Eigenvalue, Quadratic Programming and Semidefinite Programming Bounds for Graph Partitioning Problems
Loading...
Date
2014-09-03
Authors
Wang, Ningchuan
Advisor
Journal Title
Journal ISSN
Volume Title
Publisher
University of Waterloo
Abstract
The Graph Partitioning problems are hard combinatorial optimization problems. We are interested in both lower bounds and upper bounds. We introduce several methods including basic eigenvalue and projected eigenvalue techniques, convex quadratic programming techniques, and semidefinite programming (SDP). In particular, we show that the SDP relaxation is equivalent to and arises from the Lagrangian relaxation for a particular quadratically constrained quadratic model. Moreover, the bounds obtained by the eigenvalue techniques are good and cheap.
Description
Keywords
Graph Partitioning, Semidefinite Programming, eigenvalue bounds