Security for Rural Public Computing

Loading...
Thumbnail Image

Date

2008-09-15T15:02:15Z

Authors

Ur Rahman, Sumair

Advisor

Journal Title

Journal ISSN

Volume Title

Publisher

University of Waterloo

Abstract

Current research on securing public computing infrastructure like Internet kiosks has focused on the use of smartphones to establish trust in a computing platform or to offload the processing of sensitive information, and the use of new cryptosystems such as Hierarchical Identity-based Encryption (HIBE) to protect kiosk user data. Challenges posed by rural kiosks, specifically (a) the absence of specialized hardware features such as Trusted Platform Modules (TPMs) or a modifiable BIOS in older recycled PCs, (b) the potential use of periodically disconnected links between kiosks and the Internet, (c) the absence of a production-ready implementation of HIBE and (d) the limited availability of smartphones in most developing regions make these approaches difficult, if not impossible, to implement in a rural public computing scenario. In this thesis, I present a practical, unobtrusive and easy-to-use security architecture for rural public computing that uses a combination of physical and cryptographic mechanisms to protect user data, public computing infrastructure and handheld devices that access this infrastructure. Key contributions of this work include (a) a detailed threat analysis of such systems with a particular focus on rural Internet kiosks and handheld devices, (b) a security architecture for rural public computing infrastructure that does not require any specialized hardware, (c) an application-independent and backward-compatible security API for securely sending and receiving data between these systems and the Internet that can operate over delay tolerant links, (d) an implementation of my scheme for rural Internet kiosks and (e) a performance evaluation of this implementation to demonstrate its feasibility.

Description

Keywords

security, trusted computing, developing regions, cryptography, trusted public computing, rural public computing, public key infrastructure, computer networks, distributed systems, delay tolerant networks, security architecture

LC Subject Headings

Citation