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Abstract

We investigate computational aspects of popular solution concepts for different models

of network games. In chapter 3 we study balanced solutions for network bargaining games

with general capacities, where agents can participate in a fixed but arbitrary number

of contracts. We fully characterize the existence of balanced solutions and provide the

first polynomial time algorithm for their computation. Our methods use a new idea of

reducing an instance with general capacities to an instance with unit capacities defined on

an auxiliary graph. This chapter is an extended version of the conference paper [32].

In chapter 4 we propose a generalization of the classical stable marriage problem. In

our model the preferences on one side of the partition are given in terms of arbitrary bi-

nary relations, that need not be transitive nor acyclic. This generalization is practically

well-motivated, and as we show, encompasses the well studied hard variant of stable mar-

riage where preferences are allowed to have ties and to be incomplete. Our main result

shows that deciding the existence of a stable matching in our model is NP-complete. We

then use our model to study a long standing open problem about cyclic 3D stable match-

ings. In particular, we prove that deciding whether a fixed 2D perfect matching can be

extended to a 3D stable matching is NP-complete. This chapter is an extended version of

the conference paper [33].

In chapter 5 we study a long standing open problem of whether the nucleolus of match-

ing games can be computed efficiently. Our approach follows previous techniques that rely

on obtaining a polynomial sized characterization of the least core as both the initial and

crucial step in establishing an efficient algorithm. As a preliminary result, we introduce a

generalisation of the least core and show that for node-weighted matching games existing

polynomial sized characterizations of the least core can be extended to this generalised ver-

sion. We then use this result to show that for a certain class games with general weights

one can identify a node-weighted subgraph such that the least core of the original matching

game is equal to the generalised least core of this subgraph. This allows us to obtain a

polynomial time algorithm for computing the nucleolus for this class of matching games

with general weights.
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Chapter 1

Introduction

This thesis studies the computational complexity of some central solution concepts in net-

work games. Networks are prevalent in every aspect of our lives. For example, in the last

decades social networks have proven to be essential to understanding human behaviour.

Perhaps not surprisingly, a vast majority of decisions that people make from which prod-

ucts to buy, to which political candidate to support, are closely tied to the choices of their

friends. As a result, social interactions and the spread of information have fundamental

effects on the outcomes of these decisions. In turn, these interactions are often governed

by the underlying structure of a network, a system of bilateral relationships between par-

ticipants. The study of such systems is therefore a crucial step in better understanding the

outcomes of human interactions.

In the game theoretic approach to networks, the inputs to the problem are assumed

to be controlled by rational, self-interested agents. This gives rise to what we refer to as

network games: situations where agents who are connected via a network interact with one

another to achieve an outcome of mutual benefit. In its simplest form, a network game is

described by a graph, where the vertices of the graph represent the agents and the edges are

the bilateral links among them. These links capture the way that the agents can interact

to derive some mutual benefit. As one would expect, the benefit derived by a given agent is

heavily dependent on those of his or her neighbours in the network. Hence, the underlying

graph-theoretical properties of the network become instrumental in determining exactly
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what type of outcomes one can expect.

Network games can also be viewed as a special case of cooperative games. Cooperative

game theory studies situations where agents can cooperate with one another by entering

in some binding agreements with each other to derive mutual benefit. In this thesis we

are particularly interested in transferable utility (TU) games, a type of cooperative games

where the value derived from cooperation can be transferred among the agents without the

use of a third entity. The main goals of such games is to determine exactly which groups,

or coalitions, of agents decide to cooperate and how they divide the total value achieved

by cooperation. In particular, a fundamental question is to determine how the agents will

divide the value fairly. In order to answer these questions, game theorists have devised

several solution concepts. A solution concept identifies a subset of rational outcomes which

are most likely to occur. One of the most widely accepted solution concepts for cooperative

games is that of stability. An outcome is said to be stable if no member of the forming

coalition has an incentive to deviate from it.

In addition to capturing rational outcomes, it is essential for solution concepts to

also have desirable computational properties. In particular, it is important to determine

whether a certain game always possesses a rational outcome according to a given solution

concept, and whether such an outcome can always be computed efficiently. This thesis is

concerned with answering exactly these type of questions. In the remainder of this chapter

we present the three main type of network games considered in this thesis together with

an overview of our main contributions for each game. We conclude with an outline of the

remaining chapters of the thesis.

1.1 Network bargaining

Exchanges in networks have been studied for a long time in both sociology and economics.

In sociology, they appear under the name of network exchange theory, a field which studies

the behaviour of agents who interact across a network to form bilateral relationships of

mutual benefit. The goal is to determine how an agent’s location in the network influences

its ability to negotiate for resources [15]. In economics, they are known as cooperative
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games [69] and have been used for studying the distribution of resources across a network,

for example in the case of two-sided markets [75] [71].

From a theoretical perspective the most commonly used framework for studying such

exchanges is that of network bargaining games. As a simple example consider the case of

two agents A and B who can choose to form a contract of value w dollars. Given no other

information about the agents,and assuming equal utilities, we would expect them to form

the contract and divide its value equally among themselves so that each agents receives

w/2 dollars as depicted in Figure 1.1.

A B
w

w

2
w

2

Figure 1.1: Splitting a contract with no outside options.

But now suppose that we are told the agents have the following backup options: if

they decide not to form the contract, then agent A can receive a total value of αA dollars

while agent B can receive a total value of αB dollars. How will this effect the negotiations

between the two agents? John Nash first proposed a solution to this scenario in his paper

[67] that became the foundation of modern bargaining theory. His idea, referred to as the

Nash bargaining solution, states that the contract is formed if and only if its value is at

least as much as αA+αB, the sum of the backup options of the two agents. Furthermore, if

the contract is formed then its value is divided according to the following rule: each agent

receives an amount equal to its backup option, and any leftover amount is split equally

between the two agents. The resulting split is depicted in Figure 1.2.

The idea of this two person Nash bargaining solution can be generalized to any number

of agents, where each agent can engage in a fixed number of contracts specified by its

capacity. This general model is described in terms of an undirected graph G = (V,E)

with edge weights w : E(G) → R+ and vertex capacities c : V (G) → Z+. The vertices

represent the agents, and the edges represent pairwise contracts that the agents can form.
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A B
w

↵A +
w � (↵A + ↵B)

2
↵B +

w � (↵A + ↵B)

2

Figure 1.2: Splitting a contract with existing outside options.

The weight of each edge represents the value of the corresponding contract. As in the two

person scenario, if a contract is formed between two agents, its value is divided between

them, whereas if the contract is not formed neither agent receives any profit from this

specific contract. The capacity of each agent limits the number of contracts it can form.

This constraint, together with an agent’s position in the network determine its bargaining

power. The main questions that network bargaining tries to answer is which contracts are

formed and how their value is divided among agents forming the contract.

A solution for the network bargaining model specifies the set of contracts which are

formed, and how each contract is divided. Specifically, a solution consists of a pair (M, z),

where M is a c-matching of the underlying graph G, and z is a vector which assigns each

edge (u, v) two values zuv, zvu ≥ 0 corresponding to the profit that agent u, respectively

agent v, earn from the contract (u, v). To be a valid solution, the two values zuv and zvu

must add up to the value of the contract whenever the edge (u, v) belongs to the c-matching

M , and must be zero otherwise.

Solutions to network bargaining games are classified according to two main concepts:

stability and balance. A solution is stable if the profit an agent earns from any formed

contract is at least as much as its outside option: an agent’s outside option, in this context,

refers to the maximum profit that the agent can rationally receive by forming a new

contract with one of its neighbours, under the condition that the newly formed contract

would benefit both parties. The notion of balance, first introduced in [14], [71], is a

generalization of the Nash bargaining solution to the network setting. Specifically, in a

balanced solution the value of each contract is split according to the following rule: both

endpoints must earn at least their outside options, and any surplus is to be divided equally
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among them. Balanced solutions have been shown to agree with experimental evidence,

even to the point of picking up on subtle differences in bargaining power among agents

[80, 11]. This is an affirmation of the fact that these solutions are natural and represent

an important area of study.

As an example, consider the graph shown in Figure 1.3. There are five agents in the

graph denote by the vertices A,B,C,D and E. Each agent has capacity one and can engage

in at most one contract and the edges are all unit weight. One might immediately notice

that in order to maximize their total profit, the agents should choose to form contracts

corresponding to a maximum weight matching, that is either {AB,DE} or {BC,DE}.
This intuition turns out to be true, as any stable solution in a network bargaining game

must always occur on a maximum weight matching. The solution shown in Figure 1.3

A

B

C

D E1

0

0

1 0

Figure 1.3: A stable but not balanced solution.

awards the entire weight of the contract AB to the vertex B, and the entire weight of

the contract DE to the vertex D. This turns out to a stable solution since all vertices

that receive a value of 0 always have an outside option of 0, so no stability conditions are

violated. However, this solution is not balanced, since both vertices D and E have an

outside option of 0, and the Nash bargaining solution would dictate that they split the

value of their contract equally among them. The unique balanced solution to this game is

shown in Figure 1.4. Intuitively, vertex B receives the full value of its contract with A due

to its central location in the network. As for the contract between D and E, even though

E is an endpoint vertex and has no bargaining power, D’s only other connection is with a
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very powerful vertex and thus its bargaining power is no greater then E’s.

A

B

C

D E

1

2

1

2

1

0

0

Figure 1.4: A stable and balanced solution.

There is a close connection between network bargaining games and cooperative games.

Specifically given a solution (M, z) to the network bargaining game (G,w, c) we can define

a corresponding payoff vector x, where xu is just the total profit earned by vertex u from

all its contracts in the solution (M, z). Then this vector x can be seen as a solution to a

corresponding cooperative game (N, v) defined as follows: we let N = V (G) denote the set

of players, and for every subset S ⊆ N of players, we define its value v(S) as the weight

of the maximum weight c-matching of G[S]. This game is also known as the matching

game of Shapley and Shubik [75]. The subsets S ⊆ N are referred to as coalitions, and

the value v(S) of each coalition is interpreted as the collective payoff that the players in

S would receive if they decide to cooperate. The players are assumed to be able choose

which coalitions to form, and their objective is to maximize their pay-offs.

Cooperative games are often assumed to be super-additive, meaning that the value of

a union of disjoint coalitions is no less than the sum of the coalitions’ separate values.

The underlying assumption in such games is that the grand coalition N will form, and

the question becomes how to distribute the payoff v(N) among the players. A vector x

describing such a distribution is referred to as an allocation. Given an allocation x, the

excess of a coalition S is defined as v(S)− x(S). The power of player u over player v with

respect to the allocation x is the maximum excess achieved by a coalition that includes u

but excludes v. Two important concepts from cooperative games are those of the core and
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prekernel. The core consists of allocations for which no coalition has a negative excess,

whereas the prekernel consists of all allocations with symmetric powers.

1.1.1 Contributions

Our main result is providing the first polynomial time algorithm for computing balanced

solutions for network bargaining games with general capacities and fully characterizing the

existence of balanced solutions for these games. Specifically we show the following results.

Result 1. There exists a polynomial time algorithm which, given an instance of a network

bargaining game with general capacities and a maximum weight c-matching M , computes

a balanced solution (M, z) whenever one exists.

Result 2. A network bargaining game with general capacities has a balanced solution if

and only if it has a stable one.

Our method relies on a new approach of reducing a general capacity instance to a

network bargaining game with unit capacities defined on an auxiliary graph. This allows

us to use existing algorithms for obtaining balanced solutions for unit capacities games,

which we can then transform to balanced solutions of our original instance. This represents

a departure from previous approaches of Bateni et al. [6] who were trying to establish an

equivalence between the set of balance solutions and allocations in the intersection of the

core and prekernel of the corresponding matching game. We show that such an approach

cannot work in general, since this equivalence does not extend to all instances of general

capacity games:

Result 3. There exists an instance of a network bargaining game with general capacities

for which we can find an allocation in the intersection of the core and prekernel such that

there is no corresponding balanced solution for this allocation.

Despite this result, we provide two necessary conditions which ensure that the corre-

spondence between the set of balanced solutions and allocations in the intersection of the

core and prekernel is maintained. Using the definition of gadgets we have the following

result:
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Result 4. If the network bargaining game has no gadgets and the maximum c-matching

M is acyclic, the set of balanced solutions corresponds to the intersection of the core and

prekernel.

1.1.2 Related work

Kleinberg and Tardos [55] introduced network bargaining games to the theoretical com-

puter science community. They studied games with unit capacities and developed a polyno-

mial time algorithm for computing the entire set of balanced solutions. They also showed

that such games have a balanced solution whenever they have a stable one and that a

stable solution exists if and only if the linear programming relaxation for the maximum

weight matching of the underlying graph has an integral optimal solution. Here we are

referring to the linear program containing only the degree constraints and not the odd set

constraints.

Bateni et al. [6] were the first to generalize network bargaining games to arbitrary

capacities. They characterized the existence of stable solutions by providing a parallel

result to the case of unit weights: stable solutions exist if and only if the linear programming

relaxation for the maximum weight c-matching (again without the odd set constraints) of

the underlying graph has an integral optimal solution. For balanced solutions, they focused

on a special case of bipartite graphs where one side of the partition has unit capacities but

the other side can have arbitrary capacities. They proved an equivalence between the set

of balanced solutions of this special class of graphs and the intersection of the core and

prekernel of the corresponding matching game. This equivalence implies that balanced

solutions can be computed using an existing polynomial time algorithm of Faigle [31] for

finding allocations in the prekernel.

Network bargaining games with general capacities have also been studied by Kanoria

et al. [51] who focused on the existence of a natural local dynamics for this game. They

also provided a partial characterization of the existence of balanced solutions by proving

that if the associated linear programming relaxation has a unique optimum solution that

is integral, then a balanced solution is guaranteed to exist. They provide an algorithm for
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computing balanced solutions in this case which uses local dynamics but whose running

time is exponential.

Local dynamics in network bargaining games with unit capacities are also studied by

Azar et al. [3] who focus on a different local dynamics that assumes the maximum weight

matching M is fixed and proceeds by iteratively fixing edges that do not satisfy the Nash

bargaining solution. They show that this edge balancing dynamics converges to a balanced

outcome whenever one exists. However the rate of convergence might be exponential. In

[10] the authors analyse the same local dynamics using a new technique that relies on a

connection to random turn games. They are able to improve the previous exponential

bound on convergence to a polynomial one for the case of network bargaining games with

unit weights. Independently from these works, Draief et al. [21] showed quadratic conver-

gence of the edge balancing dynamics for the following graphs: a path, a cycle, a blossom

and a bicycle.

For general cooperative games, Maschler proposed a simple transfer scheme to approxi-

mate points in the prekernel. Stearns [78] was the first to prove convergence of this scheme,

and a simpler proof was provided by Faigle et al. [31]. In the same paper, Faigle et al.

provide a polynomial time algorithm for finding a point in the intersection of the least core

and prekernel that uses two components: a transfer scheme similar to Maschler’s and a

linear programming based update that guarantees the polynomial running time.

1.2 Stable matchings

The Stable Marriage (SM) problem is a classical bipartite matching problem first intro-

duced by Gale and Shapley [36]. An instance of the problem consists of a set n of men,

and a set of n women. Each man (woman) has a preference list that is a total order over

the entire set of women (men). The goal is to find a stable matching between the men and

women, meaning that there is no (man, woman) pair so that both prefer each other to their

current partners in the matching. Since its introduction, the stable marriage problem has

become one of the most popular combinatorial problems with several books being dedicated

to its study [42, 56, 72] and more recently [61]. The popularity of this model arises not
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only from its nice theoretical properties but also from its many applications. In particular,

a wide array of allocation problems from many diverse fields can be analysed within its

context. Some well known examples include the labour market for medical interns, auction

markets, the college admissions market, the organ donor-recipient pair market, and many

more [72].

In their seminal work Gale and Shapley showed that every instance of SM admits a

solution and such a solution can be computed efficiently using the so-called Gale-Shapley

(or man-proposing) algorithm. Among the many new variants of this classical problem, two

extensions have received most of the attention: incomplete preference lists and ties in the

preferences. Introducing either one of these extensions on its own does not pose any new

challenges, meaning that solutions are still guaranteed to exist, all solutions have the same

size, and they can be computed efficiently using a modification of the original Gale-Shapley

algorithm [37, 42]. However, the same cannot be said about the Stable Marriage problem

with Ties and Incomplete Lists (SMTI) that incorporates both extensions. In this variant,

stable matchings no longer need to be of the same size, even though they are still guaranteed

to exist. To see this consider the example depicted in Figure 1.5. The edges in the graph

denote all acceptable pairs and the numbers on the edges near a vertex denote the ranking

of each partner with respect to that vertex. Man b1 and woman c2 only have one acceptable

partner, whose ranking is by default 1. Woman c1 finds both b1 and b2 acceptable and she

is indifferent between them, since they both have rank 1. Man b2 finds both women c1 and

c2 acceptable but prefers woman c1 over woman c2. In the figure on the left the red edges

b1c1 and b2c2 denote a stable matching of size two, while in the figure on the right the red

edge b2c1 denotes a stable matching of size one.

Since SMTI instances poses solutions of different sizes, the natural question to ask is

whether one can efficiently compute a stable matching of maximum size. The answer to this

question is no, since deciding whether a given instance admits a stable matching of a given

size is NP-hard [62], even in the case where ties occur only on one side of the partition.

When ties occur in both the preferences of the men and women the problem is NP-hard to

approximate to within 33/29(> 1.1379) and UGC-hard to approximate to within 4/3 [?].

The current best approximation ratio is 3/2 [54]. When ties occur only in the preference

lists of the women, the problem is NP-hard to approximate to within 21/19(> 1.1052)
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c1

b2

b1

c2

1

2

1

1

1

1

c1

b2

b1

c2

1

2

1

1

1

1

Figure 1.5: An SMTI instance with stable matchings of different size

and UGC-hard to approximate to within 5/4 [48]. The current best approximation ratio

is 25/17 [49]. We refer the reading to [61] for an excellent account of recent work on the

approximation version of this problem.

A central assumption in most variants of SM is that agents’ preferences are transitive

(i.e., if x is preferred to y, and y is preferred to z then x is also preferred to z). However,

there are several studies [7, 35, 50, 64] that suggest that non-transitive, and even cyclic

preferences arise naturally. Cyclic preferences, for example, may be introduced in the

context of multi-attribute comparisons [34]; e.g., consider the following study from [64]

where 62 college students were asked to make binary comparisons between three potential

marriage partners x,y and z according to the following three criteria: intelligence, looks

and wealth. The candidates had the following attributes: candidate x was very intelligent,

plain, and well off; candidate y was intelligent, very good looking, and poor; and candidate

z was fairly intelligent, good looking, and rich. From the 62 participants, 17 displayed the

following cyclic preference: x was preferred to y, y was preferred to z, and z was preferred

to x. In order to better capture such situations there is a need for a model that allows for

more general preferences.

Addressing this need we propose the Stable Marriage with General Preferences (SMG)

problem. As in SM, in an instance of SMG we are given n men, and n women, and the

preferences of men are complete total orders over the set of women. The preferences of

women, on the other hand, are given in terms of arbitrary binary relations over the men.

Each of these binary relations will be represented by a set R containing ordered pairs of

men. We allow the set R to be empty. We say that a woman prefers man x at least as
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much as man y if the ordered pair (x, y) is part of her preference set. A matching is then

stable as long as for every unmatched (man, woman) pair at least one member prefers her

mate in the matching at least as much as the other member of the pair.

It is easy to see that any stable matching for an SMG instance must be a perfect match-

ing. This contrasts the case of SMTI where a given instance can have stable matchings of

different size. A second difference is that unlike in SMTI, not all instances of SMG admit

a stable matching. As a simple example consider the instance of SMG depicted in Figure

1.6. This instance consists of two men b1, b2 and two women c1, c2. Both men prefer woman

c1 to woman c2. However the set of ordered pairs representing woman c1’s preferences is

empty, meaning that she does not prefer b1 at least as much as b2, nor does she prefer b2

at least as much as b1. Then given any perfect matching, woman c1 will always form a

blocking pair with the man that she is not matched to. Hence this instance does not admit

a stable matching.

c1

b2

b1

c2

1

2

1

2

Rc1 = ;

Rc2 = {(b1, b2)}

Figure 1.6: An SMG instance with no stable matching

Our SMGmodel can also be used to study a three-dimensional stable matching problem

first proposed by Knuth [56]. In particular we consider the Cyclic 3-Dimensional Stable

Matching problem (c3DSM), where we are given a set of n men, a set of n women and

in addition a set of n dogs. The preferences of the men are complete total orders over

the set of women. Similarly the women have preferences over the dogs, and the dogs have

preferences over the men. A 3D matching is said to be stable if there is no (man, woman,

dog) triple such that each member of the triple prefers this triple over the one assigned to

them in the matching. A prominent open question is whether every instance of c3DSM

admits a stable matching, and whether such a matching can be computed efficiently.

12



A natural avenue for attacking c3DSM is to solve the following problem which we

refer to as Stable Extension (SE): suppose we fix a perfect matching M on the sets of dogs

and men, can we efficiently determine whether M is extendible to a 3D stable matching?

More specifically, we say that M is extendible to a 3D stable matching if there is a way

of assigning to each man-dog pair in M a woman such that the resulting 3D matching

is stable. Recall that women have preferences over dogs only, but note that the given

matching M induces preferences over their male owners as well. In essence, this allows us

to state the SE problem as a special case of the SMG model.

1.2.1 Contributions

Introducing non-transitive preferences, even when restricted to just one side of the parti-

tion, changes the properties of the model drastically. Like in SM any solution must be

a perfect matching. However, solutions are no longer guaranteed to exist. We show that

non-transitive preferences generalize both incomplete lists and ties by reducing the SMTI

to SMG. In doing so, we prove that the SMG problem is also NP-hard.

Result 5. The decision problem of whether an instance of SMG admits a solution is

NP-complete.

We then identify a significant class of instances that are solvable in polynomial time:

those where the preferences are asymmetric, meaning that for every pair of men x, y, each

woman prefers at most one to the other. We then prove the following result.

Result 6. For instances of SMG with asymmetric preferences, there exists a polynomial

time algorithm that finds a solution if and only if one exists.

We provide two different proofs. The first employs an adaptation of the classical Gale-

Shapley man-proposing algorithm. The second relies on a polyhedral characterization: we

define a polytope that is non-empty if and only if the instance admits a stable matching.

We also develop an efficient rounding algorithm for its fractional points.

Despite displaying stronger structural properties than SMG, we show that SE remains

hard to solve.
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Result 7. The decision problem of whether an instance of SE admits a solution is NP-

complete

At a high level, the strategy for proving result 7 resembles that of the proof of result

5. The details are however significantly more intricate, mainly due to the fact that SE

instances correspond to SMG instances in which preferences are induced by a given 3D

matching instance. As an interesting consequence for the c3DSM, result 7 rules out the

natural algorithmic strategy of fixing and extending a 2D perfect matching on two of the

input sets. In addition our results for SMG instances with complete preferences provide a

sufficient condition for when a perfect matching is extendable to a stable three dimensional

matching.

1.2.2 Related work

To the best of our knowledge, the stable marriage problem with preferences given in terms

of arbitrary binary relations has not been studied before. In [1] the authors do consider a

version of SM with non-transitive preferences, however unlike in our model, the preference

relations are required to be acyclic. The authors do not study this problem directly but

instead use it as a tool for developing a reduction between the stable room-mates problem

and the stable marriage problem.

There is a rich literature about SM and its variants. In particular, there has been

significant work concerning the approximation variant of the SMTI problem, where the

goal is to find a maximum size stable matching. When ties are allowed on both sides, the

problem is NP-hard to approximate within 33/29 [?] and the currently best known ration

is 3/2 [65]. When ties are only allowed on the side of the women the problem is NP-hard

to approximate within 21/19 [43] and the currently best known ratio is 25/17 [49].

A related model, known as Stable Marriage with Indifference [45, 60], allows for pref-

erences to be given in the form of partial orders that are not necessarily expressible as a

single list involving ties. That is, the indifference relation need not be transitive. This

model allows for several definitions of stability, and depending on which definition is used,

solutions might not always exist. In particular, under strong stability, stable matchings
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might not always exists and it is show in [46] that the problem of deciding whether a

strongly stable matching exists, given an instance of the stable marriage problem with

partially ordered preferences, is NP-complete.

For c3DSM, it is known that every instance admits a stable matching for n ≤ 4 [27].

The authors conjectured that this result can be extended to general instances. In [8] it was

shown that if we allow unacceptable partners, the existence of a stable matching becomes

NP-complete. In the same paper, and also independently in [44], it was shown that the

c3DSM problem under a different notion of stability known as strong stability is also

NP-complete.

1.3 Matching games

While the core is a very important solution concept for cooperative games, unfortunately

many games have an empty core. This is particularly true for matching games, where the

core is empty whenever the weight of the maximum weight fractional matching is strictly

greater than the weight of the maximum weight integral matching. As an example consider

the matching game displayed in Figure 1.7.

A

C

B

D
6

1

55

Figure 1.7: A matching game with empty core.
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The red edges indicate the unique maximum weight matching with total weight 7.

However, the maximum weight fractional matching achieves a total weight of 8 by assigning

a value of 1/2 to each edge of the triangle. It can be easily checked that there is no way to

divide the 7 units among the five vertices while ensuring that the endpoints of each edge

receive a total value equal to at least the weight of the edge. Indeed, any allocation x that

satisfies x(e) ≥ w(e) for every edge e of our graph would need to have xA + xB + xC ≥ 8.

Hence the core of this matching game is empty.

Even if the core is non-empty, it might be a very large set, meaning that the question

of which outcome is the most fair remains largely unanswered. To address these issues

Schmeidler [73] introduced the concept of the nucleolus as a single point solution concept

for cooperative games. The idea behind the nucleolus is that it recursively maximizes the

pay-off of the least satisfied coalition. For a more formal definition, we need the notion

of excess. Given a coalition S, and an allocation x : 2N → R, the excess of S with

respect to x is defined as x(S)− v(S). This difference captures the incentive of a coalition

to deviate: if the excess is positive, then the coalition is fairly satisfied and would have

no incentive to deviate; while if the excess is negative then the coalition would have an

incentive to deviate since its agents can derive more value by leaving the grand coalition

and cooperating among themselves. The nucleolus can then be defined as the allocation

that lexicographically maximizes the vector of non-decreasingly ordered excesses over the

set of all allocations.

Figure 1.8 displays the nucleolus for the same matching game that we considered in

Figure 1.7. Since the core is empty as we observed, there have to be some coalitions that

receive negative excess. These are exactly the coalitions corresponding to the triangle

edges, and each one of them has an excess of −2/3.

While its definition might seem hard to digest, the nucleolus turns out to have several

very nice properties. For instance, it always exists and it is part of the core whenever

the core is non-empty. But perhaps most importantly, the nucleolus is always unique,

meaning that it specifies a unique way to divide the value of the grand coalition among

all the agents. Due to these properties, applications of the nucleolus have arisen in many

fields such as cost allocations problems, surplus sharing problems, and in insurance and

bankruptcy policies [58].
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Figure 1.8: The nucleolus of a matching game with empty core.

The nucleolus has also been used to explain a rather curious division problem from

the Babylonian Talmud, whose solution has puzzled academics for thousands of years [2].

The problem concerns a man that dies with outstanding debts to three creditors. Creditor

1 is owed 100, creditor 2 is owed 200, and creditor 3 is owed 300. It is decided that in

order to make up for his debts, the man’s estate will be divided among the three creditors.

The question is, what proportion of the estate should each creditor get? The Talmud

offers answers for three different scenarios: when the estate size is 100, 200, and 300. The

answers are portrayed in Table 1.1 below.

Table 1.1: Mysterious division of a man’s estate

Estate size Creditor 1 Creditor 2 Creditor 3

100 100/3 100/3 100/3

200 50 75 75

300 50 100 150

When the size of the estate is 100, the suggested division gives equal amounts to each

creditor, while when the size of the estate is 300 the amounts are proportional to the
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amount of money owed. Perhaps even more puzzling is the suggested division for the 200

case, where the second and third creditor receive equal amounts, while the first receives a

smaller amount. Not being able to explain the pattern behind this decisions, many scholars

have suggested that 200 case an error introduced during transcription. However, Aumann

and Maschler [2] showed that the divisions given in the Talmud correspond to the nucleolus

of a properly defined cooperative game. Intuitively, any subset of creditors S ⊆ {1, 2, 3} can
guarantee themselves an amount equal to the maximum between zero and the remainder of

the estate after every creditor outside S has been paid in full. This characteristic function

defines a cooperative game whose nucleolus coincides with the value given in the table.

For example for the case where the estate size is 200, each coalition S ⊆ {1, 2, 3} \ {2, 3}
has value v(S) = 0 while v(S) = 100 for S = {2, 3}. The excess vector corresponding

corresponding to the suggested division of (50, 75, 75) is (50, 50, 75, 75, 125, 125) and this

is indeed the unique lexicographically maximum over the set of all allocations.

Due to its many applications and useful properties, the question of whether the nu-

cleolus can be computed efficiently is a major problem in cooperative games. This is

particularly true for matching games. For the case of matching games with non-empty

core, and matching games with unit weights, polynomial time algorithms for computing

the nucleolus have been known to exist for a while. However, for matching games with

empty core and general weights, the question remains to be answered and it is considered

one of the major open problems in the area.

1.3.1 Contributions

We study the open question of whether the nucleolus can be computed efficiently for

matching games with an empty core and general weights. We follow previous techniques

that compute the nucleolus using a sequence of linear programs that iteratively refine the

underlying feasible region until it consists of a single allocation that is the nucleolus of

the game. The main challenge in turning this procedure into a polynomial time algorithm

is describing each linear program using only a polynomial number of constraints. The

first linear program in this sequence defines the least core, which is the set of allocations

that maximize the minimum excess of a coalition. Thus, obtaining a polynomial sized
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characterization of the least core is the initial step in establishing an efficient algorithm.

In fact, this also turns out to be the crucial step since similar characterizations can be

obtained for all subsequent linear programs by induction.

As part of our results we require a generalisation of the least core obtained by relaxing

the requirement that the total value of an allocation equals the maximum weight of a

matching. Instead we allow a total value of ∆, where ∆ is a fixed constant that is at

least the maximum weight of a matching and strictly less than the maximum weight of

a fractional matching. Our first result shows that existing characterizations of the least

core be extended to this generalised least core for matching games that are node-weighted,

meaning that the weight of each edge can be obtained as the sum of non-negative weights

of the endpoints.

Result 8. There exists a polynomial sized characterization of the generalised least core of

any matching game that is node-weighted.

We then use this result as follows: given a weighted graph (G,w) that has an empty core

and is not node-weighted we first obtain an optimal dual solution y to the maximum weight

fractional matching problem for (G,w). We then look at the subgraph G[y] of G that is

induced by the edges of G that are tight with respect to y, and consider the generalised

least core of G[y] obtained by setting ∆ to be equal to the maximum weight of a matching

in (G,w). If this is equal to the weight of a maximum weight matching in (G[y], w), then

this is just the regular least core of G[y]. However, since this might not always be the case,

we really require the generalisation of the least core. Given this generalised least core,

we check whether it contains any extendable allocations, where extendable allocations are

defined as having the same minimum excess in both G and G[y]. The following is then our

main result.

Result 9. If the generalised least core of G[y] contains at least one extendable allocation,

then the least core of G is equal to the set of all extendable allocations. Moreover, the

nucleolus of the matching game (G,w) can be computed in polynomial time.

We conclude the chapter by showing that the existence of an extendable allocation is

independent of our original choice of optimal dual solution.
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Result 10. Let y1 and y2 be two optimal solutions to the dual of the maximum weight

fractional matching linear program of (G,w). Then the generalised least core of G[y1]

contains an extendable allocation if and only if the generalised least core of G[y2] contains

an extendable allocation.

1.3.2 Related work

This computational complexity of the nucleolus for cooperative games has been studied by

Maschler et al. [63] who devised an approach, often referred to as Maschler’s scheme, that

is based on solving a sequence of linear programs that refine the core until it becomes a

singleton set containing exactly the nucleolus. While the number of linear programs in this

scheme is no more then the number of agents in the game, each linear program contains an

exponential number of constraints, one for each coalition. In general it is unclear whether

these linear programs can be solved efficiently [18].

On the positive side, there are several polynomial time algorithms for computing the

nucleolus for certain classes of cooperative games. Solymosi and Raghavan [76] provide

a combinatorial algorithm for computing the nucleolus of matching games on bipartite

graphs, also known as assignment games. An important property of this class of games is

that the core is always non-empty. Biro et al. extend this result to non-bipartite graphs

but maintaining the assumption that the core is non-empty. Chen et al. [13] provide an

algorithm for fractional matching games, whose core is also non-empty.

Kern and Paulusma [53] were the first to study matching games with an empty core in

the case where all edges have unit weight. They provide a polynomial time algorithm for

computing the nucleolus that relies on initially obtaining a polynomial sized description of

the least core, which is the first linear program that has to be solved in Maschler’s scheme.

In Paulusma’s thesis [68] this result is extended to node-weighted games, matching games

where there exists an assignment of non-negative weights to the nodes of the graph such

that the weight of each edges is equal to the sum of the node weights of its endpoints.

Faigle et al. [29] propose a different solution concept called the nucleon, which differs

from the nucleolus by defining the excess of a coalition as x(S)/v(S) as supposed to x(S)−
v(S). They provide an efficient algorithm for computing the nucleon of any matching game.
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Outside of matching games, efficient algorithms for computing the nucleolus have also

been found for standard tree games [66, 40], convex games [57], flow games [19] , cyclic-

permutation games [77], airport profit games [9] and spanning connectivity games [4] among

others.

On the negative side, several hardness results also exist. For the case of minimum

cost spanning tree games Faigle et al. showed that testing core membership [28] as well

as computing the nucleolus [30] are NP-hard. A similar result is shown by Elkind et

al. [25] for weighted threshold games. In a follow up paper Elkind et al. [26] provide

a pseudo-polynomial time algorithm that computes the nucleolus for k-vector weighted

voting games.

For an excellent treatise of general computational issues arising in cooperative game

theory we refer the reader to [12].

1.4 Outline of the thesis

In chapter 2 we introduce the main terminology and background results requires for this

thesis. Section 2.1 introduces the main matching theory concepts. This includes the

maximum weight matching and maximum weight fractional matching problems and cor-

responding linear programming formulations in 2.1.1, the Edmonds-Gallai decomposition

of a graph and its properties in 2.1.2, and c-matchings in 2.1.3. The major concepts of

cooperative games are all defined in the section 2.2: the core 2.2.1, the least core 2.2.2, the

nucleolus 2.2.3, and the prekernel 2.2.4. Section 2.3 introduces the special type of coop-

erative games studied in this thesis: matching games, and their generalisation c-matching

games 2.3.6. We review some famous results specific to matching games regarding the 2.3.1,

the least core 2.3.2 and a linear programming scheme for computing the nucleolus 2.3.3.

We also introduce existing results for computing the nucleolus when the core is non-empty

2.3.4, and when the graph is node-weighted 2.3.5. In section 2.4 we introduce network bar-

gaining games and review existing results regarding unit capacities 2.4.1 and connections

to cooperative games 2.4.2. In section 2.5 we introduce stable matchings including the

classical stable marriage model in 2.5.1 together with the Gale-Shapley algorithm, the gen-
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eralisation known as stable marriage with ties and incomplete lists in 2.5.2 and extensions

to three dimensions in 2.5.3.

In chapter 3 we present our result on network bargaining games with general capacities.

Section 3.1 contains the results 3 and 4, while section 3.2 contains results 1 and 2. In chapter

4 we have the results for stable matchings, in particular result 5 in section 4.1, result 6 in

section 4.2 and result 7 in section 4.3. In chapter 5 we present out results on matching

games with empty core and general weights. Result 8 is presented in section 5.2, result 9

in sections 5.3 and 5.5, and result 10 in section 5.4. Finally in chapter 6 we conclude with

some directions for future work.
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Chapter 2

Background

2.1 Matching theory

In this chapter we review some fundamental results from matching theory that will be used

throughout the thesis. For a more in depth take on these topics we refer the reader to [59].

2.1.1 Maximum weight matchings

We let G denote an undirected simple graph with vertex set V (G) and edge set E(G).

The edges of G have weights given by a vector w ∈ R|E(G)|. For the purposes of this

thesis we can assume that the weight vector is non-negative, meaning that we ≥ 0 for all

e ∈ E(G). For a given vertex v ∈ V (G) we let δ(v) denote the set of edges in E(G) that

are incident with v. Given a subset of vertices S ⊆ V (G) we denote by γ(S) the set of

edges in E(G) with both endpoints in S and let G[S] denote the subgraph of G with vertex

set S and edge set γ(S). Given a vector x defined over a finite set N and S ⊆ N we use

the standard notation x(S) to denote
∑

i∈S xi. In particular if x ∈ R|V (G)| and e is an edge

with endpoints u and v then x(e) denotes xu + xv.

We start by introducing the main underlying notion of this thesis: a matching.
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Definition 2.1.1. A matching of G is a subset of edges M ⊆ E(G) no two of which share

an endpoint. The weight of M is w(M) =
∑

e∈M we. The maximum weight of a matching

of G is denoted by ν(G) and defined as

ν(G) := max {w(M) : M is a matching } .

A matching M is said to cover a vertex v ∈ V if |M ∩ δ(v)| = 1, and otherwise M is

said to expose v. A matching M is perfect if it does not expose any vertex of the graph,

and near-perfect if it exposes exactly one vertex of the graph.

A graph G is factor critical if G has no perfect matching but for each vertex v of G

there exists a near-perfect matching of G exposing v.

Given two disjoint sets of vertices A and B we say that a matching M matches A

completely into B if each vertex of A is matched by M to a vertex of B.

We say that a matching M is a maximum weight matching if w(M) = ν(G) and a

maximum cardinality matching if |M | ≥ |N | for any other matching N . We define the

linear program

(PFM) max
∑

e∈E(G)

wexe (2.1)

x(δ(u)) ≤ 1 for all u ∈ V (G)

xe ≥ 0 for all e ∈ E(G).

The dual linear program to PFM is

(DFM) min
∑

u∈V (G)

yu (2.2)

yu + yv ≥ we for all e = (u, v) ∈ E(G)

yu ≥ 0 for all u ∈ V (G).

This brings us to the definition of a fractional matching.

Definition 2.1.2. A fractional matching is a vector x that is a feasible solution to PFM .

The weight of a fractional matching x is
∑

e∈E(G) xewe, the objective value achieved by the

solution x. The optimal value of PFM is denoted by νf (G).
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We say that a fractional matching x is a maximum weight fractional matching if∑
e∈E xewe = νf (G). Since the incidence vector of any matching is a feasible solution

to PFM we immediately have ν(G) ≤ νf (G). The following is a famous result of Egerváry

[24].

Theorem 2.1.3. If G is bipartite then νf (G) = ν(G).

For non-bipartite graphs this is no longer true since the optimal solution to PFM might

be fractional. However the following result states that any optimal solution to PFM is

half-integral [5]

Theorem 2.1.4. Let x∗ be a basic solution to PFM . Then x∗
e ∈

{
0, 1

2
, 1
}
for all e ∈ E(G)

and the edges
{
e ∈ E(G) : x∗

e =
1
2

}
induce vertex disjoint odd cycles.

We say that a basic fractional matching x∗ is perfect if
∑

e∈δ(v) x
∗
e = 1 for all vertices

v ∈ V (G). We will require the following result from [17], also found in [70], about fractional

matching of factor critical graphs.

Theorem 2.1.5. Let G be a factor critical graph with |V (G)| > 1. For each vertex v ∈
V (G) there exists a basic perfect fractional matching x∗ of G such that

{
e ∈ E(G) : x∗

e =
1
2

}
contains a single cycle C that passes through v.

The complementary slackness conditions imply that any maximum weight fractional

matching x∗ and optimal dual solution y∗ to DFM must satisfy

y∗u + y∗v = we for all e = (u, v) ∈ E(G) such that x∗
e > 0 (2.3)

x∗(δ(v)) = 1 for all v ∈ V (G) such that y∗v > 0 (2.4)

Let Vodd be the set of all odd sized subsets of V of size at least 3. We define the linear

program

(PM) max
∑

e∈E(G)

wexe (2.5)

x(δ(u)) ≤ 1 for all u ∈ V (G)

x(γ(B)) ≤ (|B| − 1)/2 for all B ∈ Vodd

xe ≥ 0 for all e ∈ E(G).
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The dual linear program to PM is given by

(DM) min
∑
u∈V

yu +
∑

B∈Vodd

|B| − 1

2
zB (2.6)

yu + yv +
∑

B ∈ Vodd: e ∈ γ(B)

zB ≥ we for all e = (u, v) ∈ E(G) (2.7)

yu ≥ 0 for all u ∈ V (G)

zB ≥ 0 for all B ∈ Vodd.

Note that any incidence vector of a matching is a feasible solution to PM . Hence the

optimal value of PM is clearly an upper bound on ν(G). The following classic result of

Edmonds [22] states that this bound is exact.

Theorem 2.1.6. The optimal value of PM is equal to ν(G).

Despite the exponential number of constraints of the linear program PM , a celebrated

result of Edmonds [22] provides a polynomial time combinatorial algorithm that constructs

a primal-dual optimal pair to PM and DM . This algorithm is known as Edmonds blossom

algorithm, and for a detailed description of it we refer the reader to [16]. For the purposes

of this thesis it suffices to use the fact that a maximum weight matching of G can be

computed in polynomial time.

2.1.2 Edmonds-Gallai decomposition

For our results we will need the Edmonds-Gallai decomposition of a graph. In order to

describe this decomposition we first need to introduce some more notation.

Definition 2.1.7. Let A ⊆ V (G). We let C = C(A) denote the set of even sized components

of G\A and D = D(A) the set of odd sized components of G\A. The subset A is called a

Tutte set if every maximum cardinality matching M in G can be decomposed as

M = MC ∪MA,D ∪MD
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where MC is a perfect matching in the union of all even components C; MD induces a

near-perfect matching in all odd components D ∈ D; and MA,D is a matching that matches

A completely into ∪D the union of odd components.

The following theorem proven by both Gallai [38, 39] and Edmonds [23] guarantees

that we can compute such a set efficiently and lists some of its useful properties.

Theorem 2.1.8. Given a graph G, one can construct a Tutte set A ⊆ V (G) in polynomial

time such that

1. Each odd component D ∈ D is factor critical.

2. For each D ∈ D there exists a maximum cardinality matching in G that exposes a

vertex of D.

The triple (A(G),D(G), C(G)) is called the Edmonds-Gallai decomposition of G. The

components in D(G) are referred to as odd components, while the ones in C(G) are referred

to as even components.

2.1.3 Vertex capacities

If in addition to edge weights we also have vertex capacities we use the following generalised

definition of a matching.

Definition 2.1.9. Let G be a graph with vertex capacities cv ∈ Z+ for all v ∈ V (G). A

c-matching of G is a subset of edges M ⊆ E(G) satisfying

|M ∩ δ(v)| ≤ cv for all v ∈ V (G).

We let νc(G) denote the maximum weight of a c-matching in G.

We define the linear program

(P c
FM) max

∑
e∈E

wexe (2.8)

x(δ(u)) ≤ cu for all u ∈ V (G)

0 ≤ xe ≤ 1 for all e ∈ E(G).
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We let νc
f (G) denote the optimal value of P c

FM .

2.2 Cooperative games

In this section we introduce the main concepts from cooperative game theory that are used

in this thesis.

Definition 2.2.1. A cooperative game is a pair (N, v) where N = {1, · · · , n} is a finite

set and v : 2N → R+ is a function satisfying v(∅) = 0. The set N is said to represent the

agents of the game, and the function v is called the characteristic function of the game.

A subset of agents S ⊆ N is called a coalition and the set N is called the grand coalition.

The function v assigns to each coalition an outcome v(S) called the value of coalition S.

This value represents the total benefit that the players in S can derive by choosing to

cooperate and form the coalition S. However, v(S) does not specify anything about how

this value should be split among the agents in S.

Our definition of cooperative games implicitly assumes that the value v(S) can be

divided amongst the agents in S in any way that they choose. Such games are also referred

to as transferable utility games or TU -games for short.

All cooperative games considered in this thesis have the property that it is always

profitable for two different coalitions to join together. This is formally known as super

additivity.

Definition 2.2.2. A cooperative game (N, v) is super additive if it satisfies v(S ∪ T ) ≥
v(S) + v(T ) for all pairs of disjoint coalitions S, T ⊆ N .

In super additive games there is no benefit for the agents to form disjoint coalitions,

since they can always derive at least as much profit by joining in the grand coalition. It is

thus assumed for such games that the grand coalition will always form, and the remaining

question is to decide how the agents divide the total value v(N) amongst themselves. A

vector that specifies such a division is called an allocation.
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Definition 2.2.3. An allocation of the cooperative game (N, ν) is a vector x ∈ RN
+ that

satisfies x(N) = v(S). The set of all allocations of (N, v) is denoted by I(N, v).

If in addition to being an allocation, a vector x satisfies x({i}) ≥ v({i}) for all i ∈ N

then x is called an imputation. Intuitively this correspond to individual rationality since it

ensures that no one is worse off by cooperating. The type of cooperative games considered

in this thesis all have the property that v({i}) = 0 for any i ∈ N , therefore we do not need

to make a distinction between allocations and imputations.

2.2.1 The core

The excess of a coalition S ⊆ N with respect to an allocation x is defined as

e(S, x) := x(S)− v(S)

The core represents the set of all allocations under which no coalition has negative

excess.

Definition 2.2.4. The core of a cooperative game (N, v) is defined as

core(N, v) = {x ∈ I(N, v) : x(S) ≥ v(S) for all S ⊆ N}

2.2.2 The least core

While the core is a very important solution concept, it can often be empty. After all, the

requirement of satisfying every single coalition is rather strong. As an alternative, one

often works with a relaxation of the core that is guaranteed to be non-empty. To define

this relaxation, we first introduce the concept of minimum excess. Given an allocation x

we define the minimum excess of a coalition with respect to x as

emin(x) := min {e(S, x) : ∅ 6= S 6= N}

We then maximize this value over the set of allocations to obtain

ε1 := max
x∈I(N,v)

emin(x).

Note that ε1 ≥ 0 if and only if the core is non-empty.
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Definition 2.2.5. The least core of a cooperative game (N, v) is defined as

leastcore(N, v) = {x ∈ I(N, v) : x(S) ≥ v(S) + ε1 for all S ⊆ N}

Unlike the core, the least core is always non-empty. Furthermore, the least core is a

subset of the core whenever the latter is non-empty.

2.2.3 The nucleolus

One can refine the concept of the least core by extending the idea of maximizing the

minimum excess. Given any allocation x, we define the excess vector θ(x), as the 2N−2

dimensional vector whose components are the excesses e(S, x), arranged in non-decreasing

order, of all the coalitions ∅ 6= S ⊂ N . A vector x ∈ Rm is said to be lexicographically

smaller than or equal to y ∈ Rm, denoted by x � y, if x = y or there exists an index j,

1 ≤ j < n, such that xi = yi for all i ≤ j and xj+1 < yj+1. We now arrive at the definition

of the nucleolus.

Definition 2.2.6. The nucleolus of a cooperative game (N, v) is defined as

η(N, v) = {x ∈ I(N, v) : θ(y) � θ(x) for all y ∈ I(N, v)}

That is, the nucleolus is the set of allocations that lexicographically maximize θ(x) over

the set of allocations I(N, v). If follows immediately from definition that the nucleolus

always exists and is a subset of the least core. It is not immediately clear however that the

nucleolus defines a unique point. The result was first shown in [73].

Theorem 2.2.7. The set η(N, v) consists of exactly one point.

2.2.4 The prekernel

Another important solution concept for cooperative games is the prekernel. In order to

define it this we first need to introduce the notion of power. Let (N, v) be a cooperative
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game, and i, j ∈ N with i 6= j. The power of i over j with respect to the allocation x is

defined as

sij(x) := max
S⊆N :i∈S,j /∈S

v(S)− x(S). (2.9)

The prekernel is a solution concept based on the idea that these powers should be equalized.

Definition 2.2.8. The prekernel of a cooperative game (N, v) is defined as

prekernel(N, v) := {x ∈ I(N, v) : sij(x) = sji(x) for all i, j ∈ N, i 6= j}

While its definition is not very intuitive, the prekernel does have some nice connections

to other solution concepts. The prekernel is always non-empty and satisfies the following

property [31]

Theorem 2.2.9. Let (N, v) be a cooperative game. If core(N, v)∩ prekernel(N, v) consists

of a single point x∗ ∈ R|N |, then x∗ is the nucleolus of the game.

2.3 Matching games

Matching games are a special class of cooperative games derived from an underlying max-

imum matching problem.

Definition 2.3.1. Given an undirected simple graph G = (V,E) with edge weights w :

E → R+ we define the corresponding matching game on G as the cooperative game (N, v)

where N = V and

v(S) := ν(G[S]) for all S ⊆ N

where ν(G[S]) = max {w(M) : M is a matching in G[S]}

Matching games are super additive. A matching game on a bipartite graph is also

called an assignment game.
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2.3.1 The core

It turns out that for matching games, the core can be characterized using only the con-

straints corresponding to coalitions of size one and two [68].

Theorem 2.3.2. Let G = (V,E) be a graph with edge weights w : E → R+ and (N, v) the

corresponding matching game on G. Then

core(N, v) = {x ∈ R+ : x(N) = v(N) and x(e) ≥ we for all e ∈ E} .

Recall our definition of the linear program PFM for the maximum weight matching

problem

(PFM) max
∑
e∈E

wexe

x(δ(u)) ≤ 1 (u ∈ V )

xe ≥ 0 (e ∈ E)

and its dual
(DFM) min

∑
u∈V

yu

yu + yv ≥ we (e = uv ∈ E)

yu ≥ 0 (u ∈ V ).

Using our new characterization of the core we can see that y is a core allocation if and

only if y is a feasible solution to DFM with objective value ν(G). We therefore have the

following useful observation, also found in [20].

Theorem 2.3.3. Let G = (V,E) be a graph with edge weights w : E → R+ and (N, v) the

corresponding matching game on G. Then core(N, v) 6= ∅ if and only if νf (G) = ν(G).

Furthermore, from complementary slackness we have that for any x ∈ core(N, v)

• xi = 0 for all i ∈ V such that i is exposed by a maximum weight matching

• x(e) = we for all e ∈ E such that e belongs to a maximum weight matching
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2.3.2 The least core

In addition to the core having a nice representation for matching games, the description

of the least core can also be simplified using the following observation from [68].

Theorem 2.3.4. Let G = (V,E) be a graph with edge weights w : E → R+ and (N, v) the

corresponding matching game on G. Then core(N, v) ⊆ RN
+ .

This allows us to work with the following equivalent characterization of the core. Let

M be the set of all matchings in G. Define the linear program

(P1) maximize ε (2.10)

subject to x(M) ≥ w(M) + ε M ∈ M
x(V ) = ν(G)

x ≥ 0.

For any ε let P1(ε) be the set of vectors x so that (x, ε) is a feasible solution to P1, and let

ε1 is the optimum value of P1. Theorem 2.3.4 implies that leastcore(N, v) = P1(ε1).

2.3.3 The nucleolus: Maschler’s scheme

In this subsection we review the standard procedure used for computing the nucleolus

found in [63]. This procedure applies to any cooperative game (N, v) but we assume here

that (N, v) is a matching game. We start by solving the linear program

(Q1) maximize ε

s.t. x(S) ≥ v(S) + ε for all S /∈ S0

x(N) = v(N).

where S0 := {∅, N}.

Let ε1 be the optimum value for Q1 and for a given ε define Q1(ε) to be the set of all x

such that (x, ε) is feasible for Q1. Note that under these definitions, we have core(N, v) =

Q1(0) and leastcore(N, v) = Q1(ε1).
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Now if Q1(ε1) does not consist of a single point we proceed by defining S1 to be the set

of coalitions that are fixed by Q1(ε1)

S1 := {S ⊆ N : x(S) = v(S) + ε1 for all x ∈ Q1(ε1)}

And we solve the second linear program

(Q2) maximize ε

s.t. x(S) = v(S) + ε1 for all S ∈ S1

x(S) ≥ v(S) + ε for all S /∈ S0 ∪ S1

x(N) = v(N)

defining in a similar way ε2 be the optimum value for Q2 , Q2(ε2) to be the set of all x

such that (x, ε2) is feasible to Q2 and

S2 := {S ⊆ N : x(S) = v(S) + ε2 for all x ∈ Q2(ε2)}

We continue in this way until we reach

(Qr) maximize ε

s.t. x(S) = v(S) + ε1 for all S ∈ S1

x(S) = v(S) + ε2 for all S ∈ S2

...

x(S) = v(S) + εr−1 for all S ∈ Sr−1

x(S) ≥ v(S) + ε for all S /∈ ∪r−1
i=0Si

x(N) = v(N)

such that Qr(εr) consists of a single point η(N, v), the nucleolus of the game.

It follows from the definition of this procedure that ε1 < ε2 < · · · < εr and η(N, v) =

Qr(εr) ⊂ Qr−1(εr−1) ⊂ · · · ⊂ Q2(ε2) ⊂ Q1(ε1). Since in each iteration at least one equality

constraints is added that is independent from the previous equality constraints, it follows

that the dimension of feasible region of the above sequence of LPs decreases by at least 1
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with each iteration. Hence r ≤ |N | and the number of LP’s is polynomial in the size of

the input.

Despite the number of iterations being polynomial, there remain two main difficulties

for turning this procedure into an efficient algorithm. The first is computing the sets of

coalitions that are fixed at every step, and the second is dealing with the exponential

number of constraints. One way of circumventing the latter is via a polynomial-time

separation oracle, an algorithm that, given a candidate feasible solution, either confirms

that it is feasible or outputs a violated constraint. Given such an oracle, one could solve

each of the LP’s efficiently using the ellipsoid method [41, 74]. Our approach in this thesis

will be different. We focus instead on obtaining an equivalent characterization for each LP

that contains only a polynomial number of constraints.

2.3.4 The nucleolus when the core is non-empty

In the case of matching games with a non-empty core, Maschler’s scheme can be turned into

a polynomial time algorithm by including the constraints corresponding only to coalitions

of size one and two.

Let G = (V,E) be a graph with edge weights w : E → R+ and (N, v) the corresponding

matching game on G. Suppose that core(N, v) 6= ∅ or equivalently ν(G) = νf (G). The

key observation is that if the core is non-empty then the optimal value εk of each LP Qk

in Maschler’s scheme is non-negative. Hence the constraints

x(e) ≥ we + εk for all e ∈ E

xi ≥ εk for all e ∈ N

imply all the constraints x(S) ≥ v(S) + εk for all S ⊆ N . Therefore we can replace the LP
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Qk with the equivalent program

(Q+
k ) maximize ε

s.t. x(e) = we + ε1 for all e ∈ E1

xi = ε1 for all e ∈ N1

x(e) = we + ε2 for all e ∈ E2

xi = ε2 for all i ∈ N2

...

x(e) = we + εk−1 for all e ∈ Ek−1

xi = εk−1 for all i ∈ Nk−1

x(e) ≥ we + ε for all e /∈ ∪k−1
j=0Ej

xi ≥ ε for all i /∈ ∪k−1
j=0Nj

x(N) = v(N)

where Ej is the set of all edges for which x(e) = we + εj for all x ∈ Q+
j and Nj is the

set of all vertices i ∈ N for which xi = εj for all x ∈ Q+
j and Nj. Since each Q+

K has a

polynomial number of constraints, each linear program in Maschler’s scheme can now be

solved efficiently, and thus we have the following result also stated in [68].

Theorem 2.3.5. Let G = (V,E) be a graph with edge weights w : E → R+ and (N, v) the

corresponding matching game on G. If core(N, v) 6= ∅ then the nucleolus of (N, v) can be

computed in polynomial time.

2.3.5 The nucleolus for node weighted matching games

The approach in the previous section that relied on replacing Qk with the equivalent

program Q+
k fails whenever εk < 0. Therefore a new technique is needed to reduce the

constraints of each LP to a polynomial number.

In this section we review the result of Paulusma [68] that achieves this for the case of

matching games that have an empty core, but whose weights satisfy the following property.
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Definition 2.3.6. Let G = (V,E) be a graph with edge weights w : E → R+. We say that

G is node-weighted if there exists a vector y ∈ RV
+ such that for all e = (u, v) ∈ E we have

we = yu + yv.

The main idea behind Paulusma’s result is obtaining an equivalent characterization of

the least core, that unlike the linear program P1 2.10, contains only a polynomial number

of constraints. Once this characterization is obtained, it is not too difficult to prove by

induction that each subsequent linear program in Maschler’s scheme can also be written

with only a polynomial number of constraints.

We present here Paulusma’s characterization of the least core. LetG be a node-weighted

graph where the node weights are given by the vector y ∈ R|V |. Recall that the least core

is the set of all allocations that maximize the minimum excess. Using the representation

of the least core given by the linear program P1, this essentially means that the least core

is the set of all allocation x that maximize the minimum excess of a matching, where the

excess of a matching M is given by

x(M)− w(M) =
∑
e∈M

(x(e)− we) =
∑
e∈M

(x(e)− y(e)) .

Since we are assuming that the core is empty it follows that ν(G) < y(V ), since otherwise

y would be a core allocation. Therefore for any allocation x we must have x(V ) < y(V ).

Hence there will be at least one edge e with negative excess, meaning that x(e) < y(e).

A crucial observation of [68] is that the set of edges that receive negative excess are the

same for any least core allocation. More specifically, it is shown in [68] that there exists

a partition of the edge set E into two sets E≥0 and E≤0 such that for any allocation

x ∈ leastcore(N, v) we have

x(e)− we ≤ 0 for all e ∈ E≤0

x(e)− we ≥ 0 for all e ∈ E≥0

Note that this also implies that any matching with minimum excess will be contained in

the set E≤0. In fact, the set of matchings with minimum excess will be the same for any

allocation x ∈ leastcore(N, v).
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This partition of the edge set into edges receiving non-positive, respectively non-

negative, excess in any least core allocation is based on the Edmonds-Gallai decomposition

of the graph. Let (A,D, C) be the Edmonds-Gallai decomposition of G, as defined in 2.1.8.

It is not too difficult to see that the emptyness of the core implies that there must exist at

least one non-trivial component D ∈ D with |D| > 1 [68]. It is these non-trivial odd sized

components that account for the negative excess in the graph. That is, the partition of E

is obtained by letting

E≤0 =
⋃
D∈D

E(D))

E≥0 = E\E≤0

where E(D) is the edge set of the component D for all D ∈ D. However, this observation

by itself is not sufficient to obtain a polynomial sized characterization of the least core. In

fact, something stronger turns out to be true: for each component D ∈ D the excess across

all edges in E(D) is equal. This implies that for any least core allocation, every maximum

cardinality matching contained in the union of the odd components must have minimum

excess. Hence it suffices to include only one constraint of the type x(M) ≥ w(M) + ε for

a fixed maximum cardinality matching on the odd components.

We state Paulusma’s main result [68] below.

Theorem 2.3.7. Let G be a node-weighted graph with respect to the non-negative node

weights y ∈ R|V (G)|
+ . Let D(G) denote the set of odd components in the Edmonds-Gallai

decomposition of G and fix M1 to be an arbitrary maximum cardinality matching contained
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in the union of these odd components. Define the linear program P̃ = P̃ (G, y) as

(P̃ ) maximize ε

subject to x(e) ≥ w(e) for all e ∈ E\

(⋃
D∈D

E(D)

)
xi ≤ yi for all i ∈

⋃
D∈D

V (D)

xi − yi = xj − yj for all i, j ∈ V (D), D ∈ D(G)

x(M1) ≥ y(M1) + ε

x(V (G)) = ν(G, y)

x ≥ 0

and let ε̃1 = ε̃1(G, y) denote its optimum value. Then ε̃1(G, y) = ε1(G, y) and

leastcore(G, y) = P̃ (ε1).

Paulusma showed that this result leads to an efficient computation of the nucleolus by

proving by induction that equivalent polynomial sized characterization can be obtained for

each subsequent linear program in Maschler’s scheme.

2.3.6 Vertex capacities

In the case where we also have capacities on the vertices we can define a generalised

c-matching game as follows.

Definition 2.3.8. Given an undirected simple graph G = (V,E) with edge weights w :

E → R+ and vertex capacities c : V → Z+ we define the corresponding c-matching game

as the cooperative game (N, v) where N = V and

v(S) = max {w(M) : M is a c-matching in G[S]}

for all S ⊆ N .

The following result from [52] is an analogue of theorem 2.3.3 for general capacities
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Theorem 2.3.9. Let G = (V,E) be a graph with edge weights w : E → R+ and ver-

tex capacities c : V → Z+, and let (N, v) be the corresponding c-matching game. Then

core(N, v) 6= ∅ if and only if the weight of the maximum weight c-matching is equal to the

optimal value of the linear program P c
FM given in section 2.1.

2.4 Network bargaining

In this section we review all the basic definition and notations regarding network bargaining

games.

Definition 2.4.1. An instance of a network bargaining game with general capacities is

a triple (G,w, c) where G is a undirected graph, w ∈ R|E|
+ is a vector of edge weights, and

c ∈ Z|V |
+ is a vector of vertex capacities. If we omit the capacity vector c then (G,w) defines

an instance of a network bargaining game with unit capacities.

Given a c-matching M , we let du denote the degree of vertex u in M . We say that

vertex u is saturated in M if du = cu. The following definition specifies exactly what we

mean by a solution to such a game.

Definition 2.4.2. A solution to a network bargaining game (G,w, c) is a pair (M, z)

where M is a c-matching of G and z is a vector belonging to R2|E|
+ that assigns each edge

e = (u, v) ∈ E a pair of values zuv, zvu such that zuv + zvu = wuv if (u, v) ∈ M and

zuv = zvu = 0 otherwise.

The allocation associated with the solution (M, z) is the vector x ∈ R|V | where xu

represents the total payoff of vertex u in the solution (M, z)

xu =
∑

(u,v)∈δ(u)

zuv, (2.11)

An important concept for network bargaining games is that of an outside option.
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Definition 2.4.3. The outside option of vertex u with respect to a solution (M, z) is

defined as

αu(M, z) := max

(
0, max

(u,v)∈E(G)\M

(
wuv − 1[dv=cv ] min

vw∈M
zvw

))
,

where 1E is the indicator function for the event E, which takes value one whenever the

event holds, and zero otherwise. If {v : uv ∈ E(G)\M} = ∅ then we set αu(M, z) = 0. We

write αu instead of αu(M, z) whenever the context is clear.

The outside option is meant to capture the maximum payoff that a vertex could earn

by breaking one of its current contracts in M and making a new contract. The idea behind

the definition is that in order for a vertex u to make a new contract with a neighbour v,

v must not be worse off after forming the contract with u. Now if v is unsaturated in M

it can just form a new contract with u and even by earning zero profit from this contract

v cannot be worse off. Therefore in this case u is assumed to get the full value of the

contract given by wuv. On the other hand if v is saturated, then it must first give up one

of its current contracts before it can form a contract with u. Hence in order for v to not

be worse off, it must now earn from the contract with u at least as much as it was earning

from the contract that was dropped. Hence the maximum profit that u can earn in this

case is the value of the contract uv minus the minimum profit that v earns in any of its

current contracts.

We can now introduce the two main types of solutions that we are interested in: stable

and balanced.

Definition 2.4.4. A solution (M, z) is stable if for all uv ∈ M we have zuv ≥ αu(M, z),

and for all unsaturated vertices u we have αu(M, z) = 0. A solution (M, z) is balanced if

it is stable and in addition for all uv ∈ M we have zuv − αu(M, z) = zvu − αv(M, z).

The following theorem of [51] characterizes the existence of stable solutions for network

bargaining games with general capacities.

Theorem 2.4.5. Let (G,w, c) be an instance of a network bargaining game with general

capacities. Then (G,w, c) admits a stable solution if and only if νc
f (G) = νc(G).
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Recall that νc
f (G) was defined as the optimal value of the linear program

(P c
FM) max

∑
e∈E

wexe

x(δ(u)) ≤ cu for all u ∈ V (G)

0 ≤ xe ≤ 1 for all e ∈ E(G).

2.4.1 Unit capacities

The definitions of a network bargaining game simplify in the case where all vertices have

unit capacities. Specifically a solution to the unit capacity game (G,w) is a pair (M,x)

where M is now a matching of G and x ∈ R|V (G)|
+ assigns a value to each vertex such that

for all edges uv ∈ M we have xu + xv = wuv and for all u ∈ V (G) not covered by M we

have xu = 0. Since each vertex has at most one unique contract, the vector x from the

solution (M,x) is also the allocation vector in this case.

The outside option of vertex u can now be expressed as

αu(M,x) := max
(u,v)∈E(G)\M

(wuv − xv) ,

where as before we set αu(M,x) = 0 whenever {v : uv ∈ E(G)\M} = ∅.

A solution (M,x) is stable if for all u ∈ V (G) we have xu ≥ αu(M,x) and balanced if

it is stable and in addition xu − αu(M,x) = xv − αv(M,x) for all uv ∈ M . The following

theorem of [55] characterizes the existence of stable solutions for network bargaining games

with unit capacities. This is a special case of Theorem 2.4.5 that was proven earlier.

Theorem 2.4.6. Let (G,w) be an instance of a network bargaining game. Then (G,w)

admits a stable solution if and only if νf (G) = ν(G).

More interestingly, it is shown in [55] that this condition is always sufficient to charac-

terize the existence of balanced solutions, and such solutions can be computed efficiently

whenever they exist.

Theorem 2.4.7. Let (G,w) be an instance of a network bargaining game. Then (G,w)

admits a balanced solution if and only if it admits a stable one. Furthermore, the set of all

balanced solutions can be computed in polynomial time.
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2.4.2 Connection to cooperative games

In this section we explore the close connections between the network bargaining games and

cooperative games. Given a graph G = (V,E) with edge weights w ∈ R|E(G)|
+ and vertex

capacities c ∈ Z|V (G)|
+ we define both an instance (G,w, c) of a network bargaining game

and a corresponding instance (N, v) of a c-matching game. The following theorem found in

[6] establishes a connection between solution concepts of the two games. Recall that given

a solution (M, z) to the network bargaining game (G,w, c) we define the the corresponding

allocation x for the c-matching game (N, v) as

xu =
∑

(u,v)∈δ(u)

zuv,

for all u ∈ V .

The following result is shown in [6].

Theorem 2.4.8. Let (M, z) be a solution to the network bargaining game (G,w, c) and x

the corresponding allocation for the c-matching game (N, v). Then

(i) (M, z) stable ⇒ x ∈ core(N, v)

(ii) (M, z) balanced ⇒ x ∈ core(N, v) ∩ prekernel(N, v)

In addition if we consider the unit capacity network bargaining game (G,w) and the

corresponding matching game (N, v) then the converse is also true [6].

Theorem 2.4.9. Let (M, z) be a solution to the network bargaining game with unit capac-

ities (G,w) and x the corresponding allocation for the matching game (N, v). Then

(i) (M, z) stable ⇔ x ∈ core(N, v)

(ii) (M, z) balanced ⇔ x ∈ core(N, v) ∩ prekernel(N, v)

Theorem 2.4.9 implies that in order to compute a balanced solution to a network

bargaining game with unit capacities, one can use the existing algorithm of Faigle et al. [31]

for computing allocations in the intersection of the core and prekernel of the corresponding

matching game. This approach offers an alternative proof of the results for unit capacity

network bargaining games found in [55].
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2.5 Stable matchings

In this thesis we study both two-dimensional (2D) and three-dimensional (3D) stable

matchings. In the 2D setting we have two sets of agents that we denote by B and C.

The set B will be referred to as the set of men and the set C as the set of women. We

assume throughout this thesis that we have the same number of men and women, usually

denoted by n.

Definition 2.5.1. A 2D matching is a set of ordered pairs from N ⊆ B × C such that

each q ∈ B ∪ C appears in at most one pair in N . If each q ∈ B ∪ C appears in exactly

one pair in N then N is said to be a perfect matching. For any b ∈ B we let N(b) denote

the woman in C that b is matched to in N , and similarly for any c ∈ C we let N(c) denote

the man in B that c is matched to in N .

In stable matching problems, each agent q has preferences over some subset of agents

S. In the 2D setting the men have preferences over the women and the women over the

men. The preferences of an agent q over a S can be expressed using a preference list P (q)

that lists the agents in S in non-increasing order of preference according to q. We say that

P (q) is a strict ordering if it does not contain any ties. Given s, s′ ∈ S we write s �q s′

to denote that q strictly prefers s to s′ and s �q s′ to denote that q prefers s at least as

much as s′.

2.5.1 Stable Marriage

We introduce here the classical stable marriage problem.

Definition 2.5.2. An instance I of the SM problem consists of a set B of n men and a

set C of n women. Each man b ∈ B has a preference list P (b) that is a strict ordering

over the set of women C. Similarly each woman c ∈ C has a preference list P (c) that is a

strict ordering over the set of men B. A pair (b, c) is blocking with respect to a matching

N if

c �b N(b) and b �c N(c).
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A matching N is stable if there are no blocking pairs with respect to N . In that case, we

also say that N is a solution to I.

For the stable marriage problem, any stable matching must be a perfect matching, since

any pair of unmatched agents (b, c) would form a blocking pair. The following is a famous

result of Gale and Shapley [37].

Theorem 2.5.3. There exists a stable matching for any instance of SM and such a match-

ing can be computed in polynomial time.

The proof of this result is via the well-known Gale-Shapley algorithm that is described

in 2.5.1.

Algorithm 1 The Gale-Shapley algorithm for the Stable Marriage Problem

Initially all men and all women are single

while there exists a single man who has not proposed to every woman do

choose one such man b

let c be the most preferred woman on b’s list to whom b has not proposed

b proposes to c

if c is single then

(b, c) become engaged

else

if c is engaged to b′ and she prefers b to b′ then

(b, c) become engaged

c rejects b′

b′ becomes single

else

c rejects b

b remains single

return the set of engaged pairs

The algorithm terminates since a man can propose to the same woman at most once.

It is not too hard to see that the set of pairs returned by the algorithm forms a perfect
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matching N . To see that N is indeed stable suppose by contradiction that we have a

blocking pair (b, c). This means that b prefers woman c over N(b). Since men propose to

women in order of preference, b must have proposed to c before N(b). Hence c must have

rejected b at some point in the algorithm. This would have only happened if c received a

proposal from some man c′ that she prefers to c. But since each woman ends up engaged

with the highest ranked man that ever proposed to her, c must prefer N(c) over b. Hence

(b, c) cannot be a blocking pair.

An alternative way to proof Theorem 2.5.3 is using a polyhedral approach. Vande Vate

[79] initiated the study of the stable marriage problem from the mathematical programming

perspective by introducing the following integer programming formulation.

(ISM)
∑
c

xbc = 1 for all b ∈ B∑
b

xbc = 1 for all c ∈ C

xbc +
∑
c′�bc

xbc′ +
∑
b′�cb

xb′c ≥ 1 for all b ∈ B, c ∈ C

xbc ∈ {0, 1} for all b ∈ B, c ∈ C.

The interpretation of the variables is that xbc = 1 if b is matched to c and xbc = 0 otherwise.

The first two constraints ensure that the result is perfect matching. The third constraint

can be interpreted as follows: whenever xbc = 0, meaning that b is not matched to c, at

least one of the two sums in the constraint has to be equal to one. Now if this is the first

sum then b is matched to someone he prefers over c, while if it is the second sum then

c is matched to someone she prefers over b. Hence the result is a stable matching. Now

consider the linear programming formulation obtained by relaxing the integer constraints.

(PSM)
∑
c

xbc = 1 for all b ∈ B∑
b

xbc = 1 for all c ∈ C

xbc +
∑
c′�bc

xbc′ +
∑
b′�cb

xb′c ≥ 1 for all b ∈ B, c ∈ C

xbc ≥ 0 for all b ∈ B, c ∈ C.
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Vande Vate [79] proved the following result.

Theorem 2.5.4. The polytope PSM is the convex hull of the stable marriage solutions.

This result is particularly interesting because it means that one can efficiently optimize

over the set of stable matchings.

2.5.2 Stable marriage with ties and incomplete lists

The most popular variant of the classical stable marriage problem is obtained by allowing

ties in the preference lists and unacceptable partners.

Definition 2.5.5. An instance I of SMTI consists of a set B of n men and a set C of

n women. Each man b ∈ B has a preference list P (b) that is an ordering over a subset of

C and is allowed to contain ties. Similarly each woman c ∈ C has a preference list P (c)

that is an ordering over a subset of B and is also allowed to contain ties. A pair (b, c) is

said to be acceptable if b appears in P (c) and c appears in P (b). A pair (b, c) is blocking

with respect to a matching N if (b, c) is an acceptable pair and it satisfies the usual blocking

conditions

c �b N(b) and b �c N(c).

A matching N is stable if every pair in N is acceptable and there are no blocking pairs with

respect to N . In that case, we also say that N is a solution to I.

We follows the usual assumption is that a woman c is acceptable to a man b if and only

if man b is acceptable to woman c. One can modify the Gale-Shapley algorithm slightly to

account for ties and incomplete lists. Specifically, all ties are broken arbitrarily and men

propose only to acceptable women. With this modification, the algorithm always produces

a stable matching [47], hence we have the following result.

Theorem 2.5.6. There exists a stable matching for any instance SMTI and such a match-

ing can be computed in polynomial time.

However, unlike the case of SMinstances, an instance of SMTIcan admit stable solu-

tions of different size. We will need the following result from [62].
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Theorem 2.5.7. Let I be an instance of SMTI where ties occur only in the preference

lists of the women. Deciding whether I admits a perfect stable matching is NP-hard.

2.5.3 Three-dimensional stable matchings

In the 3D setting, we have an additional set of n agents that we denote by A, usually

referred to as dogs.

Definition 2.5.8. A 3D matching M is a set of ordered triples from A×B×C such that

each q ∈ A ∪ B ∪ C appears in at most one triple in M. If each q ∈ A ∪ B ∪ C appears

in exactly one triple then M is said to be a perfect matching. For every dog a ∈ A we

denote by M(a) the man that a is matched to in M. Similarly for every man b ∈ B, M(b)

denotes the woman that b is matched to in M, and for every woman c ∈ C, M(c) denotes

the dog that c is matched to in M

A 3D perfect matching M can be induced by fixing two perfect matchings on any of

the following sets A×B, B × C or C × A.

Definition 2.5.9. Let M be a perfect matching on A × B and N a perfect matching on

B × C. Then M ◦ N is the 3D matching defined as: (a, b, c) ∈ M ◦ N if and only if

(a, b) ∈ M and (b, c) ∈ N . For each q ∈ A ∪ B we denote by M(q) the partner of q in M ,

and similarly for each q ∈ B ∪ C we denote by N(q) the partner of q in N .

We can now introduce the 3D stable matching problem that we focus on in this thesis.

Definition 2.5.10. An instance of the Three-Dimensional Stable Matching with Cyclic

Preferences problem (Cyclic 3DSM) consists of three mutually disjoint sets A,B,C of n

elements each. Each a ∈ A has preferences over the set B, each b ∈ B has preferences over

the set C, and each c ∈ C has preferences over the set A. Preferences are expressed in

terms of a strict total order over all the elements of the corresponding set. A triple (a, b, c)

is said to be blocking with respect to a matching M if (a, b, c) /∈ M and a prefers b to

M(a), b prefers c to M(b) and c prefers a to M(c). A matching which has no blocking

triples is said to be stable.
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We point out that our definition of a blocking triple implies that in order for (a, b, c) to

be blocking with respect to a matching M, no two agents from this triple can be matched

together in M. Our definition of stability is also referred to as weak stability. If instead we

defined a triple to be blocking by requiring that each member of the triple prefers this triple

at least as much as the one assigned to them in the matching and at least one member

prefers it strictly, this would give rise to a notion of stability known as strong stability. The

following result appears both in [8] and [44].

Theorem 2.5.11. Deciding whether an instance of c3DSM admits a strongly stable

matching is NP-complete.

The question of whether every instance of c3DSM admits a weakly stable matching is

still open. Since in this thesis we only consider weakly stable matchings, we refer to them

from now as stable matchings.
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Chapter 3

Network bargaining

Let (G,w, c) be an instance of a network bargaining game with general capacities defined

in section 2.4. We denote by (N, v) the corresponding c-matching game defined in section

2.3.6. In this chapter we study two problems regarding balanced solutions for (G,w, c).

First, we want to characterize when an instance admits a balanced solution, and second

we want to develop an efficient algorithm for computing such a solution.

3.1 Connection to cooperative games

Our first attempt relies on exploring a connection between the solution concepts of network

bargaining games and cooperative games. For the special class of unit capacity and con-

strained bipartite games, Bateni et al. show that the set of stable solutions corresponds to

the core, and the set of balanced solutions corresponds to the intersection of the core and

prekernel of the associated matching game. This implies that efficient algorithms, such as

the one of [31], can be used to compute points in the intersection of the core and prekernel

from which a balanced solution can be uniquely obtained. Hence, a natural question to

answer is whether such a connection can be established in general. For general capacities

we already know from Theorem 2.4.8 that one direction of the equivalence still holds: every

balanced solution gives rise to an allocation in the intersection of the core and prekernel.
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Hence, the remaining question is whether the converse is also true: can every allocation

in the intersection of the core and prekernel be obtained from a balanced solution? The

following lemma proves that this is not always the case.

Lemma 3.1.1. There exists an instance (G,w, c) of the network bargaining game and a

vector x ∈ core(N, v) ∩ prekernel(N, v) such that there exists no balanced solution (M, z)

satisfying

xu =
∑

v:(u,v)∈E

zuv

for all v ∈ V .

Proof. Consider the graph shown in Figure 3.1 where every vertex has capacity 2 and

the edge weights are given above each edge. The red edges denote the unique optimal

2-matching of weight 120.

A

C

B

DE

F

10

10

20

20 30

30

10

Figure 3.1: An instance of a network bargaining game with general capacities.

Let x be the allocation that assigns a value of 20 to each vertex in the graph. This

is a valid allocation since the total value assigned to all the vertices is equal to 120, the

weight of the maximum weight 2-matching of the graph. We now show that the vector x

is in the intersection of the core and prekernel but there exists no balanced solution (M, z)

corresponding to x. We start by showing that x is in the core. To do this, we must check
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that x(S) ≥ v(S) for every subset of vertices S, where v(S) is the weight of the maximum

weight 2-matching in G[S]. Note that for any subset S of vertices we have x(S) = 20|S|.
On the other hand it can easily checked that for any subset of vertices S the weight of the

maximum weight 2-matching in G[S] is at most 20|S|. Hence x ∈ core(N, v).

Next we show that x ∈ prekernel(N, v). To do this we must compute the powers

suv(x) = max
T :u∈T,v /∈T

v(T )− x(T )

for all pairs of vertices u, v ∈ V (G). Let C1 denote the outer cycle on verticesA,B,C,D,E, F

and let C2 and C3 denote the inner cycles on vertices B,C,D,E and E,F,A,B respectively.

For the pair A,B we have:

sAB = v ({A,F})− x ({A,F}) = 30− 40 = −10

sBA = v ({C2})− x ({C2}) = 70− 80 = −10

Similarly for the pair B,C we have:

sBC = v ({C3})− x ({C3}) = 70− 80 = −10

sCB = v ({C,D})− x ({C,D}) = 30− 40 = −10.

And for the pair C,D:

sCD = v ({C})− x ({C}) = −20

sDC = v ({D})− x ({D}) = −20.

Hence the pairs (A,B), (B,C) and (C,D) satisfy the prekernel condition. By symmetry

so do (D,E), (E,F ) and (F,A). Now for any pair u, v of non-adjacent vertices, one of the

two cycles C2 or C3 will contain u but not v, and vice versa. Therefore suv = svu = −10

for all non-adjacent pairs u, v. This proves that x is in the prekernel.

We now show that there is no vector z such that (M, z) is a balanced solution corre-

sponding to the vector x. Since any stable, and therefore balanced, solution must occur

on a maximum weight 2-matching [6] of the graph, any balanced solution (M, z) will have

M = E(C1). First note that vertices A,F,C and D have an outside option of zero in any
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solution, since there are no edges in E\M incident with these vertices. Hence the contracts

(C,D) and (A,F ) have to be split evenly in any balanced solution. Since each vertex must

have a total profit of 20 from its two contracts in M in order for (M, z) to correspond to

x, this uniquely determines all values of the vector z, as are shown in Figure 3.2.

A

C

B

DE

F

5 5

5 5

5

5

15

15

1515

15

15

Figure 3.2: An allocation in core(N, v) ∩ prekernel(N, v) with no corresponding balanced

solution.

The minimum contract of both B and E is 5 and therefore αB = αE = 10 − 5 = 5.

However, the edge (B,C) (and also the edge (E,F ) by symmetry) violates the balance

condition since zBC − αB = 15 − 5 = 10 while zCB − αC = 5 − 0 = 5. This proves that

there is no balanced solution corresponding to the allocation x.

We remark that the example used in the above lemma does possess a balanced solution,

as shown in Figure 3.3. Here the outside option of both B and E is 10/3 and all edges in

the matching satisfy the balance condition. The allocation corresponding to this balanced

solution is

x′
u =

55
3

u ∈ {A,B,D,E}
70
3

u ∈ {C,F}

Theorem 2.4.8 implies that x′ should be in core(N, v) ∩ prekernel(N, v) and this is indeed

the case.
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Figure 3.3: A balanced solution.

In view of lemma 3.1.1, we cannot hope to extend the correspondence between balanced

solutions and allocations in the intersection of the core and prekernel to all network bar-

gaining games. However we can generalize the results of [6] by characterizing a larger class

of network bargaining games, including unit capacity and constrained bipartite games, for

which this correspondence holds. We achieve this by defining a certain gadget whose ab-

sence, together with the fact that the c-matching M is acyclic, will be sufficient for the

correspondence to hold.

3.1.1 Acyclic c-matchings and gadgets

In this section we characterize some sufficient conditions under which every allocation in

the intersection of the core and prekernel corresponds to a balanced outcome. Our first

condition requires that the maximum weight c-matching M is acyclic.

We can now introduce the definition of a gadget.
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Definition 3.1.2. Let (M, z) be a solution and let u be a vertex covered by M such that

αu > 0. Let v be a neighbour of u in M and let v′ be the vertex corresponding to u’s best

outside option. If v′ is saturated in M , let u′ be its weakest contract. A gadget is set of

edges P ⊆ M satisfying one of the following two conditions:

(i) P is a path from v to v′ that does pass through u

(ii) P is a path from u to u′ that does not pass through v′.

. If there exists such a gadget with respect to vertex u in the solution (M, z) we say that u

is a bad vertex this solution.

Figure 3.4 shows the two possible types of gadgets. The red edges denote edges in M

and the black edges denote edges in E\M .

uv

v0

uv

v0 u0

PP

Figure 3.4: The two types of gadgets.

We can now state our main theorem of this section.

Theorem 3.1.3. Let (G,w, c) be an instance of the network bargaining game and (N, v)

the corresponding c-matching game. Let x ∈ core(N, v) be a core allocation and (M, z) be

a corresponding stable solution so that

xu =
∑

v:(u,v)∈E

zuv

for all u ∈ V (G). If the following two conditions are satisfied
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1. M is acyclic,

2. there are no bad vertices in the solution (M, z),

then (M, z) is a balanced solution if and only if x ∈ prekernel(N, v).

Proof. Fix an edge (u, v) ∈ M . Note that it suffices to show suv = −zuv + αu, since this

would imply that suv = svu if and only if zuv −αu = zvu−αv. Our strategy is to first show

that suv is upper bounded by −zuv + αu, after which it will be sufficient to find a set T so

that v(T )− x(T ) achieves this upper bound. We start with the following lemma.

Lemma 3.1.4. suv ≤ −zuv + αu.

Proof. Let T ⊂ N such that u ∈ T and v /∈ T . Let M ′ be a maximum weight c-matching

in G[T ]. Then

v(T )− x(T ) = w(M ′)−
∑
a∈T

xa

= w(M ′)−
∑

a∈T,ab∈M

zab

=

(
w(M ′ ∩M)−

∑
a∈T, ab∈M∩M ′

zab

)
+

w(M ′\M)−
∑

a∈T, ab∈M\M ′

zab


= w(M ′\M)−

∑
a∈T, ab∈M\M ′

zab.

Define the set of ordered pairs

S := {(a, b) : a ∈ T, b ∈ V (G), ab ∈ M\M ′} ,

so that

v(T )− x(T ) = w(M ′\M)−
∑

(a,b)∈S

zab. (3.1)

Since (M, z) is a stable solution it follows that M is a c-matching of maximum weight.

Hence any edge in M ′\M must have at least one saturated endpoint. Let {a1, · · · , a`} be
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the set of vertices in T that are saturated in M . For each i ∈ [`] define the sets of ordered

pairs

Ei := {(ai, b) : aib ∈ M ′\M}
Fi := {(ai, c) : aic ∈ M\M ′} .

Note that all these sets are pairwise disjoint, and Fi ⊂ S for all i ∈ [`]. Now since each ai

is saturated in M it follows that |Ei| ≤ |Fi|. Therefore we can fix an arbitrary mapping

φi : Ei → Fi

so that each element of Ei is mapped to a distinct element of Fi.

We now assign to each edge e ∈ M ′\M a set of ordered elements Se ⊂ S. As previously
observed, each such edge e must have at least one saturated endpoint. Hence let e = (ai, y)

and define:

Se =

{φi(ai, aj), φj (aj, ai)} if y = aj for some j ∈ [`]\ {i},

{φi (ai, y)} otherwise.

It follows from the definition of the sets Ei and the choice of the mapping φi that the sets

Se are well defined, are pairwise disjoint, and are all subsets of S. Let

S ′ := S\
(
∪e∈M ′\MSe

)
,

Then from equation (3.1) and the fact that each ordered pair of S belongs to exactly one

Se set we obtain

v(T )− x(T ) =
∑

e∈M ′\M

we −
∑

(a,b)∈Se

zab

−
∑

(a,b)∈S′

zab. (3.2)

Now it follows from stability that for all e ∈ M ′\M we have

we ≤
∑

(a,b)∈Se

zab. (3.3)
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To see this, consider e = (ai, y) ∈ M ′\M . If y = aj for some j ∈ [`]\ {i} then Se :=

{φi(ai, aj), φj(aj, ai)}. Now φi(ai, aj) represents the profit that ai gets from one of his

contracts in M , and similarly φj (aj, ai) represents the profit that aj earns from one of his

contracts in M . Since the edge (ai, aj) is not in M , by stability we must have φi(ai, aj) +

φj(aj, ai) ≥ waiy. In the other case where y is not a saturated vertex in T , we have

Se = {φi ((ai, y))}. Since y is an outside option for ai and φi (ai, y) represents the profit that

ai gets from one of his contracts in M , stability for vertex ai implies that φi (ai, y) ≥ waiy

as required.

Now suppose that (u, v) /∈ ∪e∈M ′\MSe. Then from (3.2) and (3.3) we have

v(T )− x(T ) ≤ −zuv.

Since αu ≥ 0, this proves the lemma in this case. If on the other hand, there exists a set

Se∗ such that (u, v) ∈ Se∗ . Then using (3.2) and (3.3) again we have

v(T )− x(T ) ≤ −zuv + we∗ −
∑

(a,b)∈Se∗\{(u,v)}

zuv,

Now (u, v) ∈ Se∗ implies that e∗ must be an edge in M ′\M that is incident to vertex u.

Hence e∗ = (u,w) where w is an outside option for vertex u. If w is not saturated then the

set Se∗\ {(uv)} is empty. Otherwise if w is saturated, this set contains a unique ordered

pair (w, k) such that (w, k) ∈ M\M ′. Therefore it follows from the definition of αu that

v(T )− x(T ) ≤ −zuv + αu,

as desired.

Now that we have established this upper bound, it suffices to find a set T that achieves

this bound with equality. That is, we want to find a set T ⊆ V (G) such that u ∈ T , v /∈ T

and show that v(T )− x(T ) ≥ −zuv + αu. Given a set of vertices S we let MS denote the

edges of M that have both endpoints in S. Note that for any set of vertices S we have

w(MS)− x(S) = −
∑

ab∈M :a∈S,b/∈S

zab. (3.4)
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We define C to be the set of components of G induced by the edges in M . Since u and

v are neighbours in M they will be in the same component, call it C. Now suppose we

remove the edge (u, v) from C. Since M is acyclic, this disconnects C into two components

Cu and Cv, containing vertices u and v respectively. Now MCu is a valid c-matching of Cu

hence applying equation (3.4) to the vertex set of the component Cu we obtain

v(Cu)− x(Cu) ≥ w(MCu)− x(Cu) = −zuv.

uv

v0

Cu

Figure 3.5: Outside option is in the same component and is not saturated

If αu = 0 then setting T to be the vertex set of component Cu completes the proof for

this case. Hence it remains to consider the case where αu > 0. Then by stability of the

solution (M, z) vertex u must be saturated in M . Let v′ be vertex u’s best outside option.

Case 1: v′ ∈ Cu and v′ is not saturated in M (see Figure 3.5). Since uv /∈ Cu and

v′ is not saturated in M the set of edges MCu ∪ {(u, v′)} is a valid c-matching of Cu and

therefore

v(Cu)− x(Cu) ≥ w(MCu ∪ {(u, v′)})− x(Cu)

= w(MCu)− x(Cu) + wuv′

= −zuv + wuv′ applying (3.4) to Cu.
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Case 2: v′ ∈ Cu and v′ is saturated in M (see Figure 3.6). Let u′ be the weakest contract

uv

v0

CuDu

u0

Figure 3.6: Outside option is in the same component and is saturated

of v′ and suppose we remove the edge (v′, u′) from Cu. Since M is acyclic, this disconnects

Cu into two components. From condition (2) we know that u′ is not on the u− v′ path in

M . Hence u and v′ are in the same component of Cu\ {(v′, u′)}. Denote this component

by Du. Now MDu ∪ {(u, v′)} is a c-matching of Du and thus

v(Du)− x(Du) ≥ w (MDu ∪ {(u, v′)})− x(Du)

= w(MDu)− x(Du) + +wuv′

= −zuv − zv′u′′ ++wuv′ applying (3.4) to Du

= −zuv + αu by choice of v′ and u′.

Case 3: v′ /∈ Cu and v′ is not saturated in M (see Figure 3.7). Condition (2) implies

that there is no v− v′ path in M , hence the fact that v′ /∈ Cu implies that v′ /∈ C. Let Cv′

be the component in C that contains vertex v′. Now MCu ∪MCv′
∪{(u, v′)} is a c-matching
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u
v

v0

Cu

Cv0

Figure 3.7: Outside option is not in the same component and is not saturated

of Cu ∪ Cv′ and therefore

v(Cu ∪ Cj′)− x(Cu ∪ Cv′) ≥ w(MCu ∪MCv′
∪ {(u, v′)})− x(Cu ∪ Cv′)

= (w(MCu)− x(Cu)) +
(
w(MCv′

)− x(Cv′)
)
+ wuv′

= −zuv + wuv′ applying (3.4) to Cu, Cv′

= −zuv + αu by choice of v′.

Case 4: v′ /∈ Cu and v′ is saturated inM (see Figure 3.8). As in Case 3 we let Cv′ be the

component in C that contains vertex v′. Let u′ be the weakest contract of v′ and suppose

we remove the edge (v′, u′) from Cv′ . Since M is acyclic, this disconnects Cv′ into two

components and we let Dv′ be the one that contains vertex v′. Now MCu ∪MDv′
∪{(u, v′)}
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u
v

v0

Cu

Cv0

Dv0

u0

Figure 3.8: Outside option is not in the same component and is saturated

is a c-matching of Cu ∪ Cv′ thus

v(Cu ∪Dv′)− x(Cu ∪Dv′) ≥ w
(
MCu ∪MDv′

∪ {(u, v′)}
)
− x (Cu ∪ Cv′)

= (w(MCu)− x(Cu)) +
(
w(MDv′

)− x(Dv′)
)
+ wuv′

= −zuv − zv′u′ + wuv′ applying (3.4) to Cu , Dv′

= −zuv + αu by choice of v′ and u′.

Hence in all cases we have v(T )− x(T ) ≥ −zuv +αu as required. This completes the proof

of the theorem.

We note that all network bargaining games studied in [6] satisfy conditions (1) and

(2) of Theorem 3.1.3. In addition to these, Theorem 3.1.3 also covers the case of network

bargaining games where the underlying graph is a tree, but where each vertex can have an

arbitrary capacity. Hence one can use the polynomial time algorithm of [31] to compute

a point in the intersection of the core and prekernel for these games from which we can

obtain a corresponding solution (M, z) that is guaranteed to be balanced by Theorem 3.1.3.
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3.2 Reduction to unit capacity games

While we were able to generalize the class of network bargaining games for which balanced

solutions can be obtained by computing a point in the intersection of the core and prekernel,

we were not able to apply this technique to all network bargaining games. In this section

we show that balanced solutions can be obtained to any network bargaining game (G,w, c)

by a reduction to a unit capacity game defined on an auxiliary graph.

Suppose we are given an instance (G,w, c) of the network bargaining game together

with a c-matching M of G. Algorithm 3.2 describes how to obtain an instance (G′, w′) of

the unit capacity game together with a matching M ′ of G.

Algorithm 2 Mapping from general capacities to unit capacities.

Input: An instance (G,w, c) with general capacities and a c-matching M

Output: An instance (G′, w′) with unit capacities and a matching M ′

for u ∈ V (G) do

Fix an arbitrary labelling σu : {v : uv ∈ M} → {1, · · · , d(u)}
Create cu copies u1, · · · , ucu in V (G′)

for (u, v) ∈ E(G) do

if (u, v) ∈ M then

add the unique edge (uσv(u), vσu(v)) to E(G′) ∩M ′ and set its weight to wuv

else

add all edges (ui, vj) to E(G′) for i ∈ [cu] and j ∈ [cv], and set their weights to wuv

return (G′, w′,M ′)

Figure 3.9 illustrates an example of this construction. All edges have unit weight and

the capacities are listed next to each vertex. The red edges denote the unique maximum

cardinality c-matching M . The first step is make copies of each vertex according to its

capacity. Hence we make four copies of u , two copies of x and y, and one copy of every

other node. This defines the vertex set of G′. We then map each edge in M to a unique

copy of itself in M ′. The edge (u, x) is mapped to (u1, x1), the edge (x, y) to (x2, y1), the

edge (u, y) to (u2, y2) and finally the edge (u, z) to (u3, z1). Note that M ′ has exactly the

same number of edges as M and each edge in M ′ has weight equal to its corresponding
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Figure 3.9: An instance with general capacities

edge in M . It remains to consider the edges (u, v) and(u,w) that are part of the original

graph G but were not in the c-matching M . For these edges we create all the possible

copies connecting their corresponding endpoints but do not include them in the matching

M . Hence (u, v) maps to cucv copies of itself, and (u,w) to cucw copies of itself. Finally,

each edge in G′ has weight equal to its corresponding edge in G. The resulting graph is

shown in Figure 3.10.

The important idea behind our reduction is the fact that we create only one copy of

each edge that belongs to the original c-matching M and the resulting set of edges M ′

form a matching in the new graph. This is exactly what distinguishes our reduction from

the standard reduction of a c-matching to a matching where cucv copies of each edge are

created.

3.2.1 Mapping between the two solution sets

Suppose we are given an instance of the network bargaining game (G,w, c) with a c-matching

M . Let [(G′, w′),M ′] be obtained using the construction described in algorithm 3.2. Note

that M and M ′ have the same number of edges and each edge (u, v) ∈ M is mapped to
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Figure 3.10: The corresponding instance with unit capacities.

the unique edge (ui, vj) ∈ M ′ where i = σv(u) and j = σu(v). This allows us to go back

and forth between solutions on M and M ′ by dividing the weight of each edge in the same

way as its corresponding pair.

We define the two solution sets:

X :=
{
x ∈ R|V (G′)| : (M ′, x) is a solution to (G′, w′)

}
Z :=

{
z ∈ R2|E(G)| : (M, z) is a solution to (G,w, c)

}
.

And the two mappings:

1. φ : X → Z

For all (u, v) ∈ E define

(φ(x)uv, φ(x)vu) :=


(
xuσv(u)

, xvσu(v)

)
if uv ∈ M ,

(0, 0) otherwise.
(3.5)
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2. φ−1 : Z → X .

For all ui ∈ V (G′) define

φ−1(z)ui
:=

zuv if i = σu(v),

0 otherwise.
(3.6)

Note that z = φ(x) if and only if x = φ−1(z). The following lemma implies that the

mapping given by the function φ and its inverse φ−1 defines a bijection.

Lemma 3.2.1. Let φ and φ−1 be defined as in 3.5 and 3.6. Then the following are true.

1. If x ∈ X and z = φ(x), then z ∈ Z.

2. If z ∈ Z and x = φ−1(z) then x ∈ X .

Proof. Let x ∈ X and z = φ(x). We show that z ∈ Z. Take (u, v) ∈ E(G) ∩ M .

Suppose i = σv(u) and j = σu(v). Then from the construction of G′ and M ′ it follows that

uivj ∈ M ′. We have

zuv + zvu = xui
+ xvj from the definition of φ(x)

= wuiuj
since (M ′, x) is a solution

= wuv from the construction of (G′, w′).

Furthermore if (u, v) ∈ E(G)\M then from the definition of φ(x) we have zuv = zvu = 0.

Now let z ∈ Z and x = φ−1(z). We show that x ∈ X . Take uivj ∈ E(G′) ∩ M ′.

From the construction of G′ and M ′ there must exist an edge (u, v) ∈ E(G)∩M such that

i = σv(u) and j = σu(v). We have

xui
+ xvj = zuv + zvu from the definition of φ−1(z)

= wuv since (M, z) is a solution

= wuivj from the construction of (G′, w′).

Furthermore if ui is uncovered in M ′ then xui
= 0 by definition.
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From now on we write (M, z) ∼ (M ′, x) whenever z = φ(x) or equivalently x = φ−1(z).

The next lemma is the key step in showing that certain properties of a solution are preserved

under our mapping.

Lemma 3.2.2. Let (G,w, c) be an instance of the network bargaining game and M a

c-matching on G. Suppose the auxiliary instance (G′, w′) and the matching M ′ were ob-

tained using the construction given in algorithm 3.2. Let (M, z) be a solution to (G,w, c)

and (M ′, x′) a solution to (G′, w′) such that (M, z) ∼ (M ′, x). Then for any u ∈ V (G) and

any i ∈ [du] we have

αu(M, z) = αui
(M ′, x) .

Proof. We first show that αu(M, z) ≤ αui
(M ′, x). We may assume that αu(M, z) > 0 since

otherwise there is nothing to show. Let v be vertex u’s best outside option in (M, z). That

is (u, v) ∈ E(G)\M and

αu(M, z) = wuv − 1[dv=cv ] min
vw∈M

zvw.

Since (u, v) ∈ E(G)\M we have uivj ∈ E(G′)\M ′ for all j ∈ [cv]. We have two cases:

1. v is not saturated in M . Then the vertex vdv+1 is in V (G′) and it is not covered by

M ′. Since (ui, vdv+1) ∈ E(G′)\M ′ we have

αui
(M ′, x) ≥ wuivdv+1

− xvdv+1

= wuivdv+1
vdv+1 is not covered by M ′ so xvdv+1

= 0

= wuv from the definition of (G′, w′)

= αu(M, z) by choice of v.

2. v is saturated in M . Let w = argminvw∈M zvw. Suppose that j = σw(v). Then vj is

covered in M ′ and xvj = zvw. Since (ui, vj) ∈ E(G′)\M ′ we have

αui
(M ′, x) ≥ wuivj − xvj

= wuv − zvw from the definition of (G′, w′)

= αu(M, z) by choice of v.
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We now show that αu(M, z) ≥ αui
(M ′, x). We may assume that αui

(M ′, x) > 0. Let

vj be vertex ui’s best outside option in (M ′, x). That is, vj ∈ V (G′) such that (ui, vj) ∈
E(G′)\M ′ and

αui
(M ′, x) = wuivj − xvj .

Since (ui, vj) ∈ E(G′)\M ′ we must have (u, v) ∈ E(G)\M . Again, we have two cases:

1. vj is not covered in M ′. Then the vertex v is not saturated in M and

αu(M, z) ≥ wuv

= wuivj from the definition of (G′, w′)

= wujvj − xvj vj is not covered in M ′ so xvj = 0

= αui
(M ′, x) by choice of vj.

2. vj is covered in M . Then there exists w ∈ V (G) such that (v, w) ∈ E(G) ∩M and

j = σw(v) . We have

αu(M, z) ≥ wuv − zvw

= wuivj − xvj from the definition of (G′, w′)

= αui
(M ′, x) by choice of vj.

Lemma 3.2.2 shows that our mapping preserves outside options. This crucial property

allows us to prove that stability and balance are also preserved. The following theorem is

our main result.

Theorem 3.2.3. Let (G,w, c) be an instance of the network bargaining game and M

a c-matching on G. Suppose the auxiliary instance (G′, w′) and the matching M ′ were

obtained using the construction given in algorithm 3.2. Let (M, z) be a solution to (G,w, c)

and (M ′, x′) a solution to (G′, w′) such that (M, z) ∼ (M ′, x). Then:

1. (M, z) is stable if and only if (M ′, x) is stable.
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2. (M, z) is balanced if and only if (M ′, x) is balanced.

Proof. Let (u, v) ∈ M . Suppose that i = σv(u). Then zuv = xui
and using lemma 3.2.2 we

have

zuv ≥ αu(M, z) if and only if xui
≥ αuσv(u)

(M ′, x) .

It remains to show that if (M ′, x) is stable then αu(M, z) = 0 for any unsaturated vertices u

of G. Suppose u is such a vertex. Then the vertex udu+1 is not covered in M ′ and therefore

x′
du+1 = 0. If (M ′, x) is stable then αudu+1

= 0 and by lemma 3.2.2 we have αu(M, z) = 0

as desired. This completes the proof of the first statement.

To prove the second statement let (u, v) ∈ M and suppose that i = σv(u) and j = σu(v).

Then zuv = xui
, zvu = xvj and by lemma 3.2.2 we have:

zuv − αu(M, z) = zvu − αv(M, z) ⇔ xui
− αui

(M ′, x) = xvj − αvj (M
′, x) .

This completes the proof.

Using Theorem 3.2.3 we have the following algorithm for finding a balanced solution

to the network bargaining game (G,w, c):

Algorithm 3 Computing balanced solutions for general capacities.

1: Find a maximum c-matching M in G

2: Obtain the unit capacity instance (G′, w′) with matching M ′ using algorithm 3.2

3: Find a balanced solution x on the matching M ′ in G′

4: Set z = φ(x).

5: return (M, z)

We note that step 3 of the algorithm can be implementing using the existing polynomial

time algorithm of Kleinberg and Tardos [55]. Given any instance of a network bargaining

game with unit capacities together with a maximum weight matching, their algorithm

returns a balanced solution on the given matching, whenever one exists.

Theorem 3.2.3 also helps us characterize the existence of balanced solutions. Since any

stable solution must occur on a c-matching, respectively matching, of maximum weight we

have the following corollary.
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Corollary 3.2.4. Let (G,w, c) be an instance of the network bargaining game and M

a c-matching on G. Suppose the auxiliary instance (G′, w′) and the matching M ′ were

obtained using the given construction. Then

1. M is a maximum weight c-matching for (G,w, c) if and only if M ′ is a maximum

weight matching for (G′, w′).

2. There exists a balanced solution for (G,w, c) on the c-matching M if and only if there

exists a balanced solution for (G′, w′) on the matching M ′.

This leads us to the following full characterization of the existence of balanced solutions

for network bargaining games with general capacities.

Theorem 3.2.5. An instance (G,w, c) of the network bargaining game has a balanced

solution if and only if it has a stable one.
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Chapter 4

Stable matchings

We start by introducing our model of stable marriage with general preferences.

Definition 4.0.6. An instance I of SMG consists of a set B of n men and a set C of

n women. Each man b ∈ B has a preference list P (b) that is complete total order over

C. Each woman c ∈ C has a preference relation given in terms of a set of ordered pairs

Rc ⊆ B×B. A pair (b, c) is blocking with respect to a matching N if (b, c) /∈ N , c �b N(b)

and (N(c), b) /∈ Rc. A matching N is stable if it has no blocking pairs.

Given two men b, b′ ∈ B and woman c ∈ C we interpret (b, b′) ∈ Rc as woman c

preferring man b at least as much as man b′. Note that whether (b, b′) is in Rc is completely

independent of whether (b′, b) ∈ Rc. The definition of a blocking pair can be interpreted

as saying that a pair (b, c) is blocking with respect to a matching N if neither agent of the

pair prefers their current partner in N at least as much as the partner in the pair.

We use SMG to refer to the decision problem of whether a given instance admits a

stable matching (which we also call a solution). The following definition introduces a

special class of instances.

Definition 4.0.7. An instance I of SMG is said to have asymmetric preferences if for

every b1, b2 ∈ B and c ∈ C at most one of the following two conditions holds: (b1, b2) ∈ Rc

or (b2, b1) ∈ Rc.
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Note that we could have obtained an alternate definition of stability by saying that

a pair (b, c) is blocking if (b, c) /∈ N , c �b N(b) and (b,N(c)) ∈ Rc. Note that then we

would also have to chance the definition of asymmetric preferences accordingly. However,

the two models are equivalent via the following correspondence: create a new instance I ′

with sets R′
c where (b, b′) ∈ R′

c if and only if (b′, b) /∈ Rc. Then the solutions that are

stable for I under our definition of stability, are exactly those that are stable for I ′ using

the alternate definition of stability. Hence, we can use our definition of stability without

loss of generality.

It is easy to see that any stable matching for an SMG instance must be a perfect match-

ing. This contrasts the case of SMTI where a given instance can have stable matchings of

different size. A second difference is that unlike in SMTI, not all instances of SMG admit

a stable matching as demonstrated by the example consider in chapter 1 Figure 1.6. We

now introduce our second model of stable matching: the stable extension problem.

Definition 4.0.8. An instance I of SE consists of a set of n dogs A, a set of n men

B, and a set of n women C, together with a fixed perfect matching M on A × B. The

preferences are defined cyclically (A over B, B over C, and C over A) and are complete

total orders over the corresponding sets. A triple (a, b, c) is blocking with respect to a 3D

matching M if (a, b, c) /∈ M, b �a M(a), c �b M(b) and a �c M(c). A 3D matching M
is stable if it has no blocking pairs.

We note that if (a, b, c) is a blocking triple then a, b and c must be part of three disjoint

triples in M. It follows from this definition that any stable 3D matching must be a perfect

matching. We say that a perfect matching N on B ×C is a stable extension, or a solution

to I, if M ◦N is a 3D stable matching, and we use SE to refer to the decision problem of

whether a given instance admits a stable extension.

Our first result demonstrates demonstrate how an instance I of SE can be reduced to

an SMG instance. Let I be an instances of SE. We describe how to obtain a corresponding

instance of SMG. First, for each man b ∈ B we define Ab to be the set of dogs in A that

prefer b to the man assigned to them in the fixed perfect matching M . That is

Ab = {a ∈ A : b �a M(a)} (4.1)
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The set Ab contains exactly those dogs in A with whom man b can potentially be in a

blocking triple when extending M to a 3D matching. It follows that if Ab = ∅ then man

b cannot be in a blocking triple in any extension of M to a 3D matching. Now, for each

pair (b, c) where Ab 6= ∅ we define α(b, c) to be the dog in the set Ab that woman c prefers

the most. That is

α(b, c) = {a ∈ Ab : a �c a
′ for all a′ ∈ Ab, a

′ 6= a} (4.2)

Since the preference list of c does not contain any ties, α(b, c) is well-defined. If Ab = ∅
then we let α(b, c) be the dog in the last position in woman c’s preference list. We now

define preferences for each woman c ∈ C

Rc := {(b, b′) | b, b′ ∈ B, b 6= b′, M(b) �c α(b
′, c)} . (4.3)

Note that if (N(c), b) ∈ Rc then in the 3D matching M ◦N the woman c will be matched

to a dog that she prefers at least as much as any dog in Ab, therefore guaranteeing that

the man b and woman c will never be part of the same blocking triple. Hence, in order for

M ◦N to be a 3D stable matching it suffices to ensure that for all (b, c) /∈ N we either have

b matched to someone better than c, meaning N(b) �b c, or we have c matched to some

N(c) such that (N(c), b) ∈ Rc. But this is exactly the definition of a stable matching for

an instance of SMG. Hence we have the following theorem.

Theorem 4.0.9. SE can be reduced in polynomial time to SMG.

4.1 Hardness results for SMG

We note that Theorem 4.0.9, together with Theorem 4.3.1 imply NP-hardness of SMG,

and hence prove Theorem 4.1.1 (modulo containment in NP which is straightforward).

Nevertheless, we choose to present first the proof of Theorem 4.1.1 as a warm-up, as it

shares many similarities with the more complex version of Theorem 4.3.1.

Theorem 4.1.1. SMG is NP-complete.
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Proof. Containment in NP is straightforward, and is based on the observation that deciding

whether an edge not in a perfect matching of an instance of SMG is blocking or not can

be done in polynomial time in n. The rest of our argument focuses on hardness. Our proof

uses a polynomial time reduction from SMTI where ties occur only in the preference lists

of the women. This problem is known to be NP-complete [62]. Let I be an instance of

SMTI where ties occur only on the side of the women. We let B = {b1, · · · , bn} denote

the set of men and C = {c1, · · · , cn} denote the set of women for the instance I. For each
person q ∈ B ∪ C we let P (q) denote their preference list.

We now describe how to construct an instance J of SMG. The set of men for our

instance will be given by B′ = B ∪ {bn+1} and the set of women by C ′ = C ∪ {cn+1}.
The preferences of the men are defined as follows: each original man b ∈ B ranks the

women in P (b) first, in the same order as in P (b), followed by the woman cn+1, and the

remaining women of C ′ ranked arbitrarily; the man bn+1 ranks the woman cn+1 first, and

the remaining women of C ′ arbitrarily. Now, for each original woman c ∈ C we define the

binary relation Rc ⊆ B × B as follows Rc := {(b, b′) | b, b′ ∈ P (c), b �c b
′}. That is, Rc

contains the ordered pair (b, b′) when both b and b′ are acceptable to c under the instance

I and c prefers b at least as much as b′. Finally, for the woman cn+1 we set Rcn+1 := ∅.
This completes the definition of the instance J .

We use the introduction of the new agents to establish the following property

Lemma 4.1.2. In any solution N to J every men b ∈ B is matched to a woman from the

set P (b).

Proof. Let N be a solution to J . We first show that bn+1 is matched to cn+1 in N . Suppose

by contradiction that N(bn+1) 6= cn+1. Then from the way we defined the preferences of

bn+1 in J we can conclude that bn+1 prefers cn+1 to its partner in N . Hence, in order

for the pair (bn+1, cn+1) to not be blocking with respect to the solution N we must have

(N(cn+1), bn+1) ∈ Rcn+1 , which gives us a contradiction since we defined Rcn+1 = ∅. Hence
N(bn+1) = cn+1.

We can now prove the lemma. Suppose by contradiction that there exists a man b ∈ B

such that N(b) /∈ P (b). Then b cannot be matched to cn+1, since we showed that cn+1
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is always matched to bn+1. From the way we defined the preferences of b in J we can

conclude that b prefers cn+1 to its partner in N . Hence, in order for the pair (b, cn+1) to

not be blocking with respect to the solution N we must have (N(cn+1), b) ∈ Rcn+1 , which

gives us a contradiction since we defined Rcn+1 = ∅.

The following lemma completes our proof.

Lemma 4.1.3. I admits a perfect stable matching if and only if J admits a stable match-

ing.

Proof. Suppose that N is a perfect stable matching for I. Then complete N to a perfect

matching on B′ ∪ C ′ by matching bn+1 to cn+1. To see that this is a stable matching for

J , note that bn+1 is matched to its most preferred woman in C ′, hence it cannot be part

of any blocking pairs. It remains to show that no man in B can be part of a blocking

pair. Consider a man b ∈ B, and suppose that c is a woman that b strictly prefers to

N(b) according to the preferences in J . Then it must be the case that c ∈ P (b) and b also

strictly prefers c to N(b) in I. Since N is a solution to I, woman c prefers N(c) at least

as much as b in I. Hence from the way we defined the set Rc we have (N(c), b) ∈ Rc,

implying that (b, c) is not blocking in J either.

To see the other direction suppose that J admits a stable matching, and let N be the

part of this stable matching obtained by restricting it to the sets B ∪ C. It follows from

lemma 4.1.2 that N is a perfect matching and every man is matched to an acceptable

woman. To see that there are no blocking pairs, consider any pair (b, c) /∈ N such that

(b, c) is an acceptable pair, that is b ∈ P (c) and c ∈ P (b). Assume now that in I man b

strictly prefers c to N(b). Since c ∈ P (b) it follows that b also strictly prefers c to N(b)

in J . Hence, since N is a stable matching for J , we must have (N(c), b) ∈ Rc. From the

way we defined Rc this implies that N(c) is acceptable to c, and c prefers N(c) at least as

much as b in I. Therefore N does not have any blocking pairs, and is a stable matching

in I.
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4.2 Algorithmic results for SMG

In this section we introduce a variant of the Gale-Shapley man-proposing algorithm for

instances of SMG that have asymmetric preferences. Let I be an instance of SMG. Like

in the classical algorithm, each man in B is originally declared single and is given a list

containing all the women of C in order of preference. In each round, every man b that is

still single proposes to its most preferred woman in C that is still in his list. If a woman c

accepts a proposal from a man b then they become engaged, and b’s status changes from

single to engaged. On the other hand, if c rejects b’s proposal then b removes woman c from

his list and remains single. The difference from the original Gale-Shapley algorithm from

section 2.5.1 is in the way that the women decide to accept or reject incoming proposals.

A woman c accepts a proposal from a man b if and only if (b, b′) ∈ Rc for all other men b′

that have proposed to c up to that point in the algorithm. This will ensure that whenever

a woman c rejects a proposal from a man b, c is guaranteed to be matched at the end of

the algorithm to some b′ such that (b′, b) ∈ Rc therefore ensuring that (b, c) will not be a

blocking pair. The description of the algorithm is given below.

Algorithm 4 A deferred acceptance algorithm for SMG

1: while there a single man in B with a non-empty list do

2: for all b single with a non-empty list do

3: b proposes to the top c in its list

4: for all b, c such that b proposed to c do

5: if (b, b′) ∈ Rc for all b
′ 6= b that proposed to c then

6: c accepts b ( (b, c) become an engaged pair)

7: else

8: c rejects b

9: If the set of engaged pairs forms a perfect matching return this solution, else conclude

that I does not admit a stable matching.

It is easy to see that algorithm 4 terminates and runs in polynomial time since each

man in B proposes to every woman in C at most once. The following lemma is also easy

to establish.
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Lemma 4.2.1. Any solution returned by algorithm 4 is a stable matching.

Proof. Let N be a solution returned by algorithm 4. It then follows that N is a perfect

matching. Suppose there is a blocking pair (b, c). Then b must have proposed to c, and c

rejected b’s proposal. But, every time a woman c rejects a proposal from b, algorithm 4

ensures that c will only become engaged to some man b′ such that (b′, b) ∈ Rc. Therefore

we cannot have any blocking pairs.

We now present our main result of this section.

Theorem 4.2.2. For instances of SMG with asymmetric preferences, there exists a poly-

nomial time algorithm that finds a solution if and only if one exists.

Proof. Using lemma 4.2.1 it suffices to show that if algorithm 4 does not find a solution

then the given instance does not admit a stable matching. Suppose by contradiction that

there exists a stable matching N but algorithm 4 does not find a solution. First note that

since the preferences are asymmetric, no woman c ∈ C accepts more then one proposal at

any point in the algorithm. Hence every woman is engaged to at most one man. Now since

Algorithm 1 does not find a solution there is a man b that is rejected by every woman in

C. In particular, b is rejected by N(b). Among all pairs (b, c) ∈ N such that b proposed

to c and c rejected b, let (b0, c0) be the one that corresponds to the earliest rejection. As

observed earlier, no man is rejected because of an arbitrary choice. Therefore, if b0 was

rejected at c0 then there must be some man b1 that also proposed to c0 and (b0, b1) /∈ Rc0 .

Let c1 be the partner of b1 in N . We must have c1 �b1 c0, since otherwise (b1, c0) would

be a blocking pair for the stable matching N . Thus b1 proposed to c1 before proposing to

c0 and c1 rejected b1 before c0 rejected b0. But this contradicts our choice of (b0, c0). This

concludes the proof of the theorem.

We now provide a polyhedral description for SMG, that is an analogue of the well

studied stable marriage polytope, first introduced in [79]. It is well known that the latter

polytope is integral, meaning that the optimization version of SM can be solved in poly-

nomial time. For our setting, we show that our polytope can be used to efficiently decide

the feasibility of an SMG instance with asymmetric preferences, thus giving an alternative
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proof of Theorem 4.2.2. We remark however that our polytope is not integral for this class

of instances. Indeed, one can easily find instances with asymmetric preferences for which

our polytope has fractional extreme points.

Given an instance I of SMG we associated with each pair (b, c) ∈ B×C a variable xbc,

with the intended meaning that xbc = 1 if b and c are matched to each other and xbc = 0

otherwise. We then consider the following relaxation of the problem and let P (I) denote
the set of all vectors satisfying the constraints below∑

c

xbc = 1 for all b ∈ B (4.4)∑
b

xbc = 1 for all c ∈ C (4.5)

xbc +
∑
c′�bc

xbc′ +
∑

(b′,b)∈Rc

xb′c ≥ 1 for all b ∈ B, c ∈ C (4.6)

xbc ≥ 0 for all b ∈ B, c ∈ C (4.7)

It is easy to check that x is the incidence vector of a stable matching for I if and only if x

is an integer vector in P (I). Our main result is the following.

Theorem 4.2.3. Let I be an instance of SMG with asymmetric preferences. Then P (I) 6=
∅ if and only if I admits a stable matching. Furthermore any fractional point x ∈ P (I)
can be efficiently rounded to a stable matching solution for I.

Proof. The first direction is trivial since if I admits a stable matching then the incidence

vector corresponding to this stable matching is clearly in P . Now assume P 6= ∅ and let

x be any point in P . We will show how to efficiently round x to a stable matching, thus

completing the proof of the theorem. For each b ∈ B let f(b) be b’s most preferred woman

in the set {c ∈ C : xbc > 0}. Define N = {(b, f(b)) : b ∈ B}. We first show that N is a

perfect matching. Since each man selects exactly one woman it suffices to show that no

two men select the same woman. Suppose by contradiction that f(b1) = f(b2) = c for
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some b1 6= b2. Note that

f(b) = c ⇒
∑
c′�bc

xbc′ = 0 from the definition of f(b)

⇒ xbc +
∑

(b′,b)∈Rc

xb′c ≥ 1 from the stability constraint for (b, c)

⇒ xbc +
∑

(b′,b)∈Rc

xb′c = 1 from the matching constraint for c

⇒
∑

(b′,b)/∈Rc

xb′c = 0.

Therefore f(b1) = f(b2) = c implies that (b1, b2) ∈ Rc and (b2, b1) ∈ Rc. But this

contradicts the assumption that the preferences are asymmetric. Hence N must be a

perfect matching. To see that N satisfies the stability constraints consider any pair (b, c).

If f(b) = c or f(b) �b c then (b, c) cannot be blocking, since b will be matched in N to

someone he prefers at least as much as c. Hence it suffices to consider the case where

c �b f(b). But then we must have xbc +
∑

c′�bc
xbc′ = 0 and since x ∈ P (I) this implies

that
∑

(b′,b)∈Rc
xb′c = 1. Now, since N uses only edges in the support of x, it follows that

(N(c), b) ∈ Rc and hence (b, c) is not blocking. Therefore N is a stable matching for I.

4.3 Hardness results for SE

In this section we present a hardness result for SE similar to the one we proved for SMG. At

a high level, our proof adopts a similar strategy to the one used for SMG. In particular, we

will provide a polynomial-time reduction for SMTI to SE. However, due to the additional

structural properties of SE instances this reduction becomes significantly more intricate.

Theorem 4.3.1. SE is NP-complete.

Proof. Containment of SE in NP follows by observing that deciding whether any triple

not in a 3D matching of any instance (extending the given 2D matching) is blocking or

not, can be done in polynomial time in n. The rest of the argument focuses on hardness.

Let I be an instance of SMTI where ties occur only on the side of the women. We let
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B = {b1, · · · , bn} denote the set of men and C = {c1, · · · , cn} denote the set of women

for the instance I. For each person q ∈ B ∪ C let P (q) denote their preference list. For

a given woman ci ∈ C the preference list P (ci) might have several men tied at a certain

position. We let ti be the number of positions in ci’s preference list, so that 1 ≤ ti ≤ n.

Now for each j ∈ {1, · · · , ti} we let P (ci)j denote the men that are tied in position j in

ci’s preference list. Furthermore, for each b ∈ P (ci) we let rci(b) denote the position that

b occupies in P (ci).

We now describe how to construct an instance J of SE. Our instance will consist of

three sets A′, B′ and C ′. We will include all the elements of B in B′, and all the elements

of C in C ′. We will also define some extra elements as follows

– For all i ∈ {1, 2, 3} we create the new elements an+i, bn+i and cn+i.

– For all i ∈ [n] we create ti new elements Bi = {bi,1, · · · , bi,ti}, together with the

corresponding sets Ai = {ai,1, · · · , ai,ti}, and Ci = {ci,1, · · · , ci,ti}.

– We create a set of n new elements A = {a1, · · · , an}, corresponding to the original

sets B and C.

We then set

A′ = A ∪
n⋃

i=1

Ai ∪ {an+1, an+2, an+3}

B′ = B ∪
n⋃

i=1

Bi ∪ {bn+1, bn+2, bn+3}

C ′ = C ∪
n⋃

i=1

Ci ∪ {cn+1, cn+2, cn+3}

We now fix the perfect matching M on A′ × B′ by matching each dog of A′ to its corre-

sponding man in B′. That is ai is matched to bi for all i ∈ [n], ai,j is matched to bi,j for

all i ∈ [n] and j ∈ [ti], and an+i is matched to bn+i for all i ∈ {1, 2, 3}.

Next, we create the preferences lists of each agent. For each q ∈ A′∪B′∪C ′ we let P ′(q)

denote the preference list of agent q for the instance J . Recall that for each a ∈ A′ the

preference list P ′(a) must be a complete and strict ordering of the set B′. Similarly for each
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P ′(ai) = bi, [· · · ]
for all i ∈ [n] P (bi), cn+1, [· · · ]

P ′(ci) = [M (P (ci)1)], ai,1, · · · , [M (P (ci)ti)], ai,ti , [· · · ]
P ′(ai,j) = [P (ci)j], bi,j, [· · · ]

for all i ∈ [n], P ′(bi,j) = ci,j, [· · · ]
for all j ∈ [ti] P ′(ci,j) = an+2, [· · · ]

P ′(an+1) = bn+1, [· · · ]
P ′(an+2) = [· · · ], bn+2

P ′(an+3) = bn+2, bn+3, [· · · ]
for all i ∈ [3] P ′(bn+i) = cn+i, [· · · ]

P ′(cn+1) = an+2, [· · · ]
P ′(cn+2) = an+3, [· · · ]
P ′(cn+1) = an+2, [· · · ]

Table 4.1: The preferences for the instance J .

b ∈ B′ the list P ′(b) will be a complete and strict ordering of the set C ′, and for each c ∈ C ′

the list P ′(c) will be a complete and strict ordering of the set A′. Table 4.1 summarizes

the preferences of each agent. When listing the preference list P ′(q) of an agent q, we use

the notation [Q] to denote that the agents of the set Q appear in consecutive positions

in P ′(q) in any arbitrary order among them. The notation [· · · ] is used to denote that

the remaining agents that have not been listed in P ′(q) appear in consecutive positions in

P ′(q) in any arbitrary order among them.

The preferences of the dogs in A′ over the set of men B′ are defined as follows

– For all i ∈ [n]: ai ranks bi first, and the remaining men of B′ arbitrarily.

– For all i ∈ [n] and for all j ∈ [ti]: ai,j ranks the men that are tied in position j of

women ci’s list (in the instance I) at the top of its list in any arbitrary order among

them, followed by the man bi,j. The remaining men of B′ are ranked arbitrarily.

– an+1 ranks bn+1 first, an+2 ranks bn+2 last, and an+3 ranks bn+2 first followed by bn+3

second. The rest of their lists are arbitrary.
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The preferences of the men in B′ over the set of women C ′ are defined as follows

– For all i ∈ [n]: bi ranks the women in P (bi) first, in the same order as in P (bi),

followed by the woman cn+1, and the remaining women of C ′ ranked arbitrarily.

– For all i ∈ [n] and for all j ∈ [ti]: bi,j ranks ci,j first, and the remaining women of C ′

arbitrarily.

– For all i ∈ {1, 2, 3}: bn+i ranks cn+i first and the remaining women of C ′ arbitrarily.

The preferences of the women in C ′ over the set of dogs A′ are defined as follows

– For all i ∈ [n]: ci ranks the dogs in the set M (P (ci)1) at the top of its list in an

arbitrary order, followed by the dog ai,1, then the dogs in the set M (P (ci)2) again

in an arbitrary order, followed by the dog ai,2, and so on until the dogs in the set

M (P (ci)ti) followed by the ai,ti . The rest of ci’s preference list is arbitrary.

– For all i ∈ [n] and for all j ∈ [ti]: ci,j ranks an+2 first, and the remaining dogs in A′

arbitrarily.

– cn+1 and cn+3 rank an+2 first, and the remaining dogs in A′ arbitrarily, while cn+2

ranks bn+3 first and the remaining dogs in A′ arbitrarily.

This concludes the description of the instance J . Note that since we already fixed the

perfect matching M , the sets {Ab : b ∈ B′} are now fully determined as follows

Ab =


{
ai,rci (b) : i ∈ [n], b ∈ P (ci)

}
∪ {an+2} if b ∈ B,

{an+2} if b ∈ B′\ (B ∪ {bn+2}) ,

{an+3} if b = bn+2.

(4.8)

This also fixes the sets Rc for all c ∈ C using the definition given in equation (4.3). In

particular, the sets Rc satisfy the following property.

82



Lemma 4.3.2. For every c ∈ C and b, b′ ∈ B where b is an acceptable partner of c in I,
we have (b′, b) ∈ Rc if and only if b′ is also an acceptable partner of c in I and c prefers b′

at least as much as b.

Proof. Let (b, c) ∈ B × C such that (b, c) is an acceptable pair for the instance I. Then b

must appear in the preference list P (c) of woman c. Recall that rc(b) denotes the position

that b occupies in P (c). Then it follows from the description of Ab in (4.8) that the only

dog from the set {ai,1, · · · , ai,ti} that is contained in Ab is ai,rc(b). It then follows from the

way we defined the preference list P ′(ci) that α(b, ci) = ai,rc(b). The lemma then follows

form the definition of the sets Rc.

The proof of the Theorem is completed via the following lemmas.

Lemma 4.3.3. In any solution to J bn+2 and bn+3 are matched to cn+2 and cn+3.

Proof. Let N be a solution to J . Suppose by contradiction that this is not true. Then at

least one of the men bn+2 and bn+3 must be matched to a woman that is neither cn+2 nor

cn+3. Assume that this is bn+2. The case with bn+3 follows from a symmetric argument.

Then since cn+2 was the most preferred woman of bn+2 it follows that cn+2 must be matched

to some b′ such that (b′, bn+2) ∈ Rcn+2 , since otherwise the pair (bn+2, cn+2) would be

blocking. Now from (4.8) we have that Abn+2 = {an+3} hence α(bn+2, cn+2) = an+3 and

therefore it follows from the preference list P ′(cn+2) that (b
′, bn+2) ∈ Rcn+2 if and only if

b = bn+3. Hence cn+2 must be matched to bn+3. But now we can argue that since cn+3 was

the most preferred woman of bn+3, cn+3 must be matched to some b′ such that (b′, bn+3) ∈
Rcn+3 . Again from (4.8) we have that Abn+3 = {an+3} hence α(bn+3, cn+3) = an+2 and

therefore it follows from the preference list P ′(cn+3) that (b′, bn+3) ∈ Rcn+3 if and only

if b′ = bn+2. But this means that cn+3 must be matched to bn+2, which contradicts our

assumption that bn+2 is not matched to neither cn+2 nor cn+3.

Lemma 4.3.4. In any solution to J bn+1 is matched to cn+1.

Proof. LetN be a solution to J . Suppose by contradiction that bn+1 is not matched to cn+1.

Then since cn+1 was the most preferred woman of bn+1 it follows that cn+1 must be matched
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to some b′ such that (b′, bn+1) ∈ Rcn+1 . Now from (4.8) we have that Abn+1 = {an+2} which

implies that α(bn+1, cn+1) = an+2. Therefore it follows from the preference list P ′(cn+1)

that (b′, bn+1) ∈ Rcn+1 if and only if b′ = bn+2. But from lemma 4.3.3 we know that bn+2 is

always matched to either cn+2 or cn+3. Therefore by contradiction, bn+1 must be matched

to cn+1.

Lemma 4.3.5. In any solution to J every man b ∈ B is matched to a woman from the

set P (b).

Proof. Consider a man b ∈ B and suppose by contradiction that b is not matched to

someone in P (b). It follows from lemma 4.3.4 that b cannot be matched to cn+1, since cn+1

is matched to bn+1. From the way we defined the preferences of b in J we can conclude that

b prefers cn+1 to its match in N . Furthermore we have an+2 ∈ Ab from (4.8). Now since

cn+1 ranks an+2 at the top of its list it follows that α(b, cn+1) = an+2 and thus (b′, b) ∈ Rcn+1

if and only if b = bn+2. But then the pair (b, cn+1) is blocking, thus contradicting the fact

that N is a solution to J .

Lemma 4.3.6. I admits a complete weakly stable matching if and only if J admits a

stable extension.

Proof. Suppose that N is a complete stable matching for I. Then complete N to a perfect

matching on B′ ∪ C ′ by matching bi,j to ci,j for every i ∈ [n] and j ∈ [ti] and matching

bn+i to cn+i for every i ∈ {1, 2, 3}. Note that every man in B′\B is matched to the woman

that it prefers the most hence no man in B′ can be part of a block. From lemma 4.3.5 we

have that every man in B is matched to a partner that is acceptable in I. Hence for any

b ∈ B, if c is a woman that b strictly prefers to N(b) according to the preferences in J ,

then it must be the case that c ∈ P (b) and b also strictly prefers c to N(b) in I. Since

N is a solution to I it follows that c prefers N(c) at least as much as b. We can now use

lemma 4.3.2 to conclude that (N(c), b) ∈ Rc. Therefore (b, c) cannot be a blocking pair in

J . Hence the perfect matching that we defined from N is solution to the instance J .

Conversely, suppose that J admits a stable extension, and let N be the part of this

stable extension obtained by restricting it to the sets B ∪ C. It follows from lemma 4.3.5

that N is a perfect matching and every agent is matched to an acceptable partner. To see
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that there are no blocking pairs consider any pair (b, c) /∈ N such that (b, c) is an acceptable

pair, that is b ∈ P (c) and c ∈ P (b). Assume now that in I man b strictly prefers c to N(b).

Since c ∈ P (b) it follows that b also strictly prefers c to N(b) in J . Since N is a solution

to J we must have (N(c), b) ∈ Rc. Again using lemma 4.3.2 we can conclude that N(c)

is a man in P (c) that c prefers at least as much as b in I. Therefore N does not have any

blocking pairs, and is a weakly stable matching in I.

This completes the proof of the theorem.
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Chapter 5

The nucleolus of matching games

with empty core

Let (G,w) be a weighted graph and (N, v) the corresponding matching game. We assume

throughout this chapter that the edge weights are always non-negative. We denote by

ν(G,w) the maximum weight of matching of G with respect to the weights w. We recall

the primal dual linear programs defined in section 2.1.1

(PFM) max
∑
e∈E

w(e)xe (5.1)

x(δ(u)) ≤ 1 for all u ∈ V (G)

xe ≥ 0 for all e ∈ E(G).

(DFM) min
∑

u∈V (G)

yu (5.2)

yu + yv ≥ w(e) for all e = (u, v) ∈ E(G)

yu ≥ 0 for all u ∈ V (G).

We let νf (G,w) denote the optimal value of PFM andDFM . We are interested in the case
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where core(N, v) = ∅, hence we assume throughout this chapter that νf (G,w) > ν(G,w)

(see Theorem 2.3.3).

Our approach for computing the nucleolus of (N, v) will be similar to the one used by

[53] and [68]. That is, we will focus on first obtaining a polynomial sized characterization

of the least core. We start by recalling the definition of the least core.

Definition 5.0.7. Given a weighted graph (G,w) we define the linear program P =

P (G,w):

(P (G,w)) max ε

s.t. x(M) ≥ w(M) + ε for all M ∈ M(G)

x(V (G)) = ν(G,w)

x ≥ 0

where M(G) denotes the set of matchings of G. We denote by ε1 = ε1(G,w) the optimal

value of P and for any ε we let P (ε) be the set of vectors x such that (x, ε) is feasible to

P . Then the least core of the matching game induced by (G,w) is defined as

leastcore(G,w) = P (ε1).

For node-weighted graphs Paulusma [68] obtained an equivalent characterization of the

least core that uses only a polynomial number of constraints. This characterization is based

on the odd components of the Edmonds-Gallai decomposition of the graph. The following

lemma is shown in [68].

Lemma 5.0.8. Let (G,w) be a weighted graph and D(G) denote the set of odd components

in the Edmonds-Gallai decomposition of G. If ν(G,w) < νf (G,w) then there exits D ∈
D(G) with |D| > 1.

Hence whenever the core of the matching game corresponding to (G,w) is empty, there

must exist at least one non-singleton odd component. The following theorem is the main

result in [68].

Theorem 5.0.9. Let (G, y) be a node-weighted graph with respect to the non-negative node

weights y ∈ R|V (G)|
+ . Suppose that ν(G, y) < νf (G, y). Then leastcore(G, y) is the set of
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vectors x that are optimal solutions to the linear program

max ε

s.t. x(e) ≥ y(e) for all e ∈ E(G)\

 ⋃
D∈D(G)

E(D)


xi ≤ yi for all i ∈ D,D ∈ D(G)

xi − yi = xj − yj for all i, j ∈ D, D ∈ D(G)

x(M1) ≥ y(M1) + ε

x(V (G)) = ν(G, y)

x ≥ 0

where D(G) denotes the set of odd components in the Edmonds-Gallai decomposition of G

and M1 is an arbitrary maximum cardinality matching contained in the union of these odd

components.

Theorem 5.0.9 essentially says that if G is node-weighted then the following are true

(i) In any least core allocation the edges belonging to the odd components of the

Edmonds-Gallai decomposition have non-positive excess while all other edges of the

graph have non-negative excess.

(ii) In any least core allocation the edges belonging to the same odd component of the

Edmonds-Gallai decomposition must have equal excess.

This implies that any maximum cardinality matching on the union of the odd components

has excess ε1. Hence it suffices to include only one constraint of the type x(M) ≥ w(M)+ε

for the fixed matching M1. Then any other matching of G will have excess no worse then

M1.

Since this characterization no longer holds true for graphs that are not node-weighted,

a different approach is needed for general weights. Our main idea is to find a new set of

components that satisfy the two properties of Theorem 5.0.9. That is, the edges inside
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Figure 5.1: A matching game that is not node-weighted.

these components receive non-positive excess in any least core allocation, the edges outside

these components receive non-negative excess, and the excess is equal along each of these

components.

As an example consider the matching game shown in Figure 5.1. The red edges denote

a maximum weight matching of weight 14. This core is empty since the fractional matching

whose support consists of the two triangles and the middle edge has weight 20 > 14. Also,

this graph is not node-weighted, since there is no possible assignment of non-negative values

to each vertex such that the weight of each edge is equal to the sum of the values of its

endpoints.
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Figure 5.2: A least core allocation with negative excess on both triangles.
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Figure 5.3: A least core allocation with negative excess only on the left triangle.

Note however that the graph in this example does have a perfect matching, meaning

that there are no odd components in the Edmonds-Gallai decomposition of the graph.

Hence Theorem 5.0.9 does not hold in this case. In fact, the least core for this example

consists of all allocations of the form

xi = 5− α1 i ∈ {A,B,C}
xi = 1− α2 i ∈ {F,G,H}
xC + xD ≥ 1

xD + xE ≥ 2

xE + xF ≥ 1

α1 + α2 = 2

0 ≤ α1 ≤ 5

0 ≤ α2 ≤ 1

The minimum excess achieved by any matching in this example is −4 and in any least

core allocation, all matchings that consists of one edge from each of the two triangles have

minimum excess. Figures 5.2 and 5.3 show two different allocations in the least core. In

particular, note that the edges of the path receive non-negative excess in any least core allo-

cation, while the edges of the triangles receive non-positive excess. Furthermore, the edges
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of each triangle always receive equal excess. Hence in this example, the components that

satisfy the properties of Theorem 5.0.9 are not the odd components of the Edmonds-Gallai

decomposition but the two triangles A,B,C and D,E, F .

The key observation about this example is that the least core of G is a strict subset

of the least core of the subgraph of G consisting of only the two triangles and the middle

edge of the path. Moreover, this subgraph of G is actually node-weighted, hence its own

least core is characterized by Theorem 5.0.9.

In the next section we identify some conditions under which this will always be the

case. That is, given a graph that is not node-weighted, we can identify a node-weighted

subgraph and express the least core of the original graph as a subset of the least core of

this subgraph.

5.1 The least core: a special case

In this section we assume that (G,w) is not a node-weighted graph. We show that if G

satisfies certain conditions, then one can identify a node-weighted subgraph of G, that we

call G=, such that the least core of G can be characterized in terms of the least core G=.

We start by fixing an arbitrary optimal solution y to the linear program DFM . We will

later show that our results are independent of this original choice of dual solution. We

define G= be the subgraph of G induced by the edges e ∈ E(G) that are tight with respect

to y, meaning that y(e) = w(e). Then (G=, w) is node-weighted with respect to the vector

y. When referring to G= we will use y to denote the edges weights with the understanding

that y(e) = yi + yj = w(e) for all e = (i, j) ∈ E(G=).

Note that ν(G=, y) ≤ ν(G,w) since any matching M of G= with weight y(M) is also a

matching of G with weight w(M) = y(M). However, it is possible that ν(G=, y) < ν(G,w)

if there were some edges of G that were part of every maximum weight matching but

were not tight with respect to y. Since y is an optimal solution to DFM it follows from

complementary slackness that νf (G=, y) = νf (G,w). Hence from our assumption that

ν(G,w) < νf (G,w) we also obtain ν(G=, y) < νf (G=, y). Thus we can apply Theorem

5.0.9 to (G=, y) to obtain the following corollary.
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Corollary 5.1.1. Let (G,w) be a weighted graph with ν(G,w) < νf (G,w). Let y be an

optimal solution to DFM for (G,w) and let G= be the subgraph of G induced by the set of

edges {e ∈ E(G) : y(e) = w(e)}. Then leastcore(G=, y) is equal to the set of vectors x that

are optimal solutions to the linear program:

max ε (5.3)

s.t. x(e) ≥ y(e) for all e ∈ E(G=)\

 ⋃
D∈D(G=)

E(D)


xi ≤ yi for all i ∈ D, D ∈ D(G=)

xi − yi = xj − yj for all i, j ∈ D, D ∈ D(G=)

x(M1) ≥ y(M1) + ε

x(V (G=)) = ν(G=, y)

x ≥ 0

where D(G=) denotes the set of odd components in the Edmonds-Gallai decomposition of

the subgraph G= and M1 is an arbitrary maximum cardinality matching on the union of

these odd components.

For any D ∈ D(G=) with |D| > 1 we let γ(D) denote the set of edges of G with both

endpoints in D. Note that there might be edges in γ(D) that are not in E(D) since they

were not tight with respect to the dual solution y. We give these type of edges a special

name.

Definition 5.1.2. An edge e is a chord if e ∈ γ(D)\E(D) for some D ∈ D(G=).

We also define the concept of an extendable allocation that will be crucial for our main

theorem. Recall that allocations in leastcore(G=, y) are defined over the set of vertices

V (G=). Essentially an allocation in leastcore(G=, y) is extendable if we can lift it to an

allocation over V (G) by just assigning value zero to vertices in V (G)\V (G=) without

inducing negative excess on any edges in E(G)\E(G=) that were not chords. We will show

later that this implies that the minimum excess of a matching does not decrease when

performing this lift.
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Definition 5.1.3. An allocation x ∈ leastcore(G=, y) is extendable if for every edge e ∈
E(G)\E(G=) that is not a chord we have∑

i∈V (G=)
δ(i)3e

xi ≥ w(e)

We can now present the main result of this section.

Theorem 5.1.4. Let (G,w) be a weighted graph with ν(G,w) < νf (G,w). Let y be an

optimal solution to DFM for (G,w) and let G= be the subgraph of G induced by the set of

edges {e ∈ E(G) : y(e) = w(e)}. Suppose the following conditions hold

1. ν(G=, y) = ν(G,w)

2. There exists an extendable allocation in leastcore(G=, y).

Then

leastcore(G,w) = P̃ (ε̃1)

where P̃ is the linear program

(P̃ ) max ε

s.t. x(e) ≥ w(e) for all e ∈ E(G)\

 ⋃
D∈D(G=)

γ(D)


xi ≤ yi for all i ∈ D, D ∈ D(G=)

xi − yi = xj − yj for all i, j ∈ D, D ∈ D(G=)

x(M1) ≥ y(M1) + ε

x(V (G)) = ν(G,w)

x ≥ 0

ẽ1 is its optimum value and M1 is a maximum cardinality matching on D(G=).

We note that P̃ has a polynomial number of constraints. We can also see that our

definition of P̃ is very similar to linear program describing the least core of (G=, y) in
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corollary 5.1.1. However there are two main differences. The first difference is that

allocations in the least core of (G=, y) are vectors x over the set V (G=) that satisfy

x(V (G=)) = ν(G=, y), while solutions to the linear program P̃ are vectors over V (G)

that satisfy x(V (G)) = ν(G,w). The first condition of the theorem ensures that the total

value of these allocations is always the same. The second difference is that for the least

core of (G=, y) we only required the constraints x(e) ≥ w(e) for edges in E(G=) that are

outside the odd components, while in our definition of P̃ we also impose these constraints

for edges in E(G)\E(G=) that are not chords. This is where the second condition of the

theorem will come in since it ensures that there exists at least one allocation in least core

of (G=, y) that satisfies these additional constraints.

We now present the proof of Theorem 5.1.4

Proof. Recall from definition 5.0.7 that leastcore(G,w) = P (ε1). It then suffices to show

that ε1 = ε̃1 and P (ε1) = P̃ (ε1). We start by showing that P̃ (ε) ⊆ P (ε) for any ε. Hence

let x ∈ P̃ (ε) for some ε and take any matching M ∈ M(G). It follows from the definition

of P̃ that the only edges of G that can have negative excess with respect to x are the ones

in γ(D) for odd components D ∈ D. Thus we can lower bound the excess of the matching

M by considering only these edges. We obtain

x(M)− w(M) ≥
∑
D∈D

∑
e∈M∩γ(D)

x(e)− w(e)

Using the fact that y is a feasible solution to DFM we have∑
e∈M∩γ(D)

x(e)− w(e) ≥
∑

e∈M∩γ(D)

x(e)− y(e) =
∑

i∈D∩N(M)

xi − yi

where N(M) denotes the vertices in D that are covered by M .

Now for a given D ∈ D it follows again from the definition of P̃ that xi − yi is the

same for all i ∈ D. Moreover, any matching contained in γ(D) can cover at most |D| − 1

vertices of D, since |D| is odd. Hence we can lower bound the excess of M by the excess

of M1 and obtain

x(M)− w(M) ≥ x(M1)− y(M1) ≥ ε.

94



This shows that x ∈ P (ε), and therefore we have shown that

P̃ (ε) ⊆ P (ε) ∀ε (5.4)

as well as

ε̃1 ≤ ε1. (5.5)

For the reverse direction, we first define the following relaxation of P

(P̂ ) max ε

s.t. x(M) ≥ y(M) + ε for all M ∈ M(G=)

x(V (G)) = ν(G,w)

x ≥ 0,

with optimum value ε̂1 and where M(G=) denotes the set of matchings of G=. Instead

of having a constraint for every matching of G as in the linear program P , in P̂ we only

have constraints for matchings of G=. Since for any matching M ∈ M(G=) we have

w(M) = y(M) the constraints of P̂ are a subset of the constraints of P . In particular this

implies that

ε1 ≤ ε̂1. (5.6)

Note that for any vertex i ∈ V (G)\V (G=), there is no matching appearing in the con-

straints of P̂ that covers i. It is then easy to see that for any optimal solution x ∈ P̂ (ε̂1)

we must have xi = 0 for all i ∈ V (G)\V (G=). Otherwise we could slightly modify x

by decreasing on i and increasing uniformly across all other vertices in V (G)\ {i} so that

x(V (G)) stays the same. The resulting allocation will still be in P̂ (ε̂1) but now x(M)

strictly increased for each matching M that appears in the constraints of P̂ . Hence there

are no x-tight matchings for the new allocation contradicting the optimality of ε̂1.

Using the first condition of Theorem 5.1.4 we therefore obtain

x(V (G=)) = ν(G=, y) for all x ∈ P̂ (ε̂1)
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Hence P̂ (ε̂1) is the set of vectors x ∈ R|V (G)| that are optimal solutions to the linear program

max ε

s.t. x(M) ≥ y(M) + ε for all M ∈ M(G=)

x(V (G=)) = ν(G=, y)

x ≥ 0

Now recall from definition 5.0.7 that the least core of (G=, y) is the set of vectors x ∈
R|V (G=)| that are optimal solutions to the linear program

max ε

s.t. x(M) ≥ y(M) + ε for all M ∈ M(G=)

x(V (G=)) = ν(G=, y)

x ≥ 0

Hence it follows that

P̂ (ε̂1) =
{
x ∈ R|V (G)| : xV (G=) ∈ leastcore(G=, y) and xi = 0 for all i ∈ V (G)\V (G=)

}
where xV (G=) is the projection of x onto the set V (G=).

Now let x′ be an extendable allocation in leastcore(G=, y) (guaranteed to exist by the

second condition) and define the vector x as follows

xi =

x′
i i ∈ V (G=)

0 i ∈ V (G)\V (G=)

Then using corollary 5.1.1 and the fact that x′ is extendable we obtain that x must satisfy

all of the constraints of P̃ and therefore x ∈ P̃ (ε̂1). This shows that

ε̂1 ≤ ε̃1. (5.7)

From equations (5.5), (5.6), and (5.7) we obtain ε1 = ε̂1 = ε̃1. This together with (5.4)

implies that P̃ (ε̃1) ⊆ P (ε1).
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Hence the proof is complete if we show that P (ε1) ⊆ P̃ (ε1). Let x ∈ P (ε1). Then

x ∈ P̂ (ε1) and letting x′ denote the restriction of x to the vertices in V (G=) we have

x′ ∈ leastcore(G=, y). Hence using corollary 5.1.1 again we obtain that x′ (and therefore

x) satisfies all of the constraints of P̃ except possibly the constraints x(e) ≥ w(e) for edges

e ∈ E(G)\E(G=) that are not chords. Let e be such an edge. Since e is not a chord it does

not have both endpoints in the same odd component in D. Since each component in D
is factor critical there must exist a matching M that is a maximum cardinality matching

on the union of the odd components D and such that M ∪ {e} is a valid matching of G.

From corollary 5.1.1 we know that M must have minimum excess with respect to x′ and

therefore also with respect to x. Hence

x(M ∪ e)− w(M ∪ e) = (x(M)− y(M)) + (x(e)− w(e)) = ε1 + (x(e)− w(e))

and since x ∈ P (ε1) this implies that x(e) ≥ w(e). Thus x ∈ P̃ (ε1) and the proof is

complete.

As an example of a graph whose least core is captured by Theorem 5.1.4 recall our

graph from Figure 5.1. This instance has a unique optimal solution y to DFM shown in

Figure 5.4. The red edges denote all the tight edges with respect to this solution. Hence

A

B

C D

H

G

E F

1

1

1

1 15

5

5

Figure 5.4: Optimal dual solution and equality subgraph.

the graph G= consists of the two triangles plus the middle edge of the path. Since G=
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still contains a matching of weight 14 we have ν(G,w) = ν(G=, y), so the first condition of

Theorem 5.1.4 is satisfied. The least core of (G=, y) is given by all allocations of the form

xi = 5− α1 i ∈ {A,B,C}
xi = 1− α2 i ∈ {F,G,H}
xD + xE ≥ 2

α1 + α2 = 2

0 ≤ α1 ≤ 5

0 ≤ α2 ≤ 1

To satisfy the second condition of Theorem 5.1.4 we would need an allocation in the least

core of (G=, y) that additionally satisfies xC +xD ≥ 1 and xE +xF ≥ 1. It easy to see that

such allocations exists, and both allocations shown in figures 5.2 and 5.3 fit this criteria.

5.1.1 When the first condition of Theorem 5.1.4 fails

While Theorem 5.1.4 describes the least core of certain graphs that are not node-weighted,

it still imposes fairly strong conditions. The natural question to ask is what happens with

graphs that do not satisfy the conditions of Theorem 5.1.4? Can their least core still be

captured using a node-weighted subgraph? We will first look at what happens when the

first condition of Theorem 5.1.4 fails. That is, ν(G=, y) < ν(G,w).

An example of this can be seen in figure 5.5 below. The red edges denote the unique

maximum weight matching of weight 12. The core is empty since the fractional matching

whose support consists of the two triangles has weight 33/2 > 12. The unique optimal

dual solution y to DFM is shown in figure 5.6. The tight edges are the ones belonging to

the triangles, hence G= in this case consists of two disjoint triangles. Note that

11 = ν(G=, y) < ν(G,w) = 12.
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Figure 5.5: An matching game where ν(G=, y) < ν(G,w)
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Figure 5.6: Optimal dual solution and equality subgraph.

The least core in this example consists of all allocations x satisfying

xi = 5− α1 i ∈ {A,B,C}
xi = 1− α2 i ∈ {D,E, F}

α1 + α2 =
3

2

0 ≤ α1 ≤ 5

0 ≤ α2 ≤
1

2

Figure 5.7 and 5.8 show two different least core allocations. In particular, we can see that

the edge (C,D) receives non-negative excess in any least core allocation while the triangle
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edges receive non-positive excess, and the excess is equal along the edges of each triangle.

In some sense we see the same behaviour as before: the least core of (G,w) corresponds

to the allocations in the least core of (G=, y) that satisfy xC + xD ≥ 1. However, the

correspondence in this case no longer means that least core of (G,w) is a subset of the

least core of (G=, y) since allocations in the least core of (G=, y) have total value ν(G, y)

while allocations in the least core of (G,w) have total value ν(G,w).
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Figure 5.7: A least core allocation with negative excess on both triangles.
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Figure 5.8: A least core allocation with negative excess only on the left triangle.

One way of characterizing the least core of graphs such as the one in figure 5.5 is to

prove a more general version Theorem 5.0.9. Instead of the least core, we consider the

set of allocations that maximize the minimum excess but assign a total value that can be
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larger than the maximum weight of matching, but is still strictly less then the maximum

weight of a fractional matching. We present this generalised result in the next section.

5.2 A generalisation of the node-weighted result

Recall the linear program P (G,w) that defines the least core of (G,w). For a given ∆ ≥ 0

suppose we change the program slightly by replacing the constraint x(V (G)) = ν(G,w) by

x(V (G)) = ∆. We then obtain the following definition of the generalised least core.

Definition 5.2.1. Given a weighted graph (G,w) define the linear program P (G,w,∆):

(P (G,w,∆)) max ε

s.t. x(M) ≥ w(M) + ε for all M ∈ M(G)

x(V (G)) = ∆

x ≥ 0.

Let ε1 = ε1(G,w,∆) denote the optimal value of P (G,w,∆) and P (G,w,∆)(ε) the set of

vectors x such that (x, ε) is feasible for P (G,w,∆). Then we define

leastcore(G,w,∆) := P (G,w,∆)(ε1).

Note that for ∆ = ν(G,w) the set P (G,w,∆)(ε1) is just the least core of the matching

game (G,w). For a general ∆, we can think P (G,w,∆)(ε1) as just a generalisation of the

least core, where instead of having a total value of ν(G,w) to distribute among the vertices,

we now have a total value of ∆. Our objective is the same: maximize the minimum excess

x(M)− w(M) of a matching. Note that as long as ∆ < νf (G,w) we will still have ε1 < 0,

since νf (G,w) represents the minimum total value required in order to be able to satisfy

every edge.

In this section we assume that (G,w) is a node-weighted graph with respect to the

node weights y ∈ R|V (G)|
+ . Hence we can replace w by y for the remainder of the section.

We review some notation used throughout this section:
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- M is set of matchings of G

- M∗ is the set of maximum cardinality matchings of G

- (D, A, C) is the Edmonds-Gallai decomposition of G

- MD is the set of matchings of G contained in
⋃

D∈D E(D)

- M∗
D is set of maximum cardinality matchings in MD

- M1 is a fixed arbitrary matching in M∗
D.

We also assume as throughout this chapter that ν(G, y) < νf (G, y), meaning that the

core of the corresponding matching game is empty. Recall from lemma 5.0.8 that this

implies that there exists at least one D ∈ D with |D| > 1. We now define a generalisation

of the linear program of Theorem 5.0.9 that captures the least core of node-weighted graphs

by similarly replacing the constraint x(V (G)) = ν(G, y) by x(V (G)) = ∆.

Definition 5.2.2. Given a weighted graph (G,w) that is node-weighted with respect to the

vector y ∈ R|V (G)|
+ define the linear program P̃ (G, y,∆) as

(P̃ (G, y,∆)) max ε

s.t. x(e) ≥ w(e) for all e ∈ E(G)\

 ⋃
D∈D(G)

E(D)


xi ≤ yi for all i ∈ D, D ∈ D(G)

xi − yi = xj − yj for all i, j ∈ D, D ∈ D(G)

x(M1) ≥ y(M1) + ε

x(V (G)) = ∆

x ≥ 0

and let ε̃ = ε̃1(G, y,∆) denotes its optimum value. As before, D(G) denotes the set of

odd components in the Edmonds-Gallai decomposition of G and M1 is a fixed maximum

cardinality matching on the union of these odd components.
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Our main result is the following.

Theorem 5.2.3. Let (G, y) be a node-weighted graph with respect to the node weights

y ∈ R|V (G)|
+ and such that ν(G, y) < νf (G, y). Suppose that ν(G, y) ≤ ∆ < νf (G, y). Then

(i) ε1(G, y,∆) = ε̃1(G, y,∆) and

(ii) P (G, y,∆)(ε1(G, y,∆))) = P̃ (G, y,∆)(ε̃1(G, y,∆))).

Note that for ∆ = ν(G, y) our statement is equivalent to Theorem 5.0.9, hence it

suffices to prove it for ν(G, y) < ∆ < νf (G, y). For the remainder of this section we drop

the notations (G, y,∆) when referring to the linear programs P and P̃ .

To prove Theorem 5.2.3 we follow the proof of Paulusma [68] step by step, pointing out

where differences arise due to the replacement of ν(G, y) by ∆. The proof of Paulusma

proceeds by a series of lemmas. Our proof will use the exact same lemmas, whose state-

ments remain unchanged. Most of the proofs will also be identical to the ones in [68],

and in most instances where there is a change the proof will actually become easier since

∆ > ν(G, y). The only lemma where this is not the case is lemma 5.2.9, where an entirely

different proof is needed to account for our use of ∆.

5.2.1 Proof outline

We first give a short outline of the main structure of the proof.

1. In the first and easier part we will show that P̃ (ε) ⊆ P (ε) for any ε. This will follow

mostly from the definition of P̃ and it will also imply that

ε̃1 ≤ ε1.

2. In the second and more difficult part we will show that ε1 ≤ ε̃1. We will accomplish

this by introducing a relaxation P̂ of P whose optimum value we will denote by ε̂1.

Since P̂ is a relaxation we will automatically have

ε1 ≤ ε̂1.
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Moreover, P̂ will be easier to analyze then P and will allow us to prove that optimum

solutions to P̂ have similar structural properties to optimum solutions of P̃ . More

specifically we will show that there exists at least one special type of allocation

x ∈ P̂ (ε̂1), called a flexible allocation, that can be modified into an allocation x̃ such

that x̃ ∈ P̃ (ε̂1). This will imply that

ε̂1 ≤ ε̃1.

And thus given our previous inequalities we will have established that

ε1 = ε̂1 = ε̃1.

3. In the third and final part we show that P (ε1) ⊆ P̃ (ε1). Here we will use our

relaxation P̂ again since any allocation in P (ε1) will also be in P̂ (ε1) = P̂ (ε̂1). Then

using the structural properties of optimum solutions to P̂ we will show that the given

allocation also satisfies the constraints of P̃ .

5.2.2 Proof of the first part of Theorem 5.2.3

We start by showing the first part of Theorem 5.2.3.

Lemma 5.2.4. P̃ (ε) ⊆ P (ε) for any ε and consequently ε̃1 ≤ ε1.

Proof. Let x ∈ P̃1(ε) and let M be any matching of G. Then we can decompose the excess

of M as follows:

x(M)− y(M) = x(M ∩ E(D))− y(M ∩ E(D)) + x(M\E(D))− y(M\E(D)),

and since x(e) ≥ y(e) for all e ∈ E(G)\E(D) we have

x(M)− y(M) ≥ x(M ∩ E(D))− y(M ∩ E(D)).

Now since xi ≤ yi for all i ∈ D and for any D ∈ D we can lower bound the excess of M by

the excess of the fixed maximum cardinality matching M1. Hence

x(M)− y(M) ≥ x(M1)− y(M1) ≥ ε.

Thus, x ∈ P1(ε) as required.
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Hence, to prove Theorem 5.2.3 it remains to show that ε1 ≤ ε̃1 and P1(ε1) ⊆ P̃ (ε1). We

introduce a similar relaxation of P (ε) as in the proof of Theorem 5.1.4.

(P̂ ) max ε

s.t. x(M) ≥ y(M) + ε for all M ∈ MD ∪M∗

x(V (G)) = ∆

x ≥ 0,

with optimum value ε̂1. As before, the set P̂ (ε) contains the set of vectors x such that

(x, ε) is feasible for P̂ . Since P̂ is a relaxation of P we automatically have P (ε) ⊆ P̂ (ε) for

any ε and therefore ε1 ≤ ε̂1.

Instead of having a constraint for every matching of G, in P̂ we only include the

constraints for maximum cardinality matchings and matchings completely contained in

the union of the odd components. The goal behind the definition of P̂ is two-fold: on one

hand, P̂ contains only a small subset of the constraints of P and thus it should hopefully

be easier to analyze. On the other hand, we want P̂ to maintain the same optimal value as

P . That is, even though we have fewer matchings that we need to satisfy in P̂ , we should

not be able to increase the minimum excess. This means that we expect the maximum

cardinality matchings together with the matchings in the odd components to be the ones

that limit the optimum value of P .

Our goal is to show that optimal allocations in P̂ (ε̂1) satisfy most of the properties of

P̃ . Then given such an allocation x ∈ P̂ (ε̂1) we will obtain from x a new allocation in

P̃ (ε̂1). This will then imply that ε̂1 ≤ ε̃1 and thus we will obtain that the optimal values

of all the three linear programs are the same. Once this is established, the proof will be

completed by showing that any optimal allocation in P (ε1) also belongs to P̃ (ε1).

5.2.3 Existence of x-tight allocations on the odd components

For x ∈ P̂ (ε) and M ∈ M∗ ∪ MD we say that M is x-tight if x(M) = y(M) + ε. The

following lemma is crucial toward eventually arguing that the odd components in D are

the ones accounting for any negative excess.
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Lemma 5.2.5. Let x ∈ P̂ (ε) for ε < 0. If there are no x-tight matchings in MD then ε is

not optimal.

Proof. Let x ∈ P̂ (ε) and suppose that there are no x-tight matchings in MD. We may

assume that some matching from the set M∗ must be x-tight since otherwise ε cannot be

optimal. Let U be the set of all vertices i ∈ D with xi > 0. We claim that each x-tight

matching M ∈ M∗ must expose at least one vertex in U . If this was not the case, then

since M covers all vertices outside D (recall the Edmonds-Gallai decomposition) we would

have x(M) = x(V (G)). But then

x(M) = x(V (G)) = ∆ > ν(G, y) ≥ y(M)

Since ε < 0, this implies that M cannot be x-tight. Let j be an arbitrary vertex in A ∪ C.
Note that every matching M ∈ M∗ must cover j. We can then define a new allocation x′

as follows:
x′
i = xi − δ ∀ i ∈ U

x′
j = xj + δ|U |

where δ is chosen small enough such that x′
i ≥ 0 for all i ∈ U and no matching M ∈ MD

becomes x′-tight. Then since every x-tight matching exposes at least one vertex in U and

covers vertex j we have x′(M) > x(M) for all x-tight matchings. Thus x′ ∈ P̂1(ε) and

there are no x′-tight matchings, meaning that ε is not optimal.

5.2.4 Averaging over the odd components

In this subsection we will work toward showing that for any optimal allocation in x ∈ P̂ (ε̂1)

we must have xi − yi = xj − yj for all i, j ∈ D, D ∈ D. For this, we will need the following

definition.

Definition 5.2.6. Given a vector x ∈ R|V (G)|
+ and D ∈ D we define the average of x and

y on D as

xD :=
x(D)

|D|
yD :=

y(D)

|D|
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We then let x ∈ R|V (G)|
+ be the vector obtained by averaging x on each odd component D ∈ D

with respect to the node weights y:

xi := xD − yD + yi for all i ∈ D,D ∈ D

and leaving x unchanged on A ∪
⋃
C. Note that x satisfies xi − yi = xj − yj for all

i, j ∈ D,D ∈ D and x(D) = x(D) for all D ∈ D.

As an initial step we first have to show that whenever x is an optimal allocation so is

x. This seems intuitive since the average excess will be no worse then the minimum excess

of an edge. The next lemma proves that this intuition is correct.

Lemma 5.2.7. Let x ∈ P̂ (ε). Then x(M) ≥ y(M) + ε for all M ∈ M∗ ∪MD.

Proof. Let x ∈ P̂ (ε). It suffices to show that the constraints are satisfied after averaging x

on a single component D ∈ D. Thus let D ∈ D and let x′ be given by x′
i = xD−yD+yi for

all i ∈ V (D) and x′
i = xi for all i ∈ V (G)\V (D). We first consider the case of a matching

M ∈ M∗. By properties of the Edmonds-Gallai decomposition we know that M either

covers all vertices of D or exposes exactly one vertex of D. If M covers all vertices of D

then x′(M) = x(M) and we are done. Otherwise there is some vertex i ∈ D that is not

covered by M . Recall that D is factor critical. We may assume wlog that i maximizes

xi − yi over D since otherwise we can replace M inside D by a near perfect matching that

exposes i and the excess will only decrease. But then

xi − yi ≥ xD − yD = x′
i − yi

and therefore x′(M)− y(M) ≥ x(M)− y(M) and are done.

It remains to consider the case of a matching M ∈ MD. Since we are lower bounding

the excess of M with respect to x′, we may assume wlog that M is a matching in MD

with minimum excess. If x(e) > y(e) for all e ∈ MD then all matchings in MD have

strictly positive excess with respect to both x and x′. Hence we may assume that there

exists at least one edge in MD such that x(e) < y(e). Then since M is a matching in MD

with minimum excess it follows that M only contains edges with negative excess. Hence

if xD − yD > 0, then M cannot contain any edge of D and therefore x(M) = x′(M) and
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we are done. On the other hand if xD − yD ≤ 0 then we may assume wlog that M is

near-perfect matching on D. Then the argument is the same as for matchings in M∗.

We are now able to show the full result.

Lemma 5.2.8. Let x ∈ P̂ (ε̂1). Then x ∈ P̂ (ε̂1).

Proof. It follows from the definition of x that x(V (G)) = x(V (G)). From lemma 5.2.7 we

also know that x satisfies x(M)− y(M) ≥ ε̂1 for all M ∈ M∗ ∩MD. Hence the only thing

that remains to be checked is x ≥ 0. We let yDmin = min {yi : i ∈ D} for all D ∈ D. Then

using the definition of x it suffices to prove for all D ∈ D that

xD ≥ yD − yDmin.

Suppose by contradiction that xD′ < yD′−yD
′

min for some D′ ∈ D. Then using the definitions

of xD and yD this is equivalent to∑
i∈D′

xi <
∑
i∈D′

(
yi − yD

′

min

)
.

This implies that |D′| > 1 since otherwise the right hand side would be zero, and we know

that x ≥ 0. We may modify x if necessary on the vertices of D′ while keeping x(D′) the

same to ensure that xi ≤ yi − yD
′

min for all i ∈ D′. It is not too hard to check that x will

still belong to P̂ (ε̂1) after this modification. But then there must exist at least one vertex

k ∈ D′ such that xk < yk − yD
′

min. It follows that k must be covered by x-tight matching

M ∈ M∗ ∪MD.

We now show that we can modify x to obtain a new allocation x′ such that (x′, ε̂1) is

still feasible for P̂ but there are no x′-tight matchings. This would then contradict the

optimality of ε̂1. We consider two cases. First, if there exists a vertex i ∈ V (G) that is

outside the odd components and xi > 0, then we can decrease x on i and increase x on

k by a sufficiently small amount so that the new allocation x′ remains feasible. But then

there are no x′-tight matchings in MD, hence by lemma 5.2.5 ε̂1 cannot be optimal. For

the second case suppose that xi = 0 for all vertices i ∈ V (G) that are outside the odd

components. Then⋃
D∈D

x(D) = x(V (G)) = ∆ > ν(G, y) ≥
∑
D∈D

y(D)− yDmin
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Since xD′ < yD′ − yD
′

min there must exist a component D̃ ∈ D such that xD̃ > yD̃ − yD̃min. By

lemma 5.2.7 we may assume that x is averaged on D̃ and therefore xi > 0 for all i ∈ D̃.

We can then decrease x uniformly on the vertices of D̃ and increase x by the same amount

on xk, choosing a sufficiently small amount so that the new allocation x′ remains feasible.

Since every x-tight matching in MD covers k but must expose at least one vertex of D̃

(odd component) the excess of all such matchings will increase and there will be no x′-tight

matchings in MD. We then arrive at the same contradiction as in the previous case.

Recall that one of the objectives behind the definition of P̂ was to maintain the same

optimal value as P . The next lemma establishes a preliminary result towards showing that

the optimal values of P and P̂ are the same.

Lemma 5.2.9. ε̂1 < 0.

Proof. Let x ∈ P̂ (ε̂1). By lemma 5.2.8 we may assume that x = x. If there exists an edge

in the odd components with negative excess then clearly ε̂1 < 0. Hence we may assume

that xD ≥ yD for all D ∈ D.

Now take any matching M ∈ M∗ and recall that for every odd component D ∈ D
either M covers all the vertices of D or M exposes exactly one vertex of D. Let D′ ⊆ D
denote the set of odd components that have a vertex exposed by M . Since M covers all

vertices outside the odd components we have

x(M)− y(M) = x(V (G))− y(V (G))−
∑
D∈D′

(xD − yD)

≤ x(V (G))− y(V (G))

= ∆− y(V (G))

< 0,

since ν(G, y) < ∆ < y(V (G)). Hence M has negative excess and therefore ε̂1 < 0.

For a given x ∈ P̂ (ε̂1) we let Dmax ⊆ D be the set of odd components on which xD−yD

is maximum among all D ∈ D.
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Lemma 5.2.10. Let x ∈ P̂ (ε̂1). If there are x-tight matchings in M∗, then for each

D ∈ Dmax there is a x-tight M ∈ M∗ that exposes a vertex of D. Furthermore, any x-tight

matching must expose a vertex of at least one D ∈ Dmax.

Proof. Suppose M ∈ M∗ is x-tight and covers all vertices of D for some D ∈ Dmax. Recall

from the definition of the Edmonds-Gallai decomposition that for every odd component

there exists a maximum cardinality matching that exposes one of its vertices. Hence let

M ′ be any matching in M∗ that exposes a vertex of D. Let P ⊆ M ∪M ′ be the unique

maximal alternating path starting in D at a vertex i exposed by M ′ and ending in some

other odd component D′ at a vertex j exposed by M . Reversing M along P results in

another maximum cardinality matching M̄ , that covers the vertices (N(M)\i) ∪ j. Since

D ∈ Dmax it follows that xi − yi ≥ xj − yj. Therefore the new matching M̄ is also x-tight.

To prove the second claim note that if M would cover all the vertices of every D ∈ Dmax

then D′ /∈ Dmax meaning that M̄ has strictly lower excess then M . But this contradicts

the fact that M is x-tight.

5.2.5 Structural properties of optimal allocations

We are now able to prove some important properties about optimal allocations in P̂ (ε̂1).

Recall that our overall goal is to show that optimal allocations in P̂ (ε̂1) satisfy the con-

straints of P̃ . In particular the constraints of P̃ imply that the excess must be equal and

non-positive on each of the odd components. The next lemma shows that this is also the

case for P̂ (ε̂1).

Lemma 5.2.11. Let x ∈ P̂ (ε̂1). Then

1. x = x

2. xi ≤ yi for all i ∈ D, D ∈ D

3. Each M ∈ M∗
D is x-tight
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Proof. Let x ∈ P̂ (ε̂1). We first show (2) and (3) for x and then prove that x = x.

(2) Suppose by contradiction that xD > yD for some D ∈ Dmax. Then xi > yi for all

i ∈ D,D ∈ Dmax. This implies that Dmax must be a strict subset of D since otherwise

there would be no x-tight matchings in MD contradicting lemma 5.2.5. Furthermore, any

x-tight matching in MD does not contain any edges from components in Dmax. Now if

A ∪ C = ∅ then we can define a new allocation x′ by decreasing x uniformly on Dmax by a

total value δ, where δ is chosen sufficiently small so that x′
i ≥ yi for all i ∈ D,D ∈ Dmax;

and then increasing x uniformly on D\Dmax by a total value of δ. Then x′ will be a feasible

allocation that has no x′-tight matchings thus contradicting the optimality of ε̂1. Hence

we may assume that A ∪ C 6= ∅. Then let j ∈ A ∪ C and define a new allocation x′ by

decreasing x uniformly on Dmax by a total value δ, where δ is chosen sufficiently small so

that x′
i ≥ yi for all i ∈ D,D ∈ Dmax; and then increasing x uniformly on {j} ∪D\Dmax by

a total value of δ. Then it is easy to see that x′ will again be a feasible allocation that has

no x′-tight matchings.

(3) From lemma 5.2.5 we know that there exists a x-tight matching M ∈ MD. Then

from (2) we may assume that M ∈ M∗
D. Finally note that the excess of any matching

M ∈ M∗
D is equal since

x(M)− y(M) =
∑
D∈D

(|D| − 1)(xD − yD).

(1) Let M be a matching in M∗
D with minimum excess with respect to x. Then

x(M)− y(M) ≤ x(M)− y(M) with equality if and only if x = x. But from (3) we have

x(M)− y(M) = ε̂1

and since x ∈ P̂ (ε̂1) we must have x(M) ≥ y(M) + ε̂1. Thus x = x.

We point out here that while this result is crucial to establish the desired behaviour

of solutions in P̂ (ε̂1) over the odd components D this lemma is not sufficient to show our

end goal that we can get an allocation in P̂ (ε̂1) that satisfies all the constraints of P̃ . In

particular over the next sections we will prove the crucial property that edges outside the

odd components receive non-negative excess.
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We have established so far that maximum cardinality matchings on the odd components

are always x-tight. Our next step is to show that there are maximum cardinality matchings

of G that are also x-tight. The next lemma considers a special case where vertices outside

the odd components receive zero value.

Lemma 5.2.12. Let x ∈ P̂ (ε̂1). If x(A ∪ C) = 0 then every M ∈ M∗ is x-tight.

Proof. If A∪C = ∅ then M∗ = M∗
D so the lemma is true by lemma 5.2.11. Hence suppose

that A ∪ C 6= ∅ and x(A ∪ C) = 0. Recall that every maximum cardinality matching

M ∈ M∗ can be decomposed as

M = MC ∪MA,D ∪MD

where MC is a perfect matching in the union of all even components C; MD induces a

near-perfect matching in all odd components D ∈ D; and MA,D is a matching that matches

A completely into ∪D the union of odd components. By lemma 5.2.11 we know that MD

is x-tight, therefore

x (MC ∪MA,D) ≥ y (MC ∪MA,D) .

Now let B be the vertices in D that are connected to vertices in A by MA,D. Then

y (MC ∪MA,D) = y(C ∪ A) + y(B).

By lemma 5.2.11 we have xi ≤ yi for all i ∈ B and since we assume that x(A ∪ C) = 0 we

obtain

y(C ∪ A) + y(B) ≤ x(B) ≤ y(B)

meaning that yi = 0 for all i ∈ C ∪ A and xi = yi for all i ∈ B. This means that

x(M) = x(MC) + x(A) + x(B) + x(MD)

= y(B) + y(MD) + ε̂1

= y(M) + ε̂1

and therefore M is x-tight as required.

We finish this subsection with the following useful technical lemma.
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Lemma 5.2.13. Let x ∈ P̂ (ε̂1). Then there exists some x-tight M ∈ M∗. Moreover, if

D ∈ Dmax or |D| > 1 then there is some x-tight M ∈ M∗ exposing a vertex of D.

Proof. If A ∪ C = ∅ then M∗ = M∗
D and all of these matchings are x-tight by lemma

5.2.11. On the other hand if x(A∪C) = 0 then again every matching in M∗ is x-tight from

lemma 5.2.12. Hence the proof follows since for every D, there exists an x-tight matching

in M∗ exposing a vertex of D.

Now assume that assume that A ∪ C 6= ∅ and x(A ∪ C) > 0. Suppose by contradiction

that there are no x-tight matchings in M∗. Then we can decrease x uniformly on A ∪ C
and increase x uniformly by the same amount on D where this amount is chose sufficiently

small so that the new allocation is feasible but has no x-tight matchings in M∗
D thus

contradicting lemma 5.2.11.

Hence there must be some x-tight matching in M∗. Then by lemma 5.2.10 we know

that for every D ∈ Dmax there is an x-tight matching in M∗ exposing a vertex of D. We are

left to prove the same result for D ∈ D\Dmax with |D| > 1. Let D be such a component.

Then xi < yi for all i ∈ D by lemma 5.2.11. If D is covered by every x-tight M ∈ M∗

then since x(A ∪ C) > 0 we can decrease x on some j ∈ A ∪ C with xj > 0 and increase x

by the same amount uniformly on the vertices of D. Then again we obtain a new feasible

allocation with no x-tight matching in M∗
D, contradicting lemma 5.2.11.

5.2.6 Flexible allocations

Our general strategy is to show that there exists a certain allocation x ∈ P̂ (ε̂1) from which

we can obtain a new allocation x̃ that satisfies all of the constraints of P̃ with the same

ε̂1. Our choice of allocation in P̂ (ε̂1) will therefore have to satisfy some useful properties.

The following definition makes these properties exact.

Recall that given any odd component D ∈ D and a maximum cardinality matching

M ∈ M∗ then M either covers all vertices of D or exposes exactly one vertex of D. In the

latter case we say that M exposes D.

Definition 5.2.14. An allocation x ∈ P̂ (ε̂1) is flexible if for each D ∈ D there is some

x-tight M ∈ M∗ exposing D.
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Lemma 5.2.15. Flexible allocations exists.

Proof. Let x ∈ P̂ (ε̂1) and suppose that x is not flexible. Then by lemma 5.2.13 there exists

a singleton component D ∈ D with D = {i} such that every x-tight matching in M∗ covers

i. This implies that A 6= ∅ and by lemma 5.2.12 we must also have x(A ∪ C) > 0, since

otherwise every maximum cardinality matching is x-tight contradicting our assumption

that x is not flexible. We now decrease x uniformly on vertices j ∈ A ∪ C with xj > 0

and increase xi by the same amount until some matching M ∈ M∗ that exposes i becomes

tight. Note that this modification preserves all the x-tight matchings in M∗. Hence the

claim follows by induction.

Given a flexible allocation x̂ ∈ P̂ (ε̂1) we let α0 < · · · < αp denote the different values

that x̂D − yD takes on each D ∈ D, and let

D = D0 ∪ · · · ∪ Dp

be the corresponding partition of D. Then x̂i − yi = αi for all i ∈ D where D ∈ Di, and

Dp = Dmax.

Lemma 5.2.16. There exists a partition A = A0 ∪ · · · ∪ Ap, with some of the Ai possibly

empty, such that M ∈ M∗ is x̂-tight if and only if M matches each non-empty Ai completely

into Di.

Proof. If A = ∅ the lemma is trivially true. Hence assume that A 6= ∅. Since x̂ equalizes

the excess on each odd component (by lemma 5.2.11) we can see that the excess of a

matching M ∈ M∗ depends only on how many nodes of A are matched into each Di. The

lemma then follows from the following claim.

Claim 1. Let H be a bipartite graph with node classes A and B. Suppose that B =

B0 ∪ · · · ∪ Bp is a partition of B and edges incident with vertices of Bi have weight αi,

where α0 < · · · < αp. Let M∗ be the set of matchings that completely matches A into B,

and assume that M∗ 6= ∅. Let M∗
min be the set of matchings in M∗ of minimum weights.

Finally suppose that each b ∈ B is left uncovered by some M ∈ M∗
min. There exists a

partition A = A0 ∪ · · · ∪ Ap, with some of the Ai possibly empty, such that M ∈ M∗
min if

and only if M matches each non-empty Ai completely into Bi.

114



We omit the proof of this claim since it identical to lemma 4.15 in [68] and the result

is independent of our use of ∆.

5.2.7 Completing the proof of Theorem 5.2.3

We are now ready to complete the proof of Theorem 5.2.3. This is accomplished by the

following two final lemmas.

Lemma 5.2.17. ε1 = ε̂1 = ε̃1

Proof. In lemma 5.2.4 we already showed that ε̃1 ≤ ε1. Moreover we also have observed

that ε1 ≤ ε̂1 since P̂ was defined as a relaxation of P . Hence to prove the lemma it suffices

to show that ε̂1 ≤ ε̃1. We do this by constructing an allocation x ∈ P̃ (ε̂1).

Let x̂ ∈ P̂ (ε̂1) be a flexible allocation with corresponding partition D = D0 ∪ · · · ∪ Dp

and A = A0 ∪ · · · ∪ Ap. We define a new allocation x̃ as follows

x̃i =


yi i ∈ C

x̂i i ∈ D

yi − αj i ∈ Aj, 0 ≤ j ≤ p

We now show that x̃ ∈ P̃ (ε̂1). Since αj ≤ 0 for all 0 ≤ j ≤ p (see lemma 5.2.11) we clearly

have x̃i ≥ 0 for all i ∈ V (G). Then using lemma 5.2.11 the only constraints that remain

to be checked are

(1) x̃(V (G)) = ∆

(2) x(e) ≥ y(e) for all e ∈ E(G)\
⋃
D∈D

E(D)

To prove the first item let M ∈ M∗ be an x̂-tight matching and decompose it as

M = MC ∪MA,D ∪MD

Since MD is also x̂-tight by lemma 5.2.11 we conclude that

x̂ (MC ∪MA,D) = y (MC ∪MA,D) = x̃ (MC ∪MA,D)
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where the last equation follows by definition of x̃. But then we also x̃i = x̂i for all i ∈ D
thus we must have

x̃(V (G)) = x̂(V (G)) = ∆

Finally to prove the second item let e ∈ E(G)\
⋃

D∈D E(D). If e has both endpoints in

A ∪ C then the claim follows from the fact that x̃i ≥ yi for all i ∈ A ∪ C. Hence assume

that e is an edge between D and A. If e joins Di to Ai then by definition x̃(e) = y(e).

Hence assume that e joins Di to Aj for some j 6= i. Suppose that x̃(e) < y(e). Then it

must be the case that αi < αj. Now since x̂ is flexible there exists an x̂-tight matching

M ∈ M∗ exposing a vertex of D. Since D is factor critical and x̂ − y is constant on D

we may assume wlog that M exposes the endpoint of e. Since M is x̂-tight lemma 5.2.16

implies that the endpoint of e in Aj is matched into Dj by some edge f ∈ M . But then

our assumption that αi < αj means that the matching M\f ∪ e has excess strictly less

then M , a contradiction. Hence x̃ ∈ P̃ (ε̂1) and the proof is complete.

Lemma 5.2.18. P (ε1) ⊆ P̃ (ε1)

Proof. Let x ∈ P (ε1). Then x ∈ P̂ (ε1) and by lemma 5.2.17 this means that x ∈ P̂ (ε̂1).

Then by lemma 5.2.11 x satisfies all of the constraints of P̃ (ε1) except possible x(e) ≥ y(e)

for e ∈ E(G)\ ∪D∈D E(D). Thus let e ∈ E(G)\ ∪D∈D E(D). Then there exists a matching

M ∈ M∗
D such that M ∪ e is a valid matching of G. By lemma 5.2.11 M is x-tight. Since

x ∈ P (ε1) we must have x(M ∪ e) ≥ y(M ∪ e) + ε1. Thus x(e) ≥ y(e).

5.3 The least core: a stronger result

In this section we use Theorem 5.2.3 to prove a stronger version of Theorem 5.1.4. Hence

we assume that (G,w) is not node-weighted and ν(G,w) < νf (G,w). As before, we fix

an arbitrary optimal solution y to the linear program DFM and let G= be the subgraph

of G induced by the edges that are tight with respect to y. For a given ∆, recall the

definition of leastcore(G=, y,∆) in 5.2.1 as the set P (G=, y,∆)(ε1(G=, y,∆)). We also

recall the definition of the linear program P̃ (G=, y,∆) in 5.2.2 together with its optimum

value ε̃1(G=, y,∆).
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Since y is an optimal solution, once again we have νf (G=, y) = νf (G,w) = y(V (G=))

and therefore our assumption that ν(G,w) < νf (G,w) also implies that ν(G=, y) <

νf (G=, y). Hence we can apply Theorem 5.2.3 to (G=, y) to obtain the following corol-

lary.

Corollary 5.3.1. Let (G,w) be a weighted graph with ν(G,w) < νf (G,w). Let y be an

optimal solution to DFM for (G,w) and let G= be the subgraph of G induced by the set of

edges {e ∈ E(G) : y(e) = w(e)}. Suppose that ν(G=, y) ≤ ∆ < νf (G=, y). Then

(i) ε1(G=, y,∆) = ε̃1(G=, y,∆) and

(ii) P (G=, y,∆)(ε1(G=, y,∆))) = P̃ (G=, y,∆)(ε̃1(G=, y,∆))).

We let D(G=) denote the set of odd components in the Edmonds-Gallai decomposition

of G= and as before M1 is an arbitrary maximum cardinality matching on the union of the

odd components. Recall that a chord is an edge e ∈ E(G)\E(G=) such that e ∈ γ(D) for

some odd component D ∈ D(G=). We adapt the definition of an extendable allocation to

the generalised least core.

Definition 5.3.2. An allocation x ∈ leastcore(G=, y,∆) is extendable if for every edge

e ∈ E(G)\E(G=) that is not a chord we have∑
i∈V (G=):e∈δ(i)

xi ≥ w(e)

We can now present the main result of this section.

Theorem 5.3.3. Let (G,w) be a weighted graph with ν(G,w) < νf (G,w). Let y be an

optimal solution to DFM for (G,w) and let G= be the subgraph of G induced by the set of

edges {e ∈ E(G) : y(e) = w(e)}. Suppose that leastcore(G=, y,∆) contains an extendable

allocation for some ν(G=, y) ≤ ∆ < y(V (G=)). Then

leastcore(G,w,∆) = P̃ (ε̃1)
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where P̃ is the linear program

(P̃ ) max ε

s.t. x(e) ≥ w(e) for all e ∈ E(G)\

 ⋃
D∈D(G=)

γ(D)


xi ≤ yi for all i ∈ D, D ∈ D(G=)

xi − yi = xj − yj for all i, j ∈ D, D ∈ D(G=)

x(M1) ≥ y(M1) + ε

x(V (G)) = ∆

x ≥ 0

and ε̃1 is its optimum value.

The proof of this theorem is essentially identical to the one of Theorem 5.1.4 except

that we replace ν(G,w) by ∆ and instead of using corollary 5.1.1 of Theorem 5.0.9 we now

use the more general corollary 5.3.1 of Theorem 5.2.3 that allows us to replace ν(G=, y) by

∆ as well.

Proof. Recall from definition 5.2.1 that leastcore(G,w,∆) = P (G,w,∆)(ε1(G,w,∆)). For

ease of notation we denote the linear program P (G,w,∆) by P and its optimum value

ε1(G,w,∆) by ε1. We then have to show that ε1 = ε̃1 and P (ε1) = P̃ (ε1).

We start by showing that P̃ (ε) ⊆ P (ε) for any ε. Hence let x ∈ P̃ (ε) for some ε. Then

the constraints x(V (G)) = ∆ and x ≥ 0 are clearly satisfied since they are present in

the description of P̃ , so remains to check that x(M) ≥ w(M) + ε for any fixed matching

M ∈ M(G). It follows from the definition of P̃ that the only edges of G that can have

negative excess with respect to x are the ones in γ(D) for odd components D ∈ D. Thus

we can lower bound the excess of the matching M by considering only these edges. We

obtain
x(M)− w(M) ≥

∑
D∈D

∑
e∈M∩γ(D)

x(e)− w(e)

Using the fact that y is a feasible solution to DFM we have∑
e∈M∩γ(D)

x(e)− w(e) ≥
∑

e∈M∩γ(D)

x(e)− y(e) =
∑

i∈D∩N(M)

xi − yi
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where N(M) denotes the vertices in D that are covered by M .

Now for a given D ∈ D it follows again from the definition of P̃ that xi − yi is the

same for all i ∈ D. Moreover, any matching contained in γ(D) can cover at most |D| − 1

vertices of D, since |D| is odd. Hence we can lower bound the excess of M by the excess

of M1 and obtain

x(M)− w(M) ≥ x(M1)− y(M1) ≥ ε.

This shows that x ∈ P (ε), and therefore we have shown that

P̃ (ε) ⊆ P (ε), (5.8)

as well as

ε̃1 ≤ ε1. (5.9)

We will now show the reverse direction, that ε1 ≤ ε̃1. We first define the following

relaxation of P

(P̂ ) max ε

s.t. x(M) ≥ y(M) + ε for all M ∈ M(G=)

x(V (G)) = ∆

x ≥ 0,

with optimum value ε̂1. Since the constraints of P̂ are a subset of the constraints of P we

immediately have

ε1 ≤ ε̂1. (5.10)

Note that for any vertex i ∈ V (G)\V (G=), there is no matching appearing in the con-

straints of P̂ that covers i. It is then easy to see that for any optimal solution x ∈ P̂ (ε̂1)

we must have xi = 0 for all i ∈ V (G)\V (G=) and therefore

x(V (G)) = x(V (G=)) = ∆ for all x ∈ P̂ (ε̂1).
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Hence P̂ (ε̂1) is the set of vectors x ∈ R|V (G)| that are optimal solutions to the linear program

max ε

s.t. x(M) ≥ y(M) + ε for all M ∈ M(G=)

x(V (G=)) = ∆

x ≥ 0

Hence it follows that

P̂ (ε̂1) =
{
x ∈ R|V (G)| : xV (G=) ∈ leastcore(G=, y,∆) and xi = 0 for all i ∈ V (G)\V (G=)

}
where xV (G=) is the projection of x onto the set V (G=). Now let x′ be an extendable

allocation in leastcore(G=, y,∆) (guaranteed to exist by the hypothesis of the theorem)

and define the vector x as follows

xi =

x′
i i ∈ V (G=)

0 i ∈ V (G)\V (G=)

Then using corollary 5.3.1 and the fact that x′ is extendable we obtain that x must satisfy

all of the constraints of P̃ and therefore x ∈ P̃ (ε̂1). This shows that

ε̂1 ≤ ε̃1. (5.11)

From equations (5.9), (5.10), and (5.11) we obtain ε1 = ε̂1 = ε̃1. This together with (5.8)

implies that P̃ (ε̃1) ⊆ P (ε1).

Hence the proof is complete if we show that P (ε1) ⊆ P̃ (ε1). Let x ∈ P (ε1). Then

x ∈ P̂ (ε1) and letting x′ denote the restriction of x to the vertices in V (G=) we have

x′ ∈ leastcore(G=, y,∆). Hence using corollary 5.3.1 again we obtain that x′ (and therefore

x) satisfies all of the constraints of P̃ except possibly the constraints x(e) ≥ w(e) for edges

e ∈ E(G)\E(G=) that are not chords. Let e be such an edge. Since e is not a chord it does

not have both endpoints in the same odd component in D. Since each component in D
is factor critical there must exist a matching M that is a maximum cardinality matching

on the union of the odd components D and such that M ∪ {e} is a valid matching of G.

120



From corollary 5.3.1 we know that M must have minimum excess with respect to x′ and

therefore also with respect to x. Hence

x(M ∪ e)− w(M ∪ e) = (x(M)− y(M)) + (x(e)− w(e)) = ε1 + (x(e)− w(e))

and since x ∈ P (ε1) this implies that x(e) ≥ w(e). Thus x ∈ P̃ (ε1) and the proof is

complete.

Applying Theorem 5.3.3 for ∆ = ν(G,w) we obtain a direct strengthening of Theo-

rem 5.1.4, where the first condition that ν(G=, y) = ν(G,w) is no longer needed. That

is, the least core of (G,w) is captured by the polynomial sized linear program P̃ as

long as leastcore(G=, y, ν(G,w)) contains an extendable allocation. To see that this is

a valid choice of ∆, note that ν(G=, y) ≤ ν(G,w) and from complementary slackness

νf (G,w) = νf (G=, y). Thus our original assumption that ν(G,w) < νf (G,w) also implies

that ν(G,w) < νf (G=, y). The result is listed below.

Corollary 5.3.4. Let (G,w) be a weighted graph with ν(G,w) < νf (G,w). Let y be

an optimal solution to DFM for (G,w) and let G= be the subgraph of G induced by the

set of edges {e ∈ E(G) : y(e) = w(e)}. Suppose that leastcore(G=, y, ν(G,w)) contain an

extendable allocation. Then

leastcore(G,w) = P̃ (ε̃1)

where P̃ is the linear program

(P̃ ) max ε

s.t. x(e) ≥ w(e) for all e ∈ E(G)\

 ⋃
D∈D(G=)

γ(D)


xi ≤ yi for all i ∈ D, D ∈ D(G=)

xi − yi = xj − yj for all i, j ∈ D, D ∈ D(G=)

x(M1) ≥ y(M1) + ε

x(V (G)) = ∆

x ≥ 0

and ẽ1 is its optimum value.
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5.4 Choice of optimal dual solution

The hypothesis of corollary 5.3.4 requires the existence of an extendable allocation in the

set leastcore(G=, y, ν(G,w)). Since this set is clearly dependent on our choice of optimal

dual solution y to DFM a natural question that arises is whether one has to check this

condition for every single possible choice of y. In this section we show that this is not the

case by proving that whether (G,w) satisfies the hypothesis is independent of our choice

of optimal dual vector y.

Let (G,w) be a weighted graph with ν(G,w) < νf (G,w) and y an optimal dual solution

to DFM . Let G= be the subgraph of G induced by the set of edges that are tight with

respect to y, and let D be the set of odd components in the Edmonds-Gallai decomposition

of G=. We say that a maximum cardinality matching of G= exposes an odd component

D ∈ D if M covers exactly |D| − 1 vertices of D. We start with the following lemma.

Lemma 5.4.1. For every D ∈ D with |D| > 1 there exists a maximum cardinality matching

M∗ of G= that exposes D, and in addition satisfies the following property:

- for all singleton components {j} ∈ D that are exposed by M∗ we have y′(j) = 0 in

any optimal dual solution y′ to DFM .

Proof. Let x be a basic fractional matching of G. Then it follows from complementary

slackness that the support of x belongs to E(G=). From Theorem 2.1.4 we have xe ∈{
0, 1

2
, 1
}
for all e ∈ E(G) and the edges

{
e ∈ E(G) : xe =

1
2

}
induce vertex disjoint odd

cycles. Let S ⊆ D be the set of singleton odd components that are covered by x. Then

by complementary slackness any singleton component {j} ∈ D\S must have y′(j) = 0 in

any optimal dual solution y′ to DFM . Since x is basic it must induce an integer matching

M on G=[S ∪ A] that covers all vertices of S. Let AS ⊆ A denote the set of vertices in A

covered by M .

Now let M∗ be any maximum cardinality matching of G= that exposes D. Suppose

that M∗ exposes some vertex i ∈ S and let f be the edge in M covering i. Let P be

the unique maximal alternating path in M ∪ M∗ that starts with edge f . Note that P

cannot end with an edge of M since this would imply the existence of a vertex in AS that is
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exposed by M∗, but since M∗ is a maximum cardinality matching it must cover all vertices

of A, and therefore AS. Hence P must end with an edge of M∗. Then the endpoint of P

cannot be in S since all vertices in S are covered by M . Hence P ends in a vertex of an

odd component D′ ∈ D\S. Now reversing the edges of M∗ along P results in a maximum

cardinality matching of G= that covers i. Since this process did not expose any vertices

of S that were already covered by M∗ and kept D exposed, we can repeat the argument

until M∗ covers every vertex of S.

The following key lemma shows that the vertices belonging to non-singleton odd com-

ponents must receive the same value in any optimal dual solution.

Lemma 5.4.2. Let D ∈ D with |D| > 1. Then for all i ∈ D we have y′(i) = y(i) for any

other optimal solutions y′ to DFM .

Proof. Let D ∈ D with |D| > 1 and let M∗ be a maximum cardinality matching of G=

that exposes D and satisfies the property of lemma 5.4.1. We show that for any vertex

i ∈ D we can use this maximum cardinality matching M∗ to obtain a maximum weight

fractional matching x whose support contains an odd cycle passing through i. To do this,

we first need to recall a result of Cornuéjols and Pulleyblank 2.1.5 that says that if H is a

factor critical graph with |H| > 1 then for any vertex i of H there exits a perfect fractional

matching on H whose support consists of disjoint edges and a single odd cycle containing

vertex i.

We obtain a fractional matching x of G= from M∗ by making the following two changes:

- replace M∗ inside D by a perfect fractional matching whose support contains an odd

cycle passing through vertex i

- for any other odd component D′ 6= D with |D′| > 1 that is exposed by M∗ replace

M∗ inside D′ by any perfect fractional matching

Then it follows by choice of M∗ that x covers every vertex j ∈ V (G=) with yj > 0. Since

all edges of G= are tight we obtain∑
e∈E(G=)

xewe = y(V (G=)) = νf (G,w)
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Hence x is a maximum weight fractional matching of (G,w) meaning that it is an optimal

solution to PFM . Then by complementary slackness all edges in the support of x, in

particular all edges of the odd cycle containing vertex i, are tight with respect to any

optimal dual solution to DFM . This fixes the values of every vertex on the odd cycle

including vertex i. Repeating this argument for every vertex of D then completes the

proof of the lemma.

We now look at what happens when we have two distinct optimal solutions to DFM , y1

and y2. For i ∈ {1, 2} we defineGi to be the subgraph of G induced by the set of edges Ei :=

{e ∈ E(G) : yi(e) = w(e)} and let Di denote the odd components in the Edmonds-Gallai

decomposition of Gi. Our goal will be to show that leastcore(G1, y1, ν(G,w)) contains

an extendable allocation if and only if leastcore(G2, y2, ν(G,w)) contains an extendable

allocation. We start with the following lemma.

Lemma 5.4.3. V (G1) = V (G2).

Proof. Suppose that i ∈ V (G1). To show that i ∈ V (G2) it suffices to find a basic solution

x to PFM whose support contains an edge incident with i since then by complementary

slackness this edge must be tight with respect to any optimal dual solution including y2.

Let x be any basic solution to PFM and assume that x does not cover i, since otherwise

there is nothing to show. Let M := {e ∈ E(G) : x(e) = 1}. By complementary slackness

we have M ⊆ E1. Let f be any edge in E1\M that covers i. Now let P be the unique

maximal M -alternating path in E1 that starts with edge f .

We first consider the case where P has odd length. Then P must end in a vertex j

exposed by M . Since x is basic, this means that either x does not cover j or the support

of x contains an odd cycle that includes vertex j. Suppose first that x does not cover j.

Then by complementary slackness we must have y1(j) = 0. Since all edges of P are in

E1, they are all tight with respect to y1, hence we can flip the edges of M along P to

obtain a fractional matching that covers i and has the same weight as x. Suppose now

that j belongs to an odd cycle C in the support of x. Let Mj be the maximum cardinality

matching on C that exposes j. We can then replace C by Mj and flip the edges of M along

P to obtain a fractional matching that covers i and has the same weight as x.
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It remains to consider the case where P has even length. Then P ends in a vertex j

that has degree one in G1. If y1(j) > 0 then we modify y1 slightly by decreasing y1 on j

and increasing y1 by the same amount on the unique neighbour of j in G1 until either y1(j)

becomes zero or some new edge becomes tight and joins G1, in which case we can extend

our path P . Note that this maintains the property that y1 is an optimal dual solution to

DFM . Hence we may assume wlog that if P has even length then it ends in a vertex j

with y1(j) = 0. Then we can once again flip the edges of M along P to obtain a fractional

matching that covers i and has the same weight as x. This completes the proof of the

lemma.

Our next lemma establishes an important connection between the odd components of

G1 and G2.

Lemma 5.4.4. Two vertices i and j belong to the same odd component in D1 if and only

if they belong to the same odd component in D2.

Proof. Let D ∈ D1 with |D| > 1 and let i ∈ D. We first show how to construct a maximum

cardinality matching of G2 that exposes i, thus proving that i must also belong to an odd

component in D2. Let M2 be a maximum cardinality matching of G2 that exposes some

arbitrary non-singleton component of D2 and satisfies the property of lemma 5.4.1. If

M2 exposes i we are done, hence assume that M2 covers i. Now let M1 be a maximum

cardinality matching of G1 that exposes D and satisfies the property of lemma 5.4.1. Since

D is factor critical we may assume wlog that i is the vertex of D that is exposed by M1.

Let P ⊆ M1 ∪ M2 be the unique maximal alternating path starting at i. Then P

must end at some vertex j that is exposed by either M1 or M2. From lemma 5.4.1 we can

conclude that either y1(j) = y2(j) = 0 or j belongs to a non-singleton component of D1 or

D2 (depending on if it is exposed by M1 or M2). But then we can apply lemma 5.4.2 to

obtain that y1(j) = y2(j). Note that from the same lemma 5.4.2 we also have y1(i) = y2(i)

since i belongs to a non-singleton components of D1.

Hence we found an alternating path P whose endpoints have the same value in y1 and

y2. In addition for every odd edge e of P we have

y1(e) ≥ y2(e) = w(e)
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since e ∈ M2 ⊆ E2 and y1 is feasible solution. Similarly for every even edge e of P we have

y2(e) ≥ y1(e) = w(e)

since e ∈ M1 ⊆ E1 and y2 is feasible solution. Then a simple inductive argument shows that

we must have y1(k) = y2(k) for all vertices k of P , meaning that P ⊆ E1 ∩ E2. But then

we can reverse the edges of M2 along P to obtain another maximum cardinality matching

of G2 that exposes i. This shows that all vertices of D belong to odd components in D2.

Now by lemma 5.4.2 we know that y1(i) = y2(i) for all i ∈ D. Hence E(D) ∈ E1 ∩E2 and

thus all vertices of D must belong to the same odd component in D2.

We then have the following lemma.

Lemma 5.4.5. An edge e is a chord of G1 if and only if e is a chord of G2.

Proof. Let e = (i, j) be a chord of G1. Then since e /∈ E(G1) we must have y1(e) > w(e).

From lemma 5.4.2 we have y1(e) = y2(e) and therefore we must have y2(e) > w(e) and

e /∈ E(G2). Moreover, from lemma 5.4.4 we know that i and j must belong to the same

odd component in D2 as well. Hence e is a chord of G2.

We can now prove our main result.

Theorem 5.4.6. Let (G,w) be a weighted graph with ν(G,w) < νf (G,w). Let y1 and y2 be

two distinct optimal solutions to DFM for (G,w) and for each i ∈ {1, 2} let Gi be the sub-

graph of G induced by the edges {e ∈ E(G) : yi(e) = w(e)}. Then leastcore(G1, y1, ν(G,w))

contains an extendable allocation if and only if leastcore(G2, y2, ν(G,w)) contains an ex-

tendable allocation.

Proof. For i ∈ {1, 2} let εi be the minimum excess of an allocation in leastcore(Gi, yi, ν(G,w)).

Suppose that x is an extendable allocation in leastcore(G1, y1, ν(G,w)). Recall from lemma

5.4.3 that V (G1) = V (G2). Now take any matching M ⊆ E2 of G2. We can decompose

the excess of M as follows

x(M)− w(M) = x(M ∩ E1)− w(M ∩ E1) + x(M\E1)− w(M\E1)
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Consider an edge e ∈ M\E1. Since M ⊆ E2 we have e ∈ E2 and therefore e cannot be a

chord of G2. Then by lemma 5.4.5 e cannot be a chord of G1 either. Since x is extendable

with respect to G1 and V (G1) = V (G2) from lemma 5.4.3 we have∑
i∈V (G2):e∈δ(i)

x(i) ≥ w(e)

from which we obtain

x(M\E1) ≥ w(M\E1)

and therefore

x(M)− w(M) ≥ x(M ∩ E1)− w(M ∩ E1) ≥ ε1.

Hence (x, ε1) is feasible for the linear program defining leastcore(G2, y2, ν(G,w)). Thus

ε2 ≤ ε1, and by a symmetric argument we can show that ε1 ≤ ε2. Hence we must have

ε1 = ε2 and therefore x ∈ leastcore(G2, y2, ν(G,w)).

It remains to show that x is extendable with respect to G2. Hence let e be an edge in

E(G)\E2 that is not a chord of G2. Then by lemma 5.4.5 e is not a chord of G1 either.

Hence the fact that x is extendable with respect to G1 and V (G1) = V (G2) implies that∑
i∈V (G2):e∈δ(i)

x(i) ≥ w(e)

so x is extendable with respect to G2.

5.5 Computing the nucleolus

In this section we show how the polynomial sized characterization of the least core given in

Theorem 5.2.3 leads to a polynomial time algorithm for computing the nucleolus. Hence

let (G,w) be a weighted graph satisfying the hypothesis of Theorem 5.2.3 so that the least

core of (G,w) is given by

leastcore(G,w) = P̃1(ε̃1)
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where P̃1 is the linear program

(P̃1) max ε

s.t. x(e) ≥ w(e) for all e ∈ E(G)\

(⋃
D∈D

γ(D)

)
xi ≤ yi for all i ∈ D, D ∈ D
xi − yi = xj − yj for all i, j ∈ D, D ∈ D
x(M1) ≥ y(M1) + ε

x(V (G)) = ν(G,w)

x ≥ 0

and ẽ1 is its optimum value.

Recall that y is an optimal solution to DFM and D is the set of odd components in the

Edmonds-Gallai decomposition of G=, the subgraph of G induced by the tight edges with

respect to y. Also M1 is a fixed maximum cardinality matching on the union of the odd

components in D. Hence

y(e) = w(e) for all e ∈ E(D), D ∈ D
y(e) ≥ w(e) for all e ∈ E(G)

For the remainder of this section we use the notation N = V (G) and ν = ν(G,w).

The contents of this section are very similar to [68] where it is shown that the polynomial

characterization of the least core of node-weighted matching games given in Theorem 5.0.9

can be used to obtain a polynomial time algorithm for computing the nucleolus. The idea

is to prove by induction that each subsequent linear program in Maschler’s scheme can

also be expressed with a polynomial number of constraints.

Recall from section 2.3.3 that the nucleolus can be obtained as the solution to the

following sequence of linear programs:

(P1) max ε

s.t. x(S) ≥ ν(S) + ε for all S 6∈ {∅, N}
x(N) = ν(N)
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with optimum value ε1. If P1(ε1) does not consist of a single point we proceed by defining

Fix P1(ε1) to be the set of coalitions that are fixed by P1(ε1)

Fix P1(ε1) := {S ⊆ N : x(S) = x′(S) for all x, x′ ∈ P1(ε1)}

And we solve the second linear program

(P2) max ε

s.t. x(S) ≥ ν(S) + ε for all S 6∈ Fix P1(ε1)

x ∈ P1(ε1)

defining in a similar way ε2 and

Fix P2(ε2) := {S ⊆ N : x(S) = x′(S) for all x, x′ ∈ P2(ε2)}

We continue in this way until we reach

(Pr) max ε

s.t. x(S) ≥ ν(S) for all S 6∈ Fix Pr−1(εr−1)

x ∈ Pr−1(εr−1)

such that Pr(εr) consists of a single point η(N, v), the nucleolus of the game.

The problem with this scheme is that each linear program Pi contains an exponential

number of constraints. By Theorem 5.2.3 we can replace P1 by the equivalent P̃1 containing

only a polynomial number of constraints, since they define the same set of optimal solution.

We now show that each Pk for k ≥ 2 can be replaced by an equivalent formulation that

contains only a polynomial number of constraints.

For k ≥ 2 we define the linear program

(P̃k) max ε

s.t. x ∈ P̃k−1(ε̃k−1)

x(e) ≤ w(e) + ε1 − ε for all e ∈
⋃
D∈D

E(D), e 6∈ Fix P̃k−1(ε̃k−1)

x(e) ≥ w(e)− ε1 + ε for all e ∈ E(G)\

(⋃
D∈D

γ(D)

)
, e 6∈ Fix P̃k−1(ε̃k−1)

xi ≥ −ε1 + ε for all i ∈ N, i /∈ Fix P̃k−1(ε̃k−1)
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with optimal value ε̃k and let

Fix P̃k(ε̃k) :=
{
S ⊆ N : x(S) = x′(S) for all x, x′ ∈ P̃k(ε̃k)

}
.

The following theorem shows that we can replace Pk by P̃k.

Theorem 5.5.1. We have εk = ε̃k and Pk(εk) = P̃k(ε̃k) for all k = 1, · · · , r.

Proof. For k = 1 the claim follows from Theorem 5.2.3. We proceed by induction on k.

Assume that εk−1 = ε̃k−1 and Pk−1(εk−1) = P̃k−1(ε̃k−1). We prove the induction step using

two lemmas.

Lemma 5.5.2. Pk(ε) ⊆ P̃k(ε) and therefore εk ≤ ε̃k.

Proof. Let x ∈ Pk(ε). Then x ∈ P1(ε1) = P̃ (ε̃1).

Let f ∈ E(G)\ (∪D∈Dγ(D)) such that f /∈ Fix P̃k−1(ε̃k−1). Choose a maximum cardi-

nality matching on the odd components M ∈ M∗
D such that M ∪ f is also matching. Such

an M always exists since each component D ∈ D is factor critical and e does not have both

endpoints in the same component of D. It follows from the definition of P̃1(ε̃1) that N(M),

the set of vertices covered by M , is fixed since all matchings in M∗
D have minimum excess.

Thus N(M) must also by fixed by P̃k−1(ε̃k−1). Since we assumed that f /∈ Fix P̃k−1(ε̃k−1)

we must have N(M ∪ f) /∈ Fix P̃k−1(ε̃k−1) as well. Thus, by the constraints in Pk we have

x(N(M ∪ f)) ≥ w(M ∪ f) + ε

and since M is fixed

x(N(M)) = w(M) + ε̃1

and hence x(f)− w(f) ≥ ε− ε̃1, satisfying the constraint in P̃k.

Next, let i ∈ N such that i /∈ Fix P̃k−1(ε̃k−1). The argument is similar. We choose a

maximum cardinality matching on the odd componentsM ∈ M∗
D. Then, by the constraints

in Pk we have

x(N(M)) + xi ≥ w(M) + ε

and since M is fixed

x(N(M)) = w(M) + ε̃1
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and hence xi ≥ ε− ε̃1 as required.

Finally, consider any edge f ∈ ∪D∈DE(D) such that f /∈ Fix P̃k−1(ε̃k−1). Choose a

maximum cardinality matching on the odd components M ∈ M∗
D such that M covers

both endpoints of f . Then since f is not fixed, neither is N(M)\N(f). Hence, by the

constraints of Pk we have

x(N(M))− x(N(f)) ≥ w(M)− w(f) + ε

and using the fact that M is fixed we obtain x(f)− w(f) ≤ ε̃1 − ε as required.

Lemma 5.5.3. P̃k(ε) ⊆ Pk(ε) and therefore ε̃k ≤ εk.

Proof. Let x ∈ P̃k(ε). Again this implies that x ∈ P1(ε1) = P̃ (ε̃1). We want to show that

x(S) ≥ ν(S) + ε

for all S ⊂ N not yet fixed by Pk−1(εk−1) = P̃k−1(ε̃k−1). Hence let S be such a set. Since

x ≥ 0 it is sufficient to show the above inequality for S = N(M) where M is a matching

of G. Further, since x(e)−w(e) ≥ 0 for all e 6∈ ∪D∈Dγ(D) for D ∈ D, we can assume that

M ∈ ∪D∈Dγ(D). Since y is a feasible solution to DFM we have

x(M)− w(M) ≥ x(M)− y(M)

And since xi − yi = xD − yD for all i ∈ D, D ∈ D by the constraints of P̃1 we obtain

x(M)− y(M) ≥
∑
D∈D

|M ∩ γ(D)|(xD − yD)

Letting kD = |M ∩ γ(D)| for all D ∈ D, it then suffices to show that∑
D∈D

kD(xD − yD) ≥ ε

Choose a matching M ′ ⊆ ∪D∈DE(D) such that |M ′ ∩ E(D)| = kD for all D ∈ D and

M ′ ⊆ M∗ for some M∗ ∈ M∗
D. Then

x(M ′)− w(M ′) =
∑
D∈D

kD(xD − yD)
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Note that we can always choose such an M ′ such that M ′ is also not fixed. Now since M∗

is fixed, M ′ is not fixed, and M ′ ⊆ M∗ we must have at least one edge f ∈ M∗\M ′ that is

not fixed. Hence by the constraints of P̃ we have

x(f)− w(f) ≤ ε1 − ε

Further, for each edge e ∈ M∗\(M ′ ∪ f) we have x(e) ≤ w(e) by the constraints in P̃1.

x(M ′)− w(M ′) = (x(M∗)− w(M∗))− (x(f)− w(f))−
∑

e∈M∗\(M ′∪f)

(x(e)− w(e))

≥ (x(M∗)− w(M∗))− (x(f)− w(f))

= ε1 − (ε1 − ε)

= ε

as required.

This completes the proof of the theorem.

Theorem 5.5.1 shows that we can replace each linear program in Maschler’s scheme by

an equivalent one containing only a polynomial number of constraints. We thus obtain the

following corollary.

Corollary 5.5.4. Let (G,w) be a weighted graph and (N, v) the corresponding matching

game. If (G,w) satisfies the hypothesis of Theorem 5.2.3 then the nucleolus of (N, v) can

be computed in polynomial time.
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Chapter 6

Conclusion

The results presented in this thesis open many avenues for future work, some of which we

present below.

• Bridging the gap between network bargaining games with general capacities and their

cooperative games counterpart, c-matching games.

We have shown that the equivalences observed in the case of unit capacities do

not extend to general capacities. In particular, our results imply that the set of

allocations corresponding to balanced solutions form a strict subset of the intersection

of the core and prekernel. A natural question is to investigate further properties of

this subset. We believe that this subset characterizes allocations with important

structural properties, and the study of these allocations can be of interest to the

cooperative games community. Since the intersection of the core and prekernel is not

always convex, it would be particularly interesting to investigate whether this subset

is better behaved. As a further point, the nucleolus is known to lie in the intersection

of the core and prekernel, provided that the core is non-empty. However, it is not

known whether the nucleolus always corresponds to a balanced outcome. Since both

the notion of the nucleolus and balanced outcomes aim to capture fair solutions,

showing that there is an equivalence is an important step that would further validate

both concepts.
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• Investigating further properties of c-matching games.

While matching games are fairly well studied, very little is known about the more

general c-matching variant. Several fundamental questions about c-matching games

are still open. As a first question one could investigate the question of whether the

nucleolus can be computed efficiently for c-matching games with non-empty core, for

example when the underlying graph is bipartite. This setting poses significantly more

challenges then that of matching games, and it is evident that there is a need for

the development of some new techniques and structural tools for solving these prob-

lems. Another interesting avenue would be the exploration of the connection between

c-matching games and many-to-many stable matchings. In the case of many-to-many

stable matchings, it is known that if the underlying graph is bipartite then stable

matchings can be computed efficiently. This indicates that a similar result should be

possible for c-matching games on bipartite graphs.

• The existence of cyclic three dimensional stable matchings.

The problem of determining whether every instance of a cyclic three dimensional

matching possess a stable solution is still open. The results of this thesis seem

to suggest that the existence an efficient algorithm for computing such solutions is

unlikely. An interesting avenue would be to approach the existence question from a

non-algorithmic perspective.

• New extensions of network games.

One can also study the network games proposed in this thesis in a dynamic and

decentralized setting, where there is no central authority for enforcing a matching

protocol and the matching platform evolves over time. Such a setting can arise in

many electronic applications, for example matching markets on the internet that

involve a large number of agents interacting in real time. Scenarios such as these call

for the design of dynamic algorithms that allow for several externalities, such as peer

effects, incomplete information, or side payments. An important question would be

to develop such algorithm that converge towards stable outcomes efficiently.
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[41] Martin Grötschel, László Lovász, and Alexander Schrijver. Geometric Algorithms and

Combinatorial Optimization, volume 2 of Algorithms and Combinatorics. Springer-

Verlag, Berlin, second edition, 1993. 35

[42] Dan Gusfield and Robert W. Irving. The Stable Marriage Problem: Structure and

Algorithms. Foundations of Computing Series. MIT Press, Cambridge, MA, 1989. 9,

10
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