
Efficient Pairings on Various
Platforms

by

Gurleen Grewal

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Combinatorics and Optimization

Waterloo, Ontario, Canada, 2012

c© Gurleen Grewal 2012

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

iii

Abstract

Pairings have found a range of applications in many areas of cryptography. As such, to
utilize the enormous potential of pairing-based protocols one needs to efficiently compute
pairings across various computing platforms. In this thesis, we give an introduction to
pairing-based cryptography and describe the Tate pairing and its variants. We then de-
scribe some recent work to realize efficient computation of pairings. We further extend
these optimizations and implement the O-Ate pairing on BN-curves on ARM and x86-64
platforms. Specifically, we extend the idea of lazy reduction to field inversion, optimize
curve arithmetic, and construct efficient tower extensions to optimize field arithmetic. We
also analyze the use of affine coordinates for pairing computation leading us to the conclu-
sion that they are a competitive choice for fast pairing computation on ARM processors,
especially at high security levels [25]. Our resulting implementation is more than three
times faster than any previously reported implementation on ARM processors.

v

Acknowledgements

I would like to thank my supervisor David Jao for his invaluable guidance throughout the
process of creating this thesis. I would like to thank my readers Edlyn Teske and Alfred
Menezes for their helpful feedback. Finally, I would like to thank my fellow graduate
students Ben, Marco, Dale, and Andrew for their friendship and support.

vii

Table of Contents

List of Tables xiii

List of Figures xv

1 Introduction 1

1.1 Introduction to Pairing Based Cryptography 3

1.1.1 Bilinear Pairings and their Applications 3

1.1.2 Elliptic Curves . 5

1.1.3 The Tate Pairing . 14

1.1.4 Miller’s Algorithm . 15

2 Optimal Pairings 19

2.1 Pairing Friendly Curves . 19

2.1.1 Barreto-Naehrig Curves . 20

2.2 Deriving the O-Ate Pairing . 20

2.2.1 Choice of n . 21

2.2.2 Choice of P . 21

ix

2.2.3 Final Exponentiation . 21

2.2.4 Denominator Elimination . 22

2.2.5 The Ate Pairing . 23

2.2.6 The Optimal Ate Pairing . 27

2.3 Twists on Elliptic Curves . 29

3 Field Arithmetic 33

3.1 Representation of Extension Fields . 33

3.1.1 Towering Scheme for Primes Congruent to 3 mod 8 36

3.1.2 Towering Scheme for Primes Congruent to 7 mod 8 36

3.2 Field Arithmetic . 38

3.2.1 Lazy Reduction . 38

3.2.2 Multiplication of Sparse Elements 38

3.2.3 Mapping from the Twisted Curve to the Original Curve 40

3.3 Final Exponentiation . 42

3.3.1 Exponentiation by x . 43

3.4 The Frobenius Operator . 44

4 Curve Arithmetic 47

4.1 Doubling and Addition Formulas . 47

4.1.1 Point Doubling . 48

4.1.2 Point Addition . 51

4.1.3 Affine Coordinates on ARM . 54

x

4.2 NAF Miller Loop . 55

5 Implementation Results 59

5.1 Operation Counts . 59

5.1.1 Miller Loop Operation Count . 59

5.1.2 Final Exponentiation . 62

5.2 Implementation Times . 64

References 69

Appendix A Pairing Operation Counts using Scheme 2 75

Appendix B Cross-over I/M ratios on BN446 and BN638 77

B.1 BN446 . 77

B.2 BN638 . 78

xi

List of Tables

4.1 Doubling and Addition costs comparison on ARM architecture 54

4.2 Cross-over I/M ratios for various curves . 56

4.3 Actual Fq inversion-to-multiplication ratios in various fields 56

5.1 Operation counts for a 254-bit prime field , refer to Section 3.2.1 for notation. 60

5.2 Operation counts for a 446-bit prime field, refer to Section 3.2.1 for notation. 61

5.3 Cost of the Miller Loop using various coordinates/processors, refer to Section
3.2.1 for notation. 63

5.4 Operation count for pairing computations at various security levels 64

5.5 Comparison of Operation count for pairing computation on the BN254 curve. 65

5.6 Field arithmetic timings in a 254-bit prime field, and O-Ate pairing timings
on BN254. 66

5.7 Field arithmetic timings in a 446-bit prime field, and O-Ate pairing timings
on BN446. 66

5.8 Field arithmetic timings in a 638-bit prime field, and O-Ate pairing timings
on BN638. 67

A.1 Operation counts for 446-bit prime field using Scheme 1, for notation refer
to Section 3.2.1. 76

xiii

List of Figures

1.1 Adding points P and Q, and doubling the point P using the chord and
tangent process. 11

xv

Chapter 1

Introduction

In the field of cryptography, pairings were initially used to break elliptic curve protocols [29].
However, in the past decade they have found a range of constructive applications in areas
such as identity-based encryption, key establishment, and short signatures. The utility
of pairings in constructing protocols which cannot be otherwise implemented has led to
a surge of interest in pairing-based protocols. Naturally, implementing any such protocol
requires efficient computation of the pairing function. Considerable work has been done
to compute fast pairings on PCs [19, 9, 33, 4]. Recently, Arahna et al. [4] computed
the O-Ate pairing at the 128-bit security level in under 2 million cycles on several 64-bit
personal computers.

Less emphasis has been placed on computing pairings on non-PC platforms such as mobile
devices. Mobile devices like smartphones and tablets are widely predicted to become
the dominant computing platform in the near future. In February 2011, the number of
smartphone shipments surpassed PCs [14]. As a result, for pairing-based protocols to have
practical relevance, it is important to be able to efficiently compute pairings on both mobile
devices and PCs.

In this work, we examine the problem of computing efficient pairings at multiple security
levels across different platforms. We extend the work of Arahna et al. [4] to incorporate
different BN-curves and security levels and use it to obtain fast pairings on the ARM
platform. In the process, we make several optimizations and analyze different options
available for implementation at various levels of the pairing computation:

1

• Firstly, we extend the concept of lazy reduction employed in Arahna et al. [4] to
inversion in extension fields. We also present an improved doubling formula using
Jacobian coordinates, and optimize the sparse multiplication algorithm in the degree
12 extension field.

• We examine different choices of towers for extension field arithmetic over various
prime fields. We determine the most efficient implementation of extension fields in
the context of pairing computation over BN-curves from the various choices available.

• The M-type sextic twist [39] has been largely ignored for use in pairing computations,
most likely due to the inefficient untwisting map. We demonstrate that by computing
the pairing on the twisted curve, we can bypass the inefficient untwisting. As a result,
it does not matter from an optimization perspective whether we use M-type or D-type
twists.

Using the results from our analysis and optimizations, we develop software to compute
the O-Ate pairing on BN-curves. Our software computes the O-Ate pairing on BN-curves,
and is over three times faster than previously reported pairing implementations on ARM
processors. We also present explicit operation counts for the pairing computation on three
security levels, which are faster than any previously known implementation.

Affine coordinates were first suggested for pairing computation by Lauter et al. in [25].
Acar et al. [3] noted that low extension field inversion to multiplication ratios make
affine coordinates a better choice for pairing computation than homogeneous coordinates.
We examine their claim on both x86-64 and ARM platforms. We find that inversion to
multiplication ratios of below 10-12 at different security levels make affine coordinates a
better choice than homogeneous. This implies that more often than not, affine coordinates
are faster on the ARM platform, but homogeneous coordinates are the better choice for
x86-64 processors. A detailed comparison between their measurements and ours is given
in Chapter 5.

The remainder of this work is organized as follows. The rest of this chapter gives back-
ground required to understand the O-Ate pairing. In Chapter 2, we define the Tate pairing
and describe optimizations building up to the O-Ate pairing. Chapter 3 discusses our im-
plementation of the field arithmetic, and Chapter 4 describes our optimizations to the
curve arithmetic. Finally, in Chapter 5 we present our implementation results including
pairing operation counts and timings on the x86-64 and ARM platforms.

2

1.1 Introduction to Pairing Based Cryptography

1.1.1 Bilinear Pairings and their Applications

Research in pairing-based cryptography has exploded in the past decade. Although initially
used for destructive purposes, pairings have been used in clever ways to construct novel
cryptographic schemes. In this section, we first define bilinear pairings and then present
a few selected applications. Due to the influx of interest in this topic in recent years,
it is unrealistic to touch on all applications of pairing-based cryptography. Instead, we
focus on a few well-known schemes. For a more comprehensive review, see [10, Ch. 10].
Familiarity with concepts such as public-key cryptography, digital signatures, and key
exchange schemes is assumed. For a survey of these, see [28].

Definition 1.1.1. Let G1 and G2 be cyclic groups of prime order n written in additive
notation with the identity element 0. Suppose G3 is a cyclic group of order n written in
multiplicative notation with identity element 1. A pairing is a function

e : G1 ×G2 → G3

that satisfies the following additional properties:

Bilinearity: For all P, P ′ ∈ G1 and all Q,Q′ ∈ G2 we have

e(P + P ′, Q) = e(P,Q) e(P ′, Q) and

e(P,Q+Q′) = e(P,Q) e(P,Q′)

Non-degeneracy:

• For all P ∈ G1, with P 6= 0, there is some Q ∈ G2 such that e(P,Q) 6= 1.

• For all Q ∈ G2, with Q 6= 0, there is some P ∈ G1 such that e(P,Q) 6= 1.

Applications

Key Distribution Schemes. Key distribution is a fundamental problem in cryptogra-
phy. In 2000, Joux [22] devised a key agreement scheme based on pairings.

3

Tripartite one-round key exchange.

• The three parties pick a base point P ∈ G1.

• Each party chooses a secret integer α, β, γ, and broadcasts respectively αP, βP, γP .

• Bilinearity implies:

e(P, P)αβγ = e(αP, βP)γ = e(αP, γP)β = e(βP, γP)α.

Hence, e(P, P)αβγ can computed by anyone who has knowledge of one of the secret
exponents. The three parties can use this quantity to derive a secret key.

The key cannot be computed by an adversary, provided the bilinear Diffie-Hellman problem
is hard. This problem can be stated as follows:

Definition 1.1.2. Bilinear Diffie-Hellman Problem: given P , aP , bP , cP ∈ G1, with
a, b, c ∈R Zn, compute e(P, P)abc.

One can give a formal security proof relating the above problem to the security of the
protocol against a passive adversary, i.e., an adversary who is not allowed to request any
additional information.

Identity-based Encryption. Identity-based encryption was first introduced by Shamir
at Crypto’84 [40]. An identity-based cryptosystem is a public-key system with the special
property that the public keys of users are derived from their identities. This does away with
the problem of obtaining and verifying a user’s public key. The first practical and provably
secure identity-based encryption protocols were based on pairings. The scheme proposed by
Boneh and Franklin in 2001 [12] is the most well known of these. Their protocol uses ideas
from an earlier work of Sakai et al. [37] that constructs a non-interactive key distribution
scheme using pairings.

Boneh-Franklin IBE.

Public parameters: A Trusted third party(TTP) publishes the following parameters:

• A bilinear pairing e : G1 ×G2 → G3 between groups of prime order n.

4

• A hash function H : {0, 1}∗ → G2.

• A generator P ∈ G1 and a point αP ∈ G1 where α ∈R Z∗n is a random (secret)
integer chosen by the TTP.

Key Generation:

• To generate the public key for user A, compute Q = H(IDA).

• The public key is IDA and the private key is αQ given to the user A by the
TTP.

Encryption:

• Given a public key IDA and a message m (of length n), let Q = H(IDA).

• Choose r ∈R Z∗n and compute rP and c = m ⊕ e(αP, rQ). The ciphertext is
(c, rP).

Decryption:

• Given ciphertext (c1, c2) compute m′ = c1 ⊕ e(c2, αQ).

• For a valid encryption, c1 = m⊕ e(αP, rQ) and c2 = rP .

• Bilinearity implies:

m′ = m⊕ e(αP, rQ)⊕ e(rP, αQ) = m.

Other Applications of Pairings In addition to key distribution and identity-based en-
cryption, pairings have found many other applications in cryptography — short signatures,
non-repudiable signatures, and escrowable public key encryption, etc.

1.1.2 Elliptic Curves

All known cryptographic pairings are defined on objects known as abelian varieties in
algebraic geometry. An elliptic curve is a special abelian variety. Because of the simplicity
of the group law, and their relative ease of implementation, elliptic curve groups provide a
good choice for use in pairing-based cryptography. In fact, almost all implementations of
pairings for cryptographic purposes use elliptic curve groups. In this thesis, we will only
consider pairings on elliptic curve groups. We start by giving some background on elliptic

5

curves and outlining some of their properties that are used in this thesis. The following
material is based on class notes from a course taught on Algebraic Curves in the Winter of
2010 at the University of Waterloo [32]. More background material can be found in [42].

Background in Algebraic Geometry. We fix some notation:

• F[x, y] and F[x, y, z] represent the ring of polynomials over a field F.

• F̄ denotes the closure of the field F.

• fx is the partial derivative of f with respect to x.

• F∗ = F \ {0}.

• Fq denotes the finite field of size q.

• Let γ ∈ Fqn . The Norm of Fqn over Fq of γ is denoted NFqn/Fq(γ) and is given by the
product of all its conjugates:

NFqn/Fq(γ) =
n−1∏
i=0

(γ)q
i ∈ Fq.

Intersection multiplicity.

Definition 1.1.3. Let f ∈ F[x, y] be a polynomial. Then C : f = 0 is called an affine
plane curve which is irreducible if f is an irreducible polynomial. Let p = (a, b) be a point
on C. The point p is said to be smooth if ∇f(a, b) 6= 0, where ∇f = (fx, fy). If all points
on C are smooth, then C is called a smooth curve.

Definition 1.1.4. Given an irreducible plane curve C : f = 0, define the ideal of C as
follows:

I(C) := {f ∈ F[x, y] | f(P) = 0 for all P ∈ C}

Definition 1.1.5. Let C be an irreducible plane curve. The coordinate ring of C is

K[C] = F[x, y]/I(C)

6

Definition 1.1.6. The function field K(C) of C consists of rational functions of the form

g(x, y) =
g1(x, y)

g2(x, y)

where g1 and g2 ∈ K[C] are relatively prime and g2 6= 0 in K[x, y].

Theorem 1.1.7. Let C : f = 0 be an irreducible plane curve. Let p = (a, b) be a smooth
point on C. Let t = 0 be a line passing through p that is not tangent to C at p. Then t is
called a uniformization parameter at p and any g ∈ K[C] can be written as g = tnz, where
n ∈ Z≥0, z ∈ K(C) and z(p) 6= 0. Moreover, n is independent of the choice of t.

Definition 1.1.8. Given any non-zero g ∈ K[C] and its decomposition g = tnz, we
define ordp(g) := n. This number is called the intersection multiplicity of C and g at p,
and denoted I(p, C ∩ g). We extend this definition to any rational function in K(C): if
g = g1

g2
∈ K(C), then define ordp(g) = ordp(g1)− ordp(g2).

Properties of Intersection Multiplicity. Let C be an irreducible plane curve. Let
p ∈ C be a smooth point, let t be a uniformization parameter, and let g, h ∈ K(C).

• Note that since t = 0 intersects p, t(p) = 0. This in turn implies that if g(p) 6= 0,
then ordp(g) = 0. In fact, ordp(g) = 0 iff g(p) 6= 0.

• ordp(g) > 0 iff f has a zero at p and ordp(g) < 0 iff f has a pole at p.

• Additivity: I(p, C ∩ hg) = I(p, C ∩ h) + I(p, C ∩ g)

Coordinate Systems in Algebraic Geometry. Let An(F) = {x1, x2, ..., xn | x1, ..., xn ∈
F}. This is called affine n-space. Consider A3(F). The set of all lines passing through the
origin 0 = (0, 0, 0) is called the 2-dimensional projective space (or the projective plane) and
is denoted P2(F), or simply P2. Points in P2 can be written as 3-tuples (called homogeneous
or projective coordinates):

P2 := (A3 \ {0})/F∗

where (X : Y : Z) ∼ (λX : λY : λZ) for all λ ∈ F∗.
That is, two points in (A3−0) are equivalent if they lie on the same line through the origin.

7

Set

Uz = {points in P2 such that Z 6= 0}
= {[X : Y : Z] | Z 6= 0}
= {[X

Z
: Y
Z

: 1]}
= {[x : y : 1]}.

In this way, A2 is a subset of P2. If we restrict our attention to points on the projective
plane where Z 6= 0, then we can write P = [X : Y : Z] as p = {x, y} (as computed above)
with the understanding that z = 1. This way of denoting points on the projective plane
is called affine coordinates. It is easy to switch between affine and projective coordinates
using the bijection:

[X : Y : Z] 7→ [X/Z : Y/Z : 1] 7→ {X/Z : Y/Z} and (1.1)

{x, y} 7→ [X : Y : 1].

Example 1.1.9. A line on the projective plane is given by a homogenous polynomial of
degree 1:

aX + bY + cZ = 0

Restricting to Uz, we get the equation of a line in the {x-y} affine plane:

ax+ by + c = 0 (1.2)

We “homogenize” equation (1.2) by replacing x with X/Z, y with Y/Z, and eliminating
the denominator to get back the homogeneous polynomial:

ax+ by + c = 0

a(X/Z) + b(Y/Z) + c = 0

Z(a(X/Z) + b(Y/Z) + c) = 0

aX + bY + cZ = 0

In this way, one can easily switch between affine and projective coordinates.

8

Similarly, we get Ux and Uy by setting x 6= 0 and y 6= 0 respectively. Ux, Uy, and Uz are
called the affine pieces of the projective plane.

If we set Z = 0, we get the following subset of P2:

H∞ := {[x : y : 0] | x, y ∈ F}

which is known as the hyperplane at infinity. So:

P2 = Uz ∪H∞ = A2 ∪H∞

Points on the projective plane can also be represented using another coordinate system
known as jacobian coordinates. Similar to projective coordinates, points in jacobian coor-
dinates can be written as 3-tuples:

P2 := (A3 − 0)/F∗

where (X : Y : Z) ∼ (λ2X : λ3Y : λZ) for all λ ∈ F∗. Restricting our attention to Uz, the
jacobian point (X : Y : Z) corresponds to the affine point (X

Z2 ,
Y
Z3).

Elliptic Curves in Algebraic Geometry. We now give a technical definition of an
elliptic curve. The work presented in this thesis uses only BN-elliptic curves (to be defined
later in Chapter 2), which are defined over fields having characteristic not equal to 2 or 3.
Hence, we restrict our attention to fields having characteristic not equal to 2 or 3.

Definition 1.1.10. Let F be a field with characteristic 6= 2, 3. An elliptic curve E over F
is the set of solutions to the Weierstrass equation of the form:

E : Y 2Z = X3 + aXZ2 + bZ3 (1.3)

with a, b ∈ F.

The discriminant ∆ of the curve E is

∆ = 4a3 + 27b2.

An elliptic curve is called non-singular if and only if ∆ 6= 0. For the remainder of this
thesis, we will assume that ∆ 6= 0.

9

If we set Z = 0, Equation (1.3) becomes X3 = 0, giving us a solution [0 : 1 : 0]. This point
is called the point at infinity and is denoted ∞.

Restricting our attention to Z 6= 0, and using bijection (1.1) to switch to affine coordinates,
we get

Y 2

Z2
=
X3

Z3
+ a

X

Z
+ b.

Replacing X/Z with x, and Y/Z with y, we get the following equation:

y2 = x3 + ax+ b. (1.4)

Hence we may look at an elliptic curve as the set of solutions to Equation (1.4) together
with the point at infinity.

If K is an extension of F then the set of all K-rational points on E is:

E(K) : {(x, y) ∈ K×K : y2 = x3 + ax+ b} ∪ {∞}.

The Group Law. The set of points on an elliptic curve forms an abelian group. The
group law can be described using the chord and tangent process illustrated in Figure 1.1
and described below:
Let P and Q be two distinct points on E.

• If P =∞, then P +∞ = P and ∞+ P = P .

• If P 6=∞ and Q 6=∞, let l be the straight line joining P and Q. If P = Q, then let
l be the tangent line to the curve at P. If l does not interesect the curve at any other
point then P +Q =∞.

• In all other cases, l must intersect the curve at exactly one additional point, since
we are intersecting a line with a cubic. Call this point R. We define P +Q to be the
reflection of R in the y-axis. (Note that if (x, y) is a solution to Equation (1.4), then
(x,−y) is also a solution, hence P +Q lies on the curve).

10

Q

P+Q

−(P+Q)

P

l

v

P

−2P

2P

v

l

Figure 1.1: Adding points P and Q, and doubling the point P using the chord and tangent
process.

One can use the above definition to derive the following explicit formulas for the group
law:

Let P = (x1, y1) and Q = (x2, y2). If x1 = x2, then P + Q = ∞. Otherwise, let P + Q =
(x3, y3) where:

λ =

{
3x21+a

2y1
if P = Q

y2−y1
x2−x1 otherwise,

(1.5)

x3 = λ2 − x1 − x2,

y3 = −(λ(x3 − x1) + y1).

For a proof that the points on an elliptic curve indeed form a group under the above
operation, see [42, §III.2].

11

Point Counting and j-invariants

Definition 1.1.11. Given an elliptic curve E, define the ideal of E as follows:

I(E) := {f ∈ F[x, y, z] | f(P) = 0 for all P ∈ E}.

Theorem 1.1.12. The ideal of E : Y 2Z = X3 + aXZ2 + bZ3 is the prime ideal generated
by Y 2Z −X3 − aXZ2 − bZ3.

Definition 1.1.13. Let E be an elliptic curve. The homogeneous coordinate ring of E is

ΓH(E) = F[x, y, z]/I(E).

Definition 1.1.14. The function field F(E) of E consists of rational functions of the form

f(x, y, z) =
f1(x, y, z)

f2(x, y, z)

where f1 and f2 are homogeneous polynomials of the same degree and f2 6= 0 in ΓH(E).

Note: F(E) is indeed a field of functions on P2. If f1 and f2 are two homogeneous
polynomials of the same degree d then f1

f2
∈ F(E) and

f1

f2

(λx, λy, λz) =
f1(λx, λy, λz)

f2(λx, λy, λz)
=
λd

λd
f1(x, y, z)

f2(x, y, z)
=
f1

f2

(x, y, z)

given that f2(x, y, z) 6= 0. Hence, f1
f2

is well-defined on points in P2.

Intersection multiplicity on elliptic curves. Let f be a non-zero function in F(E).
The intersection multiplicity of f and E at a point P is defined to be the intersection
multiplicity of E and f restricted to an affine piece containing P . For example, if z 6= 0,
then we can write P = [x0 : y0 : 1] ∈ {E ∩ Uz}. If E ∩ Uz is smooth at P , then the
intersection multiplicity of E and f at P is defined as:

I(E ∩ f) = I(E ∩ f ∩ Uz) = ordP (f).

If z = 0 then we consider the intersection of E and f with Ux or Uy.

12

Divisors

All known pairings on elliptic curves use the concept of divisors. In this section, we give
a brief introduction to that portion of the theory of divisors which is required to discuss
cryptographic pairings.

Definition 1.1.15. A divisor D on an elliptic curve E is a formal sum of points

D =
∑
P∈E

nP (P)

where nP ∈ Z and only finitely many of them are non-zero.

The divisor with all nP = 0 is called the empty divisor and denoted ∅. Two divisors

D1 =
∑
P∈E

nP (P) and D2 =
∑
P∈E

mP (P) are equal if and only if nP = mP for all P ∈ E.

The set of all divisors on E is denoted Div(E) and has a natural group structure of addition.

The support of a divisor D =
∑
P∈E

nP (P) is all nP such that nP 6= 0.

The degree of a divisor D =
∑
P∈E

nP (P) is
∑
P∈E

nP ∈ Z. The empty divisor has degree zero.

The degree zero divisors form a subgroup of Div(E) denoted Div0(E).

Let f be a non-zero function in F(E). The divisor of f , written div(f), is the divisor∑
P∈E

ordP (f)(P). From the properties of multiplicity above, the only points appearing in

div(f) are the zeroes and poles of f . It follows from these properties that div(fg) =
div(f) + div(g) and div(1

f
) = − div(f).

Theorem 1.1.16 (Bezout’s Theorem). Let f(x,y) be a homogeneous polynomial with degree
d, and E an elliptic curve. Then E and f intersect at 3d points counting multiplicity.

Definition 1.1.17. A divisor D is called principal if D = div(f) for some function f ∈
F(E).

Bezout’s Theorem implies that div(f) = ∅ iff f is a constant. Hence, if div(f) = div(g),
then div(f/g) = ∅ and f

g
must be a constant.

13

Bezout’s Theorem also implies that if D is principal then the degree of D is zero. That
is, deg(div(f)) = 0 for all non-zero f ∈ F(E). The principal divisors form a subgroup of
Div0(E) and are denoted P (E). We can then define:

Cl0(E) := Div0(E)/P (E).

This group is known as the divisor class group of E. We say that D,D′ ∈ Div0(E) are
linearly equivalent, denoted D ∼ D′ if (D −D′) ∈ P (E).

We now state two important results on divisors on elliptic curves.

Theorem 1.1.18. Let E be an elliptic curve over a field F. Let

D =
∑
P

nP (P)

be a degree 0 divisor on E. Then D ∼ ∅ (i.e. D = div(f) for some f ∈ F(E)) if and only

if
∑
P

[nP]P =∞ on E.

The proof of Theorem 4 can be found in [10, Ch. 9]. Let f be a function and let D =∑
P

nP (P) be a divisor of degree zero such that div(f) and D have disjoint support. Define

f(D) =
∏
P

f(P)nP .

Theorem 1.1.19 (Weil Reciprocity). Let f and g be non-zero functions on F(E). Suppose
that div(f) and div(g) have disjoint support. Then f(div(g)) = g(div(f)).

The proof of Weil Reciprocity can be found in [10, Appendix].

1.1.3 The Tate Pairing

The Tate Pairing. Let E be an elliptic curve over a finite field Fq. Let the order of E
be hn, where n is a prime not equal to the characteristic of Fq and h and n are coprime.

The set of n-th roots of unity is defined to be µn = {u ∈ Fq : un = 1}.

14

Definition 1.1.20. Define the field F = Fq(µn) to be the extension of Fq generated by the
nth roots of unity. Let k be the degree of this extension. Then k is called the embedding
degree of E with respect to n. An equivalent condition is that the embedding degree is the
smallest integer k such that n | qk − 1.

The set of all points P ∈ E(F̄) satisfying nP = ∞ is denoted by E[n]. It is known that
E[n] ∼= Zn ⊕ Zn and E[n] ⊆ E(F) = E(Fqk) [5]. We further assume that n - (#E(F)/n2).

The Tate pairing is a map
e : E[n]× E[n]→ µn

which is defined as follows. Let P , Q ∈ E[n]. Since nP = ∞, the divisor D1 = n(P) −
n(∞) is principal. Let fn,P be a function with divisor D1. Let R ∈ E[n] such that
R /∈ {∞, P,−Q,P − Q}, and let DQ = (Q + R) − (R). Our choice of R ensures that DQ

and D1 have disjoint support. We now define

e(P,Q) = fn,P (DQ)
qk−1

n =

(
fn,P (Q+R)

fn,P (R)

) qk−1
n

.

The value of the Tate pairing does not depend on the choice of fn,P or DQ, hence it is well
defined. Moreover, it is bilinear and non-degenerate [6].

In general, a function with divisor r(S) − ([r]S) − (r − 1)(∞) is denoted by fr,S. Such
functions are called Miller functions.

It can be shown [6, 44] that for k > 1, DQ in the computation of the Tate pairing can be

replaced by the point Q. That is, the Tate pairing can be written as e(P,Q) = fn,P (Q)
qk−1

n .
Hence, we assume from now on that k > 1.

1.1.4 Miller’s Algorithm

The usefulness of the Tate pairing in practical cryptography relies on its efficient calcula-
tion. The key component in computing the Tate pairing is to compute Miller functions.
In 1986, Victor Miller discovered an algorithm to compute these functions in polynomial
time [30]. To compute the pairing, one needs to construct a function fn,P such that
div(fn,P) = n(P)− n(∞). The key idea in Miller’s algorithm is to construct this function
using a double and add algorithm.

15

Theorem 1.1.21. Recall the elliptic curve group law. Consider the computation [i]P +
[j]P = [i + j]P . Let l be the line through [i]P and [j]P . Let v be the vertical line through
−[i+ j]P and [i+ j]P . Then fi+j,P = fi,Pfj,P

l
v

(See Figure 1.1).

Proof. A line in P2 is given by a homogeneous polynomial of degree 1. By Bezout’s theorem
each of l and v have three zeroes on E. It is easy to see that the zeroes of l on E are
[i]P , [j]P , and −[i + j]P . Let v be given by the equation 0 = x − a in the affine plane.
Homogenizing, we get 0 = X − Za. The point at infinity, ∞ = [0 : 1 : 0], is a solution to
this equation. Hence the three zeroes of v on E are ∞,−[i+ j]P , and [i+ j]P . Thus,

div

(
l

v

)
= ([i]P) + ([j]P)− ([i+ j]P)− (∞)

Therefore,

div(fi,Pfj,P
l
v
) = i(P)− ([i]P)− (i− 1)(∞) + j(P)− ([j]P)− (j − 1)(∞) +

([i]P) + ([j]P)− ([i+ j]P)− (∞)

= (i+ j)P − ([i+ j]P)− (i+ j − 1)(∞)

= div(fi+j,P)

as required.

Miller’s algorithm uses the above fact to construct fn,P from f1,P = 1. Indeed, div(1) = ∅ =
1(P)−([1]P)−(0)∞. The function fn,P has divisor n(P)−([n]P)−(n−1)∞ = n(P)−n(∞)
as required. Algorithm 1.1 presents Miller’s algorithm to compute the Tate pairing.

Steps 2 to 9 are called the Miller loop. Since we only require the values fn,P (Q), instead of
computing all intermediate functions fi,P , Miller’s algorithm simply computes their values
at the point Q.

16

Algorithm 1.1 Miller’s Algorithm to compute the Tate pairing [30]

Input: P,Q ∈ E[n] and n = (nl−1nl−2...n1n0)2 ∈ N
Output: fn,P (Q)

qk−1
n

1: T ← P , f ← 1
2: for i = l − 2 to 0 do
3: f ← f 2 · lT,T (Q)

v2T (Q)

4: T ← 2T
5: if li 6= 0 then

6: f ← f · lT,P (Q)

vT+P (Q)

7: T ← T + P
8: end if
9: end for

10: f ← f
qk−1

n

11: return f

17

Chapter 2

Optimal Pairings

2.1 Pairing Friendly Curves

From the definition of the Tate pairing, one may suspect that a randomly chosen elliptic
curve may not be suitable for implementing pairing-based protocols. For example, the
coordinates of the point Q lie in the field Fqk . Hence, if the embedding degree of E is very
large, it is unrealistic to implement arithmetic in a field of size qk. The embedding degree
with respect to n should be small enough so that arithmetic in the extension field can be
implemented, yet large enough so that the DLP is intractible in Fqk . Another desirable
property is that the elliptic curve E should have a large prime order subgroup since larger
subgroups provide a higher level of security.

Example 2.1.1. Consider the following elliptic curve which was generated randomly using
the software package magma:

E : y2 = x3 + 15762226x+ 26554729 over Fq

where q = 33554467. The order of E is 33557039 which has a prime factor n = 2393.
The embedding degree of E with respect to n is 1196. Given the limitations of today’s
computers, it is impractical to implement field extensions of degree 1196, even on a base
field size as small as 25-bits.

In general, elliptic curves with suitably low embedding degrees are rare. Balasubramaniam
and Koblitz [5] showed that one can expect k ≈ q for a randomly selected prime-order

19

elliptic curve over a randomly selected prime-order field. In fact, the probability that
k ≤ log2 q is vanishingly small. Luca, Mireles, and Shparlinski [27] have obtained similar
results when Fq is fixed. As a result, one needs a systematic way of generating pairing-
friendly curves.

2.1.1 Barreto-Naehrig Curves

There are many methods available in the literature for generating elliptic curves for imple-
menting pairings. For a comprehensive review, see [15]. We focus here on Barreto-Naehrig
(BN) curves, discovered by Barreto and Naehrig in 2005 [7]. BN-curves have prime order
and embedding degree 12 which is appropriate for implementation at the 128-bit security
level. As we will see, BN-curves are ideal for implementing the O-Ate pairing, which is an
optimized variant of the Tate pairing.

Let Q(x) and N(x) denote the polynomials

Q(x) = 36x4 + 36x3 + 24x2 + 6x+ 1,

N(x) = 36x4 + 36x3 + 18x2 + 6x+ 1.

Choose an integer x such that both Q(x) and N(x) evaluate to prime numbers and let
q = Q(x). This can be done easily by randomly choosing an x until both Q(x) and N(x)
are prime. Now, choose b ∈ F∗q such that b+1 is a quadratic residue. For the appropriately
chosen b, the curve given by E : y2 = x3 + b will have order N(x) over Fq with embedding
degree equal to 12 with respect to N(x) . To find a BN-curve, test values for b until the
curve has the correct order. Additionally, P = (1,

√
b+ 1) is a point on E, which can be

used as a generator for E(Fq).

2.2 Deriving the O-Ate Pairing

Starting with Miller’s algorithm, we successively apply optimizations to obtain the O-Ate
pairing and a variant of Miller’s algorithm to compute it.

20

2.2.1 Choice of n

We choose n to have low Hamming weight if possible, so the number of addition steps in
Miller’s algorithm is minimized.

2.2.2 Choice of P

Note that in the Miller loop, we are implicitly computing nP =∞ using a double-and-add
algorithm. To make this computation simpler, we should choose P so that it’s coordinates
lie in a subfield of Fqk . This also simplifies the computation of the lines lT,T and lT,P .
The points T and P are in a subfield, so the equation of the line through these points has
coefficients in the subfield as well. We will choose P so it’s coordinates lie in the base field
Fq. As mentioned above, one can use the point P = (1,

√
b+ 1) as a generator of this

subgroup.

2.2.3 Final Exponentiation

For this part, we restrict ourselves to BN-curves. They have embedding degree k = 12, so
we can write k = 2d. We can now implement Fqk as a quadratic extension on top of Fqd .
An element in Fqk can then be represented as a = α + wβ where α, β ∈ Fqd and w is an
adjoined square root.

It is well known (Frobenius) that

(α + wβ)q
d

= (α− wβ). (2.1)

The output of the Miller loop is raised to the exponent qk−1
n

. We can write this as–

qk − 1

n
=
q2d − 1

n
=

(qd − 1)(qd + 1)

n
.

By the definition of embedding degree, n - qd − 1. Therefore, n | qd + 1. Therefore, we

can split the final exponentiation into two parts — exponention by qd − 1 and qd+1
n

. The
second part of the exponentiation will be dealt with in Chapter 3.

21

2.2.4 Denominator Elimination

We now describe an important optimization, known as denominator elimination [6], which
speeds up computation time by almost 50% [38]. For this section, we will assume that we
are working with BN-curves.

Theorem 2.2.1. Let x ∈ Fqd ⊂ Fqk . Then x
qk−1

n = 1.

Proof. We know by an extension of Fermat’s last theorem that xq
d−1 = 1. Then, we have:

x
qk−1

n = x(qd−1)(qd+1
n

) = 1
qd+1

n .

Theorem 2.2.1 has a few implications for pairing computations. Firstly, we have already
chosen P so that the coefficients of the equations of the lines lT,T and lT,P lie in the subfield
Fq ⊂ Fqd . If Q is also chosen to have coordinates in Fqd then the values lT,T (Q) and lT,P (Q)
also lie in the subfield Fqd . Using the same argument, we can reach the same conclusion for
the values vT,T (Q) and vT,P (Q). Therefore, the output of the Miller loop lies in a subfield.
Then, by Theorem 2.2.1, the pairing value is 1.

This implies that in order for the pairing to be useful, we must chooseQ so thatQ ∈ E(Fqk),
and Q /∈ E(Fqd).

Definition 2.2.2. Frobenius Endomorphism. The Frobenius endomorphism is the
mapping Φ: E(Fqk)→ E(Fqk) given by (x, y) 7→ (xq, yq).

One can check that above map is indeed an endomorphism over the field of definition
of E or any extension of it. It is well known that the Frobenius endomorphism has two
eigenspaces in E(Fqk)[n] with eigenvalues 1 and q.

The 1-eigenspace consists of E(Fq) (because xq = x for x ∈ Fq). These are precisely the
elements from which we choose the parameter P for the pairing computation.

The q-eigenspace consists of points of the form (α,wβ) where α, β ∈ Fqd and w is an
adjoined square root [5]. In order to be able to define the Ate pairing in the next section,
we restrict Q to be a point from this set.

Both eigenspaces when restricted to E[n] form subgroups of E(Fqk)[n] of order n. From
now on, we will use G1 to denote the 1-eigenspace and G2 to denote the q-eigenspace

22

restricted to E[n]. Since E[n] ∼= Zn⊕Zn, and the two eigenspaces are independent of each
other, one can conclude that a set of the form {P,Q}, P ∈ G1, Q ∈ G2 forms a basis for
E[n].

In summary, we choose P ∈ G1 and Q ∈ G2 for our pairing computation on BN-curves.
Therefore, the values vT,T (Q) and vT,P (Q) lie in Fqd — as the x-coordinate of Q lies in Fqd .
So by Theorem 2.2.1, these values vanish after the final exponentiation and do not affect
the pairing value. As a result, we can remove the computation of vT,T (Q) and vT,P (Q)
from Miller’s loop. This is the denominator elimination optimization.

2.2.5 The Ate Pairing

The Ate Pairing was discovered in 2006 by Hess, Smart and Vercauteren [21]. It is similar
to the Tate pairing with its parameters restricted to the Frobenius eigenspaces, and the
Miller loop is shorter, hence the name Ate (Tate with the T removed). Here we derive
the Ate pairing using an approach presented in [44], which will lead to the construction
of the Optimal Ate pairing. First, we will switch the order of the parameters of the
pairing, i.e. we will choose the first parameter Q ∈ G2 and the second parameter P ∈ G1.
This may seem peculiar, but all of the optimizations described above are still valid, since
P ∈ E(Fq) ⊂ E(Fqd). The reason for this choice will soon become clear as we construct
the Ate pairing.

We start with the following lemma:

Lemma 2.2.3. fab,Q = f ba,Q · fb,aQ for all a, b ∈ Z.

Proof. Observe that

div(f ba,Q) = b(a(Q)− ([a]Q)− (a− 1)(∞))

= ba(Q)− b([a]Q)− b(a− 1)(∞). Also,

div(fb,aQ) = b(aQ)− ([ab]Q)− (b− 1)(∞).

Therefore,

div(f ba,Q fb,aQ) = ba(Q)− b([a]Q)− b(a− 1)(∞) + b([a]Q)− ([ab]Q)− (b− 1)(∞)

= ba(Q)− ([ab]Q)− (ba− 1)(Q)

= div(fab,Q).

23

This leads to the following lemma from [44].

Lemma 2.2.4. e(Q,P)m = fmn,Q(P)
qk−1

n where e(Q,P) is the Tate pairing with Q ∈ G2,
P ∈ G1 and m ∈ Z.

Proof. We have

e(Q,P)m = fn,Q(P)
qk−1

n
m

=
fnm,Q(P)

fm,nQ(P)

qk−1
n

=
fnm,Q(P)

fm,∞(P)

qk−1
n

= fnm,Q(P)
qk−1

n .

The next step is to find a special multiple mn of n such that the computation of fnm,Q
can be performed faster than the computation of fn,Q. This is done by writing fnm,Q as
the power of a Miller function with a shorter loop. We fix λ ≡ q mod n. This implies that

24

n|λk − 1. So we take m = λk−1
n

. By the above lemma, we have:

e(Q,P)m = fnm,Q(P)
qk−1

n

= fλk−1,Q(P)
qk−1

n

=

(
fλk,Q(P)f−1,Q(P)

lλkQ,−Q(P)

v(λk−1)Q(P)

) qk−1
n

=

(
fλk,Q(P) · 1 · lQ,−Q(P)

v(λk−1)Q(P)

) qk−1
n

= fλk,Q(P)
qk−1

n (by denominator elimination)

= fλ
k−1

λ,Q (P)fλk−1,λQ(P))
qk−1

n (by Lemma 2.2.3)

...

= (fλ
k−1

λ,Q (P)fλ
k−2

λ,λQ (P)...fλ,λk−1Q(P))
qk−1

n (repeatedly applying Lemma 2.2.3)

=

(
k−1∏
i=0

fλ
k−1−i

λ,qiQ

) qk−1
n

. (Since λ ≡ q mod n)

(2.2)

At this point, we need the following fact:

Fact 2.2.5. fa,Πq(Q)(P) = fa,Q(P)q for all a ∈ Z and Q ∈ G2.

Proof. We will use induction on a. Clearly, 1 = f1,qQ(P) = (f1,Q(P))q. Suppose the fact
holds for all a = 1, 2, ..., k. Let kQ = (xkQ, ykQ), Q = (xQ, yQ), and P = (x, y). Then:

(fk+1,Q(P))q =

(
fk,Q(P)f1,Q(P)

lkQ,Q(P)

v[k+1]Q(P)

)q

25

We also have that:

(lkQ,Q(P))q =

(
y − yQ
x− xQ

− ykQ − yQ
xkQ − xQ

)q
=

(
yq − yqQ
xq − xqQ

−
yqkQ − y

q
Q

xqkQ − x
q
Q

)
(since q is a prime power)

=

(
y − yΠq(Q)

x− xΠq(Q)

−
yΠq(kQ) − yΠq(Q)

xΠq(kQ) − xΠq(Q)

)
= lΠq(kQ),Πq(Q)(P).

We can similarly show that (v[k+1]Q(P))
q = v[k+1]Πq(Q)(P). It now follows that (fa+1,Q(P))q =

fa+1,Πq(Q)(P) = fa+1,qQ(P) for all a ∈ Z, since Q is in the q-eigenspace of Frobenius.

It also follows using the same technique that fa,qiQ(P) = (fa,Q(P))q
i
. Hence, we obtain:

k−1∏
i=0

fλ
k−1−i

λ,qiQ (P) =
k−1∏
i=0

f q
k−1−iqi

λ,Q (P) = fλ,Q(P)

k−1∑
i=0

qk−1

.

Substituting the above into Equation (2.2), we get e(Q,P)m = fλ,Q(P)
qk−1

n
kqk−1

.

Since n and q are prime, we have that n - q and n - k. Thus we can define:

a(Q,P) = e(Q,P)m((k−1q−(k−1)) mod n) = fλ,Q(P)
qk−1

n .

We call this the reduced Ate pairing [44]. It is bilinear and non-degenerate because
m((k−1q−(k−1)) mod n) is relatively prime to n. In the case of BN-curves, q(x) ∼= 6x2

(mod n(x)), so we take λ = 6x2. This reduces the Miller loop length from log(36x4 +
36x3 + 18x2 + 6x+ 1) to log(6x2).

Suppose we take λ = qi mod n. Then, n | λi gcd(i,k) − 1. After performing an analysis
similar to above, we get more Ate pairings with loop length λ.

It is possible to further reduce the length of the Miller loop, as shown by Vercauteren [44].
The pairing obtained through his work is called the Optimal Ate or the O-Ate pairing.

26

2.2.6 The Optimal Ate Pairing

Consider the mth power of the Tate pairing. Let σ = mn and suppose σ =
l∑

i=0

ciq
i is the

base-q expansion of σ. Define si =
l∑
j=i

cjq
j We have:

e(Q,P)m = fn,Q(P)m
qk−1

n

= fσ,Q(P)
qk−1

n (By Lemma 2.2.4)

= fs0,Q(P)
qk−1

n

=

(
fc0,Q(P)fs1,Q(P)

lc0Q,s1Q(P)

vs0,Q(P)

) qk−1
n

...

=

(
l∏

i=0

fciqi,Q(P)
l−1∏
i=0

l[ciqi]Q,si+1Q(P)

vsi,Q(P)

) qk−1
n

=

(
l∏

i=0

f ci
qi,Q

(P)fci,[qi]Q(P)
l−1∏
i=0

l[ciqi]Q,si+1Q(P)

vsi,Q(P)

) qk−1
n

(By Lemma 2.2.3)

=

(
l∏

i=0

f ci
qi,Q

(P)
qk−1

n

)(
l∏

i=0

f q
i

ci,Q
(P)

l−1∏
i=0

l[ciqi]Q,si+1Q(P)

vsi,Q(P)

) qk−1
n

. (By Fact 2.2.5)

The left hand side of the above equation is a bilinear pairing. The factor between the
first set of brackets on the right hand side is a product of powers of Ate pairings, so it is
also bilinear. Hence, the factor between the second set of brackets must also be a bilinear
pairing. We now have the following result.

Theorem 2.2.6 ([44]). Let σ = mn with n - m and define ci and si as above. Then

27

aO : G2 ×G1 → µn given by:

(Q,P) 7→

(
l∏

i=0

f q
i

ci,Q
(P)

l−1∏
i=0

l[ciqi]Q,si+1Q(P)

vsi,Q(P)

) qk−1
n

defines a bilinear pairing called the O-Ate pairing. Furthermore, if

mkq−1 6≡ qk − 1

r

l∑
i=0

iciq
i−1 mod n,

then the pairing is non-degenerate.

Proof. We have just shown the bilinearity of the O-Ate pairing. For non-degeneracy,
see [44].

Since we are using BN-curves, denominator elimination applies and we can ignore the
vertical lines in the pairing.

Recall that on BN-curves q and n are given by polynomials in x:

Q(x) = 36x4 + 36x3 + 24x2 + 6x+ 1,

N(x) = 36x4 + 36x3 + 18x2 + 6x+ 1.

We then have:

Q(x) = 6x2 mod N(x),

Q(x)2 = 36x3 − 18x2 − 6x− 1 mod N(x),

Q(x)3 = 36x3 − 24x2 − 12x− 3 mod N(x).

Therefore,
6x+ 2 +Q(x)−Q(x)2 +Q(x)3 = 0 mod N(x). (2.3)

Take σ = 6x + 2 + Q(x) − Q(x)2 + Q(x)3, which gives the following O-Ate pairing on
BN-curves:

(Q,P) 7→ f6x+2,Q(P)f q1,Q(P)f q
2

−1,Q(P)f q
3

1,Q(P)g(P).

where g(P) is given by:

g(P) = l[6x+2]Q,[q−q2+q3]Q(P)l[q]Q,[−q2+q3]Q(P)l[−q2]Q,[q3]Q(P).

28

Now, f1,Q = f−1,Q = 1, so we can ignore these in the pairing computation. We make the
computation of g(P) easier using the following lemma discovered in [33]:

Lemma 2.2.7. g(P)
qk−1

n = h(P)
qk−1

n where h(P) = l[6x+2]Q,qQ(P)l[6x+2]Q+qQ,−q2Q(P).

Proof. Fix Q1 = qQ, Q2 = q2Q, Q3 = q3Q, and Qx = [6x+ 2]Q. Then

div(g) = div(lQx,Q1−Q2+Q3) + div(lQ1,−Q2+Q3) + div(l−Q2,Q3)

= (Qx) + (Q1 −Q2 +Q3) + (−[Qx +Q1 −Q2 +Q3]) +

(Q1) + (Q3 −Q2) + ([Q2 −Q3 −Q1]) + (−Q2) + (Q3) +

(Q2 −Q3)− 9(∞)

= (Qx) + (Q1 −Q2 +Q3) + (Q1) + (Q3 −Q2) +

([Q2 −Q3 −Q1]) + (−Q2) + (Q3) + (Q2 −Q3)− 8(∞) (by equation (2.3))

= (Qx) + (Q1) + (−Q2) + (Q3)− 4(∞) + div(vQ1−Q2+Q3) + div(vQ2−Q3).

Also,

div(h) = div(lQx,Q1) + div(lQx+Q1,−Q2)

= (Qx) + (Q1) + (−Qx −Q1) + (Qx +Q1) + (−Q2) + (Q2 −Q1 −Qx)− 6(∞)

= (Qx) + (Q1) + (−Q2) + (Q2 −Q1 −Qx)− 4(∞) + div(vQx+Q1)

= (Qx) + (Q1) + (−Q2) + (Q3)− 4(∞) + div(vQx+Q1) (by Equation (2.3)).

We now see that the divisors of g and h differ only by divisors of vertical lines. Hence, g and
h must also differ only by vertical lines. Since the denominator elimination optimization

applies, we can ignore these vertical lines in the computation of g(P)
qk−1

n and h(P)
qk−1

n .

By the above lemma, g(P) can be replaced by h(P) when computing the O-Ate pairing on
BN-curves. In this way we obtain the following O-Ate pairing on BN-curves:

(Q,P) 7→ f6x+2,Q(P) · h(P).

2.3 Twists on Elliptic Curves

We now show how a pairing computation can be accelerated using elliptic curve twists.

29

Definition 2.3.1. Let E be an elliptic curve defined over Fq. An elliptic curve E ′ is called
a twist of E if there exists an isomorphism Ψ: E ′(Fqr)→ E(Fqr) defined over the extension
field Fqr . The minimum extension degree for which there exists such an isomorphism is
called the degree of the twist.

BN-curves have two twists of degree six when defined over Fq2 [42, Prop.X.5.4]. Let E :
y2 = x3 + b be a BN-curve defined over Fq and let ξ be a cubic and quadratic non-residue
over Fq2 . Then the following curve is a degree 6 twist of E:

E ′ : y2 = x3 +
b

ξ
. (2.4)

We will call the twist given by the above equation a D-type twist (because ξ is being
divided). The twisting isomorphism is given by:

Ψ: E ′ → E

Ψ: (x, y) 7→ (ξ
1
3x, ξ

1
2y).

The second sextic twist of E is given by the equation:

E ′′ : y2 = x3 + ξb. (2.5)

The above is known as an M-type twist because ξ is being multiplied. In this case, the
twisting isomorphism is given by:

Ψ: E ′′ → E

Ψ: (x, y) 7→ (ξ−
2
3x, ξ−

1
2y).

Of the two sextic twists of BN-curves, exactly one of them maps points in G2 to points
on the twisted curve over Fq2 [7]. Hence, we can represent the group G2 using points on
E ′[n](Fq2) or E ′′[n](Fq2). We will call this group of points G′2. This gives us the Twisted
O-Ate pairing on BN-curves:

âO : G′2 ×G1 → µn

âO : (Q′, P) 7→ f6x+2,Ψ(Q′)(P)h′(P)

where h′(P) = l[6x+2]Ψ(Q′),qΨ(Q′)(P)l[6x+2]Ψ(Q′)+qΨ(Q′),−q2Ψ(Q′)(P).

To determine which of the two sextic twists is the correct one to use in pairing computation,
we compute the order of the twisted curve over Fq2 . The curve with order dividing n is the

30

correct twist. Instead of using a degree 12 extension, the point Q can now be represented
using only elements in a quadratic extension field. In addition to the benefit of saving
space, E ′(Fq2)[n] is also much faster to manipulate. When doubling and adding points and
computing the line function in the Miller loop, we can perform the arithmetic in G′2, and
then map the result to G2. This considerably speeds up operations in the Miller loop. We
will elaborate on this in Chapter 3.

31

Chapter 3

Field Arithmetic

3.1 Representation of Extension Fields

BN-curves are defined over prime fields, which means the computation of a pairing over
a BN-curve relies on arithmetic over finite fields. Hence, efficient implementation of the
underlying extension fields is crucial for fast pairing computation. Arithmetic over Fq2 is
required for manipulating points on the twisted curve, and the computation of the Miller
function. Moreover, accumulating and multiplying values to compute fn,P and the final
exponentiation involves arithmetic over Fq12 . IEEE P1363.3 [1] recommends using towers to
represent Fqk . Construction of tower extensions for the purpose of pairing computation has
been explored in [8, 17, 24, 7]. Next we outline and analyze two approaches for constructing
tower fields.

Note that if q ≡ 3 mod 4, then both −1 and −2 are quadratic non-residues and we can
represent Fq2 by Fq[i]/(i2 − β) where β = −1 or −2. Multiplications by i are required
throughout the pairing computation, for instance when multiplying two extension field
elements. Representing Fq2 as above, multiplications by i are very cheap, requiring either
only a simple negation or a negation and an addition. Having the choice of 2 elements for
β also leaves us some choice of representation for implementing higher extensions. When
x is odd, we get Q(x) ≡ 3 mod 4, and when x is even, we get Q(x) ≡ 1 mod 4. When x
is even, neither −1 nor −2 is guaranteed to be a quadratic non-residue so multiplication
by i can end up being relatively costly. Therefore, when computing BN-curves using the
polynomial Q(x), we restrict ourselves to choosing odd x, so that q ≡ 3 mod 4.

33

Geovandro et al. [17] recommend a family of implementation friendly BN-curves which
has a very natural choice for the suitable representation of extension fields. We give a
description of this sub-family and outline its benefits.

Definition 3.1.1. A BN-curve Eb : y2 = x3 + b over Fq is called friendly if q ≡ 3 mod 4
and there exist c, d ∈ F∗q such that either b = c4 + d6 or b = c6 + 4d4.

One can use the following properties of friendly BN-curves to implement the pairing com-
putation in an efficient manner:

1. Let ξ = c2 + d3i if b = c4 + d6, or ξ = c3 + 2d2i if b = c6 + 4d4. Then, b = ξξ. Lemma
2 of [17] says that ξ is neither a square nor a cube in Fp2 . Thus, we can use ξ to
construct Fq12 as follows:

Fq6 = Fq2 [v]/(v3 − ξ).

Fq12 = Fq6 [w]/(w2 − v).

2. Theorem 1 in [17] says that the curve E ′b given by:

E ′b : y2 = x3 +
b

ξ
= x3 + ξ

gives a D-type sextic twist of Eb.

3. Generators for E ′(Fp2)[n] can be found as [h]G, where h = 2p− n and G = (−di, c)
or G = (−c, d(1− i)), respectively.

Using the above sub-family, square or cube detection is not necessary to build field exten-
sions or generate a twist. Moreover, one does not have to compute the order of the curve
which may generate the sextic twist, as the correct twist is immediately revealed.

Another approach to finding appropriate irreducible polynomials for constructing tower
extensions of fields is to use the following theorem of Benger and Scott [8]:

Theorem 3.1.2 ([8]). Let m > 1, n > 0 be integers, q an odd prime and α ∈ F∗qn. The
binomial xm − α is irreducible in Fqn [x] if the following two conditions are satisfied:

• Each prime factor p of m divides q − 1 and NFqn/Fq(α) ∈ Fq is not a p-th residue in
Fq;

34

• If m ≡ 0 mod 4 then q4 ≡ 1 mod 4.

Based on the above theorem, Benger and Scott [8] give the following construction for BN
primes congruent to 3 mod 8. The same conclusion is also drawn in Shirase [41]:

Construction 3.1.3. Let q = q(x) be the prime characteristic of the field over which
a BN-curve is defined. If x ≡ 7 or 11 mod 12 then y6 − (1 +

√
−1) is irreducible over

Fq2 = Fq(
√
−1).

We are able to use the above construction in 2/3rds of the cases when q ≡ 3 mod 8; i.e.
x ≡ 3 mod 4. It only fails when x ≡ 2 mod 3. Since we are restricting ourselves to choosing
odd x, we also need to consider the case when x ≡ 1 mod 4. Following [8], we give the
following construction for BN-primes congruent to 7 mod 8:

Construction 3.1.4. Let q = q(x) be the prime characteristic of the field over which a
BN-curve is defined. If x ≡ 2, 3, 4, 6, 7 or 8 mod 9 then y6 − (1 +

√
−2) is irreducible over

Fq2 = Fq(
√
−2).

Proof. We will show that the conditions in Theorem 3.1.2 are satisfied two-thirds of the
time for m = 6, n = 2, when q a BN-prime congruent to 7 mod (8), and α = 1 +

√
−2.

To satisfy condition (2), it suffices to show that q4 ≡ 1 mod 4. This is trivial because
q ≡ 3 mod 4. Now, NFqn/Fq(α) = (1 +

√
−2)(1 −

√
−2) = 3; and the prime factors of 12

are 2 and 3. To satisfy condition (1) we need to show the following:

• 2 | q − 1 and 3 | q − 1;

• 3 is not a cubic or a quadratic residue in Fq.

Recall that q is given by the polynomial q(x) = 36x4 + 36x3 + 24x2 + 6x + 1 for some
x ≡ 1 mod 4. As a result 2 | q − 1 and 3 | q − 1. Morevoer, x ≡ 1 mod 4 implies that
x ≡ 1, 5 or 9 mod 12, which in turn implies that q ≡ 7 mod 12. As a result, 3 is not a
quadratic residue in Fq. We now need to determine when 3 is a cubic residue in Fq. A
prime q ≡ 1 mod 3 can be written as q = a2 +3b2 for some integers a, b. It was conjectured
by Euler and proven by Gauss that 3 is a cubic residue if and only if 9 | b, or 9 | (a±b) [26].
For BN-primes we can write q(x) = a(x) + 3x2, where a(x) = 6x2 + 3x+ 1 [41]. Hence, 3 is
a cubic residue if 9 | x, or 9 | 6x2 + 4x+ 1, or 9 | 6x2 + 2x+ 1. This occurs when x ≡ 0, 1,
or 5 mod 9 which happens with probability 1/3. Thus 3 is a cubic non-residue modulo q
for approximately 2/3rds of the values q ≡ 7 mod 8.

35

When deciding on the above construction for BN-primes congruent to 7 mod 8, we tried
to choose α so that NFqn/Fq(α) is minimized. This means that the polynomials used to
construct tower extensions will have small coefficents, so arithmetic will be efficient.

3.1.1 Towering Scheme for Primes Congruent to 3 mod 8

Aranha et al. [4] use E : y2 = x3 +2 for the BN-curve, and x = −(262 +255 +1) to generate
the 254-bit prime Q(x). As a result, both methods outlined above yield the same towering
scheme for the prime field over which this curve is defined:

− Fq2 = Fq[i]/(i2 − β), where β = −1.

− Fq6 = Fq2 [v]/(v3 − ξ), where ξ = 1 + i.

− Fq12 = Fq6 [w]/(w2 − v).

This towering scheme is ideal since it keeps the coefficents of the irreducible polynomials
as small as possible. At some points during the pairing computation, it is required that
finite field elements be multiplied by ξ (for example, when multiplying two elements over
Fq12). Using the above towering scheme, multiplication by i requires one negation over Fq,
and multiplication by ξ requires only one addition over Fq2 . For primes congruent to 3
mod 8, we use the above towering scheme.

We represent all prime and extension fields using a towering scheme as above, varying
the choice of ξ and v to suit the prime q in question.

3.1.2 Towering Scheme for Primes Congruent to 7 mod 8

We now illustrate explicit towering schemes for primes congruent to 7 mod 8 using the
446-bit prime given by Q(x), where x = 2110 + 236 + 1. This prime was recommended
in [17] and used in [3] to implement the O-Ate pairing. In this case, the above scheme does
not work because 1 + i is not a cubic non-residue in Fp2 . Following the recommendation
in [3], the BN-curve used is:

E257 : y2 = x3 + 257

We then get the following towering scheme which we refer to as Scheme 1:

36

• Fq2 = Fq[i]/(i2 − β), where β = −1.

• Fq6 = Fq2 [v]/(v3 − ξ), where ξ = 16 + i.

• Fq12 = Fq6 [w]/(w2 − v).

Here β is minimal, however ξ is slightly large. Minimizing β might be beneficial because a
large chunk of the arithmetic during pairing computation is performed over Fq2 . Multipli-
cation by i requires a negation; multiplication by ξ requires five additions in Fq2 .

To increase the efficiency of the pairing computation we can try a towering scheme as
dictated by Construction 2. This will make multiplication by ξ cheaper:

• Fq2 = Fq[i]/(i2 − β), where β = −2.

• Fq6 = Fq2 [v]/(v3 − ξ), where ξ = 1 + i.

• Fq12 = Fq6 [w]/(w2 − v).

We refer to the above scheme as Scheme 2. Here, multiplication by i requires one addition
and one negation in Fq, and multiplication by ξ requires two additions in Fq2 . Note that
here we have taken the opposite approach to the one suggested in [17]. Instead of choosing
a curve that gives the right twist, and then letting these choices dictate the towering
scheme, we first choose a towering scheme that optimizes extension field arithmetic and
deal with the curve later. As illustrated in Appendix A using the curve BN446, using
Scheme 2 results in a faster pairing than using Scheme 1. Since we did not follow the
recommendations of [17], we lose the benefit of being able to generate towering schemes and
twists without performing additional mathematical operations. However, in pairing-based
protocols, these operations need only be performed once, whereas there may be thousands
of pairing computations required. As the bulk of the pairing computation requires extension
field arithmetic, optimizing the arithmetic leads to better performance overall.

37

3.2 Field Arithmetic

3.2.1 Lazy Reduction

Before proceeding, we fix some notation regarding field operation algorithms and costs.
Lower case variables denote single-precision integers, and upper case variables denote
double-precision integers. × represents multiplication without reduction, and ⊗ repre-
sents multiplication with reduction. The letters m, s, a, and i denote a multiplication,
squaring, addition, and inversion in Fq respectively. Likewise m̃, s̃, ã, and ı̃ denote multi-
plication, squaring, addition and inversion in Fq2 respectively. mu, m̃u, su and s̃u denote
unreduced multiplications and squarings in the respective field. We write mb, mi, mξ, and
mv for multiplication by b, i, ξ, and v respectively. To perform arithmetic over finite fields,
we use Karatsuba multiplication and squaring with lazy reduction as in [4]. We extend
their idea of lazy reduction to field inversion. By applying lazy reduction, we are able
to save one Fq reduction per Fq2 inversion, and 13 Fq reductions per Fq12 inversion. This
speeds up the inversion routine in Fq2 by 4%, and in Fq12 by 10%. Algorithms 3.1, 3.2, and
3.3 present our routines for inversion in the extension fields using lazy reduction. All costs
for algorithms presented in this chapter are for the 254-bit BN prime used in [4].

Algorithm 3.1 Inversion in Fq2 (Cost = i + 4m + 3r + 2a)

Input: a = a0 + a1i; a0, a1 ∈ Fq
Output: c = a−1 ∈ Fq2
T0 ← a0 × a0

T1 ← −β · (a1 × a1)
T0 ← T0 + T1

t0 ← T0 mod p
t← t−1

0 mod p
c0 ← a0 ⊗ t
c1 ← −(a1 ⊗ t)
return c = c0 + c1i

3.2.2 Multiplication of Sparse Elements

Using the above towering scheme, the elements {1, v, v2, w, vw, v2w} form a basis for Fq12
over Fq2 . When using projective and jacobian coordinates, the line function in the Miller

38

Algorithm 3.2 Inversion in Fq6 (Cost = ı̃ + 9m̃ + 3s̃ + 9r̃ + 14ã)

Input: a = a0 + a1v + a2v
2; a0, a1, a2 ∈ Fq2

Output: c = a−1 ∈ Fq6
T0 ← a0 × a0

V0 ← a1 × a2

V0 ← ξV0

V0 ← T0 − V0

v0 ← V0 mod p
T0 ← a2 × a2

T0 ← ξT0

V1 ← a1 × a0

V1 ← T0 − V1

v1 ← V1 mod p
T0 ← a1 × a1

V2 ← a2 × a0

V2 ← T0 − V2

v2 ← V2 mod p
c1 ← a1 ⊗ v2

c1 ← ξc1

c0 ← a0 ⊗ v0

c2 ← a2 ⊗ v1

c2 ← ξc2

t0 ← c0 + c1

t0 ← t0 + c2

t0 ← t−1
0 mod p

c0 ← v0 ⊗ t0
c1 ← v1 ⊗ t0
c2 ← v2 ⊗ t0
return c = c0 + c1v + c2v

2

39

Algorithm 3.3 Inversion in Fq12 (Cost = ı̃ + 15m̃ + 9s̃ + 18r̃ + 69ã)

Input: a = a0 + a1w; a0, a1 ∈ Fq6
Output: c = a−1 ∈ Fq12
T0 ← a0 × a0

T1 ← v · (a1 × a1)
T0 ← T0 − T1

t0 ← T0 mod p
t0 ← t−1

0 mod p
c0 ← a0 ⊗ t0
c1 ← −a1 ⊗ t0
return c = c0 + c1w

loop evaluates to a sparse Fq12 element containing only three of the six basis elements. In
the case of a D-type twist, the line function evaluates to an element of the form

a0 + a1w + a2vw, a0, a1, a2 ∈ Fq2 .

In the case of an M-type twist, it evaluates to an element of the form -

a0 + a1v + a2vw, a0, a1, a2 ∈ Fq2 .

In both cases, when multiplying the line function evaluation with fi,Q(P), one can utilize
its sparseness to avoid full Fq12 arithmetic. We use Algorithm 3.4 to multiply a sparse
Fq12 element with a non-sparse Fq12 element. In this case, the sparse element arises as the
evaluation of a line function when a D-type twist is involved. Note that multiplication by
v involves a multiplication by ξ, which in turn is equal to one Fq2 addition. The dense-
sparse multiplication algorithm presented in Algorithms 3.4 and 3.5 requires 17 fewer Fq2
additions than in [4]. The dense-sparse multiplication algorithm is similar when we are
using an M-type twist, and requires an extra multiplication by v.

3.2.3 Mapping from the Twisted Curve to the Original Curve

Suppose we take ξ (as used in the towering scheme) to be the cubic and quadratic non-
residue to generate the sextic twist of the BN-curve E. In the case of a D-type twist, the
untwisting isomorphism is given by:

Ψ: (x, y) 7→ (ξ
1
3x, ξ

1
2y) = (w2x,w3y).

40

Algorithm 3.4 D-type sparse-dense Multiplication in Fq12 (Cost = 13m̃ + 6r̃ + 44ã)

Input: a = a0 + a1w + a2vw, a0, a1, a2 ∈ Fq2 ; b = b0 + b1w, b0, b1 ∈ Fq6
Output: ab ∈ Fq12
A0 ← a0 × b0[0], A1 ← a0 × b0[1], A2 ← a0 × b0[2]
A← A0 + A1v + A2v

2

B ← Fq6SparseMul(a1w + a2vw, b1)
c0 ← a0 + a1, c1 ← a2, c2 ← 0
c← c0 + c1v + c2v

2

d← b0 + b1

E ← Fq6SparseMul(c, d)
F ← E − (A+B)
G← Bv
H ← A+G
c0 ← H mod p
c1 ← F mod p
return c = c0 + c1w

Algorithm 3.5 Fq6SparseMul (Cost = 5m̃ + 12ã)

Input: a = a0 + a1v, a0, a1 ∈ Fq2 ; b = b0 + b1v + b2v
2, b0, b1, b2 ∈ Fq2

Output: ab ∈ Fq6
A← a0 × b0, B ← a1 × b1

C ← a1 × b2ξ
D ← A+ C
e← a0 + a1, f ← b0 + b1

E ← e× f
G← E − (A+B)
H ← a0 × b2

I ← H +B
return D +Gv + Iv2

41

Following the construction of the tower extensions, both w3 and w2 are basis elements used
to represent an element in Fp12 . Therefore, the untwisting map is almost free.

The efficient untwisting described above is lost if we use a M-type twist where the un-
twisting isomorphism is given by:

Ψ: (x, y) 7→ (ξ−
2
3x, ξ−

1
2y) = (ξ−1w4x, ξ−1w3y).

The cost of the untwisting in this case is 2 multiplications by ξ. However, if we compute
the pairing value on the twisted curve instead of the original curve, then we do not need
to use the untwisting map. Instead, we require the twisting map which is given by

Ψ−1 : (x, y) 7→ (w2x,w3y).

Therefore, in order to make the pairing computation as efficient as possible, we compute
the pairing on the original curve E when a D-type twist is involved, and on the twisted
curve E ′ when an M-type twist is involved.

3.3 Final Exponentiation

As discussed earlier, the hard part of the final exponentiation is raising to the exponent
q6+1
n

. In this section we focus on computing this for BN-curves. We can further split the
remaining exponent into two additional parts:

q6 + 1

n
= (q2 + 1)

q4 − q2 + 1

n
.

Raising to q2 +1 is two applications of the Frobenius operator, which is considered a cheap
operation (details to follow). Again, we are left with a hard to compute exponent —
q4−q2+1

n
. We outline the fastest way currently known to compute this exponent, described

by Fuentes-Castañeda et al. [16].

We observe that if the Tate pairing is raised to some power, then the new function given by
e(P,Q)m also gives a bilinear pairing. This pairing is non-degenerate as long as n - m since

e(P,Q) evaluates to an element in µn. Hence, instead of using q4−q2+1
n

, we use a multiple
of it which still gives a valid pairing.

42

Recall that for BN-curves, q and n are polynomials in x. Therefore, q4−q2+1
n

is also a
polynomial in x. We call this polynomial d(x). Fuentes-Castañeda et al. [16] showed that

2x(6x2 + 3x+ 1)d(x) = 1 + 6x+ 12x2 + 12x3

+ (4x+ 6x2 + 12x3)p(x)

+ (6x+ 6x2 + 12x3)p(x)2

+ (−1 + 4x+ 6x2 + 12x3)p(x)3.

The above value can be computed as follows. First, the following exponentiations are
computed

f 7→ fx 7→ f 2x 7→ f 4x 7→ f 6x 7→ f 6x2 7→ f 12x2 7→ f 12x3

which requires three exponentiations by x, three squarings and one multiplication. Then
we compute the terms a = f 12x3f 6x2f 6x and b = a(f 2x)−1 which require 3 multiplications.
Finally, the final pairing value is obtained as

af 6x2fbpap
2

(bf−1)p
3

which requires 6 multiplications and 6 Frobenius operations. In total, this part of the final
exponentiation requires three exponentiations by x, three squarings, ten multiplications,
and three Frobenius operations. In comparison, the previous fastest known method requires
three additional multiplications and an additional squaring [4].

3.3.1 Exponentiation by x

The final exponentiation requires three exponentiations by x. This is traditionally done
using a square-and-multiply method. Before we raise the output of the Miller loop to the
power x, we exponentiate it to (q6 − 1)(q2 + 1). This ensures that the value we need to
exponentiate to the power x lies in the cyclotomic subgroup Gφ6(Fq2).
Definition 3.3.1. We denote by Gφ12(Fq) the cyclotomic subgroup of F∗q12 . This is the

subgroup of all elements α ∈ Fq12 such that αq
4−q2+1 = 1.

For more details on Gφ12(Fq), refer to [18]. Now, we have

(q6 − 1)(q2 + 1) = (q6 − 1)
(q6 + 1)

q4 − q2 + 1
=

q12 − 1

q4 − q2 + 1
.

43

Thus, an element raised to (q6 − 1)(q2 + 1) lies in Gφ12(Fq). Fast formulas for computing
squarings in Gφ12(Fq) are given in [4] which we use in our implementation. To compute a
square, an element is first compressed, then squared in compressed form, and then decom-
pressed. It is not known how to perform multiplication of compressed elements. Hence,
when raising an element to the exponent x, one may keep squaring in compressed form,
but when multiplication is required, one needs to decompress the elements. A compressed
squaring requires 6s̃, 28ã, and 3mξ. A decompression requires 1ı̃, 2m̃, 3s̃, 9ã, and 2mξ.
Let h be the Hamming weight of x and l be the bit-length of x. Using Montogomery’s
simultaneous inversion trick, an exponentiation by x requires l compressed squarings, l− 1
multiplications in Fq12 , and h(3m̃+ 3s̃+ 9ã+ 2mξ) + 3(h− 1)m̃+ ı̃ additional operations.

3.4 The Frobenius Operator

Let a = α + iβ ∈ Fq2 where i =
√
−1 is an adjoined square root. Then

aq = (α + iβ)q

= αq + iqβq

= α + i3β (since q ≡ 3 mod 4)

= α− iβ.

Thus, computing aq requires one base field addition.

Now, suppose A =
5∑
i=0

aiw
i ∈ Fq12 , with each ai ∈ Fq2 and w is defined as in the towering

schemes given in subsections 3.1.1 and 3.1.2. By examining the polynomial q(x), we note
that q ≡ 1 mod 6. Then,

44

Aq =

(
5∑
i=0

aiw
i

)q

=
5∑
i=0

aqiw
i·q

=
5∑
i=0

aqiw
i·(q−1) · wi

=
5∑
i=0

(aqi ξ
i· q−1

6) · wi (since q ≡ 1 mod 6).

ξ0 = 1, and we precompute ξi
q−1
6 for i = {1, 2, ..., 5}. Hence, applying the Frobenius

operator in Fq12 costs 5m̃+ 6a.

45

Chapter 4

Curve Arithmetic

4.1 Doubling and Addition Formulas

From now on, we refer to the BN-curve defined in [17] over the 254-bit prime field as
BN254, the curve defined over the 446-bit prime field as BN446, and so on. Points lying on
the twisted curve are manipulated inside the Miller loop. In this section, we present and
compare doubling and addition formulas for points on the twisted curve obtained using
M-type and D-type twists. In order to speed up the pairing computation, the line functions
l2Ψ(T)(P) and lΨ(T),Ψ(Q)(P), are also computed at the same time as the doubling of point
T and the addition of T and Q respectively.

The line computations are optimized to allow us to utilize the special dense-sparse mul-
tiplication mentioned in Chapter 3, and to make the twisting/untwisting as simple as
possible. In the case of a D-type twist, we compute the pairing on points on the origi-
nal curve E. Thus, we need to untwist the point T using the map (x, y) → (xw2, yw3)
during the line computation. In the case of an M-type twist, we compute the pairing
on points on the twisted curve E ′. Hence, we need to twist the point P using the map
(xP , yP)→ (xPw

2, yPw
3) during the line computation. Making this distinction allows the

pairing to be computed optimally regardless of the type of twist involved. All operation
counts presented in this chapter are for the curve BN254, but similar results hold for the
other curves. Also, to remain consistent with the previous literature, we do not distinguish
between single and double-precision operations for doubling and addition costs presented
in this chapter.

47

4.1.1 Point Doubling

Affine Coordinates

Let the point T = (x, y) ∈ E ′(Fq) be in affine coordinates. To compute 2T = (x3, y3) and
the tangent line, we use the following formulae:

m =
3x2

2y
,

x3 = m2 − 2x,

y3 = m(x− x3)− y.

If we are working with a D-type twist then the tangent line evaluated at P = (xp, yp) is
given by the following equation:

l2Ψ(T)(P) = yp −mxpw − (y −mx)w3.

To compute the above, we use the following sequence of operations which requires 1ı̃, 3m̃,
2s̃, 8ã, and 2m.

A =
1

2y,
B = 3x2, C = AB, D = 2x, x3 = C2 −D,

E = C(x− x3), y3 = E − y, F = Cx,p G = y − Cx,

l2Ψ(T)(P) = yp − Fw −Gw3.

If we are working with an M-type twist then the the tangent line evaluated at Ψ−1(P) =
(xpw

2, ypw
3) is given by the following equation:

l2T (Ψ−1(P)) = ypw
3 −mxpw2 − (y −mx).

This can be computed in a manner similar to above, requiring the same sequence of oper-
ations.

48

Jacobian Coordinates

The point T on the twisted curve is traditionally stored and manipulated using Jacobian
coordinates. The formula presented here is derived from [4], and is revised to minimize the
number of Fq2 squarings. Let T = (X, Y, Z) ∈ E ′(Fq2) be in Jacobian coordinates. Then
2T = (X3, Y3, Z3) is given by:

X3 = X(
9

4
X3 − 2Y 2),

Y3 = 3X3(−Y 2 − 9

4
X3)− Y 4,

Z3 = Y Z.

In the case of a D-type twist, the corresponding line function evaluated at P = (xP , yP) is
given by:

l2Ψ(T)(P) = 2Z3Z
2yP − 3X2Z2xPw + (3X3 − 2Y 2)w3.

Compared to [4], the line evaluation has been multiplied by 2 to save an addition in Fq2 .
This extra factor is eliminated by the final exponentiation. We use the following sequence
of operations to compute the point doubling and line evaluation in 6m̃, 4s̃, 13ã, and 4m:

A = 3X2, E = 3X3, B =
9X3

4
, C = Y 2, D = 2Y 2, X3 = X(B −D),

F = C2, Y3 = E(−C−B), Z3 = Y Z, G = Z2, H = 2Z3G, I = −AGxp, J = E−D,
l2Ψ(T)(P) = HyP + Iw + Jw3.

In the case of an M-type twist the corresponding line computation can be computed using
the same sequence of operations as above. The equation for the tangent line computed at
Ψ−1(P) = (xpw

2, ypw
3) is:

l2T (Ψ−1(P)) = 2Z3Z
2yPw

3 − 3X2Z2xPw
2 + (3X3 − 2Y 2).

Homogeneous Coordinates

Homogeneous coordinates were used in [4] to compute the O-Ate pairing. We present their
formulae here. Note that in [4] the O-Ate pairing was computed on the twisted curve E ′

49

obtained through a D-type twist. By computing the pairing on the original curve E, we
are able to save a Fq2 addition when doubling a point. Let T = (X, Y, Z) ∈ E ′(Fq2) be in
homogeneous coordinates. Then 2T = (X3, Y3, Z3) is given by:

X3 =
XY

2
(y2 − 9b′Z2),

Y3 =

[
1

2
(Y 2 + 9′bZ2)

]2

− 27b′2Z4,

Z3 = 2Y 3Z.

In the case of a D-type twist, the corresponding line function evaluated at P = (xP , yP) is
given by:

l2Ψ(T)(P) = −2Y ZyP + 3X2xPw + (3b′Z2 − Y 2)w3.

The above can be computed using the following sequence of operations giving a cost of
3m̃, 6s̃, 17ã, 4m, and 1mb. In the case of BN254, multiplication by b′ = 1 − i can be
performed using one addition and the cost is 3m̃, 6s̃, 18ã, and 4m.

A =
XY

2
, B = Y 2, C = Z2, E = 3bC, F = 3E, X3 = A · (B − F),

G =
B + f

2
, Y3 = G2 − 3E2, H = (Y + Z)2 − (B + C), Z3 = B ·H,

l2Ψ(T)(P) = −HyP + 3X2xPw + (E −B)w3.

The authors in [4] point out that m̃− s̃ ≈ 3ã. Hence, it is faster to compute XY directly
rather than using (X + Y)2, X2 and Y 2 on a desktop machine. However, in the case of
ARM processors, m̃ − s̃ ≈ 6ã. Thus, it is more efficient to use the latter technique when
computing pairings on ARM processors, at a cost of 2m̃, 7s̃, 22ã, and 4m. In the case of
an M-type twist, the corresponding line function evaluated at Ψ−1(P) = (xPw

2, yPw
3) is

given by:

l2T (Ψ−1(P)) = −2Y ZyPw
3 + 3X2xPw

2 + (3bZ2 − Y 2).

Again, this can be computed in the same manner as for the D-type twist. As in [4], we
also use lazy reduction techniques to optimize the above formulae. Next we discuss point
addition on the twisted curve E ′.

50

4.1.2 Point Addition

Affine Coordinates

Let the points T = (x, y) and Q = (x2, y2) ∈ E ′(Fq) be in affine coordinates. To compute
T +Q = (x3, y3) and the line passing through them, we use the following formulae:

m =
x2 − x
y2 − y

,

x3 = m2 − x− x2,

y3 = m(x− x3)− y.

If we are working with a D-type twist then the secant line evaluated at P = (xp, yp) is
given by the following equation:

lΨ(T+Q)(P) = yp −mxpw − (y −mx)w3.

To compute the above, we use the following sequence of operations which requires 1ı̃, 3m̃,
1s̃, 7ã, and 2m.

A =
1

y2 − y
, B = x2 − x, C = AB, D = 2x, x3 = C2 −D,

E = C(x− x3), y3 = E − y, F = Cxp, G = y − Cx,

lΨ(T+Q)(P) = yp − Fw −Gw3.

If we are working with an M-type twist then the secant line evaluated at Ψ−1(P) =
(xpw

2, ypw
3) is given by the following equation:

lT+Q(Ψ−1(P)) = ypw
3 −mxpw2 − (y −mx).

This can be computed in a manner similar to above, requiring the same sequence of oper-
ations.

51

Jacobian Coordinates

Let T = (X, Y, Z) and Q = (X2, Y2, 1) ∈ E ′(Fq2) be in Jacobian coordinates with T 6= Q.
Then T +Q = (X3, Y3, Z3) is given by:

θ = Y2Z
3 − Y, λ = X2Z

2 −X,
X3 = θ2 − 2Xλ2 − λ3,

Y3 = θ(Xλ2 −X3)− Y λ3,

Z3 = Zλ.

In the case of a D-type twist, the corresponding line function evaluated at P = (xP , yP) is
given by:

lΨ(T+Q)(P) = Z3yP − θxPw + (θX2 − Y2Z3)w3.

In [4], computing the above formula requires 10m̃, 3s̃, 8ã, and 4m. We use the following
sequence of operations which uses two fewer Fq2 additions.

A = Z2, B = Z3, θ = Y2B − Y, λ = X2A−X, C = θ2,

D = λ2, E = λ3, F = C − E, G = XD, X3 = F − 2G,

Y3 = θ(G−X3)− Y E, Z3 = Zλ, J = θX2 − Y2Z3,

lΨ(T+Q)(P) = Z3yP − θxPw + Jw3.

In the case of an M-type twist the corresponding line computation can be computed using
the same sequence of operations as above. The equation for the tangent line computed at
Ψ−1(P) = (xpw

2, ypw
3) is:

lT+Q(Ψ−1(P)) = Z3yPw
3 − θxPw2 + (θX2 − Y2Z3).

52

Homogeneous Coordinates

Let T = (X, Y, Z) and Q = (X2, Y2, 1) ∈ E ′(Fq2) be in homogeneous coordinates with
T 6= Q. Then T +Q = (X3, Y3, Z3) is given by:

θ = Y − Y2Z, λ = X −X2Z,

X3 = λ(λ3 + Zθ2 − 2Xλ2),

Y3 = θ(3Xλ2 − λ3 − Zθ2)− Y λ3,

Z3 = Zλ3.

In the case of a D-type twist, the corresponding line function evaluated at P = (xP , yP) is
given by:

lΨ(T+Q)(P) = −λyP − θxPw + (θX2 − λY2)w3.

In [4] computing the above formula requires 11m̃, 2s̃, 12ã, and 4m. We use the following
sequence of operations which uses 4 fewer Fq2 additions.

A = Y2Z, B = X2Z, θ = Y − A, λ = X −B, C = θ2,

D = λ2, E = λ3, F = ZC, G = XD, H = E + F − 2G,

X3 = λH, I = Y E, Y3 = θ(G−H)− I, Z3 = ZE, J = θX2 − λY2,

lΨ(T+Q)(P) = −λyP − θxPw + Jw3.

In the case of an M-type twist the corresponding line computation can be computed using
the same sequence of operations as above. The equation for the tangent line computed at
Ψ−1(P) = (xpw

2, ypw
3) is:

lT+QΨ−1(P) = −λyP − θxPw + Jw3.

Table 4.1 lists the operation counts for each of the above operations for easier comparison.
Between Jacobian and homogeneous coordinates, homogeneous coordinates are the faster
choice for the doubling operation. Jacobian coordinates are faster for addition, but the gain
is not sufficient to warrant the use of Jacobian coordinates over homogeneous coordinates
for pairing computation.

53

Coordinates Doubling Cost Addition Cost

Affine ı̃+ 3m̃+ 2s̃+ 8ã+ 2m ı̃+ 3m̃+ 1s̃+ 7ã+ 2m
Jacobian 6m̃+ 4s̃+ 13ã+ 4m 10m̃+ 3s̃+ 6ã+ 4m

Homogeneous 2m̃+ 7s̃+ 22ã+ 4m 11m̃+ 2s̃+ 8ã+ 4m

Table 4.1: Doubling and Addition costs comparison on ARM architecture

4.1.3 Affine Coordinates on ARM

Acar et al. [3] argue that on ARM processors, the inversion to multiplication ratios are small
enough that it is more efficient to compute a pairing using affine coordinates. Refering to
addition and doubling costs above, we see that if inversions are cheap enough, then the
addition and doubling steps using affine coordinates will be faster. Using affine coordinates
also leads to a faster dense-sparse multiplication algorithm. Tables 5.1 and 5.2 list the cost
of the addition and doubling steps and dense-sparse multiplication taking into account the
distinction between double and single precision operations. Using this, we compute the
crossover point for the inversion-to-multiplication ratio at which a pairing computation
becomes faster using affine coordinates.

If we are using a prime congruent to 3 mod 8, then compared to a projective doubling,
an affine doubling costs an extra Fq2 inversion and unreduced multiplication, and saves
5s̃u + 3r̃ + 16.5ã + 2m. Compared to a first doubling, it costs an extra Fq2 inversion
and saves 2s̃u + 2r̃ + 6.5ã + 2m. An addition costs an extra Fq2 inversion and saves
8m̃u + s̃u + 7r̃ + 3ã + 2m, and a dense-sparse multiplication needs 6 additional base field
multiplications and saves 3m̃u + 3r̃ + 0.5ã. Computing a pairing on BN254 requires 1
first doubling, 63 doublings, 6 additions, and 66 dense-sparse multiplications. Thus, the
difference between an affine and projective pairing is:

254A− 254P = (̃ı− 2s̃u − 2r̃ − 6.5ã− 2m) + 63(̃ı+ m̃u − 5s̃u − 3r̃ − 16.5ã− 2m) +

6(̃ı− 8m̃u − s̃u − 7r̃ − 3ã− 2m) + 66(6m− 3m̃u − 3r̃ − 0.5ã)

= 70ı̃+ 256m− 183m̃u − 323s̃u − 431r̃ − 1097ã

= 70(i+ 4mu + 3r + 3a) + 256(mu + r)− 183(3mu + 8a)−
323(2mu + 3a)− 431(2r)− 1097(2a)

= 70i− 659mu − 396r − 4417a.

On an ARM Feroceon, where we measure m ≈ 2r and 15a ≈ m, this gives a crossover
inversion-to-multiplication(I/M) ratio of 11.5. On an iPad, we found that m ≈ 1.5r which

54

yields a crossover I/M ratio of 10.8. This means that if the I/M ratio is below 10.8, using
affine coordinates will be faster for pairing computation. Note that the equivalent crossover
I/M ratios in Fq2 are half as small as the ratios in the base field. In general, actual and
crossover I/M ratios getter smaller as the degree of the extension field increases because
of the inversion formula for higher extensions. As a result, as the degree of the extension
field used for the bulk of the arithmetic in a pairing computation increases, the case for
using affine coordinates gets stronger.

Similarly, we computed the crossover I/M ratios for BN446 and BN638 – details are in
Appendix B and the crossover ratios are given in Table 4.2. The crossover ratios over
different size finite fields (where the binary or NAF representation of 6x + 2 is sparse),
seem to be very close to each other.

Table 4.3 lists the observed inversion-to-multiplication(I/M) ratios in various fields across
different platforms for our work and [3]. In general, the ratios get smaller as the size of
the finite field increases. We can see that according to these ratios, projective coordinates
are faster than affine on x86-64. On the other hand, the choice for ARM processors is
not so clear cut. For BN256, the actual I/M ratios are fairly close to the crossover points.
For BN446 and BN638, the actual ratios are below the crossover point. As a result,
affine coordinates should in theory be a better choice for our implementation. Further
optimizations such as hand-optimizing the low-level field arithmetic operations in assembly
language may affect the I/M ratios. However, the I/M ratios in the 446-bit and 638-bit
prime fields are low enough that we can confidently say that affine coordinates will be the
better choice in these fields.

4.2 NAF Miller Loop

Instead of using the regular binary representation of a number, one may choose to represent
it using a non-adjacent form (NAF). A NAF is a unique signed digit representation using
digits {1, 0,−1} with the property that no two consecutive digits are nonzero. For example,
the decimal digit 7 can be expressed as 1, 0, 0,−1 = 23 − 1 using NAF. The advantage of
using NAF is that it minimizes the Hamming weight of an integer. On average, one-third
of all digits are non-zero when using NAF representation.

To reduce the number of addition steps in the Miller loop, we can use a NAF repre-

1ARM Feroceon 88FR131 @ 1.2GHz

55

Curve Cross-over I/M ratio

Feroceon1 iPad

ratios in Fq
BN254 11.5 10.8
BN446 11.0 10.2
BN638 11.0 10.2

ratios in Fq2

BN254 4.5 4.1
BN446 4.2 3.8
BN638 4.3 3.8

Table 4.2: Cross-over I/M ratios for various curves

Curve x86-64 ARM

Acar et al. our work Acar et al. Feroceon iPad

BN254 25 30 10.67 10.2 10.5
BN446 22.33 28.1 8.94 8.9 9.2
BN638 18.59 24.5 6.82 7.7 7.9

Table 4.3: Actual Fq inversion-to-multiplication ratios in various fields

56

sentation of u and execute a double, add and subtract version of the algorithm as is done
traditionally for elliptic curve scalar multiplication. Taking the inverse of a point on an
elliptic curve is almost free, hence the subtraction step in the Miller loop costs almost the
same as the addition step. In our implementation, the NAF version of Miller’s algorithm
reduces the number of addition steps when computing a pairing on BN638 from 88 to 6.

57

Chapter 5

Implementation Results

In this chapter, we present detailed operation counts for the number of operations required
for a pairing computation described in previous sections. Counts are presented for the
curves BN254, BN446, and BN638 which are also used in Acar et al. [3]. We also present
timings on several platforms for our implementation of the pairing computation at various
security levels.

5.1 Operation Counts

5.1.1 Miller Loop Operation Count

Table 5.1 shows the operation count for all the computations in a pairing for the curve
using the 254-bit prime field, and Table 5.2 gives the operation count for the curve using
the 446-bit prime field.

For BN256, using the techniques described in previous chapters, the Miller loop executes
one negation in Fq to precompute yp, one first doubling with line evaluation, 63 point dou-
blings with line evaluations, 6 point additions with line evaluations, one p-power Frobenius
in E ′(Fp2), one p2-power Frobenius in E ′(Fp2), 66 sparse multiplications, 63 squarings in
Fp2 , one negation in E ′(Fp2), two sparser multiplications, and one multiplication in Fp12 .

59

E ′(Fp2) - Arithmetic Operation Count
Doubling/Eval. (x86=64) 3m̃u + 6s̃u + 8r̃ + 21ã+ 4m
Doubling/Eval. (ARM) 2m̃u + 7s̃u + 8r̃ + 25ã+ 4m
Doubling/Eval. (Affine) ı̃+ 3m̃u + 2s̃u + 5r̃ + 8ã+ a+ 2m

Addition/Eval. 11m̃u + 2s̃u + 11r̃ + 11ã+ 4m
Addition/Eval. (Affine) ı̃+ 3m̃u + s̃u + 4r̃ + 8ã+ 2m

First Doubling/Eval 3m̃u + 4s̃u + 7r̃ + 14ã+ 4m
p-power Frobenius 2m̃+ 2a
p2- power Frobenius 4m

Negation ã

Fp2 - Arithmetic Operation Count
Add./Sub./Neg. ã = 2a

Conjugation a
Multiplication m̃ = m̃u + r̃ = 3mu + 2r + 8a

Squaring s̃ = s̃u + r̃ = 2mu + 2r + 3a
Multiplication by i a
Multiplication by ξ 2a

Inversion ı̃ = i+ 4m+ 3r + 3a

Fp12 - Arithmetic Operation Count
Add./Sub 6ã

Conjugation 3ã
Multiplication 18m̃u + 110ã+ 6r̃

Sparse Multiplication 13m̃u + 6r̃ + 48ã
Sparser Multiplication 6m̃u + 6r̃ + 13ã

Affine Sparse Multiplication 10m̃u + 6r̃ + 47ã+ 6mu + a
Squaring 12m̃u + 6r̃ + 73ã

Cyclotomic Squaring 9s̃u + 46ã+ 6r̃
Compressed Squaring 6s̃u + 31ã+ 4r̃

Simultaneous Decompression 9m̃+ 6s̃+ 22ã+ ı̃
p-power Frobenius 5m̃+ 6a
p2-power Frobenius 10m+ 2ã

Exponentiation by x 45m̃u + 378s̃u + 275r̃ + 2164ã+ ı̃
Inversion 25m̃u + 9s̃u + 18r̃ + 123ã+ ı̃

Table 5.1: Operation counts for a 254-bit prime field , refer to Section 3.2.1 for notation.

60

E ′(Fp2) - Arithmetic Operation Count
Doubling/Eval. (x86-64) 3m̃u + 6s̃u + 8r̃ + 30ã+ a+ 4m
Doubling/Eval. (ARM) 2m̃u + 7s̃u + 8r̃ + 34ã+ a+ 4m
Doubling/Eval. (Affine) ı̃+ 3m̃u + 2s̃u + 5r̃ + 8ã+ a+ 2m

Addition/Eval. 11m̃u + 2s̃u + 11r̃ + 11ã+ 4m
First Doubling/Eval 3m̃u + 4s̃u + 7r̃ + 23ã+ a+ 4m

Addition/Eval. (Affine) ı̃+ 3m̃u + s̃u + 4r̃ + 8ã+ 2m
p-power Frobenius 8m̃+ 2a

Negation ã

Fp2 - Arithmetic Operation Count
Add./Sub./Neg. ã = 2a

Conjugation a
Multiplication m̃ = m̃u + r̃ = 3mu + 2r + 10a

Squaring s̃ = s̃u + r̃ = 2mu + 2r + 5a
Multiplication by i 2a
Multiplication by ξ 3a

Inversion ı̃ = i+ 4m+ 3r + 5a

Fp12 - Arithmetic Operation Count
Add./Sub 6ã

Conjugation 3ã
Multiplication 18m̃u + 117ã+ 6r̃

Sparse Multiplication 13m̃u + 6r̃ + 54ã
Sparser Multiplication 6m̃u + 6r̃ + 14ã

Affine Sparse Multiplication 10m̃u + 6r̃ + 53ã+ 6mu + a
Squaring 12m̃u + 6r̃ + 78ã

Cyclotomic Squaring 9s̃u + 49ã+ a+ 6r̃
Compressed Squaring 6s̃u + 33ã+ a+ 4r̃

Simultaneous Decompression 9m̃+ 6s̃+ 24ã+ ı̃
p-power Frobenius 5m̃+ 6a
p2-power Frobenius 10m+ 2ã

Exponentiation by x 45m̃u + 666s̃u + 467r̃u + 3888ã+ 110a+ ı̃
Inversion 25m̃u + 9s̃u + 18r̃ + 138ã+ ı̃

Table 5.2: Operation counts for a 446-bit prime field, refer to Section 3.2.1 for notation.

61

Thus, the cost of the Miller loop on an ARM processor using projective coordinates is:

ML256P = a+ 3m̃u + 4s̃u + 7r̃ + 14ã+ 4m+ 63(2m̃u + 7s̃u + 8r̃ + 25ã+ 4m) +

6(11m̃u + 2s̃u + 11r̃ + 11ã+ 4m) + 2m̃+ 2a+ 4m+ 66(13m̃u + 6r̃ + 48ã) +

63(12m̃u + 6r̃ + 73ã) + ã+ 2(6m̃u + 6r̃ + 13ã) + 18m̃u + 110ã+ 6r̃

= 1841m̃u + 457s̃u + 1371r̃ + 9522ã+ 284m+ 3a.

For BN446, the Miller loop executes one negation in Fq to precompute yp, one first doubling
with line evaluation, 111 point doublings with line evaluations, 6 point additions with line
evaluations, two p-power Frobenius operations in E ′(Fp2), 114 sparse multiplications, 111
squarings in Fp2 , one negation in E ′(Fp2), two sparser multiplications, and one multipli-
cation in Fp12 . Thus, the cost of the Miller loop on an ARM processor using projective
coordinates is:

ML446P = a+ 3m̃u + 4s̃u + 7r̃ + 23ã+ a+ 4m+ 111(2m̃u + 7s̃u + 8r̃ + 34ã+ a+ 4m)

+ 6(11m̃u + 2s̃u + 11r̃ + 11ã+ 4m) + 2(8m̃+ 2a) + 114(13m̃u + 6r̃ + 54ã)

+ 111(12m̃u + 6r̃ + 78ã) + ã+ 2(6m̃u + 6r̃ + 14ã) + 18m̃u + 117ã+ 6r̃

= 3151m̃u + 793s̃u + 2345r̃ + 18601ã+ 472m+ 117a.

Lastly, for BN638, we use the NAF Miller algorithm. Hence, the Miller loop executes one
negation in Fq to precompute yp, one first doubling with line evaluation, 160 point dou-
blings with line evaluations, 8 point additions with line evaluations, two p-power Frobenius
operations in E ′(Fp2), 167 sparse multiplications, 160 squarings in Fp2 , two negations in
E ′(Fp2), two sparser multiplications, and one multiplication in Fp12 . Thus, the cost of the
Miller loop is:

ML638P = a+ 3m̃u + 4s̃u + 7r̃ + 23ã+ a+ 4m+ 160(2m̃u + 7s̃u + 8r̃ + 34ã+ a+ 4m)

+ 8(11m̃u + 2s̃u + 11r̃ + 11ã+ 4m) + 2(8m̃+ 2a) + 167(13m̃u + 6r̃ + 54ã)

+ 160(12m̃u + 6r̃ + 78ã) + 2ã+ 2(6m̃u + 6r̃ + 14ã) + 18m̃u + 117ã+ 6r̃

= 4548m̃u + 1140s̃u + 3557r̃ + 27206ã+ 676m+ 166a.

Similarly, we can compute the cost of the Miller loop on x86-64 using projective coordinates,
and also using affine coordinates. Table 5.3 summarizes these costs for all three curves.

5.1.2 Final Exponentiation

We now count the number of operations required for the final exponentiation part of the
pairing computation, for each of the three curves.

62

BN254

Projective Coordinates on ARM 1841m̃u + 457s̃u + 1371r̃ + 9522ã+ 284m+ 3a
Projective Coordinates on x86-64 1904m̃u + 394s̃u + 1371r̃ + 9306ã+ 284m+ 3a
Affine Coordinates 70ı̃+ 1658m̃u + 134s̃u + 942r̃ + 8398ã+ 540m+ 133a

BN446

Projective Coordinates on ARM 3151m̃u + 793s̃u + 2345r̃ + 18601ã+ 472m+ 117a
Projective Coordinates on x86-64 3262m̃u + 682s̃u + 2345r̃ + 18268ã+ 472m+ 117a
Affine Coordinates 118ı̃+ 2872m̃u + 230s̃u + 1610r̃ + 15790ã+ 920m+ 231a

BN638

Projective Coordinates on ARM 4548m̃u + 1140s̃u + 3557r̃ + 27206ã+ 676m+ 166a
Projective Coordinates on x86-64 4708m̃u + 980s̃u + 3557r̃ + 26556ã+ 676m+ 166a
Affine Coordinates 169ı̃+ 4143m̃u + 330s̃u + 2324r̃ + 22830ã+ 1340m+ 333a

Table 5.3: Cost of the Miller Loop using various coordinates/processors, refer to Section
3.2.1 for notation.

In the case of BN256, since we are working with a negative r, the final exponentiation
requires 6 conjugations in Fp12 , one negation in E ′(Fp2), one inversion in Fp12 , 12 mul-
tiplications in Fp12 , two p-power Frobenius operations in Fp12 , three p2-power Frobenius
operations in Fp12 , three exponentiations by x, and three cyclotomic squarings. Hence, the
total cost of the final exponentiation is:

FE256 = 6(3ã) + ã+ 25m̃u + 9s̃u + 18r̃ + 123ã+ ı̃+ 12(18m̃u + 110ã+ 6r̃)

+ 2(5m̃+ 6a) + 3(10m+ 2ã) + 3(45m̃u + 378s̃u + 275r̃ + 2164ã+ ı̃)

+ 3(9s̃u + 49ã+ a+ 6r̃)

= 386m̃u + 1164s̃u + 943r̃ + 4ı̃+ 7989ã+ 30m+ 15a.

In the case of BN446, the final exponentiation requires five conjugations in Fp12 , one inver-
sion in Fp12 , twelve multiplications in Fp12 , two p-power Frobenius operations in Fp12 , three
p2-power Frobenius operations in Fp12 , three exponentiations by x, and three cyclotomic
squarings. Hence, the total cost of the final exponentiation is:

FE446 = 5(3ã) + 25m̃u + 9s̃u + 18r̃ + 138ã+ ı̃+ 12(18m̃u + 117ã+ 6r̃)

+ 2(5m̃+ 6a) + 3(10m+ 2ã) + 3(45m̃u + 666s̃u + 467r̃ + 3888ã+ 110a+ ı̃)

+ 3(9s̃u + 49ã+ a+ 6r̃)

= 386m̃u + 2034s̃u + 1519r̃ + 4ı̃+ 13374ã+ 30m+ 345a.

63

Curve Cost

BN256 ML256P + FE256 2227m̃u + 1621s̃u + 2314r̃ + 4ı̃+ 17484ã+ 314m+ 18a

BN446 ML446P + FE446 3537m̃u + 2827s̃u + 3872r̃ + 4ı̃+ 31975ã+ 506m+ 463a

BN638 ML638P + FE638 4984m̃u + 4020s̃u + 5700r̃ + 4ı̃+ 45734ã+ 606m+ 655a

Table 5.4: Operation count for pairing computations at various security levels

In the case of BN638, the high level operations are the same as the previous case. The
Hamming weight of x is 4, and hence simultaneous decompression requires 16m̃+9s̃+35ã+ı̃.
Thus exponentiation by x requires 70m̃+ 948s̃+ 675r̃+ 5606ã+ 158a+ ı̃. As a result, the
total cost of the final exponentiation is:

FE638 = 5(3ã) + 25m̃u + 9s̃u + 18r̃ + 138ã+ ı̃+ 12(18m̃u + 117ã+ 6r̃)

+ 2(5m̃+ 6a) + 3(10m+ 2ã) + 3(70m̃+ 948s̃+ 675r̃ + 5606ã+ 158a+ ı̃)

+ 3(9s̃u + 49ã+ a+ 6r̃)

= 436m̃u + 2880s̃u + 2143r̃ + 4ı̃+ 18528ã+ 30m+ 489a.

Table 5.4 gives the total cost of the pairing computation on each of the three curves using
projective coordinates on the ARM processor. The cost for our work is computed using
the results in Table 5.4 and expressing them in terms of base field arithmetic operations.
The cost for Arahna et al. [4] is computed with the same method using the results given
in Section 6 in their work.

Table 5.5 gives a comparison of the operation count between our implementation and the
previous best known implementation of the Optimal Ate pairing [4] using the curve BN256
on the x86-64 platform. Our implementation improves the work in [4] by the lowering the
cost of the pairing computation by 249m+ 22r + 2875a.

5.2 Implementation Times

We now present timings of our C implementation of the pairing computation on various
platforms. We used the same C code on all platforms. As stated previously, the base field

64

Work Phase Pairing Cost

Arahna et al. [4]
ML 6796m+ 2736r + 20436a

FE 3753m+ 1926r + 17025a

Pairing 10549m+ 4662r + 37461a

Our Implementation
ML 6784m+ 2742r + 18615a

FE 3516m+ 1882r + 15997a

Pairing 10300m+ 4624r + 34612a

Table 5.5: Comparison of Operation count for pairing computation on the BN254 curve.

arithmetic largely follows that of [4], using the gmp library for low level routines. Tables
5.6, 5.7, and 5.8 compare our implementation using the curves BN254, BN446, and BN638
respectively with related work. In the work of Arahna et al. [4], similar numbers are also
provided for the Core i7, Opteron, and the Core 2 Duo. In our comparison we use their
results for the Phenom II because we feel it is closest to our Athlon II processor. The times
presented for the Miller Loop are using the coordinate system which is the fastest available
for that work.

As expected, projective pairings are faster than affine pairings using our code on x86-64
but not on ARM processors. Comparing [3] to our iPad numbers, which were obtained on
the same microarchitecture and clock speed, we find that our implementation is 73%, 73%,
and 82% faster on BN254, BN446, and BN638 respectively. The largest improvement is in
the case of the curve BN638, which is attributed to the implementation of the NAF-Miller
algorithm. For BN638, using the NAF version of the Miller algorithm saved 82 curve
additions and line computations.

Although we have a lower operation count, our O-Ate pairing on BN254 is slower than that
of [4] on x86-64, since we did not implement Fp2 arithmetic in hand-optimized assembly.

65

Work/ Operation
Platform

ã m̃ s̃ ı̃ r̃ ML FE O-Ate(a) O-Ate(p)
our work, ARM
Feroceon 88FR131
@ 1.2 GHz, µs .35 4.96 4.01 24.01 2.1 11,877 7,550 19,427 19,880
Acar et al., nVidia
Tegra 2 Cortex A9
@ 1GHz, µs 1.42 8.18 5.20 26.61 n/a 26,320 24,690 51,010 55,190
our work, Apple
iPad 2 Cortex A9
@ 1GHz, µs .25 3.48 2.88 19.19 1.8 8,339 5,483 14,605 13,822

our work, x86-64
AMD Athlon II
@ 2.1GHz, cycles 61 699 640 7,104 n/a 2,367 1,498,159 4,220,661 3,865,529
Acar et al., x86-64
Core2 E6600
@ 2.4 GHz, cycles 336 2,131 1,318 12,774 n/a 7,491,593 6,633,846 14,125,439 14,989,039
Aranha et al.,
x86-64 Phenom II,
cycles n/a 368 288 n/a n/a 898,000 664,000 n/a 1,562,000

Table 5.6: Field arithmetic timings in a 254-bit prime field, and O-Ate pairing timings on
BN254.

Work/ Operation
Platform

ã m̃ s̃ ı̃ r̃ ML FE O-Ate(a) O-Ate(p)
our work, ARM
Feroceon 88FR131
@ 1.2 GHz, µs 0.38 10.8 8.6 47.9 4.5 41,723 23,089 64,812 65,958
Acar el al., nVidia
Tegra 2 Cortex A9
@ 1GHz, µs 2.37 17.24 10.84 54.23 n/a 97,530 86,750 184,280 195,560
our work, Apple
iPad 2 Cortex A9
@ 1GHz, µs .26 8.03 6.46 37.95 3.2 32,087 17,181 49,652 49,267

our work, x86-64
AMD Athlon II
@ 2.1GHz, cycles 91 1,415 1,259 14,728 n/a 6,641,288 3,927,155 11,896,956 10,568,443
Acar et al., x86-64
Core2 E6600
@ 2.4 GHz, cycles 493 3,821 2,445 22,957 n/a 23,995,542 20,156,765 44,152,307 45,515,035

Table 5.7: Field arithmetic timings in a 446-bit prime field, and O-Ate pairing timings on
BN446.

66

Work/ Operation
Platform

ã m̃ s̃ ı̃ r̃ ML FE O-Ate(a) O-Ate(p)
our work, ARM
Feroceon 88FR131
@ 1.2 GHz, µs .51 18.23 14.93 77.11 7.6 98,044 51,351 149,395 153,713
Acar el al., nVidia
Tegra 2 Cortex A9
@ 1GHz, µs 3.48 31.81 20.55 91.92 n/a 236,480 413,370 649,850 768,060
our work, Apple
iPad 2 Cortex A9
@ 1GHz, µs .34 15.07 12.09 64.68 6 79,056 40,572 119,628 123,410

our work, x86-64
AMD Athlon II
@ 2.1GHz, cycles 109 2,350 1,997 22,266 n/a 14,811,009 8,169,431 25,998,299 22,980,440
Acar et al., x86-64
Core2 E6600
@ 2.4 GHz, cycles 659 6,176 3,961 34,935 n/a 51,497,159 85,037,269 136,534,428 157,309,156

Table 5.8: Field arithmetic timings in a 638-bit prime field, and O-Ate pairing timings on
BN638.

67

References

[1] IEEE P1363.3: Standard for identity-based cryptographic techniques using pairings.
draft 3:section 5.3.2. http://grouper.ieee.org/groups/1363/IBC/index.html.

[2] Michel Abdalla and Paulo S. L. M. Barreto, editors. Progress in Cryptology - LATIN-
CRYPT 2010, First International Conference on Cryptology and Information Security
in Latin America, Puebla, Mexico, August 8-11, 2010, Proceedings, volume 6212 of
Lecture Notes in Computer Science. Springer, 2010.

[3] Tolga Acar, Kristin Lauter, Michael Naehrig, and Daniel Shumow. Affine pairings on
arm. IACR Cryptology ePrint Archive, 2011:243, 2011.

[4] Diego F. Aranha, Koray Karabina, Patrick Longa, Catherine H. Gebotys, and Julio
López. Faster explicit formulas for computing pairings over ordinary curves. In Pa-
terson [35], pages 48–68.

[5] R. Balasubramanian and Neal Koblitz. The improbability that an elliptic curve has
subexponential discrete log problem under the Menezes - Okamoto - Vanstone algo-
rithm. J. Cryptology, 11(2):141–145, 1998.

[6] Paulo S. L. M. Barreto, Hae Yong Kim, Ben Lynn, and Michael Scott. Efficient
algorithms for pairing-based cryptosystems. In Yung [45], pages 354–368.

[7] Paulo S. L. M. Barreto and Michael Naehrig. Pairing-friendly elliptic curves of prime
order. In Preneel and Tavares [36], pages 319–331.

[8] Naomi Benger and Michael Scott. Constructing tower extensions of finite fields for
implementation of pairing-based cryptography. In Hasan and Helleseth [20], pages
180–195.

69

http://grouper.ieee.org/groups/1363/IBC/index.html

[9] Jean-Luc Beuchat, Jorge Enrique González-Dı́az, Shigeo Mitsunari, Eiji Okamoto,
Francisco Rodŕıguez-Henŕıquez, and Tadanori Teruya. High-speed software imple-
mentation of the optimal ate pairing over Barreto-Naehrig curves. In Joye et al. [23],
pages 21–39.

[10] I.F. Blake, G. Seroussi, and N.P. Smart. Advances in Elliptic Curve Cryptography.
London Mathematical Society Lecture Note Series. Cambridge University Press, 2005.

[11] G. R. Blakley and David Chaum, editors. Advances in Cryptology, Proceedings of
CRYPTO ’84, Santa Barbara, California, USA, August 19-22, 1984, Proceedings,
volume 196 of Lecture Notes in Computer Science. Springer, 1985.

[12] Dan Boneh and Matthew K. Franklin. Identity-based encryption from the Weil pair-
ing. SIAM J. Comput., 32(3):586–615, 2003.

[13] Wieb Bosma, editor. Algorithmic Number Theory, 4th International Symposium,
ANTS-IV, Leiden, The Netherlands, July 2-7, 2000, Proceedings, volume 1838 of
Lecture Notes in Computer Science. Springer, 2000.

[14] Canalys. Smart phones overtake client PCs in 2011. Press Release,
February 2011. http://www.canalys.com/static/press_release/2012/

canalys-press-release-030212-smart-phones-overtake-client-pcs-2011_

0.pdf.

[15] David Freeman, Michael Scott, and Edlyn Teske. A taxonomy of pairing-friendly
elliptic curves. J. Cryptology, 23(2):224–280, 2010.

[16] Laura Fuentes-Castañeda, Edward Knapp, and Francisco Rodŕıguez-Henŕıquez. Faster
hashing to G2. In Miri and Vaudenay [31], pages 412–430.

[17] C. C. F. Pereira Geovandro, Marcos A. Simpĺıcio Jr., Michael Naehrig, and Paulo S.
L. M. Barreto. A family of implementation-friendly BN elliptic curves. Journal of
Systems and Software, 84(8):1319–1326, 2011.

[18] Robert Granger and Michael Scott. Faster squaring in the cyclotomic subgroup of
sixth degree extensions. [34], pages 209–223.

[19] D. Hankerson, A. Menezes, and M. Scott. Software implementation of pairings. In
M. Joye and G. Neven, editors, Identity-Based Cryptography, volume 2, pages 188
–206. IOS Press, 2008.

70

http://www.canalys.com/static/press_release/2012/canalys-press-release-030212-smart-phones-overtake-client-pcs-2011_0.pdf
http://www.canalys.com/static/press_release/2012/canalys-press-release-030212-smart-phones-overtake-client-pcs-2011_0.pdf
http://www.canalys.com/static/press_release/2012/canalys-press-release-030212-smart-phones-overtake-client-pcs-2011_0.pdf

[20] M. Anwar Hasan and Tor Helleseth, editors. Arithmetic of Finite Fields, Third In-
ternational Workshop, WAIFI 2010, Istanbul, Turkey, June 27-30, 2010. Proceedings,
volume 6087 of Lecture Notes in Computer Science. Springer, 2010.

[21] Florian Hess, Nigel P. Smart, and Frederik Vercauteren. The Eta pairing revisited.
IEEE Transactions on Information Theory, 52(10):4595–4602, 2006.

[22] Antoine Joux. A one round protocol for tripartite Diffie-Hellman. In Bosma [13],
pages 385–394.

[23] Marc Joye, Atsuko Miyaji, and Akira Otsuka, editors. Pairing-Based Cryptography -
Pairing 2010 - 4th International Conference, Yamanaka Hot Spring, Japan, December
2010. Proceedings, volume 6487 of Lecture Notes in Computer Science. Springer, 2010.

[24] Neal Koblitz and Alfred Menezes. Pairing-based cryptography at high security levels.
In Smart [43], pages 13–36.

[25] Kristin Lauter, Peter L. Montgomery, and Michael Naehrig. An analysis of affine
coordinates for pairing computation. In Joye et al. [23], pages 1–20.

[26] F. Lemmermeyer. Reciprocity laws: from Euler to Eisenstein. Springer monographs
in mathematics. Springer, 2000.

[27] F. Luca, D. M. Morales, and I. Shparlinski. MOV attack in various subgroups on
elliptic curves. Illinois Journal of Mathematics, 48(3):1041–1052, 2004.

[28] A. Menezes, P. C. van Oorschot, and S. A. Vanstone. Handbook of Applied Cryptog-
raphy. CRC Press, 1996.

[29] Alfred Menezes, Tatsuaki Okamoto, and Scott A. Vanstone. Reducing elliptic curve
logarithms to logarithms in a finite field. IEEE Transactions on Information Theory,
39(5):1639–1646, 1993.

[30] Victor S. Miller. The Weil pairing, and its efficient calculation. J. Cryptology,
17(4):235–261, 2004.

[31] Ali Miri and Serge Vaudenay, editors. Selected Areas in Cryptography - 18th Inter-
national Workshop, SAC 2011, Toronto, ON, Canada, August 11-12, 2011, Revised
Selected Papers, volume 7118 of Lecture Notes in Computer Science. Springer, 2012.

[32] R Moraru. Algebraic curves. University Course, 2010.

71

[33] Michael Naehrig, Ruben Niederhagen, and Peter Schwabe. New software speed records
for cryptographic pairings. In Abdalla and Barreto [2], pages 109–123.

[34] Phong Q. Nguyen and David Pointcheval, editors. Public Key Cryptography - PKC
2010, 13th International Conference on Practice and Theory in Public Key Cryptog-
raphy, Paris, France, May 26-28, 2010. Proceedings, volume 6056 of Lecture Notes in
Computer Science. Springer, 2010.

[35] Kenneth G. Paterson, editor. Advances in Cryptology - EUROCRYPT 2011 - 30th
Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Tallinn, Estonia, May 15-19, 2011. Proceedings, volume 6632 of Lecture
Notes in Computer Science. Springer, 2011.

[36] Bart Preneel and Stafford E. Tavares, editors. Selected Areas in Cryptography, 12th
International Workshop, SAC 2005, Kingston, ON, Canada, August 11-12, 2005,
Revised Selected Papers, volume 3897 of Lecture Notes in Computer Science. Springer,
2006.

[37] R. Sakai, K. Ohgishi, and M. Kasahara. Cryptosystems based on pairings. In Pro-
ceedings of Symposium on Crytography and Information Security, 2000.

[38] M. Scott. Faster identity based encryption. Electronics Letters, 40(14):861 – 862, July
2004.

[39] M. Scott. A note on twists for pairing friendly curves. Personal webpage, February
2009. ftp://ftp.computing.dcu.ie/pub/resources/crypto/twists.pdf.

[40] Adi Shamir. Identity-based cryptosystems and signature schemes. In Blakley and
Chaum [11], pages 47–53.

[41] M. Shirase. Universal construction of a 12th degree extension field for asymmetric
pairing. IEICE Transactions, 94-A(1):156–164, 2011.

[42] Joseph H. Silverman. The arithmetic of elliptic curves, volume 106 of Graduate Texts
in Mathematics. Springer, Dordrecht, second edition, 2009.

[43] Nigel P. Smart, editor. Cryptography and Coding, 10th IMA International Conference,
Cirencester, UK, December 19-21, 2005, Proceedings, volume 3796 of Lecture Notes
in Computer Science. Springer, 2005.

[44] Frederik Vercauteren. Optimal pairings. IEEE Transactions on Information Theory,
56(1):455–461, 2010.

72

ftp://ftp.computing.dcu.ie/pub/resources/crypto/twists.pdf

[45] Moti Yung, editor. Advances in Cryptology - CRYPTO 2002, 22nd Annual Interna-
tional Cryptology Conference, Santa Barbara, California, USA, August 18-22, 2002,
Proceedings, volume 2442 of Lecture Notes in Computer Science. Springer, 2002.

73

Appendix A

Pairing Operation Counts using
Scheme 2

Table A.1 lists various field and elliptic curve operation counts using Scheme 1. Using this
scheme, the cost of the Miller loop using projective coordinates on BN446 is:

ML446 = a+ 3m̃u + 4s̃u + 7r̃ + 19ã+ 4m+ 111(2m̃u + 7s̃u + 8r̃ + 30ã+ 4m)

+ 6(11m̃u + 2s̃u + 11r̃ + 11ã+ 4m) + 2(8m̃+ 2a) + 114(13m̃u + 6r̃ + 110ã)

+ 111(12m̃u + 6r̃ + 113ã) + ã+ 2(6m̃u + 6r̃ + 21ã) + 18m̃u + 173ã+ 6r̃

= 3151m̃u + 793s̃u + 2345r̃ + 28714ã+ 472m+ 5a

= 11511mu + 5162r + 85020a.

On the other hand the cost of the Miller loop using Scheme 2 is:

ML446A = 11511mu + 5162r + 64906a.

The cost of the final exponentiation using Scheme 1 is:

FE446 = 5(3ã) + 25m̃u + 9s̃u + 24r̃ + 200ã+ ı̃+ 12(18m̃u + 173ã+ 6r̃)

+ 2(5m̃+ 6a) + 3(10m+ 2ã) + 3(45m̃u + 666s̃u + 467r̃ + 5939ã+ 110a+ ı̃)

+ 3(9s̃u + 74ã+ 6r̃)

= 386m̃u + 2034s̃u + 1525r̃ + 4ı̃+ 20336ã+ 30m+ 342a.

Using Scheme 2 requires 9111 fewer base field additions.

75

E ′(Fp2) - Arithmetic Operation Count
Doubling/Eval. (x86-64) 3m̃u + 6s̃u + 8r̃ + 36ã+ 4m
Doubling/Eval. (ARM) 2m̃u + 7s̃u + 8r̃ + 30ã+ 4m
Doubling/Eval. (Affine) ı̃+ 3m̃u + 2s̃u + 5r̃ + 8ã+ a+ 2m

Addition/Eval. 11m̃u + 2s̃u + 11r̃ + 11ã+ 4m
First Doubling/Eval 3m̃u + 4s̃u + 7r̃ + 19ã+ 4m

Addition/Eval. (Affine) ı̃+ 3m̃u + s̃u + 4r̃ + 8ã+ 2m
p-power Frobenius 8m̃+ 2a

Negation ã

Fp2 - Arithmetic Operation Count
Add./Sub./Neg. ã = 2a

Conjugation a
Multiplication m̃ = m̃u + r̃ = 3mu + 2r + 8a

Squaring s̃ = s̃u + r̃ = 2mu + 2r + 3a
Multiplication by i 2a
Multiplication by ξ 3a

Inversion ı̃

Fp12 - Arithmetic Operation Count
Add./Sub 6ã

Conjugation 3ã
Multiplication 18m̃u + 173ã+ 6r̃

Sparse Multiplication 13m̃u + 6r̃ + 110ã
Sparser Multiplication 6m̃u + 6r̃ + 21ã

Affine Sparse Multiplication 10m̃u + 6r̃ + 109ã+ 6mu + a
Squaring 12m̃u + 6r̃ + 113ã

Cyclotomic Squaring 9s̃u + 74ã+ 6r̃
Compressed Squaring 6s̃u + 51ã+ 4r̃

Simultaneous Decompression 9m̃+ 6s̃+ 38ã+ ı̃
p-power Frobenius 5m̃+ 6a
p2-power Frobenius 10m+ 2ã

Exponentiation by x 45m̃u + 666s̃u + 467r̃u + 5939ã+ 110a+ ı̃
Inversion 25m̃u + 9s̃u + 24r̃ + 200ã+ ı̃

Table A.1: Operation counts for 446-bit prime field using Scheme 1, for notation refer to
Section 3.2.1.

76

Appendix B

Cross-over I/M ratios on BN446 and
BN638

When using a prime congruent to 7 mod 8, an affine doubling costs an extra Fq2 inversion
and unreduced multiplication, and saves 5s̃u + 3r̃ + 26ã + 2m compared to a projective
doubling. Compared to a first doubling, it costs an extra Fq2 inversion and saves 2s̃u +
2r̃+15ã+2m. An addition costs an extra Fq2 inversion and saves 8m̃u+ s̃u+7r̃+3ã+2m,
and a dense-sparse multiplication needs six additional base field multiplications and saves
3m̃u + 3r̃ + 0.5ã.

B.1 BN446

Computing a pairing on BN446 requires one first doubling, 111 doublings, six additions,
and 114 dense-sparse multiplications. Thus, the difference between an affine and projective

77

pairing is:

446A− 446P = (̃ı− 2s̃u − 2r̃ − 15ã− 2m) + 111(̃ı+ m̃u − 5s̃u − 3r̃ − 26ã− 2m) +

6(̃ı− 8m̃u − s̃u − 7r̃ − 3ã− 2m) + 114(6m− 3m̃u − 3r̃ − 0.5ã)

= 118ı̃+ 448m− 279m̃u − 551s̃u − 719r̃ − 2976ã

= 118(i+ 4mu + 3r + 5a) + 448(mu + r)− 279(3mu + 10a)−
551(2mu + 5a)− 719(2r)− 2976(2a)

= 118i− 1019mu − 636r − 10907a.

On an ARM Feroceon, where we can assume that m ≈ 2r and 23a ≈ m, this gives a
crossover inversion-to-multiplication(I/M) ratio of 11. On an iPad, we see that m ≈ 1.5r
and we get a crossover I/M ratio of 10.2.

B.2 BN638

Computing a pairing on BN638 requires one first doubling, 160 doublings, eight additions,
and 167 dense-sparse multiplications. Thus, the difference between an affine and projective
pairing is:

638A− 638P = (̃ı− 2s̃u − 2r̃ − 15ã− 2m) + 160(̃ı+ m̃u − 5s̃u − 3r̃ − 26ã− 2m) +

8(̃ı− 8m̃u − s̃u − 7r̃ − 3ã− 2m) + 167(6m− 3m̃u − 3r̃ − 0.5ã)

= 169ı̃+ 664m− 405m̃u − 810s̃u − 1039r̃ − 4282.5ã

= 169(i+ 4mu + 3r + 5a) + 664(mu + r)− 405(3mu + 10a)−
810(2mu + 5a)− 1039(2r)− 4282.5(2a)

= 169i− 1531mu − 934r − 15865a.

On an ARM Feroceon, where we can assume that m ≈ 2r and 25a ≈ m, this gives a
crossover inversion-to-multiplication(I/M) ratio of 11. On an iPad, we see that m ≈ 1.5r
and we get a crossover I/M ratio of 10.2. These ratios are the same as the ones for
BN446.

78

	List of Tables
	List of Figures
	Introduction
	Introduction to Pairing Based Cryptography
	Bilinear Pairings and their Applications
	Elliptic Curves
	The Tate Pairing
	Miller's Algorithm

	Optimal Pairings
	Pairing Friendly Curves
	Barreto-Naehrig Curves

	Deriving the O-Ate Pairing
	Choice of n
	Choice of P
	Final Exponentiation
	Denominator Elimination
	The Ate Pairing
	The Optimal Ate Pairing

	Twists on Elliptic Curves

	Field Arithmetic
	Representation of Extension Fields
	Towering Scheme for Primes Congruent to 3 mod 8
	Towering Scheme for Primes Congruent to 7 -5mumod5mu-8

	Field Arithmetic
	Lazy Reduction
	Multiplication of Sparse Elements
	Mapping from the Twisted Curve to the Original Curve

	Final Exponentiation
	Exponentiation by x

	The Frobenius Operator

	Curve Arithmetic
	Doubling and Addition Formulas
	Point Doubling
	Point Addition
	Affine Coordinates on ARM

	NAF Miller Loop

	Implementation Results
	Operation Counts
	Miller Loop Operation Count
	Final Exponentiation

	Implementation Times

	References
	Appendix Pairing Operation Counts using Scheme 2
	Appendix Cross-over I/M ratios on BN446 and BN638
	BN446
	BN638

