only

if f o\ is differentiable at the point A. In that case we have the formula
V(f 0 A)(4) = U(Diag ¥ F(A(4))) U,

for any orthogonal matriz U satisfying A = U(Diag )\(A))UT.

We recall some standard notions about twice differentiability. Consider a func-
tion F from S™ to R. Its gradient at any point A (when it exists) is a linear
functional on the Euclidean space S", and thus can be identified with an element
of 5", which we denote VF(A). Thus VF is a map from S” to S™. When this map
is itself differentiable at A we say F' is twice differentiable at A. In this case we can
interpret the Hessian V2F(A) as a symmetric, bilinear function from S x S™ into
R. Its value at a particular point (H,Y) € S™ x §" will be denoted V2F(A)[H, Y.
In particular, for fixed H, the function V2F(A)[H, -] is again a linear functional on
S", which we consider an element of 5", for brevity denoted by V?F(A)[H|. When
the Hessian is continuous at A we say F' is twice continuously differentiable at A.
In that case the following identity holds:

2
V?F(A)[H, H] = EF(A +tH)

t=0

The next theorem is a preliminary version of our main result.
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Theorem 4.2.2. The symmetric function f : R™ — R is twice differentiable at the
point (1 € RY if and only if f o A is twice differentiable at the point Diag . In that

case the Hessian is given by

V*(f o A)(Diagu)[H] = Diag (V?f(u)[diag H]) + Ao H. (4.10)

Hence

V?(f o \)(Diag u)[H, H) = V*f(u)[diag H, diag H] + (A, H o H),

where A is defined in (4.9).

Proof. Tt is easy to see that f must be twice differentiable at the point p whenever
f o X is twice differentiable at Diag y because by restricting f o A to the subspace
of diagonal matrices we get the function f. So the interesting case is the other
direction. Let f be twice differentiable at the point ¢ € R} and suppose on the
contrary that either f o\ is not twice differentiable at the point Diag p, or equation

(4.10) fails. Define a linear operator A by

A(H) := Diag ((V?f(u)(diag H)) + Ao H.

(Lemma 4.2.1 tells us that fo ) is at least differentiable around Diag pu.) So, for this

linear operator A there is an € > 0 and a sequence of symmetric matrices { M,, }o_,
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converging to 0 such that

[V(f o A)(Diag i + My ) — V(f o A)(Diag p) — A(Mo)||
[ M|

> €

for all m = 1,2,.... Without loss of generality we may assume that the sequence
{M,}>5_, is such that M,,/|| M| converges to a matrix M, because some sub-
sequence of {M,,}>_, surely has this property. Let {U,,}5_, be a sequence of
orthogonal matrices such that

Diag yt + M, = U,,(Diag A(Diag pt + M,,)) UL, forall m=1,2,....

m

Without loss of generality we may assume that U, — U € O(n), or otherwise we
will just take subsequences of {M,,}>°_; and {U,,}2_;. The above inequality shows
that for every m there corresponds a pair (or more precisely at least one pair) of

indices (¢, 7) such that

[(V(f o A)(Diag u + M,,) — Diag V f(11) — A(M,))"”| s £ (4.11)
] n |

So at least for one pair of indices, call it again (7,7), we have infinitely many
numbers m for which (¢, j) is the corresponding pair, and because if necessary we
can again take a subsequence of {M,,}>_; and {U,,}>_; we may assume without
loss of generality that there is a pair of indices (i, 7) for which the last inequality
holds for all m = 1,2,.... Define the symbol h,, again by equation (4.3). Notice

that using Lemma 4.2.1, Lemma 4.1.4, and the fact that V f is differentiable at p,
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we get

V(f o \)(Diagy + M) = U, (Diag V f(A(Diag yt + M) UL

m

= U (Diag V f (11 + by + o( | M) U,
(4.12)
= Un(Diag (V£ (1) + V2 F(10) e + o|| M) U,

= Un(Diag V f (1)) Uy, + Un(Diag (V2 f (1)) ) Uy, + ol || M)

We consider three cases. In every case we are going to show that the left hand side

of inequality (4.11) actually converges to zero, which contradicts the assumption.

Case I. If i = j, then using equation (4.12) the left hand side of inequality (4.11)

is less that or equal to

U}, (Diag V £ (1)) (U3)" = fi(p)]
| M ||

0, (Diog V274 o) (V) — (VS e M), |
3] |

_|_

We are going to show that each summand approaches zero as m goes to infinity.
Assume that ¢ € [; for some [ € {1,...,r}. Using the fact that the vector p block

refines the vector V f(p) (Lemma 4.1.2, part 1) the first term can be written as

) (1= W) ) = > Al Y (i)

pEl; sis#l p€l,

We apply now Lemma 4.1.5 parts 2 and 3 to the last expression.
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We now concentrate on the second term above. Using the notation of equation

(4.1) (that is, V2f(u) = B + Diagb) this term is less than or equal to

Uy (Diag (Bhi)) (U;,)" — (B(diag M) |
1M

| | 34.13)
|U%, (Diag ((Diag b)h,)) (UL,)" — ((Diag b)(diag M,,)).
* BN '

As m approaches infinity, we have that U! — U'. We define the vector & to be:
hi= lim —— = (MXTMX)T, . AMXTMX,)T)
So taking limits, expression (4.13) turn into:

U (Diag (Bh))(U)" — (B(diag M)) |
+|U* (Diag ((Diagb)2))(U*)" — ((Diag b)(diag M)) |.
We are going to investigate each absolute value separately and show that they are

both actually equal to zero. For the first, we use the block structure of the matrix

B (see Lemma 4.1.2) and the block structure of the vector h to obtain
(Bh); =Y agtr (X MX,), when j € I,

s=1

Using the fact that ¢ € I; and that V; is orthogonal we get

U'(Diag (BR))(U)" = (V/X[")(Diag (Bh))(Xi(V;')")
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— V(X[ (Diag (Bh)) X)) (V)"

N |11]

= (S xax) (S 05)
s=1 s=1

= ialstr(XsTMXs)

= (sgdiagM)z,

which shows that the first absolute value is zero. For the second absolute value, we

use the block structure of the vector b, to write
(Diag b)h = (b, M XTMX,)T, . b MXT M X))
In the next to the last equality below we use part (4) of Lemma 4.1.5:

U’ (Diag ((Diagb)h))(U)" = (Vi'X[")(Diag ((Diag b)h)) (Xi(Vi)")
= V(X7 (Diag ((Diag b)h)) X)) (Vy')"
= ;i (Diag b M X7 MX,)) (V)T
= by, MV

—  ((Diagb)(diag M))

i

We can see now that the second absolute value is also zero.

Case IL. If © # j but 4,5 € [ for some [ € {1,2,...r}, then using equation (4.12)
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the left hand side of inequality (4.11) becomes

Ui (Divg ¥ £0)) ()" + U (Ding (V£ G0)bn)) (U = b M|
10| o

Using the fact that u block refines vector V f(u), we can write the first summand

in the absolute value as

e (0 ) VR + f 0 Y UirU).

s#l p€l; pel

We use parts 5 and 6 of Lemma 4.1.5 to conclude that this expression converges to

zero. We are left with

Uy (Diag (V2 (1) hom ) (U3) T — by My |
[ '

Substituting above V?f(u) = B + Diagb we get

U, (Diag (Bh,,)) (U)" + Ul (Diag ((Diag b)hn)) (U)T = by, M|
A |

Recall the notation from Lemma 4.1.2 used to denote the entries of the matrix B.

Then the limit of the first summand above can be written as

Uy (Diag (Bhum)) (U7,)" |

. . ; . iNT
=Y ((Z aytr (X} MX,)) > U’FPUJ??>
s=1 =1 p€ls

Il
o

Y
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because clearly > UbPUP = 0 for all s € {1,2,..r}. We are left with the

following limit

11U (Diag (Diag b)) (U7,)" — bi M|
1111
m—roo | M ||
= |U'(Diag ((Diag b)h)) (U’ )" — by, M*|.

Using Lemma 4.1.5 part 7 we observe that the last absolute value is zero.

Case IIL. If ¢ € [; and j € I,, where | # s, then using equation (4.12), the left

hand side of inequality (4.11) becomes (up to o(1))

AR AN
By —H

U}, (Diag V f (1)) (U2)T + U}, (Diag V2 f () ) (UZ,)T

M|
[ '

We start with the second term above. Its limit is

o Ui (Dig (V£ )) (V)"

oo ||Mm|| = Ul(Diag (V f(ﬂ)h))(U]) =0,

because in our case, U* has nonzero coordinates where the entries of U7 are zero.

We are left with

g | U (Diag V() (Ua)" £ () = i (1) My

. (4.14)
v [ M,,|| g — ke || M|
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We expand the first term in this limit.

Un Rieg VA@) )" _ 4y Lopen U U
12, . M,

E lp ]p Usryip
I p€ls pEIt m - m

Using Lemma 4.1.5 part 8 we see that the third summand above converges to zero

as m goes to infinity. Part 9 of the same lemma tells us that

li ML] — 1 Epefl Urlr;pUT]r;p EpEIS Urlr;pUT]r;p
=5 S\ M MM )

m—y00 ||M || m—y00

In order to abbreviate the formulae we introduce the following notation

LPITIP
Epell Um Um

po= 18] , forall [=1,2,..,r

Substituting everything in (4.14) we get the following equivalent limit:

Fr, (1) = fr (1) (

i | (Bt + g0 ) - PO

f B+ 1 85| -

Simplifying we get

f ( )Mkl fkl( )
My — Mk,

lim (8, + 3;)

Notice now that

Zﬁfn =0, forall m,
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because U, is an orthogonal matrix and the numerator of the above sum is the

product of its ¢-th and the j-th row. Next, Lemma 4.1.5, part 8 says that
. t
Hm > 0 =0
t#l,s

S0

lim (8, + f,,) = 0,

m—r0o0
which completes the proof. O

We are finally ready to give and prove the full version of our main result.

Theorem 4.2.3. Let A be an n X n symmetric matriz. The symmetric function
f: R* = R is twice differentiable at the point A(A) if and only if the spectral
function f o X s twice differentiable at the matriz A. Moreover in this case the

Hessian of the spectral function at the matriz A s
V2(f o M\)(A)[H] = W (Diag (V2 f(M(A))diag H) + Ao H)WT,

where W is any orthogonal matriz such that A = W(Diag )\(A))WT, H=WTHW,
and A= A(XA)) is defined by equation (4.9). Hence

V2(f o M (A)H, H] = V2f(MA))[diag H, diag H] + (A, H o H).

Proof. Let W be an orthogonal matrix which diagonalizes A in an ordered fashion,
that is

A=W (Diag A(A))WT".
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Let M,, be a sequence of symmetric matrices converging to zero, and let U, be a

sequence of orthogonal matrices such that
Diag A(A) + WM, W = U, (Diag A(Diag \(A) + WM, W))UL.
Then using Lemma 4.2.1 we get

VI(foA(A+ M)
= V(fo\)(W(Diag\(4) + WM, W)WT)
= V(foA) (WU, (Diag A(Diag A(4) + W' M, W) ) ULWT)

= WU, (Diag V f(A(Diag A(4) + W' M,,W))) ULWT.
We also have that
V(f o M)(A) = W (Diag VF(A(A))) W7,

and WTM,, W — 0, as m goes to infinity. Because W is an orthogonal matrix we
have |[WXWT|| = || X]|| for any matrix X. It is now easy to check the result by

Theorem 4.2.2. O

4.3 Continuity of the Hessian

Suppose now the symmetric function f: R™ — R is twice differentiable in a neigh-

bourhood of the point A(A) and its Hessian is continuous at the point A(A). Then
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f oA as we saw above will be twice differentiable in a neighbourhood of the point
A, and in this section we are going to show that V?(f o A) is also continuous at the
point A.

We define a basis, {H;;}, on the space of symmetric matrices. If ¢ # j all the
entries of the matrix H;; are zeros, except the (7, 7)-th and (7,7)-th, which are one.
If ¢+ = j we have one only on the (¢,7)-th position. It suffices to prove that the
Hessian is continuous when applied to any matrix of the basis. We begin with a

lemma treating, in some sense, all special cases at once.

Lemma 4.3.1. Let i € R} be such that

P = ey > k1 = = [y > g1 s (ko =0, kr = n).

and let the symmetric function f : R® — R be twice continuously differentiable at
the point p. Let {p™}o_, be a sequence of vectors in R™ converging to u. Then

lim V?(f o A\)(Diagu™) = V*(f o \)(Diag s1).

m—0o0

Proof. For every m there is a permutation matrix P, such that PIu™ = ™. (See
the beginning of Section 4.1 for the meaning of the bar above a vector.) But there
are finitely many permutation matrices (namely n!) so we can form n! subsequences
of {u™} such that any two vectors in a particular subsequence can be ordered in
descending order by the same permutation matrix. If we prove the lemma for every
such subsequence we will be done. So without loss of generality we may assume

that PTp™ = ™ for every m, and some fixed permutation matrix P. Clearly for
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all large enough m, we are going to have

m m m m m m
Mgy, = Miy 415 My = Hegt1s " s Mgy = M 415

Consequently the matrix P is block-diagonal with permutation matrices on the
main diagonal, and dimensions matching the block structure of pu, so Py = pu.
Consider now the block structure of the vectors {™}. Because there are finitely
many different block structures, we can divide this sequence into subsequences such
that the vectors in a particular subsequence have the same block structure. If we
prove the lemma for each subsequence we will be done. So without loss of generality
we may assume that the vectors {p™} have the same block structure for every m.

Next, using the formula for the Hessian in Theorem 4.2.3 we have

VE(f o \)(Diag u™)[Hyj] =

P(Diag (V*f(p™)diag (P H;;P)) + A(u™) o (PT H;; P)) P*,
and Lemma 4.1.2 together with Theorem 4.2.2 give us

V*(f o M) (Diag p)[H;;] = Diag (V2 f(p)diag Hyj) + A(n) o Hi,
= P(Diag (V’f(p)diag (P" H;; P)) +

A(p) o (PTH;P)) PT.

These equations show that without loss of generality it suffices to prove the lemma

only in the case when all vectors {¢™} are ordered in descending order, that is, the
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vectors u™ all block refine the vector p. In that case we have

V?(f o A)(Diag p™)[H;;] = Diag (V? f(u™)diag Hy) + A(u™) o Hij,

and

V(f o \)(Diag p1)[Hi;] = Diag (V*f(u)diag Hi;) + A(p) o Hi;.

We consider four cases.

Case I. If : = j then

lim V*(f o \)(Diag p™)[H;;] = lim Diag (V*f(u")e')

= Diag (Vf()e')

= V*(f o \)(Diagu)[Hy],
just because V2f(-) is continuous at p.

Case II. If 7 # j, but belong to the same block for p™, then ¢, 57 will be in the

same block of p as well and we have

lim V*(fo\)(Diagp™)[H;] = lim b(p™)Hy;
m—00 m—00
= bi(p)H,;

= V?(f o )\)(Diag u)[H;;],
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again because V2f(-) is continuous at p.

Case III. If : and j belong to different blocks of ¢™ but to the same block of u,

then
! my __ f! m
lin V2(f o \)(Diag [yl = lim ST HE
and

V*(f o \)(Diag u)[Hij] = bi(p) Hij.

So we have to prove that

hnl‘ﬁ(ﬂm)—-fﬂum)

m m

= fii(w) — fii(p).

(See the definition of b;() in the beginning of Section 4.2.) For every m we define

the vectors ™ and ™ coordinatewise as follows

, fy's pFE i
- [y, pF#i .
Pp = L pit, p=1
wy, p=at ,
pi', p=17

Because p; = p; we conclude that both sequences {1 }>°_, and {/i"™}>°_, converge

to u, because {p™}_, does so. Below we are applying the mean value theorem
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twice:

F™) = fie™) Fm) = fGm) + fi(@™) = £ (™)

w =y wt =
_ (e = ) FEET) £ A = i)
p =y
_ f“{(gmei(M )_fi(ﬂrz—l'fin(lﬂ ) — fip™)
My — Hy
_ ey 4 (5 — 1 )fij(zm)_—l'/j:;(ﬂ ) = Filpu™)

= fil™) = £5n™),

where £™ is a vector between p™ and g™, and n™ is a vector between g™ and ™.
Consequently ¢™ — p, and ™ — p. Notice that vector ™ is obtained from u™ by
swapping the ¢-th and the j-th coordinate. Then using the first part of Lemma 4.1.2
we see that fi(ii™) = fi(¢™). Finally we just have to take the limit above and use

again the continuity of the Hessian of f at the point p.

Case IV. If 7 and j belong to different blocks of ;™ and to different blocks of u,

then

. Fie™) = fi(e™)

lim V2(f o M\)(Diag u™)[H;;] = 1 H;;
_ f"/(’“‘)_ff/'(’“‘)ﬂ,
Hi = [y

= V?*(f o \)(Diag u)[H),

because V f(-) is continuous at p and the denominator is never zero. 0
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Now we are ready to prove the main result of this section.

Theorem 4.3.2. Let A be an n X n symmetric matriz. The symmetric function
f:R" = R is twice continuously differentiable at the point A(A) if and only if the

spectral function f o X is twice continuously differentiable at the matriz A.

Proof. We know that f o A is twice differentiable at A if and only if f is twice
differentiable at A(A), so what is left to prove is the continuity of the Hessian.
Suppose that f is twice continuously differentiable at A(A) and that fol is not twice
continuously differentiable at A. That is, the Hessian V?(f o \) is not continuous
at A. Take a sequence, {A,,}>°_,, of symmetric matrices converging to A such that

for some € > 0 we have

IV2(f 0 M)(Am) = VE(f o A)(A)]| > €.

for all m. Let {U,,}°_, be a sequence of orthogonal matrices such that

Ap = Uy (Diag A(An)) UL

m

Without loss of generality we may assume that U,, — U, where U is orthogonal
and then

A = U(Diag \(4))U".

(Otherwise we take subsequences of {A,,} and {U,}.) Using the formula for the
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Hessian given in Theorem 4.2.3 and Lemma 4.3.1 we can easily see that

lim V2(f o A)(An)[H] = V2(f 0 N)(A)[H],

m—0o0

for every symmetric H. This is a contradiction.

The other direction follows from the chain rule after observing

f(z) = (f o A)(Diag z).

This completes the proof. O

4.4 Example and Conjecture

As an example, suppose we require the second directional derivative of the function
foX at the point A in the direction B. That is, we want to find the second derivative

of the function

g(t) = (f o A)(A+1B),

at t+ = 0. Let W be an orthogonal matrix such that A = W(Diag \(A))W7T. Let
B = WTBW. We differentiate twice:

J'(t) = V*(foM(A+tB)B,B].

Using Lemma 4.2.1 and Theorem 4.2.3 at t = 0 we get
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g(0) = tr(BDiagVf(A(4)))
g"(0) = V3(fo)(MA))diag B, diag B] + (A, B o B)

= N FANB B + Y bi(BY)?

2
Fi(A(A) = F(AMA)) i
ADDRED Dl vy wETR
Ai#Aj &
X # Aj

In principle, if the function f is analytic, this second directional derivative can also
be computed using the implicit formulae from [88]. Some work shows that the
answers agree.

As a final illustration, consider the classical example of the power series expan-

sion of a simple eigenvalue. In this case we consider the function f given by
f(z) = &) := the k-th largest entry in «,
and the matrix
A = Diag p,

where p € R and

Pk—1 > Mk > HEk+1-

Then we have

fl(p) =€, and f"(u) =0,

so for the function ¢g(t) = Ax(Diagp + tB) our results show the following formulae
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(familiar in perturbation theory and quantum mechanics):

9(0) = ju
J(0) = B
1
g”(O) _ Z Bk] + Z sz 2
S st
o He — /~L]

This agrees with the result in [41, p. 92]. As we will see in the next chapter, this
result can be written using the notion of the Moore-Penrose generalized inverse.

We conclude with the following natural conjecture.

Conjecture 4.4.1. A spectral function fo X is k-times differentiable at the matriz
A if and only if its corresponding symmetric function f is k-times differentiable at

the point A(A). Moreover, f o X is C* if and only if f is C*.



Chapter 5

Quadratic expansions of spectral

functions

In this chapter we relax the assumptions from Chapter 4. We assume that the
symmetric function f has a quadratic expansion at the point A(A) and we show
that this happens if and only if f o A has a quadratic expansion at A. Notice that

having a quadratic expansion is a weaker property than being twice differentiable.

5.1 Notation and definitions

We use the notation from the previous chapters. The following definition explains

the main property that interests us here.

Definition 5.1.1. We say that a function f : R" — R has a weak quadratic

expansion at the point x if there exists a vector V f(x) and a symmetric matriz

118
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VZ2f(z) such that for small h € R"

Fla+ b) = F(&) + (VF(2), ) + 5{h, T F)h) + o4,
and a strong quadratic expansion at the point © if

Fleh) = F(@)+ (VF(2). ) + 5 (0, T2 F(2)h) + O(h[*)

The vector h is called a perturbation vector.

A few comments on this definition are necessary. Clearly having strong quadra-
tic expansion implies the weak quadratic expansion. We want to alert the reader
that a function may not be twice differentiable at the point = but still possesses a
strong quadratic expansion at that point. (See, for example, (1.3) in the Introduc-
tion.) It is clear that if the function has quadratic expansion at the point = then it
is differentiable at @ and its gradient is the vector V f(z) from the above definition.
If the function has weak quadratic expansion, then there is a unique vector V f(z),
and a short elementary argument shows that there is a unique symmetric matrix
V2f(z) (the Hessian) for which the expansion holds. There is a slight abuse of
notation when we call V2f(z) the Hessian of f, but no danger of confusion exists
because when f is twice differentiable at x the symmetric matrix V2 f(z) is exactly
the Hessian. Finally, another way to write the strong quadratic expansion of a

function f, consistent with [68], is

Fle 4 ) = F) + VAR + 59 () ]+ OC]*) (51)
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We give some less common notation which will be used throughout the chapter.
It is taken directly from [87]. We are interested in quadratic expansions of matrix
functions f o A around a matrix A. Let H € S™ be the perturbation matrix. We

assume “block structure” of the vector A(A) given by (cf. page 84)

That is, the eigenvalue A, (A) lies in the I’th block of equal eigenvalues. Let X =
[1,...,2"] be an orthogonal matrix such that X7 AX = Diag A(A) (so z' is a unit

eigenvector corresponding to A;(A)) and let

Xl = [l’kl_l-l_l, .. kl].

T
Let U; = [o!,...,v8 " =1] be a (k — kj_1) x (k — k;_1) orthogonal matrix such that
UNXTHX)U, = Diag \(X] HX)).

Set H; := X HX;, 1 <1< r, and suppose

MH) ==X (H) > o> Xy (H) = Aig, (H) -

= A, (Hp) > "')\tlysl(Hl)a (tho=0, t1s, = k1 — ki—1)

Finally let

Ul,j = [Utl’j_l-l—l, ceey Utl’j].
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We should point out that X; = Xj(A,m), and U ; = U, ;(A, H, X, m) but from now
on we will write only X; and U;; to simplify the notation.

By A' we denote the Moore-Penrose generalized inverse of the matrix A. For
more information on the topic see [84, p.102]. But for our needs, because we will
be working only with symmetric matrices, the concept can be quickly explained.
First, (Diag :1;)3] isequal to 1/z; if i = 7 and @; # 0, and is 0 otherwise. Second, for
any orthogonal matrix U, that diagonalizes A, we have AT = (UDiag \(A)UT)! :=
U(Diag A\(A))TUT.

5.2 Supporting results

Let A be in S™ and its eigenvalues have the following block structure
MA) = = A (A) > Mg (A) = - = Ay (A) > Ay i (A) - A (A),

where k, = n. All our results in this chapter rest on the fact that for every block

[=1,...,r, the following two functions have quadratic expansions at A:
ky
OEDPPHE)
=1
ky
Si() = Z A ()
i=kj_1+1

We are going to give three justifications of this fact and two of them will show that

these functions are even analytic at A. For every index m = 1,...,n and every block
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[ =1,....r define the functions

ky

si(x) = Z z3.

i=kj_1+1

The function f, is the sum of the m largest entries in #. The functions f,, and s(x)
are symmetric. (A function f is symmetric if f(x) = f(Px) for any permutation
matrix P. We denote the set of all n X n permutation matrices by P(n).) It is clear
that if the point x is such that z,, > z,,41 then f,, is linear near x. In particular,
for points = near A(A) the functions fi,(x) and s;(x) are both polynomials in the

entries of . Notice also that

i (+) = (fi 0 A)()
Si(+) = (s10 A)()-

The first justification comes from our result in Theorem 4.2.3.

Theorem 5.2.1. The symmetric function f : R™ — R is twice differentiable at the

point M(A) if and only if fo X is twice differentiable at the point A.
The second justification is from [88, Theorem 2.1].

Theorem 5.2.2. Suppose f:R" — R is a function analytic at the point \(A) for
some A in S™. Suppose also f(Px) = f(x) for every permutation matriz, P, for
which PA(A) = M(A). Then the function f o X is analytic at A.
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For the third justification we use the standard algebraic fact that every symmetric
polynomial in several variables can be written as a polynomial in the elementary
symmetric functions. We also use the following result [3]. Until the end of this
section only, A;(X) will denote an arbitrary eigenvalue of a matrix X, not necessarily

the ¢’th largest one.

Theorem 5.2.3 (Arnold 1971). Suppose that the matriz A € C"*™ has q eigen-
values A (A), ..., \g(A) (counting multiplicities) in an open set Q@ C C, and the other
n — q eigenvalues are not in Q. Then for all matrices X in a neighbourhood of A
there are holomorphic mappings S : C*" — C*¢ gnd T : C*" — Clr=9x(n=9)

such that
S(X) 0

X is similar to ,

0 T(X)

and S(A) has eigenvalues A (A), ..., \(A).

Using Arnold’s theorem we can prove that in fact the functions oy, and 5; are

holomorphic around A.

Theorem 5.2.4. For every symmetric polynomial p : C* — C, the function (p o
M(S(X)) is analytic around A.

Proof. It suffices to prove the theorem in the case of an elementary symmet-
ric polynomial, since any symmetric polynomial is a polynomial in the elemen-
tary symmetric functions (see for example [38, Proposition V.2.20.(ii)]). First we
show that (p o A)(S(X)) is holomorphic around A by using Arnold’s theorem.

By continuity of the eigenvalues, for every ¢ = 1,...,n we can define functions
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Ai o C"*" — C such that for matrices X near A, if {);(X)}", are the eigenvalues
of X then {)\;(X)}L, are the eigenvalues of S(X). So the elementary symmetric
functions of A;(X),..., \;(X) are the coefficients of the characteristic polynomial
det (M — S(X)). Consequently they are holomorphic around A. Finally, we con-
sider the case when A is a real symmetric matrix, and we restrict ourselves to a
neighbourhood of real symmetric matrices around A. Because for matrices X in
this neighbourhood the values of (po A)(S(X)) are real, one can easily see that the

holomorphic expansion around A reduces to an analytic (real) expansion. O

5.3 Quadratic expansion of spectral functions

Our goal in this section is to prove the main result of the chapter. Not surprisingly

the form of the Hessian is the same as the one given in Theorem 4.2.3.

Theorem 5.3.1 (Quadratic Expansion). The symmetric function f : R" — R
has a strong quadratic expansion at the point x = ANY) (Y € S™) if and only if

fo X has a strong quadratic expansion at 'Y, and in that case

V(foM(Y)[H] = tr(HDiagVf(u))

Vz(fo MY)[H H] = Z inp ;;(M)ﬁqq +
pg=1
f’ AOR
Z boligg + Y T,
up i D@ upF g ~Ha

where ;1 = AY'), H=UTHU,Y = U(Diag u)UT, U orthogonal, and the vector

b is defined in Lemma 5.5.7. The analogous result holds for the weak quadratic
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eLPANSION.

We will only talk about strong quadratic expansions in this chapter: the devel-

opment for the weak version is analogous. We need the following result from [87,

Remark 6].

Lemma 5.3.2. Every eigenvalue, A, (Y'), of a symmetric matriz, Y, has the fol-

lowing expansion in the direction of the symmetric matriz H:

An (Y +tH) = Ao (Y) + A (X HX))

t2
5 Aty =t QUGN HOW (VI = Y) HX,UL) + 0(3)(5:2)

where the meaning of X; and Uy ; is explained in the previous section.

Next we give a technical lemma that will allow us to cut down on the notation.

We use Definition 4.1.1.

Lemma 5.3.3. Let y € R” be such that

M1 = = Uy > P41 = 0 = fky 2 Mgl kg (kon,kT:n),

and let the vector b € R™ be block refined by 1. Let H € S™ be an arbitrary matriz

and X; = [eri—1FL . ki) for every i = 1,...,r. Then we have the identities:

by
Hp —

kl n
(H, by (T = Diag ) VHX, X[ ) = Y Y

p=ki_1+1 g¢=1
HqFbip

<Hazbki(l~‘ki1_ DiagM)THXiXiT> = Z Mh;q'

=1 Pq:Hp> g M Ha

B .
Hq -
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Proof. The product X; X! is an n xn matrix with zero entries, except (X; X[ )PP = 1
for p = k;_y +1,...,k;. Thus the columns of HX; X! are zero vectors, except the
columns with indexes p = k;_; 4+ 1,....k; which are equal to the corresponding

columns of H. The matrix by, (ux, I — Diag )t is equal to

by, by, by, by,
Diag( 0,0, — )
I R Ul Fhi = Phit1 Pk = Hks

Consequently we have

and the two identities can now be easily obtained. O

Our first goal 1s to find a formula for the Hessian of o, 1 <1 <r. We denote
the standard basis in R™ by e!,e?,....e™. As a byproduct in the following lemma we
derive a formula for the derivative of the function oy, at the point Diagp. This
formula appeared many times in the literature: see for example Corollary 3.10 in
[32], or the proof of Corollary 3.3 in [48]. The expression for the Hessian is also
known, see Formula (3.28) in [74] or [19] for a differential geometry argument, here

we present yet another way of deriving it.
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Lemma 5.3.4. For a real vector p € R", such that

M1 = = Uy > P41 = 0 = fky 2 Mgl kg (kon,kT:n),

the function
O'kl Z )\

s analytic at the matriz Diag pn with first and second derivatives satisfying

ky
Vo, (Diag u)[H] = tr (H Diag Z e’)

V2o, (Diag p)[H, H] = 22 y, ——
p=1 g=k;+1
!

= ftr <2H Z(,,Lkif — Diag M)*HX,»X?) ,

=1

p

where X; = [eki-1H1 | ek,

Proof. The fact that oy, is analytic at the point Diagpu follows from Section 5.2.
Next, summing equations (5.2) with Y = Diagu, for m = 1,...,k and using the

fact that X = I (so X; = [eFi-1+L . cki]), we get

ky

ok, (Diagp +tH) = Z)\ (Diag p + tH) = oy, (Diag i) —I—tZtr (XTHX;)
=1 =1

! 54 tlj_tlj 1
t k2
+5 Y Z Mo (2UEXT H (ju, I — Diag ) HX, Ui ;) + O(*)
=1 j7=1
ky
= oy, (Diag 1) + t(Diag Z e', H)

=1
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tz ! si ‘
+5 SO tr (U X H (i, I — Diag ) HX,Us ;) + O(£).

=1 j7=1

We concentrate on the double sum above.

ZZtr (U7X H(pu I — Diag p)' HX, U 5) =

=1 j7=1

=1 j7=1
{ 5
3t (oA D 130,07
=1 J=1

!
= tr (2X H(u. I — Diagp)' HX;)
=1
!
<2H > (uI — Diagp) HX, XT>

=1

=YY
_ ar
i Hp — [
HqFip
kl n h2

The next to the last equality follows from Lemma 5.3.3, with b = (2,...,2), while
the last equality after canceling all terms with opposite signs. By the uniqueness
of the Hessian in the quadratic expansion of a function, we conclude that the last

expression above must be indeed the Hessian. O

Note 5.3.5. Notice that the Hessian above is a positive semidefinite quadratic

form. This is not a surprise since a well known result of Fan [21] says that oy,
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s a conver function for allm =1,...,n.

Lemma 5.3.6. For a real vector p € R", such that

P = E > [l T [l > H (ko =0, kr = n),

the function

S)= > )

m=k;_1 +1

s analytic at the matriz Diag p, with first and second derivatives satisfying

ky
V Sy(Diag p)[H] = 2y, tr (H Diag > e’)

i=kj_1+1
kl kl n
VIS(Diagp)[H H =2 > h,+4 Y Y g2
pya=ki_1+1 p=kj_1+1 ¢=1 Fop Haq
HpFiig

= <H7 2*Xl*XITI_I*Xl*XIT +4/’Lkl(lukl‘[_ DlagM)THXlXIT%

where X; = [efi-1tt ek,

Proof. The analyticity of S(-) at the point Diag p follows from Section 5.2. Next,
summing the squares of equations (5.2) with Y = Diag u, for m = 1, ..., k; and using

the fact that X = I (so X; = [eFi-1+1 . cki]), we get

kl kl

> A.(Diagu+tH)= (/«Lkl + Ao, (X HX)

m=k;_1+1 m=k;_1+1
2 ?
Mt UL T B i ) + 0 )

ky

= (k; — kl—l)/lzl + ¢ Z Afn_kl_l (X HX))

m=k;_; +1
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ky

+ 2t > Amek, (XTHX)
m=k;_; +1

s tig=tig—1

+ 0> Y N QUSX] H(p, I — Diag p) HX,Uyj) + O(t).
1=1 =1
We recall the fact that for every symmetric n X n matrix ¢} we have

D M) =(Q,Q).
=1
We use this fact to evaluate the second summeand in the formula above.

ky
oo (X'HX)) = (X HX), X' HX}) = (H, ;X HX; X]').

m—k;_;
m=k;_; +1

Observe as in Lemma 5.3.4 that for the fourth summand in the formula above we

have

sp =t j—1
> \QUSXTH(u, I - Diag )t HX,Uy ;)

=1

Jj=1

<

51
= tr QUL X] H(u, I — Diag p)' HX, Uy ;)
7=1

= tr (2X H(pu, I — Diagu)' HX)).
Substituting everything in the original formula we get
ky

> AL (Diagp +tH) = (ki — ki )y, + (H, X X HX, X]) +

m=k;_; +1
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ky

2 (Diag > €', H) + t* i (H,2(u, I — Diag ) HX, X[) + O(£°)
i=kj_1+1
ky
= (ki — Fa)pf, + 2t (Ding Y ¢ H) +
i=kj_1+1

2

t .
5 (H, 2X, X! HX, X! + 4p, (pur, I — Diag ) HX XY 4+ O(#%).

Using Lemma 5.3.3, with b = 44, we conclude that

k‘l kl n
VIS(Diagp)[H H =2 Y. B4 Y Y gz
p.a=ki_1+1 p=ki_1+1 g¢=1 Fop Hq
HpFiig

By the uniqueness of the Hessian in the quadratic expansion of a function, we

conclude that the last expression above must be indeed the Hessian. O

The lemma below is a repetition of Lemma 4.1.2. The proof given there doesn’t
apply here because we cannot differentiate twice. That is why for completeness we

repeat the whole bit.

Lemma 5.3.7. Let f : R® — R be a symmetric function having quadratic expan-

ston at the point u € R?, where

M1 = = Uy > P41 = 0 = fky 2 Mgt Pk (ko:ov kT:n)v

and let P be a permutation matriz such that Pu = P. Then
1. Vf(p) = P'V f(n), and

2. V2 f(u) = PTN2f(u)P.
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In particular we can write

anEvy + by, Iy a2 Eo e ary By,
ag1 By agaFay + b, Iy -+ agr By,
Vif(p) = )
ar1 Erl ar2Er2 e arrRrr —I' bkr -[r

where each By, is a (ky — ku—1) X (ky — ky—1) matriz of all ones, (aij):7’;:1 s a real
symmetric matriz, b := (by,...,b,) is a real vector which is block refined by p, and
I, is a square identity matriz of the same dimensions as E,,,. We also define the

following matrix

A=V f() — Diagh = (a5 Bij )i j=i.-

Before we give the proof, some comments about the above representation are

necessary.

1. We make the convention that if the ¢-th diagonal block in the above represen-
tation has dimensions 1 x 1 then we set a;; = 0 and by, = f,;;kl(/,c) Otherwise
the value of by, is uniquely determined as the difference between a diagonal

and an off-diagonal element of this block.

2. Note that the matrix A and the vector b depend on the point around which

we form the quadratic expansion (in this case y) and on the function f.

Proof. We have

Fluth) = (@) + (V) h) + %Ut, VEf(wh) + O(|1R]1%).
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Let P be a permutation matrix such that Py = p. Then

F(P(p+h)) = f(u) +(Vf(p), Ph) + %<Ph7 V2 f(w)Ph) + O(|| Ph|]%)

= f(u) +(PTV f(p), 1) + %<h7 (PEV f() P)h) + O(||R ).

Using the fact that f is symmetric gives us that f(P(pu+h)) = f(p+h) so Vf(u) =

PTV f(11). Subtracting the above two equalities we obtain
Vif(u) = PIN?f(u)P, VP € P(n)s.t. Pu=p. (5.3)

The claimed block structure of V2 f(u) is now easy to check. O
Note 5.3.8. Observe that equation (5.3) holds for arbitrary p € R™.
Lemma 5.3.9. The vector u block refines V2 f(u)p.

Proof. Suppose Py = p. Then using twice Equation (5.3) and the above note, we

get

PV f(p)p = P(PTN?f(u)P)u = V2 ()P = V2 f(u)pe. =

Lemma 5.3.10. Let i € R} be such that

P = =y > 1 = = ey > g1 Pk, (R0 =0, ko =n).

Suppose p block-refines a vector b € R™. Then b\ is analytic at the matriz Diag
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with quadratic expansion:

) ) b, —b
bT)\(Dlag/,L—I—H) :bT/,L—|—<D1agb,H>—I— Z ﬁh2p+0(||ﬂ||3)-

pqitp>pg P

Proof. Because the vector p block-refines the vector b there exist reals b7,05,...,b.
with
b; = b, whenever k;_1 +1 < j <k, i=12,..r.

We obtain

r k; r

BIAC) =0 Y A= b(ow() —on, ()

=1 7=ki_14+1 =1

Now applying Lemma 5.3.4 and Lemma 5.3.3 gives the result. O

Lemma 5.3.11. Let f : R" — R be a symmetric function having quadratic expan-

ston at the point u € R?, where

1= = [y > 1 = = [y > flket1 k(Ko =0, k. =n).

Then the following matriz functions on S™,
1 F(:) = V()T
2. H(-) == p "V f(p)A(-),
3. G(-) = M) TV ()A(),

have quadratic expansions at the matriz Diag (.
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Proof. Later we will need the formulae, giving the quadratic expansions of these
functions, derived in the following proof. Notice that the first two parts follow

immediately from the previous two lemmas. So we can write, up to O(||H|]*),

F(Diagp + H) & V f(u1)" p+ (Diag V f(u), H) + Y Mhﬁp,

Pyq:Hp> g Hp = Ha
H(Diagu+ H) ~ p" V*f(p)u + (Diag sz( )i, >
T 2 T~72
n Z Vo f )) (M V f(M))qth.

Hp — Hq

Piqilp> g

(iii) Because of the block structure of V?f(u) described in Lemma 5.3.7, we

have

T

AOTVEFM) = aij(on: () = oresy (D) (0k; () = o, () + > b Sil-),

1,5=1

where the matrix (a;;)} -, vector b, and Sj(-) are defined in Lemma 5.3.7 and

Lemma 5.3.6. Now by Lemma 5.3.4

kl kl
o (Diagp + H) — o,_,(Diagu + H) = > pi+(Diag Y ¢, H)
i=kj_1+1 i=k;_1+1
1 .
+ §<H72(Mklf — Diag )/ HX,X[") + O(|| H|]?)

Z Hi + Z hii + Z Mkzj Dlag/,L)THG( )>+O(HHH3)

i=kj_1+1 i=k;_1+1 i=k;_1 +1
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We can evaluate the first summand in the above representation of the function G(-).

T

S aij(ow (Diag i + H) — o, (Diag i + H))

7,7=1
(o4, (Diag 1+ H) — oy,_, (Diag i + H)
= T Ap + (diag H)' A(diag H) + 2" A(diag H)

+2(H, Y A (;I — Diag ) He! (/)) + O(|| H|*)
7,7=1

= T Ap + 2(Diag Ap, H) + (H, Diag A(diag H))
+2(H, Y A" (i, — Diag ) Hel(¢!)T) + O(| H|P),
7,7=1
where diag: S™ — R" defined by diag (H) = (h11, ..., hny) is the conjugate operator

of Diag: R"™ — S™. On the other hand Lemma 5.3.6 gives us:

ky

> by Si(Diagpu+ H) =) by, ((kl — kioOug, +2u (Diag - > ¢ H)
=1

=1 i=kj_1+1

T (H. X, X HX X + 24, (0, I — Ding ) HX,X[) ) T+ O(|H|})

= " (Diag b)p + 2(Diag (Diagb)u, H) + (H,» b, X, X HX,X/)

=1

+(H.2 Y ju(Diag b)) (u;] — Diag ) Hel () + O(| H|P).

1,5=1

Adding these two formulae together we finally get:

M(Diag e+ H)'V? f()M(Diag p + H) = " V* (1) + 2(Diag V* f (), H)

+ (H,Diag A(diag H)) + (H,> by, X, X HX,X/]")

=1
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+(H.2) (1"Vf(u)) ;] —Diagu) Hel(¢!)) + O(|| H|*)

J=1

— W2 f (s + 2(Diag V2 ()i, H) + (H, Diag A(diag H)
Z bph +92 Z Tvz ))p — (MTvzf(M))qth + O(HHHB)

Hp — Hq

Pqiip=iq Piqilp> g

In the last equality we used Lemma 5.3.9 and Lemma 5.3.3. U

Now we are ready to prove a preliminary case of Theorem 5.3.1, namely, that
it holds at X = Diagpu, (¢ € Ry) and to give a formula for the Hessian of f o A at
that point. The results for the gradient of f o A that we will obtain along the way

were first obtained in [49].

Theorem 5.3.12. Let f : R" — R be a symmetric function having quadratic ex-

pansion at the point y € R7, where
1= = [y > 1 = = [y > flket1 k(Ko =0, k. =n).
Then f o A has quadratic expansion at the point Diag p, with

V(f © A)(Diagp)[H] = tx (HDiag V(1)

v (fO)\)(Dlag/,L H H Z hpp pq

pg=1

!
N
up Mq D@ HpFitg ~ Ha

(with b defined by Lemma 5.3.7).
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Note 5.3.13. Corollary 5.5.14 will show that the requirement that € R can be
omitted. For a matriz representation of the above formula combine equation (5.4)

below, and the first identity in Lemma 5.53.3.

Proof. We are given that
Fl@) = f(p) + VI (e —p+ %(l‘ — )" V() (2 — ) + Olle — p]]*),
so after letting @ = A(Diag u + H) and using the fact that
A(Diag p + H) = A(Diag 1) + O(|| H|)
we get

(f o A)(Diag g+ H) = f(p) + V f(1)" A(Diag pu + H) = V f ()"
+ SA(Diag i+ H)'V f()A(Diag i+ H) — V2 (1)) (Dicg i+ H)

ST F o+ O(IHP).

Substituting the three expressions in the proof of Lemma 5.3.11 we obtain

(foA)(Diagu+ H) = (f o A)(Diag ) + (Diag V f(u), H)

1 r
+ 5{H. Diag A(diag H) + Y b XXTHXX])  (54)
=1
Folp) = foln)
+ X TS+ OUHIP).
Hp — Hq

Piqilp> g

Recall that X; = [eF-1+1, ... e¥]. In order to obtain the representation given in the
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theorem one has to use the definition of A and b = (by,...,b,) given in Lemma 5.3.7

and the note that follows it. O

Proof of Theorem 5.3.1. Suppose f has quadratic expansion at the point
A(Y), and choose any orthogonal matrix U = [u'...u"] that gives the ordered
spectral decomposition of Y, YV = U(Diag )\(Y))UT. Here we actually have A =
AAY)) and b; = b;(A(Y)). While in formula (5.4) we had A = A(u) and b; = b; (),
to make the formulae here easier to read we will write again simply A and b;. Then

we have, using Formula (5.4) and some easy manipulations,

(fo M(Y+H) = (f o) (Diag \(Y) 4+ UTHU)

= (fo N)(Y) + (Diag VF(A(Y)),UT HU)
+ %(UTHU, Diag A(diag UTHU) + ; b, X)X UTHUX, X})
n Z f];()\(Y)) - fé()\(Y)) ((UTHU)qp)Z + O(||H||3),

)‘p(Y) - )‘q(Y)

Corollary 5.3.14. Theorem 5.5.12 holds for arbitrary p € R™, where

b(u) := Ph(j). (5.5)

and P is a permutation matriz, such that PTu = ji.

Proof. Pick a permutation matrix P such that PTy = i and let 7 be the permuta-

tion associated with it, that is i = (fix(1),--s fhr(n)), OF in other words Pet = ™),
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We have that f has quadratic expansion at the point y, that is

Fluth) = (@) + (V) h) + %Ut, VEf(wh) + O(|1R]1%).

Using the fact that f is symmetric we obtain

fla+PThy=f(PT(n+h) = f(u+h)
= flp) +(VF(p), h) + %<h,V2f(u)h> + O(||n]]?)

= f(it) + (PTV f(p), PTh) + %<PTh, PN f(u)PPTR) + O(||PTRIP).
So f has quadratic expansion at the point i as well, and we have the relationships:
V(i) =PV f(p)
V2 f() = PTNV?f(u)P.

We have Diagu = P(Diagji)PT. Applying Theorem 5.3.1 with ¥ = Diagp and
U = P, and using Equations (5.6) and (5.5) we get

V*(f o A)(Diag p)[H, H] = Z P [) (g mia)
pg=1
) Toli) = fai) )
+ Z bp(/“b) + Z — i (p)ﬂ(q)
_p#q ApFitg ¢
Hp=Hqg
/
_thp Whag + > bylp +Zf ()h2
Pq=1 p#q HpFlig

Hp=Hq
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The invariance of the formula for the gradient is shown in a similar manner. See

also [49]. O

5.4 Strongly convex functions

As we mentioned in the introduction, a symmetric function f is convex if and only
if fo\is convex. The analogous result also holds for essential strict convexity [48,
Corollary 3.5]. Here we study yet a stronger property. Specificly, in this section we
show that if a symmetric, convex function f has a quadratic expansion at the point
x = AY) then the symmetric matrix V2 f(x) is positive definite, if and only if the

same is true for the bilinear operator V2(f o A)(Y).

Lemma 5.4.1. If a function f:R"™ — R is symmetric, strictly convez, and differ-

entiable at the point

1 = =y > fh 41 = = flky > kgl [k (b, =mn).

then its gradient satisfies

Folw) — folp)

> 0 forall p, q such that p, # pg.
Hp — Hq

Proof. Because f is strictly convex and differentiable at p, for every @ € R™ (u # )

we have that (see for example [76, Theorem 2.3.5])

(V) z —p) < flz) = flp).
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Suppose p, # pq. Let P be the permutation matrix that transposes p and ¢ only.

Then we have

Lemma 5.4.2. Let f : R" — R be a symmetric function having quadratic expan-

ston at p, where

fl1= 00 =y > k4 = =y > eyt (kr =n).

If the Hessian V2 f(u) is positive definite then the vector b = (by,...,b,), defined in

Lemma 5.3.7, has strictly positive entries.

Proof. Tt is well known that every principal minor in a positive definite matrix is
positive definite. Fix an index 1 < ¢ < n. If gy > p; > pi41 then from the
representation of the matrix V?f(y) in Lemma 5.3.7 and the note after it, it is
clear that b; > 0. Suppose now that ¢ is in a block of length at least 2. Then some

principal minor of V2f(u) of the form

a -+ b; a
a a -+ b;
is positive definite, and the result follows. O

Theorem 5.4.3. Let f: R” — R be a symmetric, strictly convezr function having
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quadratic expansion at u

fl1= 00 =y > k4 = =y > eyt (kr =n).

Then the symmetric matriz V2 f(pu) is positive definite if and only if the bilinear

operator V*(f o X)(Diag ) is positive definite.

Note 5.4.4. In fact by Alezandrov’s Theorem, if a function is convex it has quadra-
tic expansion at almost every point of its domain [1]. For a proof of Alexandrov’s

Theorem in English see [20, Theorem 1, Section 6.4].

Proof. Suppose first that the symmetric matrix V2 f(u) is positive definite. Take a

symmetric matrix H # 0. Then we have

Z hpp pq hqq Z 0

pg=1
because V2 f(u) is positive definite,
S )
=1 ki_1 <p<q<k;

follows from Lemma 5.4.2, and

QZf/ ()h2>0

Hp — Hq

Piqilp > g

which follows from Lemma 5.4.1. Now because H # 0 at least one of the above

inequalities will be strict.
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In the other direction the argument is easy: take H = Diagx, for 0 # = € R”
in the formula for V?(f o A)(Diag ) given in Theorem 5.3.12 to get immediately
2TV2if(p)x > 0. O

Theorem 5.4.5. If f : R" — R is a symmetric, strictly convex function having
quadratic expansion at the point Y, then V2 f(A(Y')) is positive definite if and only
if VI f o M)(Y) is.

Proof. The proof of this theorem is now clear since V2(f o A)(Y") is positive definite

if and only if V2(f o \)(Diag A(Y)) is. O

5.5 Examples

Notice that examples analogous to those below can also be addressed using the

theory in the previous chapter.

Example 5.5.1. Let ¢ be a function on a scalar argument. Consider the following

separable symmetric function with its corresponding spectral function:
flar, o, x,) = Zg(:z;,)
=1
(Fo)(Y) =) a(X(Y)).
=1

Then if g has quadratic expansion at the points x4, ..., x, so does f at @ = (21, ..., x,)

and we have

Vi) = (g (x1), .. g (xn))",
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V?f(x) = Diag (¢"(1), .-, g"(2n));

b(x) = (9" (1), . g"(xn))"

Suppose g has quadratic expansion at each entry of the vector € R} that satisfies

1= = k> gl = = [y > 1 (kr = n).

Then Theorem 5.3.12 says that

n

V(f o N)(Diagu)[H, Hl = > _¢"(m)hiy+ > g"(up)hl,

p=1 p#q
Hp=Hgq
g/(ﬂp)_gl(ﬂq) 2
by Smlosl,
D@ upF g P 4
g'(pp) — ' (1
_ Z g//(Mp)h;q+ Z (p)_ (q)h;q‘
Pydip=tiq D@ HpFitg He = Ha

Let us define the following notation consistent with [9, Section V.3]. For any
differentiable function h defined on a subset of R define the ‘divided difference’
h(oz):g(ﬁ)7 if o £

e, p) =9 °
R (o), if o =p.

If A is a diagonal matrix with diagonal entries aj,...,cr,, we denote by AJ(A) the
n X n symmetric matrix matrix whose (7, j)-entry is 2l (a;, o).

Using this notation, for the function h = ¢’, we clearly have

V2(f o A)(Diag p)[ H, H] = (H,h"(Diag 1) o H),
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(5.7)
VE(f o \(Y)[H, H] = (UTHU, M (Diag \(Y)) o (UTHU)),

where ¥ = U(Diag A(Y))UT, U orthogonal, and X oY = (%ijyij)7 ;=1 1s the
Hadamard product of matrices X and Y.

Let us extend the domain of the function A to include a subset of the symmetric
matrices in the following way. If A = Diag (ay,...,a,) is a diagonal matrix whose
entries are in the domain of h, we define h(A) = Diag (h(ay),...,h(ay)). If Y is
a symmetric matrix with eigenvalues aq, ..., a,, in the domain of i, we choose an
orthogonal matrix U such that Y = UAUT and define h(Y') = Uh(A)U?. (Notice
that the definition of h(Y) doesn’t depend on the choice of the orthogonal matrix
U.) In this way we can define h(Y") for all symmetric matrices with eigenvalues in
the domain of h. Then the formulae for the gradient in Theorem 5.3.1 says that

for h = ¢’ we have
V(foX)(Y)=h().

Thus Equations (5.7) are just the formulae for the derivative VI given in Theo-
rem V.3.3 in [9].

Example 5.5.2. Now we specialize the above example even more. The following
spectral function finds many applications in semidefinite programming. Consider

the symmetric and strictly convex function and corresponding spectral function:

froeRL =) loga;,
=1
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foAr:Ae Sy, — —InDet(A).

(Here S, denotes the set of all positive definite symmetric matrices.) Then The-

orem 5.3.12 says that for 1 € R} such that

[ = =y > g1 = = [y > [l [k (kr = n),

we have

n h2 h2 h2
Vo N i ] =3 3 By 5 S
p= /’Lp p#q /’Lp PqitipF iy /“Lp/“bq
Hp=Hq
_ o
pa=1,1 Hrla

= tr ((Diag p) "' H(Diag )~ H).

The last equality may easily be verified. In general, for an arbitrary symmetric

matrix A, we get

V(f o A)(A)[H, H] = tr (A" HA H).

This agrees with the standard formula for the second derivative of the function
—InDet (A). (See for example [68, Proposition 5.4.5].) Moreover the result in

Section 5.4 tells us that

A= 0 implies tr(AT"HAT'H) >0 forall 0# H ¢ S",

and this result is trivial since tr (A"'HA™'H) = tr ((A_I/ZHA_UZ)Z). (A >0
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means that the matrix A is positive definite.)

The reader can refer to Section 4.4 for more examples.

5.6 The Eigenvalues of V*(f o))

A natural question one may ask is: Is there any relationship between the eigenvalues
of V2f(A(Y)) and those of V2(f o A)(Y)? This section shows that locally such a
relationship will be quite weak, although more globally they are closely related. Let

Y be a symmetric matrix such that

MY) = =2 (V) > > M (V) = = An(Y) = - = A (V)

> M (Y), (ko =0, ky = n).

Using the representation given in Theorem 5.3.1 and Corollary 5.3.14 one can easily

see that the @ eigenvalues of V2(f o A\)(Y)) are

o {)\,'(sz()\(Y)))ﬁ = 1,...,n}. (These are just the eigenvalues of V2f(A(Y))

with the same multiplicities.)

e by, is an eigenvalue for every [ = 1, ..., r with multiplicity (kj—ki—1) (k1 —ki—1 —

1)/2.

Fi, QO = £, (MY)
Ay (V)= Ap (V)

every ordered pair (A, (Y), Ak, (Y)) such that Ay, (Y) > Mg, (V).

is an eigenvalue with multiplicity (kj — ki—1)(ks — ks—1) for
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So we can immediately conclude that

A (V2 0 M(YV)) 2 A (V2 FA(Y))
Ain (T FOY)) 2 i (VA(F 0 1) (V).

We are going to show now that the above inequalities may be strict.

Example 5.6.1. Consider the convex function

x? + y2 n cos 2x + cos 2y

flay) = = Lok
and the point
p=(2m, 7)€ RL
Then
5= suzzx ) sin? 0
Viz,y) = i | V@)= -
y_ B 0 sin” y

Using the representation in Theorem 5.3.12 we get
Vif(u) =0, V*(foX)(Diagu)[H, H] = hi,,
where

hll h12
h12 h22
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Then clearly

Amax (V2(f o X)(Diag p1)) =1 > Amax (V2 (1)) = 0.

In order to demonstrate a strict inequality between the smallest eigenvalues one

needs to consider the function —f(x,y) at the same point pu.

Even though we may not have equalities in (5.8) at a particular matrix Y, if
we consider the eigenvalues of V2f(A(Y')) and V2(f o A\)(Y') as Y varies over an
orthogonally invariant (see below) convex set, we can see that they vary within the
same bounds. More precisely we have the following theorem. To make its proof
precise, we need the main result from the previous chapter and [48] saying that: A
symmetric function f is C? if and only if fo ) is, and f is convex if and only if fo A

1s.

Theorem 5.6.2. Let C be a convex and symmetric subset of R", and let f : C — R

be a symmetric, C* function. Then

min Amin(V2f(y)) = p o Amin(VZ(f 0 A)(Y)). (5.9)

Proof. The following implications are easy to see.

-] 2 convex

& (f — g|| . ||2> oA convex
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S fod— g” |13 convex

S Anin(VE(fo XA)(Y)) >, VY € C. 0

Remark 5.6.3. If we multiply both sides of Equation (5.9) by —1 we will get

max Amax(V2F(y)) = max  Apax(VZ(f o M)(Y)).

ye Yer-L(c)



Chapter 6

Nonsmooth analysis of singular

values

The singular values of a rectangular matrix have many properties analogous to the
eigenvalues of a square matrix. In this chapter we are interested in the first order
behaviour of functions of the singular values of a rectangular matrix variable. The
singular values, like the eigenvalues, are not smooth functions of the entries of the
matrix. That is why in order to gain insight into their behaviour we need to use
the tools of the nonsmooth variational analysis [79].

We give formulae for the approximate subdifferential, Clarke subdifferential (in
both cases when the underlying function is Lipschitz or just lower semicontinuous),
horizon subdifferential, regular subdifferential, and proximal subdifferential of func-
tions of singular values. We also give several applications of the developed theory.
We compute the subdifferentials of oy - the k-th largest singular value of a matrix.

Finally, we show how Lidskii’s theorem for singular values follows easily from the

152
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nonsmooth theory.

We follow the terminology and notation of [79], and the whole chapter closely
follows the analogous development for eigenvalues in [52]. There are obvious paral-
lels between the notation, techniques, and results there and here which suggest that
there is a general theoretic framework that encompasses them both. (See Chapter 7
for another class of functions that may be part of the general theoretic framework.)

For convenience we state the singular value decomposition theorem. (For details

and more results, see [36, Chapter 3].)

Theorem 6.0.4 (Singular Value Decomposition). Let A € M, ,,(C) be given
and ¢ = min{n,m}. There is a matriz ¥ = (0;;) € My u(R) with o;; = 0 for
all 1 # 3, and 011 > 022 > ... 04 > 0, and two unitary matrices V€ O(n) and
W € O(m) such that A=VEW=*. If A € M,,n(R), then V and W may be taken

to be real orthogonal.

The numbers 011 > 093 > ... 04 > 0 are unique for the matrix A and are called
singular values of A.
In this chapter we consider only real matrices. There are completely analogous

results for complex matrices.

6.1 The approximate subdifferential

This section gives the relevant background of nonsmooth analysis.

Definition 6.1.1 (Regular Subgradient). Given a Euclidean space E (by which

we mean, a finite-dimensional real inner-product space), a function f : E —
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[—00, +0o0], and a point x in E at which f is finite, an element y of E is a regular

subgradient of f at x if it satisfies

fla+2)> fle)+{y,z) + o(2) as z — 0 in E.

As usual, o(-) denotes a real-valued function defined on a neighbourhood of the
origin in F, and satisfying lim. o ||2||"'0o(2) = 0. The set of regular subgradients
is denoted éf(:z;) and is called the regular subdifferential. It is easy to show that it
is always closed and convex.

This definition is just a one-sided version of the classical (Fréchet) derivative.
A weakness this natural concept of subdifferential possesses is that even for well-
behaved functions f it may be empty, see for example Proposition 6.8.1. The idea
of the approximate subdifferential enhances the regular subdifferential by gathering

information from the regular subdifferentials at points near = as well.

Definition 6.1.2 (Approximate Subgradient). A vector y of E is an (approx-
imate) subgradient if there is a sequence of points x” in E approaching x with
values f(x") approaching the finite value f(x), and a sequence of reqular subgradi-

ents y" in éf(:z;’") approaching y.
The set of all subgradients is the (approzimate) subdifferential 0 f(x).

Definition 6.1.3 (Horizon Subgradient). A vector y of E is a horizon sub-
gradient if there is a sequence of points " in E approaching x with values f(x")
approaching the finite value f(x), a sequence of reals t, decreasing to 0, and a

sequence of reqular subgradients y" in éf(:z;’”) for which t.y" approaches y.
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The set of horizon subgradients is denoted 0 f(x). If f(x) is infinite then the
sets df(x) and éf(:z;) are defined to be empty, and 0% f(x) to be {0}. The reader
can verify that df(x) and éf(:z;) are always closed sets, and we have the inclusion

(éf(l’))oo C 0% f(x) (where C* denotes the recession cone of a closed convex set).

Definition 6.1.4 (Clarke Regularity, Corollary 8.11 [79]). If the function f
is finite at the point x with at least one subgradient there then it is (Clarke) reg-

ular at x if it is lower semicontinuous near x, every subgradient is reqular, that is

éf(:z;) = 0f(x), and furthermore

0 f(x) = (Of(x))™.

Definition 6.1.5 (Clarke Subgradients). For a function f which is locally Lip-
schitz around x, conver combinations of subgradients are called Clarke subgradi-

ents.

The set of Clarke subgradients is the Clarke subdifferential 0°f(x). (This defi-

nition is equivalent to the standard one in [15] - see for example [39, Theorem 2].)

Definition 6.1.6 (Contingent Cone). Let L be a subset of the space E, and fix
a point x in E. An element d of E belongs to the contingent cone to L at z,
written K(L|x), if either d = 0 or there is a sequence (x") in L approaching x with

|&" — 2|7 (2" — z) approaching ||d|~d.

Definition 6.1.7 (Negative Polar Cone). The (negative) polar of a subset
H of E is the set
H ={ye E:{(x,y) <0 Vx € H}.
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We use the following easy and standard result later.

Proposition 6.1.8 (Normal Cone). Given a function f : E — [—o0,+00] and a
point 2° in E, any reqular subgradient of f at 2° is negative polar to the contingent

cone of the level set L ={x € E: f(z) < f(2°)} at 2°; that is
df(2°) C (K(L|z))".

Proof. See [52, Proposition 2.1]. O

In this chapter we are interested in functions that are invariant under certain
orthogonal transformations of the space E. A linear transformation g on the space

E is orthogonal if it preserves the inner product:
(g, gy) = (x,y) for all elements = and y of E.

Such linear transformations form the orthogonal group O(E). A function f on E
is tnvariant under a subgroup G of O(F) if f(gx) = f(«) for all points = in E and
transformations ¢ in G.

In the following proposition, f(-;-) denotes the usual directional derivative:

o) — Lo 2 ) = )

, (when well-defined)
10 t

for elements x and 2z of E.

Proposition 6.1.9 (Subgradient Invariance). If f : £ — [—oo,+0o0] is in-

variant under a subgroup G of O(E), then any point « in E and transformation g
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in G satisfy 0f(gx) = g0f(x). Corresponding results hold for reqular, horizon, and
(if [ is Lipschitz around x) Clarke subgradients, and f is reqular at the point gx if
and only if it is reqular at x. Furthermore, for any element z of E, the directional
derivative f'(gx;gz) exists if and only if f'(x;z) does, and in this case the two are

equal.

Proof. See [52, Proposition 2.2]. O

This section ends with a lemma which is useful in the later analysis of regularity.

For its proof see [52, Lemma 2.3].

Lemma 6.1.10 (Recession). For any nonempty closed convexr subset C of E,
closed subgroup H of O(E), and transformation g in O(E), the set gHC is closed,

and if it is also convex then its recession cone is gH(C™).

6.2 The normal space

We need a little bit of differential geometry. Definitions for the relevant notions
in this section can be found in the following two elementary introductions into the
subject [12], [4].

If M is a differential manifold and m € M, then T}, M will denote the tangent

space to M at the point m.

Lemma 6.2.1 (Manifold Sum). Let M and M’ be differential manifolds, and let

p,p’ denote the projections of M x M’ onto M, M’ respectively. Then the function

At Taany(M x M) = T, M & Ty M’
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defined by w — (dp,dp’ )w is an isomorphism.

Proof. See [12, Proposition 4.5.1]. O
Theorem 6.2.2 (Quotient Manifold). If H is a closed subgroup of a Lie group

G then either H is open in G (and the quotient set topology on G/H is discrete)

or G/H admits the structure of a quotient manifold of G.
Proof. See [12, Proposition 12.9.4]. O

Theorem 6.2.3 (Orbit Submanifold). Suppose G is a Lie transformation group
on a Hausdorff manifold M. If the stabilizer G, is not an open subgroup of G, then

the mapping

Om 2 GGy — M, defined by

9(Gy) — gm, forgin G,

is an imbedding of the quotient manifold G/G,, into M. Moreover, the orbit Gm in

M can be given the structure of a submanifold of M diffeomorphic to G/G,, under

D -

Proof. See [12, Proposition 13.3.1 & Proposition 13.3.2]. O

Let O(n) be the Lie group of n X n real orthogonal matrices, and let O(n,m)
denote the Cartesian product O(n) x O(m), which is also a Lie group. An easy
calculation shows that the tangent space to O(n) at the identity matrix I, is just

the subspace of skew-symmetric matrices, A(n). Consequently from Lemma 6.2.1

we see that T(y, 1,)O(n,m) = A(n) x A(m).
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Throughout the whole chapter we will assume that n and m are natural numbers
and n < m. Consider the action of the group O(n,m) on the Euclidean space M,,

(of n x m real matrices, with the inner product (X,Y) = tr X7Y"), defined by

(Un,Up). X = UnTXUm, for all (U,,,Uy,) in O(n,m) and X in M, ,,.

For a fixed matrix X in M, ,,, the orbit

O(n,m).X ={U'XU,, : (U,,U,) € O(n,m)}

is just the set of n X m matrices with the same singular values as X. Here is then

the key fact. (For related results see [52, Theorem 3.1], [8, Proposition 14.1].)

Theorem 6.2.4 (Normal Space). The orbit O(n,m).X is a submanifold of the

space M, .., with tangent space

TxO(n,m).X ={XZ, - Z2,X : Z, € A(n) and Z,, € A(m)} (6.1)

and normal space

(TxO(n,m).X)r ={Y € M, : XTY and XYT symmetric}. (6.2)

Proof. Part 1. The tangent space. Consider the stabilizer

O(n,m)x = {(Un,Un) € O(n,m) : UL XU,, = X}.
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It is well known that there is a bijection ¢ between the sets O(n, m)/O(n,m)x and

O(n,m).X defined by:

(Un, Un)(O(n,m)x) = U XU,,, for (U,,Uy,) in O(n,m),

Clearly O(n,m)x is a closed subgroup of O(n,m) (it is closed under limit oper-
ations). So from Theorem 6.2.3 it follows that the map ¢ is a diffeomorphism,
and hence its differential d¢ is an 1somorphism between the corresponding tangent

spaces

T(In,lm)(o(n,m)x)(O(m m)/O(n,m)x) and Tx(O(n,m).X).

Consider, on the other hand, the quotient map

7 :0(n,m) — O(n,m)/O(n,m)x, defined by

(Uny, Up) = (U, U )(O(n,m) x), for all (U,,Uy,) in O(n,m).

Then Theorem 6.2.2 tells us that 7 is a submersion, and this implies that its dif-

ferential dm

drm : T(In’lm)(O(n,m)) — T(In’lm)(o(mm)x)(O(n,m)/O(n,m)X)

is onto. Now consider a third map

Y :0(n,m) = O(n,m).X, defined by

(Un, Un) = UL XU,,,, for all (Uy,,U,,) in O(n,m).
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Since ¥ = ¢ o 7, the chain rule gives dy) = d¢ o dm, that is

(d)T(1,,1,)(O(n,m)) = Tx (O(n,m).X).

But as we noted above T\, 1,)(O(n,m)) = A(n) x A(m). Now we show that

(d)(Zy, Zm) = X Zm — Z,X. Define the map

O M, x My — My

(U, V) =U"XV,

where M,,, M,,, and M, ,, have their standard differential structure. Let d® be its
differential at (I, I,,,). Then because Th(M, ) = M, for each M € M, it is easy to

see that

d® : M, x M,, — M, .,

do(U, V) =U"X + XV.

We have that O(n) x O(m) is a submanifold of M, x M,,, so the tangent space
T(1,,1,)(O(n) x O(m)) is isomorphic to a vector subspace of T(z, 1,.)(Mn x Mpy,).
Also the end of Theorem 6.2.3 implies that the tangent space Tx(O(n,m).X) is
isomorphic to a vector subspace of Tx (M, ., ). If ¢ is the natural injection of O(n) x
O(m) into M,, X M,,, then from the definitions ¢» = ® o¢. So dyp = d® o di,
but (de)(Zn, Zm) = (Zn, Zm) for each (Z,,Z,) in A(n) x A(m), and we obtain
(d)(Zny Zm) = (d®)(Zp, Zn) = ZEXX + X Z,y = X Z,, — Z,, X, as we claimed.
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Part II. The normal space. If a matrix Y in M, ,, satisfies X7V = YTX,

and XYT = Y X7 then for any matrices Z, € A(n), and Z,, € A(m) we have

Y, X2, — Z,X)=t2 Y (XZ,, — Z,X)
=tr (Y'XZ,)—tr (Y'Z,X)

=tr (Y'XZ,)—tr(XYTZ,).

We will show now that tr (Y7 XZ,,)=0. Indeed

tr (YTXZ,) =tr (YIXZ,)T =t (ZLXTY) = —tr (Z,,X7Y)

= —tr (Z,YTX) = —tr (YTXZ,),

so tr (YT X Z,,)=0. Analogously we get tr (XY7Z,) =0, 50 Y € (TxO(n,m).X)*.
Conversely suppose that trYT(XZ,, — Z,X) = 0 for all Z,, € A(n) and Z,, €
A(m). For each Z,, € A(n) we have

tr (Y12, X)=tr (XYTZ,) =tr (XYTZ) = tr (ZIYVXT) = —t2 (Z,VXT),

that is

tr (XYT2Z,) = —tr (Z,YXT).

Let Z,, = 0. Then our assumption becomes tr (XY 7 Z,) = 0 and consequently we

have tr (Z,Y XT) = 0 and so is their difference:

tr (XY'Z, - Z,YXT) =0.
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Choosing Z, = XYT — Y X7 gives

0=tr (XY"(XY" —VXT) — (XYT - YXT)YXT)
=t (XYT(XYT - YXT)) —tr (YXT(XYT —YXT))

= tr (XYT -V XT)(XYT -V XT) = —tr (XYT - VXTI (XYT —YXT),

whence XY7? = YX7T. Analogously by choosing first Z, = 0 and then Z, =
YTX — XTY we obtain XY =YTX. O

Throughout the entire chapter all vectors are considered to be column vectors
unless stated otherwise. We denote the cone of vectors = in R” satisfying zy >
T2 > ... 2 v, by R}. We denote the standard basis in R" by el,e? ..., e" For any
vector x in R™ we denote by & the vector with the same entries as & ordered in
nonincreasing order. Let P(n) denote the set of all n x n permutation matrices.
(Those matrices that have only one nonzero entry in every row or column, which
is 1.) Let P_y(n) denote the set of all n x n signed permutation matrices. (Those
matrices that have only one nonzero entry in every row or column, which is +1.)
If Py € P_y(n) then we will denote by |P_| the permutation matrix obtained
from P(_y by taking the absolute values of its entries. If « is a vector in R™ then |z|
will denote the vector (|x1], |z2], ..., |v,])T and 2% will denote the vector (2%, ..., 22)7.

Finally if #,y € R" then 2y = (x1y1, ..., Tnyn ). We will need the following standard

lemma in our proofs (see [48]).
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Lemma 6.2.5. Any vectors x and y in R™ satisfy the inequality

w

Equality holds if and only if some matriz @ in P(n) satisfies Qe = & and Qy = y.

For any matrix X € M, ,,, we denote by X' its (4, j)-th entry, and by oy (X) >
oo(X) > ... > 0,(X) its singular values, also we define the vector o(X) =
(01(X),09(X), ..., 0,(X))T. If the matrix X € M,, is symmetric, then we de-
note by A(X) > X(X) > ... > A (X) its eigenvalues, and define the vector
MX) = (AM(X), (X)), .o, \n(X))T. For any vector z in R" let Diag z denote the
matrix with entries (Diagz)™ = z; for all 7, and (Diagz);; = 0 for 7 # j. We
want to draw the readers attention to the fact that sometimes Diag x will denote
an n X m matrix, sometimes n X n and sometimes m X m (this in case © € R™), but

there will be no confusion because the context will make clear which is the case.

Definition 6.2.6 (Simultaneous Decomposition). We say that two matrices
X andY in M, ,, have a simultaneous ordered singular value decomposition
if there is an element (U,,U,) in O(n,m) such that X = Ul (Diago(X))U,, and
Y = UI'(Diago(Y))U,,.

We need to introduce more notation that will be used only in the proof of the
next lemma. Let M be a matrix in M, ,,, and 1 < 43 < 153 < ... < i, < n,
1 <j1 < j2 < .. <js <m be given numbers. Then M (i1,12,....%; J1, 72, - Js)
will denote the minor of M (with dimensions r X s) obtained at the intersection of

the rows with indexes ¢1,12,...,,, and columns with indexes ji, j2,...,Js. If v is a
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vector in R" then we will use similar notation to denote a subvector of v. That is,
a subvector of v formed by the entries with indexes 1 < < 15 < ... <12, < n will
be denoted by v(i1, i, ...,1,). Finally M(i;-) will denote the row of M with index
i (these are row vectors), and M(-;7) will denote the column of M with index i.
The following lemma gives a necessary and sufficient condition for two matrices to
‘almost’ have a simultaneous ordered singular value decomposition. For a necessary

and sufficient condition for simultaneous ordered singular value decomposition see

Theorem 6.2.9.

Lemma 6.2.7. Two matrices Y and Z in M, satisfy Z1Y =YTZ and ZYT =
Y ZT if and only if there exists an element (U,,U,,) in O(n,m) and a signed per-

mutation matriz P_y in P(_)(n) such that
Y = U] (Diag P_yo(Y))Un, Z =U!(Diago(Z))Up. (6.3)

Proof. In the “if” direction the result is clear. For the converse, suppose first that
n =m and Y and Z are nonsingular. We will divide the proof into several reduction
stages. It is well known that the eigenvalues of Y7 Z are just the eigenvalues of
ZYT counting multiplicities. Then because they are both symmetric, there are two
orthogonal matrices A and B in O(n) such that YTZ = ATAA and ZYT = BTAB,
where A = Diag A(YTZ). Consequently YTZ = (ATB)(ZYT)(BT A). We make the
substitution: Y = (ATB)Y and Z = (ATB)Z. Then we have

YTZ =vT7Z = (ATB)(zY")(BTA) = 2Y 7,
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that is Y7 and Z commute. Hence also Y and Z7 commute. Next, because V7T and
Z commute with the symmetric matrix YTZ it follows that every eigenspace (all
eigenvectors corresponding to one fixed eigenvalue) of YTZ is invariant under Y7
and Z. Thus if V,, is an orthogonal matrix in O(n), whose columns are eigenvectors
of YTZ so that all eigenvectors corresponding to the same eigenvalues occur one
after another, then both VnTlv/TVn and VnTZVn must be block diagonal (recall that

eigenvectors corresponding to different eigenvalues are orthogonal):

v

VIVTV, = Diag (Y], Y, ... Y;1), VIZV, = Diag(Zy, Za, ..., Z1),

where lv/iT,Z' eM,,1 <n, <n,ny+ng+---n; =n, and each lv/lTZ = ZY/ZT =
Ail;, where Ay, g, ..., A are the distinct (all of them are nonzero) eigenvalues of
the symmetric matrix YTZ. For each i choose a singular value decomposition
Zi = RTD;S; (R;, S; - orthogonal, D; - diagonal), and observe lv/iT = ST(\D YR,
Note that the absolute values of the diagonal entries of A\; D" are the singular values
of lv/l»T. So we reduced Y and Z to [ pairs of matrices Y; and Z; that satisfy (6.3).
Clearly the singular values of Z are the same as the singular values of Z and are
the union of diagonal entries of Dy, ..., D;. Let P be a permutation matrix in P(n)
such that Diago(Z) = PTDiag(D;,..., D;)P. Then retracing back the reductions
one sees that the lemma holds in the case when n = m and the matrices Y, Z are
nonsingular. Decomposition (6.3) holds with

Ul = BTAV,Diag (R{,...,R])P, U, = P"(Diag(S,....5))V,..

n
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We now consider the general case n < m. First we observe that the symmetric

matrices Y'Y and Z7Z commute. Indeed

ZTZ2) YY) =ZT(YZ")Y = (Z"V)(ZTY)

=Y'2)(YT2)=YT(2Y"Z = (YY) (2" 2).

Analogously one sees that the pair of symmetric matrices YY7? and ZZ7 also
commute. It is well known that the eigenvalues of Y'Y are just the eigenvalues
of YYT plus m — n additional zeros. Hence there is a matrix V;, in O(m) and a
matrix V,, in O(n) that simultaneously diagonalize the above two pairs respectively

(for any matrix Y, the eigenvalues of Y'Y are the singular values of Y squared):

VIYYT)V, = Diago®(Y), VI(YTY)V,, = Diag(c*(Y)",0,...,0)T,
N —

m—n

VI(ZZ")WV, = Diag P,o*(2), V.X(Z"Z)V,, = Diag P,,(¢*(Z)",0,...,0)",

m—n

where P, is a permutation matrix in P(n), and P, is in P(m). Now we make the
substitution:

Y =VIYV,, Z=VIZV,.

Observe that:

VT2 =vIYTzv, =viz'yv,, = 27V,



6.2. THE NORMAL SPACE 168

and similarly one checks that VZT = ZYT. Moreover we have that

VYT = Diago?(Y), Y'YV = Diag(c*(Y)7,0,...,0)" (6.4)
N——
and
7227 = Diag P,o*(Z), Z%Z = Diag P,(c*(2)",0,...,0)". (6.5)
N——

Next, we investigate the structure of the matrices V and Z. Let the ranks
of Y and Z be k and [ respectively, and let Y(il,...,ik; J1y ey Jk) and respec-
tively 2(t1,t2,...,tl; D1, P2, .-, p1) be nonsingular minors. Let I = {iy,09,..., 1},
J = {02000kt T = {t1,te, .., i}, P = {p1,p2,...,1}. Equation (6.4) tells us
that the rows and the columns of ¥ are mutually orthogonal. If we take a row,
r; of Y, such that ¢« € I then r; is a linear combination of rows with indexes from
the set I. Multiplying this linear combination by r; gives that rr; = 0. Similar
argument for the columns imply that all the entries of V that don’t belong to the
minor ?(il, cees TS J1y -y Jk) are zero. The same arguments apply to Z.

Let A=INT,B=T\I,C = P\J and D = PN J, see Figure 6.1. Take an
index ¢ in the set B. From the above paragraph we have that the ¢-th row of Vv
is the zero vector: ?(@,) = 0. So we get f/(z,)Z(:p,)T =0forall <z <n.
But because of the relationship Y27 = ZY7T we get that 2(@, )Y(l‘, )T = 0 for
all 1 < a <n. So in particular the vector 2(@, )(J) (that is, the subvector of the
i-th row of Z formed from the entries with indexes in J) is orthogonal to all the

vectors Y(l‘, )(J) for all @ € I. But the last set of vectors form the nonsingular
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N>
<>

Z(T:P)

Y(1:9)

J

Figure 6.1: The sets I.J,T,P and A,B,C,D.

minor of Y. So 2(@, J)(J) = 0. We already knew that 2(@, )(J\D) = 0 so what
we get in addition is that 2(@, )(D) = 0, and this applies for every ¢ in B. So all
the entries of the submatrix 2(3; D) of the nonsingular minor 2(T; P), are zero.
Completely analogously but now choosing an index from the set C and using the
relationship Y7Z = ZTV one sees that all the entries of the submatrix 2(A; C) of
the nonsingular minor 2(T; P), are zero.

Next, we want to show that |A| = |D| and |C| = |B|. If |C| < |B|, then the
submatrix 2(3; C) has linearly dependent rows. But then the rows of 2(3; P) are
linearly dependent and this contradicts that fact that 2(T; P) is nonsingular. If
now |C| > |B|, then the columns of 2(3; C) are linearly dependent, and so will
be the columns of Z(T;C), so we get again the same contradiction. So |C| = |B],
and because |A| + |B| = [ and |C| + |D| = [ we obtain that |A| = |D| as well. In
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summary, we proved that the nonsingular minor of Z is block diagonal:
Z(T; P) = Diag (Z(B; C), Z(A; D).

Completely analogously we obtain the same result for V. That is the nonsingular

minor of ¥ is block diagonal:
Y(I;J) = Diag (Y(A; D), Y (I\A; J\D)).
Now, because VZT = 2Y7T and YTZ = ZTY one easily sees that

YV(A; D)Z(A; D)T = Z(A; D)V (A; D)7, and

YV(A; D) Z(A; D) = Z(A; DY (A; D).

Moreover lA/(A; D), 2(A; D) are square and nonsingular. So from the first part
of the proof they have simultaneous singular value decomposition as described
in the lemma. Next, we find (four) orthogonal matrices that give the singular
value decomposition of Y(I\A; J\D) and Z(B;C) and because (I\A)N B = 0
and (J\D) N C = 0 it is not difficult to see how we can obtain the singular value

decomposition described in the lemma. O

In what follows, for a vector x in R", we write & for the vector in R™ with the
same entries as |x| arranged in nonincreasing order. Note that o(Diagx) = 2. The
following lemma follows as a particular case of the more general framework in [50,

Theorem 2.2 & Example 7.2]: we give a direct proof here.



6.2. THE NORMAL SPACE 171

Lemma 6.2.8. For any vectors x and y in R™ we have the inequality
vly <y (6.6)

with equality if and only if there is a signed permutation matriz Py in P_y(n)

such that P_yx = & and P_yy = §.

Proof. Tt is clear that the inequality holds since
ety < |2yl < 3y,

where the last inequality follows from Lemma 6.2.5. The condition for equality

in one direction is clear too. Now suppose we have equalities above. Because

lz|T|y| = 279, from Lemma 6.2.5, there is a permutation matrix  in P(n) such

that Q|z| = & and Qly| = ¢.
Let I be the n x n identity matrix. The fact that we have the equality 27y =
|T

|z|" |y| makes it possible to assign signs to the nonzero entries of I so that if I;_,

is the so-formed matrix, we have I(_yz = |z| and I_yy = [y|. For every index 1,
1 <1< n, we assign the signs as follows:

if z; =0 and y; = 0 set Iff) =1;

if ; =0 and y; # 0 set I(i’_i) =sign (y;);

if #; #0 and y; = 0 set I(i’_i) =sign (x;);

if ; # 0 and y; # 0, in order for the equality to hold we must have sign (z;) =
sign (y;), so set I(i’_i) = sign (z;). We have that QI_yz = & and QI_yy = §; let
Poy = QI H



6.2. THE NORMAL SPACE 172

The Normal Space Theorem (6.2.4) will be extremely useful to us in the following
sections. However we can immediately demonstrate its importance by deriving
next a famous inequality due to von Neumann [37, p. 182]. The following theorem
may be viewed as a necessary and sufficient condition for two matrices to have a

simultaneous ordered singular value decomposition.

Theorem 6.2.9 (Von Neumann’s Trace Theorem). Any matrices X and Y
in M, . satisfy the inequality tr XTY < o(X)Ta(Y). Equality holds if and only if

X and Y have a simultaneous ordered singular value decomposition.

Proof. For fixed X and Y, consider the optimization problem

a= sup trYTZ (6.7)
Ze0(n,m).X

Observe first that there is an element (U,, Uy, ) in O(n, m) satisfying the equality
Y = Ul (Diago(Y))U,,. Then choosing Z = UX(Diago(X))U,, shows that a >
o(X)To(Y).

Next, since the orbit O(n,m).X is compact, problem (6.7) has an optimal so-

lution, Z = Zj say, and any such Zy by stationarity must satisfy

Y L T7,(0(n,m).X) (=Tz(0(n,m).Zy)).

The Normal Space Theorem now shows that the matrices Y and Z; satisfy Zl'Y =

YTZy and ZyYT = YZI. Then by Lemma 6.2.7, there is an element (U, U,,) in
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O(n,m), and a signed permutation matrix P_y in P_)(n) such that
Y = U!'(Diag P-yo(Y)) U, Zo = U, (Diago(Zo))Upn. (6.8)

Hence using Lemma 6.2.5 we get

Thus we can conclude that a = o(X)Te(Y) and, using Lemma 6.2.8, there ex-
ists a signed permutation matrix R in P_y(n) such that RP_yo(Y) = o(Y") and

Ro(Zy) = 0(Zy). Plugging this into equations (6.8) we get that

Y = Ul (Diag R"0(Y)) U, Zo = U} (Diag R 0(Zo))Upn.

But
- T R 0
(Diag R'o(Y)) = R" (Diago(Y)) )
0 Im—n,m—n
and there is a similar equation involving Z,. The theorem follows. O

This section ends with two simple linear-algebraic results which are useful later.

Proposition 6.2.10 (Simultaneous Square Conjugacy). For any vectors x,

y, u, v in R", there is a matriz U in O(n) with

Diagx = UT (Diagu)U and Diagy = U”(Diagv)U
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if and only if there is a matriz P in P(n) with v = Pu and y = Pv.
Proof. See [52, Proposition 3.§]. O

Proposition 6.2.11 (Simultaneous Rectangular Conjugacy). For vectors x,

y, u, and v in R", there is an element (U,,Uy) in O(n,m) with

Diagx = Ul (Diagu)U,, and Diagy = U (Diagv)U,,

if and only if there is a matriz Py in P_y(n) with x+ = P_yu and y = P_yv.

Proof. In one direction the proof is easy. In the other direction we divide it into

four steps. First we note that
(Diag z)(Diagz)" = U (Diag u)(Diagu) U,
(Dingy)(Diagy)" = U, (Diag v)(Dizgv)"
So from Proposition 6.2.10, there is a permutation matrix Py in P(n) such that
2? = Piu?, and y? = Pjo*

This implies that the number of zero entries in the vector u is equal to the number
of zero entries in the vector x, and the permutation is such that if Pie’ = ¢’ then
|uil =[] and [vi] = y,].

Second we have that

(Diag «)(Diag z)" = Ul (Diagu)(Diagu)" U,
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(Diag z)(Diagy)” = Ul (Diagu)(Diagv)'U,

Again according to the previous proposition, there is a permutation matrix P, in
P(n) such that

2’ = Pyu? and x -y = Py(u-v).

Third, let m; and w5 be the permutations corresponding to the permutation
matrices P; and Py, that is, Pje' = ¢™0) for all j = 1,2 and ¢ = 1,...,n. We use m
and 3 to form a new permutation 7 (with corresponding permutation matrix P)

in the following way:

m(1) fu; =0
ma(1) if u; # 0.

(1) =

Because P, also matches the zero entries of u one-to-one onto the zero entries of x,
the above construction is well defined.

In the last step we show that we can turn P into a signed permutation matrix
Py with the desired properties and such that |P_)| = P. If n(i) = j (this of
course means P’ = 1), then:

If w; = 0 and v; = 0 then we set ij = pit =1.

(=)

If u; = 0 and v; # 0 then set P(jf) = sign (v;)sign (y;).

If u; # 0 and v; = 0 then set P(jf) = sign (u;)sign (x;).
If u; # 0 and v; # 0 then set again P(jf) = sign (u;)sign (x;).

It is easily verified that * = P_yu and y = P_jv. O
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6.3 Simultaneous Diagonalization

Proposition 6.3.1. (Orthogonally Invariant & Absolutely Symmetric) The

following two properties of a function F : M, ., — [—00,400] are equivalent:

1. F is orthogonally invariant; that is, any matrices X in M, m, U, in O(n),

and U, in O(m) satisfy F(UY'XU,,) = F(X).

2. F = foo for some absolutely symmetric function f: R™ — [—oo, +0o0] (that

is, any vector x in R"™ and matriz P in P_y(n) satisfy f(Px) = f(x)).
Proof. Elementary. O

As we discussed in the Introduction, the singular value functions are important

In various areas.

Definition 6.3.2 (Singular Value Function). A singular value function is
an extended-real-valued function defined on M, .., of the form foo for an absolutely

symmetric function f : R" — [—o0, +00].

Theorem 6.3.3 (Symmetricity). If a matric Y in M, ,, is a subgradient or a
horizon subgradient of a singular value function at @ matriz X in M, ,,, then X
and Y satisfy XTY =YTX and YTX = XTY. Furthermore, if the singular value
function is Lipschitz around X, and Y is a Clarke subgradient there, then again

XTY =YTX and YTX = XTY.

Proof. Call the singular value function F, and assume first that the subgradient

Y is regular. By the Normal Cone Proposition (6.1.8), the constancy of F' on the
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orbit O(n,m).X shows

Ye(K{Z:F(Z)<FX)}X))

C (K(O(n,m).X|X))” = (Tx(O(n,m).X))".
The result follows from the Normal Space Theorem (6.2.4).

Next, let Y be an (approximate) subgradient of F' at X. By the definition, there
is a sequence of matrices X, in M, ,,, approaching X with a corresponding sequence
of regular subgradients Y, in éF(XT), approaching Y. By the above paragraph we
have

XY =1lim XY, =limY'X, =Y'X.

The relationship Y7 X = XY is similar.
If Y is a horizon subgradient then there is a sequence Y, approaching ¥ and
real numbers ¢, decreasing to 0 such that ¢,Y, approaches Y. Thus, together with

the sequence X, in M, ,,, approaching X we have
XY =1limX't,Y, =limt, Y X, = YT X,

Using Definition 6.1.5, when the singular value function is locally Lipschitz then
any Clarke subgradient is a convex combination of subgradients, and since every
subgradient satisfies the two properties in the theorem, so must any convex combi-

nation. O

Hence if a matrix Y in M,, ,, 1s a subgradient of some singular value function at
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the matrix X in M, ,, then by Lemma 6.2.7 we get that

Y = U} (Diag Py (Y))Un, X = U} (Diago(X))Upn,

for some element (Uy,, Uy,) in O(n,m), and some P_y in P_)(n). Consequently, by
the Subgradient Invariance Proposition (6.1.9) applied to the space M,, ,, with the
action of the group O(n,m), the matrix Diag P_yo(Y") must be a subgradient at
Diag o(X). Consequently in order to characterize when a matrix Y is a subgradient
of a singular value function at a matrix X, it is enough to consider the case when
X and Y are both diagonal (by which we mean X, ; = 0if 7 # j). In one direction

this is not too hard, and we show it below.

Proposition 6.3.4. Any vectors x and y in R", and singular value function foo

satisfy

Diagy € O(f o o)(Diagz) = y € df(x).

Corresponding results hold for regular and horizon subgradients.

Proof. As in the previous theorem we show first that the claim holds when Diagy

is a regular subgradient of f o ¢ at Diagx. For small vectors z in R™ we obtain

fle+z2) = fllz + =)
= (f o 0')(Diag  + Diag z)
> (f o o)(Diag x) + tr (Diagy)” (Diag 2) + o(Diag )
= f(le]) +y"= + o(2)

= f(z)+y"z + o(z),
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whence y € éf(:z;)

Next, if Diagy € J(f o o)(Diaga), then there is a sequence of matrices X, in
M,, ,,, approaching Diag x, with f(o(X,)) approaching f(o(Diagz)), and a sequence
of regular subgradients Y, in é(f o 0)(X,) approaching Diagy. By Theorem 6.3.3
there is a sequence of elements (U}, U ) of O(n,m) and a sequence of matrices P,
in P_y(n) such that

X, = (U3) (Diag PLyo(X,))U}, and Y; = (U7)7 (Diag o(Y,)) U5, (6.9)

m

for every r. The Subgradient Invariance Proposition (6.1.9) now shows that

N

Diag 7(Y;) € O(f o o) (Diag P{_,o(X,)).

whence by the first part o(Y;) € éf(P(’”_)a(Xr)).

The groups O(n,m) and Py are compact. So without loss of generality we
can assume that (U, U") approaches an element (U,,U,) in O(n,m) and P,
approaches Py in P_j(n). Moreover, because P_y(n) is a discrete group, the
elements of the sequence P(’”_) will be equal to P_) for big enough r’s. Hence from

equation (6.9), taking the limit and rearranging we get

U.(Diag z)U, = Diag (P_yo(Diagz)), and
(6.10)
U,.(Diag y)UL = Diag o(Diagy).

Since P(T_)O'(XT) approaches P_yo(Diagx), with f(P(T_)O'(XT)) = f(o(X,)) ap-
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proaching f(o(Diagz)) = f(P-yo(Diagz)), and o(Y;) € éf(P(T_)O'(XT)) approa-
ches o(Diagy), then o(Diagy) belongs to df(P_yo(Diagz)).

Combining Equation (6.10) and Proposition 6.2.11, there exists a signed permu-
tation matrix ]5(_) such that z = P(_)P(_)U(Diag T), Yy = p(_)a(Diag y). Applying
the Subgradient Invariance Proposition (6.1.9) again, this time to the space R"
with the group P_y(n), we get that y belongs to df(x) as we claimed.

In the case when Diag y is a horizon subgradient, the calculations are analogous.

O

6.4 Directional derivatives of singular values

The aim of this section is to prove the reverse implication of the one stated in
Proposition 6.3.4. The main difficulty is to show that for vectors = and y in R™ and

a singular value function f o ¢ we have
y € Of(x) = Diagy € J(f o o)(Diagz). (6.11)

After that, to prove the same implication for the (approximate) subdifferential
will be easy. We need two propositions whose proofs can be found in [47, Corol-
lary 2.6 and Theorem 3.1]. One may also want to compare the following two results

with Theorem 2.3.9 and Corollary 2.5.6 respectively.

Proposition 6.4.1 (Characterization Of Convexity). Suppose that the func-
tion f : R — (—o0, +0o0] is absolutely symmetric. Then the corresponding singular

value function f oo is convex and lower semicontinuous on M, ., if and only if f
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1s convex and lower semicontinuous.

Proposition 6.4.2 (Gradient Formula). If a function f : R" — (—o0, 4]
s convexr and absolutely symmetric, then the corresponding convex, orthogonally
invariant function f o o is differentiable at the matriz X if and only if f is differ-

entiable at o(X). In this case
V(f 0 0)(X) = U7 (Diag ¥ f(o(X))) U,

for any matrices U, in O(n) and U, in O(m) with X = UL (Diag U(X))Um.

For each integer £ = 0,1,2,....,n we define the function Sy, : M, ,, — R by
Sk(M) = Ele oi(M), the sum of the k largest singular values of the matrix M. For
convenience we define Sy = 0. It is well known result of Fan that Sy is a convex (even
sublinear) function (see also [36]). One can see this also using Proposition 6.4.1.
We define a new symbol R} := (R}NRY). To simplify the notation in the following

few lemmas, if x is a vector from R" we will define z,.; = 0.

Lemma 6.4.3. The function f : R" — (—oo,+00) defined by f(x) = Ele 2
(k < n) is differentiable at any point i € Ry such that iy > 41, and its derivative

18
k

Vi) =) ¢

=1

Proof. Set v := Ele e¢'. For all vectors x with sufficiently small norm we have

flptx) = Zle ti+x;. So for all sufficiently small vectors @ # 0, f(“"'x)_ni(”“)_(”’x) =

0. Consequently Vf(u) = Ele €. O
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Lemma 6.4.4. Fiz an integer k, 1 < k <n. For any real vector x in R" such that

Tp > Ty the function Sy is differentiable at Diagx with gradient
k .
VSi(Diagz) = UT <Diag > e’) U,
=1

where U, and U, are any orthogonal matrices such that Diagz = UnT(Diag 2)Up,.

Note 6.4.5. Of course one can choose the matrices U, and U, in such a way
that Uy, is a signed permutation matriz, Py, and Uy, is the block diagonal matriz
Diag (| Py |, Im—nm—n)-

Proof. The function f : R® — (—o0,+0o0) defined by f(y) = Ele U; 1s easily
seen to be absolutely symmetric and convex. From Lemma 6.4.3 it is also differen-
tiable at the point o(Diagxz) = . So by Proposition 6.4.2 it follows that f o o is
differentiable at Diagx. But (foo)(M) = Sp(M) for each M in M, ., so Sy is dif-
ferentiable at Diag x and the formula for its gradient follows from Proposition 6.4.2
and Lemma 6.4.3. U

To is convez, and any vector

Lemma 6.4.6. For any vector w in Ry, the function w
z in RY satisfies Diagw € d(w”o)(Diagx).

Proof. The absolutely symmetric continuous function f : R” — R defined by f(z) =
w? 2 is convex because it is the maximum of a family of convex (linear in this case)

functions

f(z) = max{w"P_yz: Py € P_(n)},

by Lemma 6.2.8. Then by Proposition 6.4.1 we obtain that f o o is convex. To

prove the claim about the subgradient it is enough to show that any matrix Z in
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M, ,,, satisfies

tr (Diag w)(Z — Diagz) < wlo(Z) — w'z,

or in other words, tr (Diagw)Z < wlo(Z). This inequality follows from von Neu-

mann’s Theorem (6.2.9). O

For any vector x in R", we denote by P_)(n), the stabilizer of x in the group
P_y(n), that is
P_y(n)e = {Py € Py(n): Pyx = z}.

Lemma 6.4.7. If v is a vector in RY, and w is a vector in R™ such that the stabi-
lizer P_y(n), is a subgroup of P_y(n)., then the function w'o(-) is differentiable
at Diag x with

V(w'c)(Diagz) = Diagw,

Proof. Suppose that the structure of vector z is

Ty = e = Ty > Tpyq = ooe = Ty > oo > Tpog1 = oo = Ty, =0, (kg = n).

(The proof of the lemma is the same even if x,, > 0.) Since the stabilizer P_)(n),

is a subgroup of P(_y(n)w, there exist reals 81, Bs,...,8,,8,11 with

w; = B; whenever k;_; <1 <k;, j=1,2,...,r,
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where 3,11 = 0 and we set kg = 0. We obtain

X) = Zﬁj, Y o) = Zﬁj(skj(X) = Sk (X)),

Let P(l_) = I, and P? = I, the identity matrices of the indicated dimension. Then

applying Lemma 6.4.4 gives

r+1

V(w o)(Diag ) = Z@, (Dlag Ze —Dlagz )
(Z@ Diag Z )

= k‘J 1-|—1

= Diag w,

as required. O

The following theorem, which will be used in proving implication (6.11), gives
information about the directional derivatives of singular values. The adjoint of the
linear map Diag: R™ — M, ,,, is the map diag: M, ,, — R", taking a matrix M to

a vector with components A;,; (1 <1 < n).

Theorem 6.4.8 (Singular Value Derivatives). Any vector x in R and matriz

M in M, ,, satisfy
diag M € conv (P_y(n),0’(Diagz; M)). (6.12)

Proof. Assume first that =, = 0. Partition the set of integers {1,2,...,n} into
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consecutive blocks Iy,I5,....1,. 1,11, so that x; = z; if and only if the indices ¢ and
belong to the same block. Let us agree that z; € I, if and only if x; = 0. We are
going to say that an entry of = belongs to a particular block if its index is in that

block. With respect to these blocks, write any vector y in R™ in the form

r+1
Yy = @ y', where y* € Rl for each 1.
=1
The stabilizer P_y(n), consists of matrices permuting the entries of = in a block
I;, (for every fixed ¢, 1 < ¢ < r) among themselves (without sign changes) and
permuting the entries of & belonging to the block I, among themselves (with
possible sign changes).

Assume that relation (6.12) fails. Then there exists a hyperplane separating

diag M from conv (P(_)(n)xa’(Diag x; M)) That is, some vector y in R" satisfies
yTdiag M > yTP(_)U’(Diag x; M), for all Py in P_y(n)e. (6.13)

Let  denote the vector ®i_,y’ @ y/’”:l There is a vector v in R"™ with equal
components within every block [; (1 < ¢ <r) and v; = 0 whenever j € I,;; (that
is, P_)(n), is a subgroup of P_y(n),) so that v + g lies in R}. Lemma 6.4.6 shows
that

Diag (v +9) € 9((v + )" o) (Diag ),

which in turn means that for any T in M,, ,,, and any real ¢, using the definition of
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a convex subgradient for the matrix Diag z + tT'
b (7)7 (Diag (v + 7)) < (v + §)70)(Diag e +T) — (v + §)70)(Diag 2)
Dividing by ¢ and letting it go to 07 we arrive at
tr (T7(Diag (v + 9))) < (v + )" o'(Diagx; T), (6.14)
for any matrix T in M,, ,,. On the other hand, Lemma 6.4.7 shows that
tr (T"(Diagv)) = v"o’(Diag z; T). (6.15)
Subtracting equation (6.15) from inequality (6.14) gives
tr (T"(Diagy)) < " o'(Diagz; T). (6.16)
If we set diag M =: w = @,w", then there is a matrix @ in P_)(n), satisfying

Q| 0 —

= @®_w §w't.

diag Q"M

0 Im—n,m—n

0
Choosing the matrix 7' in inequality (6.16) to be T = QT M @

0 Im—n,m—n

and using Lemma 6.2.5 repeatedly and Lemma 6.2.8 shows

v w < (B y) (B, ) + gL W
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= tr (T"(Diag 7))
< j"o'(Diag 2; T)

=y o' (Diagz; M).

In the last equality we used the Subgradient Invariance Proposition (6.1.9). But
now choosing the matrix P_y € P_)(n), in inequality (6.13) so that P(T_)y =g
gives a contradiction.

Agssume now z,, > 0. Then the reader can verify that the proof works again if

we think that the block I,,4 is empty. O

Another result that we will need is that the singular value map o can be ex-
panded in a first order series, and this expansion stays valid when the direction

varies freely. In other words we have the following lemma.

Lemma 6.4.9. Given a matriz X in M, ., small matrices M in M, ,, satisfy
o X+ M)=0c(X)+d(X; M)+ o(M).

Proof. The above first order expansion is true for any continuous convex function.
For a proof of this fact see [31, Lemma VI.2.1.1]. In our case o; is the difference of
the two convex functions 2321 o; and 23;11 oj (see Lemma 6.4.6). So it is true for

o; as well. O

Finally we prove the implication (6.11). Notice though, that we require x to be

in RY. In the corollary that follows we remove this condition.
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Theorem 6.4.10. For any vectors x in Ry and y in R", and any singular value
function f oo,

y € f(x) = Diagy € d(f o o)(Diagx).

Proof. By the Subgradient Invariance Proposition (6.1.9), every element of the
finite set P_)(n).y is a regular subgradient of f at x. The convex hull of this set,

which we denote by A, has support function given by
§3(z) = max{z"P_yy : Py € P_)(n),}, for all z in R™.

This function is sublinear, with global Lipschitz constant ||y||.
Fix a real € > 0. The definition of regular subgradients implies, for small vectors

zin R",
Fla+2) = f(e) +03(2) — €[] (6.17)

On the other hand, using the previous lemma (6.4.9), small matrices Z in M,

must satisfy

Jo(Diagz + 2) — = — o' (Diag s 2)] < |2
and hence, by inequality (6.17),
f(a(Diag :1;—|—Z)) = f(:z; + (o(Diaga 4+ Z) — :1;))

> f(z) - ello(Diagx + Z) — |

+ 5X(U’(Diag v; 7))+ [c(Diagz + Z) — v — o'(Diag x; Z)])



6.4. DIRECTIONAL DERIVATIVES OF SINGULAR VALUES 189

> f(x) + &3 (o' (Diag x; Z)) — (1 + [ly|)el| Z]l.

using the Lipschitz property of ¢ and the Lipschitzness of §;. The Singular Value

Derivatives Theorem (6.4.8) implies

diag Z € conv (P_y(n),0’(Diagz; Z)). (6.18)

Since the polytope A is obviously invariant under the group P_y(n)., so is its

support function, whence

N (P(_)U'(Diag x; Z)) = 4} (U’(Diag x; Z)),

for any matrix P_y in P_y(n),. This combined with the convexity of 6} and relation
(6.18), demonstrates

5i(diag Z) < &3 (o' (Diag x; Z)).
Continuing the argument above we have
flo(Diagz + Z)) > f(x) + o3 (diag Z) — (1 + [yl el Z]]

> f(x) +y'diag Z — (1 + [lylDel| 2]

= f(w) + (Diagy, Z) — (1 + [ly[])ell Z ]I,

and since € was arbitrary, the result follows. O

Corollary 6.4.11 (Diagonal Subgradients). For any vectors x and y in R™ and
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any singular value function f oo,
y € df(x) & Diagy € 9(f o o)(Diagx).

Corresponding results hold for reqular and horizon subgradients. If f is Lipschitz

around o(X) then the implication ‘= also holds for Clarke subgradients.

Proof. We prove only the implication ‘=", because the opposite direction is Prop-
osition 6.3.4. Again we first show it in the case when y is a regular subgradient.
Fixing a matrix P_) in P_y(n) satisfying # = P_jz, the assumption y € éf(:z;)
implies P_yy € éf(P(_)l‘), by the Subgradient Invariance Proposition (6.1.9). Now

we can apply the previous result:

. [Pl 0 . ; .
P(T_)(Dlag Y) = Diag (P_yy) € O(f o 0)(Diag (P_yz))
0 Im—n,m—n
A P 0
= d(f o o) | PL(Diag) o) ,
0 Im—n,m—n

and the result follows by applying the Subgradient Invariance Proposition again.
Now suppose y € df(x), so there is a sequence of vectors 2" in R™ approaching
x, with f(2") approaching f(x), and a sequence of regular subgradients y" € éf(:z;’”)
approaching y. Hence Diaga” approaches Diagx with f(o(Diaga")) approaching
f(o(Diagx)), and by the above argument, each matrix Diagy” is a regular subgra-
dient of f o o at Diaga”. Since Diagy” approaches Diagy, the result follows. The

horizon subgradient case is almost identical.
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If the function f is Lipschitz around o(X) and y is a Clarke subgradient at «,
then y is a convex combination of subgradients y' € df(x). Since by the above
argument each matrix Diag ¢’ is a subgradient of foo at X, and Diagy is a convex

combination of these matrices, Diagy must be a Clarke subgradient. O

Note 6.4.12. We prove the converse implication <=’ in the Clarke case in Sec-

tion 6.6.

6.5 The main result

We present the main result of the chapter in this section. It is an easy formula
describing the subgradients of any singular value function in terms of its underlying
absolutely symmetric function. The proof reduces the general case to the diagonal

case developed in the previous section.

Theorem 6.5.1 (Subgradients). The (approzimate) subdifferential of a singular

value function f oo at a matric X in M, ,, ts given by the formula

I(f o a)(X) = O(n,m)*.Diag df(s(X)), (6.19)

where

O(n,m)* = {(U,,Un) € O(n,m) : (U,,Uy,).Diago(X) = X}.

The sets of regular and horizon subgradients satisfy corresponding formulae.
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Proof. For any vector y in 0f(c(X)), the Diagonal Subgradients Corollary (6.4.11)
shows

Diagy € 9(f o o)(Diago(X)).
Now, for any element (U,,U,,) of O(n,m) such that Ul (Diago(X))U,, = X, the
Subgradient Invariance Proposition (6.1.9) implies

U, (Diag y)Un € O(f 0 o)(U, (Diag o(X))Un) = 9(f 0 0)(X).

All this showed the inclusion d(f o o )(X) D O(n,m)¥.Diag df(o(X)).

For the opposite inclusion, take a subgradient Y in 9(f o 0)(X). By the
Symmetricity Theorem (6.3.3) it satisfies the relationships: Y7X = XTY and
YXT = XY7T. Hence by Lemma 6.2.7 there exists an element (U,, U,,) in O(n,m)

and a signed permutation matrix P_y in P_)(n) such that

X =U!(Diago(X))U,, and Y = U, (Diag P_yo(Y))Up.

Then the Subgradient Invariance Proposition (6.1.9) shows

Diag Pyo(Y) € 8(f o 7)(Diag o(X)),

whence P_yo(Y) € 0f(o(X)), by the Diagonal Subgradient Corollary. Thus the
matrix Y belongs to the right-hand-side set above, as required. The arguments for

regular and horizon subgradients are similar. 0

Note 6.5.2. Same result holds for Clarke subgradient - see Section 6.6. In the case
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when f s lower semicontinuous see Section 6.7.

Corollary 6.5.3 (Unique Regular Subgradients). A singular value function
f oo has a unique reqular subgradient at a matriz X in M, ,, if and only of f

has a unique regular subgradient at o(X).

Proof. Suppose f has unique regular subgradient y at o(X). Then by the sub-
di