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Abstract 

Low energy X-ray (< 20 keV) detection is a key technological requirement in applications such as 

protein crystallography or diffraction imaging. Silicon based optical cameras based on CCDs or 

CMOS imaging chips coupled to X-ray conversion scintillators have become a mainstay in the field.  

They are attractive because of fast readout capability and ease of integrated circuit implementation 

due to modern semiconductor fabrication technology. More recently, hydrogenated amorphous silicon 

(a-Si:H) thin film technology, that had enabled a huge influx of large area display products into the 

commercial display market, has been introduced to digital imaging in the form of active matrix flat 

panel imagers (AMFPIs). Although thin film technology can enable large area X-ray imaging at a 

potentially lower cost, the existing technology lacks spatial resolution requirements for higher 

performance crystallography and diffraction imaging applications. 

This work introduces a high resolution direct conversion silicon X-ray detector integrated with 

large area thin film silicon technology for sub-20 keV photon X-ray imagers. A prototype pixel was 

fabricated in-house using a fabrication facility (G2N) utilizing plasma enhanced chemical vapor 

deposition (PECVD), reactive ion etching (RIE), photo-lithography, and metal sputtering 

technologies. Unlike most active matrix display products, top-gate staggered a-Si:H thin film 

transistor (TFT) were implemented to take advantage of a novel thin film silicon pixel amplification 

device architecture.  

The detector performance was evaluated with an iron 55 isotope gamma ray source to mimic low 

energy X-ray exposure. I-V and C-V measurement techniques indicate that the hybrid pixel functions 

as expected and is promising for low cost, high resolution, large area X-ray imaging (< 20 keV) 

applications. We also performed a noise spectrum investigation to estimate the lowest detection signal 

level limit and proposed a model rooted in device physics for the pixel output and gain. 
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Chapter 1 
Introduction 

1.1 Digital X-ray Imaging 

Since the discovery of X-ray by German physicist, W. K. Roentgen in 1895-6, capturing X-ray intensity 

information has been performed by various types of phosphors including CsI:Ti, Gd2O2S, LaOBr, or 

Y2O2S:Tb and transferred to a photographic films with optical cameras. However, these methods suffered 

from the following difficulties: 

• Lack of data storage and prompt retrieval 

• Inability to perform image processing on raw data directly 

• Captured images required a multi-step lossy process to transfer 

• Chemical waste problems with film developing and associated environmental concerns 

• Real-time imaging was not feasible with static images 

To address these problems, X-rays went digital starting in the 1960s in the nondestructive testing 

equipment industry [1]. Later, digitization of X-ray imaging utilized charge-coupled devices (CCD) 

interfaced to scintillators where the scintillator converted the X-rays into optical signals that were 

subsequently imaged by a silicon CCD chip [2, 3].  

1.2 Detector Technologies 

1.2.1 Direct Conversion X-ray Detectors 

Direct conversion semiconductor radiation (X-ray, gamma-ray, etc.) sensors saw widespread use in 

medical, scientific, and industrial systems due to their higher resolution, high sensitivity and fast readout 

speed. Direct conversion systems eliminated the X-ray to light conversion step enabling higher resolution 

than their indirect scintillator based X-ray imager counterparts. This enabled a manufacturing cost 

reduction as well because both expensive scintillators and fiber optics to couple the scintillator to the 

CCD chip were eliminated. One of the prominent examples of a direct conversion semiconductor X-ray 

detector is the silicon drift detector (SDD) [4-6] shown in Figure 1.  

Due to the relatively low bandgap (1.1 eV) of silicon, X-ray absorption performance of silicon is 

limited to low energy photons (< 20 keV) as is the case for protein crystallography (as depicted in Figure 
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2), X-ray spectroscopy [7], medical imaging [8], and archeology [5]. SDD enabled such applications with 

lower cost, lack of liquid nitrogen cooling, small number of readout channels, low noise, and high readout 

energy resolution [9]. 

 

Figure 1 A silicon drift detector example [10]. 

 

 

Figure 2 X-ray absorption in silicon adopted from [11]. 

 

Another more recent example of the use of direct conversion silicon for X-ray imaging is the Pilatus 

detector from DectrisTM. This detector is composed of silicon X-ray detector components bump bonded to 

a very high performance ASIC photon counting circuit as depicted in Figure 3. The readout time for each 

pixel is reported to be as low as 7 ms (or alternately, a frame rate of 20 images per second) while the 

minimum capacitance of the photon detector silicon element is kept low to effectively reduce detector 
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noise. Since the silicon detector thickness defines the detector capacitance and also the maximum photon 

detection energy, Pilatus is sold with an option to obtain a silicon semiconductor thickness of 320, 450, or 

1000 µμm. Its resolution is reported to reach 487 by 197 pixels with an active area of 83.8 by 33.5 mm2 

implying a pixel pitch of 170  ×170  µμm!  while maintaining the dynamic range of 20 bits, or 1:1048573 

[12]. The pixel pitch is presumably large due to the complex circuitry needed for photon counting.  

 

  
(a) (b) 

  

Figure 3 Schematic of Pilatus from DectrisTM. (a) shows the hybrid pixel with silicon detector and 

(b) shows photon counting circuit ASIC diagram attached to each pixel. Adopted from [12]. 

 

1.2.2 Indirect Conversion X-ray Detectors 

In contrast to higher performance direct conversion detectors, the method by which X-rays are detected 

via scintillators is known as indirect conversion imaging since the conversion of X-ray signal to electronic 

charge involves an intermediate light conversion step in the scintillator. CCD or CMOS digital cameras 

are commonly used to interface to the scintillator to capture the light photons, however, it is not possible 

to efficiently capture small quantities of X-ray photons without the use of fiber optics, as depicted in 

Figure 4 (a) because of large optical losses (for example, if traditional lens based methods are used). A 

disadvantage of using a CCD camera for image capture is that CCDs can have a lower dynamic range due 

to the shallow well associated with the MOS capacitor in deep depletion [13, 14]. CMOS imagers, as 

depicted in Figure 4 (b), utilize silicon photodiodes which provides larger dynamic ranges up to 130,000 

even for pixel sizes of 25  ×25  µμm while maintaining a readout speed of 30 frames per second [15]. 
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Detector sizes of up to 20 cm by 20 cm of area can be achieved using both CCDs with optical fiber 

enhancements as well as using their CMOS counterparts. However, the price range of a scintillator, fiber 

optic coupling and CMOS backplane is somewhat larger compared to the price of TFT flat panel arrays. 

More importantly, a scintillator emits the converted photons without any particular direction and causes 

image blurring. In other words, converted photons may travel to adjacent pixel to generate a false signal. 

Even if a structured scintillator is used, the image blurring is larger than when direct conversion X-ray 

imagers are employed. 

 

  
(a) (b) 

Figure 4 (a) CCD detector and (b) CMOS detector schematics. Adopted from [15]. 

 

1.2.3 Large Area Thin Film Silicon X-ray Detectors 

The introduction of hydrogenated amorphous silicon (a-Si:H) thin film transistors (TFTs) opened up an 

opportunity for large area and low cost detectors driven by active matrix pixel driving technology [13]. 

The active matrix flat panel imager (AMFPI) was also introduced with a phosphor integrated detector, 

which reads out optically converted X-rays with photodiodes (indirect conversion) and a direct conversion 

method with amorphous selenium (a-Se), which converts the X-ray directly into electron-hole pairs to be 

read out by TFTs in the active matrix backplane as depicted in Figure 5.  

Although TFT active matrix technology introduced a cost-effective readout for large area applications, 

AMFPI still requires pricy X-ray conversion layers: scintillators and fiber optic plates for the indirect 

conversion scheme, and a high quality a-Se layer for the direct conversion method. Also, integration of an 

additional photodiode in the indirect conversion scheme requires additional process steps, which amplifies 

production cost. On the other hand, the direct conversion method suffers from reliability issues primarily 
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the crystallization of the a-Se layer, which leads to an extreme dark current (noise), and extreme care is 

required to prevent exposure from excessive heat and photons [16]. 

 

Figure 5 Two types of AMFPI detectors. Indirect (Left) and Direct (Right.) Adopted from [17]. 

 

1.3 Protein Crystallography 

1.3.1 Overview 

One of prime example of low energy (sub 20 keV) X-ray applications is protein crystallography, which 

plays a great role in molecular biology and pharmaceutical research [18]. So-called molecular medicine 

research requires investigation of molecule structures (3D structures of protein molecules) because the 

structure defines the function and characteristic of the molecule and provides insight to negate the 

functionality of any disease protein.  

The basic set up of protein crystallography is shown in Figure 7. To prepare the crystallized sample, the 

protein must be frozen using cryogenics technology. Meanwhile the X-ray beam must be narrowed with 

optical elements and the direct path to the detector needs to be blocked to ensure only diffracted spots are 

detected. Thus, the crystallography system includes not only X-ray sources and detector elements, but also 

optics for X-ray, cryogenics, and crystal mounting apparatus, as depicted in Figure 6. 

From a computational viewpoint, the X-ray beam must be monochromic to ensure protein structure re-

construction because diffracted spots (Bragg spots) change as a function of X-ray wavelength and protein 

structure. Typically, 6 to 20 keV photons (or a wavelength of 0.21 to 0.06 nm) are chosen which is close 

to the atomic distance of common protein target molecules. To obtain a complete 3D reconstructed image, 
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the Bragg spots must be obtained from various incident angles. So, the protein sample needs to be turned 

along the x, y, and z axes [19]. 

 

Figure 6 Core components of protein crystallography. 

 

 

 

Figure 7 Typical protein crystallography set up. Adopted from [20]. 
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1.3.2 Requirement of digital protein crystallography 

At first glance, the size of the detector appears a key requirement for protein crystallography since in the 

ideal case, the detector must be large enough to capture all Bragg spots effectively [19]. However, 

collecting the complete set of Bragg spots is not required because the first 100 orders of diffraction data 

are enough to rebuild the crystalline structure of sample protein. Usually, a detector size of 20 cm by 20 

cm is sufficient to cover the first 100 orders [21]. Of course, the imager size depends on the distance from 

the crystallized protein proportionally. If the detector has sufficiently high resolution, the detector size can 

be shrunk by closing the gap between the protein sample and the detector itself reducing the requirement 

on the X-ray source power. 

In some applications, the strongest Bragg spots can be as high as 1.2  ×  10! X-ray photons per pixel, 

while non-exposed pixels show almost zero counts as the Bragg spot distribution follows a Gaussian 

function [22]. Since only 0.1 % of the incident X-ray beam is scattered by the protein and prolonged 

exposure to X-ray is not preferable due to protein structure degradation, possible solutions are either 

reducing the intensity of the X-ray beam or to implement a fast readout. Because a fast readout was not 

feasible with image plate detectors, which required more than 2 to 3 seconds per exposure, the sensitivity 

of the detector became important to compensate for the reduced X-ray source intensity. However, digital 

X-ray detectors (scintillator based and direct conversion) could resolve such problems without sacrificing 

sensitivity because of fast readouts. 

The readout time depends on the kind of X-ray source used. Generally, two kinds X-ray sources are 

relevant to protein crystallography: rotating anode lower power home sources, which usually operate in 

the 6 to 10 keV range, and much higher power synchrotron sources, which have variable energy, but 

operate mostly at around 12 keV. For rotating anodes, longer signal charge integration (typically a few 

minutes [23]) is required compared to synchrotrons (a couple of seconds [23]) because the X-ray intensity 

is limited. Synchrotron provides a high intensity homogeneous beam, which produces more diffraction 

spots in a short time interval. The readout time includes the X-ray photon detection time and the detector 

element to external circuitry transfer time for converted charge. 

The sharpness of the X-ray diffraction pattern depends on the spatial resolution of the detector as well 

as the distance from the protein. Normally, 3 to 5 pixels can hold a single Bragg spot while at least five 

pixels are required to distinguish between two adjacent Bragg spots [19]. For example, if a 12 keV X-ray 

photon (wavelength around 0.1 nm) illuminates a protein crystal with a unit cell dimension of 20 nm 

while crystal-to-detector distance is 20 cm, a typical Bragg spot size would be 100 to 300  µμm. Thus, 



 

 8 

requiring pixel sizes of 50 to 200  µμm [19]. Table 1 shows one set of design consideration factors as 

applied to the existing, primarily indirect detection detectors. 

 

Table 1 Requirement of digital protein crystallography detectors. 

Parameter	
   Values	
  

Detector	
  area	
   Larger	
  than	
  20	
  cm	
  by	
  20	
  cm	
  

Dynamic	
  range	
   Larger	
  than	
  104	
  

Readout	
  time	
   Around	
  1	
  second	
  but	
  smaller	
  the	
  better.	
  

Pixel	
  size	
   Smaller	
  than	
  200	
  µμm	
  

X-­‐ray	
  energy	
   20	
  kVp	
  (rotating	
  anode)	
  or	
  12	
  keV	
  (synchrotron)	
  

Object	
  size	
   Around	
  0.18	
  nm	
  (Inter-­‐atomic	
  distance	
  of	
  protein)	
  

 

1.4 Motivation and Chapter Outlines 

Direct conversion crystalline silicon layers have the best sensitivity and spatial resolution performance 

with X-ray photons < 20 keV.  Crystalline silicon is one of most widely produced materials due to the 

emergence of the high volume semiconductor industry since 1980s. Thus, they can be provided with at a 

lower cost than a comparable scintillator and with much higher reliability than a direct conversion a-Se 

layers. Silicon wafers currently processed can reach up to 12” (or 300-mm-diameter) in size. If a silicon 

X-ray conversion layer can be integrated with large area low cost thin film silicon readout, a low cost, 

high resolution and high sensitivity solution can be realized for low energy X-ray detection applications 

such as protein crystallography.  

Today, large area direct conversion silicon X-ray detectors are already in production but require a 

process of tiling and bump bonding, which is both expensive and poses yield issues when performed over 

a large area.  Photon counting detectors for protein crystallography such as the Pilatus by DectrisTM 

employ small four side buttable silicon photon counting pixel arrays bump bonded to high resistivity 

silicon detectors with a selling price ranging from $150k for a modest sized 1” square imager to around 

$1M for full-sized large area devices. 
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In addition, indirect detection thin film amorphous silicon based digital X-ray devices using scintillators 

suffer from degraded spatial resolution due to the indirect conversion process as well as lower signal 

levels due to the reduced conversion gains of the scintillator at low energies (as compared to direct 

conversion crystalline silicon). Amorphous selenium based direct conversion devices integrated with 

amorphous silicon TFTs offer yet a third alternative that can offer a credible challenge to the higher 

spatial resolution of direct conversion silicon, however, the selenium detectors have lower conversion 

gains and are temperature sensitive leading to a tradeoff between manufacturing cost and reliability. 

This work implements high resistivity crystalline silicon as a direct conversion X-ray to electron-hole 

pair converter. The resulting signal is read out using a low-cost, large area capable device: a-Si:H TFTs. 

Because it is not economical to deposit thick high quality crystalline silicon (where sufficient thickness is 

required to absorb most of the impinging X-rays) on top of typical TFT devices which are deposited on 

glass, we propose a novel approach where the a-Si:H TFT readout element is deposited on top of the 

detector element (crystalline silicon) In Table 2, the benefits of the proposed approach are contrasted with 

the approaches taken currently by various imager manufacturers operating in the protein crystallography 

markets. Note that the key advantage of our approach is that it offers the best spatial resolution while 

maintaining the same signal to noise ratio as its indirect detection CMOS and CCD counterparts. Thus, in 

principle, our detector could (1) be moved closer to the protein sample, thus enabling a reduction in the X-

ray source power necessary to get a quality image which would enable home X-ray sources to complete 

tasks that are normally the domain of synchrotron sources and (2) investigate new materials that require 

the higher spatial resolution because of unique molecular structures not visible using traditional imagers. 

Although the dynamic range of our detector is considerably lower than its counterparts, the smaller pixel 

size would see a reduced number of photons as compared to a larger sized pixel (assuming the photon 

fluence is the same for both designs). Here, a 25um pixel would see 64X less incident photons than a 

200um pixel counterpart.  Moreover, real-time readout can enable an artificial increase in dynamic range, 

for example, by constantly reading out the detector and summing the frames to obtain the final image. 

In Chapter 2, following a brief introduction to thin film silicon transistor operation physics, the novel 

pixel architecture integrating a crystalline silicon detector with an a-Si:H TFT readout circuit is 

introduced along with its operation principle, basic device physics and initial simulation results. Two 

pixel device designs are discussed: one adapted from previous work and a new higher performance design 

involving a passivation layer to isolate the silicon X-ray conversion layer from the TFT. In chapter 3, 

following a brief introduction to TFT fabrication processes, the fabrication process developed for the two 
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pixel designs is presented. The development and characterization steps for each layer employed in the 

pixel design are discussed along with each process step and condition. In Chapter 4, measurements and 

discussion on multiple aspects of the pixel designs are provided. These range from basic device operation 

via I-V sweeps, thin film silicon metastability, and electronic noise characterizations.  In addition, 

measurements on the pixel architecture using an iron 55 isotope source which emits 5.89 keV of energy 

X-ray photons were taken to verify that the device functions adequately for its intended use with X-rays. 

In Chapter 5, concluding remarks and the contributions of this work are summarized. The appendices 

contain fabrication process mask layouts and Medici code for the semiconductor device 

simulator.  
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Table 2 Comparison of various X-ray detectors for low energy (~ 6 keV) X-ray photon detection. 

Parameters	
   Pilatus	
   Indirect	
  CMOS	
   AMFPI	
  a-­‐Se	
  
a-­‐Si:H-­‐c-­‐Si	
  Hybrid	
  

(Estimated)	
  

Pixel	
  Size	
  
170	
  µμm	
  

(down	
  to	
  75	
  µμm)	
  

50	
  µμm	
  

(Indirect)	
  
70	
  µμm	
  

25	
  µμm	
  

(direct)	
  

Detector	
  Size	
  
83.8  ×33.5  𝑚𝑚!	
  

(four	
  side	
  tileable)	
  

75  ×150  𝑚𝑚!	
  

(three	
  side	
  tileable)	
  
430  ×350  𝑚𝑚!	
  

212  ×212  𝑚𝑚!	
  

(Square	
  area	
  of	
  12”	
  

Wafer)	
  

EHP	
  

conversion	
  

(6  𝑘𝑒𝑉 𝑊±)	
  

1667	
  

(c-­‐Si)	
  

167	
  

(CsI:Ti)	
  

125	
  

(a-­‐Se)	
  

1667	
  

(c-­‐Si)	
  

Readout	
  

Noise	
  
Negligible	
   <	
  150	
  electrons	
   <	
  1500	
  electrons	
   <	
  1500	
  electrons	
  

SNR	
  	
   Photon	
  counting	
  	
   ~	
  1	
   0.08	
   ~	
  1	
  

Dynamic	
  

Range	
  	
  

(6keV	
  

photons)	
  

1:1,048,573	
  
1:61,750 

(0.5	
  pF	
  cap)	
  

1:120,000	
  

(1	
  pF	
  cap)	
  

1:3600	
  

(0.03	
  pF	
  cap)	
  

Readout	
  

Speed	
  
20	
  FPS	
  at	
  max	
   30	
  FPS	
  at	
  max	
   30	
  FPS	
   30	
  FPS	
  

Price	
  per	
  

Detector	
  Size	
  

($/𝑚𝑚!)	
  

51.96	
   2.00	
   0.66	
   0.66	
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Chapter 2  
Hybrid Detector Operation Schema 

2.1 Thin Film Transistors  

2.1.1 Hydrogenated Amorphous Silicon (a-Si:H) 

Figure 8 indicates the atomic bonding structure of a-Si:H in a two-dimensional illustration and is 

compared to a typical crystalline silicon structure. Figure 8 (a) illustrates the chaotic bonding structure of 

a-Si:H with a few dangling bonds filled up with hydrogen atoms (bright color.) Such bonding structure is 

generated from a low temperature (~ 300 oC) plasma enhanced chemical vapor deposition (PECVD) 

method where the atomic bonding cannot be controlled separately. However, such low temperature and 

the use of PECVD enables the fabrication of electronics in a large area format on cheaper alternate 

substrates, including glass, in an economical manner. 

 

 
 

(a) (b) 

Figure 8 Two dimensional illustrations on atomic bonding for (a) amorphous silicon and (b) 

crystalline silicon. 

 

The disorder of the atomic structure illustrates a lot of additional trap states compared to the crystalline 

silicon layer. The missing atoms at dangling bonds can be interpreted as deep states, depicted in Figure 9, 
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and the disfigured and irregular atomic bonding leads to tail states where mobility edges need to be 

defined due to lack of distinct conduction and valence bands [24, 25]. The density of deep defect states in 

a-Si:H is in the range of 1015 – 1018 cm-3eV-1, which is largely dependent on PECVD conditions. 

Meanwhile, atomic hydrogen (which can be supplied either from a SiH4 precursor or additional hydrogen 

dilution) passivates a few dangling bonds to reduce the deep defect states [26]. 

 

Figure 9 Typical distribution of density of states in hydrogenated amorphous silicon. 

Although decreased by hydrogen passivation, such a large deep defect density cannot be ignored in terms 

of transistor performance. A typical a-Si:H based transistor shows field effect mobility of 0.1 - 1 𝑐𝑚! 𝑉 ∙

𝑠, which is dramatically lower than the typical field effect mobility of a crystalline silicon based 

MOSFETs (~ 400  𝑐𝑚!/𝑉 ∙ 𝑠) or even polysilicon thin film transistors (~ 200  𝑐𝑚!/𝑉 ∙ 𝑠). Such low field 

effect mobility also stems from massive distribution of the band tail states; thus, resulting in frequent 

trapping of electrons and holes during transport, which leads to extremely low field effect mobility. 

However, even faced with such challenges, a-Si:H TFTs are a proven technology capable of driving liquid 

crystal displays and commercially dominate the current flat panel display market [27]. 

The chaotic alignment of a-Si:H’s atomic structure also leads to current drain over time due to threshold 

voltage increase over time. Carriers propagating through the a-Si:H constantly experience trapping and 
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de-trapping, inducing more deep states in the a-Si:H channel, resulting in Fermi energy distortion 

(pushing away from the conduction edge) on the process [26]. This constant creation of states especially 

under device operation leads to a well-known bias stress induced threshold voltage shift that was first 

modeled by M. J. Powell [28]: 

Equation 1 

∆𝑉!!.!"!# 𝑡 = 𝐴(𝑉!" − 𝑉!!!)∝(𝑡)! 

where, 𝑉!" is a gate bias, 𝑉!!! is the threshold voltage before metastability shift, and 𝐴, ∝, and 𝛽 are 

temperature dependent fitting parameters (obtained empirically) when the electrical stress was applied for 

a time 𝑡.  

However, the threshold voltage shift due to electrical bias stress can be reversed by simply applying a 

reverse bias (again, electrical stress) [29]. Thus, inserting a reverse bias cycle when the TFTs are 

operating in a constant cycle is usually sufficient to avoid long term performance degradation especially 

in display applications. However, if the application does not require a constant cycle of operation and 

mandates a constant bias stress, such as logic circuits, the feasibility of a-Si:H transistors remains 

questionable.  

 

2.1.2 TFT Structures 

Thin film transistors can be manufactured in various configurations, which are determined by gate 

electrode and source-drain electrode arrangements. Generally, we assume four types of arrangements can 

be made as illustrated in Figure 10. Top gate structures can be found in Figure 10 (a) and (b) where the 

channel material is deposited prior to the gate dielectric, while the opposite deposition profile results in 

bottom gate structures as shown in Figure 10 (c) and (d).  

On the other hand, gate electrode and source-drain electrodes are placed across the channel and 

dielectric layer, or staggered, as seen in Figure 10 (a) and (c). Such is a common structure for a-Si:H TFTs 

and nanocrystalline silicon TFTs because the channel layers provide additional space to decrease the 

electric field at the drain area, which prevents excessive off-state leakage. Furthermore, we can reduce 

process complexity with staggered structures because they only require two masks for TFT formation 

[30], while additional mask to open contact holes for source and drain electrodes are required for co-

planar devices as depicted in Figure 10 (b) and (d).  
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In fact, a co-planar top gate structure is quite common in MOSFET and polycrystalline silicon TFTs 

because their contact layers can be prepared with ion implantation and the requirements of contact quality 

is higher than that of a-Si:H TFTs due to transconductance degradation issues. However, such processes 

require a post-annealing step to activate the dopants. This increases the production complexity even 

further beyond the additional contact hole mask. Therefore, to implement cost-effective large area 

applications, the staggered structure is preferred.  

 

  

(a) (b) 

  

(c) (d) 

Figure 10 Four types of a-Si:H TFT structures. 

 

In this work, we decided to implement our device readout of X-ray signals with a top-gate staggered 

structure (Figure 10 (a)) to reduce production complexity and subsequently cost. An inverted-staggered 

structure (or bottom gate staggered structure, Figure 10 (c)) was not selected because source and drain 

contact etch-selectivity is hard to control due to the contact layers being a-Si:H based materials. If the 

etch-selectivity problems are mitigated using a full wet etch process [31], the mask requirements and 

process complexity is still higher than that of a top-gate staggered TFT process. In contrast, a staggered-

top gate structure can be fabricated with only two masks. It requires only one alignment step to finish the 

pixel and achieve a complete active-matrix TFT array, a remarkable achievement which simplifies the 

TFT fabrication process dramatically and improves reliability.  Moreover, in contrast to a bottom gate 



 

 16 

device, a top gate device is naturally suited to have a second gate on the bottom of the active 

semiconductor layer, a key requirement for operating the silicon X-ray sensitive layer which being the 

substrate, is naturally beneath the top gate TFT structure.  

One drawback of the staggered-top gate structure is the crosstalk problem because the active layer (a-

Si:H channel layer) spans through the entire array. However, we can avert this problem by allowing small 

gate overlaps for source and drain electrodes and etching the active layer and dielectric together, using the 

gate electrode as a mask. The process will be reviewed in detail in Chapter 3. 

2.1.3 a-Si:H TFT Operation Physics 

 

 

Figure 11 Illustration of top gate staggered thin film transistor. 

 

In short, the a-Si:H TFT operation and current-voltage (I-V) relationship is very similar to MOSFET’s. 

The major difference is that we consider the mobility edges, depicted in Figure 9, to be the conduction 

and valence band edges, and the extreme amount of defect density of states in these tail states leads to a 

device best suited for accumulation mode operation. Due to the extreme amount of trap states, the 

threshold voltage required to cause inversion is much higher than that of MOSFETs, and the hole mobility 

is 1/10 the level of electrons in a-Si:H [26]. Thus, even though inversion can be theoretically achieved 

with high threshold voltage, the performance of TFT cannot reach that of electron accumulation channel 

and the large gate voltages necessary can cause stress on the gate dielectric.  
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Figure 11 illustrates the operation schema of a top gate staggered a-Si:H TFT. Because an intrinsic a-

Si:H is slightly N-type [26], we can consider the device as an accumulation mode N-type MOSFET. Thus, 

gate and drain bias can be applied positive while source remains at ground. The positive bias at the gate 

attracts free electrons in the a-Si:H to induce an electron channel at the interface between the a-Si:H and 

the gate dielectric (mostly a-SiNx:H). When the drain is also biased positively, the electron channel 

conducts in the way illustrated in Figure 12.   

 

 

Figure 12 One-dimensional illustration of electron conduction in a-Si:H. 

The accumulated electron channel conduction is limited by massive amounts of deep trap states and band 

tail states, resulting in lower effective mobility than crystalline silicon MOSFETs. Here, electrons will 

confront a chain of trapping and detrapping mechanics constantly which can be modelled thusly: 

Equation 2 

𝜇!" = 𝜇!
𝜏!"##

𝜏!"## + 𝜏!"#$$%&
 

𝜇! indicates the band mobility without trapping-detrapping mechanisms, 𝜏!"## and 𝜏!"#$$%& are the time 

intervals that electrons are free and trapped, respectively [26]. Because 𝜏!"#$$%& is longer than free time 

and if the trapped location is a band tail state, then they are called band tail electrons. 

Figure 13 shows a typical transfer characteristic of an a-Si:H TFT. Three distinct operation regions can 

be distinguished: off-state, sub-threshold, and on-state. For small gate biases, the Fermi level lies in the 

deep defect states (refer to Figure 9) and the energy bands are close to the flat-band condition. As the gate 

bias increases (positive bias), band bending close to the gate dielectric interface occurs. In other words, 

the Fermi-level moves up through the deep defect states towards the band tail states [32, 33]. Thus, the 

threshold voltage of a-Si:H is a function of the density of deep defect states as derived in [24]. 
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Equation 3 

𝑉!! = 𝑞𝑁!𝑡!(𝐸! − 𝐸!)/𝐶!"#$ 

where 𝐸! − 𝐸! is the energy difference between the Fermi level and the intrinsic level at the threshold, 𝑁! 

is the density of deep defect states, 𝑡! and 𝐶!"#$ are the thicknesses of the channel layer and the gate 

capacitance per unit area, respectively. It should be noted that Equation 3 is derived with an assumption of 

uniformly distributed deep defect states in the energy gap. 

 

Figure 13 A typical I-V curve of an a-Si:H TFT. 

When the gate bias (𝑉!") exceeds the threshold voltage (𝑉!!), on-state, we can use FET equations to 

characterize the transfer characteristic. Thus, we can define linear and saturation with comparing 

𝑉!" − 𝑉!! and drain bias (𝑉!".) Thus, if we take linear region, 𝑉!! ≤ 𝑉!" − 𝑉!!, the drain-source current 

(𝐼!") can be described as [27]: 

Equation 4 

𝐼!" = 𝜇!"𝐶!"#$
𝑊
𝐿

𝑉!" − 𝑉!! 𝑉!" −
𝑉!!!

2
 

W and L are TFT gate width and length, respectively. 
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When 𝑉!" = 𝑉!" − 𝑉!!, the accumulation channel is pinched off near the drain terminal as depicted in 

Figure 11 and drain current saturates to be independent of drain bias (𝑉!"). For, 𝑉!" > 𝑉!" − 𝑉!!, the 

TFT enters saturation regime and the output characteristic can be given by: 

Equation 5 

𝐼!" = 𝜇!"𝐶!"#$
𝑊
2𝐿

𝑉!" − 𝑉!! ! 

Therefore, field effect mobility (𝜇!") and threshold voltage (𝑉!!) can be extracted from experimentally 

obtained I-V curves by using Equation 4 and Equation 5 depending on the regime of operation. 

The off-state characteristic mainly depends on ohmic conductivity of the active layer [28] [33]. When 

negative gate bias is applied, the Fermi level is pushed down to the deep trap states, resulting in a 

depletion of the band tail states and the effective conductivity of the a-Si:H layer decreases.  

However, Figure 13 depicts increasing drain current when the gate bias is negative. In other words, 

trap-assisted mechanisms may occur in the negatively biased a-Si:H region and intensify with increasing 

negative gate bias. Especially at the overlap region at the gate-drain electrodes, the gate bias and drain 

bias are applied additively leading to very high electric fields to encourage trapped electrons to travel by 

emission mechanisms, including Poole-Frenkel (thermionic emission) conduction [34, 35]: 

Equation 6 

𝐼!" = 𝐼!"!𝑒 ! !!  

where 𝐸 𝐸! is the normalized electric field. Therefore, the Poole-Frenkel current (𝐼!") increases 

exponentially with the electric field in the gate-drain overlap region at the reverse gate bias condition. The 

off-state current is a combination of drain-source ohmic current and the Poole-Frenkel current due to 

excessive negative gate bias. In other words, the off-current is affected by the gate-drain voltage 

difference, preventing additional leakage routes between the drain-source. 
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2.2 Direct Contact Detector 

2.2.1 Operation Principle 

 

Figure 14 Schematic of a-Si:H-silicon direct contact detector. 

The direct contact detector is a combination of an intrinsic crystalline silicon bulk photodiode and a 

staggered top gate a-Si:H TFT. As depicted in Figure 14, the a-Si:H TFT is deposited on top of a 

crystalline silicon substrate that forms part of the photodiode. The bottom side of the crystalline silicon 

substrate is passivated with an additional a-Si:H layer to reduce dark current and a doped diode contact 

called the bulk electrode.  

The crystalline silicon layer provides a direct conversion X-ray to electron-hole pair converter that 

operates normally under reverse bias (i.e. when a positive voltage is applied to the bulk electrode). The a-

Si:H blocking layer is deposited to reduce leakage currents when the silicon diode is placed under reverse 

bias. Indeed, the TFT side will be positively biased (i.e. the gate and drain electrodes) while the source 

electrode is tied with ground; thus, resulting in a back to back bias for the entire system. The n+ contacts 

at the TFT source and drain contacts provide additional depletion regions to temporarily store the photo-

generated carriers. For our device with positive bias voltages on the gate, drain and bulk electrodes and 

the source electrode grounded, holes will reside at the potential minimum of the depletion well created as 

depicted in Figure 15.  
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The stored carriers, holes, provide an additional gate bias from the bottom side, which alters the channel 

conductivity at the a-Si:H and crystalline silicon bulk interface. Thus, the TFT transfer characteristic 

equation can be adapted to include this effect as follows: 

Equation 7 

𝐼!" = 𝜇!"𝐶!"#$
𝑊
𝐿

𝑉!" + 𝑉!" − 𝑉!! 𝑉!" −
𝑉!"!

2
 

where 𝑉!"  represents the induced gate bias resulting from the X-ray photon generated charge in the 

crystalline silicon substrate, also depicted in Figure 15 as the hole cloud. 

 

 

Figure 15 Quasi-Fermi level distribution in the crystalline silicon substrate. The dotted line 

indicates a-Si:H TFT-crystalline silicon interface. 

The induced gate bias can be estimated as the following: 

Equation 8 

𝑉!" =
𝑄!!!"#
𝐶!

 

where 𝑄!!!"# is the X-ray photon-generated charge stored at the potential minimum and 𝐶! is the 

capacitance per unit area of the intrinsic silicon substrate induced by the TFT gate bias: 𝐶! = 𝜖!" 𝑡!". 
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Thus, the thicker the substrate, the larger induced voltage because the capacitance is smaller. Therefore, 

we can predict the induced current by absorbed X-ray photons using the following equation: 

Equation 9 

∆𝐼!" = 𝜇!"𝐶!"#$
𝑊
𝐿
𝑉!"𝑉!" 

Initial work on this pixel architecture using a bipolar TFT device with  𝑊 𝐿 =
1  𝑚𝑚

1  𝑚𝑚 was first 

reported by Kai Wang and Karim S. Karim[36]. However, this device lacked n+ contacts to prevent off-

state conduction at the top gate side and the direct contact for source and drain electrodes to the crystalline 

silicon bulk created an additional off-state current path through the silicon substrate, lowering the TFT’s 

on/off current ratio dramatically. While functional at the pixel level, the high leakage makes the device 

unusable for a large area active matrix array application such as for protein crystallography. The 

performance of this direct contact detector will be elaborated on in a later chapter. 

2.3 Silicon Dioxide Passivated Detector 

 

Figure 16 Revised hybrid detector with silicon dioxide blocking layer. 

To prevent parasitic off-state current through the crystalline silicon bulk, a thermally grown silicon 

dioxide layer is implemented as a blocking layer and serve as the dielectric for secondary gate associated 
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with the X-ray photon-generated charge. The detector operation bias voltages stay similar to that of the 

direct contact detector. However, due to the passivation layer, the detector capacitance increases 

marginally. As seen in Figure 17, the energy increases throughout the crystalline silicon layer, resulting 

the X-ray generated holes concentrated at the silicon dioxide-crystalline silicon interface. Thus, the 

capacitance of a detector is simply determined by the silicon dioxide itself which is usually 1000 times 

thinner than the crystalline silicon detector itself. For in-house fabricated device, the silicon dioxide was 

300-nm-thick, while the crystalline silicon was 380 µm-thick.  

 

 

Figure 17 Quasi-Fermi level distribution in the silicon substrate. 

 

Of course, the X-ray generated electrons will be extracted through the bulk diode contact since the electric 

field within the crystalline silicon detector is constant. Furthermore, the improved capacitance of the 

detector provides better in-pixel amplification since the larger capacitance provides more hole 

concentration in a given bulk diode bias voltage at the pixel area. In other words, the ‘virtual gate’ TFT in 

the silicon dioxide passivated detector has better performance than the direct contact detector. However, 

due to the cost to grow the silicon dioxide with thermal process, a slight increase in the price per unit area 

is inevitable. On the bright side, the silicon dioxide process is a common process in current industry 

standard. Thus, the increase in manufacture price will not affect as a critical factor for the overall unit 

price. 
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2.3.1 Energy Distribution Investigation with TCAD 

  

(a) (b) 

Figure 18 (a) Energy distribution in the direct contact detector (in the crystalline silicon substrate) 

and (b) hole concentration under back to back bias condition. 

 

  

(a) (b) 

Figure 19 (a) Energy distribution in the silicon dioxide passivated detector (in the crystalline silicon 

substrate) and (b) hole concentration under back to back condition. 
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Energy distribution in the crystalline silicon detector under back-to-back bias was verified with a 

Synopsys MEDICI TCAD (Technology Computer Aided Design)1 simulation tool. The simulation was 

performed to ensure the feasibility of operation principle which was discussed in previous chapter. As 

described in earlier sections, hole concentration in a direct contact detector is concentrated in the 

crystalline silicon bulk, away from the amorphous silicon TFT (Figure 18), while the majority of holes are 

concentrated in the vicinity of the silicon dioxide and crystalline silicon interface in the passivated 

detector (see Figure 19). Basically, Figure 18 and Figure 19 are transposed (rotated 90 degrees in counter-

clockwise direction) versions of Figure 15 and Figure 17, respectively.  

However, simulation results cannot be trusted entirely because trap distribution of a-Si:H and a-SiNx:H 

layers was not accurately extracted from fabricated samples. In fact, the trap distribution used was that 

given in the simulator’s default as provided by the MEDICI 2007 manual. These values are provided in 

the appendix section at the end of the thesis.  

 

 

2.3.2 Readout and In-pixel Amplification 

The pixel readout architecture is based on an active pixel sensor design, but it lacks a read transistor 

switch because the a-Si:H TFT itself is a switch and signal amplifier. Here, the switching function is 

controlled by the gate electrode bias while the X-ray photon-generated charge stored in the silicon 

substrate acts as additional gate bias resulting in an amplification effect in the transistor current. To the 

best of our knowledge, this is the first report of a single TFT active pixel sensor readout circuit as 

depicted in Figure 20.  

The readout operation consists of three phases: reset, integration, and readout (as shown in Table 3). 

The reset phase is dedicated for clearing out accumulated photo-generated charges in the silicon substrate 

where a negative bias is applied to the bulk electrode while the source electrode remains at ground level. 

The photo-generated charge is evacuated through the forward biased P-N diode (𝑉!"#) and the charge 

stored in the column amplifier’s capacitance, Cread, is neutralized by closing the reset switch without 

reading out any signal from the pixel TFT. 

 

                                                        
1 TCAD is a computer aided design tool which simulates device characteristics and fabrication process.  
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Figure 20 Expected implementation of the hybrid detector readout. 

 

Table 3 Hybrid detector readout schema.  

Signal	
   Reset	
  Phase	
   Integration	
   Readout	
  

VGS	
   Low	
   Low	
   High	
  

VDS	
   Low	
   Low	
   High	
  

VBLK	
   Negative	
  Bias	
   Positive	
  Bias	
   Positive	
  Bias	
  

 

The integration phase is dedicated to accumulating and storing X-ray generated charge in the silicon 

detector capacitance. Thus, VBLK must be such that the PN diode is under reverse bias and able to 

accumulate charge. The TFT’s gate, drain and source electrodes are held at low potential to minimize 

metastability related changes.  

In the Readout phase, both VGS and VDS are turned on and enable the TFT’s IDS to charge up the column 

amplifier’s readout capacitance (𝐶!"#$). Note that the IDS is a function of both the applied gate bias VGS 

and the X-ray generated charge on the TFT’s second gate. The amplification (pixel charge gain, 𝐺!) of the 
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single TFT active pixel can be described as a function of TFT transconductance (𝑔!) and the duration of 

Readout phase (𝑇!) [37]:  

Equation 10 

𝐺! =
𝑔!𝑇!
𝐶!"#

 

The pixel capacitance can be determined as 𝐶!"# = 𝑊𝐿𝐶!. Thus, the readout gain is dependent on the 

TFT performance (𝑔!), the readout time (𝑇!) and, most importantly, the detector capacitance, CPix. 

Additionally, the TFT needs to be operated under linear bias to avoid detrimental effects from threshold 

voltage change and 𝑔! dependence of the gate bias [38]. It is obvious that transconductance remains a 

constant when the transistor is operated in the linear region because the output current (𝐼!") increase is 

proportional to the input voltage (𝑉!"). Any effects of inadvertent threshold voltage shifts are minimal 

because the channel is connecting a source to drain path.  

 

Figure 21 Array readout scheme of the 1T-APS pixel for the hybrid detector. 

 

The detector can be laid out and operated as an active matrix array since only two ports are required for a 

pixel to operate. The drain electrode can be hooked at a common voltage source while gate bias was 

provided with a row and the readout at source electrode can be read out as a column. Only difference 

against a passive pixel sensor is the drain electrode which will be connected to a voltage source, instead of 
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a detector pixel capacitance. Of course, the bulk diode contact is provided by a single electrode which 

spans entire detector array at the other side of the wafer, isolated from the readout electronics. Figure 21 

illustrates the active matrix array readout for the 1T-APS detector. 

  



 

 29 

Chapter 3 
Detector Fabrication 

3.1 Overview 

Both the direct contact and silicon dioxide passivated hybrid detectors were fabricated in-house using a 

process comprising only two lithography steps. The process is relatively simple and does not require a 

negative mask forvia openings as is typically used in TFT fabrication. The detector electrodes were 

deposited by a sputtering process using an Edwards sputtering system.The a-Si:H, hydrogenated 

amorphous silicon nitride (a-SiNx:H), and n+ doped a-Si:H films were deposited using a Plasma 

Enhanced Chemical Vapor Deposition (PECVD) process. These depositions were done using a PECVD 

cluster tool (multi-chamber system) developed by MVSystems Inc.(refer to Figure 22). 

 

Figure 22 Schematic of the MVSystems multi-chamber PECVD system. 

The multi-chamber system is advantageous in film quality and process control over single chamber 

systems, however their installation and maintenance budget requirements are much higher than simple 

systems. Because each chamber is dedicated to a certain type of film deposition, integrating different 
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process steps is easily accomplished with cluster tools. The in-house tool, depicted in Figure 22, has the 

chamber assignments shown in Table 4.  

 

Table 4 Chamber assignment of in-house cluster PECVD facility. 

LL	
   PL2	
   PL3	
   PL4	
   PL5	
   PL7	
  
ITZ	
  

(Robot	
  arm)	
  

Load/Unload	
  
Substrates	
  

Intrinsic	
  
silicon	
  

materials	
  

Doped	
  
silicon	
  

materials	
  

Gate	
  
dielectric	
  
materials	
  

ITO,	
  metal	
  
oxide	
  

deposition	
  

Laser	
  
ablation	
  

Junction	
  for	
  
other	
  

chambers	
  

 

 

Figure 23 Temperature calibration data of the in-house cluster tool [39]. 

 

The substrates onto which the films are deposited are moved around by riding a robotic arm installed in 

the Interchamber Transfer Zone (ITZ). Therefore, direct contact with the heater element in each chamber 

is impossible. This leads to a difference between the heater element temperature setting at the control 

panel and the actual substrate temperature.  A thermocouple is installed on top of each chamber for 
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detection of the chamber temperature. Figure 23 shows the thermal calibration data between the set 

temperature and the substrate temperature. The process temperature that appear in this thesis are the set 

values and can be converted to actual substrate temperature using the calibration curve in Figure 23. 

 

3.2 Plasma Enhanced Chemical Vapor Deposition 

Various plasma-assisted deposition methods, including radio frequency PECVD, direct current PECVD, 

very-high frequency PECVD (VHF-PECVD), and electron cyclotron resonance (ECR)-CVD, for silicon- 

based thin films have been reported since the 1960s [40-42]. Among them, the 13.56 MHz RF PECVD 

process has been the industrial standard for thin film transistor (a-Si:H and nc-Si:H) fabrication. 

A typical RF-PECVD reactor comprises of two parallel electrodes in a vacuum chamber with gas inlet 

and outlet ports, each connected toa mass flow controller and pump. The electrodes are biased with an RF 

generator with a frequency of 13.56 MHz in most cases (as illustrated in Figure 24). Additionally, 

PECVD chambers are typically equipped with a heating element to heat up the chamber. The deposition 

takes place inside the chamber where the plasma is ignited between the two parallel plates.  

In the plasma state, the mobility of electrons is much higher than positive ions due to the smaller mass 

of electrons (an electron’s mass is 5 times that of  a proton[42]). Because the electrical force applied to 

both carriers is the same, the difference in mass of particles results in a difference in mobility. Such large 

differences generate unbalanced sinusoidal waves, as shown in Figure 25. The excess electrons result in a  

DC component in the plasma current, which is blocked by the capacitor shown in Figure 24. The voltage 

bias that appears across the blocking capacitor is known as the self-bias voltage. 

The space between the parallel electrodes consists of three major regions: the plasma itself (electrically 

neutral,) the RF electrode sheath, and the ground electrode sheath, as illustrated in Figure 26. Here, 𝑉!", 

𝑉!, and 𝑉! represent the self-bias voltage, sheath potential, and plasma potential, respectively. The plasma 

potential is always positive and considered as a reference potential, while the potential at the powered 

electrode ends up as the self-bias voltage. The sheath potential is the potential difference between the 

plasma and the powered electrode (𝑉! − 𝑉!" =   𝑉!). Thus, ions tend to accelerate at the sheath region 

towards the electrodes, due to the high electric field at the sheath region, resulting in ion bombardment. 

Because the sheath region electric field (the slope of the potential distribution in Figure 26) is above the 

ground electrode, one can avoid ion bombardment by placing the substrate close to the ground electrode. 
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Figure 24 Schematic diagram of a typical RF-PECVD reactor. 

 

Figure 25 Static current-voltage (I-V) characteristics of a plasma (adopted from[40].) 



 

 33 

 

 

Figure 26 Time-average potential distribution in a plasma reactor (modified from [40, 42].) 

 

The deposition process requires various gas precursors (such as SiH4 for silicon based materials) 

to be physically disassembled by the electric bias of the RF plasma. The specific growth mechanism of 

any deposited film is very difficult to determine since the dominant reactions in a PECVD process can 

come from a large number of possibilities. For example, the plasma reactions for the SiH4 precursor for a-

Si:H deposition are [26]: 

Equation 11 

𝑒! + 𝑆𝑖𝐻! 𝑆𝑖𝐻! + 𝐻! + 𝑒! 2.2  𝑒𝑉 

𝑒! + 𝑆𝑖𝐻! 𝑆𝑖𝐻! + 𝐻 + 𝑒! 4.0  𝑒𝑉 

𝑒! + 𝑆𝑖𝐻! 𝑆𝑖 + 2𝐻! + 𝑒! 4.2  𝑒𝑉. 
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The electrons on the left hand side in Equation 11 indicate the electrons generated between the RF biased 

parallel plates. The radicals and ions collide with each other, or the precursor itself (SiH4), before reaching 

the substrate, causing additional reactions. Amongst various radicals, SiH3 survives for the longest period 

and becomes a controlling factor in the a-Si:H deposition process. Meanwhile, they also combine 

themselves, resulting in the formation of large SinHm molecules (or powders) in the reaction chamber, 

which can pull down the uniformity and mechanical integrity of the a-Si:H film.  

Since the exact growth mechanisms for film growth are not known, the film growth parameters 

are described using the processing conditions, such as gas pressure, reactor temperature, dilution ratio, RF 

power density, and gas flow rate. The role of each deposition condition is summarized in Table 5. 

Table 5 Effect of PECVD parameters. 

Parameters	
   Effect	
  in	
  PECVD	
  process	
  

Pressure	
   Higher	
  pressure	
  ensures	
  faster	
  film	
  growth	
  speed.	
  However,	
  due	
  to	
  higher	
  

chance	
  of	
  collision	
  of	
  ions,	
  powder	
  generation	
  also	
  increases.	
  

Gas	
  flow	
  rate	
   Provides	
  more	
  precursors	
  in	
  the	
  reactor	
  chamber	
  in	
  a	
  given	
  time.	
  Thus,	
  has	
  a	
  

similar	
  effect	
  to	
  the	
  pressure.	
  MFC	
  (Mass	
  Flow	
  Controller)	
  limited.	
  

RF	
  power	
   Increases	
  the	
  amount	
  of	
  plasma.	
  Increases	
  the	
  deposition	
  rate.	
  

Temperature	
   Determines	
  chemical	
  reaction	
  rate	
  on	
  the	
  growth	
  surface.	
  Decreases	
  growth	
  

rate	
  a	
  bit	
  due	
  to	
  fewer	
  dangling	
  bonds	
  as	
  a	
  result	
  of	
  high	
  mobility	
  of	
  radicals.	
  

If	
  SiH4	
  was	
  a	
  precursor,	
  hydrogen	
  absorption	
  rate	
  increases.	
  

Gas	
  dilution	
   Lowers	
  deposition	
  rate	
  and	
  prevents	
  serious	
  powder	
  generation	
  when	
  inert	
  

gas	
  is	
  used.	
  Improves	
  interface	
  states	
  (decreases	
  the	
  number	
  of	
  surface	
  

states)	
  if	
  the	
  dilution	
  gas	
  was	
  hydrogen.	
  	
  

 

 

3.3 Film Characterization 

3.3.1 Gate Dielectric 

Silicon nitride has been used as a gate dielectric for a-Si:H TFT since the emergence of the LCD industry 

[26, 43, 44]. The gate dielectric plays a key role in any field effect transistor performance because its main 
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role is blocking the attracted charges that remain accumulated at the gate-active layer interface, and 

securing a clear path form source to drain. In this section, the electrical properties of the PECVD 

hydrogenated amorphous silicon nitride (a-SiNx:H) layer are presented.  

Figure 27 shows the metal-insulator-semiconductor structure used to characterize the silicon nitride 

film. The substrate was selected based on the purpose of the measurement. For current-voltage (I-V) tests, 

p+ crystalline silicon (surface resistance < 0.001 Ω ∙ cm) was used to ensure maximum conductivity, 

while a higher surface resistance (>0.01 Ω ∙ cm) was used in capacitance-voltage (C-V) tests. The dopant 

type remained as p-type because the main active carrier for a-Si:H TFT is electrons. The top metal 

electrode was sputtered with a shadow masks as shown in the appendix. 

 

 

Figure 27 MIS a-SiNx:H characterization sample cross-section. 

 

 

The a-SiNx:H was deposited in the PL4 chamber of the PECVD cluster tool. The chamber was pre-coated 

with 200 nm of a-Si:H to minimize contamination from silicon dioxide particles from other deposition 

processes. Table 6 shows the deposition conditions of the film with a gas flow to nitrogen dilution ratio of 

1:20 (SiH4:NH3). The nitrogen dilution ratio has been shown to give a high quality film for a-Si:H TFTs, 

with high field effect mobility and low gate leakage current [45-48]. Also, nitrogen rich a-SiNx:H films 

tend to sustain metastability effectively [49]. 
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Table 6 Recipe table for a-SiNx:H gate dielectric, PL4. 

SiH4	
  

(sccm2)	
  

NH3	
  

(sccm)	
  

N2	
  

(sccm)	
  

Pressure	
  

(mTorr)	
  

Temp.	
  

(oC)	
  

RF	
  Power	
  

(W)	
  

Growth	
  
Rate	
  

(nm/sec)	
  

5	
   100	
   50	
   400	
   350	
   2	
   0.1	
  

 

  

(a) (b) 

Figure 28 (a) I-V and (b) C-V characteristics of a-SiNx:H prepared by cluster tool PL4 chamber. 

 

I-V characteristics were obtained with a Keithley 4200 system under dark conditions. The electric bias 

between the top electrode and the silicon bulk was applied via a sweeping profile from 0 to 200 V, and the 

result was normalized to the electric field, as depicted in Figure 28. The current increases through the 

continuous sweeping of voltage bias up to 8 MV/cm of electric field, where breakdown occurs and the 

current hits compliance value3 of 1 mA. 

The current-voltage characteristics (under dark conditions, Figure 28 (a)) provide a useful guide for 

TFT gate leakage estimation, at the current density around 2 MV/cm (36 V of gate bias for 180-nm-thick 

                                                        
2 Square Cubic Centimeters per Minute. Unit of precursor gas flow for PECVD deposition. 
3 In case of material breakdown, the characterization system contains a failsafe system which prevents excessive 
current flow. In this case, the breakdown at the thin film sample generates massive current flow through the entire 
characterization system since the breakdown spot is nothing but a short circuit (or 0 ohm of resistance.)  
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gate nitride).We can deduce the leakage current of 0.1 µμA/cm!, then the leakage current for a 1 mm by 1 

mm of W/L ratio device will be in the 1 nA, which is close to the off-state current of such large TFT 

devices. If we take small devices (W/L ratio of 25 µμm by 200 µμm), the gate leakage becomes around 5 

pA, which is also the off-state leakage current range. Thus, the nitrogen diluted silicon nitride is valid for 

hybrid detector application. 

The capacitance-voltage relationship, obtained with Agilent 4284A (Figure 28 (b)), shows the silicon 

nitride gate dielectric is incapable of drawing the electrons to form the p-type crystalline silicon bulk. The 

low frequency (20 Hz) data indicates such behavior because the capacitance cannot reach the level of the 

negative bias condition, while high frequency (1 MHz) data shows normal behavior due to the inability of 

catching up fast switching bias [50].  

The feasibility of silicon nitride gate dielectrics can also be characterized by extracting the optical 

bandgap via ultraviolet spectroscopy, or optical spectroscopy. The optical spectrum was obtained with a 

Shimadzu UV-2401PC ultraviolet spectrometer after deposition on a glass wafer. The a-SiNx:H film 

thickness was 980 nm, to provide as many peaks for transmittance (see Figure 29 (a)) as possible for 

curve fitting for the Tauc plot method [51, 52]. The curve fitting was performed with a Python language 

script and open source numerical analysis packages: NumPy, SciPy, and Matplotlib. The curve fitting 

resulted in 4.5 eV (see Figure 29 (b)) of optical bandgap for nitrogen diluted a-SiNx:H, which was a 

suitable level for a-SiNx:H films deposited via various methods [53-55]. The Python code can be found at 

the location below with the assistance of a Subversion version control system. 

 

svn co http://taris-personal-

docs.googlecode.com/svn/Research%20Documents/tauc/src/ 
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(a) (b) 

Figure 29 (a) UV spectra and (b) bandgap estimation via Tauc plot method. 

 

3.3.2 n+ Contact Layer 

Contact layers at the source and drain electrodes play an important role in improving the TFT 

performance. Even though the a-Si:H channel shows optimal conduction characteristic for TFTs, the 

actual drain current can be suppressed due to parasitic resistance elements at the source and drain. The 

TFT ON resistance can be characterized as follows [56-58]: 

Equation 12 

𝑅!" = 𝑅!! + 𝑅! 

The channel resistance (𝑅!!) can be derived as follows: 

Equation 13 

𝑅!! =
𝐿

𝑊𝜇!!𝐶!"#$ 𝑉!" − 𝑉!!
 

from Equation 7, by taking the Ohmic relation when 𝑉!" − 𝑉!! ≫ 𝑉!". The channel resistance can be 

reduced by improving 𝜇!"  by improving the a-Si:H or implementing nanocrystalline silicon, or even 

using metal oxide materials. However, excessively large parasitic resistance 𝑅! cannot be ignored if the 
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contacts for source and drain electrodes are not ohmic. Thus, several deposition conditions for n+ a-Si:H 

contact layers were investigated as shown in Table 7. 

Table 7 PECVD condition for three different contact layer samples. 

SiH4	
  
(sccm)	
  

PH3	
  
(sccm)	
  

H2	
  
(sccm)	
  

Power	
  
(W)	
  

Temp.	
  
(oC)	
  

Growth	
  
Rate	
  

(nm/min)	
  

Conductivity	
  
(S/cm)	
  

20	
   20	
   0	
   2	
   350	
   10	
   0.01	
  
20	
   20	
   150	
   2	
   350	
   2.5	
   0.0005	
  
5	
   5	
   180	
   2	
   350	
   3	
   0.0003	
  

 

 

The n+ a-Si:H samples were characterized by the lateral M-S-M structure shown in Figure 30. The 

wafer must be an insulator or have very high surface resistance (> 1000 Ω·cm) to prevent additional 

current paths between the electrodes. If any conductor was deposited prior to n+ a-Si:H (or any other 

contact layer candidates), then the resulting conductivity is much higher than the deposited film due to the 

additional path of current flow which was provided by the conductor. In short, the conductor acts as a 

smaller resistor, forming a parallel connection with the contact layer film (relatively higher resistance to 

the conductor.)  

 

Figure 30 Lateral sample for contact layer conductivity extraction. 
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Figure 31 Ohmic contact of n+ a-Si:H contact layer deposited with 49.5 % of hydrogen dilution. 

 

Figure 31 shows the ohmic contact for  the given process conditions and conductivity (σ!"#$%!$) 

extracted from the definition of resistance: 

Equation 14 

σ!"#$%!$ =
𝐿!

𝑅𝑊!𝑡!
 

𝐿!, 𝑊!, and 𝑡! are length, width, and thickness of the lateral resistance structure, respectively. The 

resistance can be extracted from inverse slope of the I-V curve, obtained by measurement (see Figure 31). 

It is important to reduce the parasitic resistance, improve contact quality, and ensure ohmic contact for 

source and drain electrodes. Thus, a conductance investigation for different precursor mixtures was 

performed. Hydrogen dilutions of 49.5 %, 90 %, and 96.8 % were tested and a dilution of 49.5% was 

shown to give the best conductance as depicted in Figure 32. The conductivity of the n+ a-Si:H film was 

0.01 S/cm at this condition. This lowest dilution film was selected as the best candidate for the hybrid 

detector implementation as this was sufficient to improve the a-Si:H TFT performance from parasitic 
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resistance [59]. Furthermore, higher dilution conditions could not easily be repeated due to sharing of the 

PL3 chamber with p+ type film depositions from various projects. 

 

 

Figure 32 Conductivity comparison of various hydrogen dilution conditions. 

 

The result seems controversial compared to previous results [60-62]. Also, we could not maintain the gas 

flow constantly for all deposition conditions (especially for 96.8 % sample) due to limitation of the mass 

flow controller installed at PL4. We believe this problem was induced by mixing of the deposition 

schedule with p+ films without proper cleaning of the dedicated chamber, which can be averted with a 

thicker a-Si:H pre-deposition than a 200-nm-thick recipe. 

 

3.3.3 Thermal Oxide 

The thermal oxide plays a key role in reducing the source-drain leakage of direct contact hybrid detectors. 

We procured wet thermal grown oxide with 300 nm thickness from a wafer supplier. The oxide leakage 

was tested with the MIS structure (see in Figure 27), where the silicon was a highly doped p-type 

crystalline wafer with a surface resistance of 0.001 Ω ∙ cm. The leakage results are shown in Figure 32. 
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The conductivity of the thermal silicon dioxide was 67.2 fS/cm which can be interpreted as 4.96×10!"  Ω 

for W/L of 250 µμm/25 µμm TFT, which exceeds typical 𝑅!! of an a-Si:H TFT (~ 1 MΩ). 

 

 

Figure 33 Passivation silicon dioxide I-V test set up. The MIS structure was biased with vertical 

electric field. 

 

 

Figure 34 MIS test result of thermal silicon dioxide. 
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3.4 Direct Contact Detector Process 

3.4.1 Mask 1 

Figure 35 shows the material stack prior to the first lithography step. 

 

Figure 35 Contact layers deposited on top of an RCA1 and RCA2 cleaned silicon wafer. 

 

A Float Zone technique fabricated silicon wafer (surface resistance higher than 10000 Ω ∙ cm) was 

prepared with RCA1 and RCA2 cleaning processes to remove any residue. The wafer was then put into 

the PL3 chamber for n+ contact layer deposition, with the deposition condition shown Table 8 (dilution of 

49.5%). The deposition thickness is 50 nm for any n+ contact layers in this work.  

A 50-nm-thick chromium source/drain electrode was then deposited using an Edwards sputtering tool. 

The deposition conditions are shown in Table 8. The sputtering system holds three targets: aluminum, 

molybdenum, and chromium. Due to the nature of the sputtering operation, the three target materials show 

the same growth rate for the same deposition conditions. Therefore, deposition conditions for aluminum 

and molybdenum are the exact same as chromium in this work since only one sputtering tool was used for 

every metal electrode deposition. Due to the limitation of the machine, the only dominating factor for 

deposition rate manipulation was the RF Power which can only be manipulated with a digital controller. 

The chamber pressure had to be manually controlled using a valve handle and varies depending on the 

user. The argon flow rate was fixed due to the lack of a mass flow controller on this line. 

After the source/drain electrode deposition, the wafer was sent into the PECVD chamber (PL3) again 

to deposit an additional n+ contact layer to form the final layer in the triple stack shown in Figure 35 The 

source-drain pattern mask (Mask 1) was used to pattern the source and drain as shown in Figure 36. 
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The reason for the n+ contact layer on top of the source and drain electrodes is to improve the TFT 

performance by lowering the parasitic resistance at the source and drain electrodes, which cannot be 

controlled in ambipolar devices. The fabricated triple stack was150-nm-thick: 50 nm of n+ layer, 50 nm 

of electrodes, and another 50-nm-thick n+ contact layer. At this point, the electrode is encapsulated by the 

contact layers and cannot be probed.  

 

Table 8 Sputtering condition for Edwards sputtering system. 

Ar	
  

(sccm)	
  

RF	
  Power	
  

(W)	
  

Chamber	
  
Pressure	
  

(mTorr)	
  

Temperature	
  

	
  

Growth	
  Rate	
  

(nm/min)	
  

20	
   220	
   20	
   Room	
   10	
  

 

 

 

 

Figure 36 Patterned by mask 1 to form source and drain contacts. 

 

The patterning was performed using a Karl-Suss MA6 mask aligner system and an AZ3312 positive 

photoresist from AZ Electronic Materials. The UV exposure conditions can be found in Table 9, and 

photoresist spin coating and curing conditions in Table 10. 
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Table 9 MA6 mask aligner UV exposure condition for AZ3312 photoresist. 

Power	
  

(UV	
  Bulb,	
  Ch1)	
  
Contact	
  Type	
  

Align	
  Gap	
  

(µμm)	
  

Exposure	
  Time	
  

(seconds)	
  
Photomask	
  Rack	
  

900	
   Soft	
   20	
   3	
   4”	
  mask	
  

 

Table 10 AZ3312 spin coating and curing conditions for mask patterning. 

Spin	
  Speed	
  

(RPM)	
  

Spin	
  Time	
  

(seconds)	
  

Thickness	
  

(nm)	
  

Prebake	
  
Temperature	
  

(oC)	
  

Post-­‐Bake	
  
Temperature	
  

(oC)	
  

Developing	
  
Time	
  

(seconds)	
  

4000	
   60	
   1000	
   90	
   120	
   ~	
  25	
  

 

The prebake was performed for 1 minute before exposing the photoresist to UV in the mask alignment 

system, and the post-bake was performed after developing the photoresist. The photoresist was developed 

for 25 seconds in an AZ300 MIF developer. The developing time was not fixed due to the nature of the 

wet chemical process and was determined by visual and microscopic inspection. 

The n+ layers were dry etched before stripping photoresist with a Trion Minilock RIE system. The dry 

etching process used a sulfur hexafluoride (SF6) and oxygen (O2) plasma with a DC bias to ignite the 

plasma. The reactive ion etching (RIE) process is a standard process for etching thin film materials when 

fabricating TFTs and deep patterns for PECVD deposited a-Si:H films [63, 64]. The RIE conditions can 

be found in Table 11. 

 

Table 11 RIE process condition for contact layers. 

SF6	
  

(sccm)	
  

O2	
  

(sccm)	
  

Pressure	
  

(mTorr)	
  

DC	
  Bias	
  

(V)	
  

Etch	
  Rate	
  

(nm/min)	
  

Temperature.	
  

(oC)	
  

45	
   5	
   50	
   -­‐40	
   ~	
  6	
   Room	
  

 

The chromium was etched using a wet etch process with a (6 wt%) nitric acid and ceric ammonium 

nitride (16%) solution, which provides an etch rate of ~ 5 nm/min at room temperature and ~ 25 nm/min 
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when the solution is heated to 70 oC on a hot plate. The photoresist is kept on the top n+ layer after RIE to 

provide additional shielding from the etchant for source and drain electrodes. Subsequently, the bottom n+ 

layer was dry etched using the same conditions given in Table 11. The photoresist was then stripped away 

to expose the n+ contact layer before bilayer deposition. 

 

3.4.2 Mask 2 

The exposed n+ layer was dipped for 3 to 5 seconds in a 1% buffered hydrogen fluoride solution to 

remove any oxide formation and protect the n+ layer surface from air [65]. Then the sample was quickly 

put into the intrinsic channel layer deposition chamber (PL2), followed by 50-nm-thick a-Si:H active layer 

deposition with the conditions given in Table 12. 

The a-SiNx:H silicon nitride deposition was followed by an active layer process without breaking 

vacuum by transporting the wafer via the ITZ (see Figure 22). The PL4 chamber was coated with 200-nm-

thick intrinsic silicon (a-Si:H) prior to sample insertion into the chamber to provide better electric quality 

of the a-SiNx:H film[66], followed by 300-nm-thick gate dielectric (a-SiNx:H) deposition (using the 

conditions in Table 4).Then, sputtering of a 150-nm-thick aluminum gate electrode was performed (see 

Figure 37). 

 

Table 12 a-Si:H channel layer PECVD condition for PL2 chamber. 

SiH4	
  

(sccm)	
  

Pressure	
  

(mTorr)	
  

Power	
  

(W)	
  

Temperature	
  

(oC)	
  

Deposition	
  Rate	
  

(nm/min)	
  

20	
   400	
   2	
   350	
   10	
  

 

The gate electrode and bi-layer (a-Si:H active layer and gate dielectric) were patterned using mask 2. 

The MA6 aligner and photoresist spin coating conditions are the same as in the previous section. The 

aluminum was etched with a PAN solution, which is a mixture of phosphoric acid (H3PO4), acetic acid 

(CH3COOH), nitric acid (HNO3), and de-ionized water (H2O). The ratio was 16:2:1:1 H3PO4: H2O: 

CH3COOH: HNO3, and its etch rate was around 5 nm per minute when the etch process occurred at room 

temperature. The etch rate could be speed up to around 80 nm per minute by heating up the PAN solution 

to 70 oC before the etch process. It is crucial to minimize the wet etch process as much as possible 
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because the etch solutions peel off the post-baked photoresist when the etch process is more than 10 

minutes. The photoresist protection is crucial for the bi-layer etch process. 

 

 

Figure 37 Bilayer deposition with sputtered gate electrode. 

 

 

 

Figure 38 Patterned by mask 2, forming the gate electrode. 
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Table 13 RIE process condition for bi-layer etch. 

SF6	
  

(sccm)	
  

O2	
  

(sccm)	
  

Pressure	
  

(mTorr)	
  

DC	
  Bias	
  

(V)	
  

Etch	
  Rate	
  

(nm/min)	
  

Temperature.	
  

(oC)	
  

50	
   5	
   50	
   -­‐80	
   ~	
  150	
   Room	
  

 

Once the gate electrode was patterned with the PAN solution, the sample wafer was, again, sent intothe 

Trion Minilock RIE system for gate dielectric and channel layer patterning. During the RIE process, 

shown in Table 13, the gate electrode was protected by photoresist which was not necessary because the 

gate electrode was aluminum in this case. However, the photoresist protection could not be neglected 

when the gate electrode material was molybdenum [67]. Of course, the exposed portion of the n+ contact 

layer was bombarded by the RIE plasma and etched away to reveal the metal surface for source and drain 

electrodes, as shown in Figure 38.  

Once the bi-layers were completely stripped off after 2 minutes of RIE process, the photoresist was 

stripped away with the AZ-KWIK solution to reveal the fully functional thin film transistor on the 

crystalline silicon surface, as depicted in Figure 39. 

 

Figure 39 Microscope snapshot of in-house fabricated direct contact detector. 
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3.4.3 Bulk Electrode 

Figure 40 shows the complete direct contact detector including the bulk electrode. 

 

Figure 40 Completed hybrid detector device after bulk electrode deposition. 

The bulk contact diode was deposited in the PL2 and PL3 chambers, followed by a 30-nm-thick 

aluminum bulk electrode sputtered using the Edwards sputtering sytem using the same process conditions 

as before. The top side, where the a-Si:H TFTs were patterned, was covered by an RCA1 cleaned Corning 

1371 glass substrate during any depositions because their process condition was designed for low 

temperature ( < 400 oC of substrate temperature) processes, while the glass substrate was capable of 

withstanding over 550 oC. The 500-nm-thick a-Si:H intrinsic layer was deposited to lower leakage current 

when the diode was reversely biased, and the n+ contact layer thickness remained the same as that of the 

source and drain electrodes. 

 

3.5 Silicon Dioxide Passivated Detector Process 

3.5.1 Thermal Oxide Etch 

The silicon wafer was purchased with the silicon dioxide thermally grown. This processprocess grows 

silicon dioxide on any surface of the silicon wafers. The silicon dioxide on the back side of the wafer thus 
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had to be etched away to ensure a direct deposition of the diode contact and bulk electrode. The TFT side 

thermal oxide was protected with thick AZ3312 photoresist, spin coated using the conditions shown in 

Table 14. It took 7 minutes and 30 seconds to etch the 300-nm-thick thermal oxide with 10 % BHF 

solution. The resulting structure is shown in Figure 41. 

 

Figure 41 RCA1 cleaned and back side etched with AZ3312 photoresist protection at the top side. 

 

Table 14 Spin coating condition for AZ3312 photoresist to withstand 10 % BHF solution. 

Spin	
  Speed	
  

(RPM)	
  

Spin	
  Time	
  

(seconds)	
  

Thickness	
  

(nm)	
  

Bake	
  
Temperature	
  

(oC)	
  

Bake	
  Time	
  

(seconds)	
  

1000	
   60	
   >	
  2000	
   120	
   >180	
  

 

3.5.2 Mask 1 

Figure 42 shows the material stack prior to the first lithography step. 

 

Figure 42 Source-drain contact layer deposition. 
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Once the bulk electrode side was opened, the process flow was similar to that of the direct contact 

detector. However, the source and drain electrodes can be deposited directly onto the thermal silicon 

dioxide because there is no need for another diode contact to the crystalline silicon substrate. 50-nm-thick 

chromium was sputtered directly onto the thermal oxide surface, followed by 50-nm-thick n+ contact 

layer with the deposition conditions given in Table 7.  

 

The photoresist was spin coated and patterned following the conditions shown in Table 9 and 

Table 10, respectively. Figure 43 is a microscope photograph after post-baking the photoresist strip for 1 

minute. The photoresist pattern can be easily distinguished by solid outlines because no layers are thicker 

than the photoresist (1000-nm-thick). The contact layer was dry etched and the metal electrodes were 

formed using the wet etch process described in the previous section, resulting in the structure shown in 

Figure 44. Figure 45 shows a microscopic photograph after photoresist stripping. 

 

Figure 43 Photoresist developed on top of the source-drain films. 
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Figure 44 Patterned with source and drain pattern mask (mask 1.) 

 

 

Figure 45 Wafer snapshot after photoresist strip. 
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3.5.3 Mask 2 

Figure 46 shows the material stack of the silicon dioxide passivated detector prior to the bulk electrode 

deposition. 

 

Figure 46 Bilayer and gate electrode deposition. 

 

The exposed n+ source and drain layers were dipped into a 1 % BHF solution for 3 to 5 seconds before 

sending the wafer into the PL2 chamber for active layer deposition. It can be noted that such short time of 

1 % BHF exposure had a  minimal effect on the thermal oxide, as it requires more than 7 minutes to 

completely etch with 10 % BHF solution. 

The bi-layer deposition was performed without breaking vacuum with PL2 and PL4, followed by a 

150-nm-thick molybdenum gate electrode to improve yield. Because the wafer was supposed to undergo 

another PECVD deposition for the bulk contact side, the aluminum gate electrode punches through the 

gate dielectric and ends up with a short circuit to the source or drain electrodes. Thus, replacing the 

electrode with a metal with a much higher melting point (the melting point of molybdenum is 2200 oC) 

than aluminum (660 oC) prevented such a shortfall in the process. 

Figure 47 shows the mask 2 photoresist after developing photoresist, before undergoing the PAN etch 

for molybdenum gate, which took only a few seconds when the PAN solution was heated to 70 oC. A RIE 

process with higher DC bias (see Table 13) was performed for 120 seconds to pattern the a-SiNx:H gate 

dielectric and a-Si:H active layers, as depicted in Figure 48. The photoresist was stripped away with the 

AZ-KWIK solution to expose the gate electrode (see Figure 49). 
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Figure 47 Wafer snapshot of photoresist pattern for mask 2, before etch process. 

 

 

 

Figure 48 Finished TFT on thermal oxide after Mask 2 etch. 
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Figure 49 PR stripped after mask 2 etch processes. 

 

 

Figure 50 Bulk electrode deposition: finished device. 
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Lastly, the wafer was flipped to deposit the bulk electrode structure as shown in Figure 50. Again, the 

intrinsic a-Si:H was 500-nm-thick and the n+ layer was 50-nm-thick, while the bulk electrode was 

deposited at less than 30 nm of thickness by controlling the sputtering time to less than 3 minutes. 

A photograph of the final wafer after bulk electrode deposition is shown in Figure 51. 

 

 

Figure 51Thermal oxide passivated detector after bulk electrode deposition. 
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Chapter 4 
Detector Performance  

4.1 TFT Performance 

4.1.1 Transfer and Output Characteristics 

Electrical characteristics of a TFT device can be investigated via transfer and output curves. The transfer 

curve shows the on and off ratio, which defines its switching capability and provides information on field 

effect mobility (𝜇!") by fitting the slope of transfer curve (see Equation 15), while threshold voltage can 

be obtained from the intersection of the fitted curve at the gate bias (𝑉!") axis. On the other hand, the 

slope of transfer curve (!!!"
!!!"

) indicates the transconductance (𝑔!) of the TFT device, which plays a 

critical role in in-pixel amplification, as noted in the section 2.3.2. 

Equation 15 

𝑑𝐼!"
𝑑𝑉!"

= 𝑔! = 𝜇!"𝐶!"#$
𝑊
𝐿
𝑉!" 

𝜇!" =
𝐿 ∙ 𝑔!

𝐶!"#$   𝑊 ∙ 𝑉!"
 

The transfer curve was obtained using an Agilent 4156C semiconductor characterization system via 

Signatone Series 720 probe manipulators. As expected, the direct contact detector shows very high off-

state current compared to the passivated detector, as seen in Figure 52 and Figure 54. The on/off ratio of 

the direct contact detector is merely three orders of magnitude at drain bias of 1 V, which ensures linear 

region operation, and four orders of magnitude at 10 V of drain bias, where the TFT is under the transition 

from the linear to saturation regions. On the other hand, the passivated detector shows at least five orders 

of magnitude in on/off ratio of all drain bias conditions (1 – 30 V), which demonstrates effective 

switching.  

The comparison between direct and passivated detectors indicates that such huge leakage in the direct 

contact detector stems from the crystalline silicon bulk. This occurs because the direct detector allows an 

ohmic contact path to the silicon bulk from the source and drain electrodes i.e. the buried n+ layer under 

the source and drain electrodes. Since the conductivity of crystalline silicon is higher than a-Si:H, higher 

off-current leakage can solely be activated by the drain bias itself. As seen in Figure 52, the off current 
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increases marginally by increasing the drain bias and reaching almost one order of magnitude of on/off 

ratio at the drain bias of 30 V.  

 

Figure 52 Transfer characteristics of direct contact detector. 

 

 

Figure 53 Field effect mobility and threshold voltage extraction of direct contact detector. 
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Meanwhile, field effect mobility and threshold voltage extraction indicate that the direct contact detector 

has better field effect mobility due to the additional crystalline silicon pathway, as seen in Figure 53 and 

Figure 55—where the square root fitting method was applied with Equation 15 under 1 V of drain bias to 

ensure linear mode of operation. The direct contact detector shows higher field effect mobility and much 

less threshold voltage due to the current assistance from the crystalline silicon bulk. 

However, higher mobility from crystalline silicon bulk leads to a transconductance degradation in 

contrast to the passivated counterpart. As seen in Figure 53, the slope of transfer curve, i.e. the 

transconductance, degrades at 10 V of gate bias, while the passivated detector realizes the same 

detrimental effect at 20 V of gate bias. As noted in the previous chapter, due to the voltage divider formed 

by the 𝑅!-𝑅!!-𝑅! series network, the actual drain bias portion that affects the channel operation decreases 

when the channel resistance (𝑅!!) decreases.  

 

 

 

Figure 54 Transfer characteristics of passivated detector. 
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Figure 55 Field effect mobility and threshold voltage extraction of passivated detector. 

 

The detrimental effect from direct contact of the crystalline silicon bulk can also be seen in the output 

characteristics in Figure 56, where the drain current increases linearly at high drain bias (> 20 V) 

regardless of gate bias conditions. Such behavior is also seen in MOSFETs as the Kink effect, or floating 

body effect, which stems from additional charges accumulated in the silicon bulk. It can be averted with 

silicon insulator technology [68]. In a sense, TFT is an ideal SOI device due to the huge aspect ratio of the 

channel layer (in this case, it is 1 mm/50 nm) if it were deposited onto an insulator substrate, such as 

silicon dioxide. However, our direct contact detector also suffers from such a floating body effect due to 

the crystalline silicon substrate.  

In addition, we can confirm that the direct contact TFT is also suffering from a current crowding effect 

due to the lower channel resistance compared to its passivated counterpart. Figure 56 reveals that the drain 

current at low drain bias (< 10 V) does not increase linearly, while the passivated detector (Figure 57) 

shows a linear increase at the same bias condition. The current crowding takes place when the contact 

resistance plays a critical role against channel resistance in the series network depicted earlier [69]. 

Although the staggered structure incorporates the channel resistance itself in the parasitic resistance [70], 

we can decrease the parasitic resistance with increasing conductance of source and drain contact layers. 

However, in the direct contact detector’s case, the Kink effect already deteriorates the on/off ratio by 

increasing the off-state current. 
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Figure 56 Output characteristics of direct contact detector. 

 

Figure 57 Output characteristics of passivated detector. 
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4.1.2 Metastability 

It is well known that a-Si:H TFTs are prone to threshold voltage shifts due to the metastability of a-Si:H 

and bias conditions [71]. Therefore, we can assume that the a-Si:H-to-crystalline silicon contact has 

minimum effects on TFT metastability. However, we were able to confirm that the low threshold voltage 

observed on a direct contact detector shifted rapidly in response to a prolonged gate bias, as depicted in 

Figure 58. The detector was stressed with 30 V of gate bias and 10 V of drain bias to ensure maximum 

on/off current ratio. This resulted in a massive threshold voltage shift, from 3.55 V to 5.92 V. Although 

the threshold voltage shift can be reversed quickly (less than 1 minute) with the same amount of negative 

bias (-30 V of gate-source bias), we can confirm that requiring higher bias condition for operation plays a 

detrimental role in threshold voltage characteristics.  

On the other hand, the low bias condition, gate bias of 20 V and drain bias of 1 V, lowers the threshold 

voltage shift down to a 0.8 V range, as seen in Figure 59, while recovering the threshold voltage with the 

same amount of negative bias requires the same amount of time. Thus, we can conclude that the TFT 

device needs to be operated under linear regime and needs to be biased larger than negative 30 V to 

minimize the recovery duty cycle during readout operation. 

 

 

Figure 58 Threshold voltage shift of direct contact detector with 10 V of drain bias. 
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Figure 59 Threshold voltage shift of passivated detector, obtained with 1 V of drain bias. 

 

4.1.3 Time Domain Analysis 

 

Figure 60 Time domain measurement set up for readout TFTs in passivated detector. The bulk 

diode bias was grounded.  

 

As discussed in the previous section, the readout of the detector array follows that of an active matrix 

array readout, which requires a fast response time (in the micro second range). Due to the nature of the 

detector, the active matrix array must be readout constantly prior to X-ray photon exposure. If we assume 
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a 1000 by 1000 array and a polling rate of 30 Hz, each row only has 33.33 µμs for readout, and it decreases 

if the resolution requirement is larger or if a higher polling rate is required. 

The response speed of the TFT readout was validated with a function generator as a gate driver. The 

drain electrode bias was applied with a battery (1.35 V), while the other biases (source and bulk electrode) 

have been maintained as ground biases. The drain current was picked up by a PerkinElmer 5182 

preamplifier to be converted into a voltage signal which is, again, picked up by an Agilent oscilloscope 

system. The peak to peak for gate bias was 10 V, with an offset of 10 V, to ensure a 0 to 20 V square 

pulse input, while the duty ratio was remained at 50%. The preamplifier amplification ratio remained at 

the amplifier’s minimum range (104) to ensure high frequency cut-off was prevented at the amplifier stage 

and to providing enough amplification for oscilloscope sensitivity. 

 

 

(a) 



 

 65 

 

(b) 

Figure 61 Time domain response of a hybrid detector under the bias of 20 V square pulse gate bias 

and 1.35 V of drain bias. 

 

The raw data from oscilloscope was captured and displayed in Figure 61, revealing the transistor on/off 

cycle can handle even below 1 µμs of operation cycle with around 0.25 µμs of rise and fall time. Thus, in 

theory, the single pixel detector can be integrated into a 1000x1000 active matrix active pixel array, if the 

polling rate is maintained at 30 Hz, a minimum requirement for real-time X-ray imaging.  

 

4.2 Iron 55 Isotope Response 

X-ray detection was evaluated using an iron-55 isotope which emits 5.8 keV gamma photons. The iron-55 

X-ray source had 100 µμCi of activity when it was obtained in 2008. However, the measurement took place 

in 2014 and the half-life of the isotope was 2.7 years. Thus, we can assume that the actual activity can be 

27.03 µμCi for our 2014 experiment. The isotope was a planar iron sheet of 2.54 cm by 2.54 cm square 

attached on top of a 4 cm diameter plastic surface. Thus, we were able to fit the source under a 3" (7.62 

cm) wafer using an improvised method (shown in Figure 62). 
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The chuck electrode was designed to include nitrogen vacuum vents, which hold everything on top of 

the bulk electrode firmly and provide contact to the bulk electrode and the stainless steel nuts, as well as 

the iron-55 isotope. Meanwhile, the TFT device was probed with Signatone series 720 manipulators 

which were hooked up with a Keithley 4200 semiconductor characterization system. The gate bias was 

swept from 0 to 30 V, the drain bias was 10 V, and the bulk electrode bias was 30 V. 

The direct contact detector shows an increase in the entire current flow of the detector because the 

photo-generated carriers add up to the drain current of the detector (see Figure 63.) In other words, the 

photo-generated current (∆𝐼!") cannot be amplified with the TFT gate bias, as was discussed in the 

previous section. Thus, we can conclude that the direct contact detector is not feasible for X-ray detection 

through in-pixel amplification. It can be noted that the field effect mobility of a direct contact detector is 

almost the level of nanocrystalline or metal oxide TFTs, but leakage (through the crystalline silicon bulk) 

assisted on-state current cannot be trusted because the leakage (when the gate bias is less than the 

threshold voltage) current is still on the same level of magnitude as the on-state current. 

 

 

Figure 62 Iron-55 isotope exposure set up for hybrid detectors. 
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Figure 63 Iron-55 isotope exposure comparison for direct contact detector. 

 

 

Figure 64 Iron-55 isotope exposure result for 1 mm by 1 mm passivated hybrid detector. 
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However, the silicon dioxide passivated detector shows promising result for the in-pixel amplification 

detector operation, as seen in Figure 64. Although the drain current at the on-state bias condition is much 

smaller than the direct contact counterpart, the ∆𝐼!" of a passivated detector increases as the gate bias 

strengthens from 0 V to 30 V—an indication of in-pixel amplification. Also, we can note a field effect 

mobility increase of 167% was achieved with the 5.89 keV X-ray exposure. We can also note the 

threshold voltage change (2.31 V of increase) under X-ray exposure, which was caused by photo-

generated holes (see Figure 17.) 

Therefore, we can conclude that the passivation played a critical role in the detector operation 

mechanism by separating the TFT current and the photo-generated current. The direct contact of the a-

Si:H layer not only caused huge off-state leakage and Kink effect, but also deteriorated the detector 

functionality. Although the direct contact detector provides higher field effect mobility, which is required 

for high resolution arrays, losing its sensitivity (mobility difference of 0.7%) against passivated 

counterparts cannot be ignored. To further quantify in detail the performance of the passivated detector, a 

quantum accounting calculation is necessary which is described in a following section. Specifically, we 

will seek to answer the question of how much TFT current is generated for each absorbed X-ray photon. 
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4.3 Detector Noise Investigation 

4.3.1 Noise Test Set Up 

 

Figure 65 Noise test set up diagram for hybrid detector. External biases for the detector and 

preamplifier were provided with battery. 

 

Detector noise characterization is a mandatory procedure to figure out the minimum signal that the 

detector is capable of detecting. The noise comes from various sources and additively combined in every 

detector system which needs to maximize their dynamic range which can be widened with lowering noise 

or improving charge collection in the detector. Because the hybrid detector is mainly composed of a-Si:H 

TFT and the back-to-back diode contacts, we can expect that the main noise sources will be the TFT 

noise, including thermal and flicker noise (1/f noise) and shot noise from the bulk contacts when the 

photodiode is placed under its reverse bias condition.  

At first, we performed a sanity check for the noise test system with metal resistors. Each of the 

terminals of resistors were fed into a PerkinElmer 5182 preamplifier and placed in a Signatone test box to 

prevent any external noise interference. With such a simple resistor check, we were able to find proper 

shielding conditions for TFT measurements. The verification of the noise test system was accompanied 

with measuring thermal noises of different metal resistors. The noise voltage, which was fed into an 

Agilent 4395A spectrometer, can be calculated as follows: 
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Equation 16 

𝑣 = 𝚤!𝐴!"#$%!𝐴!" =
4𝑘𝑇
𝑅

10!10!! 

where 𝑘 is Boltzmann’s constant, 𝑇 is the temperature in Kelvins, 𝑅 is the resistance, 𝐴!"!"#$ is 

transimpedence gain of the preamplifier, and 𝐴!" is the gain (attenuation) from the preamplifier to the 

spectrum analyzer input. The calibration result for six different resistors can be found in Figure 66. 

 

 

Figure 66 Noise calibration data from resistance thermal noise analysis. 

 

The preamplifier gain setting was the maximum value (108 A/V) which results in the lowest bandwidth 

necessary to ensure minimize noise interference from the preamplifier itself (15 fA/Hz-0.5 ). However, the 
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setting was limited by the 3 dB frequency of the amplifier itself at 1 kHz. Therefore, the noise 

measurement was taken at 800 Hz at the spectrum analyzer to avoid a 3dB cut-off frequency effect.  

 

Table 15 Thermal noise calibration table. 

Resistance	
  (Ω)	
  
Calculated	
  Thermal	
  Noise	
  

(dbµμV/ 𝐻𝑧)	
  

Measured	
  Noise	
  

(dbµμV/ 𝐻𝑧)	
  

5.75×10!	
   4.60	
   4.1	
  

9.90×10!	
   2.24	
   2.74	
  

1.80×10!	
   -­‐0.36	
   -­‐1.04	
  

5.40×10!	
   -­‐5.13	
   -­‐5.5	
  

8.24×10!	
   -­‐6.97	
   -­‐6.25	
  

9.96×10!	
   -­‐7.79	
   -­‐7.97	
  

2.59×10!	
   -­‐11.94	
   -­‐10.58	
  

 

 

 

Figure 67 Noise measurement calibration set up. Thermal no 
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Because the noise voltage difference remained lower than 10 % from calculated data, we decided the 

noise test environment was feasible for further noise testing for TFTs and established the noise test 

environment depicted in Figure 65. The biases for TFT operation were provided by alkaline batteries to 

avoid 60 Hz noise from city electricity and the test was performed at evening to night time to avoid any 

additional noise from construction and building maintenance crews.  

We also concluded that TFT thermal noise can be calculated without measuring the device if its channel 

resistance (𝑅!!) and thermal noise power spectral density (𝑆!.!!) are extracted via the following equation: 

Equation 17 

𝑅!! =
𝐿

𝜇!"𝐶!"#$𝑊 𝑉!" − 𝑉!!
 

𝑆!.!!(𝑓) =
4𝑘𝑇
𝑅!!

 

If the TFT was operated in a linear region, then we can evaluate the power spectral density of thermal 

noise on direct contact and passivated detectors based on experimental values from the previous section. 

Table 16 Thermal noise of various sized detectors. 

Detector	
  Type	
   L	
  (µμm)	
   W	
  (µμm)	
   𝑅!!	
  (Ω)	
  
Thermal	
  Noise	
  Spectral	
  

Density	
  (𝐴!/𝐻𝑧)	
  

Direct	
  Contact	
   1000	
   1000	
   531997	
   3.11E-­‐026	
  

	
   25	
   180	
   73889	
   2.24E-­‐025	
  

	
   15	
   50	
   127679	
   1.29E-­‐025	
  

	
   5	
   25	
   106399	
   1.56E-­‐025	
  

Passivated	
   1000	
   1000	
   5710307	
   2.90E-­‐027	
  

	
   25	
   180	
   793098	
   2.09E-­‐026	
  

	
   15	
   50	
   1370474	
   1.21E-­‐026	
  

	
   5	
   25	
   1142061	
   1.45E-­‐026	
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It is obvious that the thermal noise spectra from drain current are inversely proportional to the channel 

resistance and channel length. Also, we can note that the thermal noise spectra stays around 10-25 for a-

Si:H based hybrid detectors at most. This can be interpreted as 26 electrons of noise current when the 

pixel gain is set to a 1 for 33.33 µμs readout time frame for a L/W = 5/50 direct contact detector. Thus, we 

can assume that the contribution of thermal noise in a-Si:H TFT based detector is fairly limited compared 

to other noise sources as will be discussed in following sections. 

 

4.3.2 Flicker Noise Investigation (Detector Size) 

 

Figure 68 Noise power density spectra for various sized passivated detectors. Bulk bias was 

maintained at 0 V. 

 

The flicker noise of a TFT is reported to stem from the hopping conduction of carriers and a charge 

trapping-detrapping situation causes the drain current to fluctuate over time as described in [72, 73]: 
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Equation 18 

𝑆!.! !(𝑓) =
1
𝑓

𝛼!𝑞𝐼!"!

𝑊𝐿 𝑉!" − 𝑉!! 𝐶!"#$
 

𝛼! is a fitting parameter (coulomb scattering coefficient) and considered as 0.05 for a-Si:H TFT 

operating in linear region [74]. According to the noise data depicted in Figure 68, the 𝛼! can be derived 

as 0.007 at 100 Hz for W/L = 25/180 device when it was biased under 26.5 V of gate bias.  

The flicker noise was extracted with the same set up depicted in Figure 65, while the bulk bias 

remained as ground bias (0 V). Due to the low frequency nature of the flicker noise, the noise sample 

acquisition was performed at a very slow rate. The sweep/sample rate for the spectrum analyzer was ~ 11 

s, and the frequency bandwidth was 1 Hz to 1000 Hz while frequency resolution was set to 1 Hz. Tests 

were run for more than 15 minutes (> 20 samples) with constant bias provided by alkaline batteries.  

As depicted in Equation 18 and Figure 68, the flicker noise is a physical property that is dependent on 

the TFT size itself. In Equation 18 (Hooge’s Model), the drain current (𝐼!") also includes 𝑊 𝐿 term as 

discussed in the section 2.1.3 where the device under test is operating under liner mode of operation. 

Thus, flicker noise spectra, 𝑆!.!/! is heavily dependent on channel length: 𝑆!.!/! ∝ 𝑊
𝐿!. Such 

dependence is also shown in Figure 68, where the shortest gate length device (5 µm) shows even four 

orders of magnitude larger than 15 µm of gate length device. The largest device, 25 µm of channel length, 

even shows up thermal noise at 1000 Hz of frequency. Since our measurement scope was limited under 

1000 Hz due to the pre-amplifier limitation, we have taken the 25 µm device for further characterization 

on the shot noise from the bulk diode contact. 

 

4.3.3 Shot Noise Investigation (Bulk Bias) 

It is possible to obtain a noise electron per given frame time if the detector was composed only with a 

TFT. However, the bulk bias also provides a noise current from the negative biased contact as depicted in 

Figure 69. We can define the shot noise spectra for reverse biased PN junction photodiode as follows: 

Equation 19 

𝑆!.!!!" = 2𝑞𝐼!"#$, 
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As depicted in Figure 69, the noise from the bulk diode contact cannot be ignored during the operation. 

The shot noise itself provides an order of magnitude of higher power spectral density where the similar 

range of 15 µm gate length device.  

 

Figure 69 Noise power density spectra for passivated detector on bulk bias and without bulk bias 

conditions. 

 

The increase in the poser spectral density with the bulk diode contact bias shows a flat increase for 

throughout the entire noise spectra. In this case, we can suspect the thermal noise as well. However, the 

thermal noise for 0.86 nA of leakage is as low as 1.67×10!!" 𝐴! 𝐻𝑧 which is not even close to any 

noise contributors under 1000 Hz range. Therefore, the dominating factor of the flat increase is the shot 

noise from reverse bulk diode contact.  

The shot noise can be resolved by implementing industrial quality contact layer for the bulk contact 

since the doping efficiency for the n+ a-Si:H layer was questionable with the in-house fabrication facility. 

However, the reverse bias current of a P-N junction diode comes from electron diffusion and generation 

current, cooling the device in operation will be an excellent workaround to minimize the effect of shot 

noise.  
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4.3.4 Total Noise Estimation 

To verify the how well the fabricated device stacked up to the initial performance prediction shown in 

Table 2, the noise spectra shown in Figure 69 was curve fitted. A square root method using a residual 

function of f x = A𝑥!! was employed since the dominant noise source under 1000 Hz was the flicker 

noise. Each condition, bulk bias of 26.5 V and 0 V, was fitted separately and the given residual function 

was integrated from 1 to 30 kHz to account for the 30 frame per second (FPS) operation of a hypothetical 

1000 by 1000 pixel array.  

 

Figure 70 Square root fitting for the noise spectra of 25 by 180 (µm/µm) pixel up to 30 kHz. 

 

The integrated noise value is the noise at the output of the 1T APS TFT, or alternately, the drain electrode 

current. Thereafter, input referred noise was obtained by dividing the output referred noise current with 

transconductance of the readout TFT. The transconductance was obtained as the derivative of the transfer 

curve of 1 mm by 1 mm passivated detector (see Figure 54) at 1 V of drain bias. Figure 71 shows the 

transconductance curve of the 1 mm by 1 mm detector. Since the noise characteristic was obtained from a 

smaller device, the transconductance value observed at 26.5 V, i.e 3.0 nA/V, was translated to 24 nA to 

account for the different W/L of the device under X-ray test based on the equation below. 
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Equation 20 

𝑔! =
𝑑𝐼!"
𝑑𝑉!"

= 𝜇!"𝐶!"#$
𝑊
𝐿
𝑉!" 

 

 

Figure 71 Transconductance curve of 1 mm by 1 mm pixel at drain bias of 1.0 V. 

 

The input referred noise calculated from the measured noise spectra was determined 19590 electrons 

when the bulk diode contact was biased and 7059 when the bulk contact was grounded. Such a large noise 

value when the bulk diode is biased indicates that the majority of noise is supplied by the bulk diode 

contact (when biased reversely) while the TFT itself also shows a significant flicker noise component.  

Even though the flicker noise was large, it is in principle manageable using good circuit design 

techniques on the active pixel as reported in the past [75]. However, the bulk diode contact shot noise is at 

least 3 times larger than the TFT noise itself. Therefore, pixel noise is dominated by the shot noise from 

the bulk diode contact and the first consideration before any industrial implementation requires an 

improvement of the bulk diode contact or alternately, improving the detector operation by using low 

temperatures to suppress the dark current.  
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Table 17 summarizes the noise test results with the expectations originally anticipated in Table 2. As 

expected in 2.3, the dynamic range of the passivated detector is higher than the direct contact detector due 

to higher pixel capacitance, which was provided with thermally grown silicon dioxide. However, due to 

the unexpected bulk diode contact shot noise and flicker noise, the signal to noise ratio was an order of 

magnitude lower than expectation. In terms of price, the passivated detector can in theory, be fabricated at 

the similar price point as amorphous selenium detectors. 

 

Table 17 Detector performance comparison with the original expectation. 

Parameters	
  
Original	
  Expectation	
  

(direct	
  contact	
  detector)	
  

Measured	
  

(passivated	
  detector)	
  

Pixel	
  Size	
  

(µm2)	
  
25	
  x	
  25	
   25	
  x	
  180	
  

Detector	
  Size	
  

(mm2)	
  
212	
  x	
  212	
   212	
  x	
  212	
  

EHP	
  Conversion	
  

(6  𝑘𝑒𝑉 𝑊±)	
  
1667	
   1667	
  

Readout	
  Noise	
  

(30	
  FPS,	
  1000	
  by	
  1000	
  array)	
  
<	
  1500	
   19590	
  

Dynamic	
  Range	
  
1:3600	
  

(Direct	
  Contact	
  Detector)	
  

1:110000	
  

(Passivated	
  Detector)	
  

SNR	
   Around	
  1	
   Around	
  0.1	
  

Readout	
  Speed	
  

(1000	
  by	
  1000	
  array)	
  
30	
  FPS	
   30	
  FPS	
  

Price	
  (USD)	
  per	
  Detector	
  Size	
  

(1	
  mm	
  by	
  1	
  mm)	
  
0.66	
   0.66	
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4.4 X-ray Sensitivity 

4.4.1 X-ray Absorption Investigation 

To clarify the relationship between electron-hole pair generation rate and impinging X-ray photon flux, 

the photocurrent generation was investigated via the Monte-Carlo simulation method as follows. At first, 

we need to determine the number of X-ray photons impinging on the detector area from the iron-55 

isotope source. The main problem is, unlike medical purpose X-ray generators, the isotope X-ray emission 

is not collimated but isotropic. To get a rough estimate, we decided to use the Monte-Carlo method to 

determine the number of X-ray photons actually being absorbed in the detector area.  

For such purpose, we adopted a Monte-Carlo simulation package from Open Gate Collaboration [76]. 

The system was defined to mimic the isotope exposure situation depicted in Figure 62, where the distance 

between the isotope and the back contact electrode was 1 mm because the thickness of the metal nuts 

were 2 mm and the plastic substrate for the isotope was 1 mm. The isotope activity was defined as 27.03 

µμCi, as depicted in Appendix C. The simulation system can be found in Figure 72 for a typical detector 

pixel size of 250 µμm by 250 µμm, including the area of source and drain electrodes.  

The Monte-Carlo simulation was performed for 1000 seconds within the simulation setting to capture 

as many events as possible because the X-ray activity of 27.03 µμCi was defined on a per second basis, 

resulting in 45000 captured events, as shown in Figure 73. Thus, we can safely conclude that 45 X-ray 

photons were impinged into the detector pixel area. If we convert the detector area to 1 mm by 1 mm, we 

can assume that around 720 X-ray photons were impinged per second. 

Once the X-ray photons reached the surface of the bulk electrode, they need to travel through 30 nm of 

aluminum, 50 nm of n+ a-Si:H contact layer, and 500 nm of intrinsic a-Si:H layer to be absorbed in the 

crystalline silicon photodiode detector and then be converted into electron-hole pairs. Thus, we 

investigated X-ray photon transmission with an external source [77] for 5.89 keV photons, as depicted in 

Table 18. Thus, we can conclude that 0.96, or 96%, of isotope-generated X-ray photons are actually being 

absorbed into the crystalline silicon layer. This converts to 43 photons for a typical detector pixel size of 

250 um x 250 um and 691 photons for 1 mm by 1 mm pixel detector. We also confirmed via simulation 

that the low energy X-ray photon cannot penetrate the crystalline silicon layer to affect TFT performance. 
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Figure 72 Monte-Carlo simulation system set up to depict the X-ray exposure from iron-55 isotope. 

The yellow ring is the 3" wafer, the blue square is the 1" by 1" isotope, and the small red dot is the 

detector pixel area. 

 

 

Figure 73 X-ray photon absorption counts for 1000 seconds of operation. 
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Table 18 5.89 keV X-ray transmission ratio information for bulk electrode penetration. 

Material	
  
a-­‐Si:H	
  	
  

(50	
  nm,	
  n+)	
  

a-­‐Si:H	
  (500	
  nm,	
  

leakage	
  barrier)	
  

Aluminum	
  	
  

(30	
  nm)	
  

Crystalline	
  

Silicon	
  	
  

(380	
  um)	
  

Transmission	
  

Ratio	
  
0.99	
   0.98	
   0.99	
   0.00000403	
  

 

 

 

 

Figure 74 Photon transmission ratio for various materials. Obtained from [77]. 
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4.4.2 EHP Conversion and Signal Amplification 

 

 

Figure 75 MIS structure setup for iron-55 isotope photo-generation evaluation. 

 

To confirm the photo-generation caused by the iron-55 isotope, we measured current-voltage 

characteristics of a MIS structure (depicted in Figure 75). The bulk electrode was biased to the ground 

electrode, while the top electrode bias was swept from 0 to 100 V to prevent carrier loss at the a-Si:H 

based layers (blocking layer and n+ contact layer). The current-voltage sweep indicates that the photo-

generation from the 27.03 µμCi isotope source remains at 10 to 30 pA for a 1 mm by 1 mm area (top 

electrode dimension). It was kept at the same size as the passivated detector itself (as depicted in Figure 

76 and Figure 77). Thus, we can assume that 691 absorbed photons generated 187.5×10! electron-hole 

pairs per second. 

We then confirmed that the current increment of the detector stays at a 10 nA range as a minimum, but 

increases linearly as the gate bias increases (see Figure 78). The photo-current (∆𝐼!") behavior under gate 

bias indicates that the TFT amplification provided at least three orders of magnitude of amplification for 

photo-generated electron-hole pairs in the crystalline silicon substrate. Thus, we can conclude that the 619 

photons generate 62.5×10! electrons for readout per second. Henceforth, to achieve 27.95×10! of signal 

electron generation for 30 Hz polling time, we need 5.89 keV X-ray photons arriving at a rate of 1 every 

100 seconds to achieve SNR > 5. 
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Figure 76 MIS structure I-V test result. 

 

 

Figure 77 Current increment from the MIS exposure results. 
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Figure 78 Drain current increment from X-ray (iron-55) detection. 

 

However, Figure 78 also indicates that the photo-current relation depicted in Equation 9 because it does 

not convey the effect of the TFT gate bias and the field effect mobility leap in any case. Because the 

photo-conversion gain is dependent to the gate bias of TFT, we can suggest the ∆𝐼!" to photo-generated 

charge (𝑄!!!"!) relation as: 

Equation 21 

∆𝐼!" = 𝜇!".!"#$𝐶!"#$
𝑊
𝐿
(𝐴 ∙

𝑄!!!"!
𝐶!

+ 𝐵 ∙ 𝑉!")𝑉!" 

𝐴 and 𝐵 serve the role of fitting parameters on photo-conversion gain of the crystalline silicon substrate 

and field effect mobility modulation constant due to the X-ray exposure. In short, the photo-generated 

current is affected by the photo-generated ‘virtual’ gate underneath the silicon dioxide passivation layer 

and the gate bias. In the passivated detector’s case, we can assume that 𝐶! = 7.87  ×  10!!  𝐶/𝑐𝑚!from the 

measurement of the MIS structure as depicted in Figure 79 at the top electrode voltage bias of 20 V, 

which shows neither inversion or accumulation regions of a MIS capacitor, showing the total capacitance 
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of thermal oxide-crystalline silicon substrate series capacitance. On the other hand, the field effect 

mobility ratio from X-ray exposure can be given by the difference of the dark and X-ray exposure 

conditions (
!!".!"#$%&'(!!!".!"#$

!!".!"#$
) which is 1.68 in the current passivated hybrid detector as depicted in 

Figure 64. In short, 𝐴 and 𝐵 represent the ‘virtual gate’ threshold voltage constant and mobility 

modulation factor, respectively.  

 

 

Figure 79 Capacitance sweep of the passivated detector. 

 

Therefore, we can derive the ‘virtual gate’ threshold voltage constant, 𝐴, from a square root fitting of the 

X-ray induced current, which was 5.85 in the current device under the drain bias of 1 V. Ideally, the 

fitting parameter must remain at the same amount of the mobility modulation factor (𝐵) because the X-ray 

generated charge is supposed to provide additional amplification via the ‘virtual gate’ provided charges. 

However, constant recombination and leakage through the bulk bias compromised the charge storage in 
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the crystalline silicon substrate. Also, the surface charge contribution of thermal oxide-crystalline silicon 

interface and the interface between the thermal oxide and a-Si:H channel layer are not negligible due to 

the nature of a-Si:H material.  

 

 

Figure 80 Comparison of suggested model and extracted data. 
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4.5 Closing The Loop 

 

Figure 81 Determining the number of electrons generated per absorbed photon.  

 

Figure 81 describes the process by which the number of electrons generated for each photon absorbed in 

the passivated detector is calculated. Monte-Carlo simulation was used to estimate the number of 

impinging 5.89 keV photons onto a 1 mm by 1 mm single pixel for the given Fe-55 gamma source:  i.e. 

691 photons per second. As the photon are converted into electron-hole pairs in the silicon detector, the 

photo-generated holes provided the ‘virtual gate’ effect for the 1T APS TFT, yielding 0.36 nA of photo-

current when the device was biased under 20 V of gate bias while the drain bias was 10 V. Alternately, 

2.25  ×  10! electrons are detected at the output of the single-TFT APS for each absorbed photon. 

The noise measurement investigation in section 4.3 showed that a single pixel was affected a large 

amount of noise due to the shot noise from silicon detector bulk bias. Since the flicker noise 

measurements were performed on a 25  𝜇𝑚  ×  180  𝜇𝑚 pixel, the noise had to be scaled for the larger pixel 

1  𝑚𝑚  ×  1  𝑚𝑚 pixel used for X-ray sensitivity measurements. Flicker noise for the larger device with 

W/L of 1  𝑚𝑚 1  𝑚𝑚 was much smaller than for the smaller device and this is to be expected. Silicon 

detector dark current was measured at the diode contact and the shot noise for the 1  𝑚𝑚  ×  1  𝑚𝑚 device 
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was estimated based on the measured dark current value. Thus, we estimate the total noise for the 1 mm 

by 1 mm detector as being 12551 electrons for a 30 FPS, 1000 by 1000 array set up. Thus, it requires at 

least 7.52 photons to overcome the detector noise for a 1  𝑚𝑚  ×  1  𝑚𝑚 detector.  

The above noise measurements were obtained at the pixel level.  In an array, external readout 

electronics and array parasitic elements such as line capacitance will affect the total noise although it is 

not expected to be significant because we have employed a 1T APS. In addition, our estimate has focused 

exclusively on electronic noise and has neglected photon shot noise and any other relevant modular 

transfer function effects, both of which are important to the overall image quality.  
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Chapter 5 
Conclusions 

5.1 Summary and Conclusion 

In this work, we proposed a silicon detector with a-Si:H TFT readout, enhanced with in-pixel 

amplification using a one transistor active pixel sensor. We developed a cost-effective simple two mask 

fabrication procedures. Because of the abundance of silicon substrates and large area fabrication 

capabilities of PECVD, our device can expect to realize a large manufacturing cost reduction for X-ray 

detectors for low energy X-ray detection applications.  

An investigation into two types of in-pixel amplification detectors uncovered the fact that allowing 

direct contact from the a-Si:H channel to the crystalline silicon detector layer causes detrimental effects 

not only to the performance of X-ray detection itself, but also to the a-Si:H TFT switching capability due 

to the floating bulk effect. However, this problem was mitigated by growing a silicon oxide passivation 

layer on the silicon substrate before initiating the TFT deposition process.  

Although the passivated detector shows much lower performance than the direct contact type due to 

lack of additional driving current, the in-pixel amplification overcame the noise limitation of a-Si:H TFT 

itself and even showed promising results for photon counting detectors by reducing the photon flux 

requirement to overcome the TFT noise and the bulk bias shot noise. 

Furthermore, such a simple pixel structure (a single TFT acts as a readout switch, an amplifier and the 

detector) enables maximizing the fill factor and minimizing pixel size without considering additional 

capacitors or amplification/reset transistors. Such a simple pixel structure provides flexibility to the array 

design when it comes to the array size and the resolution requirements that need to be met simultaneously.  

Therefore, we discovered that even with a simple SOI-like structure, we can provide cost effective and 

large area capable X-ray detectors without implementing any complex and expensive fabrication methods, 

such as laser ablation or controlled RIE etching. Also, we discovered that simply growing another 

insulator on crystalline silicon solves many fundamental problems for the detector itself. We hope the new 

hybrid detector will contribute to low energy X-ray applications such as X-ray diffraction and protein 

crystallography. 
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5.2 Further Improvements 

Although we proposed a simple and economic way to detect low energy X-ray, the limitation of a-Si:H 

TFT performance bottlenecks array size and resolution. In fact, current industrial flat panel displays show 

that a-Si:H TFTs cannot be used anymore to drive the resolution higher than 1080p applications. In other 

words, the resolution of the hybrid detector we proposed will also be affected. Thus, we can improve the 

TFT channel material for higher performances. Possible candidates are nanocrystalline silicon, metal 

oxide, and even low temperature polysilicon if its production cost can be contained to an economic level. 

The paradigm shift of depositing readout electronics on the sensor (as opposed to the conventional sensor 

on electronics or multi-chip module integration) enables this improvement. 

Furthermore, assessment of modular transfer function for hybrid detectors is required to verify spatial 

resolution claims. It is possible that excess X-ray photon generated carriers will not exit the crystalline 

silicon bulk and will diffuse to adjacent pixels causing blurring and even ghosting in captured images. 

Such a problem would be most prominent in small pixel systems. 

Also, we can investigate cheaper solutions for passivation because thermal oxide growth requires 

dedicated oxidization chambers. We suggest polymer materials which can be easily spin-coated. They 

provide reasonable insulation without requiring backside BHF etch processes to open the back contact for 

bulk electrode. Even high quality PECVD deposited a-SiNx:H that is already available in a TFT 

fabrication facility can be suitable option for passivation.  

Lastly, we can also implement a co-planar structure for readout transistors which would reduce the 

parasitic resistances. The lack of need to punch through the channel layer reduces the parasitic resistance 

effect, which is even seen in the X-ray amplified curve in Figure 64. The X-ray exposure can be explained 

simply by reducing the channel resistance, the parasitic resistance effect cannot be ignored when the gate 

bias increases to obtain more amplified current. In that sense, LTPS (low temperature polysilicon) are the 

optimal candidate for industrial quality detectors. 
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Appendices 

  



 

 93 

Appendix A 
Hybrid Detector Mask Layout 

A.1. Entire Wafer Layout 
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A.2. Sample Device Layout 
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A.3. Shadow Mask 
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Appendix B 
TCAD Input Deck 

B.1.	
   Mesh	
  Definition	
  

TITLE   Si Drift Detector Mesh 

 

COMMENT  Assigning Variables 

 

COMMENT   Bandgap Definition 

ASSIGN  NAME=EGSI N.VAL=1.05 

ASSIGN  NAME=EV N.VAL=-1 

ASSIGN  NAME=EC N.VAL=.7 

ASSIGN  NAME=EGaSI N.VAL=@EC-@EV 

 

COMMENT   Device Demension Definitions 

ASSIGN  NAME=TCON N.VAL=0.050 

ASSIGN  NAME=TSI N.VAL=380 

ASSIGN    NAME=TSUBDI N.VAL=.300   

ASSIGN  NAME=TOX N.VAL=0.300 

ASSIGN      NAME=TBLOCK N.VAL=0.500 

 

ASSIGN  NAME=WL N.VAL=10 

ASSIGN  NAME=GTH N.VAL=0.100 

ASSIGN  NAME=SDTH N.VAL=0.018 

 

 

COMMENT  Mesh Generation 

MESH     OUT.FILE="SiTFTDetector.msh" 

X.MESH  WIDTH=45 N.SPACES=45 

Y.MESH  Y.MIN=@GTH  

+  Y.MAX=@GTH+@TOX N.SPACES=10 
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Y.MESH  Y.MIN=@GTH+@TOX  

+  Y.MAX=@GTH+@TOX+@TCON N.SPACES=25 

Y.MESH  Y.MIN=@GTH+@TOX+@TCON 

+  Y.MAX=@GTH+@TOX+@TCON+@TSUBDI N.SPACES=10 

Y.MESH  Y.MIN=@GTH+@TOX+@TCON+@TSUBDI  

+  Y.MAX=@GTH+@TOX+@TCON+@TSUBDI+@TSI N.SPACES=50 

Y.MESH    Y.MIN=@GTH+@TOX+@TCON+@TSUBDI+@TSI 

+   Y.MAX=@GTH+@TOX+@TCON+@TSUBDI+@TSI+@TBLOCK N.SPACES=10 

Y.MESH  Y.MIN=@GTH+@TOX+@TCON+@TSUBDI+@TSI+@TBLOCK  

+  Y.MAX=@GTH+@TOX+@TCON+@TSUBDI+@TSI+@TBLOCK+@TCON 
N.SPACES=15 

 

COMMENT  Regions 

+  1:Silicon Substrate, 2:Channel,  

+  3:Bottom Contact, 4:Gate Dielectric 

+  5:Substrate Dielectric 

REGION  NUM=1 Y.MIN=@GTH+@TOX+@TCON 
Y.MAX=@GTH+@TOX+@TCON+@TSI SILICON 

REGION  NUM=2 Y.MIN=@GTH+@TOX Y.MAX=@GTH+@TOX+@TCON A-
SILICO 

REGION  NUM=3 Y.MIN=@GTH+@TOX+@TCON+@TSUBDI+@TSI 
Y.MAX=@GTH+@TOX+@TCON+@TSUBDI+@TSI+@TBLOCK+@TCON A-SILICO 

REGION  NUM=4 Y.MIN=@GTH Y.MAX=@GTH+@TOX NITRIDE 

REGION  NUM=5 Y.MIN=@GTH+@TOX+@TCON 
Y.MAX=@GTH+@TOX+@TCON+@TSUBDI OXIDE 

 

COMMENT  Electrodes 

+   1:Gate, 2:Bottom Electrode 

+   3:Source, 4:Drain 

ELECTR  NUM=1 Y.MIN=0.0 Y.MAX=@GTH X.MIN=10 X.MAX=35 

ELECTR  NUM=2 Y.MIN=@GTH+@TOX+@TCON+@TSI+@TBLOCK+@TCON  

+  
 Y.MAX=@GTH+@TOX+@TCON+@TSUBDI+@TSI+@TBLOCK+@TCON+0.020 
X.MIN=0.0 X.MAX=45 
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ELECTR  NUM=3 Y.MIN=@GTH+@TOX+0.025  

+   Y.MAX=@GTH+@TOX+@TCON X.MIN=0.0 X.MAX=15 

ELECTR  NUM=4 Y.MIN=@GTH+@TOX+0.025  

+   Y.MAX=@GTH+@TOX+@TCON X.MIN=30 X.MAX=45 

 

$$ELECTR NUM=5 X.MIN=0 X.MAX=0 Y.MIN=15 Y.MAX=20 

$$ELECTR NUM=6 X.MIN=45 X.MAX=45 Y.MIN=120 Y.MAX=130 

 

COMMENT  Doping Specification 

$$PROFILE  P-TYPE Y.MIN=@GTH+@TOX+@TCON  

$$+     Y.MAX=@GTH+@TOX+@TCON+@TSI UNIFORM 
N.PEAK=1.5e10 

PROFILE  N-TYPE Y.MIN=@GTH+@TOX  

+     Y.MAX=@GTH+@TOX+@TCON  

+     X.MIN=0.0 X.MAX=15 UNIFORM N.PEAK=1e18 

PROFILE  N-TYPE Y.MIN=@GTH+@TOX  

+     Y.MAX=@GTH+@TOX+@TCON  

+     X.MIN=30 X.MAX=45 UNIFORM N.PEAK=1e18 

PROFILE  N-TYPE Y.MIN=@GTH+@TOX+@TCON+@TSI+@TBLOCK  

+     Y.MAX=@GTH+@TOX+@TCON+@TSI+@TBLOCK+@TCON 
UNIFORM N.PEAK=1e18 

 

END 

 

B.2.	
   Simulation	
  Input	
  Deck	
  

TITLE  Si Hybrid Detector 

 

COMMENT  Simulation Settings 

COMMENT  Potential Extraction Mode (ON:1, OFF:0) 

ASSIGN  NAME=PEXT N.VAL=0 

 

COMMENT  2D Plot Mode (ON:1, OFF:0) 
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ASSIGN  NAME=2DPLOT N.VAL=1 

 

COMMENT  Plot Dark Condition (ON:1, OFF:0) 

ASSIGN  NAME=PLOTDARK N.VAL=1 

 

COMMENT  Plot Band Diagrams? (ON:1, OFF:0) 

ASSIGN  NAME=PLTBAND N.VAL=1 

 

COMMENT  Setting up Bias Condition 

ASSIGN  NAME=BGATE N.VAL=19 

ASSIGN  NAME=BDRAIN N.VAL=1 

ASSIGN  NAME=BBACK N.VAL=19 

 

CALL  FILE=./SiTFTDetectorMesh.inp 

IF   COND=(@2DPLOT=1) 

 PLOT.2D BOUNDARY REGION JUNCTION FILL LABELS CLEAR 

 +  TITLE="Si TFT Detector" 

 PLOT.2D BOUNDARY REGION JUNCTION FILL LABELS CLEAR 

 +  TITLE="Si TFT Detector TFT Side" 

  +   X.MIN=0.0 X.MAX=45.0 Y.MIN=0.0 Y.MAX=@GTH+@TOX+@TCON+@TSUBDI   

 

IF.END 

 

 

 

COMMENT Calculate characteristic for holes/electron 

 

ASSIGN NAME=PCHR N.VAL=(-0.25-@EV)*LOG(1E22/8E13) PRINT 

COMMENT Generate hole traps. 

TRAP DISTR N.TOT="-(8E13+1E20*EXP(-(@FENER-@EV)/@PCHR))" 
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+ 

 COND="(@FENER<0)&(Y>@GTH)&(Y<@GTH+@TOX+@TCON)&(Y>@GTH+@TOX+@TC

ON+@TSUBDI+@TSI)&(Y<@GTH+@TOX+@TCON+@TSUBDI+@TSI+@TBLOCK+@TCON)"  

+   PRINT 

+  X.PLOT=0.38 Y.PLOT=4 OUT.FILE=HOLETRAP.IVL 

+  TAUN="1E-5" TAUP="1E-6" 

ASSIGN NAME=NCHR N.VAL=(@EC-0.4)*LOG(1E20/1E13) PRINT 

COMMENT Generate electron traps. 

TRAP DISTR N.TOT="(1E13+1E17*EXP((@FENER-@EC)/@NCHR))" 

+ 

 COND="(@FENER>0)&(Y>@GTH)&(Y<@GTH+@TOX+@TCON)&(Y>@GTH+@TOX+@TC

ON+@TSUBDI+@TSI)&(Y<@GTH+@TOX+@TCON+@TSUBDI+@TSI+@TBLOCK+@TCON)"  

+   PRINT 

+  X.PLOT=0.38 Y.PLOT=4 OUT.FILE=ELECTRAP.IVL 

+  TAUN="1E-5" TAUP="1E-6" 

 

COMMENT  Specify Electrode Workfunctions 

CONTACT  NUM=1 MOLYBDENUM 

CONTACT  NUM=2 ALUMINUM 

CONTACT     NUM=3 WORKFUNC=4.5 

CONTACT     NUM=4 WORKFUNC=4.5 

 

COMMENT  Specify Optical Parameters 

MATERIAL A-SILICON EG300=@EGaSI 

MATERIAL SILICON EG300=@EGSI 

 

COMMENT  Solving initial conditions 

MODELS  CONMOB CONSRH AUGER BGN 

SYMB NEWTON CARR=0 

SOLVE   V1=0.0 V2=0.0 V3=0.0 V4=0.0 OUT.FILE="SiTFT.INI" 

 

SYMB  NEWTON CARR=2 ELECTRON HOLES 
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IF   COND=(@PLOTDARK=1) 

 COMMENT Dark Current Evaluation 

 COMMENT Electrodes 

 +  1: Gate, 2: Bulk Electrode, 3: Source, 4: Drain 

 LOG  OUT.FILE="SiTFT.IVL"  

 

    SOLVE V2=0.0 

$$ SOLVE V2=0.0 VSTEP=0.1 NSTEP=5 ELEC=2 

$$ SOLVE V2=1 VSTEP=1 NSTEP=@BBACK ELEC=2 

 

   SOLVE V3=0.0 

 

 SOLVE V4=0.0 VSTEP=0.1 NSTEP=9 ELEC=4 

   SOLVE V4=1 

$$ SOLVE V4=1 VSTEP=1 NSTEP=@BDRAIN ELEC=4 

 

 SOLVE V1=0.0 VSTEP=0.1 NSTEP=5 ELEC=1 

 SOLVE V1=1 VSTEP=1 NSTEP=@BGATE ELEC=1 

 

 SOLVE OUT.FILE="SiTFTDK.INI" 

 LOG  CLOSE 

 

 COMMENT Transfer Characteristic (Dark) 

 PLOT.1D IN.FILE="SiTFT.IVL" X.AX=V1 Y.AX=I4 

 +  POINTS PRINT 

 +  TITLE="Transfer Characteristic (Dark)" 

 +  OUT.FILE="SiTFTTRNSDK.dat" 

 

 IF  COND=(@2DPLOT=1) 

  COMMENT  2D Plots for device estimation 
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  PLOT.2D  BOUNDARY REGION JUNCTION LABELS FILL 

DEPLETION 

  +   TITLE="Potential" 

  CONTOUR  POTENTIAL 

  $$PLOT.2D  BOUNDARY REGION JUNCTION LABELS FILL 

DEPLETION 

  $$+   TITLE="Electric Field" 

  $$CONTOUR  E-FIELD 

 IF.END 

  

 IF  COND=(@PLTBAND=1) 

  COMMENT  Potential at Source (Dark) 

  LOAD  IN.FILE=SiTFTDK.INI 

  PLOT.1D   

  +   X.ST=10 X.EN=10 Y.ST=0 

Y.EN=@GTH+@TOX+@TCON+@TSI+@TBLOCK+@TCON+@GTH 

  +   COND NEG PRINT 

  +   TITLE="Band Diagram at Source (Dark)" 

  +   OUT.FILE="CONDataAt10um.dat" 

  PLOT.1D  X.ST=10 X.EN=10 Y.ST=0 

Y.EN=@GTH+@TOX+@TCON+@TSI+@TBLOCK+@TCON+@GTH 

  +   VAL UNCH NEG PRINT 

  +   OUT.FILE="VALDataAt10um.dat" 

  PLOT.1D  X.ST=10 X.EN=10 Y.ST=0 

Y.EN=@GTH+@TOX+@TCON+@TSI+@TBLOCK+@TCON+@GTH 

  +   QFN UNCH NEG COL=2 

  +   OUT.FILE="FermiDataAt10um.dat" 

 

  COMMENT  Potential at Channel (Dark) 

  PLOT.1D   

  +   X.ST=22.5 X.EN=22.5 Y.ST=0 

Y.EN=@GTH+@TOX+@TCON+@TSI+@TBLOCK+@TCON+@GTH 
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  +   COND NEG PRINT 

  +   TITLE="Band Diagram at Channel (Dark)" 

  +   OUT.FILE="CONDataAt22.5um.dat" 

  PLOT.1D  X.ST=22.5 X.EN=22.5 Y.ST=0 

Y.EN=@GTH+@TOX+@TCON+@TSI+@TBLOCK+@TCON+@GTH 

  +   VAL UNCH NEG PRINT 

  +   OUT.FILE="VALDataAt22.5um.dat" 

  PLOT.1D  X.ST=22.5 X.EN=22.5 Y.ST=0 

Y.EN=@GTH+@TOX+@TCON+@TSI+@TBLOCK+@TCON+@GTH 

  +   QFN UNCH NEG COL=2 PRINT 

  +   OUT.FILE="FermiDataAt22.5um.dat" 

 

  COMMENT  Potential at Channel TFT Side (Dark) 

  PLOT.1D   

  +   X.ST=22.5 X.EN=22.5 Y.ST=0 

Y.EN=@GTH+@TOX+@TCON+@TSUBDI 

  +   COND NEG PRINT 

  +   TITLE="Band Diagram at Channel TFT Side 

(Dark)" 

  +   OUT.FILE="CONDataAt22.5um.dat" 

  PLOT.1D  X.ST=22.5 X.EN=22.5 Y.ST=0 

Y.EN=@GTH+@TOX+@TCON+@TSUBDI 

  +   VAL UNCH NEG PRINT 

  +   OUT.FILE="VALDataAt22.5um.dat" 

  PLOT.1D  X.ST=22.5 X.EN=22.5 Y.ST=0 

Y.EN=@GTH+@TOX+@TCON+@TSUBDI 

  +   QFN UNCH NEG COL=2 PRINT 

  +   OUT.FILE="FermiDataAt22.5um.dat" 

 

  COMMENT  Potential at Drain (Dark) 

  PLOT.1D   



 

 104 

  +   X.ST=35 X.EN=35 Y.ST=0 

Y.EN=@GTH+@TOX+@TCON+@TSI+@TBLOCK+@TCON+@GTH 

  +   COND NEG PRINT 

  +   TITLE="Band Diagram at Drain (Dark)" 

  +   OUT.FILE="CONDataAt35um.dat" 

  PLOT.1D  X.ST=35 X.EN=35 Y.ST=0 

Y.EN=@GTH+@TOX+@TCON+@TSI+@TBLOCK+@TCON+@GTH 

  +   VAL UNCH NEG PRINT 

  +   OUT.FILE="VALDataAt35um.dat" 

  PLOT.1D  X.ST=35 X.EN=35 Y.ST=0 

Y.EN=@GTH+@TOX+@TCON+@TSI+@TBLOCK+@TCON+@GTH 

  +   QFN UNCH NEG COL=2 PRINT 

  +   OUT.FILE="FermiDataAt35um.dat" 

 IF.END 

 

 COMMENT  Carrier Concentration (Dark) 

 PLOT.1D   

 +   X.ST=22.5 X.EN=22.5 Y.ST=0 

Y.EN=@GTH+@TOX+@TCON+@TSUBDI+@TSI+@TBLOCK+@TCON+@GTH 

 +   ELECTRON COL=4 PRINT 

 +   LEFT=@GTH+@TOX+@TCON 

RIGHT=@GTH+@TOX+@TCON+@TSUBDI+@TSI+@TBLOCK+@TCON+@GTH Y.LOG 

 +   TITLE="Electron Concentration (Dark) at 22.5" 

 +   OUT.FILE="ELECCAt22.5um.dat" 

 PLOT.1D   

 +   X.ST=22.5 X.EN=22.5 Y.ST=0 

Y.EN=@GTH+@TOX+@TCON+@TSUBDI+@TSI+@TBLOCK+@TCON+@GTH 

 +   HOLES COL=3 PRINT 

 +   LEFT=@GTH+@TOX+@TCON 

RIGHT=@GTH+@TOX+@TCON+@TSUBDI+@TSI+@TBLOCK+@TCON+@GTH Y.LOG 

 +   TITLE="Hole Concentration at (Dark) 22.5" 

 +   OUT.FILE="HOLECAt22.5um.dat" 
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 PLOT.1D   

 +   X.ST=35 X.EN=35 Y.ST=0 

Y.EN=@GTH+@TOX+@TCON+@TSUBDI+@TSI+@TBLOCK+@TCON+@GTH 

 +   ELECTRON COL=4 PRINT 

 +   LEFT=@GTH+@TOX+@TCON 

RIGHT=@GTH+@TOX+@TCON+@TSUBDI+@TSI+@TBLOCK+@TCON+@GTH Y.LOG 

 +   TITLE="Electron Concentration (Dark) at 35" 

 +   OUT.FILE="ELECCAt35um.dat" 

 PLOT.1D   

 +   X.ST=35 X.EN=35 Y.ST=0 

Y.EN=@GTH+@TOX+@TCON+@TSUBDI+@TSI+@TBLOCK+@TCON+@GTH 

 +   HOLES COL=3 PRINT 

 +   LEFT=@GTH+@TOX+@TCON 

RIGHT=@GTH+@TOX+@TCON+@TSUBDI+@TSI+@TBLOCK+@TCON+@GTH Y.LOG 

 +   TITLE="Hole Concentration (Dark) at 35" 

 +   OUT.FILE="HOLECAt35um.dat" 

IF.END 

 

  

COMMENT  Extracting Potential from entire device 

IF   COND=(@PEXT=1) 

 LOOP  STEPS=46  

  ASSIGN NAME=XPOS N.VAL=0 DELTA=1 

  ASSIGN NAME=CONNAME C.VALUE=CONDat.000 DELTA=1 

  ASSIGN NAME=VALNAME C.VALUE=VALDat.000 DELTA=1 

  ASSIGN NAME=FERNAME C.VALUE=FERMIDat.000 DELTA=1 

   

  PLOT.1D PRINT CLEAR 

  +  X.ST=@XPOS X.EN=@XPOS Y.ST=0 

Y.EN=@GTH+@TOX+@TCON+@TSUBDI+@TSI+@TBLOCK+@TCON+@GTH 

  +  COND NEG 
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  +  OUT.FILE=@CONNAME 

  PLOT.1D PRINT 

  +  X.ST=@XPOS X.EN=@XPOS Y.ST=0 

Y.EN=@GTH+@TOX+@TCON+@TSUBDI+@TSI+@TBLOCK+@TCON+@GTH 

  +  VAL UNCH NEG 

  +  OUT.FILE=@VALNAME      

  PLOT.1D PRINT 

  +  X.ST=@XPOS X.EN=@XPOS Y.ST=0 

Y.EN=@GTH+@TOX+@TCON+@TSUBDI+@TSI+@TBLOCK+@TCON+@GTH 

  +  QFN UNCH NEG COL=2 

  +  OUT.FILE=@FERNAME 

 L.END 

IF.END 

 

END 
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Appendix C 
OpenGateCollabration Monte Carlo Simulation Macro 

C.1.	
   Main	
  Macro	
  

# Visualization 

/vis/open OGLSX 

/vis/viewer/reset 

/vis/viewer/set/viewpointThetaPhi 60 120 

/vis/viewer/zoom 1 

/vis/viewer/set/style surface 

/vis/drawVolume 

/tracking/storeTrajectory 1 

/vis/scene/endOfEventAction accumulate -1 

/vis/viewer/update 

 

# Settig up Materials 

/gate/geometry/setMaterialDatabase ./GateMaterials.db 

 

# World 

/gate/world/geometry/setXLength 7.62 cm 

/gate/world/geometry/setYLength 7.62 cm 

/gate/world/geometry/setZLength 3.0 mm 

/gate/world/setMaterial Air 

/gate/world/vis/forceWireframe 

/gate/world/vis/setColor white 

 

# Detector Definition 

# Setting up SiHDetector System(scanner) 

/gate/world/daughters/name scanner 

/gate/world/daughters/insert cylinder 

/gate/scanner/setMaterial Silicon 
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/gate/scanner/geometry/setRmin 0 cm 

/gate/scanner/geometry/setRmax 3.81 cm 

/gate/scanner/geometry/setHeight 0.381 mm 

/gate/scanner/placement/setTranslation 0. 0. 1. mm 

/gate/scanner/vis/forceWireframe 

/gate/scanner/vis/setColor yellow 

/gate/scanner/describe 

 

# Detector Pixel 

/gate/scanner/daughters/name Pixel 

/gate/scanner/daughters/insert box 

/gate/Pixel/setMaterial Silicon 

/gate/Pixel/geometry/setXLength 0.250 mm 

/gate/Pixel/geometry/setYLength 0.250 mm 

/gate/Pixel/geometry/setZLength 0.381 mm 

/gate/Pixel/placement/setTranslation 0. 0. 0. mm 

/gate/Pixel/vis/setColor red 

/gate/Pixel/describe 

 

# Isotope Source Mount(Phantom) 

/gate/world/daughters/name phantom 

/gate/world/daughters/insert box 

/gate/phantom/setMaterial Air 

/gate/phantom/geometry/setXLength 2.54 cm 

/gate/phantom/geometry/setYLength 2.54 cm 

/gate/phantom/geometry/setZLength 0.001 mm 

/gate/phantom/placement/setTranslation 0. 0. 0. mm 

/gate/phantom/vis/setColor blue 

/gate/phantom/vis/forceWireframe 

 

# Attaching Sensitive Sensors 

/gate/Pixel/attachCrystalSD 
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/gate/phantom/attachPhantomSD 

 

# Digitizer 

/gate/digitizer/Singles/insert adder 

/gate/digitizer/Singles/insert readout 

/gate/digitizer/Singles/readout/setDepth 3 

 

# Physics 

/control/execute ./SiHDet_Physics.mac 

 

# Initialize 

/gate/run/initialize 

 

# Source Definition 

/control/execute ./SiHDet_Source.mac 

 

# Output format 

/gate/output/root/enable 

/gate/output/root/setFileName SiHDet 

/gate/output/root/setRootHitFlag 1 

/gate/output/root/setRootSinglesFlag 1 

/gate/output/root/setRootSinglesReadoutFlag 1 

 

# Simulation profile 

/gate/application/setTimeSlice     1.  s 

/gate/application/setTimeStart     0.  s 

#/gate/application/setTimeStop      1.  s 

/gate/application/setTimeStop      1000.  s 

 

# Start the Acquisition 

/gate/application/start 
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C.2.	
   Source	
  (Iron	
  55)	
  Definition	
  

####################################### 

#  SiHDet Source definition           # 

####################################### 

# The data came from 4 year old Fe-55 # 

# source with 100 uCi, yeilding 27 uCi# 

# as of April 2014.                   # 

####################################### 

/gate/source/addSource Fe55 

/gate/source/Fe55/setActivity 999000.0 Bq 

/gate/source/Fe55/gps/particle gamma 

/gate/source/Fe55/gps/energytype Mono 

/gate/source/Fe55/gps/monoenergy 5.8 keV 

/gate/source/Fe55/gps/angtype iso 

/gate/source/Fe55/gps/type Plane 

/gate/source/Fe55/gps/shape Rectangle 

/gate/source/Fe55/gps/halfx 1.27 cm 

/gate/source/Fe55/gps/halfy 1.27 cm 

/gate/source/Fe55/gps/centre 0 0 0 cm 

/gate/source/Fe55/visualize 250000 green 0.5 

/gate/source/list 

/gate/source/Fe55/gps/confine phantom 

 

C.3.	
   Physics	
  Definition	
  

####################################### 

#  SiHDet Physics Definition          # 

####################################### 

 

/gate/physics/setEMin 0.1 keV 
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/gate/physics/setEMax 100 keV 

 

/gate/physics/addProcess PhotoElectric gamma 

/gate/physics/processes/PhotoElectric/setModel StandardModel 

 

/gate/physics/addProcess Compton gamma 

/gate/physics/processes/Compton/setModel StandardModel  

 

/gate/physics/addProcess RayleighScattering gamma 

/gate/physics/processes/RayleighScattering/setModel PenelopeModel 

 

/gate/physics/addProcess GammaConversion 

/gate/physics/processes/GammaConversion/setModel StandardModel  
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