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Abstract

Consider a binary matroid M given by its matrix representation. We show that if M is
a lift of a graphic or a cographic matroid, then in polynomial time we can either solve the
single commodity flow problem for M or find an obstruction for which the Max-Flow Min-
Cut relation does not hold. The key tool is an algorithmic version of Lehman’s Theorem
for the set covering polyhedron.
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Chapter 1

Introduction

1.1 Multi-Commodity Flow in Graphs

1.1.1 Flow Definitions

A graph G = (V,E), weight function w ∈ ZZE
+, and set of demand edges Σ ⊆ E determine

a multi-commodity flow instance. Each d ∈ Σ is a demand edge with demand wd while
each e ∈ E − Σ1 is a capacity edge with capacity we. Given a graph G = (V,E), C ⊆ E
is a circuit of G if G[C] is connected and 2-regular. Let C1 be the set of circuits of G
intersecting Σ in exactly one demand edge. Call y ∈ IRC1+ a (fractional) w-flow if it satisfies

(1) demand constraints : for each d ∈ Σ :
∑

(yC : d ∈ C ∈ C1) = wd, (1.1)

(2) capacity constraints : for each e ∈ E \ Σ :
∑

(yC : e ∈ C ∈ C1) ≤ we. (1.2)

A cut of G is a set of edges δ(S) ⊆ E for S ⊆ V where δ(S) is defined as the set
of edges with exactly one endpoint in S. That is, δ(S) := {e = xy : x ∈ S, y 6∈ S}. In
the future, δ(v) will denote the set δ({v}). The cut condition is a necessary condition for
the existence of a fractional w-flow. It states that the demand across any cut should not
exceed the capacity across the cut. Letting w(F ) :=

∑
(we : e ∈ F ) for F ⊆ E, the cut

condition states that for all S ⊆ V , w(δ(S)− Σ) ≥ w(δ(S) ∩ Σ).

A signed graph is a pair (G,Σ) where G is a graph and Σ ⊆ E(G). We say B ⊆ E is
odd if |B ∩ Σ| is odd. We say B ⊆ E is even if |B ∩ Σ| is even. In particular, edges in Σ

1Here ‘−’ indicates set difference and ‘A− a’ denotes A− {a}
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are odd. If C is a circuit of G and |C ∩Σ| is odd, we call C an odd circuit of (G,Σ). Given
(G,Σ), updating Σ to Σ′ = Σ4δ(S) for S ⊆ V does not change the set of odd circuits in
(G,Σ). 2 Any Σ′ that can be obtained in this way is called a signature of (G,Σ). The cut
condition can be reformulated using signatures as follows. For a proof, see Remark 1.2.1.

Remark 1.1.1. The cut condition holds for (G,Σ) if and only if Σ is a minimum weight
signature of (G,Σ).

If w ∈ ZZE
+ satisfies the cut condition, then triple (G,Σ, w) defines two multi-commodity

flow problems. The fractional multi-commodity flow problem asks if there exists a fractional
w-flow y ∈ IRC1+ . The integer multi-commodity flow problem asks if there exists an integer
w-flow y ∈ ZZC1+ .

Finding an integer w-flow is equivalent to assigning to each C ∈ C an integer multiplicity
yC subject to two restrictions: (1) the total multiplicities of circuits through e 6∈ Σ must
not exceed we, and, (2) the total multiplicity of circuits through d ∈ Σ must equal wd. If
we = 1 for all e ∈ E, the instance is said to have unit weights and a w-flow is called an
1l-flow. Finding a 1l-flow corresponds to choosing for each d ∈ Σ a circuit whose intersection
with Σ is exactly {d}, with the restriction that the circuits chosen are pairwise disjoint.
This viewpoint foreshadows the connection to packing discussed in Section 2.4.2. Figure
1.1 demonstrates some of the definitions introduced thus far.

A B

CD

E F

2

2

1 1

1

1

21

2

Figure 1.1: Multi-Commodity Flow Instance: Demand edges are the thick edges (AD and
BC). Edge e is labelled by weight we. If C1 = {AE,DE,AD}, C2 = {BC,CF,BF} and
C3 = {BC,CF,EF,AE,AB}, then C1 ∈ CAD and C2, C3 ∈ CBC . The assignment yC1 = 1,
yC2 = yC3 = 1/2 specifies a fractional w-flow. The assignment yC1 = 1, yC2 = 1 specifies
an integer w-flow. Note that C1 and C2 are disjoint circuits of G.

2Here 4 denotes symmetric difference; A4B = (A \B) ∪ (B \A).
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The role of (G,Σ) in the existence of multi-commodity flows for all weight functions is
of interest. A weight function w ∈ ZZE

+ is called Eulerian if w(δ(v)) is even for all v ∈ V .
The role of (G,Σ) in the existence of integer flows for all Eulerian weight functions is also
of interest. We look for sufficient conditions; what guarantees regarding the structure of
(G,Σ) imply a flow exists for all weight functions w ∈ ZZE

+? Although this may seem less
general, it ensures our results speak only to the structure of (G,Σ). Given (G,Σ) and w
satisfying the cut condition, consider the following problems.

1. Fractional Flow Problem: Does there exist a fractional w-flow?
2. Integer Flow Problem: Does there exist an integer w-flow?
3. Eulerian Integer Flow Problem: If w is Eulerian, does there exist an integer w-flow?

Clearly, if there is an integer w-flow for every w ∈ ZZE
+ satisfying the cut condition, neces-

sarily there is a fractional w-flow for all such w. In fact, if there exists an integer w-flow
for every Eulerian w ∈ ZZE

+ satisfying the cut condition, there is a fractional w-flow for all
w satisfying the cut condition. To see this, note that given w ∈ ZZE

+, 2w is necessarily an
Eulerian weight function and also satisfies the cut condition. By assumption, there exists
a 2w-flow y; 1

2
y is a fractional w-flow.

It may not be immediately obviously that there exist “bad instances”. A bad instance
for the fractional flow problem is a triple (G,Σ, w) where w satisfies the cut condition but
(G,Σ) does not admit a fractional w-flow. Likewise, a bad instance for the integer flow
problem is a triple (G,Σ, w) where w satisfies the cut condition but (G,Σ) does not admit
an integer w-flow. The two important signed graphs introduced next demonstrate that
such instances exist.

1.1.2 Bad Instances

Odd-Kn

Given signed graph (G,Σ), the set of signed graphs (G,Σ′) such that Σ′ = Σ4δ(S) for
S ⊆ V form an equivalence class. Note that (G,Σ) and (G,Σ′) are equivalent if and only if
Σ′ is a signature of (G,Σ). We may refer to (G,Σ′) as a resigning of (G,Σ). We let odd-Kn

denote the equivalence class containing (Kn, E(Kn)) where Kn denotes the complete graph
on n vertices.

3



Odd-K4

Consider a flow problem on the graph K4. The two demand edges (Σ4) are a pair of non-
adjacent edges in K4. The weight function is unit: we = 1 for all e ∈ E. This instance
is illustrated in Figure 1.2. Resigning on δ({A,B}) shows this signed graph is in the
equivalence class odd-K4.

A B

DC

e2

e4

e3e1

e5
e6

Figure 1.2: Graph is K4. Each edge is labelled by its name. Thick edges are demand edges.

The circuits intersecting Σ4 exactly in the edge e2 are Ce2 = {{e2, e3, e5}, {e1, e2, e6}}.
The circuits intersecting Σ4 exactly in the edge e4 are Ce4 = {{e1, e4, e5}, {e3, e4, e6}}.
Assigning 1/2 to each C ∈ C1, we obtain a fractional flow for the unit weight function. That
is, y{e2,e3,e5} = y{e1,e2,e6} = y{e1,e4,e5} = y{e3,e4,e5} = 1/2 is a 1l-flow. Since the cut condition
is necessary for the existence of a fractional w-flow, the fractional 1l-flow y demonstrates
that the cut condition holds.

This instance, however, does not have an integer flow. Finding an integer flow is
equivalent to finding C2 ∈ Ce2 and C4 ∈ Ce4 such that C2 ∩C4 = ∅. It is straightforward to
verify that no such C2 and C4 exist.

Odd-K5

Consider a flow problem on the graph K5. There are four demand edges: any triangle plus
the unique remaining edge not adjacent to a triangle edge. Again consider the unit weight
function. Note that w(δ(v)) = |δ(v)| = 4 for all v ∈ V ; the weight function is Eulerian.
This instance is illustrated in Figure 1.3. Resigning on δ({A,B,C}) shows this signed
graph is in the equivalence class odd-K5.

4



A

B

D

C

E

e3 e7

e8

e4

e6

e2 e1
e10

e5 e9

Figure 1.3: Graph is K5. Each edge is labelled by its name. Thick edges are demand edges.

It is straightforward (but tedious) to verify that the cut condition holds for this instance.
However, there does not exist a fractional flow. The total demand is w(Σ5) = 4 and the
total capacity is w(E \ Σ5) = 6. Since each circuit using exactly one demand edge has
length exactly three, it requires 2ε units of capacity to satisfy ε units of demand and so 8
units of capacity are required to route the 4 units of demand. Only 6 units of capacity is
available and therefore no fractional flow exists. Obviously, if there is no fractional flow
then there is no integer flow. In sum, this is an instance with an Eulerian weight function,
but no fractional or integer flow.

1.1.3 Minors

We return to the question of interest: what conditions can be imposed on (G,Σ) to guar-
antee the existence of integer or fractional flows for all (or all Eulerian) weight functions?
Having established this is a reasonable question, we first require a mechanism for ascribing
structure to (G,Σ).

Graph minors are frequently used to classify the structure of (unsigned) graph G. Given
G = (V,E), there are two minor operations: deletion and contraction. Deleting edge e ∈ E
is done by removing e; the resulting graph is denoted by G\e. In other words, we define G\e
as (V,E − e). Contracting edge e ∈ E is done by deleting e and identifying its endpoints;
the resulting graph is denoted by G/e. For e = xy, we define G/e as (V ∪{z}−{x, y}, E ′)
with E ′ defined as follows: if f ∈ E and neither endpoint of f is x, y, then f ∈ E ′; if f ∈ E

5



and f = sx or f = xy then sz ∈ E ′. A minor of G is any graph obtained from G by a
sequence of contractions and deletions.

Graph minor operations can be thought to act on the circuits of the graph. Deleting
edge e results in removing from G all the circuits that used edge e and otherwise preserving
the set of circuits. Contracting edge e results in removing the edge e from all the circuits
in G using edge e and otherwise preserving the set of circuits. It is straightforward to
verify that deletions and contractions can be performed in any order. Namely, if G′ is
obtained from G by deleting edges in I and contracting edges in J in some order, then
we can unambiguously denote G′ by G/I \ J . One way to classify a graph is according to
whether it contains a certain fixed minor; G contains G′ as a minor if and only if there
exists I, J ⊆ E(G) such that G′ = G/I \ J .

Although graph minors characterize the structure of graph G, we are interested in the
structure of the signed graph (G,Σ). The idea of minors in graphs can be extended to
minors in signed graphs. Recall that given (G,Σ), updating Σ to Σ′ = Σ4δ(S) for S ⊆ V
does not change the set of odd circuits in (G,Σ). We call this operation resigning. Given
(G,Σ) and e ∈ E, we define (G,Σ)\e as (G\e,Σ−e) and call this operation deletion. Given
(G,Σ) and e ∈ E that is not an odd loop (edge with same endpoints), suppose we resign
to obtain Σ′ such that e 6∈ Σ′. We define (G,Σ)/e as (G/e,Σ′) and call this operation
contraction. A minor of (G,Σ) is any signed graph (G′,Σ′) obtained from (G,Σ) by a
sequence of contractions and deletions. Deleting e in (G,Σ) removes all the circuits using
e. Contracting e ∈ (G,Σ) shortens all the circuits using e while maintaining their parity.

Since minor operations can be applied in any order, we denote by (G,Σ)/I \ J the
signed graph obtained by contracting all edges in I ⊆ E and deleting all edges in J ⊆ E
(and resigning in whatever way avoids contracting signature edges). Necessarily I does
not contain an odd circuit. One way to classify a signed graph is according to whether
it contains a certain fixed minor; (G,Σ) contains (G′,Σ′) as a minor if and only if there
exists I, J ⊆ E(G) such that (G′,Σ′′) = (G,Σ)/I \ J and Σ′ = Σ′′4δG′(U) for U ⊆ V (G′).
Note that this definition does not account explicitly for the resigning operation. If (G′,Σ′)
is a minor of (G,Σ) then so is any resigning of (G′,Σ′). In other words, writing “(G′,Σ′)
is a minor of (G,Σ)” means that every resigning of (G′,Σ′) is a minor of every resigning
of (G,Σ).

1.1.4 Existing Results

Having defined minors, we return to sufficient conditions for the existence of flows. One
way to give such conditions is by providing a list of minors with the property that whenever

6



(G,Σ) contains no minor on the list, (G,Σ) has a flow for every w ∈ ZZE
+. Such lists are

known for the flow problems of interest.

Theorem 1.1.2 (Seymour [29]). Suppose (G,Σ) has no odd-K4 minor. Then for every
w ∈ ZZE

+ satisfying the cut condition, (G,Σ) has an integer w-flow.

Theorem 1.1.3 (Guenin [18]). Suppose (G,Σ) has no odd-K5 minor. Then for every
weight function w ∈ ZZE

+ satisfying the cut condition, (G,Σ) has a fractional w-flow.

Theorem 1.1.4 (Geelen, Guenin [13]). Suppose (G,Σ) has no odd-K5 minor. Then for
every Eulerian weight function w ∈ ZZE

+ satisfying the cut condition, (G,Σ) has an integer
w-flow.

1.2 Multi-Commodity Flow in Binary Matroids

1.2.1 Matroid Theory Background

A matroid M is a pair (E, I) where E := E(M) is a finite set called the ground set, and
I ⊆ 2E is a set of subsets of E satisfying the following properties:

(I1) ∅ ∈ I,
(I2) if J ∈ I and I ⊆ J , then I ∈ I, and
(I3) if X ⊆ E and I1 and I2 are maximal members of {I : I ∈ I and I ⊆ X}, then

|I1| = |I2|.
Set I ∈ I is called independent ; set I 6∈ I is called dependent. We call a maximally
independent subset of E a basis of M . Property (I3) shows that all bases have the same
size, called the rank of the matroid. Let C ⊆ E; C is a circuit of M if it is an inclusion-wise
minimally dependent set. A matroid is uniquely determined by its set of circuits.

A matroid M with ground set E = {e1, . . . en} is said to be representable over field
IF if there exists a matrix A ∈ IFm×n with columns indexed by {e1 . . . en} such that the
independent sets of M coincide exactly with the column sets of A that are linearly inde-
pendent over IF. Matrix A is called a matrix representation for M . If M is representable
over GF (2), then M is called binary. In this paper, we are primarily concerned with binary
matroids. In a binary matroid, a cycle is any finite symmetric difference of circuits.

The dual of matroid M , denoted M∗, is the matroid with ground set E such that S ⊆ E
is independent if and only if there exists a basis B of M such that S ∩B = ∅. The circuits
of M∗ are called the cocircuits of M . In binary matroids, each cocircuit intersects each
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circuit with even parity. A cocyle of a binary matroid is any finite symmetric difference of
cocircuits.

A matroid M is graphic if there exists a graph G such that the circuits of M correspond
exactly to the circuits of G. Given graph G, let M(G) denote the affiliated graphic matroid.
One possible matrix representation for M(G) is the adjacency matrix of G. A matroid M
is cographic if there exists a graph G such that circuits of M correspond exactly to the
minimal cuts of G. Given graph G, let M∗(G) denote the affiliated cographic matroid. As
this notation suggests, M∗(G) is the dual of M(G). All graphic and cographic matroids
are binary and thus can be represented by matrices over GF (2). However, these matroids
may also be represented by the underlying graph G = (V,E).

1.2.2 Flow Definitions

As matroids are a generalization of graphs, flows in matroids are a generalization of flows in
graphs. Throughout this section, the term matroid will refer to a binary matroid. Many of
these definitions extend directly to general matroids; Section 2.4.6 justifies the restriction
to binary matroids.

A matroid M on ground set E, weight function w ∈ ZZE
+ and set of demand edges Σ ⊆ E

determine a flow instance. Let C1 be the set of circuits in M that intersect Σ in exactly
one element. Call y ∈ IRC1+ a (fractional) w-flow if it satisfies

(1) demand constraints : for each d ∈ Σ :
∑

(yC : d ∈ C ∈ C1) = wd,

(2) capacity constraints : for each e ∈ E \ Σ :
∑

(yC : e ∈ C ∈ C1) ≤ we.

The cut condition is again necessary for the existence of a fractional w-flow. For graphs,
the cut condition states that w(D ∩Σ) ≤ w(D \Σ) for all cuts D = δ(S). Minimal cuts in
graphs are the cocircuits of a graphic matroid. The natural extension of the cut condition
to arbitrary matroid M states that w(D ∩ Σ) ≤ w(D \ Σ) for all cocircuits D of M .

A signed matroid is a pair (M,Σ) where M is a matroid and Σ ⊆ E(M). We say
B ⊆ E is odd if |B ∩ Σ| is odd. We say B ⊆ E is even if |B ∩ Σ| is even. In particular,
edges in Σ are odd. If C is a circuit of M and |C ∩ Σ| is odd, we call C an odd circuit
of (M,Σ). Given (M,Σ), updating Σ to Σ′ = Σ4D for cocycle D of M does not change
the set of odd circuits. Any Σ′ that can be obtained in this way is called a signature of
(M,Σ). We say (M,Σ) and (M ′,Σ′) are equivalent and call (M ′,Σ′) a resigning of (M,Σ)
if M = M ′ and Σ′ = Σ4D for some cocycle D. The cut condition can be reformulated
using signatures as follows.
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Remark 1.2.1. The cut condition holds for (M,Σ) if and only if Σ is a minimum weight
signature of (M,Σ).

Proof. The cut condition holds if and only if w(D ∩ Σ) ≤ w(D \ Σ) for all cocircuits D of
M . If the cut condition holds, let Σ′ = Σ4D be an arbitrary signature of (M,Σ). Then

w(Σ′) = w(Σ4D) = w(Σ \D) + w(D \ Σ) ≥ w(Σ \D) + w(D ∩ Σ) = w(Σ)

where the inequality (≥) holds as a result of the cut condition. If the cut condition does
not hold, then w(D∩Σ) > w(D\Σ) for some cocircuit D of M and so the above inequality
for Σ′ = Σ4D yields w(Σ′) < w(Σ). It follows that the cut condition holds for (M,Σ) if
and only if Σ is a minimum weight signature of (M,Σ).

If w ∈ ZZE
+ satisfies the cut condition, then triple (M,Σ, w) defines two multi-commodity

flow problems. The fractional multi-commodity flow problem asks if there exists a fractional
w-flow y ∈ IRC1+ . The integer multi-commodity flow problem asks if there exists an integer
w-flow y ∈ ZZC1+ .

The questions of interest about flows in graphs can be extended to questions about
flows in matroids. In particular, we are concerned with signed matroids (M,Σ) for which
flows exist for all weight functions w ∈ ZZE

+. For graphs, the Eulerian condition states
that w(δ(v)) is even for all v ∈ V . Since minimal cuts in graphs are the cocircuits of a

graphic matroid, the natural extension to matroids defines weight function w ∈ ZZ
E(M)
+ to

be Eulerian if w(D) is even for all cocircuits D of M . Given matroid M , Σ ⊆ E, and
w ∈ ZZE

+ satisfying the cut condition, the following flow problems arise.

1. Fractional Flow Problem: Does there exist a fractional w-flow?
2. Integer Flow Problem: Does there exist an integer w-flow?
3. Eulerian Integer Flow Problem: If w is Eulerian, does there exist an integer w-flow?

Again we are interested in “bad instances”; (M,Σ, w) is a bad instance if w satisfies
the cut condition, but there exists no integer flow or no fractional flow.

1.2.3 Bad Instances

Odd-K4

The matroid M(K4) is the graphic matroid corresponding to K4. We will overload notation
and refer to the equivalence class containing signed matroid (M(K4), E(K4)) as odd-K4.
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Considering signature Σ4 = {e2, e4}, the odd circuits of (M(K4),Σ4) are exactly the odd
circuits of the complete graph K4. As per the discussion in Section 1.1.2, the unit weight
function satisfies the cut condition, but the signed matroid (M(K4),Σ4) does not have an
integer 1l-flow.

1 1 0 0 1 0
0 1 1 0 0 1
1 0 0 1 0 1
0 0 1 1 1 0

, Σ4 = {e2, e4}

A B

DC

e2

e4

e3e1

e5
e6

Figure 1.4: Odd-K4: Matrix and graphic representations for (K4,Σ4). Columns of matrix
are indexed in order by {e1, e2, e3, e4, e5, e6}

Odd-K5

The matroid M(K5) is the graphic matroid corresponding to K5. We will refer to the
equivalence class containing signed matroid (M(K5), E(K5)) as odd-K5. Considering sig-
nature Σ5 = {e3, e4, e7, e10}, the odd circuits of (M(K5),Σ5) are exactly the odd circuits
of the complete graph K5. As per the discussion in Section 1.1.2, the unit weight function
is Eulerian and satisfies the cut condition, but the signed matroid (M(K5),Σ5) does not
have a fractional 1l-flow.

1 1 1 0 0 0 1 0 0 0
0 0 1 0 1 1 0 0 0 1
0 0 0 0 0 0 1 1 1 1
0 1 0 1 0 1 0 0 1 0
1 0 0 1 1 0 0 1 0 0

,

Σ5 = {e3, e4, e7, e10}

A

B

D

C

E

e3 e7

e8

e4

e6

e2 e1
e10

e5 e9

Figure 1.5: Odd-K5: Matrix and graphic representations for (K5,Σ5).

Complements of Cuts of Odd-K5

Consider the binary matroid T10 with matrix representation given by Figure 1.6. Let
Σ10 = {e1, e7, e8}. The odd circuits of (T10,Σ10) are exactly the complements of the cuts
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of K5 (see Figure 1.5 for the corresponding labelling of K5). For example, the complement
of cut δ({C}) is C1 = {e1, e2, e3, e4, e5, e6} and the complement of cut δ({B,D}) is C2 =
{e1, e6, e7, e8}. Note that both C1 and C2 correspond to minimally dependent column sets
of the matrix representation, and both C1 and C2 intersect Σ10 an odd number of times.

1 1 0 0 0 0 0 1 1 0
1 0 1 0 0 0 0 1 0 1
1 0 0 1 0 0 1 0 1 0
1 0 0 0 1 0 1 0 0 1
1 0 0 0 0 1 1 1 1 1

, Σ10 = {e1, e7, e8}

Figure 1.6: Matrix and representation for T10.

It can be verified that the unit weight function is Eulerian and satisfies the cut condition.
A theorem of Seymour [30] shows that (T10,Σ10) has no fractional flow. To prove this
directly, the argument is similar to that for odd-K5. A proof also arises from a relationship
between fractional flow in a matroid and fractional flow in its dual (see Theorem 3.1.1).

Lines of Fano Plane

The binary matroid F7 is rank 3 matroid with matrix representation given by Figure 1.7.
The length 3 circuits of F7 correspond to the lines of the Fano plane; for example {e1, e5, e7}
is the length 3 circuit corresponding to the vertical line of the Fano plane. Let signature
Σ7 be any length 3 circuit of F7; here we arbitrarily choose {e1, e5, e7}.

1 0 0 1 0 1 1
0 1 0 1 1 0 1
0 0 1 0 1 1 1

, Σ7 = {e1, e5, e7}

1

2 3

5 64

7

Figure 1.7: Matrix representation for F7; length 3 odd circuits are exactly the lines of Fano
plane (on right).
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Consider the multi-commodity flow instance for signed matroid (F7, {e1, e5, e7}) with
unit weights. To verify the cut condition, we first note that the cocircuits of F7 are exactly
the complements of the lines of the Fano plane. Since for any cocircuit D, |D∩{e1, e5, e7}| ≤
2 and |D| = 4, the cut condition holds. Moreover, since all cocycles have an even number
of elements, the weights are Eulerian. However, any circuit containing exactly one of
{e1, e5, e7} has length exactly 3 and so to satisfy ε units of demand requires 2ε units of
capacity. Since w(Σ7) = 3, 6 total units of capacity are required, but only w(E \ Σ7) = 4
units are available. Thus (F7,Σ7) has no fractional 1l-flow and hence also no integer 1l-flow.
Resigning on cocircuit {e2, e3, e4, e6} shows E(F7) is a signature of (F7,Σ7).

Postman Sets of Petersen Graph

A postman set of graph G = (V,E) is S ⊆ E such that the odd degree vertices of G[S]
exactly coincide with the odd degree vertices of G. In Figure 1.8, an example of a postman
set of the Petersen graph is given. Let (P15,Σ15) be the signed matroid whose odd circuits
are exactly the postman sets of the Petersen graph. Signed matroid (P15,Σ15) has no
fractional 1l-flow. One way to show this is by deriving a connection between fractional
flows and fractional colouring; there is no 3-colouring of the Petersen graph, but there is
a fractional 3-colouring. Since colourings correspond to flows, (P15,Σ15) has a fractional
1l-flow but no integer 1l-flow for the Eulerian unit weight function. For more information
about connections between graph colouring and flows, see Section 2.4.4.

A

B

D

C

E

F

G

H

I

J

Figure 1.8: Graph is Petersen Graph; thick edges are an example of a postman set.

12



1.2.4 Minors

The idea of using minors to characterize graphs extends to matroids. Let M be a ma-
troid; the two minor operations that can be applied to M are deletion and contrac-
tion. The matroid obtained by deleting edge e is denoted by M \ e and has circuit set
{C : C is a circuit of M with e 6∈ C}. The matroid obtained by contracting edge e is de-
noted by M/e and has cycle set {C − e : C is a cycle of M}. A minor of M is any matroid
M ′ obtained by a sequence of contractions and deletions. Deletions and contractions can
be performed in any order; if M ′ is obtained from M by deleting edges in I and contracting
edges in J in some order, then we can unambiguously denote M ′ by M/I \ J . One way to
classify a matroid is according to whether it contains some fixed minor; M contains M ′ as
a minor if and only if there exists I, J ⊆ E(M) such that M ′ = M/I \ J .

Minors in matroids can be extended to minors in signed matroids. There are three
minor operations: resigning, deletion and contraction. Resigning is done by replacing Σ
by Σ′ = Σ4D for D a cocyle. Given (M,Σ) and e ∈ E, we define (M,Σ)\e as (M \e,Σ−e)
and call this operation deletion. Given (M,Σ) and e ∈ E that is not an odd loop (e is
a loop if {e} is dependent), suppose we resign to obtain Σ′ such that e 6∈ Σ′. We define
(M,Σ)/e as (M/e,Σ′) and call this operation contraction. A minor of (M,Σ) is any signed
matroid (M ′,Σ′) obtained from (M,Σ) by a sequence of contractions and deletions.

Deleting edge e removes all the circuits using e and contracting edge e shortens all
the circuits using e while maintaining their parity. Since minor operations can be applied
in any order, we denote by (M,Σ)/I \ J the signed matroid obtained by contracting all
edges in I ⊆ E and deleting all edges in J ⊆ E (and resigning in whatever way avoids
contracting signature edges). Necessarily J does not contain an odd circuit. One way
to classify a signed matroid is according to whether it contains a certain fixed minor;
(M,Σ) contains (M ′,Σ′) as a minor if and only if there exists I, J ⊆ E(G) such that
(M ′,Σ′′) = (M,Σ)/I \ J and Σ′ = Σ′′4D for some cocyle D of (M ′,Σ′′). Note that this
definition does not account explicitly for the resigning operation. If (M ′,Σ′) is a minor of
(M,Σ) then so is any resigning of (M ′,Σ′). In other words, writing “(M ′,Σ′) is a minor of
(M,Σ)” means that every resigning of (M ′,Σ′) is a minor of every resigning of (M,Σ).

1.2.5 Existing Results and Conjectures

Having defined matroid minors, we return to sufficient conditions for the existence of flows.
Theorem 1.1.2 states graphs with no odd-K4 minor always have integer flows. This theorem
extends to integer flows in binary matroids.
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Theorem 1.2.2 (Seymour). Suppose (M,Σ) has no odd-K4 minor. Then for every w ∈ ZZE
+

satisfying the cut condition, (M,Σ) has an integer w-flow.

Generalization of Theorems 1.1.3 and 1.1.4 regarding fractional flows and Eulerian
integer flows are not known. The Flowing Conjecture [30] posits that the bad instances
previously discussed are precisely the obstructions to having a fractional flow for every
weight function satisfying the cut condition. The Cycling Conjecture [30] posits that the
bad instances previously discussed are precisely the obstructions to having an integer flow
for every Eulerian weight function satisfying the cut condition.

Conjecture 1.2.3 (Flowing Conjecture). If signed matroid (M,Σ) has no odd-K5, (T10,Σ10),
or (F7, E(F7)) minor, then M has a fractional w-flow for every w ∈ ZZE

+ satisfying the cut
condition.

Conjecture 1.2.4 (Cycling Conjecture). If signed matroid (M,Σ) has no odd-K5, (T10,Σ10),
(F7, E(F7)), or (P15,Σ15) minor, then M has an integer w-flow for every Eulerian w ∈ ZZE

+

satisfying the cut condition.

Although the Cycling and Flowing Conjectures are open for general matroids, they are
solved for some specific classes of matroids. For example, the Flowing Conjecture has been
solved for lifts of graphic and cographic matroids whenever |Σ| = 1.

1.2.6 Lifts and Projections of Graphic and Cographic Matroids

Consider binary matroid M represented by 0, 1-matrix A. Let A′ be obtained from A by
adding some 0, 1-row outside the row space of A. The binary matroid M ′ with represen-
tation A′ is called a lift of M . Let A′′ be obtained from A by removing some row. Binary
matroid M ′′ with representation A′′ is called a projection of M .

Lifts of graphic matroids are known as even cycle matroids and lifts of cographic ma-
troids are known as even cut matroids [25]. The Flowing Conjecture (Conjecture 1.2.3)is
known to hold for lifts of graphic and cographic matroids whenever Σ consists of exactly
one edge [19].

Theorem 1.2.5. Let M be a lift of a graphic matroid and e ∈ E(M). If (M, {e}) has no
odd-K5 or (F7, E(F7)) minor, then M has a fractional w-flow for every w ∈ ZZE

+ satisfying
the cut condition.
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Theorem 1.2.6. Let M be a lift of a cographic matroid and e ∈ E(M). If (M, {e}) has
no (T10,Σ10) or (F7, E(F7)) minor, then M has a fractional w-flow for every w ∈ ZZE

+

satisfying the cut condition.

It can be shown that the dual of a lift of M is a projection of M∗. The Flowing
Conjecture (Conjecture 1.2.3) also holds for projections of graphic and cographic matroids.
For more details see Section 2.3.

1.3 Results in This Thesis

1.3.1 Algorithmic Point of View

Up to this point, we have been concerned with existential results. Given signed matroid
(M,Σ), and w satisfying the cut condition,

1. Does (M,Σ) have a fractional w-flow?
2. Does (M,Σ) have an integer w-flow?
3. If w is Eulerian, does (M,Σ) have an integer w-flow?

Existential questions can be extended to questions about finding w-flows: given (M,Σ)

and w ∈ ZZ
E(M)
+ , the aim is to either

1. find a w-flow, or
2. show the cut condition is violated, or
3. find an obstruction.

Here, by obstruction we mean one of the signed graphs appearing in Theorem 1.2.2 and
Conjectures 1.2.3 and 1.2.4. Our interest is in finding flows, obstructions, or cut condition
violations “efficiently”.

1.3.2 Measuring Efficiency

Given some problem with input X, we let 〈X〉 denote the encoding length of the input.
For example, the encoding length of a rational number α = p

q
, is the total number of bits

needed to represent both p and q. The encoding length 〈w〉 of rational vector w is the
total encoding length of all entries of w. The encoding length 〈A〉 of matrix A is the total
encoding length of all entries of A. We consider an algorithm for problem with input X
efficient if it runs in time polynomial in 〈X〉.
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The input for a flow problem is (M,Σ) and w ∈ ZZ
E(M)
+ . The size of the input depends

on its representation; for example, matroid M can be provided by its matrix representation
A or by a list of its circuits. Since the number of circuits may be exponential in the size
of A, an algorithm running in polynomial time in the size of the circuit representation
will not necessarily run in polynomial time in 〈A〉. Accordingly, we need to adopt some
convention for measuring the size of a matroid. Throughout this paper, suppose A is the
smallest matrix representation of matroid M . Then 〈A〉 is the size of M . If M is binary,
then the entries of A are 0 or 1 and so if A is m× n, then 〈A〉 = mn.

For more details regarding efficiency measures and algorithm analysis see Grötschel et.
al. ([16] Chapter 1.2). It is well-known the whenever the cut condition holds, the fractional
multi-commodity flow problem can be solved in polynomial time using linear programming.
The integer multi-commodity flow problem is polynomial time solvable for |Σ| = 1 using
network flow techniques. However, this problem is known to be NP-hard for |Σ| ≥ 2 [10].

1.3.3 Algorithms Arising from Existential Results

Although we cannot hope for a polynomial time algorithm for solving arbitrary flow in-
stances, restricting the instances in consideration may allow for efficient algorithms. One
natural class of problems to consider arises from existential results; does knowing that
(M,Σ) has a integer (or fractional) flow for every w ∈ ZZE

+ satisfying the cut condition help
in efficiently finding flows?

By Seymour’s Theorem, the instances with integer flows are exactly the instances for
which (M,Σ) has no odd-K4 minor. Using a decomposition theorem, Truemper [33] shows
this result leads to an algorithm.

Theorem 1.3.1. Let (M,Σ) be a signed binary matroid with matrix representation A and

let w ∈ ZZ
E(M)
+ be some weight function. Then in time polynomial in 〈A〉 and 〈w〉, one can

either

1. show the cut condition is violated, or
2. find I, J ⊆ E(M) such that (M,Σ)/I \ J is odd-K4, or
3. find an integer w-flow.

Note that the above result is (in some sense) stronger than simply being able to find
an integer w-flow whenever the cut condition is satisfied and (M,Σ) has no odd-K4 minor.
Given an arbitrary matroid, this results shows that we can either find an integer w-flow or
provide a certificate as to why we could not.
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Since the Flowing Conjecture (Conjecture 1.2.3) is open for general clutters, we cannot
hope to prove a fractional analogue of Theorem 1.3.1. However, in Chapter 4 of this thesis,
we show that the analogous result holds whenever M is the lift of a graphic or cographic
matroid and |Σ| = 1.

Theorem 1.3.2. Let M with representation A be the lift of a graphic matroid and e ∈
E(M). Consider the flow instance on signed matroid (M, {e}) with weight function w ∈
ZZE

+. Then in time polynomial in 〈A〉 and 〈w〉 one can either

1. show the cut condition is violated, or
2. find I, J ⊆ E(M)− e such that (M, {e})/I \ J is odd-K5 or (F7, E(F7)), or
3. find a fractional w-flow.

Theorem 1.3.3. Let M with representation A be the lift of a cographic matroid and e ∈
E(M). Consider the flow instance on signed matroid (M, {e}) with weight function w ∈
ZZE

+. Then in time polynomial in 〈A〉 and 〈w〉 one can either

1. show the cut condition is violated, or
2. find I, J ⊆ E(M)− e such that (M, {e})/I \ J is (T10,Σ10) or (F7, E(F7)), or
3. find a fractional w-flow.

It follows from the extension of the graph minors project to binary matroids that the
problem of checking for the presence of the aforementioned obstructions can be done in
polynomial time. Hence an existing algorithm for this problem would be to first check for
any obstruction and then, if none exists, simply solve the covering linear program to obtain
a necessarily integral solution and, hence, a cover. However, the algorithms arising from
the matroid minor project are both complicated and impractical because they arise from
Ramsey-type arguments and hence have astronomical constants.

The algorithms presented herein use as a tool a theorem of Lehman characterizing min-
imally non-ideal clutters. Although Lehman’s Theorem was non-constructive and applied
to minimally non-ideal clutters, a constructive variant can be shown. This is the topic
of Chapter 3. As Lehman’s Theorem was the basis for many excluded minor results, this
constructive version of Lehman’s Theorem and a constructive spin on the related excluded
minor results leads to the proofs of Theorems 1.3.2 and 1.3.3 appearing in Chapter 4.

An interesting corollary of Theorem 1.3.2 is that the NP-hard maximum cut problem
can be solved in polynomial time for graphs that do not contain K5 as an odd minor. We
say Kn is an odd minor of graph G if it can be obtained by first deleting edges and then
contracting edges on a cut. If Kn is an odd minor of G, then it is a minor, but the converse
is not true in general.
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Corollary 1.3.4. Let G be a graph and let w ∈ ZZ
E(G)
+ . Then in time polynomial in

|V (G)|+ 〈w〉 we can either,

1. find a maximum weight cut of G, or
2. find K5 as an odd minor of G.

1.4 Overview of Remainder of Thesis

Chapter 2 is a more in-depth coverage of flowing and cycling results; it introduces the
related minimax equation and overviews the classes of matroids for which single commod-
ity results are known. The chapter concludes by introducing clutters and showing the
relationship to flows in matroids. Chapter 3 starts by introducing the necessary polyhe-
dral background. The remainder of the chapter is dedicated to introducing and proving a
constructive version of Lehman’s Theorem. Chapter 4 shows how the constructive version
of Lehman’s Theorem can be applied to lifts of graphic and cographic matroids to prove
Theorems 1.3.2 and 1.3.3. Chapter 5 concludes this thesis and addresses future areas of
work, including solving Eulerian integer multi-commodity flow in a naturally arising class
of signed graphs.
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Chapter 2

Flow Results and Relationship to
Clutters

2.1 Flows as a Minimax Relation

2.1.1 Definitions and Connections

Given multi-commodity flow instance (M,Σ, w), let C denote the set of odd circuits of
(M,Σ). Consider the following primal-dual pair.

min
∑

(wexe : e ∈ E)

subject to
∑

(xe : e ∈ C) ≥ 1 for all C ∈ C (2.1)

x ≥ O

max
∑

(yC : C ∈ C)

subject to
∑

(yC : e ∈ C) ≤ we for all e ∈ E \ Σ (2.2)

y ≥ O.

The program (2.1) models the problem of finding the minimum weight fractional cover.
Any integral solution to (2.1) is a cover of (M,Σ). The minimal covers of (M,Σ) are exactly
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the signatures of (M,Σ). We let τ ∗w(M,Σ) denote the fractional optimal solution to (2.1)
and τw(M,Σ) denote the integer optimal solution. The program (2.2) models the problem
of packing odd circuits. A solution to program (2.2) is called a fractional w-packing of
odd circuits of (M,Σ). Any integral solution to (2.2) is called an integer w-packing of odd
circuits of (M,Σ). We let ν∗w(M,Σ) denote the fractional optimal solution to (2.2) and
νw(M,Σ) denote the integer optimal solution. The following relationship follows directly
from LP duality.

Remark 2.1.1. τw(M,Σ) ≥ τ ∗w(M,Σ) = ν∗w(M,Σ) ≥ νw(M,Σ).

The existence of flows in signed matroids corresponds to packings and covers of equal
value. The following two remarks make this statement precise.

Proposition 2.1.2. If w ∈ ZZE
+ satisfies the cut condition, then (M,Σ) has a fractional

w-flow if and only if τw(M,Σ) = ν∗w(M,Σ).

Proof. Since w satisfies the cut condition, Σ is a minimum weight signature by Remark
1.2.1. If (M,Σ) has fractional w-flow y, then y is a fractional packing of odd circuits of
(M,Σ) of value w(Σ). That is τw(M,Σ) = ν∗w(M,Σ).

For the other direction, suppose τw(M,Σ) = ν∗w(M,Σ). This means (2.1) has integral
optimal solution of value w(Σ) and (2.2) has fractional optimal solution of value w(Σ). By
complementary slackness,

1. for each C ∈ C, if yC > 0, then |C ∩ Σ| = 1, and,
2. for each d ∈ Σ,

∑
(yC : e ∈ C ∈ Cd) = wd.

Let C1 again denote the set of odd circuits of (M,Σ) intersecting Σ in exactly one edge.
The restriction of y to C1 is a fractional w-flow for (M,Σ).

Proposition 2.1.3. If w ∈ ZZE
+ satisfies the cut condition, then (M,Σ) has a integer w-flow

if and only if τw(M,Σ) = νw(M,Σ).

Proof. Analogous to proof of Proposition 2.1.2.

Note that if τw(M,Σ) = νw(M,Σ) for all w ∈ ZZE
+, then τw(M ′,Σ′) = νw(M ′,Σ′) for

every minor (M ′,Σ′) of (M,Σ). This follows since deletion corresponds to setting the
weight of an edge to 0 and contraction corresponds to setting the weight of an edge to
some large number (effectively∞). Seymour’s Theorem (Theorem 1.2.2) regarding integer
flows and the Flowing and Cycle Conjectures (Conjectures 1.2.3 and 1.2.4) can be restated
as follows.
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Theorem 2.1.4 (Seymour). The equation τw(M,Σ) = νw(M,Σ) holds for all w ∈ ZZE
+ if

and only if (M,Σ) has no odd-K4 minor.

Conjecture 2.1.5 (Flowing Conjecture). The equation τw(M,Σ) = ν∗w(M,Σ) holds for all
w ∈ ZZE

+ if and only if (M,Σ) has no odd-K5, (T10,Σ10) or (F7, E(F7)) minor.

Conjecture 2.1.6 (Cycling Conjecture). The equation τw(M,Σ) = νw(M,Σ) holds for all
Eulerian w ∈ ZZE

+ if and only if (M,Σ) has no odd-K5, (T10,Σ10), (F7, E(F7)) or (P15,Σ15)
minor.

For unit weights, finding an integer packing is equivalent to finding pairwise disjoint
odd circuits of (M,Σ). This leads to combinatorial interpretations of the excluded minor
results. The next two sections investigate Seymour’s Theorem (Theorem 2.1.4) and the
Cycling Conjecture (Conjecture 2.1.6) for graphic and cographic matroids.

2.1.2 Application to Graphic Matroids

Suppose M is the graphic matroid corresponding to graph G. As indicated in Section
1.1.4, the Cycling Conjecture (Conjecture 2.1.6) holds for graphic matroids. The odd
circuits of (M,Σ) are the circuits of G intersecting Σ an odd number of times. Considering
unit weights, Seymour’s Theorem (Theorem 2.1.4) and the Cycling Conjecture (Conjecture
2.1.6) imply the following minimax relationships.

Corollary 2.1.7. If (M,Σ) has no odd-K4 minor, then the minimum size of a signature
of (G,Σ) is equal to the maximum number of pairwise disjoint odd circuits in (G,Σ).

Corollary 2.1.8. If (M,Σ) has no odd-K5 minor and |δ({v})| is even for all v ∈ V (G),
then the minimum size of a signature of (G,Σ) is equal to the maximum number of pairwise
disjoint odd circuits in (G,Σ).

2.1.3 Application to Cographic Matroids

Suppose M is the cographic matroid corresponding to graph G. A result of Seymour
[29] shows the Cycling Conjecture (Conjecture 2.1.6) holds for cographic matroids. Given
signature Σ, let T denote the odd degree vertices of G[Σ]. Then the odd circuits of (M,Σ)
are the T -cuts of (G, T ). A T -cut is δ(S) for S ⊆ V such that |S ∩ T | is odd. The covers
of (M,Σ) are the T -joins of (G, T ). A T -join is J ⊆ E such that the odd vertices G[J ] are
T .
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Odd-K4 has one realization for M cographic (see Figure 2.1). None of the obstructions
appearing in the Cycling Conjecture (Conjecture 2.1.6) have a realization in which M is
cographic. If the unit weight function is Eulerian, then every cycle of G has even length.
Combining these observations, Seymour’s Theorem (Theorem 2.1.4) and the Cycling Con-
jecture (Conjecture 2.1.6) reduce to the following minimax relationships.

Theorem 2.1.9. Suppose M is the cographic matroid corresponding to G and Σ ⊆ E(G)
is such that T denotes the odd vertices of G[Σ]. If (M,Σ) has no odd-K4 minor, then
the size of a minimum of a T -join of (G, T ) is equal to the maximum number of pairwise
disjoint T -cuts of (G, T ).

Theorem 2.1.10 (Seymour). If (G,Σ) is bipartite and Σ ⊆ E(G) is such that T denotes
the odd vertices of G[Σ], then the size of a minimum T -join of (G, T ) is equal to the
maximum number of pairwise disjoint T -cuts of (G, T ).

1

3

5

2

4

6

Figure 2.1: Cographic Odd-K4: Square vertices are T vertices.

2.2 Multi-Commodity to Single Commodity Flow

2.2.1 Equivalence

If Σ = {e}, then (M,Σ) and w ∈ ZZE
+ specify a single commodity flow instance. There is “no

difference” between single and multi-commodity flow for the class of all binary matroids.

Let (M,Σ) be a signed matroid and assume e 6∈ E(M). Let Codd denote the set of
odd circuits of (M,Σ) and Ceven denote the set of even circuits of (M,Σ). Let matroid
M ′ have circuit set {C : C ∈ Ceven} ∪ {C ∪ {e} : C ∈ Codd}. We call M ′ the port
representation of (M,Σ) with port e. By construction, the circuits of M ′ containing edge e
are exactly the odd circuits of M . The first remark below shows that M ′ is indeed a binary
matroid. The second remark shows that multi-commodity flow in (M,Σ) corresponds to
single commodity flow in (M ′, {e}).
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Remark 2.2.1. Let M ′ be a port representation of signed binary matroid (M,Σ). Then
M ′ is a binary matroid.

Proof. Let B be a matrix representation of M∗; the rows of B are characteristic vectors
of cycles of M . Obtain B′ by appending a column to B that has an 1 in position i if and
only if the cycle corresponding to row i of B as an odd cycle of (M,Σ). It can be readily
checked that the matroid whose cycle space is spanned by the rows of B′ is exactly M ′.

Remark 2.2.2. Let M ′ be a port representation of signed binary matroid (M,Σ) with port

e. Let w′ ∈ ZZ
E(M)
+ be the weight function defined by w′f = wf for all f ∈ E(M) and

w′e = w(Σ). Then

1. (M,Σ, w) satisfies the cut condition if and only if (M ′, {e}, w′) satisfies the cut con-
dition.

2. (M,Σ) has a fractional w-flow if and only if (M ′, {e}) has a fractional w′-flow.
3. (M,Σ) has an integer w-flow if and only if (M ′, {e}) has an integer w′-flow.

It follows we can restrict ourselves to single commodity flow when considering the
class of all binary matroids. However, we cannot use this restriction for fixed classes
of binary matroids. For example, suppose we are interested in multi-commodity flow
instances in graphic matroids. There is no integer flow whenever (M,Σ) has an odd-K4

minor. However, the Ford Fulkerson Max Flow Min Cut Theorem [11] shows that any
graphic single commodity flow instance has an integer flow whenever the cut condition is
satisfied. Switching from multi-commodity flow in graphic M to single commodity flow
in M ′, M ′ will not necessarily be graphic. In fact, for (M,Σ) = odd-K4, M

′ cannot be
graphic.

To illustrate Remark 2.2.2, consider the multi-commodity flow instance (F7,Σ7, w).
It is straightforward to verify that AG(3, 2) (with matrix representation given in Figure
2.2) is the port representation of (F7,Σ7) with port e8. In particular, the circuits of
AG(3, 2) using edge e8 are exactly the odd circuits of (F7,Σ7) (which are exactly the odd
circuits of (F7, E(F7)). Finding a w-flow for (F7,Σ7) is equivalent to finding a w′-flow for
(AG(3, 2), {e8}) where w′f = w′f for all f ∈ E − e8 and w′e8 = w(Σ7).

It can be shown that T11 is a port representation of (T10,Σ10) with port e11 and that
T ∗11 is a port representation of odd-K5 with port e11. For a matrix representation of T11,
see Figure 2.3.
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1 0 0 0 1 0 1 1
0 1 0 0 0 1 1 1
0 0 0 1 1 1 0 1
0 0 1 0 1 1 1 0


1

2 3

5 64

7

Figure 2.2: Matrix representation for AG(3, 2) (left); circuits using e8 (element represented
by the 8th column) correspond to lines of Fano plane (right).

T11 :


1 0 0 0 0 0 1 1 0 0 1
0 1 0 0 0 0 1 0 1 0 1
0 0 1 0 0 0 1 0 0 1 1
0 0 0 1 0 0 0 1 1 0 1
0 0 0 0 1 0 0 1 0 1 1
0 0 0 0 0 1 0 0 1 1 1


Figure 2.3: Matrix representation for T11

2.2.2 Reformulating Single Commodity Flow Using e-Paths

Given matroid M and element e ∈ E(M), an e-path is a set of the form C − e where C is
a circuit of M containing e. Let F denote the set of e-paths of M . Given w ∈ ZZE−e

+ , we
call P ⊆ F a w-packing of e-paths if |{P ∈ P : f ∈ P}| ≤ wf for all f ∈ E.

An e-cut is a minimal subset of ground set E that intersects every e-path; that is,
U ⊆ E is an e-cut if |U ∩ P | ≥ 1 for all e-paths P and if U ′ ⊆ U is such that |U ′ ∩ P | ≥ 1
for all e-paths P then U ′ = U . Whenever M is binary, the e-cuts of M are exactly the
e-paths of M∗. A proof of this fact will appear later (see Fact 2.5.2).

Given M , e and w, consider the following primal-dual pair of linear programs.
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min
∑

(wfxf : f ∈ E − e)

subject to
∑

(xf : f ∈ P ) ≥ 1 for all e-paths P (2.3)

x ≥ O

max
∑

(yP : P is an e-path)

subject to
∑

(yP : f ∈ e-path P ) ≤ wf for all f ∈ E − e (2.4)

y ≥ O.

Note that (2.4) corresponds exactly to (2.2) whenever Σ = {e} and we is maximal such
that the cut condition holds. To obtain the correspondence, simply map e-path P to its
corresponding odd circuit P∪{e}. Since we is maximal, there exists an optimal cover for 2.3
that is distinct from {e}. Likewise (2.3) corresponds exactly to (2.1) whenever Σ = {e}. It
follows from Proposition 2.1.2 that we can solve single commodity flow instance (M, {e}, w)
by solving (2.4) to find a maximum packing of e-paths ofM . In Section 2.5, this relationship
will be useful to connect statements about flows to statements about clutters.

Recall that we are interested in signed matroids for which the minimax equations (τw =
νw, τw = ν∗w) hold at equality for all weight functions. We say (M, {e}) has the

1. fractional MFMC property if for every w ∈ ZZE
+ there is an integer solution to (2.3)

and a solution to (2.4) with the same objective value,
2. integer MFMC property if for every w ∈ ZZE

+ there is an integer solution to (2.3) and
an integer solution to (2.4) with the same objective value,

3. Eulerian integer MFMC property if for every Eulerian w ∈ ZZE
+ there is an integer

solution to (2.3) and an integer solution to (2.4) with the same objective value.

Seymour’s Theorem (Theorem 1.2.2) and the Flowing and Cycling Conjectures (Con-
jectures 1.2.4 and 1.2.3) can be restated using this terminology. Recall that (P15,Σ15)
is the signed binary matroid with odd circuits corresponding to the postman sets of the
Petersen graph. Let P16 be the port representation of (P15,Σ15) with port e16.

Theorem 2.2.3 (Seymour). (M, {e}) has the integer MFMC property if and only if it does
not have a minor isomorphic to odd-K4.

Conjecture 2.2.4 (Flowing Conjecture). (M, {e}) has the fractional MFMC property
if and only if it does not have a minor isomorphic to (AG(3, 2), {e8}), (T11, {e11}), or
(T ∗11, {e11}).
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Conjecture 2.2.5 (Cycling Conjecture). (M, {e}) has the Eulerian integer MFMC prop-
erty if and only if it does not have a minor isomorphic to (AG(3, 2), {e8}), (T11, {e11}),
(T ∗11, {e11}), or (P16, {e16}).

The Flowing and Cycling Conjectures are solved for some classes of single commodity
flow instances. For example, they are known to hold whenever M is graphic or cographic.

2.2.3 Single Commodity Flow for Graphic Matroids

Consider a graph G with distinct vertices s, t and edge e = (s, t). Let H be obtained from
G by deleting e. Suppose M is the graphic matroid corresponding to G. The e-paths and
e-cuts of M correspond respectively to the st-paths and st-cuts of H. An integer solution
to (2.6) gives an integer st-flow, and an integer solution to (2.5) gives the characteristic
vector of an st-cut. By the Ford Fulkerson Max Flow Min Cut Theorem [11], the value of
a maximum st-flow is equal to the size of a minimum st-cut. In other words, the integer
MFMC property holds for (M, {e}) whenever M is a graphic matroid.

2.2.4 Single Commodity Flow for Cographic Matroids

Consider a graph G with distinct vertices s, t and edge e = (s, t). Let H be obtained from
G by deleting e. Suppose M is the cographic matroid corresponding to G. The e-paths
and e-cuts of M correspond to the st-cuts and st-paths of H respectively. An integer
solution to (2.6) gives an integer packing of st-cuts, and an integer solution to (2.5) gives
the characteristic vector of an st-path. The Max Work Min Potential Theorem of Duffin
[9] states that the size of a maximum packing of st-cuts is equal to the minimum length of
an st-path. In other words, the integer MFMC property holds for (M, {e}) whenever M
is a cographic matroid.

2.3 Lifts and Projections of Graphic and Cographic

Matroids

2.3.1 Cycle and Cocycle Spaces for Binary Matroids

Let M be a binary matroid. The circuits of M are exactly the sets of minimally linearly
dependent columns for some matrix A ∈ GF (2)m×n. The cycles of M are obtained by
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taking the symmetric difference of some finite number of circuits; any cycle C can be
partitioned into circuits C1, . . . Ck such that C = C14 . . .4Ck. The set of cycles of M is
called the cycle space of the matroid. If C1 and C2 are cycles of M , then C14C2 is also
a cycle of M . A set of cycles C ′ spans the cycle space of M if every cycle of M can be
expressed as the symmetric difference of cycles in C ′. A basis for the cycle space of M is
any minimal set of cycles spanning the cycle space of M .

Consider matroid M with matrix representation A. The cycle space of M∗ is called the
cocycle space of M . It is spanned by the characteristic sets of the rows of A. (In the future,
we will abuse notation and simply say the cycle space of M is spanned by the row space
of A; the meaning is clear.) Since (M∗)∗ = M , if B is a matrix representation for M∗, the
row space of B spans the cycle space of M . From Proposition 2.2.23 of [24], the row space
of A is orthogonal to the row space of B whenever A is a binary matroid. It follows that if
x is the characteristic vector of a cycle of M and y is the characteristic vector of a cocycle
of M , xTy = 0.

Consider binary matroid M represented by 0, 1-matrix A. Let A′ be obtained from A
by adding some 0, 1-row outside the row space of A. Recall that the binary matroid M ′

with representation A′ is called a lift of M . Let A′′ be obtained from A by removing some
row of A. Recall that the binary matroid M ′ with representation A′ is called a projection
of M .

Augmenting A by row x is the same as a projection of the cycle space of M onto the
set {y : xTy = 0}. By Rank-Nullity, this corresponds to increasing the dimension of the
cocycle space of M by 1. That is, if M ′ denotes the matroid with representation A′, then
the cycle space of (M ′)∗ has dimension one more than the dimension of the cycle space of
M∗. In other words, the dual of a lift of M is a projection of M∗.

2.3.2 Even Cycle Matroids

Even cycle matroids were introduced by Zaslavsky [35] and have a nice interpretation with
respect to signed graphs. Given graph G, let A be a matrix representation of M(G). Let
A′ be obtained by augmenting A with row xT outside the row space of A where xT is the
characteristic vector of Σ ⊆ E. The matroid with matrix representation A′ is denoted by
ecycle(G,Σ) and called the even cycle matroid of (G,Σ). The cycles of ecycle(G,Σ) are
exactly the even cycles of signed graph (G,Σ). Moreover, the circuits of ecycle(G,Σ) come
in two types:

1. C ⊆ E such that C is an even circuit of (G,Σ), and,
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2. C1 ∪ C2 ⊆ E such that C1 and C2 are both odd circuits of (G,Σ) and share at most
one vertex.

Let D denote the dual of ecycle(G,Σ). The cycle space of D is spanned by the row space of
A′. The rows of A′ are the characteristic vectors of cuts of G and the characteristic vector
of Σ. For signed graph (G,Σ): the symmetric difference of two cuts is a cut, the symmetric
difference of two signatures is a cut, and the symmetric difference of a signature and a cut
is a signature. It follows that the cycles of the D are exactly the cuts and signatures of
(G,Σ).

2.3.3 Even Cut Matroids

Even cut matroids were also introduced by Zaslavsky [35] and have a nice interpretation
with respect to grafts. Given graph G, let A be a matrix representation of M∗(G). Let
A′ be obtained by augmenting A with row xT outside the row space of A where xT is the
characteristic vector of Σ ⊆ E. Let T be the set of odd degree vertices in G[Σ]. Note
that |T | is even since any graph has an even number of odd degree vertices. The matroid
with matrix representation A′ is denoted by ecut(G, T ) and called the even cut matroid
of (G, T ). The cycles of ecut(G, T ) are exactly the T -even cuts of G; a cut δ(U) of G is
T -even if |U ∩ T | is even.

Let D denote the dual of ecut(G, T ). The cycle space of D is spanned by the row space
of A′. The rows of A′ are the characteristic vectors of cycles of G and the characteristic
vector of Σ. A T -join is F ⊆ E(G) such that the odd degree vertices of G[F ] are exactly
T ; since T is the set of odd vertices of G[Σ], Σ is a T -join. In graft (G, T ): the symmetric
difference of two cycles is a cycle, the symmetric difference of two T -joins is a cycle, and
the symmetric difference of a cycle and a T -join is a T -join. It follows that the cycles of
the dual of ecut(G, T ) are exactly the cycles and T -joins of (G, T ).

2.4 Single Commodity Flow Results

Here we discuss Seymour’s Theorem (Theorem 2.2.3) and the single commodity Flowing
and Cycling Conjectures (Conjectures 2.2.4 and 2.2.5) for lifts and projections of graphic
and cographic matroids.

28



2.4.1 Even Cycle Matroids

Let M = ecycle(G,Σ) for graph G = (V,E) and Σ ⊆ E. For e = st ∈ Σ, an e-path is
either an odd st-path or the union of an even st-path and odd circuit sharing at most one
vertex. The e-paths of an even cycle matroid are called odd-st-walks. If s = t, there are no
odd-st-paths and all even st-paths have length zero; the e-paths of M are exactly the odd
circuits of (G,Σ). Odd circuits have been studied extensively with respect to flows; see
the next section (Section 2.4.2) for an overview of results. The single commodity Flowing
Conjecture (Conjecture 2.2.4) is true for even cycle matroids [19], but the single commodity
Cycling Conjecture (Conjecture 2.2.5) remains open.

Theorem 2.4.1. If M is an even cycle matroid, then (M, {e}) has the fractional MFMC
property if and only if it has no (T ∗11, {e11}) or (AG(3, 2), {e8}) minor.

2.4.2 Even Cycle Matroids: e a loop

The single commodity Flowing and Cycling Conjectures (Conjectures 2.2.4 and 2.2.5) are
resolved for even cycle matroids whenever e is a loop of G [20] [13].

Theorem 2.4.2. If M is an even cycle matroid and e is a loop of underlying graph G,
then (M, {e}) has the fractional MFMC property if and only if it has no (T ∗11, {e11}) minor.

Theorem 2.4.3. If M is an even cycle matroid and e is a loop of underlying graph G,
then (M, {e}) has the Eulerian integer MFMC property if and only if it has no (T ∗11, {e11})
minor.

Although it may seem unintuitive to consider the case when e is a loop, this case actually
corresponds exactly to multi-commodity flow in graphs. Given (G,Σ) and w ∈ ZZE

+, let H
be obtained from G by adding loop e ∈ Σ and let M = ecycle(H,Σ). The e-paths of M
are exactly the odd circuits of (G,Σ). Finding a packing of e-paths is equivalent to solving
the multi-commodity flow instance corresponding to (G,Σ) as per Remark 2.2.2.

Signed graph (G,Σ) has no odd-K5 minor if and only if (M, {e}) has no (T ∗11, {e11})
minor. Minor operations in (M, {e}) can be shown to correspond to minor operations
in (G,Σ). Thus Theorem 2.4.2 proves Theorem 1.1.4 regarding Eulerian integer multi-
commodity flow for graphs and Theorem 2.4.3 proves Theorem 1.1.3 regarding fractional
multi-commodity flow for graphs.
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2.4.3 Even Cut Matroids

Let M = ecut(G, T ) for graph G = (V,E) and T ⊆ V with |T | even. For e = st ∈ Σ,
e-paths of M are the s, t-separating T -odd cuts of G. We say δ(S) as an s, t-separating
T -odd cut if s ∈ S, t 6∈ S and |T ∩ S| is odd. The e-paths of an even cut matroid are
st-T -cuts. If e is a pendent edge (e = δ(v) for some v ∈ V ), then the e-paths of M are
simply the T -cuts of (G, T ).

The single commodity Flowing Conjecture (Conjecture 2.2.4) is true for even cut ma-
troids, but the single commodity Cycling Conjecture (Conjecture 2.2.5) remains open.

Theorem 2.4.4. If M is an even cut matroid, then (M, {e}) has the fractional MFMC
property if and only if it has no (T11, {e11}) or (AG(3, 2), {e8}) minor.

2.4.4 Duals of Even Cycle Matroids

Recall that if M = ecycle(G,Σ) for G = (V,E) and Σ ⊆ E, then the elements of M∗ are
cuts and signatures of (G,Σ). The e-paths of M∗ are the st-bonds and signatures of (G,Σ).
The single commodity Flowing Conjecture (Conjecture 2.2.4) holds for duals of even cycle
matroids (follows from [19] and relationship between fractional flow in matroids and their
duals - see Theorem 3.1.1).

Theorem 2.4.5. If M∗ is the dual of even cycle matroid M , then (M∗, {e}) has the
fractional MFMC property if and only it has no (T11, {e11}) or (AG(3, 2), {e8}) minor.

The single commodity Cycling Conjecture (Conjecture 2.2.5) is still open for duals of
even cycle matroids. However, it has been shown to imply the Four Colour Theorem:
“every planar graph is 4-(vertex)-colourable”.

Claim 2.4.6. The single commodity Cycling Conjecture (Conjecture 2.2.5) for duals of
even cycle matroids implies the Four Colour Theorem.

Proof. Let G = (V,E) be a simple plane graph, H be obtained from G by adding loop e,
and Σ = E(H). Let M be the dual of ecycle(H,Σ). First, we describe the e-paths and
e-cuts of M .

The cycles of M are signatures of (H,Σ) or cuts of H. Since no cut contains a loop,
the e-paths of M are the signatures of (G,E(G)). That is, the e-paths of M are exactly
the odd circuit covers of G.
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Since the e-cuts of M are the e-paths of M∗, the e-cuts of M are of the form D − e
where D is a cocyle of M using e. In particular, D is an even cycle of M . Since e is an
odd loop, the e-cuts of M are exactly the odd cycles of G.

Consider the unit weight function. The Eulerian condition holds if |D| is even for all
cocycles of M . Since the cocycles of M are the even cycles of (H,Σ) and Σ = E(H), the
unit weight function is Eulerian.

If the single commodity Cycling Conjecture holds, and (H,Σ) has no obstruction, then
the size of a minimum length odd circuit is equal to the maximum number of disjoint
signatures. Since G is simple, the length of the shortest odd circuit is at least 3 and so
there exists disjoint signatures Σ1 and Σ2.

Suppose Σ1 is the complement of the cut δ(A) and Σ2 is the complement of the cut
δ(B). Partition the vertices into sets V1 = A∩B, V2 = A∩ B̄, V3 = Ā∩B and V4 = Ā∩ B̄.
If V1, V2, V3 and V4 are stable sets of G, G is 4-colourable. By way of contradiction, suppose
there exists edge e = xy such that x, y ∈ Vi. Then e ∈ Σ1 and e ∈ Σ2, contradicting the
fact Σ1 and Σ2 are disjoint. So (V1, V2, V3, V4) give a 4-colouring of V (G).

If G is planar, it has no K5 minor (Kuratowski’s Theorem) and so (H,Σ) has no ob-
struction. It follows that G has a 4-colouring. Therefore, assuming the single commodity
Cycling Conjecture for duals of even cycle matroids, one can prove the Four Colour Theo-
rem.

2.4.5 Duals of Even Cut Matroids

Recall that if M = ecut(G, T ) for G = (V,E) and T ⊆ V , then the elements of M∗ are
cycles of G and T -joins of (G, T ). The e-paths of M∗ are the st-paths of G and T -join
of (G, T ). The single commodity Flowing Conjecture (Conjecture 2.2.4) holds for duals of
even cut matroids (follows from [19] and relationship between fractional flow in matroids
and their duals - see Theorem 3.1.1).

Theorem 2.4.7. If M∗ is the dual of even cut matroid M , then (M∗, {e}) has the fractional
MFMC property if and only if it has no (T ∗11, {e11}) or (AG(3, 2), {e8}) minor.

The single commodity Cycling Conjecture (Conjecture 2.2.5) is still open for duals of
even cut matroids. However, it too has been shown to imply the Four Colour Theorem.

Claim 2.4.8. The single commodity Cycling Conjecture (Conjecture 2.2.5) for duals of
even cut matroids implies the Four Colour Theorem.
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Proof. First note a result of Tait [32] shows that the Four Colour Theorem is equivalent to
the statement: “Every simple 2-connected cubic planar graph G is 3-edge colourable.” Let
G be a simple 2-connected cubic graph. The unit weight function is Eulerian and so the
Cycling Conjecture (Conjecture 2.2.5) implies that G has 3 disjoint T -joins as long as G is
not contractible to the Petersen graph. Since all vertices have degree 3, this is equivalent
to being able to find 3 disjoint matchings. Assigning one colour class to each matching
gives a 3-edge colouring of G. The Petersen graph is not planar, implying the Four Colour
Theorem.

It was, in fact, a conjecture of Tutte [34] that every simple 2-connected cubic graph
that is not 3-edge-colourable is contractible to the Petersen graph. This conjecture was
resolved by Robertson, Sanders, Seymour and Thomas [27] [26]. Tutte’s conjecture has
been generalized by Conforti and Johnson [5]; the more general conjecture would also
follow from the single commodity Cycling Conjecture (Conjecture 2.2.5) for duals of even
cut matroids.

Conjecture 2.4.9 (Conforti Johnson Conjecture). In graphs not contractible to the Pe-
tersen graph, the number of pairwise disjoint postman sets is equal to the size of a minimum
odd cut.

2.4.6 A Note on the Restriction to Binary Matroids

Although we have restricted ourselves to binary matroids, all the flow definitions can be
applied to general matroids. It has been noted previously [29] that the fractional, integer
and Eulerian integer flow problems in non-binary matroids are (if you are a pessimist)
uninteresting or (if you are an optimist) already solved. The matroid U2

4 has a 4 element
ground set and every 2 element subset thereof is independent. For any element f , there is
no fractional w-flow for instance (U2

4 , f, w) where we = 1 for all e ∈ E − f and wf = 2. A
result of Bixby [3] states that if M is connected and non-binary, then M has a U2

4 minor
using f . Thus single commodity flow instances for non-binary matroids can be disregarded.

2.5 Relating Flows to Clutters

2.5.1 Definitions

A clutter F on ground set E is a finite family of sets of E := E(F) such that no set
in F contains or is equal to some other set of F . That is, there does not exist distinct
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F1, F2 ∈ F such that F1 ⊆ F2. A set B ⊆ E is a cover of F if B ∩ S 6= ∅ for all S ∈ F .
The set of all inclusion-wise minimal covers of F forms a clutter b(F) called the blocker of
F . As b(b(F)) = F [6], we call a pair of clutters (F ,K) a blocking pair if K = b(F). A
clutter F is binary if for all S1, S2, S3 ∈ F there exists S ∈ F such that S ⊆ S14S24S3.
Equivalently, F is binary if for all S ∈ F and T ∈ b(F), |S ∩ T | is odd [6].

The following results relate clutters and matroids and allow us to switch from discussing
flows in matroids to discussing packings in clutters. Proofs appear in past work; see [19]
for example.

Proposition 2.5.1. Let M be a binary matroid and let e ∈ E(M).

1. The set of e-paths of M is a binary clutter.
2. The set of e-cuts of M is a binary clutter.
3. The clutter of e-paths and e-cuts form a blocking pair.

Moreover, every binary clutter is the set of e-paths for some binary matroid M and some
e ∈ E(M).

Remark 2.5.2. The set of e-cuts of binary matroid M is exactly the set of e-paths of M∗.

2.5.2 The MFMC Properties

Given clutter F with ground set E and w ∈ ZZE
+, call P ⊆ F a w-packing of elements of F

if |P ∈ P : f ∈ P | ≤ wf for all f ∈ E. The size of P is simply |P|. Consider the following
primal-dual pair of linear programs.

min
∑

(wfxf : f ∈ E)

subject to
∑

(xf : f ∈ S) ≥ 1 for all S ∈ F (2.5)

x ≥ O

max
∑

(yS : S ∈ F)

subject to
∑

(yS : f ∈ S ∈ F) ≤ wf for all f ∈ E (2.6)

y ≥ O.

Observe that if F is the clutter of e-paths for binary matroid M and e ∈ E(M), then (2.5)
is the same as (2.3) and (2.6) is the same as (2.4). The restriction of (2.5) to the integers
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models the problem of finding the minimum weight cover of F (a minimum weight element
of b(F)). The restriction of (2.6) to the integers models the problem of finding maximum
weight w-packing of elements of F . In correspondence with our definitions for single
commodity flow, we say that F has the

1. fractional MFMC property if for every w ∈ ZZE
+ there is an integer solution to (2.5)

and a solution to (2.6) with the same objective value,
2. integer MFMC property if for every w ∈ ZZE

+ there is an integer solution to (2.5) and
an integer solution to (2.6) with the same objective value,

3. Eulerian integer MFMC property if for every Eulerian w ∈ ZZE
+ there is an integer

solution to (2.5) and an integer solution to (2.6) with the same objective value.

By equivalence of definition: (M, {e}) has the fractional MFMC property if and only
if the clutter of e-paths of M has the fractional MFMC property; (M, {e}) has the integer
MFMC property if and only if the clutter of e-paths of M has the integer MFMC property;
and (M, {e}) has the Eulerian integer MFMC property if and only if the clutter of e-paths
of M has the Eulerian integer MFMC property. That is, instead of looking for single
commodity w-flows, we can concern ourself with w-packings of clutters of e-paths.

2.5.3 Flowing and Cycling Conjectures for Clutters

Given clutter F and f ∈ E(F), we define F \ f as {S ∈ F : f /∈ S} and say F \ f is
obtained from F by deleting f . Given clutter F and f ∈ E(F), we define F/f as the
set of inclusion-wise minimal sets of {S − f : S ∈ F} and say F/f is obtained from F
by contracting f . A minor of F is any clutter F ′ obtained by a sequence of deletions
and contractions. As deletions and contractions associate, we can unambiguously write
F ′ = F/I \ J to indicate that the elements of I ⊆ E(F) were deleted and the elements of
J ⊆ E(F) were contracted to obtain F ′ from F . It is straightforward to verify that any
minor of a binary clutter is binary. Moreover, it is straightforward to show that if F is
the clutter of e-paths of M , then F \ f is the clutter of e-paths of M \ f and F/f is the
clutter of e-paths of M/f .

The clutter Q6 is the clutter of odd circuits of K4, the clutter OK5 is the clutter of odd
circuits of K5, and the clutter L7 is the clutter of lines of the Fano plane. Two clutters
are isomorphic to each other if one can be obtained from the other by relabelling elements
of the ground set. Seymour’s Theorem (Theorem 1.2.2) and the Flowing and Cycling
Conjectures (Conjectures 1.2.3 and 1.2.4) can be restated as follows.
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Theorem 2.5.3 (Seymour). A binary clutter has the integer MFMC property if and only
if it does not have a minor isomorphic to

Q6 =
{
{1, 2, 4}, {1, 3, 5}, {2, 3, 6}, {4, 5, 6}

}
.

Conjecture 2.5.4 (Flowing Conjecture). A binary clutter is has the fractional MFMC
property if and only if it does not have any of the following clutters as a minor: OK5,
b(OK5), or L7.

Conjecture 2.5.5 (Cycling Conjecture). A binary clutter has the Eulerian MFMC prop-
erty if and only if it does not have any of the following clutters as a minor: OK5, b(OK5),
L7, or PT . The clutter PT corresponds to the postman sets of the Petersen graph.

2.5.4 Flowing and Cycling Results for Clutters

The following chart summarizes the implications of Section 2.4 to clutters.

Integer Fractional Eulerian Integer
General Q6 Flowing Conjecture Cycling Conjecture
st-Paths - - -
st-Cuts - - -
Odd Circuits Q6 OK5 OK5

Odd-st-Walks Q6 OK5 ,L7 Holds for non-rooted
case [1]

st-T -cuts Q6 b(OK5),L7 Open
Blocker of
Odd-st-Walks

Q6 b(OK5),L7 Implies 4-Colour The-
orem

Blocker of st-
T -cuts

Q6 OK5 ,L7 Implies Conforti John-
son Conjecture

Table 2.1: Whenever a minor or minors are listed, this indicates these minors are known
to be the obstructions to the affiliated MFMC property. An entry of “-” implies there are
no obstructions. Otherwise, the entry gives information about the related conjecture.
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Chapter 3

A Constructive Version of Lehman’s
Theorem

3.1 Preliminaries

3.1.1 Set Covering Polyhedra, Idealness, and Lehman’s Theorem

Given a 0, 1-matrix M we define the affiliated set covering polyhedron by

Q(M) := {x ≥ O : Mx ≥ 1l}.

We say M is ideal if Q(M) is integral; i.e., if every extreme point of Q(M) is integral.
Given a clutter F , let M(F) denote the 0, 1-matrix with columns indexed by elements
f ∈ E(M) and rows indexed by sets F ∈ F , where entry (F, f) is 1 if and only if f ∈ F .
Observe that M(F) is only defined up to permutations of the rows. We say clutter F is
ideal if M(F) is ideal, and write Q(F) for Q

(
M(F)

)
. Note that if there exists w ∈ ZZE

+

such that min{wTx : x ∈ Q(F)} is fractional, then F is not ideal. Ideal clutters are exactly
those clutters for which the fractional MFMC property holds. A theorem of Lehman [22]
relates idealness in a clutter to idealness in its blocker.

Theorem 3.1.1. A clutter is ideal if and only if its blocker is.

Note that we have already explicitly and implicitly used this theorem. For example, it
shows that (M, {e}) has the fractional MFMC property if and only if (M∗, {e}) has the
fractional MFMC property.
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We call clutter F minimally nonideal (mni) if it is not ideal but all its proper minors are
ideal. An example of a mni clutter is the clutter whose ground set and elements correspond,
respectively, to the points and lines of the finite degenerate projective plane. This clutter
on ground set {0, 1 . . . s} is given by

Js =
{
{1 . . . s}, {0, 1}, {0, 2}, . . . , {0, s}

}
for s ≥ 2.

A theorem of Lehman [23] gives a characterization of mni clutters and shows, sur-
prisingly, that set covering polyhedra corresponding to minimally nonideal clutters have
exactly one fractional extreme point.

Theorem 3.1.2 (Lehman’s Theorem). Let F be a minimally non-ideal clutter that is not
isomorphic to Js for s ≥ 2. Let K be the blocker of F . Denote by F̄ the clutter formed
by the sets of minimum cardinality of F . Denote by K̄ the clutter formed by the sets of
minimum cardinality of K. Then

(L1) M(F̄) and M(K̄) are square matrices, and
(L2) after possibly rearranging rows of M(F̄) we have for some d ≥ 1

M(F̄)M(K̄)T = J + dI. (3.1)

where J is the dimension n square matrix of 1s and I is the dimension n identity
matrix.

In the preceding theorem, if r denotes the cardinality of the sets of F̄ , then 1
r
1l is the

unique fractional extreme point of Q(F). If ` denotes the cardinality of the sets of K̄, then
1
`
1l is the unique fractional extreme point of Q(K). The clutters OK5 , b(OK5) and L7 are all

minimally nonideal. In Section 3.4, an interpretation of equation (3.1) is given for clutter
OK5 .

Let (F ,K) be a blocking pair, F̄ denote the clutter formed by the minimum cardinality
sets of F , and K̄ denote the clutter formed by the minimum cardinality sets of K. We say
that F is a Lehman clutter whenever conditions (L1) and (L2) of Lehman’s Theorem are
satisfied. Note that if F is a Lehman clutter, so also is its blocker K. Hence we refer to
(F ,K) as a Lehman blocking pair.

3.1.2 Statement of Constructive Version

Consider the decision problem: is a given clutter F ideal? It is clearly in Co-NP as it
suffices to exhibit a fractional extreme point of Q(F). Outcomes (1) and (2) of the previous
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theorem are also a Co-NP certificate. For any nonideal clutter F , there exists a clutter
minor of F that is a Lehman clutter. If F ′ = F/I \ J , then I, J , M(F ′) and M(b(F ′))
also give a certificate that F is nonideal. We are interested in finding such certificates
efficiently. Firstly, doing so allows us to construct a highly regular Co-NP certificate of
nonidealness from an arbitrary fractional extreme point. Moreover, combining this with
existing excluded minor results allows us to find excluded minors for idealness.

Before stating the main theorem of this section, we note that the result relies upon the
ellipsoid method. As is typical in algorithms using the ellipsoid method, the algorithm’s
runtime is analyzed with respect to the number of calls to a separation oracle. Let P ⊆ IRn

be a polyhedron. The separation problem for P and a point x̄ ∈ Qn is to either determine
that x̄ ∈ P , or to find a separating constraint aTx ≤ β (i.e., aT x̄ > β and aTx ≤ β for all
x ∈ P ). A separation oracle for P is a function that solves the separation problem for any
x̄ ∈ Qn. We are now ready to state our algorithmic version of Theorem 3.1.2.

Theorem 3.1.3. Let F be a clutter and suppose that Q(F) ⊆ IRn is given by a separation
oracle. Let x be a fractional extreme point of Q(F) and suppose that we are given n facets
of Q(F) that define x. Then in oracle polynomial time of n we can find disjoint sets
I, J ⊆ E(F) such that for F ′ = F/I \ J either

1. F ′ is isomorphic to Js, or
2. F ′ is a Lehman clutter.

Moreover, in case (2) we also find all the minimum cardinality sets of F ′.

3.2 Proof Outline

3.2.1 Key Definitions and Lemmas

Throughout this section, F will always denote a clutter with E(F) = [n]1. Given a clutter
F , we denote by P (F) the polytope Q(F) ∩ [0, 1]n.

Proposition 3.2.1. Polyhedron P (F) is integral if and only if Q(F) is integral.

Proof. Suppose P (F) is integral and x̄ is a fractional extreme point of Q(F).

First consider the case when x̄ ∈ P (F). Since x̄ cannot be a fractional extreme point of
P (F), we can write x̄ = 1

2
x1 + 1

2
x2 for x1, x2 ∈ P (F). Since P (F) ⊂ Q(F), x1, x2 ∈ Q(F);

this contradicts the fact x̄ is an extreme point of Q(F).

1Here [n] denotes the set {1, 2 . . . n}.
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Now, consider the case when x̄ 6∈ P (F). There exists i ∈ [n] such that x̄i > 1. Define x1

by x1j = x̄j for all j 6= i and x1i = x̄i− ε. Define x2 by x2j = x̄j for all j 6= i and x2i = x̄i + ε.
Choosing ε small enough, x1, x2 ∈ Q(F). Then 1

2
x1 + 1

2
x2 = x̄, contradicting the fact x̄ is

an extreme point of Q(F).

Suppose Q(F) is integral and x̄ is a fractional extreme point of P (F).

If xi < 1 for all i, then x̄ is also a fractional extreme point of Q(F). Otherwise we
can write x̄ = 1

2
x1 + 1

2
x2 for x1 = x̄ + εd and x2 = x̄ − εd. Choosing ε small enough,

x1, x2 ∈ P (F), contradicting the fact x̄ is an extreme point of P (F). However, concluding
x̄ is is a fractional extreme point of Q(F) contradicts the fact Q(F) is integral. Thus there
exists i ∈ [n] such that i = 1.

Project P (F) and Q(F) onto {x : xi = 1}; that is, proceed inductively on P (F/i)
and Q(F/i). Whenever F is a one element clutter, P (F) is integral if and only if Q(F)
integral. It follows by induction that P (F) is integral if and only if Q(F) is integral.

Given a point x̄ ∈ P (F) and j ∈ [n], let x̄j = (x̄1, . . . , x̄j−1, 1, x̄j+1, . . . , x̄n)T and
F j = P (F) ∩ {x : xj = 1}. Note that x̄j ∈ F j. Call point x̄ ∈ P (F) special if it is an
extreme point and for all j ∈ [n]

(S1) 0 < x̄j < 1,
(S2) x̄j can be expressed as a convex combination of integer extreme points of F j.

Our algorithm relies on the following lemma.

Lemma 3.2.2. Suppose P (F) is given by a separation oracle. Given an extreme point x̄
of P (F) with n facets that define x̄, we can, in oracle polynomial time in n, either

1. deduce that x̄ is special, or
2. find j ∈ [n] and a fractional extreme point x′ of P (F/j), or
3. find j ∈ [n] and a fractional extreme point x′ of P (F \ j).

Moreover, for outcomes (2) and (3) we also find n− 1 facets that define x′.

Two extreme points in a polytope are adjacent if they are contained in a face of di-
mension 1. The set of all extreme points that are adjacent to extreme point x̄ are the
neighbours of x̄. Extreme point x̄ of polyhedron P ⊆ IRn is non-degenerate if there are
exactly n facets of P satisfied at equality at x̄ or, equivalently, if x̄ has exactly n neighbours
in P . These definitions are sufficient to state the next set of required lemmas.

Lemma 3.2.3. Special points of P (F) are non-degenerate.
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Lemma 3.2.4. Suppose we are given a non-degenerate extreme point x̄ of P (F) where
0 < x̄j < 1 for all j ∈ [n], and n facets that define x̄. If P (F) is described by a membership
oracle, then we can, in oracle polynomial time of n, find the n neighbours of x̄.

Lemma 3.2.5. No two special points of P (F) are adjacent.

Lemma 3.2.6. Suppose that x̄ is a special point of P (F) and that all neighbours of x̄
are integral. The facets that define x̄ are of the form

∑
k∈Si

xk ≥ 1 where Si ∈ F for

i = 1, . . . , n. Let F̄ = {S1, . . . , Sn}; either

1. F is isomorphic to Js and F̄ = F , or
2. F is a Lehman clutter and the elements of F̄ are the minimum cardinality sets of F .

Note that in Lemma 3.2.6, x̄ is necessarily non-degenerate because of Lemma 3.2.3.

3.2.2 Algorithm

Let x̄ be an extreme point of P (F) and suppose that we are given n facets of P (F) that
define x̄. We apply the algorithm referenced in Lemma 3.2.2. If outcome (2) or (3) occurs,
then we apply the main algorithm recursively to P (F/i) or P (F \ i) respectively, with the
new extreme point x′ and the n− 1 facets defining x′. Note that the separation oracle for
P (F) extends to a separation oracle for P (F/j) and P (F \j), as contracting j corresponds
to setting x̄j = 0 and deleting j to setting x̄j = 1.

Otherwise, outcome (1) of Lemma 3.2.2 occurs. Because of Lemma 3.2.3, x̄ is non-
degenerate. Using the algorithm referenced in Lemma 3.2.4 we can find its neighbours
b1, . . . , bn. Consider first the case where all of b1, . . . , bn are integer. Since we have the
facets that define x̄, we can construct F̄ as in Lemma 3.2.6. Then outcome (1) and (2)
of Lemma 3.2.6 correspond respectively to outcomes (1) and (2) of Theorem 3.1.3 and we
can stop.

Thus we may assume that bi is fractional for some i ∈ [n]. We apply the algorithm
referenced in Lemma 3.2.2 to bi. As bi is not special (see Lemma 3.2.5), outcome (2) or
(3) occurs, and we can again apply the main algorithm recursively.

It is straightforward to verify that the algorithm runs in oracle polynomial time. Since
Q(F) is described by a separation oracle then, so is P (F) as it suffices to check in addition
that xe ≤ 1 for all e ∈ E(F). Note that this algorithm may call itself recursively. Between
recursive calls, we use the polynomial time algorithm referenced in Lemma 3.2.2 at most
twice and the polynomial time algorithm referenced in Lemma 3.2.4 once. The polynomial-
ity follows because every time we call the algorithm recursively we decrease the dimension
of the polytope in consideration by one and so at most n recursive calls are made.
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3.3 Technical Sections of Proof

3.3.1 Polyhedral Proofs

The following polyhedral theory definitions are found in Grötschel et. al. (see [16] Chapter
6.2). Let P ⊆ IRn be a polyhedron and let φ be positive integer. We say that P has
facet-complexity at most φ if there exists a system of inequalities with rational coefficients
that has solution set P where the encoding length of each inequality in the system is at
most φ. (If P ⊆ IRn, we require φ ≥ n+1.) A well-described polyhedron is a triple (P ;n, φ)
where P ⊆ IRn is a polyhedron with facet-complexity at most φ. The encoding length 〈P 〉
of well-described polyhedron (P ;n, φ) is at most φ+ n.

The proof of Lemma 3.2.2 requires the following algorithmic version of Caratheodory’s
Theorem (see [16] Theorem 6.5.11).

Proposition 3.3.1. Let P ⊆ IRn be a well-described polytope given by a separation oracle
and let x̄ ∈ P ∩ Qn. There exists an oracle-polynomial algorithm that will express x̄ as
a convex combination of at most dim(P ) + 1 extreme points of P . Moreover, for each of
these points we can find n defining facets of P .

We will apply this proposition to show that given a separation oracle for P (F), we can
express any point x̄ ∈ P (F) ∩Qn as a convex combination of extreme points of P (F). To
do this, we show that P (F) is indeed well-described. Since P (F) can be described by a
system of inequalities with 0, 1 coefficients, the facet-complexity of P (F) is at most n+ 1
and so (P (F);n+ 1, n) is a well-described polyhedron.

Corollary 3.3.2. Let P (F) be given by a separation oracle and let x̄ ∈ P (F)∩Qn. There
exists an oracle-polynomial time algorithm that will express x̄ as a convex combination of
at most dim(P ) + 1 extreme points of P (F). Moreover, for each of these points, we can
find n defining facets of P (F).

Using this corollary, we are ready to prove Lemma 3.2.2.

Proof of Lemma 3.2.2. Suppose x̄j ∈ {0, 1} for some j ∈ [n]. Let x′ = (x̄1, . . . , x̄j−1,
x̄j+1, . . . , x̄n)T . If x̄j = 0 then x′ is an extreme point of P (F/j) and the facets that define
x̄, omitting xj = 0, define x′ and outcome (2) of the lemma occurs. If x̄j = 1 then x′ is
an extreme point of P (F \ j) and the facets that define x̄, omitting xj = 1, define x′ and
outcome (3) of the lemma occurs. Thus we may assume condition (S1) holds.
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For every j ∈ [n], use Proposition 3.3.2 to express x̄j as a convex combination of extreme
points y1, . . . , yk of F j where k ≤ n. Note, that as x̄ is an extreme point of P (F), it has
encoding length 〈x̄〉 polynomial in n (see [16] Theorem 6.2.4). Suppose ys is fractional for
some s ∈ [k], then (ys1, . . . , y

s
j−1, y

s
j+1, . . . , y

s
n)T is an extreme point P (F \ j) and outcome

(3) occurs. If this never occurs, condition (S2) holds and x̄ is special. Note that even if
outcome (2) or (3) occurs, this does not imply x̄ is not special (only that we have not
succeeded in demonstrating that it is special).

No additional definitions are needed to prove Lemma 3.2.4. We give a sketch of the
proof here; a true proof would require introducing more machinery (Cramer’s rule to bound
denominators, for example).

Proof Sketch of Lemma 3.2.4. As x̄ is non-degenerate, exactly n constraints of M(F)x̄ ≥ 1l
are tight for x̄. Find d 6= O satisfying n− 1 of these constraints. Then a neighbour b of x̄
is on the line L = {x̄ + λd : λ ∈ IR}. Use the membership oracle to do a binary search to
find b ∈ L.

3.3.2 Proofs using Property (P)

The remainder of the proofs follow closely the proof of Lehman’s Theorem (Theorem 3.1.2)
appearing in [6]. The following definition will be key: An n×n, 0, 1-matrix M has property
(P) if

(P1) M has no dominated row; that is, there do not exist rows Ri, j such that supp(Ri) ⊆
supp(Rj),

(P2) M has no column of 1s,
(P3) for all i, j ∈ [n] where Mi,j = 0,

n∑
k=1

Mik =
n∑

k=1

Mjk.

One key observation regarding matrices with property (P) is that they cannot differ in
exactly one row. The argument we give for this fact essentially appears in [6] Lemma 4.11.

Lemma 3.3.3. No pair of matrices with property (P) differ in exactly one row.

Proof. Suppose for a contradiction that we have n× n matrices M,M ′ with property (P)
where M has rows R1, . . . , Rn and M ′ has rows R2, . . . , Rn, Rn+1. Property (P1) shows
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there exists j ∈ [n] such that entry j of R1 is 0 and entry j of Rn+1 is 1. Property (P2)
states that column j of M ′ is not a column of 1s, and so for some i, 2 ≤ i ≤ n, entry j
of Ri is 0. By property (P3), the number of 1s in Ri is equal to both the number of 1s in
column j of M and M ′. This is a contradiction as column j of M ′ has one more 1 than
column j of M .

Let x̄ be an extreme point of P (F) where 0 < x̄j < 1 for all j ∈ [n]. We say that
F̄ ⊆ F is a core of x̄ if M(F̄)x̄ = 1l, and M(F̄) is square and non-singular. Clearly, if x̄ is
an extreme point then there exists a core for x̄. Moreover, the core is unique if and only
if x̄ is non-degenerate. We aim to show M(F̄) has property (P) whenever F̄ is a core of a
special point. We first require the following lemma due to de Bruijn and Erdös [8].

Lemma 3.3.4. Let (I ∪ J,E) be a bipartite graph with no isolated node. If |I| ≥ |J | and
d(i) ≥ d(j) for all i ∈ I, j ∈ J such that ij ∈ E, then |I| = |J | and d(i) = d(j) for all
i ∈ I, j ∈ J such that ij ∈ E.

Proof. Applying the given inequality and rearranging the summation gives

|I| =
∑
i∈I

 ∑
j∈N(i)

1

degG(i)

 ≤∑
i∈I

 ∑
j∈N(i)

1

degG(j)

 =
∑
j∈J

 ∑
i∈N(j)

1

degG(j)

 = |J |

Since |I| ≥ |J |, equality holds throughout and thus |I| = |J | and d(i) = d(j) for all i ∈ I,
j ∈ J such that ij ∈ E.

Lemma 3.3.5. Let x̄ be a special point of P (F) and let F̄ be a core of x̄. Then M(F̄) has
property (P).

Proof. MatrixM(F̄) clearly satisfies (P1) as F is a clutter. MatrixM(F̄) has property (P2)
as M(F̄) is nonsingular because F̄ is a core of x̄ with special property (S1). Thus it suffices
to show that (P3) holds for M(F̄). The proof is nearly identical to that of Lemma 4.10
in [6] for minimally nonideal clutters. The property of being special ensures M(F̄) has the
same necessary properties implied by the assumption F is minimally nonideal.

Consider xj defined previously by xjj = 1 and xjk = xk for k 6= j. Clearly xj ∈ P (F)
since P (F) = {x ∈ [0, 1]n : M(F) ≥ 1l}. Let Fj (not necessarily equal to F j defined
previously) be the lowest dimensional face of P (F)∩{x : xj = 1} that contains xj. Unlike
in the minimally nonideal case, Fj is not necessarily integral. However, the result still
follows by bounding the dimension of Fj two different ways.
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Approach 1: The point xj lies at the intersection of the hyperplanes {x : xj = 1} and

{x : (ak)Tx = 1} for all ak rows of M(F̄) such that akj = 0 There are at least n−
∑n

k=1 akj
equations defining hyperplanes of the second type and the hyperplane of the first type is
independent of these. Thus

dim(Fj) ≤ n− (n−
n∑

k=1

akj + 1) =
n∑

k=1

akj − 1. (3.2)

Approach 2: Suppose that (ai)T is such that aij = 0. Since x̄ is special, there exist

integral b1 . . . bl for l ≤ n such that xj =
∑l

t=1 γtb
t where γ ≥ 0, 1lTγ = 1. Since each bt is

a {0, 1} vector

1 = (ai)Txi since aij = 0 and so such a constraint is also tight for xj

=
l∑

t=1

γl(a
i)T bt substituting for xj

≥ 1 since (ai)T bt ≥ 1 as bt ∈ P (F).

So, equality holds throughout. This implies that (ai)T bt = 1 for all t ∈ {1 . . . l} and thus bt

has exactly one nonzero entry in every column k such that ajk = 1. Furthermore, because

xjk =
∑l

t=1 γtb
t
k for all k such that aik = 1 and xjk > 0 for all k, Fj contains at least

∑n
k=1 aik

linearly independent points. Therefore,

dim(Fj) ≥
n∑

k=1

aik − 1. (3.3)

Combining bounds (3.2) and (3.3) regarding dim(Fj), we conclude that
∑n

k=1 aik ≤∑n
k=1 akj for all i, j ∈ [n] such that aij = 0. Consider the bipartite representation of J −

M(F̄) given by graph G = (V,E) with bipartition (R,C) where R = {1, . . . n} corresponds
to the rows of M(F̄) and C = {1′, . . . n′} corresponds to the columns of M(F̄). For i ∈
{1 . . . n} and j ∈ {1′, . . . n′}, ij ∈ E if and only if (J−A)ij = 1. For i ∈ {1, . . . n}, the degree
of i is degG(i) = n−

∑n
k=1 aik. For j ∈ {1′ . . . n′}, the degree of j is degG(j) = n−

∑n
k=1 akj.

If ij is an edge of the bipartite representation of J − A, then aij = 0 and so

degG(i) = n−
n∑

k=1

aik ≥ n−
n∑

k=1

akj = degG(j)

Having shown all the conditions of Lemma 3.3.4 hold, we conclude that degG(i) = degG(j)
for all i, j ∈ [n] such that aij = 0. Thus row i and column j of M(F̄) have the same
number of 1s. That is, property (P3) holds.
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We are now ready prove two more of the key lemmas introduced in Section 3.2.1.

Proof of Lemma 3.2.3. Suppose for a contradiction that special point x̄ of P (F) is degen-
erate. Then x̄ must have two distinct cores M(F̄) and M(F̄ ′) that differ in exactly one row.
Lemma 3.3.5 implies that these cores have property (P), contradicting Lemma 3.3.3.

Lemma 3.2.5. Suppose for a contradiction there exists special points x′ and x′′ that are
adjacent. By Lemma 3.2.3, x′ has a unique core F ′ and x′′ has a unique core F ′′. Since
x′ and x′′ are adjacent, M(F ′) and M(F ′′) differ in exactly one row. Lemma 3.3.5 implies
that these cores have property (P), contradicting Lemma 3.3.3.

Having proved all the other lemmas of Section 3.2.1, it remains to prove Lemma 3.2.6.

3.3.3 Proof of Lemma 3.2.6

Two matrices are isomorphic to one another if one can be obtained from the other by
permuting rows and columns. Lemma 4.12 in the proof of Lehman’s Theorem we are
following [6] is equivalent to the following lemma.

Lemma 3.3.6. Let Y and Z be n×n matrices. Suppose Y has property (P), and suppose
that

Y ZT = J +D

where D is a diagonal matrix with positive diagonal entries. Then either,

1. Y and Z are both isomorphic to M(Js) for s ≥ 2, or
2. D = dI, where d is a positive integer.

A 0, 1-matrix M is r-regular, if every row and every columns has exactly r 1s. The
following result is due to Bridges and Ryser [4].

Theorem 3.3.7. Let Y and Z be n× n, 0, 1-matrices such that Y ZT = J + dI for d ≥ 1.
Then Y is r-regular, Z is `-regular where r, ` ≥ 2, n = r`− d, and Y ZT = ZTY .

Here, we differ from proof the of Lehman’s Theorem we are following [6], only in that,
we need a different argument to prove there are exactly n minimum cardinality sets in
b(F).
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Proof Lemma 3.2.6. Lemma 3.2.3 implies that F̄ = {S1, . . . , Sn} is the unique core of x̄.
Denote by b1, . . . , bn the (integer) neighbours of x̄ and let Y be the n × n 0, 1-matrix for
which row i is the characteristic vector of Si. For any i ∈ [n], bi and x̄ are in a face of
P (F) of dimension 1 and so we may assume that the unique constraint of Y x ≥ 1l that is
not tight for bi is constraint i. Hence, if we denote by Z the matrix with rows b1, . . . , bn,

Y ZT = J +D,

where D is a diagonal matrix with positive diagonal entries.

Lemma 3.3.5 implies that Y has property (P). Together with Theorem 3.3.6, it implies
that either Y is isomorphic to M(J ) or D = dI for some integer d ≥ 1. We may assume
that the former case does not occur for otherwise we have the required outcome (1) of
Lemma 3.2.6. By Theorem 3.3.7, Y is r-regular, Z is `-regular for r, ` ≥ 2. It follows that
x̄ = 1

r
1l and since x̄ has a unique core, the clutter F̄ is exactly the minimum cardinality

sets of F .

Since the neighbours of x̄ are b1, . . . , bn and since b1, . . . , bn have all exactly ` 1s, the
constraint

∑n
j=1 xj ≥ ` is valid for all 0, 1 points of P (F). It follows, in particular, that

every element in the blocker K of F has cardinality at least `. Let K̄ denote the minimum
cardinality sets of K. Then K̄ contains all sets corresponding to b1, . . . , bn.

Suppose for a contradiction there exists a set T ∈ K̄ that does not correspond to any of
b1, . . . , bk and let b denote the characteristic vector of T . Since T ∈ b(F), b is an extreme
point of P (F) (see Remark 1.16 in [6]). Since b is a linear combination of b1, . . . , bn (because
{b1, . . . bn} has rank n), there exists vector α such that

n∑
j=1

αjb
j = b. (3.4)

By right multiplying the previous equation on both sides by 1
`
1l we obtain

n∑
j=1

αj = 1. (3.5)

Combining (3.4) and (3.5), we get

n∑
j=1

αj(b
j − x̄) = b− x̄. (3.6)
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Since b1, . . . , bn are neighbours of x̄ and since b ∈ P (F), b− x̄ is in the cone formed by the
vectors b1 − x̄, . . . , bn − x̄, i.e. for some λ ≥ 0

n∑
j=1

λj(b
j − x̄) = b− x̄. (3.7)

Subtracting (3.7) from (3.6) yields

n∑
j=1

(αj − λj)(bj − x̄) = 0. (3.8)

Since P (F) is full dimensional, b1 − x̄, . . . , bn − x̄ are linearly independent. It follows
from (3.8) that α = λ and in particular, α ≥ 0. Combining this with (3.4) and (3.5)
shows b is a convex combination of b1, . . . , bn, contradicting the fact b is an extreme point
of P (F).

3.4 Exploring Lehman’s Theorem

Lehman’s Theorem admits many combinatorial interpretations. In this section, an inter-
pretation of the matrix equation M(F̄)M(K̄)T = J + dI for two mni clutters is provided.
Some of the many useful corollaries of Lehman’s Theorem are stated and proven. All of
the corollaries appearing here have been noted previously (see [18], [19], [28], for example).

3.4.1 Interpreting Lehman’s Theorem: C2,3 and OK5

The clutter C2,3 is minimally nonideal. Clutter C2,3 is the (non-binary) clutter on ground set
{1, 2, 3} with elements

{
{1, 2}, {1, 3}, {2, 3}

}
. The blocker of C2,3 is itself; b(C2,3) = C2,3.

The minimum cardinality elements of C2,3 are just C2,3, likewise for the blocker. Thus

M(C2,3)[M(b(C2,3))]T = J + I. One way to interpret this matrix equation is to note that
F ∈ C2,3 has intersection 2 with exactly one element in b(C2,3) (the element corresponding
to itself) and intersection 1 with the other two elements of b(C2,3).

The clutter OK5 is minimally nonideal. The minimum cardinality elements of OK5 are
the triangles of K5. The minimum cardinality elements of b(OK5) are the union of a triangle
of K5 together with the non-adjacent edge. Thus M(OK5)[M(b(OK,5))]

T = J + 2I. One
way to interpret this matrix equation is to note that each triangle T of K5 has intersection
3 with the element of the blocker consisting of T and the opposite edge and intersection 1
with every other minimum cardinality blocker element.
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3.4.2 Useful Corollaries

Given clutter F we denote by F̄ the clutter formed by the sets of minimum cardinality
in F . Let (F ,K) be a blocking pair that is Lehman. We say that F ∈ F̄ and K ∈ K̄
are mates if |F ∩K| ≥ 2. Equation (3.1) implies every F ∈ F̄ has a unique mate K and
|F ∩K| = r`−n+1 := q. Moreover, if F ∈ F̄ and K ′ ∈ K̄ are not mates then |F ∩K ′| = 1.
Since F̄ is binary, elements of F̄ and K̄ intersect with odd parity and thus |F ∩K| ≥ 3.

Interpreting equation (3.1) combinatorially leads to many corollaries of Lehman’s Theo-
rem. First note that M(F̄) and [M(K̄)]T commute (Theorem 3.3.7) and (J+dI)T = J+dI;
thus M [F̄ ]TM [K̄] = J + dI.

Corollary 3.4.1. Let e ∈ E(F) be a column index of M [K̄]. Let F1, . . . F` be the charac-
teristic sets of the rows of M [F̄ ] whose indices are given by the characteristic set of column
e of M [K̄]. Then F1 . . . F` pairwise intersect in at most {e}; moreover, exactly q of F1 . . . F`

contain {e}. Lastly, E = F1 ∪ . . . ∪ F`.

Proof. Since M [F̄ ]TM [K̄], for each column index j of M [K̄], we have M [F̄ ]T col(M [K̄], j) =
1l + dej where ej is the jth standard basis vector and col(M [K̄], j) denotes the jth column
of M [K̄]. The corollary follows.

Corollary 3.4.2. Let e ∈ E(F) be a column index of M [F̄ ]. Let K1, . . . Kr be the char-
acteristic sets of the rows of M [K̄] whose indices are given by the characteristic set of
column e of M [F̄ ]. Then K1 . . . Kr pairwise intersect in at most {e}; moreover, exactly q
of K1 . . . Kr contain {e}. Lastly, E = K1 ∪ . . . ∪Kr.

Proof. Similar to proof of Corollary 3.4.1.

Corollary 3.4.3. For each e ∈ E there are precisely q pairs {(F1, K1), . . . (Fq, Kq)} such
that e ∈ Fi ∩Ki. For each distinct e, f ∈ E, there is exactly one pair (F,K) with e ∈ F ,
f ∈ K.

Proof. This proof appears in [28]. Let e ∈ E. Since (M(F̄))[M(K̄)]T , column e of M(K̄)
must have exactly q 1s in rows corresponding to the characteristic set of column e of M(F̄).
Moreover, column f must have exactly one 1 in the rows corresponding to the characteristc
set of column e of M(F̄).

Corollary 3.4.4. For fixed e ∈ E, if {(F1, K1), . . . (Fq, Kq)} are the mates such that e ∈
Fi∩Ki then {F1, . . . Fq, K1 . . . Kq} pairwise intersect in at most {e} except for |Fi∩Ki| = q.
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Proof. Now Fi ∩ Bj = {e} since |Ci ∩ Bj| = 1 for all distinct i, j ∈ {1 . . . q} ⊆ {1 . . . n}.
Similarly, the facts |Fi ∩ Bi| = q and e ∈ Fi ∩ Bi let us conclude that |(Fi ∩Ki)| = q. It
remains to show that Ci∩Cj = {e} for all distinct i, j ∈ {1, . . . q} and Bi∩Bj = {e} for all
distinct i, j ∈ {1, . . . q}. Suppose there exists f ∈ E−e such that f ∈ Ci∩Cj. Then e ∈ Bi

and f ∈ Ci, and e ∈ Bj and f ∈ Cj. This contradicts the second conclusion of Corollary
3.4.3. Therefore such f cannot exist. Thus Ci ∩ Cj = {e} for all distinct i, j ∈ {1 . . . q}.
The analysis is analogous for showing Bi ∩Bj = {e} for distinct i, j ∈ {1 . . . q}.

Corollary 3.4.5. There exists no set K such that |K ∩ F | = 1 for all F ∈ F̄ .

Proof. By way of contradiction, suppose there exists K such that |K ∩ F | = 1 for all
F ∈ F̄ . By Corollary 3.4.1, for e ∈ K, there exists a collection of sets {F1 . . . F`} such that
E = F1 ∪ . . .∪ F` and e ∈ F1 ∩ F2. This implies |K| ≤ `− 1. Again by Corollary 3.4.1, for
e′ 6∈ K, there exists a collection of sets {K ′1 . . . K ′`} that pairwise intersect in at most {e}.
This implies |K| ≥ `, a contradiction. Conclude that no such K can exist.

The following results appear in [18] and apply only to binary clutters. The statements
were given for minimally nonideal clutters, but the proof works for the more general class
of Lehman clutters.

Corollary 3.4.6. Let (F ,K) be a blocking pair that is binary and Lehman, and let e ∈
E(F). Then there exists F1, F2, F3 ∈ F̄ that pairwise intersect exactly in e. Moreover, the
mates K1, K2, K3 of F1, F2, F3 pairwise intersect exactly in e.

Proof. This proof appears in [19]. Since q ≥ 3 because F is binary, result follows from
Corollary 3.4.4.

Corollary 3.4.7. Let (F ,K) be a blocking pair that is binary and Lehman.

1. For all F1, F2 ∈ F̄ and F ∈ F where F ⊆ F1 ∪ F2 either F = F1 or F = F2.
2. For all K1, K2 ∈ K̄ and K ∈ K where K ⊆ K1 ∪K2 either K = K1 or K = K2.

Proof. Since F is binary, there exists F ′ ⊆ F14F24F such that F ′ ∈ F . If e ∈ F ∩F ′ and
F14F24F , then e 6∈ F14F2. Thus F ∪F ′ ⊆ F1 ∪F2 and F ∩F ′ ⊆ F1 ∩F2. It follows that
|F | + |F ′| ≤ |F1| + |F2| and thus F, F ′ ∈ F . Let B be the mate of F . Since F is binary,
|B ∩ F | must be odd and hence it is at least 3. Then either |F1 ∩ B| ≥ 2 or |F2 ∩ B| ≥ 2
and since B has a unique mate in F̄ , it must be that F = F1 or F = F2. Similarly, one
can show that if F = F1, then F ′ = F2 and if F = F2, then F ′ = F1. The proof is the
same for K1, K2, K ∈ K̄.
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In the remainder of this thesis, an above corollary will be referenced by “Lehman
Corollary” followed by the corollary number.
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Chapter 4

Applications to Odd-st-Walks and
st-T -Cuts

4.1 Chapter Overview

This chapter focuses on two cases: (1) F is a clutter of odd-st-walks, and, (2) F is a clutter
of st-T -cuts.

Given signed graph (G,Σ), s, t ∈ V (G), and weight function w ∈ ZZ
E(G)
+ , let F be the

clutter of odd-st-walks of (G,Σ). Whenever F has no OK5 or F7 minor, there exists a
fractional w-packing and integer w-cover of F with the same value (Theorem 2.4.1). Using
the constructive version of Lehman’s Theorem, one can either find a fractional w-packing
and integer w-cover of the same value or show that OK5 or L7 is a minor of F . Moreover,
this can be done in polynomial time, proving below Theorem 4.1.1 (which is equivalent to
Theorem 1.3.2).

Theorem 4.1.1. Let (G,Σ) be a signed graph and w ∈ ZZ
E(G)
+ . Let s, t ∈ V (G) and F be

the clutter of odd-st-walks of (G,Σ). Then in time polynomial in |V (G)| + 〈w〉, one can
either find

1. I, J ⊆ E(F) such that F/I \ J is isomorphic to OK5 or L7, or
2. an integer solution to (2.5) and a solution to (2.6) with the same value.

Given graft (G, T ), s, t ∈ V (G), and weight function w ∈ ZZ
E(G)
+ , let F be the clutter

of st-T -cuts of (G, T ). Whenever F has no b(OK5) or L7 minor, there exists a fractional
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w-packing and integer w-cover of F with the same value (Theorem 2.4.4). Using the
constructive version of Lehman’s Theorem, one can either find a fractional w-packing and
integer w-cover of the same value or show that b(OK5) of L7 is a minor of F . Moreover,
this can be done in polynomial time, proving below Theorem 4.1.2 (which is equivalent to
Theorem 1.3.3).

Theorem 4.1.2. Let (G, T ) be a graft and w ∈ ZZ
E(G)
+ . Let s, t ∈ V (G) and F be the

clutter of st-T -cuts in (G, T ). Then in time polynomial in |V (G)| + 〈w〉, one can either
find

1. I, J ⊆ E(F) such that F/I \ J is isomorphic to b(OK5) or L7, or
2. an integer solution to (2.5) and a solution to (2.6) with the same value.

This chapter is dedicated to proving Theorems 4.1.1 and 4.1.2. Section 4.2 introduces
signed graph and graft minor operations and shows them correspond to minor operations
for clutters of odd-st-walks and clutters of st-T -cuts respectively. Section 4.3 provides a
proof outline; the remaining sections include the more technical details.

4.2 Minors in Signed Graphs and Grafts

Let (G,Σ) be a signed graph with s, t ∈ V (G). Although minor operations in signed
graphs have already been defined, here we must take care to retain s and t. Updating Σ to
Σ4δ(S) for s, t ∈ S ⊆ V preserves the set of odd st-walks in (G,Σ). We call this operation
resigning and refer to any Σ′ obtained in this way as a signature of (G,Σ). Since (G,Σ)
and (G,Σ′) have the same set of odd st-walks, we will view these two signed graphs as
equivalent. Accordingly, we do not account explicitly for the resigning operation. Given
(G,Σ) and e ∈ E, we define (G,Σ) \ e as (G \ e,Σ − e) and call this operation deletion.
Given (G,Σ) and e ∈ E that is not an odd loop, suppose we resign to obtain Σ′ such that
e 6∈ Σ′. We define (G,Σ)/e as (G/e,Σ′) and call this operation contraction. If contracting
edge e = sx, call the resulting vertex s. If contracting edge e = tx, call the resulting vertex
t. If contracting edge e = st, call the resulting vertex s = t. Any (G′,Σ′) obtained by
applying a sequence of deletions and contractions is called a minor of (G,Σ).

We make some notes about this definition. Minor operations can be applied in any order
and so we unambiguously denote by (G,Σ)/I \J the signed graph obtained by contracting
all edges in I ⊆ E and deleting all edges in J ⊆ E (and resigning in whatever way
avoids contracting signature edges). Necessarily I does not contain an odd circuit. Note
that if s = t, the minor operations defined here correspond exactly to the signed graph
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minor operations defined in Section 1.1.3. The following proposition shows performing
contractions and deletions in a signed graph corresponds to performing the same operations
in the underlying clutter of odd-st-walks.

Proposition 4.2.1. If F is the clutter of odd st-walks of (G,Σ) then F/I \J is the clutter
of odd st-walks of (G,Σ)/I \ J .

Proof. It suffices to show that F \ e is the clutter of odd-st-walks of (G,Σ) \ e and F/e is
the clutter of odd-st-walks of (G,Σ)/e.

The clutter F \ e is defined as {F ∈ F : e 6∈ F}. In other words F \ e contains exactly
the odd-st-walks of (G,Σ) that do not use edge e. Deleting edge e from (G,Σ) results
in removing all odd-st-walks that use e and preserving all other odd-st-walks. Therefore,
F \ e is indeed the clutter of odd-st-walks of (G,Σ) \ e.

Without loss of generality, assume e 6∈ Σ since otherwise we can resign and preserve
the set of odd-st-walks. The clutter F/e is defined as the minimal sets of {F −e : F ∈ F}.
In other words, sets of F/e come in two sorts: odd st-walks of (G,Σ) that do not use e
and odd-st-walks of (G,Σ) using e with the edge e removed. Since e 6∈ Σ, the parity of
D ⊆ E is the same in both (G,Σ) and (G,Σ)/e. Thus, contracting e in (G,Σ) preserves
the odd-st-walks that do not use e. Since e 6∈ Σ, if F is an odd-st-walk using e, then
F − e is an odd-st-walk of (G,Σ)/e. Therefore, F/e is indeed the clutter of odd-st-walks
of (G,Σ)/e.

Minor operations can also be defined for grafts. Let (G, T ) be a graft with s, t ∈ V (G).
Suppose e ∈ E(G) \ {st} is not an odd bridge (an edge whose removal breaks (G, T ) into
two components each of which contains an odd number of T vertices). We define (G, T )\ e
as (G \ e, T ) and call this operation deletion. For e = xy ∈ E(G), let G′ = G/e. If z
is the vertex obtained by contracting e, then let T ′ = T − {x, y} ∪ {z} if exactly one of
x, y is in T and otherwise let T ′ = T − {x, y}. We define (G, T )/e as (G′, T ′) and call this
operation contraction. If contracting edge e = sx, call the resulting vertex s. If contracting
edge e = tx, call the resulting vertex t. Any (G′, T ′) obtained by applying a sequence of
deletions and contractions is called a minor of (G, T ).

Again, minor operations can be applied in any order and so we can unambiguously
denote by (G, T )/I \ J the graft obtained by contracting all edges in I ⊆ E and deleting
all edges in J ⊆ E. Necessarily G \ I does not contain a T -odd component. The following
proposition shows contraction in the graft corresponds to deletion in the underlying clutter
of st-T -cuts and deletion in the grafts corresponds to contraction in the underlying clutter
of st-T -cuts.
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Proposition 4.2.2. If F is the clutter of st-T -cuts of (G, T ) then F/I \ J is the clutter
of st-T -cuts of (G, T ) \ I/J .

Proof. It suffices to show that F \ e is the clutter of st-T -cuts of (G, T )/e and F/e is the
clutter of st-T -cuts of (G,Σ) \ e.

The clutter F \ e is defined as {F ∈ F : e 6∈ F}. In other words, F \ e contains exactly
the st-T -cuts of (G, T ) that do not use e. Suppose δ(S) for S ⊆ V is an st-T -cut of (G, T )
and let (G′, T ′) = (G, T )/e. If e ∈ δ(S), there is no corresponding st-T ′-cut of (G′, T ′)
since δ(S) \ e is not a cut of (G′, T ′). If e = xy 6∈ δ(S), then δ(S) is a st-T ′-cut of (G′, T ′).
Moreover, either x, y ∈ S or x, y 6∈ S. In both cases, |S∩T ′| is odd since contracting {x, y}
to {z} is defined so that the parity of T ∩ {x, y} and the parity of T ′ ∩ {z} are the same.
Thus δ(S) is an st-T ′-cut of (G′, T ′).

The clutter F/e is defined as the minimal elements of {F −e : F ∈ F}. In other words,
sets of F/e come in two sorts: st-T -cuts of (G, T ) that do not use e and st-T -cuts of (G, T )
using e with the edge e removed. If δ(S) is an st-T -cut of (G, T ) that does not use e, it
is clear the δ(S) is an st-T -cut of (G, T ) \ e that does not use e. Similarly, if δ(S) is an
st-T -cut of (G, T ) using e, δ(S) \ e is an st-T -cut of (G, T ) \ e.

It follows that we can consider signed graph and graft minor operations instead of
clutter operations whenever it is convenient.

4.3 Proof Outline

The proofs for Theorem 4.1.1 (regarding clutters of odd-st-walks) and Theorem 4.1.2 (re-
garding clutters of st-T -cuts) follow the same outline. In the interest of clarity and at the
cost of repetition, full outlines of both proofs follow.

4.3.1 Proof Outline: Theorem 4.1.1

Recall that the separation problem for P and a point x̄ ∈ Qn is to either determine that
x̄ ∈ P , or to find a separating constraint aTx ≤ β (i.e., aT x̄ > β and aTx ≤ β for all
x ∈ P ). In order for the constructive version of Lehman’s Theorem (Theorem 3.1.3) to
give a polynomial time algorithm, the separation problem for Q(F) must be solvable in
polynomial time. For odd-st-walk covering polytopes, polynomial time separation follows
almost immediately from being able to find minimum length circuits and paths in graphs
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subject to a parity condition (see [16]). Section 4.4 describes the separation algorithm and
shows correctness; the following proposition appears.

Proposition 4.3.1. Let (G,Σ) be a signed graph and let s, t ∈ V (G). Let F be the clutter
of odd st-walks of (G,Σ). Given x̄ ∈ QE(G), we can solve the separation problem for x̄ ∈ Qn

and Q(F) in time polynomial in |V (G)|+ 〈x̄〉.

The following proposition is obtained by combining (6.5.9) and (6.5.15) in [16] and allows
us to find not only optimal solutions to the packing and covering LPs, but also defining
constraints.

Proposition 4.3.2. Let F be a clutter and suppose that Q(F) ⊆ IRn is given by a separa-

tion oracle. If w ∈ ZZ
E(F)
+ , then in oracle polynomial time in n+〈w〉 we can find an optimal

solution ȳ to (2.6) and an extreme point x̄ of Q(F) that is optimal for (2.5) together with
a set of n constraints of Q(F) defining x̄.

Let F be the clutter of odd st-walks of (G,Σ). Since the separation problem for F is
polynomially solvable by Proposition 4.3.1, it follows immediately from Proposition 4.3.2
that we can find in time polynomial in |V (G)|+ 〈w〉

1. an optimal solution ȳ to (2.6) (the odd-st-walk packing LP),
2. an extreme point x̄ of Q(F) ≡ (2.5) (the odd-st-walk covering LP), and,
3. a set of n constraints of Q(F) defining x̄.

If x̄ is integral, we have achieved the second outcome of Theorem 4.1.1; x̄ and ȳ are an
integer w-cover and fractional w-packing of odd-st-walks of (G,Σ) with the same value.
Otherwise, we aim to find I, J ⊆ E(F) such that F/I \ J is isomorphic to OK5 or L7.
Proposition 4.3.1 gives a polynomial time separation oracle for Q(F), x̄ is a fractional
extreme point of Q(F), and we know n facets of Q(F) that define x̄. Hence the constructive
version of Lehman’s Theorem (Theorem 3.1.3) applies; in polynomial time we can find
I, J ⊆ E(F) such that F ′ = F/I \ J is a Lehman clutter. The first outcome (F ′ = Js

for s ≥ 2) cannot occur since the clutter of odd-st-walks is binary but Js is not. Theorem
3.1.3 also lets us find the minimum cardinality sets of F ′. By Proposition 4.2.1, F ′ is the
clutter of odd-st-walks of (G′,Σ′) = (G,Σ)/I \ J .

Given Lehman clutter F ′, Lemma 4.3.3 below proves we can efficiently show OK5 or
L7 is a minor of F ′. The proof is a constructive variant of known structures (see [28] and
[19]). A proof of Lemma 4.3.3 appears in Section 4.5.

Lemma 4.3.3. Let (G,Σ) be a signed graph and let s, t ∈ V (G). Let F be the clutter of odd
st-walks of (G,Σ). Suppose that F is a Lehman clutter and that we are given the minimum
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cardinality sets of F . Then in time polynomial in |V (G)| we can find I, J ⊆ E(F) such
that F/I \ J is isomorphic to OK5 or L7.

4.3.2 Proof Outline: Theorem 4.1.2

Polynomial time separation for st-T -cut covering polytopes was known previously (see
[16]). Section 4.4 describes the separation algorithm and shows correctness; the following
proposition appears.

Proposition 4.3.4. Let (G, T ) be a graft and let s, t ∈ V (G). Let F be the clutter of
st-T -cuts of (G,Σ). Given any x̄ ∈ QE(G), we can solve the separation problem for x̄ ∈ Qn

and Q(F) in time polynomial in |V (G)|+ 〈x̄〉.

Let F be the clutter of st-T -cuts of (G, T ). Since the separation problem for F is
polynomially solvable by Proposition 4.3.4, it follows immediately from Proposition 4.3.2
we can find in time polynomial in |V (G)|+ 〈w〉

1. an optimal solution ȳ to (2.6) (the st-T -cut packing LP),
2. an extreme point ȳ of Q(F) ≡ (2.5) (the st-T -cut covering LP), and,
3. a set of n constraints of Q(F) defining x̄.

If x̄ is integral, we have achieved the second outcome of Theorem 4.1.2; x̄ and ȳ are
an integer w-cover and fractional w-packing of st-T -cuts of (G, T ) with the same value.
Otherwise, we aim to find I, J ⊆ E(F) such that F/I \ J is isomorphic to b(OK5) or
L7. Proposition 4.3.4 gives a polynomial time separation oracle for Q(F), x̄ is a fractional
extreme point of Q(F), and we know n facets of Q(F) that define x̄. Hence the constructive
version of Lehman’s Theorem (Theorem 3.1.3) applies; in polynomial time we can find
I, J ⊆ E(F) such that F ′ = F/I \ J is a Lehman clutter. The first outcome (F ′ = Js for
s ≥ 2) cannot occur since the clutter of st-T -cuts is binary but Js is not. Theorem 3.1.3
also lets us find the minimum cardinality sets of F ′. By Proposition 4.2.2, F ′ is the clutter
of st-T -cuts of (G′, T ′) = (G, T )/J \ I.

Given Lehman clutter F ′, Lemma 4.3.5 below proves we can efficiently show b(OK5) or
L7 is a minor of F ′. The proof is a constructive variant of known structures (see [19]). A
proof of Lemma 4.3.5 appears in Section 4.6.

Lemma 4.3.5. Let (G, T ) be a graft and let s, t ∈ V (G). Let F be the clutter of st-T -cuts
of G. Suppose that F is a Lehman clutter and that we are given the minimum cardinality
sets of F . Then in time polynomial in |V (G)| we can find I, J ⊆ E(F) such that F/I \ J
is isomorphic to b(OK5) or L7.
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4.4 Solving the Separation Problems

4.4.1 The Separation Problem for Odd-st-Walks

Let (G,Σ) be a signed graph, s, t ∈ V (G), and F be the clutter of odd st-walks of (G,Σ).
Given x̄ ∈ Qn, we require a polynomial time method to show x̄ ∈ Q(F) or find a separating
hyperplane.

It is straightforward to check that 0 ≤ x̄e ≤ 1 for all e ∈ E in polynomial time. We
also need to verify

∑
(x̄e : e ∈ F ) ≥ 1 for all F ∈ F . Since F may have exponentially

many members, we can not verify all of these constraints in the straightforward way.
Suppose F ∗ ∈ F is a minimum weight odd-st-walk with respect to weight function x̄. If∑

(x̄e : e ∈ F ∗) < 1, then letting a be the characteristic vector of F ∗ and b be 1, aTx ≥ b
is a separating hyperplane for x̄ and Q(F). If

∑
(x̄e : e ∈ F ∗) ≥ 1 then for all F ∈ F∑

(x̄e : e ∈ F ) ≥
∑

(x̄e : e ∈ F ∗) ≥ 1,

where the first inequality holds because F ∗ is a minimum weight member of F . Therefore,
we can conclude x̄ ∈ Q(F). It remains to show that we can find a minimum weight odd
st-walk in polynomial time.

This problem is closely related to finding a minimum weight circuit or path in a graph
subject to a parity condition. In graph G = (V,E), the parity of E ′ ⊆ E is simply |E ′|,
while in a signed graph (G,Σ), the parity of E ′ ⊆ E is |E ′ ∩ Σ|. However, finding an
odd circuit in (G,Σ) is reducible to finding an odd circuit in G′ where G′ is obtained from
G by replacing every edge e 6∈ Σ by a path of length 2. Therefore, a polynomial time
algorithm for finding minimum weight circuits and paths in graphs subject to a parity
condition implies a polynomial time algorithm for finding minimum weight circuits and
paths in signed graphs subject to a parity condition. Algorithms for these problems in
graphs are known [16]. For completeness, a precise statement and proof follow.

Theorem 4.4.1. Given a graph G = (V,E), s, t ∈ V (G), and weight function x ∈ QE
+,

the following problems are solvable in polynomial time.

1. Find a minimum weight odd circuit through fixed s ∈ V .
2. Find a minimum weight odd circuit in G.
3. Find a minimum weight even circuit in G.
4. Find a minimum weight even st-path in G.
5. Find a minimum weight odd st-path in G.
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Proof. Let the auxiliary graph G′ be obtained from G by splitting each vertex v ∈ V into
vertices v1 and v2. If edge e = xy ∈ E(G), then add edges x1y2 and x2y1 to E(G′), giving
both weight we. Note that G′ can be computed in polynomial time.

The shortest odd circuit through fixed s in G is the shortest s1, s2 path in G′. Since
this shortest path can be found in polynomial time (for example, by Dijkstra’s algorithm),
finding a minimum weight odd circuit through s can be done in polynomial time.

Apply the algorithm for finding a minimum weight circuit Cs through fixed s ∈ V to
each vertex to find a minimum weight odd circuit inG by simply returning C = argmin{Cv :
v ∈ V }. Since this requires n applications of a polynomial time algorithm, this too runs
in polynomial time.

The minimum weight even circuit in G must use some edge e ∈ E(G). Note that if
C̃ is an even circuit, then C̃ \ e is an odd path. Thus, the minimum weight even circuit
problem can be solved by finding for each e = xy ∈ E the shortest odd xy-path.

Auxiliary graph G′ can be used to find the shortest odd and even paths in G. To find
a minimum weight even path from s to t, find a shortest path from s1 to t1. To find a
minimum weight odd path from s to t, find a shortest path from s1 to t2. Thus, a minimum
weight even st-path, minimum weight odd st-path and so also a minimum weight even cycle
can be found in polynomial time.

Finding a minimum weight odd-st-walk in polynomial time follows almost immediately
from the preceding theorem.

Claim 4.4.2. Given (G,Σ) such that s, t ∈ V (G) and weight function x ∈ QE
+, there exists

a polynomial time algorithm to find a minimum weight odd-st-walk of (G,Σ).

Proof. Recall that an odd st-walk is either an odd st-path or the edge disjoint union of an
even st-path P and an odd circuit C such that V (P ) and V (C) have at most one vertex
in common. Suppose Podd is a minimum weight odd st-path in (G,Σ), Peven is a minimum
weight even st-path in (G,Σ), and Codd is a minimum weight odd circuit in (G,Σ).

If w(Podd) ≤ w(Peven ∪ Codd) then Podd is the minimum odd st-walk since any odd st-
walk that is the union of an even path and odd circuit must have weight at least w(Peven)+
w(Codd).

Otherwise w(Peven∪Codd) ≤ w(Podd). If Peven∪Codd is the edge disjoint union of an odd
circuit and even st-path sharing at most one vertex, then Peven ∪C is an odd st-walk and
thus the minimum odd st-walk. Otherwise, Peven ∪Codd is not an odd st-walk. Then Peven
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and Codd must share at least 2 vertices and so Peven ∪Codd properly contains some odd st-
path P ′. Since w(P ′) < w(Peven∪Codd), the minimum odd st-walk must be an odd st-path,
a contradiction. Thus, we can find a minimum weight odd st-walk in polynomial time by
finding Podd, Peven and Codd (in polynomial time as per Theorem 4.4.1) and choosing Podd

if w(Podd) ≤ w(Peven ∪ Codd) and choosing Peven ∪ Codd otherwise.

4.4.2 The Separation Problem for st-T -Cuts

Analogously to the analysis for odd-st-walks, it suffices to show that we can find a minimum
weight st-T -cut in polynomial time. An early proof of this result is found in [16] and follows
from a straightforward uncrossing argument; this argument is, in fact, known to work for
a more general problem.

Let G = (V,E) be a graph and let T1, T2 ⊆ V be such that |T1| and |T2| are even. Let
w ∈ IRE

+ be a weight function on the edges of G. A T1, T2-cut is a set of edges of the form
δ(U) where |U ∩ T1| and |U ∩ T2| are odd. Note that choosing T1 = T and T2 = {s, t} in
the below theorem implies we can find a minimum weight st-T -cut in polynomial time.

Claim 4.4.3. Given graph G = (V,E), T1, T2 ⊆ V with |T1|, |T2| even and w ∈ IRE
+, there

exists a polynomial time algorithm to find a minimum weight T1,T2-cut.

Proof. Recall that a T -cut is δ(U) such that |U ∩ T | is odd. It is well known that finding
a minimum weight T -cut can be done in polynomial time [16].

First, find a minimum weight T1-cut δ(U). If |U ∩ T2| is odd, then δ(U) is a mini-
mum T1, T2-cut. Otherwise, we require the following uncrossing property: “There exists a
minimum weight T1, T2-cut δ(X) of G such that X ⊆ U or X ⊆ Ū .”.

Proof of uncrossing property:

Let X be a minimum weight T1, T2-cut. If the uncrossing property does not hold, then U
and X cross. This means U \X 6= ∅ and X \ U 6= ∅.

Since |X ∩ T1| is odd, |X ∩ U ∩ T1| and |X ∩ Ū ∩ T1| have distinct parities. Since
|Ū ∩ T1| is odd, |X ∩ Ū ∩ T1| and |X̄ ∩ Ū ∩ T1| have distinct parities. Thus |X ∩ U ∩ T1|
and |X̄ ∩ Ū ∩ T1| have the same parity. If they are both of odd parity, continue.

Otherwise, since |U ∩ T1| is odd, |X ∩ U ∩ T1| and |X̄ ∩ U ∩ T1| have distinct parities.
It follows that |X̄ ∩ U ∩ T1| and |X ∩ Ū ∩ T1| are both of odd parity. If this is the case,
since δ(X) and δ(X̄) are minimum weight T1, T2-cuts, we can exchange freely the roles of
X and X̄ and thus assume that |X ∩ U ∩ T1| and |X̄ ∩ Ū ∩ T1| both have odd parity.
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Since |X ∩T2| is odd, |X ∩U ∩T2| and |X ∩ Ū ∩T2| have distinct parities. Since |Ū ∩T2|
is even, |X ∩ Ū ∩ T2| and |X̄ ∩ Ū ∩ T2| have the same parity. Thus we may assume (after
possibly interchanging both the role of U and Ū and X and X̄) that |X ∩ U ∩ T2| is odd
and |X̄∩ Ū ∩T2| is even. See Figure 4.1 for a representative figure of the necessary parities.

U Ū

X̄

X T1

T2

Figure 4.1: Uncrossing Illustration: |X ∩ U ∩ T1| is odd, etc.

It is well-known the weight function is submodular and thus

w(δ(X ∩ U)) + w(δ(X̄ ∩ Ū)) ≤ w(δ(U)) + w(δ(X)). (4.1)

Since δ(U) is a minimum T1-cut and X̄ ∩ Ū is also a T1-cut, w(δ(U)) ≤ w(δ(X̄ ∩ Ū)). Since
δ(X) is a minimum T1,T2-cut and X ∩ U is also a T1, T2-cut, w(δ(X)) ≤ w(δ(X ∩ U)).
Thus equality must hold in (4.1). In particular w(δ(X)) = w(δ(X ∩ U)) and thus X ∩ U
is a minimum T1, T2-cut of G that is contained in U .

Returning to the main statement, if U is not a T1, T2-cut, proceed recursively on the
graphs G1 and G2 obtained by contracting respectively U and Ū into a single T1-vertex.
The uncrossing lemma implies that a minimum T1, T2-cut in G either corresponds to a
minimum T1, T2-cut in G1 or a minimum T1, T2-cut in G2. Since |V (G1)| < |V (G)| and
|V (G2)| < |V (G)|, eventually the algorithm reaches a base case for which the minimum
T1-cut is also the minimum T1, T2-cut. Additionally, |V (G1)| + |V (G2)| = |V (G)| + 2 and
so the implied recursive algorithm runs in polynomial time.

Generalizations of separating T1, T2-cuts are interesting in their own right. In Section
5.2.1, these generalizations and related results are discussed.
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4.5 Proof of Lemma 4.3.3

4.5.1 Preliminaries

Let F be the clutter of odd st-walks of signed graph (G,Σ) with s, t ∈ V (G). Up to
isomorphism, there is exactly one signed graph whose set of odd st-walks is exactly OK5 ;
odd-K5 is the signed graph (K5, E(K5)) where K5 is the complete graph on five vertices
and s = t is any vertex. The correspondence between minors in clutters of odd-st-walks
and minors in signed graphs (Proposition 4.2.1) shows that clutter F has an OK5 minor if
and only if (G,Σ) has an odd-K5 minor. Up to isomorphism, there is exactly one signed
graph whose set of odd st-walks is exactly L7; (L7,Σ7) is the signed graph formed by taking
the cycle on 4 vertices with all edges even and adding three odd edges each parallel to a
distinct edge of the cycle. Vertices s and t are the endpoints of the edge with no parallel
edge (see Figure 4.2). Again, Proposition 4.2.1 implies that clutter F has no L7 minor if
and only if (G,Σ) has no (L7,Σ7) minor.

s t

1 2

3

4

56

7

Figure 4.2: Signed graph (L7,Σ7). Thick edges are odd.

To prove Lemma 4.3.3, it suffices to show that if F is Lehman, then we can find I, J ⊆ E(F)
such that (G,Σ)/I \ J is odd-K5 or (G,Σ)/I \ J is (L7,Σ7). Note that the odd-K5 and
(L7,Σ7) we find must be such that the vertices labelled s and t are those vertices previously
indicated.

Recall that an element in b(F) is either an st-bond of G or a signature of (G,Σ). By the
hypothesis of the Lemma, we have the minimum cardinality sets F̄ of F . We can construct
clutter K̄ by solving equation (3.1). Hence throughout the proof, the clutter of minimum
cardinality odd-st-walks and the clutter of minimum cardinality st-bonds and signatures
are known. The proof has two parts: (1) when s = t in G, we aim to find odd-K5, and (2)
when s 6= t in G, we aim to find (L7,Σ7).

61



4.5.2 Algorithm for Case 1: s = t in G.

As discussed in Section 2.4.2, F is the clutter of odd circuits of (G,Σ) and K is the set of
all inclusion-wise minimal signatures of (G,Σ). To emphasize this difference, the elements
of F will be denoted by C and elements of K will be denoted by B throughout this section.

A graph H is a pseudo-odd-K5 if there exist e = xy ∈ E(H), a partition {x, y}, V1, V2, V3
of V (H) and paths P1, P2, P3, Q12, Q13, Q23 such that

i. V1, V2, V3 are stable sets of G,
ii. P1, P2, P3 are pairwise internally vertex disjoint,

iii. for all i ∈ [3], Pi is between x and y and V (Pi) ⊆ {x, y} ∪ Vi,
iv. for all i, j ∈ [3], i 6= j, Qij joins V (Pi) to V (Pj), and V (Qij) ⊆ Vi ∪ Vj.

We will proceed in two steps: first we show how to use F̄ and K̄ to find a pseudo-odd-K5,
then we show how to obtain an odd-K5 from a pseudo-odd-K5. The correctness essentially
follows from the proof of Theorem 12 in [13] and will be given in Section 4.5.4.

Finding a pseudo-odd-K5.

Pick an arbitrary edge e = xy and choose C1, C2, C3 ∈ F̄ and B1, B2, B3 ∈ K̄ as in
Lehman Corollary 3.4.6. For i ∈ [3], let Pi denote Ci − e; i.e. Pi is a path between x and
y. Moreover, it can be shown that property (ii) holds for P1, P2, P3. Since B1, B2, B3 are
signatures, Σ′ = B14B24B3 is a signature of (G,Σ). Contract all edges in E(G)− Σ′ so
that E(G) = Σ′. For all i, j ∈ [3], i 6= j, Bi4Bj = (Bi ∪ Bj)− e is a cut of G since Bi, Bj

are signatures. Thus, we can find Uij ⊆ V (G)−{x, y} such that δG(Uij) = Bi4Bj. For all
distinct i, j, k ∈ [3] we define Vi as Uij ∩ Uik. Then it can be shown that {x, y}, V1, V2, V3
is a partition of V (G) and that both properties (i) and (iii) hold. Moreover, it can also
be shown that paths Q12, Q13, Q23 satisfying property (iv) must exist. Thus (G,Σ′) is a
pseudo-odd-K5. Paths Qij can be found efficiently as it is simply a matter of finding a
path between two disjoint sets of vertices in the same component.

Finding an odd-K5

It remains to show that given a pseudo-odd-K5 we can either find a pseudo-odd-K5 with
fewer vertices, or we already have an odd-K5. The argument follows the proof of Lemma
4.1 in [13]. First note that given a pseudo-odd-K5 we may find Qij such that only the
endpoints intersect Pi and Pj (by possibly taking a subpath of the given path). Given a
pseudo-odd-K5, delete all edges outside of P1 ∪ P2 ∪ P3 ∪Q12 ∪Q13 ∪Q23 ∪ {e}. Remove
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all degree two vertices v by contracting edges of δ(v). The resulting graph is necessarily
also a pseudo-odd-K5. Moreover, each path Pi contains exactly one internal vertex vi and
since there are no degree two vertices |V1| = |V2| = |V3|. We may assume |V1| > 1 for
otherwise we already have an odd-K5. For all distinct i, j ∈ [3], let eij be the edge of Qij

that is incident with vi, let Q′ij = Qij − {eij, eji}, and let V ′i = V (Q′ij) ∩ V (Q′ik). Define
G′ = G \ {e13, e32, e21}/{e12, e23, e31}. Necessarily G′ is a pseudo-odd-K5 with partition
{x, y}, V ′1 , V ′2 , V ′3 and paths P1, P2, P3, Q

′
12, Q

′
13, Q

′
23 with fewer vertices than the original

pseudo-odd-K5. Applying this reduction at most |V1| times, we find an odd-K5.

4.5.3 Algorithm for Case 2: s 6= t in G.

We look for an (L7,Σ7) minor in (G,Σ). The correctness essentially follows from the proof
of Theorem 1.1 in [19] and will be given in Section 4.5.5.

It can be shown that there exists an edge e = st and vertex disjoint odd circuits Cs, Ct

such that Cs ∪ {e}, Ct ∪ {e} ∈ F̄ and s ∈ V (Cs), t ∈ V (Ct). Moreover, there exists an odd
circuit C such that C∪{e} ∈ F̄ and where C and Cs share exactly vertex vs 6= s and where
C and Ct share exactly vertex vt 6= t. It is clear that given F̄ , we can find Cs, Ct and C
as described above. Deleting all the edges outside of Cs ∪Ct ∪C ∪ {e} and shortening Cs,
Ct and C to two edges by contracting all edges that do not have both ends in {s, t, vs, vt}
yields (L7,Σ7).

4.5.4 Proof for Case 1: s = t in G

This proof follows the proof in [28] with the exception that the contraction step occurs
earlier.

Finding a pseudo-odd-K5

We first show that any two minimum cardinality odd circuits of (G,Σ) intersecting in one
edge intersect exactly in the edge and its endpoints.

Claim 4.5.1. Let C1, C2 ∈ F̄ . If e = xy ∈ C1 ∩ C2, then V (C1) ∩ V (C2) = {x, y}.

Proof. By way of contradiction, suppose there exists v ∈ V (C1) ∩ V (C2) − {x, y}. Then
there exists P ⊆ C1 ∪ C2 which is neither C1 − e or C2 − e. By Lehman Corollary 3.4.7,
C1∪C2−e contains no odd circuit. It follows that P must have odd parity. However, then
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P ∪ e is an odd circuit in C1 ∪ C2 that is distinct from C1 and C2, contradicting Lehman
Corollary 3.4.7.

As in the algorithm, pick an arbitrary edge e = xy and find C1, C2, C3 ∈ F̄ and B1,
B2, B3 ∈ K̄ using Lehman Corollary 3.4.6. For the remainder of this analysis, i, j, k denote
distinct indices from {1, 2, 3}.

By Claim 4.5.1, if Pi = Ci−e, then P1, P2 and P3 are pairwise internally vertex disjoint
paths; property (ii) holds as claimed. Since B1, B2 and B3 are signatures, B24B3 is a cut
and thus B14B24B3 = B1 ∪ B2 ∪ B3 is a signature of (G,Σ′). Let (G′,Σ′) be obtained
from G by contracting all the edges in E(G)−Σ′ (this is allowed since E(G)−Σ′ contains
no odd circuit as Σ′ is a signature). Note that (G′,Σ′) is (G′, E(G′)) and any signature of
(G′,Σ′) is also a signature of (G,Σ).

Necessarily B1, B2 and B3 are signatures of (G′,Σ′) and so Bi4Bj = Bi ∪ Bj − e is a
cut of G′; there exists Uij ⊆ V (G′) − {x, y} such that δG′(Uij) = Bi4Bj. The edges of
E(G′)− e are spanned by δ(U12) ∪ δ(U13) ∪ δ(U23). Furthermore Uij necessarily induces a
connected subgraph of G. Otherwise, there exists ∅ ⊂ T ⊂ Uij with δ(T ) ⊂ δ(Uij). Then
δ(T )4Bj ⊆ Bi4Bj is a signature of G′ and thus a signature of G contained in Bi ∪ Bj

that is neither Bi nor Bj, contradicting Lehman Corollary 3.4.7. Given Bi, Bj, we can find
Uij efficiently using breath first search in G \ (Bi4Bj) starting from x.

Now, δ(U124U234U13) = ∅. Since G is connected, U124U234U13 must be ∅ since
x, y 6∈ Uij . So Uij = Vi ∪ Vj where V1, V2, V3 are pairwise disjoint sets of V \ {x, y}. It is
clear that E(G′)− e is spanned by δ(V1∪V2)∪ δ(V1∪V3)∪ δ(V2∪V3) and V (G′)−{x, y} is
spanned by V1∪V2∪V3. In other words, V1, V2, V3 are independent sets spanning V \{x, y}.
So, we have shown property (i) holds.

Since EG(Pi) does not contain any edge of Bj4Bk, the vertices of Pi are disjoint from
Vj∪Vk in G′. Since |Pi∩Bi| ≥ 3, Pi must be a length 2 path between x and y with internal
vertex vi ∈ Vi. So, we have shown properties (ii) and (iii) hold. Lastly, since Uij induces a
connected subgraph of G′, there must exist a paths Qij satisfying property (iv).

Finding an odd-K5

Given a pseudo-odd-K5 (G,E(G)), delete all edges outside of P1∪P2∪P3∪Q12∪Q13∪Q23∪e
and remove all degree two vertices by contracting δ(v). Necessarily V1 = V (Q12)∩V (Q13),
V2 = V (Q12) ∩ V (Q23), V3 = V (Q23) ∩ V (Q13) and so |V1| = |V2| = |V3|. If |V1| = 1, we
have found an odd-K5 minor of (G,Σ) because (G,Σ) is isomorphic to odd-K5.
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Otherwise, for distinct {i, j} ∈ {1, 2, 3} let eij be the edge on Qij incident with vi. Let
G′ = G/{e12, e23, e3} \ {e13, e32, e21}, P ′i = Pi, Q

′
ij = Qij \ {eij, eji}, V ′i = V (Q′ij) ∩ V (Q′ij),

and V ′0 = {x, y}. It can be verified that (G′, E(G′)) is a minor of (G,E(G)) that is also
a pseudo-odd-K5. Additionally, |V ′1 | < |V1|. Continue inductively to find the odd-K5

minor. Since the inductive step is applied |V1| < n times and all the graph operations are
implementable in polynomial time, odd-K5 can be found in polynomial time.

4.5.5 Proof for Case 2: s 6= t in G

This argument follows the proof in [19].

Call an odd circuit C minimum if there exists an even path P such that C ∪ P ∈ F̄ .
Analogously, call an even st-path P minimum if there exists an odd circuit C such that
C ∪ P ∈ F̄ . Call an odd st-path P minimum if P ∈ F̄ . To prove correctness of the
algorithm, it suffices to show the existence of Cs, Ct and C as described by the algorithm.

Claim 4.5.2. There exists a minimum odd circuit Cs containing s and a minimum odd
circuit Ct containing t. Furthermore, any minimum odd circuit containing s and any
minimum odd circuit containing t must be vertex disjoint.

Proof. Since δ(s) is an st-cut, it contains some K ∈ K̄ since it necessarily intersects every
(odd or even) st-path. Accordingly, there exists B ⊆ δ(s) such that |B ∩ F | ≥ 1 for all
F ∈ F̄ . By Lehman Corollary 3.4.5, B intersects some F ∈ F̄ at least twice. This F
cannot be an odd st-path and thus it must be the union of an even st-path and an odd
circuit. Thus there exists a minimum odd circuit Cs using s. Analogously, there exists a
minimum odd circuit Ct using t.

Let Cs be any minimum odd circuit containing s and let Ct be any minimum odd
circuit containing t. Suppose Cs uses t. Then Cs can be partitioned into st-paths P and
P ′ one of which must be odd. This contradicts the fact F is a clutter. Thus Cs cannot
use t. Suppose Cs uses some vertex v on Ct where v 6= t. Then Cs can be partitioned into
sv-paths Ps and P ′s. We may assume Ps is odd and P ′s is even since Cs is odd. Similarly, Ct

can be partitioned into tv-paths Pt and P ′t . We may assume Pt is odd and P ′t is even. Then
Ps ∪P ′t must contain an odd st-walk F . Since F cannot be the odd st-walk corresponding
to Cs or the odd st-walk corresponding to Ct, this is a contradiction to Lehman Corollary
3.4.7. Therefore Cs and Ct are vertex disjoint.

Henceforth Cs and will be a fixed minimum odd circuit containing s and Ct will be a
fixed minimum odd circuit containing t.
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Claim 4.5.3. There exists a unique minimum st-path Peven.

Proof. Let Ps be the minimum even st-path such that Ps∪Cs ∈ F̄ . Let Pt be the minimum
even st-path such that Pt ∪ Ct ∈ F̄ . Then Ps = Pt because otherwise Ps ∪ Ct contains an
odd st-walk that is neither Ps ∪Cs or Pt ∪Ct, a contradiction. This analysis holds for any
for F = P ∪ C ∈ F̄ such that C 6= Cs.

Claim 4.5.4. Let F ∈ F̄ share vertex v 6= s with Cs. Then either

1. F is an odd st-path and uses an edge of Cs incident to s, or,
2. F is of the form Peven ∪C where C is a minimum odd circuit. Moreover, if C shares

another vertex v′ with Cs as well, C and Cs are not edge disjoint.

Proof. By Claim 4.5.3, F either an odd st-path or of the form Peven ∪ C where C is a
minimum odd circuit.

Suppose F is an odd-st-path. Partition circuit Cs into sv-paths Q (odd) and Q′ (even).
The vertex v splits F into a path F1 from s to v and a path F2 from v to t; exactly one
of F1 and F2 is even. By way of contradiction, suppose F1 is distinct from Q and Q′. If
F2 is odd, Q′ ∪ F2 is an odd st-path contained in F ∪ Cs that is neither F nor Cs ∪ Peven,
contradicting Lehman Corollary 3.4.7. If F2 is even, Q∪F2 is an odd st-path contained in
F ∪Cs that is neither F nor Cs ∪Peven, again contradicting Lehman Corollary 3.4.7. Thus
F1 is not distinct from Q and Q′ and so F uses an edge of Cs incident to s.

Suppose F is of the form Peven∪C where C is a minimum odd circuit. If C additionally
shares vertex v′ with Cs, we must show C and Cs are not edge disjoint. By way of
contradiction, suppose C and Cs are edge disjoint. Then v and v′ partition Cs into P (odd)
and P ′ (even) and v and v′ partition C into Q (odd) and Q′ (even). All of P, P ′, Q,Q′

must be distinct since C and Cs are edge disjoint. Then Peven ∪ P ∪ Q′ contains an odd
st-walk distinct from F and Peven ∪ Cs, contradicting Lehman Corollary 3.4.7.

Assume F1 = Peven ∪ Cs and let B1 denote the mate of F1.

Claim 4.5.5. The edges in F1 ∩ B1 are the 2 edges of Cs incident to s and one edge of
Peven. Thus |F1 ∩B1| = q = 3.

Proof. By way of contradiction, suppose there exists e ∈ (F1 ∩ B1) \ δ(s). By Lehman
Corollary 3.4.3, there exists F2 ∈ F̄ such that F1 ∩ F2 = {e}. By Claim 4.5.3, F2 is an
st-path because since otherwise F1 and F2 share both e and Peven. By Claim 4.5.4, since
F2 is an st-path it must use an edge of Cs incident to s. However, e is not incident with
s and thus we have a contradiction. We conclude F1 ∩ B1 ⊆ δ(s) ∪ Peven and, moreover,
since F is binary and |B1 ∩ (Peven ∪ Ct)| = 1, |F1 ∩B1| = 3 and |B1 ∩ Peven| = 1.
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Let es ∈ B1∩Peven and obtain {F ′1 . . . F ′`} ∈ F̄ intersecting in at most es using Lehman
Corollary 3.4.1 where F ′1 = F1. Note that there exists v ∈ Cs since Cs is not a loop by
Claim 4.5.5.

Claim 4.5.6. Let v 6= s ∈ V (Cs). Then there exists F ′ ∈ {F ′2, . . . F ′`} of the form Peven∪C
where v ∈ V (C).

Proof. By Claim 4.5.4, no odd-st-path in {F ′2, . . . F ′`} uses an edge in δ(v) since otherwise
such a path would also intersect F1 twice: in es and in some edge e ∈ δ(s) \ es. If there
does not exist F ′ of the form Peven ∪ C with v ∈ V (C), since E(G) = F ′1 ∪ . . . ∪ F ′`, by
Lehman Corollary 3.4.5, v must have degree exactly 2. If δ(v) = {e, e′}, every odd st-walk
uses both or none of e, e′ and so the columns of M(F̄) indexed by e, e′ are identical. This
contradicts the fact M(F̄) is nonsingular. Thus there exists F ′ of the form Peven∪C where
C uses v.

Claim 4.5.7. Peven consists of a single edge es.

Proof. If |Peven| ≥ 2, all sets of {F ′2, . . . F ′`} are odd st-paths, contradicting Claim 4.5.6.

Now, odd st-walk F ′ is in {F ′2, . . . F ′`} if and only if es is contained in both F ′ and
its mate. By Claim 4.5.5, there are exactly 3 such sets: Cs ∪ es, Ct ∪ et and C ∪ et for
some other odd circuit C. Since necessarily Cs and Ct are vertex disjoint, for any vertex
vs ∈ V (Cs) and vt ∈ V (Ct) it must be that vs, vt ∈ C by Claim 4.5.6. Therefore, we
showed there exist vertex disjoint odd circuits Cs, Ct and e = st such that Cs ∪ {e} and
Ct ∪ {e} ∈ F̄ and where s ∈ V (Cs), t ∈ V (Ct). Moreover, C is such that C ∪ {e} ∈ F̄ and
C and Cs share exactly one vertex vs 6= s and C and Ct share exactly one vertex vt 6= t.
This concludes the proof of correctness for the given algorithm.

4.6 Proof of Lemma 4.3.5

Even though this algorithm is essentially a constructive proof of the version in [19], it was
necessary to change the organization of the proof and so the below exposition differs from
that in the original paper.
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4.6.1 Preliminaries

Let F be the clutter of st-T -cuts of (G, T ) with s, t ∈ V (G). Up to isomorphism, there is
exactly one graft whose set of st-T -cuts is exactly b(OK5); (O5, T5) is the graft in Figure
4.3. The correspondence between minors in clutters of st-T -cuts and minors in grafts
(Proposition 4.2.2) shows that clutter F has a b(OK5) minor if and only if (G, T ) has a
(O5, T5) minor. Up to isomorphism, there are exactly two grafts whose sets of st-T -cuts
are exactly L7; (L1, T1) and (L2, T2) are the grafts in Figure 4.4. Again, Proposition 4.2.2
implies that clutter F has no L7 minor if and only if (G, T ) has no (L1, T1) or (L2, T2)
minor.
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Figure 4.3: Graft (O5, T5). Square vertices are in T .
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Figure 4.4: Grafts (L1, T1) (left) and (L2, T2) (right). Square vertices are in T .

To prove Lemma 4.3.5, it suffices to show that if F is Lehman, we can find I, J ⊆ E(F)
such that (G, T )/J \ I is (O5, T5), (L1, T1) or (L2, T2).
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Recall that an element in b(F) is either an st-path or a T -join (see Section 2.4.5). By
the hypothesis of the Lemma, we have the minimum cardinality sets F̄ of F . We can
construct clutter K̄ by solving equation (3.1). Hence throughout the proof, the clutter of
minimum cardinality odd-st-walks and the clutter of minimum cardinality st-bonds and
signatures are both known.

We will refer to elements of K̄ as minimum T -joins and minimum st-paths. A 3-path
configuration is a set of st-paths P1, P2, P3 such that

i. s 6∈ T ;
ii. there exists edge ss′ ∈ P1 ∩ P2 ∩ P3;

iii. the only vertices common to more than one of P1, P2 and P3 are s, s′ and t; and
iv. each path Pi contains a vertex vi ∈ T distinct from s, s′ and t.

We define a link of (G, T ) as a path with both endpoints in V (P1)−s, V (P2)−s, V (P3)−s
and no internal vertices in P1, P2 or P3. We call a link odd if is has an odd number of
internal vertices in T . We call a link even if it has an even number of internal vertices in
T .

The algorithm has two main steps. The first is to find minimum st-paths P1, P2 and
P3 forming a 3-path configuration. If all T vertices appear on these paths, we are done;
delete all edges except P1 ∪ P2 ∪ P3 and contract all edges except ss′, δ(v1), δ(v2) and
δ(v3). Otherwise, perform contractions and deletions maintaining the 3-path configuration
to either push all the T vertices to the paths or find (O5, T5).

Recall that r denotes the cardinality of sets in F̄ (the set of minimum st-T -cuts) and `
denotes the cardinality of sets in K̄ (the set of minimum st-paths and minimum T -joins).
We break the algorithm into two cases: ` ≥ 4 and ` = 3. Much of the analysis carries
through in both cases. For ` = 3, st-paths in the 3-path configuration do not have an edge
incident with any of {s, s′, t} and so we must reason directly about the structure after some
common preliminaries.

4.6.2 Algorithm for Case 1: ` ≥ 4

Finding P1, P2 and P3.

Choose e = ss′ such that s 6∈ T and s′ 6= t. If no such e exists, switch the role of s and t and
we are guaranteed that such an edge exists. Use Lehman Corollary 3.4.6 to find minimum
paths P1, P2, P3 intersecting exactly in e whose mates B1, B2, B3 intersect exactly in e. If
r = 3, then all the T vertices are located on the 3-path configuration P1, P2, P3; if vi is a
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T vertex of Pi, deleting all edges except P1 ∪ P2 ∪ P3 and contracting all remaining edges
except ss′ and δ(vi) for i = 1, 2, 3, yields either (L1, T1) or (L2, T2).

Pushing T vertices to paths.

Let edge ww′ ∈ P1 −
(
δ(s) ∪ δ(s′) ∪ δ(t)

)
; such edge exists since r ≥ 4. Using Lehman

Corollary 3.4.6 , find minimum T -joins K1, K2 intersecting in exactly ww′ whose mates
intersect in exactly ww′. Then C = K14K2 is a circuit. If both s′, t ∈ V (C), then all the
T vertices are located on the 3-path configuration P1, P2, P3 and we are done. Otherwise,
either s′ 6∈ T or t 6∈ T .

Partition edges of C − (P1 ∪ P2 ∪ P3) into a collection S of links. Vertices of T are
necessarily either on a link of S or in P1 ∪ P2 ∪ P3. For every Q ∈ S, contract all edges of
Q except for the two edges incident to the ends of Q. The parity of Q remains unchanged;
if Q is odd then the internal vertex of Q is in T and if Q is even then the internal vertex
of Q is outside T . Update S by removing all even links. For any pair S1, S2 ∈ S sharing
endpoint v, contract edge of S1, S2 incident to v and remove S1, S2 from S. If link S ∈ S
has endpoint v ∈ V (Pi) − {s, s′, t} such that v 6∈ T or there exists v′ ∈ T − {s′, t, v} in
V (Pi), then contract the edge of S incident to v and update S by removing S.

If after applying this procedure, S = ∅, then all the T vertices are located on the 3-path
configuration P1, P2, P3 and as before find (L1, T1) or (L2, T2). Otherwise S consists of a
single odd link with T vertex y. Either there exists paths Q1, Q2, Q3 from y to each of
v1, v2, v3 that use no vertex of P1 ∪ P2 ∪ P3 or there exists a path Q from v to s′ or t. In
the first case, deleting all edges except P1 ∪ P2 ∪ P3 and contracting all remaining edges
except ss′, δ(vi) for i = 1, 2, 3 and δ(y) yields (O5, T5). In the second case, deleting all
edges except P1 ∪ P2 ∪ P3 ∪Q and contracting all remaining edges except ss′ and δ(vi) for
i = 1, 2, 3 yields (L1, T1) or (L2, T2).

4.6.3 Proof of Correctness for Case 1: ` ≥ 4

Finding P1, P2 and P3.

This proof essentially follows from the proof of Theorem 1.3 in [19]; specifically, we require
the following claims. Proofs are included for completeness.

Claim 4.6.1. Let K1, K2 ∈ K be two minimum T -joins. Then K14K2 is a circuit that
does not use both s and t.
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Proof. Since K1 and K2 are T -joins, the vertices of G[K14K2] have even degree. Thus
K14K2 can be expressed as the disjoint union of some set of cycles C of G. Let C ∈ C.
Then K14C contains a T -join and by Lehman Corollary 3.4.7, K14C must be either K1 or
K2. Necessarily K14C 6= K1 and so K14C = K2, or equivalently, K14K2 = C. Suppose
C contains both s and t. Since K1 and K2 intersect in exactly one edge, |K14K2| = 2`−2
and thus C contains an st-path of cardinality at most `− 1. This contradicts the fact the
minimum cardinality elements of K̄ have size `. Therefore, K14K2 is a circuit that does
not use both s and t.

If P is a path and x, y ∈ V (P ), let P [x, y] denotes the subpath of P between x and y.

Claim 4.6.2. Let K1, K2 ∈ K be two minimum st-paths. Then if v ∈ V (K1) ∩ V (K2),
K1[s, v] = K2[s, v] or K1[v, t] = K2[v, t]. In particular, if K1 and K2 intersect in exactly
e, then e ∈ δ(s) ∪ δ(t).

Proof. The set K1[s, v]∪K2[v, t] contains an st-path. Lehman Corollary 3.4.7 implies that
this path is either K1 or K2. The result follows.

Claim 4.6.3. Let e ∈ E − δ(s)− δ(t). Then there exist two minimum T -joins K1 and K2

intersecting exactly in e. Endpoints of e that are not in circuit C = K14K2 are in T . At
most one endpoint of e is a vertex of C and thus at least one endpoint of e is in T .

Proof. By Lehman Corollary 3.4.6, there exist K1, K2, K3 ∈ K̄ intersecting exactly in e.
Applying Claim 4.6.2, we may assume K1 and K2 are T -joins. Let e = xy, If x 6∈ C,
then K14δ(x) = {e} and thus x ∈ T . If x, y ∈ C, by Lehman Corollary 3.4.6, there exist
st-T -cuts F1, F2, F3 ∈ F̄ intersecting in e. Since F1, F2, F3 are cuts and x, y ∈ C, it must
be that |C ∩ Fi| ≥ 2 for all i ∈ [3]. It follows that each of F1, F2, F3 intersect at least
one of K1, K2 twice. This is a contradiction since at most two of F1, F2 can be mates of
K1, K2.

Claim 4.6.4. No minimum T -join intersects both δ(s) and δ(t).

Proof. Suppose K ∈ K̄ contains an edge incident to s and an edge incident to t. Let F be
the mate of K. Suppose there exists e ∈ (K∩F )−δ(s)−δ(t). By Lehman Corollary 3.4.6,
there exists K1, K2 ∈ K̄ such that K, K1 and K2 intersect exactly in e. By Claim 4.6.3, we
may assume K1 is a minimum T -join. Then K4K2 uses both s and t, contradicting Claim
4.6.1. Since |J ∩U | ≥ 3, we may assume {es, e′s, et} ⊆ J ∩U for es, e

′
s ∈ δ(s) and et ∈ δ(t).

Since r ≥ 3, there exists e ∈ E − δ(s) − δ(t). Minimum T -joins K ′1, K
′
2 intersecting in

exactly e must exist and so there exists minimum T -join K ′1 that does not contain et. By
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Claim 4.6.1, K4K ′1 is a circuit using one of s and t; by construction, K4K ′1 uses t but
not s. Since K1 is not the mate of F , it does not contain both es and e′s. This contradicts
the fact K4K1 does not use s.

Claim 4.6.5. Minimum T -joins are either disjoint from δ(s) or disjoint from δ(t).

Proof. Suppose Ks, Kt ∈ K̄ are such that Ks ∩ δ(s) 6= ∅ and Kt ∩ δ(t) 6= ∅. By Claim 4.6.4
Ks ∩ δ(t) = ∅ and Kt ∩ δ(s) = ∅. Thus Ks4Kt is a circuit intersecting both s and t, a
contradiction to Claim 4.6.1.

Claim 4.6.6. We can find a 3-path configuration.

Proof. Suppose minimum T -joins are disjoint from δ(s) and thus s 6∈ T . Let ss′ ∈ δ(s).
By Lehman Corollary 3.4.6, there exist K1, K2, K3 ∈ K̄ intersecting in exactly ss′. Since
s 6∈ T , K1, K2, K3 must be st-paths. By Claim 4.6.3, K1, K2, K3 pairwise share only
vertices s, s′, t. For each path Ki, there exists ei = xiyi such that xi, yi 6∈ {s, s′, t} since
Ki has length at least 4. By Claim 4.6.3, at least one of xi, yi is in T . It follows that
K1, K2, K3 is a 3-path configuration.

In summary, this section shows we can find a 3-path configuration by simply choosing
s 6∈ T (swapping roles of s and t if necessary), choosing arbitrary e ∈ δ(s) and using Lehman
Corollary 3.4.6 to obtain 3 st-paths intersecting in exactly e. Necessarily minimum T -joins
may be assumed disjoint from δ(s).

Pushing T vertices to paths.

The proof in this section is, in spirit, the same as the corresponding proof in [19]. However,
we must replace a minimality assumption with a method for explicitly finding the minimal
instance.

Claim 4.6.7. Let (G, T ) be a graft that contains a 3-path configuration P1, P2, P3. If all
vertices of T are in P1 ∪ P2 ∪ P3, then (G, T ) contains a (L1, T1) or (L2, T2) minor.

Proof. For i ∈ [3], contract all edges of Pi except δ(vi) where vi ∈ T . Delete all edges
outside P1 ∪P2 ∪P3. In the resulting graft, necessarily one of s′ and t is a T -vertex and so
we have either (L1, T1) or (L2, T2).

Claim 4.6.8. If r = 3, then all vertices of T are in P1 ∪ P2 ∪ P3.
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Proof. By Lehman Corollary 3.4.2, E = P1 ∪ P2 ∪ P3 and so the result follows.

Let edge ww′ ∈ P − δ(s) − δ(s′) − δ(t). Such an edge must exist since r ≥ 4. By
Lehman Corollary 3.4.4, there exists a collection K′ ⊆ K̄ = {K1, K2 . . . Kr} intersecting in
at most ww′. Using Claim 4.6.3, we may assume K1, K2 ∈ K intersect in exactly ww′ and
the mates of K1 and K2 also intersect in exactly ww′. By Claim 4.6.5 C = K14K2 is a
circuit that does not use s. In fact, we can do better.

Claim 4.6.9. If C uses both s′ and t, then the vertices of T are in P1 ∪ P2 ∪ P3.

Proof. If C uses both s′ and t, then we can partition C into paths Q1, Q2 with endpoints s′

and t. Since |Q1|+|Q2| = 2`−2, Q′1 = Q1∪ss′ and Q′2 = Q2∪ss′ are minimum st-paths (i.e.,
Q′1, Q

′
2 ∈ K̄). Let F ′1 be the mate of Q′1 and F ′2 be the mate of Q′2. Since K1 and K2 intersect

F ′1 and F ′2 exactly once, ss′ ∈ F ′1 and ss′ ∈ F ′2. If F1, F2, F3 are the mates of P1, P2, P3,
since P1, P2, P3 are a 3-path configuration, ss′ ∈ F1, ss

′ ∈ F2, and ss′ ∈ F3. Since (F ,K) is
a Lehman blocking pair, nonidentical elements of {P1, P2, P3, Q

′
1, Q

′
2} pairwise intersect in

exactly ss′. By Claim 4.6.2, nonidentical elements only share the vertices {s, s′, t}. Since
the vertices of T −{w,w′} are in C and each Pi has a vertex in T −{s, s′, t}, we can assume
that Q′1 = P2 and Q′2 = P3. It follows that the vertices of T are in P1 ∪ P2 ∪ P3.

Since C does not use both s′ and t then either s′ 6∈ T or t 6∈ T .

Claim 4.6.10. If C does not use both s′ and t, then there exists a minimum T -join K ∈
K′ − {K1, K2}.

Proof. By way of contradiction, suppose K3 . . . Kr are all st-paths. By Claim 4.6.2, they
must be internally vertex disjoint. By Lehman Corollary 3.4.2, E = K1 ∪ . . .∪Kr. Vertex
s′ must have degree three because 3-path configuration P1, P2, P3 uses s′. Necessarily K1

and K2 use s′ and so s′ ∈ C and thus t 6∈ C. Each edge of δ(t) is on one of K3 . . . Kr and
since |δ(t)| ≥ 3, this implies r ≥ 5. If v is a degree 2 vertex on one of K3 . . . Kr, then v ∈ T
or else M [K̄] is nonsingular, contradicting the fact (F ,K) is a Lehman blocking pair. It
follows that the vertices of K3 . . . Kr are in C ∪ {w,w′}. Since C has 2` − 2 vertices, it
follows that (r − 2)(`− 2) ≤ 2r. Since r ≥ 5, this implies ` = 3, a contradiction. Thus we
may assume K3 ∈ K̄ is a minimum T -join.

Partition C − (P1 ∪ P2 ∪ P3) into a collection S of links. Vertices of T are either on a
link of S or in P1∪P2∪P3. If s′ 6∈ T , no link has endpoint s′. If t 6∈ T , no link has endpoint
t. We say that link S ∈ S is in an S-tripod if there exists a path Y with endpoints y, y′

such that
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1. internal vertices of Y are not in P1 ∪ P2 ∪ P3 or in any S ∈ S,
2. y is an internal vertex of S that is in T , and
3. y′ is not an endpoint of S, y′ 6= s and y′ is either a vertex of P1, P2 or P3 or an

internal vertex of link S ′ ∈ S for S ′ 6= S.

Claim 4.6.11. If S ∈ S is an odd link with both endpoints in T then S is in an S-tripod.

Proof. Let v, v′ be the endpoints of S and Vs = V (S) ∩ T . Since S is odd, |Vs| is odd. By
Claim 4.6.1, C ′ = K14K3 is a circuit. Thus K3 ∩ C ′ is a collection L of pairwise vertex
disjoint paths with endpoints in T ∪{w,w′} and internal vertices in V −T −{w,w′}. Every
vertex in Vs is an endpoint of some path in L. Let L+ ⊆ L be the set of paths with exactly
one endpoint in Vs. Since |Vs| is odd, |L+| must be odd.

By way of contradiction, suppose all paths in L+ have endpoints in Vs ∪ {v, v′}. Then
L+ = {L+}; assume this path has endpoint v. Assume the edge of S incident to v is in
K1 and the edge of S incident to v′ is in K2. Vertices of Vs ∪ v are incident to an edge
of K1 ∩ S and to either an edge of a path in L − L+ or an edge of L+. The edges in
E ′ = (K1∩S)∪L−L+ is a disjoint union of circuits. However, E ′ ⊆ K14K3 and since C ′

is a circuit containing all vertices in T −{w,w′}, the vertices of T −{w,w′} are vertices of
S. Since v′ ∈ T − C, either v′ = w or v′ = w′. So v′ is on P1, v is on P2, but there cannot
be a T -vertex on P3, a contradiction.

So there exists L ∈ L+ with endpoint y ∈ Vs and endpoint y′ outside Vs ∪ {v, v′}. Let
y′ be first vertex of L starting from y which is a vertex of P1, P2, P3 or some link of S − S.
The path Y = L[y, y′] is an S-tripod since y′ 6= s since s 6∈ C ′ by Claim 4.6.5.

Let (G′, T ′) and S ′ be obtained from (G, T ) and S by performing the following opera-
tions.

1. For all S ∈ S, contract all edges of Q except for the two edges incident to the ends
of Q.

2. Remove all even links from S.
3. For any pair S1, S2 ∈ S sharing endpoint v, contract edge of S1, S2 incident to v and

remove S1, S2 from S.
4. If link S ∈ S has endpoint v ∈ V (Pi) − {s, s′, t} such that v 6∈ T or there exists
v′ ∈ T − {s′, t, v} in V (Pi), then contract the edge of S incident to v and update S
by removing S.

Since whenever s′ 6∈ T , no link has endpoint s′, then s′ 6∈ T ′. Since whenever t 6∈ T , no
link has endpoint t, then t 6∈ T ′. Moreover, since s is not the endpoint of any link in S, we
maintain our 3-path configuration.
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Remark 4.6.12. P1, P2, P3 is a 3-path configuration for (G′, T ′).

Claim 4.6.13. If not all vertices of T ′ are on P1, P2, P3, then S ′ contains a unique odd
link S ′ such that for some internal vertex y

1. there exists paths Q1, Q2, Q3 from y to each of v1, v2, v3 that uses no vertex of P1 ∪
P2 ∪ P3, or

2. there exists a path Q from v to s′ or t.

Proof. This follows from two observations. Firstly, if more than two odd links remain, we
can necessarily apply operation 3 or operation 4. Secondly, if an odd link began in an S
tripod, then it is in an S ′ tripod throughout the procedure. Thus exactly one odd link
remains and since it is an S ′ tripod, one of the given cases must hold.

In the first case, deleting all edges except P1 ∪ P2 ∪ P3 and contracting all remaining
edges except ss′, δ(vi) for i = 1, 2, 3 and δ(y) yields (O5, T5). In the second case, deleting
all edges except P1 ∪ P2 ∪ P3 ∪Q and contracting all remaining edges except ss′ and δ(vi)
for i = 1, 2, 3 yields (L1, T1) or (L2, T2). This concludes the proof of correctness.

4.6.4 Case 2: ` = 3

Here the proof and algorithm are given simultaneously. Since ` = 3, and there exists
minimum T -joins in K̄, it must be that |T | = 2, |T | = 4 or |T | = 6.

Find P1, P2, P3.

All the claims regarding finding 3-path configuration for ` ≥ 4 hold when ` = 3 except for
Claim 4.6.6, In Claim 4.6.6, we required our st-paths to be length 4 to guarantee there was
some edge such that neither of the endpoints were s, s′ or t.

Claim 4.6.14. We can find a 3-path configuration.

Proof. As per proof in ` ≥ 4 section, we have paths Pi = {ss′, s′vi, vit} for i = 1, 2, 3. If
s′ 6∈ T , then necessarily vi ∈ T for all i and we have a 3-path configuration.

Otherwise, by way of contradiction, suppose v1 6∈ T . By Claim 4.6.3, we can find
minimum T -joins K1 and K2 intersecting in exactly edge s′v1. By Claim 4.6.1, K14K2 is
a cycle C and since ` = 3, |C| = 4. Since v1 6∈ T and all vertices of T − {s′} are vertices
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of C, |T | = 4. It follows that there exist w1, w2, w3 ∈ T such that K1 = {v1w1, w2w3, v1s
′}

and K2 = {w1w2, w3v1, v1s
′}. If st-T -cut δ(U) is the mate of minimum st-path P1 then we

may assume s, v1 6∈ U , s′, t ∈ U . Since δ(U) is not the mate of K1 or K2, δ(U) ∩ K1 =
δ(U) ∩ K2 = {s′v1}. It follows that U ∩ T = s′ and so t 6∈ T . Necessarily no minimum
T -join contains edge v1t since |T | = 4. This implies three minimum T -joins intersect in
v1t.

Since v1, t 6∈ T , we can use edge v1t to find our 3-path configuration. It remains to
verify all minimum T -joins are disjoint from δ(t) so we can continue to use this property.
Otherwise, some T -join uses two edges in δ(t) and this contradicts ` = 3 since it implies
the existence of a length 2 st-path.

In summary, if choosing arbitrary ss′ ∈ δ(s) such that s′ ∈ T and applying Lehman
Corollary 3.4.6 does not lead to a 3-path configuration, then we can still find a 3-path
configuration. Simply relabel s and t so that s 6∈ T , no minimum T -join intersects δ(s)
and there exists edge ss′ ∈ δ(s) such that s′ 6∈ T ; the above claim guarantees we can do
this.

Note that since there exists a 3-path configuration with {v1, v2, v3} ⊆ T , |T | = 4 or
|T | = 6. There are two cases: s′ 6∈ T and s′ ∈ T .

Case 1: s′ 6∈ T

Consider edge s′v1. By Lehman Corollary 3.4.4, there exists a collection K′ ⊆ K̄ =
{K1, K2 . . . Kr} intersecting in at most s′v1. Using Claim 4.6.3, we may assume K1, K2 ∈ K
intersect in exactly s′v1 and the mates of K1 and K2 also intersect in exactly s′v1. Since
s′ 6∈ T , necessarily |T | = 4. If t ∈ T , then we have found (L1, T1). Otherwise, let
T = {v1, v2, v3, y}. Necessarily K1 and K2 are the union of

1. an edge joining two T vertices, and
2. a length 2 path with internal vertex s′ joining two T vertices, one of which is v1.

If the endpoint of the length 2 path in K1 or K2 is y, then we are done. Simply contract
the edge joining s′ and y, and delete all edges outside of P1 ∪ P2 ∪ P3. Otherwise, the end
of the length 2 path in K1 is v2 and the end of the length 2 path in K2 is v3. This implies
there is an edge joining v2 and y and an edge joining v3 and y.

In a similar way, there are minimum T -joins K ′1 and K ′2 intersecting in at most s′v2
and of the form above. If the endpoint of the length 2 path of K1 or K2 is y, then we are
done. Otherwise, we are guaranteed there are edges e1, e2, e3 joining y to all of {v1, v2, v3}.
Deleting all edges except P1 ∪ P2 ∪ P3 ∪ {e1, e2, e3} yields (O5, T5).
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Case 2: s′ ∈ T

If |T | = 4, then deleting all edges except P1 ∪ P2 ∪ P3 yields (L1, T1). Thus, we consider
the case when |T | = 6. Suppose T = {s, v1, v2, v3, x, y} where x or y is possibly t. If x or
y is t, Claim 4.6.9 shows all T vertices are on P1 ∪ P2 ∪ P3. This is, however, impossible
since s 6∈ T and |V (P1∪P2∪P3)| = 6. By Lehman Corollary 3.4.4, there exists a collection
K′ ⊆ K̄ = {K1, K2 . . . Kr} intersecting in at most s′v1. Using Claim 4.6.3, we may assume
K1, K2 ∈ K intersect in exactly s′v1 and the mates of K1 and K2 also intersect in exactly
s′v1. Since |T | = 6, s, v1 ∈ T , K1 = {sv1, e1, e2} and K2 = {sv1, e′1, e′2}, where {e1, e2} and
{e′1, e′2} are matchings of {v2, v3, x, y}.

If any of e1, e2, e
′
1, e
′
2 join x and y, then contracting the edge xy and deleting all edges

except P1∪P2∪P3 yields (L1, T1). Otherwise we may assume e1 = v2x, e2 = v3y, e′1 = v2y,
e′2 = v3x. Contracting {e1, e2, e′1, e′2}, and deleting all edges except P1 ∪ P2 ∪ P3 yields
(L1, T1).

4.7 Remarks

The problem of finding a fixed minor of a binary clutter is equivalent to the problem of
finding a rooted minor in a binary matroid. It follows from recent developments in the
matroid minor project that this problem can be solved in polynomial time [12]. Using these
algorithms, it is possible to avoid using Lemma 4.3.3, Lemma 4.3.5 and Theorem 3.1.3 in
the proofs of Theorem 4.1.1 and Theorem 4.1.2.

We have already introduced Corollary 1.3.4 of Theorem 4.1.1: given a graph and weight
function on its edges, in polynomial time we can either find a maximum weight cut or find
K5 as an odd minor. Note that this result also follows from the graph minor testing
algorithm with parity condition [21].

Proof of Corollary 1.3.4. Given G, let Σ = E(G) and label some arbitrary vertex by s = t.
If F is the clutter of odd-st-walks of (G,Σ) then it is, in fact, the clutter of odd circuits
of G. By Remark 4.3.1 and Proposition 4.3.2 we can, in polynomial time, find an extreme
point x̄ of Q(F) that is optimal for (2.5) together with a set of n constraints of Q(F) that
define x̄. If x̄ is integer, then we may assume that it is the characteristic vector of a set of
edges B that intersects every odd circuit; i.e., E(G)−B is the maximum cut. Otherwise,
use Theorem 3.1.3 and Lemma 4.3.3 to find I, J such that F/I \J is isomorphic to OK5 . It
can be then readily checked that I forms a cut of G and that K5 is obtained by contracting
all edges of I and deleting parallel edges.
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Chapter 5

Future Work, Related Problems and
Conclusions

5.1 Future Work: Eulerian Multi-Commodity Flow

Algorithms

Recall that the fractional, integer and Eulerian integer flow problems are solved for graphs.
That is, we know the minor minimal signed graphs such that (G,Σ) does not admit an
integer (or fractional) flow for every (or every Eulerian) weight function. Moreover, poly-
nomial time algorithms for finding flows or obstructions are known for the fractional and
integer cases. However, there does not exist a polynomial time algorithm corresponding to
the result [13] on Eulerian integer multi-commodity flow.

Theorem 5.1.1 (Theorem 1.1.4). Suppose (G,Σ) has no odd-K5 minor. Then for every
Eulerian weight function w ∈ ZZE

+ satisfying the cut condition, (G,Σ) has an integer w-flow.

We are interested in whether the construction in the above theorem can be used to
obtain a polynomial time algorithm for the following problem: given (G,Σ) and Eulerian
w ∈ ZZE

+, either show the cut condition is violated, show (G,Σ) has an odd-K5 minor, or
find an integer w-flow.

We have no satisfactory answer to this question. Here we outline the unsuccessful
strategy used and explain why doing the “obvious thing” did not work. In the positive
direction, the construction in Theorem 1.1.4 leads to a finite algorithm for finding frac-
tional flows; the general outline of this technique is found in Section 5.1.2. Additionally,

78



we show that a certain type of incremental flow algorithm running in pseudo-polynomial
time and finding either an obstruction or flow can be used to obtain a polynomial time
algorithm to do the same. Although this seems like an unnatural construction, were the
algorithm of Section 5.1.2 to run pseudo-polynomial time, it would result in exactly the
incremental algorithm needed. For more details, see Section 5.1.3. We begin by discussing
the transversal property of flows and outline two paradigms for designing flow algorithms:
maintaining optimality and maintaining feasibility. The finite time algorithm of Section
5.1.2 maintains optimality while the capacity scaling algorithm of Section 5.1.3 maintains
feasibility.

5.1.1 Transversal Property, Underflows and Overflows

Consider the unit weight case. An integer 1l-flow is a set of edge disjoint odd circuits. A
cover is a set of edges intersecting every odd circuit. Let P be a maximum set of edge
disjoint odd circuits and let B be a minimum cover. If (G,Σ) has the Eulerian integer
MFMC property, |P| = |B| and so B is a transversal of P . That is, each circuit in P
contains exactly one edge in B and each edge in B is contained in exactly one circuit of P .
Given a maximum set of odd circuits P , finding a minimum cover is equivalent to choosing
an edge from each P ∈ P so that the chosen edges intersect every odd circuit of (G,Σ).
Symmetrically, given a minimum cover, finding an integer 1l-flow is equivalent to choosing
a set of disjoint circuits - one through each edge in B.

In the weighted case, there is an similar transversal property. Let B be some minimum
cover of (G,Σ) for Eulerian weight function w. If (G,Σ) has the Eulerian integer MFMC
property, then any maximum integer w-flow y ∈ ZZC1+ is such that

∑
(yC : d ∈ C ∈ C1) = wd

for all d ∈ B. That is, the minimum cover is (in a weighted sense) a transversal of the
maximum w-flow. Suppose we are given minimum cover B. Finding a w-flow can be
viewed as choosing, for each d ∈ B, wd circuits intersecting B in exactly {d}.

Algorithm design paradigms for flow problems fall into two categories: algorithms that
maintain optimality and algorithms that maintain feasibility. For example, Ford Fulkerson
[11] maintains feasibility while Preflow Push [15] maintains optimality. This dichotomy
follows through for multi-commodity flow instances.

We call y ∈ ZZC1+ an overflow if for each d ∈ Σ,
∑

(yC : d ∈ C ∈ C) = wd; i.e., if it
satisfies (1.1). An overflow satisfies the demand constraints but not necessarily the capacity
constraints. If

∑
(yC : e ∈ C ∈ C) = we + Γe for Γe ≥ 1, Γe ∈ ZZ, we call e an inflated

edge. The total inflation of overflow y ∈ ZZC1+ is Γ(y) =
∑

(Γe : e is inflated edge). An
algorithm maintaining feasibility begins with overflow y having total inflation Γ(y) and
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tries to construct overflow y′ having total inflation Γ(y′) such that Γ(y′) < Γ(y). Overflows
are used in Section 5.1.2 to describe the finite time constructive algorithm arising from
Theorem 1.1.4.

We call y ∈ ZZC1+ an underflow if for each e ∈ E,
∑

(yC : e ∈ C ∈ C1) ≤ we; i.e,
if it satisfies (1.2). An underflow satisfies the capacity constraints but not necessarily
the demand constraints. An algorithm maintaining feasibility works to construct from
underflow y, an underflow y′ such that

∑
(yC : C ∈ C) <

∑
(y′C : C ∈ C). Since the

value of the underflow increases by at least 1 by doing this, eventually a flow will be
found. The deficiency of underflow y is defined as the difference between the size of the
minimum cover and the amount of satisfied demand. The deficiency of underflow y is given
by ∆(y) = w(Σ) −

∑
(yC : C ∈ C1). Underflows are used in Section 5.1.3 to show that

the existence of an incremental pseudo-polynomial time algorithm finding integer flows or
obstructions implies the existence of a polynomial time algorithm doing the same.

In summary, we have three types of flows: underflows satisfy capacity constraints;
overflows satisfy demand constraints; flows satisfy demand and capacity constraints.

5.1.2 Finite Time Algorithm Arising from Theorem 1.1.4

Suppose we are given (G,Σ) and Eulerian w ∈ ZZE
+. The first step is to find a minimum

weight signature Σw. Note that we can either find such a signature or find an odd-K5

minor in polynomial time because of Theorem 4.1.1. If we find an odd-K5 minor, we are
done. If w(Σw) < w(Σ), then the cut condition is violated and we are done. Otherwise, we
conclude that Σ is indeed a minimum weight signature and thus the cut condition holds.
Since the cut condition holds, finding an integer w-flow is equivalent to finding an integer
packing of odd circuits of (G,Σ) of size w(Σ).

Note although that flow decomposition techniques admit polynomial size represen-
tations for overflows, for the purposes of discussion we will simply work with overflows
represented by y ∈ ZZC1+ .

Generate an overflow by choosing for each d ∈ Σ exactly wd circuits intersecting Σ in
exactly {d}. If there is no inflated edge, then we already have a flow. Otherwise, there
exists an edge e ∈ E such that

∑
(yC : e ∈ C ∈ C) = we + Γe for Γe ≥ 2. The goal is to

decrease Γe by 2.

First, find circuits C1, C2, C3 using edge e with yCi
≥ 0. We update circuits C1, C2, C3

until none are removable. Consider weight function w′ with w′e = we− 1 for all e ∈ Ci and
w′e = we for all e 6∈ Ci. Circuit Ci is removable if the weight of the minimum cover of
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G with weight function w is exactly one more than the weight of a minimum cover of G
with weight function w′. If Ci is removable, we update our weight function to w′ and ‘set
Ci aside’; applying this reduction until none of C1, C2, C3 are removable suppose we set
aside k(C) copies of C ∈ C. If we terminate in this iteration, we increase yC by k(C) for
all C ∈ C to obtain a solution. If we do not terminate in this iteration, we increase yC by
k(C) for all C ∈ C to obtain the overflow for the next iteration. After this step, we have
some new weight function w′ and circuits C1, C2, C3 using e, none of which are removable.

If w′e ≥ 2, using the construction in [13], either:

1. Untangling step: Obtain circuits C ′1, C
′
2, C

′
3 such that E(C ′1∪C ′2∪C ′3) ⊆ E(C1∪C2∪

C3) (counting multiplicities) and e 6∈ C1, e 6∈ C2.
2. Find odd-K5 minor.

In the second case, we are finished. In the first case set yCi
= yCi

− 1 and yC′
i

= yC′
i

+ 1
and continue by choosing some other inflated edge we.

If w′e ≤ 1, we have to apply the algorithm recursively on (G − e,Σ − e) to do the
untangling step. Note that if Γe = 1 for some e, we need to untangle in a different way;
the ability to do so follows from the fact the original weight function was Eulerian.

Although this algorithm will eventually terminate since we call recursively on increas-
ingly smaller graphs, the recursive calls lead to an exponential running time. The use of
removable circuits is not ideal; the main issue is that we have no relationship of the type ‘If a
circuit is removable for weight function w1, then it is also removable for related weight func-
tion w2’. If we could guarantee a removable circuit for the original weight function could
be located every polynomially many steps, this would in fact imply a pseudo-polynomial
time algorithm for the problem.

5.1.3 Capacity Scaling

Suppose we have an algorithm with the following input and output.

• Input:
1. (G,Σ), and
2. w ∈ ZZE

+ such that the cut condition holds, and
3. underflow y with deficiency ∆(y)

• Output either
1. w-flow y′, or
2. I, J ⊆ E(G) such that (G,Σ)/I \ J is odd-K5
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We will call such an algorithm a packAdditional algorithm.

The algorithm discussed in Section 5.1.2 is, in fact, a packAdditional algorithm. Un-
derflow y provides a mechanism for choosing our starting set of circuits for the algorithm;
if
∑

(yC : d ∈ C ∈ C1) = zd, then we choose an additional wd − zd circuits intersecting Σ
in exactly {d}. This algorithm does not run in pseudo-polynomial time in deficiency ∆(y);
however, this had been the initial hope.

A packAdditional algorithm running in pseudo-polynomial time would in fact imply
a polynomial time algorithm for the problem of finding a w-flow or odd-K5 for multi-
commodity flow instance for which the cut condition holds. This is proven below using a
capacity scaling scheme. Note that this scheme requires the ability to calculate minimum
covers and thus could not be applied for arbitrary multi-commodity flow instances. Since
multi-commodity flow is strongly NP-hard for |Σ| ≥ 2, schemes of this sort would be
uninteresting since a pseudo-polynomial time algorithm does not exist unless P = NP .
Additionally, devising packAdditional type algorithms is difficult since it requires a strong
understanding as to what types of partial solutions can lead to complete solutions.

The capacity scaling scheme used here is similar to the one used for Ford Fulkerson
(see [11]). The main idea is to use the large units of available capacity first and then add
bits of accuracy in further iterations. If the cut condition holds for initial weight function
w, it may not hold for w′ obtained by restricting w to the highest order bit of any entry.
Accordingly, we must adjust our demand at each step to guarantee we are still working
with an instance satisfying the cut condition. Also note that we must decrease demand
on all demand edges since we do not know exactly how to redistribute demand to restore
the cut condition otherwise. The key observation that makes the scheme work is that if
we choose weights at one iteration such that the cut condition holds, the violation in the
next iteration is bounded by some function of |E| and |Σ|.

In stating the capacity scaling scheme, packAdditional(G,Σ, w, y) denotes a call to
the packAdditional algorithm for signed graph (G,Σ), weight function w, and underflow
y. Let W denote the largest entry of w. The capacity scaling algorithm is as follows.

Let k = blog2W c.
Let y = 0.
While k > 0 Do

Let w′ = bw/2kc.
Find τw′, the weight of minimum signature of (G,Σ) for weight function w′.
Let the excess E be

∑
(w′d : d ∈ Σ)− τ ′w.

Set w′′d = max(w′d − E,wd(2y)).
y =packAdditional(G,Σ, w′′, 2y).
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End

To analyze the running time of this algorithm, first note that we need to find τw′ .
Theorem 4.1.1 of this thesis shows we can efficiently find τw′ or show odd-K5 is a minor
of (G,Σ). The outer loop is performed log2W times. As long as the deficiency for each
packAdditional call is polynomial in |Σ| and |E|, this would imply that the entire al-
gorithm runs in polynomial time. The below lemma shows that the deficiency in each
iteration is polynomially bounded.

Lemma 5.1.2. Let w be the weight function in iteration i of the outer loop and w′ be the
weight function in iteration i + 1 of the outer loop. Then

∑
(w′d : d ∈ Σ) ≤ 2

∑
(wd : d ∈

Σ) + |Σ||E|2.

Proof. If we assume w′ satisfies the cut condition (as it would in the last iteration), the
analysis is straightforward. If Σw is a minimum weight signature of (G,Σ) for weight
function w, then Σw = Σ4δ(S) for S ⊆ V . Since w′(Σw) = w′(Σ4δ(S)) ≥ w′(Σ) and
w′e = 2we+re for re ∈ {0, 1}, w(Σ)−2w(Σw) ≤ |E|. In other words, 2τw ≥ τw′−|E| and the
excess in each iteration is bounded by |E|. Accordingly, the difference in demand between
two iterations in bounded by |E||Σ| since we subtract the excess from every demand edge.
Lastly, we note that if w′ does not satisfy the cut condition, the above analysis holds by
comparing Σw and Σw′ instead.

5.2 Other Related Problems

The Flowing and Cycling Conjectures (Conjectures 1.2.4 and 1.2.3) remain open for many
classes of clutters. In Section 2.4.4 and 2.4.5, we showed that for duals of even cut and even
cycle matroids, the single commodity Cycling Conjecture implies the Four Colour Theorem.
This suggests the conjecture may be difficult to resolve even for the single commodity case.

5.2.1 Cuts with Parity Conditions

The separation problem for st-T -cuts has some generalizations of interest. As mentioned
in Section 4.4, one generalization is finding T1-odd, T2-odd cuts. That is, given G = (V,E)
and T1, T2 ⊆ V with |T1|, |T2| even, we want to find a minimum weight cut δ(S) such that
|T1 ∩ S| is odd and |T2 ∩ S| is odd. An uncrossing lemma of [16] shows that minimum
weight T1-odd, T2-odd cuts can be found efficiently. Faster algorithms for this problem
have been developed; see [14] and [2]. One related question is whether we can get efficient
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algorithms for different parity conditions. A T1-odd, T2-even cut is δ(S) for S ⊆ V such
that |T1 ∩ S| is odd and |T2 ∩ S| is even. Using an uncrossing lemma, we can again find
minimum T1-odd, T2-even cuts efficiently (δ(S) is T1-odd and T2-even if and only if it is
T1-odd and T14T2-odd). A T1-even, T2-even cut is δ(S) for S ⊆ V such that |T1 ∩ S| is
even and |T2 ∩ S| is even. The uncrossing lemma does not follow in this case; in fact, it is
an open problem to devise an efficient algorithm finding minimum T1-even, T2-even cuts.

5.2.2 Minimally Imperfect Graphs

A matrix 0, 1 matrix M with no column of zeroes is perfect if the set packing polytope
{x ∈ IRn

+ : Mx ≤ 1l} is integral. One can show that a matrix is perfect if and only if
it is the clique-node matrix of a perfect graph. Taking induced subgraphs corresponds
to taking column submatrices and we define matrix M to be minimally imperfect if the
corresponding set packing polytope is not integral but the set packing polytope for every
column submatrix is integral. The minimally imperfect graphs are known to be the odd
holes and odd antiholes. There exist polynomial time algorithms to recognize if a graph
has an odd hole or odd antihole and thus check if M is perfect. For more background
information about this problem see, [6] Chapter 3.2 and Chapter 3.3.

A result akin to Lehman’s Theorem for minimally non ideal clutters holds for minimally
imperfect graphs. Bruce Shepherd [31] asked if an analogue to the constructive version of
the Lehman’s Theorem (Theorem 3.1.3) holds for minimally imperfect graphs. This could
lead to alternative algorithms for finding odd holes or antiholes. Since the corresponding
separation problem requires checking for given k if there is a clique of size at least k and
thus is hard to solve, no analogous result to Theorem 3.1.3 is possible.

5.3 Conclusions

In conclusion, we used a constructive version of Lehman’s Theorem to show that for lifts
of graphic and cographic matroids there exist polynomial time algorithms finding either a
fractional flow and cover of the same value, a cut condition violation, or an obstruction.
Our attempts to get analogous results for Eulerian integer multi-commodity flows were
foiled, leaving this as an open problem.
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