
Performance Analysis of TCAMs in
Switches

by

Abdel Maguid Tawakol

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Applied Science
in

Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2012

c© Abdel Maguid Tawakol 2012

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

The Catalyst 6500 is a modern commercial switch, capable of processing millions of
packets per second through the utilization of specialized hardware. One of the main
hardware components aiding the switch in performing its task is the Ternary Content
Addressable Memory (TCAM). TCAMs update themselves with data relevant to routing
and switching based on the traffic flowing through the switch. This enables the switch to
forward future packets destined to a location that has already been previously discovered
- at a very high speed.

The problem is TCAMs have a limited size, and once they reach their capacity, the
switch has to rely on software to perform the switching and routing - a much slower process
than performing Hardware Switching that utilizes the TCAM. A framework has been
developed to analyze the switch’s performance once the TCAM has reached its capacity,
as well as measure the penalty associated with a cache miss. This thesis concludes with
some recommendations and future work.

iii

Acknowledgements

All praises are due to Allah, the most merciful, the most gracious. I thank Allah for
blessing me, and giving me the ability to complete this work to the best of my ability.

I would like to thank my supervisor, Professor Gordon B. Agnew, for the support in
selecting a topic for my Masters, and for sharing his deep insight on the topic. I would also
like to thank Seyed Ali Ahmadzadeh for his support and guidance in navigating through
this project.

I would like to thank the Cisco Engineers Ramesh Santhanakrishnan, Paolo Zarpellon,
and Shayam Kapadia for their support and commitment to this project. Their help and
wealthy knowledge on the design, implementation, and operation of the Catalyst 6500, has
been essential for the completion of this project. I would like to thank my manager Suran
De Silva for giving me the opportunity to work with some of the brightest minds in the
industry, and gain extremely valuable work experience.

I will, forever, be indebted to my parents for their unparalleled support, encouragement,
prayer, and love - I hope to always make you proud. Thank you for your help in getting to
where I am today, and forging me into the person that I have become - I am truly blessed
to have you in my life.

iv

Dedication

To my beloved parents, Hashem and Suhair Tawakol.

v

Table of Contents

List of Tables ix

List of Figures xi

1 Introduction 1

1.1 Routers and Switches . 1

1.1.1 Catalyst 6500 Series . 2

1.2 Motivation and Objectives . 3

1.3 Thesis Organization . 4

2 Background 5

2.1 Switches and Routers . 5

2.1.1 Cisco Catalyst 6500 E Series Switch 6

2.2 Cache Memory . 16

2.2.1 Content Addressable Memory (CAM) 17

2.2.2 CAMs in Catalyst 6500 . 18

2.3 Internet Traffic Characterization . 19

2.3.1 Previous Work on Internet Traffic Characterization 19

2.3.2 Traffic Characterization of Data from CAIDA 21

vi

3 Framework 22

3.1 Internet Traffic Characterization . 22

3.1.1 Extraction of Data From CAIDA Dataset 23

3.2 Experimental Setup . 24

3.2.1 Requirements . 24

3.2.2 Challenges . 25

3.2.3 Overcoming the Challenges and Meeting the Requirements 30

3.2.4 Devices’ Connections and Configuration 37

3.2.5 Performing An Experiment . 39

3.2.6 Software Used . 40

4 Results And Analysis 42

4.1 Internet Traffic Characterization . 42

4.2 Experimental Results . 55

4.2.1 Experiment 1 . 55

4.2.2 Experiment 2 . 60

4.2.3 Experiment 3 . 80

5 Conclusion and Future Work 85

5.1 Findings . 85

5.2 Future Work and Improvements . 86

APPENDICES 87

A Analysis Scripts 88

A.1 Analyzing Experiment Data . 88

A.2 Sending and Receiving Packets Scripts . 91

A.3 Analyzing Data From CAIDA . 95

vii

B Devices’ Configuration 100

B.1 Switch Configuration . 100

B.2 Network Configuration File For Transmitter Computer (Computer 1) . . . 108

B.3 Network Configuration File For Receiver Computer (Computer 2) 110

References 113

viii

List of Tables

2.1 A summary of the specifications of the Catalyst 6500 switch used for the
work completed in this thesis. 7

2.2 Example of a simplified routing table stored in a TCAM cache. 18

2.3 Summary of some of the results from the paper ”Wide-Area Internet Traffic
Patterns and Characteristics (Extended Version)”. 20

3.1 Inter-packet Delay statistics for a low rate transmission rate, LR, and a high
transmission rate HR. 29

3.2 Summary of the improvements carried out to the original script and its
effects on the packet transmission rate. 33

3.3 Sample output of Capyinfos. This data was used to ensure that all the
packets were successfully transmitted, as well as determine the transmission
rate in packets per second. 34

3.4 Another sample output of Capyinfos. This data was used to ensure that all
the packets were successfully transmitted, as well as determine the trans-
mission rate in packets per second. 34

3.5 A summary of the applications and libraries used to complete the thesis work. 41

4.1 Summary of the statistics of flow size, for the previously plotted data. This
data set is from the first capture file analyzed. 44

4.2 This is a sample of the per flow inter-packet delay in the first capture file
that was analyzed. Inter-packet delay for packets in a flow are calculated by
taking the difference in arrival time of two consecutive packets. The per flow
average inter-packet delay is then calculated by summing the inter-packet
delays for each flow, and dividing by the flow size. 46

ix

4.3 Summary of the statistics of the flow duration for the data previously plotted
from the first capture file analyzed. 48

4.4 Summary of the statistics of flow size, for the previously plotted data. This
data set is from the second capture file analyzed. 50

4.5 This is a sample of the inter-packet delay in the second capture files that
was analyzed. Inter-packet delay is calculated by taking the difference in
arrival time of two consecutive packets. 52

4.6 Summary of the statistics of the flow duration for the data previously plotted
from the second capture file analyzed. 54

4.7 Inter-packet delay statistics for TCP packets with destination IP addresses
that have entries in the cache. 58

4.8 Statistics about the spikes in the data analyzed for the inter-packet delay of
TCP packets during a cache hit. 60

4.9 Abbreviations used for in calculations . 62

4.10 Statistics for the penalty associated with extracting the header information,
performing a cache lookup, and generating an ARP request. 65

4.11 Statistics of the data set after removing the spikes in the penalty associated
with performing a cache miss . 66

4.12 Abbreviations for calculating a more accurate calculation of the first part of
the penalty. 68

4.13 First Part Of The Penalty Statistics . 72

4.14 Statistics of the second part of the penalty - the amount of time it takes to
process an ARP reply, and forward the TCP packet. 77

4.15 Statistics of the total penalty associated with a miss in the cache. 80

4.16 Statistics of the inter-packet delay for the first 1024 packets, where Hardware
Switching was being performed. 84

4.17 Statistics of the inter-packet delay for the packets starting at 1025, till the
end of the data set, where Software Switching is being performed. 84

x

List of Figures

2.1 A simple block diagram of a router’s internal components[17], showing a
processing unit, memory storage, and input/output interfaces. 6

2.2 A diagram of how the switch behaves when the routing table of the switch
has an entry for the destination of the packet. Note that the TCP packet is
simply forwarded once the information of the packet’s destination is retrieved
from the cache. 8

2.3 A diagram of how the switch behaves when the routing table of the switch
does not have an entry for the destination of the arriving packet. Note that
until the ARP reply comes back, the TCP packet does not get forwarded to
the destination. 9

2.4 A diagram of how the switch behaves when the routing table of the switch
has an entry for the destination of the packet, and when it does not. In this
case, packet y has a destination IP address that is in the cache, while packet
x does not. 11

2.5 A diagram of how the Supervisor works within the switch, when a cache
miss occurs. Note that in this case, the switch is attempting to do Hardware
Forwarding, but a miss in the cache occurs. 13

2.6 A diagram of how the Supervisor is incolved during Software Switching and
information of the destination is available in the software cache. Note that
in this case the packet information is directly sent to the Supervisor to deal
with it. 15

2.7 A diagram of how the Supervisor is involved during Software Switching, and
the information of the destination is not available. Note that in this case
the packet information is directly sent to the Supervisor to deal with it. . . 16

xi

3.1 Inter-packet delay for varying transmission rates. Note that the increase
in transmission rate, reduces the inter-packet delay, confirming the direct
effect of the transmission rate on the inter-packet delay. 28

3.2 This is a high-level representation of the setup used for the work completed
in this thesis. The setup includes two computers and a Cisco Catalyst 6500
switch. 38

4.1 This is a sample of the flow size in the first capture file that was analyzed
from CAIDA’s data set. A flow is defined as a stream of packets with
the same source and destination IP addresses, and the same source and
destination TCP ports. 43

4.2 This graph represents the per flow average inter-packet delay for the first
sample analyzed from CAIDA’s data set. The per flow average inter-packet
delay is calculated by summing the inter-packet delay for each flow, and
dividing by the flow size. 45

4.3 This is a sample of the flow duration from the first capture file that was
analyzed. The flow duration is defined as the difference between the arrival
time of the first packet that arrived in the flow, and the arrival time of the
last packet that arrived in the flow. 47

4.4 This is another sample of the flow size, form a different CAIDA data set. A
flow is defined as a stream of packets with the same source and destination
IP addresses, and the same source and destination TCP ports. 49

4.5 This is a sample of the inter-packet delay in one of the capture files that
were analyzed. Inter-packet delay is calculated by taking the difference in
arrival time of two consecutive packets. 51

4.6 This is a sample of the flow duration from the first capture file that was
analyzed. The flow duration is defined as the difference between the arrival
time of the first packet that arrived in the flow, and the arrival time of the
last packet that arrived in the flow. 53

4.7 This is the scenario when the switch is performing Hardware Switching, and
the TCP packet that is being processed has a destination IP address that is
in the cache. 56

xii

4.8 This is the inter-packet delay of TCP packets arriving at the receiver. All
the packets in this set have destination IP addresses that are in the switch’s
cache. The inter-packet delay is calculated by taking the difference in time
between two consecutive packets arriving at the destination. 57

4.9 This is the inter-packet delay of TCP packets arriving at the receiver with
the outlier values causing the spikes in the graph removed. All the packets
in this set have destination IP addresses that are in the switch’s cache. . . 59

4.10 This is the scenario where a TCP packet has a destination IP address that is
not in the cache, resulting in a miss when a look up is performed while trying
to perform Hardware Switching. Note the involvement of the Supervisor,
which initiates the Address Resolution Protocol. This diagram constitutes
the first part of the penalty associated with a cache miss. 61

4.11 The penalty associated with extracting the header information, performing a
cache lookup, generating an ARP request, and transmitting the ARP request. 63

4.12 This graph contains a smaller subset of graph 4.11, showing data up to the
end of the first sequence that repeats. The range of the y-axis has also been
adjusted to have a better focus on the majority of the data points. 64

4.13 Graph displaying the penalty associated with extracting the header infor-
mation, do a cache look, and generating an ARP. This dataset has the spikes
in the time delay exceeding the 800µs removed. 67

4.14 Graphing the original penalty versus the refined calculation associated with
extracting header information, performing a cache lookup, generating an
ARP request, and transmitting the ARP request. The refined calculation
aims to remove the time it takes to extract the header information and
perform a cache lookup. 70

4.15 A zoomed-in version of the previously shown graph, showing the original
penalty versus the refined calculation associated with extracting header in-
formation, performing a cache lookup, and generating an ARP request. The
refined calculation aims at removing the time it takes to extract header in-
formation, and perform a cache lookup. This is a smaller set to magnify the
difference in values. 71

4.16 Operation of the switch when processing an ARP reply. This is the second
part of the penalty, which calculates the time difference between the ARP
reply and the arrival of the TCP packet. 73

xiii

4.17 This graph represents the second part associated with the penalty of a miss
in the cache. This data is calculated by taking the difference of time between
the ARP reply sent out by the receiver computer, and the arrival time of
the TCP packet. 75

4.18 A zoomed-in version of the previous graph, showing the second part associ-
ated with a penalty. 76

4.19 Total penalty for a cache miss - a summation of the amount of time it takes
to generate an arp request, process an arp reply, and adding an entry into
the cache. 78

4.20 A zoomed in view of the graph 4.19, showing a smaller sample of the total
penalty associated with a cache miss. 79

4.21 Software Switching for a packet with a destination address that does not
have an entry in the cache allocated for Software Switching. 81

4.22 Software Switching for a packet with a destination address that has an entry
in the cache allocated for software switching. 82

4.23 Inter-packet delay for switching between Hardware Switching and Software
Switching. The switch is configured with a hardware limit of 1024 entries. . 83

xiv

Chapter 1

Introduction

The Internet has become an integral part of modern society. Individuals from different
backgrounds use the Internet to accomplish a large number of tasks which can vary from
doing on-line banking, to accessing on-demand entertainment such as media streaming.
While the activities can vary from user to user, the common demand for most activities is
the need for fast and highly reliable access. In order to accomplish this demand, a strong
infrastructure compromising of advanced hardware is required: high bandwidth cables and
links, fast dedicated servers for communicating with end users, and advanced software
techniques to deal with the process of routing and switching packets travelling across the
Internet. One of the integral parts of the infrastructure are routers and switches. Routers
and switches are hardware devices, that run specialized software, responsible for making
sure that packets reach their destination.

1.1 Routers and Switches

Routers are devices responsible for connecting computer networks together for the purpose
of data packet forwarding. Routers perform Layer 3 forwarding, also know as the network
layer. This forwarding is made based on the IP address of the packet - a numerical label
used to identify devices on the network. A router typically contains two or more ports,
and contains a controller responsible for making packet routing decisions. The router
is able to make a forwarding decision based on two pieces of information: the address
information available in the packet’s header, and the information available in the its routing
table. The information in the routing table is either programmed or learned through some
route discovery algorithm. When a packet arrives to the router, the header information

1

is extracted, and a lookup is performed in the routing table. Based on the information
stored in the routing table, a decision is made on where this packet should go, and the
packet is sent out on the appropriate port. In its simplest form, a router could be used to
share an internet connection at home, where multiple computers are sharing the Internet
service connected to an individual’s home. Routers vary in bandwidth capabilities, security
features, and implementable networking policies.

A network switch, also know as a switching hub, is a multi-port network bridge that
processes and routes data at the data link layer (Layer 2). Some switches, know as mul-
tilayer switches, are capable of processing data at the network layer. Switches are able
of performing Layer 2 (Data link layer) and Layer 3 (Network layer) switching, but often
work at Layer 2. Another difference between routers and switches is that each type of
device, uses a different algorithm for forwarding packets.

Switches contain a cache to store information helpful for high speed switching. When
packets come into the switch, the cache is queried for the destination address. If the
switch knows how to reach the destination, or the next hop towards the destination, then
the packet is routed immediately. If no information is available about the destination,
then a route discovery algorithm has to run to try learning how to reach that destination.
Once the destination information is obtained, it is stored in a high speed cache, called
Ternary Content Addressable Memory (TCAM), so that future packets going to the same
destination are forwarded immediately.

1.1.1 Catalyst 6500 Series

For this project, the experiments are performed on a Cisco Catalyst 6500 series switch.
The Catalyst 6500 switch offers high performance, and a feature-rich platform, suitable
for deployment in campus, data center, WAN, and Metro Ethernet networks [18]. Some of
the features provided by the 6500 series include: scale performance and network services,
network virtualization, and network security[18].

The documentation on Cisco’s website is rich and detailed, making it essential in de-
termining the details for operating and configuring the switch. Some of the things that
were investigated through Cisco’s website included: configuring ftp, routing information
protocol (RIP), and IP routing. The switch was configured with the bare minimum settings
to make it learn destination IP addresses based on the incoming packets. On top of the
documentation, Cisco Engineers have provided valuable implementation details regarding
the workings of the TCAM, suggestions on resolving some of the issues involved with the
experimental setup, and upgrading the software on the switch.

2

1.2 Motivation and Objectives

The work in this thesis will investigate how the performance of the switch is affected
once the TCAM reaches its capacity. The purpose of the TCAM is to store prefixes of
destination IP addresses, to shorten the time required to make a routing decision. The
process of route discovery is relatively time consuming. In order to minimize the number of
times the switch needs to figure out where a particular destination IP address is, it stores
the prefixes of destination IP addresses in a high speed cache that can return queries in a
very short amount of time. For the switch under investigation, once the capacity of the
TCAM is reached, the switch starts doing Software Switching, which is significantly slower
than Hardware Switching. If the switch has to constantly do software switching, then the
throughput would be severely affected.

Initially it was thought that there is a replacement policy for the TCAM cache, which
would replace entries in the TCAM once it has reached its capacity. Unfortunately, it
turns out that there is no replacement algorithm for the TCAM, and instead the switch
starts doing Software Switching instead of Hardware Switching. It is believed that the
designers opted for increasing the TCAM capacity, as an alternative to dealing with a
cache reaching its capacity. According to the Cisco engineers, the penalty associated with
a replacement algorithm is too high, making the option of increasing the capacity of the
TCAM a better option for maintaining high performance switching. Ideally, the minimum
amount of TCAM should be used, because of the drawbacks of TCAMs: expensive, and
high power consumption.

The first part of the project focuses on quantifying the penalty associated with a cache
miss in the switch. This is important because the TCAM is one of the core components of
the switch, and design decision regarding the amount of TCAM that should be used. Some
of the design decisions that affect the cache are its capacity, and the algorithm involved in
maintaining and updating the TCAM. It is important to know the exact penalty associated
with a cache miss because it is considered a worst case scenario or the time required to do
the packet forwarding/switching. The second part of the project focuses on quantifying the
penalty associated with performing Software Switching, as oppose to Hardware Switching.
This is again important because it tells the switch designers what the penalty associated
with software switching is, and provide a way to benchark any future improvements of
Software Switching.

The experimental setup created for this project could be useful for carrying out similar
experiments as the one discussed in this thesis in a lab setting, enabling users to extract
useful information.

3

1.3 Thesis Organization

The remainder of this thesis is organized as follows: Chapter 2 presents background in-
formation on Switches/Routers, Cisco’s Catalyst 6500 E switch, cache memory, CAMs,
TCAMs, and literature reviews of traffic characterization; Chapter 3 defines the frame-
work for this project, the implementation details, the challenges that were present, and
how they were resolved; Chapter 4 presents and analyzes the data collected from the ex-
periments that were carried; Chapter 5 summarizes the findings of the thesis, and suggests
some future work.

4

Chapter 2

Background

This chapter will discuss some of the background that is helpful for understanding the
work done in this thesis. The main topics discussed are: switches and routers, Cisco’s Cat-
alyst 6500 series, cache memory, Content Address Memory, Ternary Content Addressable
Memory, and literature review on Internet traffic characterization.

2.1 Switches and Routers

Switches and routers can be viewed as specialized types of computers. A computer is an
electronic machine that is programmable, and can store and process data. A conventional
computer consists of some type of memory, a module that can perform arithmetic and logic
operations, and input/output devices to take in commands, and output results. Switches
and routers have processing units, memory to store routing tables and operating system
related information, and interfaces for accepting commands and outputting results - making
them specialized computers.

A sample block diagram of a Cisco 1600 Series router is shown below:

5

Figure 2.1: A simple block diagram of a router’s internal components[17], showing a pro-
cessing unit, memory storage, and input/output interfaces.

For this particular router, it has a module for performing arithmetic and logic opera-
tions, memory, and interfaces for communication purposes. The block labelled M 68360,
a Motorola 68360 Complex Instruction Set Computer with a built-in Serial Communica-
tion Channels (SCC), is a module responsible for performing the arithmetic operations[17].
There are a number of different memory types on board, including Boot ROM and DRAM.
Finally there is a console for entering commands and retrieving information from the router.

2.1.1 Cisco Catalyst 6500 E Series Switch

For the purposes of this thesis, the work was done on Cisco’s Catalyst 6500 series switch.
The specifications of the switch used to complete the thesis work are as follows:

6

Supervisor: One sup720
Line Card: One 48 GigabitEthernet line card

Operating System: IOS Version 12.2(17R)
TCAM IPv4 Forwarding Capacity: 196,608 entries

Total TCAM Capacity: 1,048,576 entries
CPU: SR7100 @ 600 MHz

Packet Buffer Memory: 8192 bytes

Table 2.1: A summary of the specifications of the Catalyst 6500 switch used for the work
completed in this thesis.

The understanding of three concepts was required to complete this project: how the
TCAM works and the information it stores, how the switch behaves when there is a miss
and a hit in the TCAM, and how the supervisor engine works. The details of how the
TCAM works are discussed in details in the next section of this chapter.

Determining how the switch behaves when there is a miss and a hit in the TCAM is
essential for the understanding of the operation of the switch. The operation of the switch
for Hardware Switching IP packets can be split into two cases:

• The switch has information about the destination IP address for the arriving packet

• The switch does not have information about the destination IP address, and has to
perform route discovery

Examining the first case, where information about the destination IP address of the
arriving packet is available, the following sequence of events occurs:

1. Extract the header information from the packet

2. Perform a lookup into the IPv4 cache

3. Perform a packet re-write - update the header information of the packet

4. Forward the packet on the appropriate interface - based on the information obtained
in the second step

A diagram depicting the operation of the switch when information about the destination
is available:

7

Figure 2.2: A diagram of how the switch behaves when the routing table of the switch has
an entry for the destination of the packet. Note that the TCP packet is simply forwarded
once the information of the packet’s destination is retrieved from the cache.

Now we examine the second case for Hardware Switching, where information about the
destination IP address of the arriving packet is not available in the cache:

1. Extract the header information from the packet:

2. Perform a lookup into the IPv4 cache

3. A miss occurs from the cache lookup. Place the packet in a buffer, and forward
header information to the Supervisor

4. Forwarding engine in the Supervisor initiates the Address Resolution Protocol, gen-
erating an ARP request to get information about the destination

5. Assuming the destination replies to the ARP request, this information is forwarded
to the Supervisor upon its arrival

6. Supervisor updates the IPv4 cache and performs a packet re-write on the buffered
packet

7. Forward the packet on the appropriate interface - based on the information obtained
in step 5

8

A diagram depicting the operation of the switch when information about the destination
is not available:

Figure 2.3: A diagram of how the switch behaves when the routing table of the switch
does not have an entry for the destination of the arriving packet. Note that until the ARP
reply comes back, the TCP packet does not get forwarded to the destination.

9

The behaviour shown in the figures above, figure 2.3 and figure 2.2, occur regardless
if the switch is performing Hardware Switching or Software Switching - if there is a miss
in the cache, it performs route discovery through an ARP request, and if there is a hit in
the cache, then the TCP packet is forwarded. Details of how the supervisor is involved
is discussed later on in this section, but the two main operational differences between
Software Switching and Hardware Switching are:

1. Hardware Switching does not use the Supervisor when there is a hit in the cache on
the line card

2. Software Switching always relies on the Supervisor, whether there is a cache hit or a
cache miss in the cache, while Hardware Switching only relies on the Supervisor for
cache misses

For demonstrational purposes, a diagram showing two arriving packets, one with a
destination IP address in the cache, and one that does not have an destination IP address
in the cache, is shown below:

10

TCP
PacketX

Transmitter

Receiver

Catalyst 6500

TCP
PacketY

ARP
Request
PacketX

TCP
PacketY

ARP
Reply

PacketX

TCP
PacketX

Figure 2.4: A diagram of how the switch behaves when the routing table of the switch has
an entry for the destination of the packet, and when it does not. In this case, packet y has
a destination IP address that is in the cache, while packet x does not.

11

Now that a general understanding of how the switch behaves has been established,
we can talk about the Supervisor which contains a module called the Forwarding Engine.
Two of the main responsibilities of the Forwarding Engine is to deal with packets that have
a destination address that is not in the cache (Layer 2 and Layer 3 forwarding), and to
perform Software Switching when the cache allocated for Hardware Switching has reached
its capacity.

The Forwarding Engine uses the header information it receives to make a decision on
the fate of the packet, while the TCP packet resides in a buffer. It first queries the cache
that is allocated for Software Switching, if there is a hit, then a packet re-write is done and
the TCP packet is sent out by the line card. If the there is a miss in the cache allocated
for Software Switching, then it initiates Address Resolution Protocol. An ARP request
is generated, and is sent out by the line card on the appropriate interface. The interface
on which the ARP request goes out on is determined by the IP address and mask of the
interface, where the interface must have a destination IP address and mask that would
include the packet’s destination IP address. For example, a packet destined for 100.8.0.10,
could be sent on an interface with IP address 100.8.0.1/24, where the the range of addresses
covered by that interface range from 100.8.0.1 to 100.8.0.255. If an ARP reply comes back
for the address the switch is attempting to discover, then the Forwarding Engine is also
responsible for processing it. When an ARP reply is passed on to the Forwarding Engine,
the cache allocated for both software and hardware are updated with this information, and
if the TCP packet is still in the buffer, then a packet re-write occurs and the TCP packet
is sent out.

A high level diagram of how the forwarding engine works within the switch, for a cache
miss, is shown below:

12

Figure 2.5: A diagram of how the Supervisor works within the switch, when a cache miss
occurs. Note that in this case, the switch is attempting to do Hardware Forwarding, but
a miss in the cache occurs.

13

As it was previously discussed, the Supervisor is not involved when Hardware Switching
is being done.

Software Switching occurs when the cache allocated for Hardware Switching is filled
up. As a packet arrives, the header information is extracted, and a TCAM lookup into the
portion dedicated to Hardware is performed. Once a cache miss occurs, the information is
for forwarded to the Supervisor, where the Forwarding Engine module performs a lookup
into the cache allocated for Software Switching, and if the cache lookup is a hit, a packet
re-write is performed and the TCP packet is forwarded. If there is a miss in the cache
dedicated for Software Switching, an ARP request is generated and the TCP packet waits
in the buffer until an ARP reply comes back.

A diagram showing the operation of the switch performing Software Switching, for a
cache hit, is shown below:

14

Figure 2.6: A diagram of how the Supervisor is incolved during Software Switching and
information of the destination is available in the software cache. Note that in this case the
packet information is directly sent to the Supervisor to deal with it.

15

Finally, a diagram showing the switch performing Software Switching, for a cache miss,
is shown below:

Figure 2.7: A diagram of how the Supervisor is involved during Software Switching, and
the information of the destination is not available. Note that in this case the packet
information is directly sent to the Supervisor to deal with it.

The time delay associated with a cache missed is calculated and discussed in Chapter
4. Software switching, and the time difference between forwarding packets using Software
Switching and Hardware Switching is also discussed.

2.2 Cache Memory

Cache, is a type of computer memory, that is typically smaller in capacity, relatively
expensive, and much faster than the ordinary memory[6]. The main purpose of cache

16

memory is to reduce the average access time of data for a system[4] . One of the many uses
of cache memory is in modern day computer processors. The cache in processors is small,
fast, and holds copies of data in the main memory - usually its the most recently used
data to complete a set of instructions [5]. One of the reasons caches work well is because
of a property of computer programs called the locality of reference, where most of their
execution time is spent in routines in which many instructions are executed repeatedly
during some time period [5]. The behaviour of locality of reference manifests itself in
two ways: temporal, a recently executed instruction is likely to be executed again very
soon, and spatial, instructions close to a recently executed instruction are also likely to be
executed soon[5]. Through various replacement algorithms, blocks of data are copied from
the main memory to the cache for manipulation, and then this data is copied back in to
main memory once new data needs to be fetched into the cache. The cache is organized
into cells, each storing one binary bit. The memory cells are grouped into words of fix
word length, each accessible by a binary address of N bits. To read a value from a memory
location, an address is supplied, and a value is returned. To write a value into a memory
location, an address specifying the location has to be provided, as well as the value to be
written into that location.

2.2.1 Content Addressable Memory (CAM)

Content Addressable Memory (CAM), is a also known as Associative Memory. ”Associate
memories have been generally described as a collection or assemblage of elements having
data storage capacities, and which are accessed simultaneously and in parallel on the basis
of data content rather that by specific address or location”[7]. This definition is for a
specific type of Content Addressable Memory, one that not only accesses the memory by
content, but also reads all the cells in parallel. Another more general definition given
by Parahmi is: ”Content Addressable Memory is a storage device that stores data in a
number of cells. The cells can be accessed or loaded on the basis of their contents”[13].
CAMs differ from typical computer memory, which perform memory accesses by location
- an address in memory is provided, and a value from that location is returned. In CAMs,
when performing a read, you provide a value, and a get back a value associated with that
memory location.

The implementation details and hardware operation of CAMs is highly complex, and
beyond the scope this thesis. It should be noted that understanding these details is not
required for the work done in this thesis.

17

2.2.2 CAMs in Catalyst 6500

One of the applications of CAMs is in high performance routers, known as Ternary Content
Addressable Memory (TCAM). One of the important TCAM features the ability to include
wildcard bits which will match both one and zero - beneficial for the use in IP lookup tables
in routers and switches[1]. The main objective of the TCAMs in the router, is to store
prefixes of learned routes in a routing table, to increase the forwarding speed for any
future packets destined to the same location. Routers maintain a table of routing prefixes,
each of which match a contiguous range of the Internet Protocol (IP) address space, and
are associated with packet forwarding information[11]. For example, the router may have
an entry in the cache with IP address 10.0.1.10, and a mask of 255.255.0.0 covering the
range of IP addresses from 100.0.0.1 up to 100.0.255.255 - the mask being the determining
factor, signifying the don’t care bits of the address. When a packet arrives at a router, the
destination address is extracted from the header information, and a lookup into the cache
with this address occurs. The cache has to solve what is known as the Longest Prefix
Matching Problem (LPMP)[11]. If the solution to this address exists, then it is unique
and has the longest mask length of any other matching prefix. For example, assume the
following simplified version of a TCAM holding a routing table in a switch:

Destination IP Address/Mask Outgoing Interface

100.1.0.1/16 InterfaceGigabitEthernet1
100.2.0.1/24 InterfaceGigabitEthernet2
100.2.1.1/24 InterfaceGigabitEthernet3
100.3.0.10/32 InterfaceGigabitEthernet4

Table 2.2: Example of a simplified routing table stored in a TCAM cache.

If a packet, with destination IP address 100.2.0.10 arrives, then a lookup into the
routing table will return InterfaceGigabitEthernet2. For address used in this example,
the second (100.2.0.xx) and third entry (100.2.1.xx) match up to second most significant
octet, but since the third octet in the destination IP address being quered matches with
the third octet of the second entry in the table, the second entry is returned because it
has the longest matching prefix. It should also be noted, than when the switch is storing
information for Layer 3 forwarding, it stores the full destination address with a matching
interface.

Some of the limitations of TCAMs are: high power consumption, high cost, and rel-
atively small capacity[9]. The reason that TCAMs consume a lot of power is due to the
large amount of comparison circuitry that is activated in parallel. A study to model TCAM

18

power consumption determined that a 0.18µm TCAM with 32k entries, each of length 36,
requires 16.7nJ for a search access - compared to a SRAM of similar size requiring approxi-
mately 1.9nJ for a simple read operation[1]. The same study has also shown that doubling
the number of entries of the cache, doubles the power consumption - a significant amount
for a device performing hundreds of lookups every second. A lot of research has been done
to optimize the use of TCAMs in order to reduce power consumption including: performing
pre-computations to reduce number of TCAMs searched[12], taking advantage of some of
the TCAMs’ property to reduce static power by eliminating one of the subthreshold leakage
paths[10], and a batch caching model to determine which routing prefixes to store[11].

The phrases cache, TCAM, and TCAM cache are used in this thesis from this point
forward, all referring to the Ternary Content Addressable Memory in the Catalyst 6500.

2.3 Internet Traffic Characterization

As discussed in the Motivation section, the purpose of traffic characterization is to provide
a reference point for the type of traffic the switch might have to deal with. This section
will go through some previous publications on Internet Traffic Characterization, and then
discuss the data characterized for this project. One of the main goals behind the literature
review was to determine the defining factors for modelling traffic, and gaining insight on the
different variables of the internet traffic. Another goal was to gain an understanding on the
methodologies Internet traffic data is collected, how each one worked, and the advantages
and disadvantages of each one. This was necessary for analyzing the data collected from
the experiments carried out for this thesis work.

2.3.1 Previous Work on Internet Traffic Characterization

The main focus for the literature review was to investigate how Internet traffic characteri-
zation was performed, and find the most relevant method for the purposes of this research.

One of the publications reviewed, Wide-Area Internet Traffic Patterns and Character-
istics, discusses a range of relevant topics including: the source of their data for Internet
traffic characterization, traffic capturing implementation, and the methodology of Inter-
net traffic characterization[21]. In this publication, the authors characterized their traffic
over two time scales, 24 hours and 7 days - examining the traffic volume, flow volume,
flow duration, packet size, and traffic composition. This publication served a few main
purposes: a guide for the type of information relevant to characterization, the time span

19

over which the data is collected in order to get meaningful results, and the definition of
Internet traffic flow. The authors defined traffic flow as: ”A uni-directional traffic stream
with a unique <source-IP-address, source-port, destination-IP-address, destination-port,
IP-protocol> tuple”[21]. Some of their results for the data the authors collected on inter-
national links included:

TCP Packets UDP Packets

Percentage of Total Packets (%) 85-95 5-15
Average Flow Rate (packets/flow) 16-20 5-15
Average Flow Size (kilobytes/flow) 5-8 1-2
Average Packet Size (bytes/packet) 300 200-500

Average Flow Duration (s) 12-19 10-18

Table 2.3: Summary of some of the results from the paper ”Wide-Area Internet Traffic
Patterns and Characteristics (Extended Version)”.

These results would have been used to form the type of Internet traffic for injection into
the switch. All of the previously mentioned characteristics are controllable through the
software generator used to complete the work in this thesis. Unfortunately the publication
lacked the details of how to process the data to perform the characterization - they just
presented their results. I was seeking more information on how to process the captured
data to perform the characterization.

Another publication which was reviewed, Internet Traffic Measurement, discusses im-
portant concepts such as: measurement approaches (active versus passive), on-line versus
off-line traffic analysis, and protocol level[22]. A passive network monitor is a non-intrusive
device used to observe and record the packet traffic on an operational network, without
injecting any traffic of its own onto the network[22]. ”An active network measurement ap-
proach uses packets generated by a measurement device to probe the Internet and measure
its characteristics”[22]. On-line traffic analyzers support real-time collection and analysis
of network data, while off-line traffic analyzers perform analysis on collected and stored
traffic. Finally different measurement tools collect and analyze data at different protocol
levels. For the purposes of this thesis, data was captured and stored using the tcpdump
utility, and off-line analysis was performed through a series of scripts written in Python -
details in Chapter 3 and Chapter 4. The target protocol layer is Layer 3 (TCP/IP).

Another publication which was reviewed, Traffic flow measurement: Architecture, proved
to be insightful for determining how the data is used to perform the characterization, and
the details of a system which has been implemented to perform the process of capturing

20

and manipulation of the data[2]. In this publication, Internet traffic flow is defined as ”a
stream of packets passing across a network between two end points (or being sent from a
single end point), which have been summarized by a traffic meter for analysis purposes”[2].
The author states that the definition of flow will depend on what you want it to be, includ-
ing making the flow account for packets travelling in both direction (packets to destination
and from destination are included in the same flow). You could even loosely define packet
flow as a stream of packets having the same source and destination IP addresses[2].

2.3.2 Traffic Characterization of Data from CAIDA

In order to get more up-to-date information about current Internet Traffic characteristics,
data collected by The Cooperative Association for Internet Data Analysis (CAIDA) was
analyzed. The dataset used for this project is from the year 2010 called ”The CAIDA
Anonymized 2010 Internet Traces”[3]. For the characterization of this data, a flow is
defined as a stream of packets sharing the same source and destination IP addresses, and
the same source and destination TCP ports.

The dataset used contains anonymized passive traffic traces from CAIDA’s equinix-
chicago and equinix-sanjose monitors on high-speed Internet backbone links[3]. This
data is useful for many researching characteristics of Internet traffic, including applica-
tion breakdown, security events, geographic and topological distribution, and flow volume
and duration[3]. This is particularly useful for us, because the distribution of traffic, flow
volume, and duration, are all factors that directly affect the cache under investigation, be-
cause it affects things like: the data being stored in the cache, how the data changes, and
the frequency of change. For obvious security reasons, the traffic traces are anonymized
using CryptoPAn prefix-preserving anonymization, and the payload from all the packets
has been removed [3]. This does not affect our work because the payload itself does not
affect our results. It should be noted that while the publishers claim that the network
cards used to record the traces provide timestamps with nanosecond precision, the pcap
files provided have truncated precision to microseconds [3]. We too, are also using pcap
files to store and analyze files.

21

Chapter 3

Framework

There are two major components for this project, the software developed for analyzing the
collected data, and the setup of the environment for conducting the experiments - which
is compromised of hardware and software.

3.1 Internet Traffic Characterization

Python was used to automate the process of extracting and analysing Internet traffic
information collected by CAIDA. For the purposes of extracting data from Internet traffic,
a script was written to extract the necessary information from ’.pcap’ files, and then
organize and group that data in a certain way to collect meaningful characteristics.

By the definition provided in the background section, a flow is a stream of packets where
the source and destination IP addresses, as well as the source and destination TCP ports,
of packets are the same. The fields discussed in the definition of flow are extracted from
the capture file to correctly identify the flow a particular packets belongs to. The details
of how the data is organized and characterized in discussed in the subsection Extraction
of Useful Data. The characterization that was done on the data is: the number of packets
per flow (flow size), the average inter-packet delay per flow, and the flow duration.

The flow size was straight forward to calculate: when a packet that belonged to a
particular flow was encountered in the data being analyzed, a global counter keeping track
of the flow size for that particular flow was incremented. For the flow duration, a global
counter would sum the inter-packet delays of packets belonging to the same flow as they

22

are encountered. The inter-packet delay, tx, for flow x, flow size y, and inter-packet delay
for packet i, txi

can be represented using the equation:

tx =

i=y∑
i=0

txi
(3.1)

For the flow average inter-packet delay, tAV Gx , an array variable for each flow kept track of
the inter-packet delay for each packet in that flow, and once all the data has been parsed,
a calculation would be done to determine the average by summing the inter-packet delays,
tx, in a flow and dividing it by the flow size, y.

tAV Gx = tx/y (3.2)

3.1.1 Extraction of Data From CAIDA Dataset

The data captured from CAIDA is split into a large number of files, and grouped by ap-
proximately one minute of capture time. The capture files have the ”.pcap” extension, and
contain a large amount of information about each individual packet that has been captured.
Even though the source and destination IP addresses have been made anonymous, it has
been done in such a way so as to preserve the relation between the source and destination
and addresses. That means, even though the IP addresses are not real, they can still be
used as a substitute. For the purposes of this project, the information that useful, and
necessary for the characterization of the Internet traffic, are shown below:

• Source and Destination IP address

• Source and Destination TCP ports

• TCP time delta, which is the time since the previous frame in this TCP stream has
been received[24]

• The packet payload size

The first two items listed above, source and destination IP address and TCP ports, were
required to sort a packet into the right flow. The third item was used for calculating the
inter-packet delay, and flow duration. Finally the payload was used to calculate the flow
size. The extraction and manipulation of the data from the tcpdump files was performed

23

using custom scripts created in Python. The code for the data extraction is shown in the
Appendix A, section A3 .

The first step in the extraction process is to run a tshark command which requests
specific information as discussed earlier. The tshark command returns tuples of data based
on the provided filter included in the command. In this case, we are only interested in seeing
the source and destination IP address, source and destination TCP ports, frame relative
time, and the length of the stored TCP packets. Once this data is stored in a variable, I loop
through it to build a dictionary of the Internet packet flows. The alternative to having a
dictionary is storing the information in an array of flow. The problem with having an array
of flows is it will require a nested loop every time we need to find particular flow to sort
the packets. This would increase the runtime complexity significantly, and slowdown the
parsing of the data as the number of processed packets increases. Once we finish processing
all the packets and build our dictionary, we loop through to calculate dictionary to calculate
the flow related information: flow rate and duration. Finally, the results are written to a
comma separated file for plotting. Details of the implementation are discussed in the next
chapter.

3.2 Experimental Setup

The setup for this project had to be able to send and receive packets, allowing the switch
to perform Layer 3 forwarding. The setup used for this project involves two computers
and one Cisco Catalyst 6500 switch. A diagram of the setup is show below:

3.2.1 Requirements

A setup had to meet a number of requirements in order for us to successfully complete the
work of this thesis:

• The ability to fill up the TCAM cache

• The ability to view the switch’s cache utilization and content

• The ability to generate packets at a high rate

• The ability to generate custom packets

24

Since the project revolves around analysing the effects of over flowing the TCAM cache,
one of the main goals of the setup was having the ability to fill up the cache. The setup had
to be flexible enough such that you can fill up the cache at varying rates, because depending
on the experiment being carried out, the requirements for how fast the cache has to be
filled up can be different. For example, if we are measuring the cache miss penalty, the
transmission rate requirements would be different than when trying to measure the amount
the cache hit performance, where the later must be as fast as possible. An alternative to
being able to fill up a large cache would be having the ability to re-size the cache, and
performing any necessary work on that instead. Re-sizing the cache would shorten the
time of an experiment, allowing for more experiments to be carried out in a shorter time
frame. It was also important to be able to view the cache size, utilization and contents to
make sure that the setup was working correctly.

The third key requirement, crucial for this project, is the ability to generate packets at
a very high rate. The reason the packet rate had to be large is because it was necessary to
make sure that the inter-packet delay calculated at the receiving end, was entirely due to
the speed at which the switch is forwarding the packets at, and that the transmission rate
had little to no effect on the inter-packet delay - something that could only be achieved by
pushing the switch with high transmission rates.

The fourth requirement was the ability to generate custom packets. This was critical
because on the transmitter side, we wanted to generate TCP/IP packets, with certain
source and destination IP addresses, source and destination TCP ports, and a custom
payload. On the other hand, on the receiving side, we wanted to be able to generate ARP
packets. Without this, we would not be able to fill up the cache.

3.2.2 Challenges

There were a number of challenges in order to get the setup working:

• Figuring out how the switch works

– How can we configure the switch to complete our work?

– How can we monitor the cache and retrieve useful information about it?

– What does the TCAM cache actually store?

– How do entries get added to the TCAM cache?

• Figuring out how to deal with ARP requests being sent by the switch.

25

• Figuring out how to generate custom made packets at a high rate through software

• Figuring out which devices should be utilized for the experiments

The first challenge was figuring out how the switch exactly works, and the role that
the TCAM plays in switching. This was especially challenging because I had no previous
working experience with the Catalyst 6500. One of the key requirements for the project
was to configure the switch to learn routes, and dynamically update its cache appropriately
- otherwise filling up the TCAM would be difficult. The switch has a number of IP routing
protocols such as: static routing, Routing Information Protocol (RIP), and Enhanced In-
terior Gateway Routing Protocol (EIGRP)[19]. Each protocol was examined, to determine
the relevant implementation details, and see the advantages and disadvantage of each one.
The criteria for the routing protocol was: easy to implement and monitor, dynamically
adds routes to the TCAM, and performs at a speed that can keep up with the packet rate
of incoming traffic.

The next step was to figure out how to view information about the cache. Some of
the necessary information included: the size of the cache, how much is currently in use,
and the contents of the cache. Knowing the size of the cache is required to determine how
many destination IP addresses are needed to fill it up. Second, being able to monitor how
much of the cache is in use and its content are necessary to make sure that experiment
was running correctly. For example, if a packet is sent to address 100.8.0.5, and the switch
does not know where that ip address is, then it will learn the route and add an entry into
the cache with the appropriate destination interface. So printing the contents of the cache
will show whether the setup is working correctly or not by showing a new entry in the
cache, or lack thereof. Once we are able to view the contents of the cache, that will give us
insight into what is exactly being stored, and help determine what would fill up the cache.

After figuring out and verifying the workings of RIP and monitoring the cache as the
packets are being fed into the switch, the next step was to figure out how we will deal with
the ARP requests being sent for the destinations that are unknown to the switch. Since
the switch will only forward packets to the second computer if there it has information
about the destination in the cache, or if it receives an ARP reply from the destination
being sought, we had to figure out a way to make the computer reply to ARP requests as
they come in to the receiver. In other words, the goal was to turn the second computer into
a traffic sink. The first approach investigated was to utilize the Linux operating system
to automatically do this. The idea was to make use of some of the networking features
already implemented in the the operating system, but I was unable to do that. It was then
concluded that the only solution was to listen on the Ethernet interface and when an ARP

26

request is received, generate an appropriate ARP reply and transmit it back to the switch.
While this would solve the problem of replying to ARP requests, it introduced another
challenge: how to generate the ARP replies fast enough to keep up with the transmission
rate of packets being fed into the switch. This was difficult because it involved three steps:
listening on the Ethernet interface for ARP requests, extracting the destination address
being queried by the switch to craft an appropriate ARP reply, and finally transmitting
the ARP reply. Since this will be done in software, it was going to be relatively slow. Part
of the solution to this problem was also tied to the next challenge - the ability to generate
custom made packets at a high rate.

There were two alternatives available to generate custom made packets: use an appli-
cation that takes in a set of parameters and have it generate the desired packets, or write
a program that will generate and transmit packets. The problem with the first approach
is the lack of availability of good software that can do this kind of thing. A program called
Nemesis was found, which is capable of generating packets based on certain parameters
such as source and destination IP addresses, source and destination TCP ports, and a
given payload file. The problem with Nemesis was that when the command to generate
the packets was scripted, there were frequent errors and malformed packets. More details
about overcoming this challenge is discussed in the next section. It should be noted, that
it would have been very difficult to complete this project, without being able to generate
packets at a very high rate - the slower the packet generation and transmission process
was, the harder it was to pick up any meaningful results from the captured files. If it takes
time t to process packets that are in the cache, then it take t + p to process packets that
are not in the cache - where p is a penalty associated with a miss in the cache. If the
packet transmission rate is not high enough, then the penalty associated with a cache miss
would not be detectable at the output. The delay between two packets being transmitted
has to be less than or equal to p. A sample of the large difference between the inter-packet
delay associated with routing packets is shown below:

27

Figure 3.1: Inter-packet delay for varying transmission rates. Note that the increase in
transmission rate, reduces the inter-packet delay, confirming the direct effect of the trans-
mission rate on the inter-packet delay.

28

The blue line shows the inter-packet delay associated with a low packet transmission
rate - approximately in the range of 60 to 70 packets per second, while the red line shows
the inter-packet delay associated with a high packet transmission rate - approximately in
the range of 60,000 to 65,000 packets per second. The difference in time between the two
scenarios, on average, varies by more approximately a factor of 7. Details summarizing
some of the statics of the inter-packet delay on the different transmission rates is shown
below:

Calculation Inter-Packet Delay LR (s) Inter-Packet Delay HR (s)

Max Value 4.17 x 10−3 13.40 x 10−3

Min Value 844 x 10−6 1.00 x 10−6

Average 1.10 x 10−3 141 x 10−6

Standard Deviation 233 x 10−6 689x10−6

Variance 5.43 x 10−8 4.75 x 10−7

Table 3.1: Inter-packet Delay statistics for a low rate transmission rate, LR, and a high
transmission rate HR.

We can see from the data above that as the transmission speed increases, the inter-
packet delay drops significantly. The idea is to find the point in time in which increasing
the transmission rate, will not decrease the inter-packet delay time. Reaching that point
is essential to improving the results collected during the experiments.

The last phase of the project was to figure out which devices to use. There were three
Catalyst 6500 switches, and two 7200 routers available for use. The 7200 routers have high
bandwidth, and they would’ve been ideal for the experiments performed but unfortunately,
the software running on the router was not flexible enough to be used as a packet generator
because there was no way to generate custom made TCP/IP packets. The only thing that
was possible was to generate the same packet repeatedly. It was also not possible to utilize
the router as a traffic sink, therefore the decision was made to exclude it from the setup.
Finally, a decision had to be made as to how many switches should be used in the setup.
We have three identical Catalyst 6500 switches in the lab that could be used and it was
determined that for the purposes of this project, the effect of the penalty would most
likely be aggregated over the two or three switches, which would not reveal any additional
information about the cache penalty. Thus, the final setup included two computers, a
packet generator and a traffic sink, and one Catalyst 6500 switch.

29

3.2.3 Overcoming the Challenges and Meeting the Requirements

Due to the lack of experience configuring, and using the CAT6K, the first challenge was
to figure out how to configure the switch. To overcome this challenge, we had to figure
out what we wanted the switch to do. We knew that we needed a dynamic IP routing
protocol capable of learning routes and adding the relevant information into the TCAM.
This challenge was overcome by examining Cisco System’s on-line documentation. The
various IP routing protocols are discussed briefly in the referenced link, and more details
were obtained by following the relevant links on the page or by looking up each proto-
col individually[19]. After examining the available documentation, Routing Information
Protocol (RIP) was chosen because it was simple to implement, for detecting the devices
directly connected to the switch. The configuration details are included in Appendix B,
section B1. Routing Information Protocol (RIP) is a distance vector routing protocol,
which uses broadcast User Datagram Protocol (UDP) data packets to exchange routing
information - every 30 seconds in Cisco’s IOS software[20]. If a router does not receive an
update from another router (or connected device) for 180 seconds or more, it marks the
routes served by the non-updating router (or device) as being unusable and removes the
relevant entry from the routing table if there is still no update after 240 seconds[20]. It
should be noted that RIP is not the preferred choice for routing as its time to converge
and scalability are poor compared to other protocols such as: EIGRP, OSPF, or IS-IS[8].
The reason that the convergence and scalability of the protocol was not an issue for us, is
because the computers involved were only one hop away from the switch, since they were
directly connected.

The next crucial step in the project was figuring out how to generate custom made
packets at a high transmission rate. One of the early options examined was finding software
which ran on Linux, capable of generating packets at a high rate.

The first software which was stumbled on was Nemesis[15]. As advertised on the soft-
ware’s website, its a utility well suited for testing Network Intrusion Detection Systems,
firewalls, IP stacks, and a variety of other tasks[15]. As a command-line driven utility,
Nemesis is perfect for automation and scripting[15]. One of the main advantages of this
utility is that it was a command line tool that was very simple to use. For example,
to create a TCP packet, all you had to do was open a terminal and run the following
command: sudo nemesis tcp -v -S 205.153.60.236 -D 205.153.63.30 -P payload.txt x 20 y
40. The options in the command are to define the parameters of the packet being sent,
where -S specifies the source IP address and -D specifies the destination IP address. The
previous example demonstrates the level of flexibility available with this utility, where the
user is able to provide a great deal of parameters for the packet they are interested in

30

creating. The utility is capable of creating a wide range of packet types including ARP,
DNS, ETHERNET, ICMP, IP, RIP, UDP and IGMP. Allowing the user to create ARP
packets as well, was necessary for responding to the ARP requests on the receiver end. In
order to make the use of this utility feasible for this project, a Python script was written to
generate nemesis commands with the appropriate fields in order to transmit packet. Un-
fortunately, upon performing a few tests with different sets of data, it was concluded that
this utility would not work. The first issue was that it had slow packet injection rate. The
scripted commands could only achieve a transmission rate ranging from 8 to 17 packets/s,
which was inadequate. The other issue was that while the script is running, there would
be batches of packets that fail to inject, with the application reporting a meaningless error
message ”error injecting packet”. Unfortunately even in debugging mode, it was unclear
why some of the packets were not being injected correctly. Some of the packets that were
faulty during the scripted packet injections, worked correctly when it was done manually,
and even re-running some of the scripted packet injections caused them to work correctly
- making the problem even more mysterious.

Many attempts were made to find a utility that was similar to Nemesis in flexibility
and ease of use, but unfortunately they were all futile.

The next solution that was stumbled on was Scapy, an interactive packet manipulation
program[16]. Scapy can run as an independent application, or it can run under a Python
script. To test its flexibility, and make sure that it would work well for the intended
purposes, Scapy was started as an independent application, and a few tests were carried out.
Using Scapy was again very simple and highly flexible. For example to create a TCP packet
with source IP address 1.2.3.4, destination IP address, source TCP port 20, and destination
TCP port 40, you would use the following line of code: pkt = Ether()/IP(src=’1.2.3.4’,
dst=’129.0.0.1’)/TCP(sport=20, dport=40). Note that leaving one of the layers empty
meant that Scapy should use the defaults for that layer. After the packet is created,
the send command would push the packet out on a specified interface using the following
command: send(pkt, iface=”eth0”).

After making the decision of using Scapy, the first problem that was stumbled upon
was the ability to achieve high packet transmission rate. Initially, the script written would
loop through and do the following:

• Generate a destination IP address using counters that keep track of each octet of the
address

• Create the custom IP packet with the destination address generated in the previous
step

31

• Send the packet

• Update the counters for the octet

Unfortunately this approach was very slow due to the number of nested loops that were
in the script performing the address updates. That is, we would iterate through the range
1 to 252 for the fourth octet, then go to the outer loop and update the third octet (which
also ranged from 0 to 255), and finally we would go to the outer loop to update the second
octet (which ranged from 8 to 30). This achieved a packet transmission rate in the range
of 10 to 20 packets per second - an improvement over Nemesis, but still inadequate.

To further improve the previous implementation, the generation of IP destination ad-
dresses were removed from the script, and done independently in a different script. Since
the destination addresses were not going change between different experiment runs, using a
different script to permanently generate the destination addresses and write them to a file
made sense. This removed the redundancy of generating the destination IP addresses every
time we wanted to run an experiment, and speed up the run time of the script. The original
script was changed to read the text file containing the destination IP addresses, and store
it in an array for use. Using one loop iterating through the destination IP addresses array,
packets were generated and sent out. This was a large improvement because it removed
the nested loops and replaced them with just one loop. This change in implementation
achieved a packet transmission rate in the range of 40 to 50 packets per second - a rate
still considered to be slow.

A small improvement on the previous implementation that was attempted, was to run
multiple instances of the same script, but transmitting packets in different destination IP
addresses ranges. This worked well for up to three instances running in parallel, reaching a
packet transmission rate in the range of 100 to 150 packets per second. The problem with
this solution was it put a lot of strain on the computer’s processor and memory resources,
something that was visible through the computer monitoring tools. The other issue with
this approach was that it had a diminishing return after the third instance. Meaning,
running four or five instances in parallel had minimal improvements over the three scripts
in parallel scenario. Therefore, running more instances in parallel was an improvement,
but still fairly limited.

After doing some more research about improving the transmission rate, I found out
that Scapy’s built-in functions for creating and transmitting packets were indeed limited
in terms of speed. Therefore the next iteration of improvement was to use Scapy to create a
socket and send the packets on it. In order to do that, you had to assemble the packet, and
then ’build’ it before transmitting it. The build function takes the parameters provided

32

for the packet being built, and converts it to machine language - something that resembles
an actual packet travelling on the network. This solution was a vast improvement in
packet transmission rate over anything previously discussed - reaching transmission rates
in the range of 160,000 to 170,000 packets per second. The previously mentioned rate
was only achieved if you sent the same packet in a loop. In our case, we wanted to send
different packets, which could only reach a rate of 60,000 to 75,000 packets per second -
an acceptable rate. The downside of this implementation is the fact that building the
packets was extremely time consuming, and had to be done pre-transmission, otherwise
the transmission rate is significantly reduced. To overcome this issue, a loop at the start
of the script would create the packets, build them, and store them in an array. Next, a
loop would go through and transmit the packets. This solution was not ideal because the
script had to run for a long time before the transmission began. To overcome this issue,
and to avoid the redundancy associated with building the packets every time we wanted
to carry out an experiment, a script was written to build the packets and write them to a
file. Then another script would simply read the file containing the pre-built packets, and
iteratively transmit them. To speed up the response to ARP requests on the receiver side,
a similar approach was used to build and store the packets.

Implementation Improvement Transmission Rate (packets/s)

Pre-generate destination IP addresses and write to file 40 to 50
Run multiple instances of the script in parallel 100 to 150

Pre-build packets, and transmit through the socket directly 60,000 to 75,000

Table 3.2: Summary of the improvements carried out to the original script and its effects
on the packet transmission rate.

To verify the transmission rates, packets that were being transmitted on the Computer1
were recorded in a capture file and later on analyzed using the program capinfos to get
information such as the number of packets captured, the average data rate in bytes/s and
the average packet size in bytes. This information was used to verify that all the packets
that should be transmitted, have in fact been transmitted. Using the average packet size
and the average data rate, we were able to extract the average packet rate. The average
transmission rate (packets/s), TRAV G, is equal to the average data bit rate (bytes/s),
BRAV G, divided by the average packet size (bytes/pkt), PSAV G. The equation to perform
this calculation is shown below:

TRAV G = BRAV G/PSAV G (3.3)

33

A few samples of the output of capinfos, showing the information used to determine
the transmission rate, are shown below:

Capinfos Output

File name: experiment1.pcap
Number of packets: 3560

Data byte rate: 3191693.44 bytes per sec
Average packet size: 54.29 bytes

Table 3.3: Sample output of Capyinfos. This data was used to ensure that all the packets
were successfully transmitted, as well as determine the transmission rate in packets per
second.

Capinfos Output

File name: experiment2.pcap
Number of packets: 3560

Data byte rate: 3441051.05 bytes per sec
Average packet size: 54.29 bytes

Table 3.4: Another sample output of Capyinfos. This data was used to ensure that all
the packets were successfully transmitted, as well as determine the transmission rate in
packets per second.

The next step was figuring out how to fill up the TCAM. One of the early approaches
investigated was to assign a large number of IP addresses to the switch’s interfaces, and
then use policy based routing to have the packets forwarded from Computer 1 to Computer
2. The assignment of the IP addresses to the interfaces served the purpose of filling up
the cache, while the policy based routing made sure that the packets were forwarded to the
receiving computer. The problem with this approach was that the cache capacity is indeed
large, and so a large number of IP addresses were required to fill it up. The second issue
associated with this approach was that the switch became extremely slowly because RIP
had to transmit the information of all these interfaces to the connected computers every
30 seconds.

Finally the approach that was taken involved figuring our how to reply to ARP requests
being sent out by the switch. Since the switch will only forward packets to the second
computer if it receives an ARP reply for the destination address of the packet its trying
to forward, we had to figure out a way to make the computer reply to ARP requests as

34

they come in. In other words, the goal was to turn the second computer into a traffic sink.
Making the switch automatically answer ARP replies by changing the operating system’s
network settings related to ARP, were unsuccessful. It was then concluded that the only
solution was to listen on the Ethernet interface and when an ARP request is received,
generate an appropriate ARP reply and transmit it back to the switch. While this would
solve the problem of replying to ARP requests, it introduced another challenge: how to
generate the ARP replies fast enough to keep up with the transmission rate of packets
being fed into the switch. There were a few problems related to this issue:

• How to actively listen on the Ethernet interface for ARP requests

• How to extract the relevant information from the ARP request

• How to reply to a high volume of ARP requests

There were a few approaches considered to overcoming these challenges. First, it was
realized that we can take advantage of the fact that we know the destination IP addresses
of the packets being transmitted. One approach that was tested out, was to pre-emptively
transmit gracious ARP messages. The purpose of gracious ARP messages is to announce
your IP address and your hardware address, to the devices you are directly connected to.
This would initially reduce the amount of ARP requests the receiving computer has to deal
with as a result of the packets being sent into the switch. Unfortunately, that approach did
not work because the switch did not add entries into the TCAM based on gracious ARP
packets - it had to receive a TCP packet destined to an unknown location, and then process
an ARP reply to add an entry into the TCAM. Another, closely related approach that was
initially considered was to just send out ARP replies when the transmission of IP packets
started, without having to first listen to an ARP request and then craft an appropriate
reply. Since the order of packets, and the destinations were known, the script transmitting
ARP reply packets would be started at the same time as the script transmitting IP packets
on the transmitter computer. This did not work either because it was not possible to get
the two computers in sync, causing a large number of packets to be dropped. Therefore I
reverted back to the approach of listening on the Ethernet interface for ARP requests and
send out the appropriate ARP reply.

The Scapy library, in conjunction with Python, were used to listen on the interface for
ARP requests, extract the necessary information, generate an ARP reply, and finally trans-
mit the ARP reply. The focus then shifted towards speeding up this process. The thought
process behind speeding up the response of the receiving computer involved examining the
following:

35

• What type of pre-processing can be done to help improve the performance?

• Are there any software concepts that can be utilized to improve the performance of
the script?

The initial script for the receiving computer first pre-built ARP packets for the desti-
nation IP addresses of the incoming packets, and then stored them in a list. The script
would then listen on an interface for ARP requests, extract the destination IP address, and
loop through the list to find the appropriate pre-built ARP reply. This approach had two
issues: the most time consuming part of this process was the extraction of the destination
IP address from the ARP request, and the generation of the ARP reply packet; secondly
every time you searched for a pre-built packet, the run time was O(n) - where n is the size
of the list. While it did take a bit of time to build an ARP packet, it was much faster than
a TCP packet. The initial script would listen on the Ethernet port, extract the destination
IP address from the ARP request. It would then generate an ARP reply with the source
hardware address as the receiver computer’s Ethernet hardware address, the destination
hardware address as the switch’s Interface, and the destination IP address as the switch’s
interface. The next step was to transmit the created ARP reply. Unfortunately, it was
clear from the number of packets that were being dropped that this script could not keep
up with the switch.

The next improvement that was explored for this script was to pre-build the ARP
replies and store them in a list - similar to the approach used for TCP packets. Again, this
approach was trying to take advantage of the fact that we knew the destination address of
all the packets that were going to be transmitted. The script would start off by reading a
file with all the destination IP addresses, pre-build the ARP replies, and store the packets in
an array. Once an ARP request was received, again the destination address was extracted,
and a loop would iterate through the list of built packets and transmit the matching one.
While this improvement allowed for slightly higher transmission rates, it was still not ideal.

Finally, the solution that seemed to work best was the use of the dictionary data
structure. The main advantage of this data structure is that it offers approximately O(1)
run time for searching the pre-built packets - a major improvement over the run time of
searching through a list, which is O(n), n being the size of the list. The final script for
ARP replies is included in Appendix A, section A2.

36

3.2.4 Devices’ Connections and Configuration

The first device used was a standard dual core computer, with a processor clocked at 3GHz,
1GB of RAM, and running Ubuntu 10.04 (Kernel 2.6.32-24-generic). The computer was
used to generate packets and send them to the switch using a Python script which utilizes
the Scapy library. The scripts for performing the packet generation and transmission are
included in the Appendix A, section A2. In the original setup, three Ethernet cards were
installed and connected to the switch. When the data throughput being generated was
too low, using the three Ethernet cards to feed packets into the switch was the first thing
that was tried out. Unfortunately, as it was previously discussed, this did not yield any
significant improvements in terms of the throughput of the packet generation. Therefore,
Ethernet card 0 was the only one used, connecting it to interface GigabitEthernet8/1 on
the Catalyst 6500. The network configuration file is included in Appendix B, section B2.

The routing table on the computer had to be updated by adding entries into the network
configuration file, in order to allow the operating system to determine which interface to
send the packets out on. For example, if we wanted the packets with destination addresses
in the range of 100.8.0.1 to 100.8.255.255 to go out on interface eth0, then we would
add the following command to the network configuration file (/etc/network/interfaces):
route add -net 100.8.0.0 netmask 255.255.0.0 eth0. Note that the interface had to be
restarted after any change were made to this file, through the following command sudo
/etc/init.d/networking restart.

The second device used was a CAT6K. It was configured for basic Layer 3 forwarding.
In the original setup, three interfaces were used to for feeding packets into the switch from
Computer 1, and three interfaces were used for pushing out packets to Computer 2. In
the final setup, only one Ethernet card on the transmitting and receiving end were used,
thus only two of the interfaces were in use (interface GigabitEthernet8/1 and GigabitEther-
net8/25) - one for receiving packets and one for transmitting packets out. The switch was
configured to have a few addresses assigned to interface connected to the receiver computer
to accept a large range of IP packets. The configuration file used for the switch is included
in Appendix B, section B1.

The third device used was another dual core computer (core 2 duo), with a processor
clocked at 2.33GHz, 2GB of RAM, and running Ubuntu 10.04 (Kernel 2.6.32-24-generic).
The second computer was used to listen for ARP requests and reply with the appropriate
ARP reply packet. The process of listening and replying to ARP packets was also performed
using a Python script utilizes the Scapy library. The Python scripts used to perform these
tasks are included in the Appendix A, section A2. As previously discussed, since the
original setup involved having three Ethernet cards for transmitting packets, there were

37

also three Ethernet cards on the receiving end capturing the packets. In the final setup
though, only one Ethernet card was used, Ethernet 0 and it was connected to interface
GigabitEthernet8/25. The network configuration file of computer 2 is included in Appendix
BB, section B3.

A high-level representation of the setup used for this project is shown below:

Eth1
Eth2

Eth0

Cisco Catalyst 6500

Eth0

Receiver Computer

Eth1
Eth2

Transmitter Computer

Figure 3.2: This is a high-level representation of the setup used for the work completed in
this thesis. The setup includes two computers and a Cisco Catalyst 6500 switch.

38

3.2.5 Performing An Experiment

In order to perform an experiment, a few things had to be performed before the experiment
began. First, the packets that are to be used for the experiment had to be generated. The
next step was to start the script on the receiving computer to have all the ARP packets
ready to start replying right away as the packets came in. Once the script on the receiving
end had all the ARP reply packets, the capture application on the receiving computer
was started. Next, the script for transmitting the packets is started, and once it finishes
running, the capture file is stopped.

A summary of the steps is shown below:

1. On the transmitting computer, pre-build the TCP packets that are going to be used
in the experiment

2. On the receiving computer, start the script responsible generating ARP replies

3. On the receiving computer, start the capture file

4. On the transmitting computer, start the script that will perform the injection of the
packets into the switch

5. Once all the packets have been injected, stop the capture application on the receiving
computer

Once all the experiments were carried out, scripts written in Python were run on the
captured files to preform the analysis. Two scripts were written for analyzing the data: one
script responsible for determining the inter-packet delay, and the other one for determining
the penalty associated with a cache miss. The first script, simple took the difference of
capture time between two consecutive packets, and wrote these values out to a comma
separated file. The second script performed two calculations, the first being the time
difference between two ARP requests, and the second being the time difference between
an ARP reply and the arrival of the TCP packet. The workings of the second script are
summarized below:

• Run three separate tshark commands, one returning tuples of ARP requests only,
one returning ARP replies only, and one returning TCP packets only, storing each
one in a different list

• Iterate through the ARP requests list, calculating delta t, and write it to comma
separated file. This would represent the first part of the penalty

39

• Iterate through the ARP replies, and create a dictionary keyed by the destination IP
address, and have the transmission time as the value for that key

• Iterate through the TCP packets, and do a lookup in the dictionary lookup the
destination address. Subtract the ARP reply’s transmission time from the TCP
packet’s arrival time, and write that value to a comma separated file. This gives us
the second part of the penalty. Creating a dictionary made the lookup in the ARP
reply list O(1), which is a lot more efficient than having two loops matching the ARP
reply with the TCP packet.

The scripts described are included in Appendix A, section A1.

3.2.6 Software Used

A number of applications and libraries were used to complete this project, including Wire-
shark, Tcpdump, Tshark, Capinfos, and Scapy.

Wireshark, an open source tool available on all common platforms, provides a user
interfaced application capable of capturing live Internet traffic on a computer, and allows
the viewing of captured file (.pcap files). When viewing previously captured files, the user
has the ability to view all the relevant information stored during the capture. Through a
user interface, the user can specify a filter for viewing packets that match a specific criteria
- instead of viewing all of the captured packets.

Tcpdump is a powerful command-line packet analyzer, which can capture packets and
store them in .pcap files. The program is flexible enough to allow the user to set a criteria
for the packets to be stored. For example, the user has the ability to specify: the layer of
the packets they want stored, which is useful if you have a lot of traffic flowing through an
interface, but you are only interested in a subset of that traffic.

TShark is a network protocol analyzer, allowing the user to capture packet data from
a live network, or read packets from a previously saved capture file. It also gives the user
the flexibility of setting filters for the traffic being captured. Tshark can also be used for
capturing files. For the purposes of this thesis work, it was used to to run commands
through the Python script to extract information from the capture files.

Capinfos is a program that takes a capture file(s) as input, analyzes its contents, and
returns useful statistics about it. Some of the useful information that can be extracted
from a capture file includes: the number of packets captured, the capture duration, average
data rate, and the average packet rate. For the purposes of this project, it was used to

40

verify the total number of packets captured, to verify that all the packets have made it,
and get the statistics required to calculate the transmission rate.

Finally Scapy is a library that works with Python scripting, giving the user access to
built in functions for generating, sending, and receiving packets. It also gives the user the
ability to do socket programming - a necessity for achieving high packet transmission rates.

A summary of the software and libraries used is summarized below:

Software/Library Usage

Wireshark Viewing .pcap files
Tcpdump Capturing packets and storing them in .pcap files
Capinfos Produce statistics on .pcap files
Tshark Extract specific information from capture files
Scapy Generate packets, and transmit and receive packets

Table 3.5: A summary of the applications and libraries used to complete the thesis work.

41

Chapter 4

Results And Analysis

The original intent of this project involved characterizing the data collected from CAIDA,
and measuring the performance of the switch as the traffic is shaped towards that of
CAIDA’s characteristics. It was thought that the switch had a replacement algorithm for
the TCAM, and that once the cache reached its capacity, a certain type of traffic would
significantly hamper the performance of the switch due to constant swapping of entries in
the switch. Unfortunately it was discovered that there is no replacement algorithm for the
cache, instead, the switch would just perform Software Switching once the cache reached
its capacity and there is a miss in the cache dedicated for Hardware Switching. Initially,
the idea was to start with symmetrical traffic that is evenly distributed across a set of
destination IP addresses, and then gradually change the characteristics of the traffic to
reach that of the traffic data that was analysed. The hope was that this setup would reveal
useful information about the scenario under which the switch would have constant misses
in the TCAM, and would have to constantly replace entries in the cache.

Eventually, the intent of the project became focused on determining the penalty asso-
ciated with a cache miss, and the penalty associated with having to do Software Switching
once the TCAM became full - shown in experiments 2 and 3 respectively.

4.1 Internet Traffic Characterization

In this section, a sample of the traffic characterization done on the data collected by CAIDA
is presented. The data was processed using a Python script included in Appendix AA,
section A3. For each characteristic analyzed, the average, standard deviation, variance,

42

maximum value, and minimum value are calculated. Information analyzed from CAIDA’s
Internet traffic sample, such as the flow size and average inter-packet delay, would’ve been
used to give our experiments some structure. That is, given that we have control over the
flow size, and we can vary the transmission rate, it would be possible to achieve traffic that
has similar characteristics of the traffic collected by CAIDA. The data below is grouped
by capture files, where two capture files were analyzed.

The first graph below, shows the flow sizes from the first capture file in the data collected
by CAIDA:

0	

100	

200	

300	

400	

500	

600	

700	

800	

900	

1000	

1	
26
7	

53
3	

79
9	

10
65
	

13
31
	

15
97
	

18
63
	

21
29
	

23
95
	

26
61
	

29
27
	

31
93
	

34
59
	

37
25
	

39
91
	

42
57
	

45
23
	

47
89
	

50
55
	

53
21
	

55
87
	

58
53
	

61
19
	

63
85
	

66
51
	

69
17
	

71
83
	

74
49
	

77
15
	

79
81
	

82
47
	

85
13
	

87
79
	

90
45
	

93
11
	

95
77
	

98
43
	

10
10
9	

10
37
5	

10
64
1	

10
90
7	

11
17
3	

11
43
9	

11
70
5	

11
97
1	

12
23
7	

12
50
3	

12
76
9	

N
um

be
r	 o

f	 P
ac
ke
ts
	

Flow	 Number	

Internet	 Traffic	 Characteriza;on	 -‐	 Packets	 Per	 Flow	

Figure 4.1: This is a sample of the flow size in the first capture file that was analyzed
from CAIDA’s data set. A flow is defined as a stream of packets with the same source and
destination IP addresses, and the same source and destination TCP ports.

43

In this sample, there are over twelve thousand flows analyzed, in a time period of
approximately one minute of capture time. The maximum flow size in this particular
data set peaks at 905 packets, while the average is around six packets. The variance is
high indicating that the distribution of the values from the mean is large. The standard
deviation is also fairly high, signifying that the values are spread out over a large range of
values. Below is a table summarizing the statistics on flow size:

Calculation Packets Per Flow

Max Value 905
Min Value 1
Average 5.60

Standard Deviation 29.19
Variance 852.01

Table 4.1: Summary of the statistics of flow size, for the previously plotted data. This
data set is from the first capture file analyzed.

44

The second graph below presents a sample of average inter-packet delay from the data
collected by CAIDA:

0.00E+00	

1.00E-‐05	

2.00E-‐05	

3.00E-‐05	

4.00E-‐05	

5.00E-‐05	

6.00E-‐05	

1	
27
8	

55
5	

83
2	

11
09
	

13
86
	

16
63
	

19
40
	

22
17
	

24
94
	

27
71
	

30
48
	

33
25
	

36
02
	

38
79
	

41
56
	

44
33
	

47
10
	

49
87
	

52
64
	

55
41
	

58
18
	

60
95
	

63
72
	

66
49
	

69
26
	

72
03
	

74
80
	

77
57
	

80
34
	

83
11
	

85
88
	

88
65
	

91
42
	

94
19
	

96
96
	

99
73
	

10
25
0	

10
52
7	

10
80
4	

11
08
1	

11
35
8	

11
63
5	

11
91
2	

12
18
9	

12
46
6	

12
74
3	

Ti
m
e(
s)
	

Flow	 Number	

Internet	 Traffic	 Characteriza:on	 -‐	 Average	 Inter-‐Packet	 Delay	 Per	 Flow	

Figure 4.2: This graph represents the per flow average inter-packet delay for the first sample
analyzed from CAIDA’s data set. The per flow average inter-packet delay is calculated by
summing the inter-packet delay for each flow, and dividing by the flow size.

45

The maximum per flow inter-packet delay in this set, peaks at approximately 53µs,
while the average inter-packet delays is approximately 6µs. The standard deviation is low,
indicating that the values in the data set are close to the mean. The variance is also low,
signifying that the distribution of values from the mean is small, making the mean a good
approximation of the data set. A summary of the previously discussed statistics is shown
below:

Calculation Average Inter-Packet Delay (s)

Max Value 5.35 x 10−5

Min Value 0
Average 5.33 x 10−6

Standard Deviation 6.31 x 10−6

Variance 3.98 x 10−11

Table 4.2: This is a sample of the per flow inter-packet delay in the first capture file
that was analyzed. Inter-packet delay for packets in a flow are calculated by taking the
difference in arrival time of two consecutive packets. The per flow average inter-packet
delay is then calculated by summing the inter-packet delays for each flow, and dividing by
the flow size.

The third graph presents a sample of the flow duration from the first capture file
collected by CAIDA:

46

0	

0.001	

0.002	

0.003	

0.004	

0.005	

0.006	

0.007	

0.008	

0.009	

1	
27
3	

54
5	

81
7	

10
89
	

13
61
	

16
33
	

19
05
	

21
77
	

24
49
	

27
21
	

29
93
	

32
65
	

35
37
	

38
09
	

40
81
	

43
53
	

46
25
	

48
97
	

51
69
	

54
41
	

57
13
	

59
85
	

62
57
	

65
29
	

68
01
	

70
73
	

73
45
	

76
17
	

78
89
	

81
61
	

84
33
	

87
05
	

89
77
	

92
49
	

95
21
	

97
93
	

10
06
5	

10
33
7	

10
60
9	

10
88
1	

11
15
3	

11
42
5	

11
69
7	

11
96
9	

12
24
1	

12
51
3	

12
78
5	

Ti
m
e	
(s
)	

Flow	 Number	

Internet	 Traffic	 Characteriza:on	 -‐	 Flow	 Dura:on	

Figure 4.3: This is a sample of the flow duration from the first capture file that was
analyzed. The flow duration is defined as the difference between the arrival time of the
first packet that arrived in the flow, and the arrival time of the last packet that arrived in
the flow.

47

The maximum flow duration is approximately 8ms, while average flow duration is ap-
proximately 54µs. The standard deviation in this case is high, signifying that the values
are spread out over a large range of values, but the variance is small indicating that the
values are close to the mean. Below is a summary of the statistics previously discussed:

Calculation Flow Duration (s)

Max Value 8.19 x 10−3

Min Value 0
Average 5.39 x 10−5

Standard Deviation 2.59 x 10−4

Variance 6.70 x 10−8

Table 4.3: Summary of the statistics of the flow duration for the data previously plotted
from the first capture file analyzed.

48

For the purposes of comparing different sets of data, the analysis of another capture
file is also included. Below is a sample of flow size from the second capture file:

0	

100	

200	

300	

400	

500	

600	

700	

800	

900	

1	
27
4	

54
7	

82
0	

10
93
	

13
66
	

16
39
	

19
12
	

21
85
	

24
58
	

27
31
	

30
04
	

32
77
	

35
50
	

38
23
	

40
96
	

43
69
	

46
42
	

49
15
	

51
88
	

54
61
	

57
34
	

60
07
	

62
80
	

65
53
	

68
26
	

70
99
	

73
72
	

76
45
	

79
18
	

81
91
	

84
64
	

87
37
	

90
10
	

92
83
	

95
56
	

98
29
	

10
10
2	

10
37
5	

10
64
8	

10
92
1	

11
19
4	

11
46
7	

11
74
0	

12
01
3	

12
28
6	

12
55
9	

12
83
2	

13
10
5	

N
um

be
r	 o

f	 P
ac
ke
ts
	

Flow	 Number	

Internet	 Traffic	 Characteriza;on	 -‐	 Packets	 Per	 Flow	

Figure 4.4: This is another sample of the flow size, form a different CAIDA data set. A
flow is defined as a stream of packets with the same source and destination IP addresses,
and the same source and destination TCP ports.

49

In this sample there are over thirteen thousand flows analyzed. The statistics of this
set are very similar to the previous set of data, where the maximum value is peaking at
947 packets per flow, and an average of 5.70 - slightly higher than the previous set. The
variance and standard deviation are also fairly high, indicating that the distribution of
the values from the mean is large, and that the values are spread out over a large range
of values, respectively. A table summarizing the statistics previously discussed is shown
below:

Calculation Number of Packets Per Flow

Max Value 947
Min Value 1
Average 5.70

Standard Deviation 28.33
Variance 802.80

Table 4.4: Summary of the statistics of flow size, for the previously plotted data. This
data set is from the second capture file analyzed.

50

A sample of average inter-packet delay from the second capture file is shown below:

0.00E+00	

1.00E-‐05	

2.00E-‐05	

3.00E-‐05	

4.00E-‐05	

5.00E-‐05	

6.00E-‐05	

7.00E-‐05	

1	
28
6	

57
1	

85
6	

11
41
	

14
26
	

17
11
	

19
96
	

22
81
	

25
66
	

28
51
	

31
36
	

34
21
	

37
06
	

39
91
	

42
76
	

45
61
	

48
46
	

51
31
	

54
16
	

57
01
	

59
86
	

62
71
	

65
56
	

68
41
	

71
26
	

74
11
	

76
96
	

79
81
	

82
66
	

85
51
	

88
36
	

91
21
	

94
06
	

96
91
	

99
76
	

10
26
1	

10
54
6	

10
83
1	

11
11
6	

11
40
1	

11
68
6	

11
97
1	

12
25
6	

12
54
1	

12
82
6	

13
11
1	

Ti
m
e(
s)
	

Flow	 Number	

Internet	 Traffic	 Characteriza:on	 -‐	 Average	 Inter-‐Packet	 Delay	 Per	 Flow	

Figure 4.5: This is a sample of the inter-packet delay in one of the capture files that were
analyzed. Inter-packet delay is calculated by taking the difference in arrival time of two
consecutive packets.

51

In this case the average inter-packet delay peaks at 59µs, while averaging at approxi-
mately 5.7µs. Again in this data set, the variance and standard deviation are both low,
indicating that the values are close to the mean and the distribution of the values from the
mean is small, respectively. A summary of the statistics discussed, is shown below:

Calculation Number of Packets Per Flow

Max Value 5.90 x 10−5

Min Value 0.00
Average 5.71 x 10 −6

Standard Deviation 6.76 x 10 −6

Variance 4.57 x 10 −11

Table 4.5: This is a sample of the inter-packet delay in the second capture files that was
analyzed. Inter-packet delay is calculated by taking the difference in arrival time of two
consecutive packets.

52

A sample of the flow duration from the second capture file is shown below:

0	

0.001	

0.002	

0.003	

0.004	

0.005	

0.006	

0.007	

0.008	

0.009	

0.01	

1	
28
0	

55
9	

83
8	

11
17
	

13
96
	

16
75
	

19
54
	

22
33
	

25
12
	

27
91
	

30
70
	

33
49
	

36
28
	

39
07
	

41
86
	

44
65
	

47
44
	

50
23
	

53
02
	

55
81
	

58
60
	

61
39
	

64
18
	

66
97
	

69
76
	

72
55
	

75
34
	

78
13
	

80
92
	

83
71
	

86
50
	

89
29
	

92
08
	

94
87
	

97
66
	

10
04
5	

10
32
4	

10
60
3	

10
88
2	

11
16
1	

11
44
0	

11
71
9	

11
99
8	

12
27
7	

12
55
6	

12
83
5	

13
11
4	

Ti
m
e	
(s
)	

Flow	 Number	

Internet	 Traffic	 Characteriza:on	 -‐	 Flow	 Dura:on	

Figure 4.6: This is a sample of the flow duration from the first capture file that was
analyzed. The flow duration is defined as the difference between the arrival time of the
first packet that arrived in the flow, and the arrival time of the last packet that arrived in
the flow.

53

In this case the flow duration peaks at approximately 8.7ms, and averaging at ap-
proximately 54.5µs. Similarly to the previously analyzed set, the variance and standard
deviation are both low, indicating that the values are close to the mean and the distribution
of the values from the mean is small, respectively. Below is a summary of the statistics
previously discussed:

Calculation Flow Duration (s)

Max Value 8.73 x 10−3

Min Value 0
Average 5.45 x 10−5

Standard Deviation 2.6 x 10−4

Variance 6.82 x 10−8

Table 4.6: Summary of the statistics of the flow duration for the data previously plotted
from the second capture file analyzed.

54

Even though the two samples are taken at different times, we can see that the analyzed
statistics are very similar. Other samples were analyzed in a similar fashion, revealed that
the general trend of the statistics. Other characteristics that could’ve been analyzed are:
the distribution of the destination IP addresses and the flow rate, but considering the
large data set that was available, determining the distribution of destination IP addresses
would’ve been very difficult to do.

4.2 Experimental Results

A few experiments were run for this project to benchmark the performance the switch.
The purpose of these experiments was to determine the penalty associated with a miss in
the TCAM cache and the penalty associated with performing Software Switching, versus
doing Hardware Switching. The first two experiments involved determining the penalty
incurred when a miss occurs in the cache while performing Hardware Switching and the
last experiment is used to determine the penalty incurred from having to do Software
Switching.

4.2.1 Experiment 1

The purpose of the first experiment is to collect information about the inter-packet delay of
packets when there is a hit in the cache. This occurs when the packet arriving to the switch
has a destination address that is stored in the cache. This experiment was performed first
because the values obtained from this experiment is need for some of the calculations done
in the second experiment to determine cache miss penalty.

A high level diagram depicting the operation of the switch while its performing Hard-
ware Switching for two packets with destination IP addresses that have an entry in the
cache is shown below:

55

Figure 4.7: This is the scenario when the switch is performing Hardware Switching, and
the TCP packet that is being processed has a destination IP address that is in the cache.

56

Note that in this case, the supervisor is not involved at all - unlike the case where
there is a cache miss. Ideally, for the majority of the incoming TCP packets, you want
them to have a hit in the cache, to obtain maximum throughput. Any time the supervisor
has to get involved to make a forwarding decision due to a miss, or to perform Software
Switching, the throughput of the switch decreases.

Below is a sample graph of the inter-packet delay of packets with a hit in the cache:

Figure 4.8: This is the inter-packet delay of TCP packets arriving at the receiver. All
the packets in this set have destination IP addresses that are in the switch’s cache. The
inter-packet delay is calculated by taking the difference in time between two consecutive
packets arriving at the destination.

57

The data in the previous graph was obtained by taking the time difference between two
consecutive TCP packets from the capture file on the receiver computer. The graph shows
a few fluctuations in the time delay, all of which are within the range of 1µs to 100µs.
More information highlighting some information about the plotted data set is shown in the
table 4.8 below:

Calculation Time Delay (s)

Max Value 8.45 x 10−2

Min Value 0
Average 101.99 x 10−6

Standard Deviation 2.64 x 10−3

Variance 6.98 x 10−6

Table 4.7: Inter-packet delay statistics for TCP packets with destination IP addresses that
have entries in the cache.

58

The minimum and maximum values show the range of inter-packet delay of TCP packets
that have a destination IP address in the cache - a fairly large range. The standard
deviation is relatively high, confirming that the values are spread out over a large range
of value. On average, the inter-packet delay of forwarding TCP packets is approximately
102µs. The low variance value indicates that the distribution of the values from the mean is
small. Therefore the average value could be used as a good approximation for the amount
of time it takes the switch to extract the header information, do a lookup in the cache, and
finally do a packet re-write. This value is useful as it will be used in the the calculations of
Experiment 2 to remove extra time included in the measurements, but is not part of the
penalty of having a cache miss.

It is unclear exactly why there are large fluctuations in the previously plotted data set,
but we hypothesis from the consistency in the frequency in which the spikes appear in,
that it could be due to some recurring process in the switch. The switch might be doing
some house keeping necessary for the operation of the switch, causing interrupts in the
processing of packets. A graph, with the outliers removed, is shown below:

Figure 4.9: This is the inter-packet delay of TCP packets arriving at the receiver with the
outlier values causing the spikes in the graph removed. All the packets in this set have
destination IP addresses that are in the switch’s cache.

59

In this case, the spike occurs every eighth packet, while in the data sets presented later
on, the frequency is different. For this data set, the information regarding the spikes is
displayed below:

Statistic Value

Frequency Every 8 Packets
Percentage of data causing Spikes 12.5 %

Average 4.23 x 10−6s
Range of values without spikes 1 x 10−6s to 112 x 10−6s

Standard Deviation 10.47 x 10−6s
Variance 1.1 x 10−10s

Table 4.8: Statistics about the spikes in the data analyzed for the inter-packet delay of
TCP packets during a cache hit.

For the calculations in Experiment 2, we will be using the values from the data set
which does not contain the spikes, since it is more representative than the original set.

4.2.2 Experiment 2

The second experiment is aimed at determining the penalty associated with a packet des-
tined to an IP address that is not stored in the cache. The first experiment involved firing
packets at the maximum speed possible, with an empty TCAM cache. A miss in the cache
involves a penalty that can be split into parts: the time it takes to realize that the infor-
mation is not in the cache and the time it takes to initiate Address Resolution Protocol,
and the second, the time it takes to process an ARP response, add an entry into the cache,
and finally forward the TCP packet to the destination. The experiment setup is designed
in such a way so as to eliminate any slowdowns that might be caused by the computer.
In this case, the final destination of the packet is one hop away from the switch, which
is typically the shortest it will ever be. If the destination was more than one hop away,
then the propagation delay of the requests, replies, and routing of TCP packets would be
increased - thus affecting the data collected.

The first part of the penalty occurs when the switch receives a packet with a destination
IP address, which is not in the cache. This causes the switch to forward the packet infor-
mation to the Supervisor, and the Supervisor sends out an ARP request on the interface
that has an IP address and mask that contains the destination IP address in its subnet.
For example, if the switch has an interface, GigabitEthernet8/25, with IP address 100.8.0.1

60

and subnet mask 255.255.0.0, all the packets in the range 100.8.0.1 to 100.8.255.255 are
taken care of by this interface. So if a packet destined for 100.8.0.100 does not have a hit
in the cache, an ARP request is sent out on interface GigabitEthernet8/25. If an interface
on the switch is configured to be a default gateway, then an ARP is also sent out on that
interface.

A high-level diagram depicting the operation of the switch when there is a miss in the
cache is shown below:

Figure 4.10: This is the scenario where a TCP packet has a destination IP address that is
not in the cache, resulting in a miss when a look up is performed while trying to perform
Hardware Switching. Note the involvement of the Supervisor, which initiates the Address
Resolution Protocol. This diagram constitutes the first part of the penalty associated with
a cache miss.

61

Since the switch sends out ARP requests for all the packets that have destination IP
addresses that are not in the TCAM, firing packets consecutively that are not in the TCAM,
will allow us to measure the time associated with extracting the header information from
the packet, querying the cache, and forwarding the packet to the supervisor which sends
out an ARP request. It should be noted that this portion of the penalty also incorporates
the time it takes to extract header information from the packet and the time it takes to
perform the TCAM lookup - two steps that occur regardless if there is a miss or a hit in
the cache.

The following table summarizes the abbreviations involved in the calculation of the first
part of the penalty:

Abbreviation Description

tARPX The time when an ARP request packet is sent
tARPR The time when an ARP reply packet is sent
tARPP The time it takes to process ARP reply
tPKTR The time it takes to do a packet re-write
tTCPA The time a TCP packet arrives to the computer
tAENT The time it takes to add an entry into the cache

tMINPD The minimum inter-packet delay for packets with a hit in the cache
tP1 The first part associated with the penalty of a miss in the cache
tP2 The second part associated with the penalty of a miss in the cache
tPt The total penalty for a miss in the cache

Table 4.9: Abbreviations used for in calculations

The equation for calculating the first part of the penalty, where the ARP request packets
are numbered based on their order of arrival and tARPX2 > tARPX1 , is shown below:

tP1 = tARPX2 − tARPX1 (4.1)

62

A sample of the data collected for the first part of the penalty, which is the time it
takes to extract the packet information header information, query the TCAM, discover a
miss, construct an ARP request and send it out is shown below:

0	

0.0005	

0.001	

0.0015	

0.002	

0.0025	

0.003	

0.0035	

0.004	

1	 74
	

14
7	

22
0	

29
3	

36
6	

43
9	

51
2	

58
5	

65
8	

73
1	

80
4	

87
7	

95
0	

10
23
	

10
96
	

11
69
	

12
42
	

13
15
	

13
88
	

14
61
	

15
34
	

16
07
	

16
80
	

17
53
	

18
26
	

18
99
	

19
72
	

20
45
	

21
18
	

21
91
	

22
64
	

23
37
	

24
10
	

24
83
	

25
56
	

26
29
	

27
02
	

27
75
	

28
48
	

29
21
	

29
94
	

30
67
	

31
40
	

32
13
	

32
86
	

33
59
	

34
32
	

Ti
m
e	
(s
)	

Packet	 Number	

First	 Part	 Of	 Penalty	 Associated	 With	 Cache	 Miss	

Figure 4.11: The penalty associated with extracting the header information, performing a
cache lookup, generating an ARP request, and transmitting the ARP request.

63

Figure 4.11 has a pattern which repeats every approximately 500 packets. For the first
batch of packets, there are a few fluctuations in the time delay, which could be attributed to
the switch working towards a transient state, or the computer ramping up its transmission
rate. From the graph shown, the majority of the the packet delays are in the range of 2ms.
For better viewing, a version with a smaller subset of the figure 4.11 is shown below:

0	

0.0002	

0.0004	

0.0006	

0.0008	

0.001	

0.0012	

0.0014	

1	 12
	

23
	

34
	

45
	

56
	

67
	

78
	

89
	

10
0	

11
1	

12
2	

13
3	

14
4	

15
5	

16
6	

17
7	

18
8	

19
9	

21
0	

22
1	

23
2	

24
3	

25
4	

26
5	

27
6	

28
7	

29
8	

30
9	

32
0	

33
1	

34
2	

35
3	

36
4	

37
5	

38
6	

39
7	

40
8	

41
9	

43
0	

44
1	

45
2	

46
3	

47
4	

48
5	

49
6	

Ti
m
e	
(s
)	

Packet	 Number	

First	 Part	 Of	 Penalty	 Associated	 With	 Cache	 Miss	

Figure 4.12: This graph contains a smaller subset of graph 4.11, showing data up to the
end of the first sequence that repeats. The range of the y-axis has also been adjusted to
have a better focus on the majority of the data points.

64

Analysis of the data shown in the graph is included in table 4.10. The table includes
basic calculations of the average, standard deviation, variance, and the maximum and
minimum values of the set used to plot the graphs. The analysis shows that on average,
the first part of the penalty is approximately 117µs - a significant penalty that should not
be incurred frequently. Of course, when the switch is first installed, or if the switch crashes
and restarts, this penalty is incurred a few times until all the surrounding addresses are
learned.

Calculation Time Delay (s)

Max Value 4.11 x 10−3

Min Value 2 x 10−6

Average 117.39 x 10−6

Standard Deviation 271.17 10−6

Variance 7.38 x 10−8

Table 4.10: Statistics for the penalty associated with extracting the header information,
performing a cache lookup, and generating an ARP request.

65

The table above 4.10 shows that the data set has a low variance and standard deviation,
even though there are a few spikes in the data. Again in this case, there are periodic spikes,
that we hypothesis to be due to some processes running in the switch that interrupt the
switching process. In this case, the spikes follow a rigid pattern as they did in the data
collected in the first experiment, where it seems to repeat every 500 packets. Some statistics
about the spikes are shown below:

Statistic Value

Percentage of data causing spikes 1.63 %
Average 8.88 x 10−5s

Range of values without spikes 2 x 10−6s to 797 x 10−6s
Standard Deviation 298.95 x 10−6s

Variance 1.23 x 10−8s

Table 4.11: Statistics of the data set after removing the spikes in the penalty associated
with performing a cache miss

66

Note that after removing the spikes in the graph, the data is more representative. The
variance and standard deviation have been significantly reduced, making the new average
a more accurate approximation. The graph below contains a zoomed in version of the data
with the majority of the spikes removed, plotting values that are within the time delay
range discussed in the previous table - where over 98 percent of the data lies:

Figure 4.13: Graph displaying the penalty associated with extracting the header informa-
tion, do a cache look, and generating an ARP. This dataset has the spikes in the time delay
exceeding the 800µs removed.

67

Upon closer examination of the previous calculation for the first part of the penalty, it
was concluded that this calculation can be refined further by removing the time it takes
to perform some of the common steps between processing a packet that has a destination
IP address with a hit in the cache, and one which will have a miss in the cache. There
are four steps that the switch performs when processing a packet, if there is a miss in the
TCAM 4.10

1. Extract header information from the packet

2. Query the TCAM for destination address

3. Send the header information to the supervisor for a decision

4. Supervisor generates an ARP request and passes it to the line card

5. Line card sends the ARP request out on the appropriate interface

The first two steps mentioned above will occur when the switch is doing Hardware
Switching, regardless of whether there will be a hit or a miss in the cache. We can also
assume that the amount of time it takes to do a packet re-write for TCP packets that
have hit in the cache, is equal to the amount of time it takes to pass the packet from the
Supervisor to the line card for transmission. Therefore, assuming that the transmission
rate is the same in both cases, subtracting the inter-packet delay of packets that have
destination IPs in the cache, should yield a good approximation of the amount of time it
takes to process a cache miss, plus the time it takes to generate an ARP request. The
following abbreviations are used to calculate a more accurate value of the first part of the
penalty:

Abbreviation Description

tEX The time to extract the header information
tL The time to do a lookup in the cache

tFWD The time to make a forwarding decision
tARP The time it takes to create an ARP request

tPRTM The total time it takes to process a packet with a miss
tPRTH The total time it takes to process a packet with a hit

Table 4.12: Abbreviations for calculating a more accurate calculation of the first part of
the penalty.

68

If the arriving TCP packet has a destination IP address in the cache, then the total
processing time would be:

tPRTH = tEX + tL = tMINPD (4.2)

If the arriving TCP packet has a destination IP address that is not in the cache, then
the total processing time would be:

tPRTM = tEX + tL + tFWD + tARP (4.3)

The equation for the refined calculation of the first part of the penalty, where the ARP
request packets are numbered based on their order of arrival and tARPX2 > tARPX1 , is
shown below:

tP1 = tARPX2 − tARPX1 − tMINPD (4.4)

From the previous equations, subtracting the minimum inter-packet delay of TCP pack-
ets that have information about the destination in the cache, will remove the time it takes
to do the header extraction (tEX) and the time it takes to do the cache lookup (tL).

A sample of the refined penalty time for a miss in the cache is shown below with the
original calculation being the line in blue, and the refined calculation being the line in red.
A version containing a smaller subset for better viewing purposes is also shown.

69

0	

0.0005	

0.001	

0.0015	

0.002	

0.0025	

0.003	

0.0035	

0.004	

1	 12
	

23
	

34
	

45
	

56
	

67
	

78
	

89
	

10
0	

11
1	

12
2	

13
3	

14
4	

15
5	

16
6	

17
7	

18
8	

19
9	

21
0	

22
1	

23
2	

24
3	

25
4	

26
5	

27
6	

28
7	

29
8	

30
9	

32
0	

33
1	

34
2	

35
3	

36
4	

37
5	

38
6	

39
7	

40
8	

41
9	

43
0	

44
1	

45
2	

46
3	

47
4	

48
5	

49
6	

Ti
m
e	
(s
)	

Packet	 Number	

First	 Part	 Of	 Penalty	 Associated	 With	 Cache	 Miss	 -‐	 Refined	

Original	 Calcula7on	 Refined	 Calcula7on	

Figure 4.14: Graphing the original penalty versus the refined calculation associated with
extracting header information, performing a cache lookup, generating an ARP request, and
transmitting the ARP request. The refined calculation aims to remove the time it takes to
extract the header information and perform a cache lookup.

70

0	

0.000005	

0.00001	

0.000015	

0.00002	

0.000025	

0.00003	

1	 3	 5	 7	 9	 11	 13	 15	 17	 19	 21	 23	 25	 27	 29	 31	 33	 35	 37	 39	 41	 43	 45	 47	 49	

Ti
m
e	
(s
)	

Packet	 Number	

First	 Part	 Of	 Penalty	 Associated	 With	 Cache	 Miss	 -‐	 Refined	

Original	 Calcula5on	 Refined	 Calcula5on	

Figure 4.15: A zoomed-in version of the previously shown graph, showing the original
penalty versus the refined calculation associated with extracting header information, per-
forming a cache lookup, and generating an ARP request. The refined calculation aims at
removing the time it takes to extract header information, and perform a cache lookup.
This is a smaller set to magnify the difference in values.

71

The first figure 4.14 has a pattern which repeats approximately every 500 packets. For
better viewing, a magnified version of the first figure is shown below it 4.15 to show the
variation in time between the original penalty calculation, and the refined version. The
data was plotted in bar graph format because in many cases, the difference between the
original calculation and the refined one, is very small. From the magnified version of the
graph, it is clear that the difference between the two calculations is very small, and thus
had to be plotted as a bar graph. Note that the data between the two calculations varies
by 1µs - the minimum amount of time it takes to extract the header information and do
a cache lookup. This result is consistent with what is expected of the switch - the cache
lookup and packet re-write has to be extremely fast. Further analysis of the data is shown
below:

Calculation Value (s)

Max Value 4.10 x 10−3

Min Value 1 x 10−6

Average 116.63 x 10−6

Standard Deviation 273.68 x 10−6

Variance 7.49 x 10−8

Table 4.13: First Part Of The Penalty Statistics

The statistics in table 4.13 show a small change in the data, after subtracting tMINPD.
The average decreased by 1µs, while the standard deviation and variance remained the
same. The maximum and minimum values also decreased by 1µs. Since the time difference
is so small between the original penalty calculation and the refined one, this confirms that
the switch performs the extraction of the header information and perform a cache lookup
extremely fast.

The second part of the penalty occurs when the switch receives the ARP reply from a
destination IP address that was previously unknown. The penalty involves the processing
of the ARP reply, which involves adding an entry into the cache and sending the TCP
packet that might still be in the buffer.

A high-level diagram depicting the operation of the switch when it is processing the
ARP reply is shown below:

72

Figure 4.16: Operation of the switch when processing an ARP reply. This is the second
part of the penalty, which calculates the time difference between the ARP reply and the
arrival of the TCP packet.

73

To measure this portion of the delay, we have to add up the time it takes to process the
ARP reply, add an entry into the cache, and do a packet re-write to forward the packet.
This can be represented using the following equation:

tP2 = tARPP + tAENT + tPKTR (4.5)

To measure this portion of the delay using the information we have, we take the dif-
ference in time between the arrival of the TCP packet, and the time the ARP reply was
transmitted for that TCP packet. Upon closer examination of figure 4.16, we can see that
the difference in time between when the packet leaves the receiving computer, and the
arrival of the TCP packet, is the time it takes to process the ARP reply and forward the
TCP packet. The equation for calculating the second part of the penalty is shown below:

tP2 = tTCPA − tARPR (4.6)

Below is a graph 4.17 showing the results of the second part of the penalty, with a
magnified version 4.18 below that:

74

Figure 4.17: This graph represents the second part associated with the penalty of a miss
in the cache. This data is calculated by taking the difference of time between the ARP
reply sent out by the receiver computer, and the arrival time of the TCP packet.

75

0.000364	

0.000864	

0.001364	

0.001864	

0.002364	

0.002864	

1	 57
	

11
3	

16
9	

22
5	

28
1	

33
7	

39
3	

44
9	

50
5	

56
1	

61
7	

67
3	

72
9	

78
5	

84
1	

89
7	

95
3	

10
09
	

10
65
	

11
21
	

11
77
	

12
33
	

12
89
	

13
45
	

14
01
	

14
57
	

15
13
	

15
69
	

16
25
	

16
81
	

17
37
	

17
93
	

18
49
	

19
05
	

19
61
	

20
17
	

20
73
	

21
29
	

21
85
	

22
41
	

22
97
	

23
53
	

24
09
	

24
65
	

25
21
	

25
77
	

Ti
m
e	
(S
)	

Packet	 Number	

Time	 Difference	 Between	 ARP	 Reply	 and	 TCP	 Packet	 Arrival	

Figure 4.18: A zoomed-in version of the previous graph, showing the second part associated
with a penalty.

76

The second part of the penalty is significantly higher than the first part of the penalty
- on average seven times larger. This result makes sense because the second part of the
penalty involves more steps, and thus, it is expected that it would take a longer time. The
first part of the penalty is in the range of 100µs, while the second part is in the range of
700µs - a significant difference.

Further analysis of the data is shown below:

Calculation Time Delay (s)

Max Value 64.6 x 10−3

Min Value 364 x 10−6

Average 757.15 x 10−6

Standard Deviation 1.55 x 10−3

Variance 2.41 x 10−6

Table 4.14: Statistics of the second part of the penalty - the amount of time it takes to
process an ARP reply, and forward the TCP packet.

Again the range of values for the delay are significant - starting at 364µs and ending
at 64ms. On average, the penalty incurred from processing an ARP packet, adding an
entry into the cache, and forwarding the TCP packet, is approximately 757µs. Since the
variance is fairly low, the average could be considered to be a good representation of the
bulk of the data collected.

Summing the two parts of the penalty, gives us the total penalty associated with a
cache miss. This setup and methodology, minimizes any delays that are introduced by
the computers involved in transmitting and receiving the packets. While a few iterations
have been made to the software in order to improve its run time, the computer responding
to ARP replies still had a certain threshold that could not handle extremely high packet
transmission rates. The equation to determine the penalty associated with a cache miss
for routing packet x is shown below:

tPT = tP1 + tP2 (4.7)

Finally, the graphs 4.19 and 4.20 below show a graphical representation of the total
penalty:

77

0	

0.001	

0.002	

0.003	

0.004	

0.005	

0.006	

1	 74
	

14
7	

22
0	

29
3	

36
6	

43
9	

51
2	

58
5	

65
8	

73
1	

80
4	

87
7	

95
0	

10
23
	

10
96
	

11
69
	

12
42
	

13
15
	

13
88
	

14
61
	

15
34
	

16
07
	

16
80
	

17
53
	

18
26
	

18
99
	

19
72
	

20
45
	

21
18
	

21
91
	

22
64
	

23
37
	

24
10
	

24
83
	

25
56
	

26
29
	

27
02
	

27
75
	

28
48
	

29
21
	

29
94
	

30
67
	

31
40
	

32
13
	

32
86
	

33
59
	

34
32
	

Ti
m
e	
(s
)	

Packet	 Number	

Total	 Penalty	 For	 a	 Cache	 Miss	

Figure 4.19: Total penalty for a cache miss - a summation of the amount of time it takes
to generate an arp request, process an arp reply, and adding an entry into the cache.

78

0	

0.001	

0.002	

0.003	

0.004	

0.005	

0.006	

1	 12
	

23
	

34
	

45
	

56
	

67
	

78
	

89
	

10
0	

11
1	

12
2	

13
3	

14
4	

15
5	

16
6	

17
7	

18
8	

19
9	

21
0	

22
1	

23
2	

24
3	

25
4	

26
5	

27
6	

28
7	

29
8	

30
9	

32
0	

33
1	

34
2	

35
3	

36
4	

37
5	

38
6	

39
7	

40
8	

41
9	

43
0	

44
1	

45
2	

46
3	

47
4	

48
5	

49
6	

Ti
m
e	
(s
)	

Packet	 Number	

Total	 Penalty	 For	 a	 Cache	 Miss	

Figure 4.20: A zoomed in view of the graph 4.19, showing a smaller sample of the total
penalty associated with a cache miss.

79

Further analysis of the data is shown below:

Calculation Time Delay (s)

Max Value 8.73 x 10−3

Min Value 387 x 10−6

Average 738.17 x 10−6

Standard Deviation 760 x 10−6

Variance 5.8 x 10−7

Table 4.15: Statistics of the total penalty associated with a miss in the cache.

Therefore, on average, the penalty of a cache miss is approximately 738µs. The high
standard deviation and variance stem from having the same characteristics in the data
collected from the first part of the penalty.

4.2.3 Experiment 3

The purpose of this experiment is to demonstrate the performance difference between
Software Switching and Hardware Switching. The switch resorts to Software Switching
once the cache dedicated to Hardware Switching has reached its maximum capacity.

Hardware Switching uses the TCAM cache to perform the switching at a very high
speed, avoiding the involvement of the supervisor - making the process of packet switching
very fast. The details of how Hardware Switching works has already been discussed in
details, and the results in Experiment 1, quantify the amount of time it takes to do Software
Switching. When the destination address of a packet is available in the cache dedicated
for Hardware Switching, the switch is able to make a forwarding decision, without relying
on the Supervisor.

Software Switching is much slower than Hardware Switching, and is very costly in
terms of performance. When a packet arrives, the cache dedicated to Hardware Switching
is queried first, if there is a miss, the header information is sent to the Supervisor. The
Supervisor then performs a lookup in the cache allocated for Software Switching, if there
is a hit, a packet re-write occurs and the packet is forwarded. If on the other hand there
is a cache miss, then the Supervisor sends out an ARP request - similar to a miss in the
cache when performing Hardware Switching. The difference between Software Switching
and Hardware Switching is, when the capacity of Hardware Switching has been reached, all
the ARP replies that get processed from that point onward, is stored in the cache dedicated

80

to Software Switching. A diagram describing the operation of the switch when Software
Switching is performed, and a miss occurs is shown below:

Figure 4.21: Software Switching for a packet with a destination address that does not have
an entry in the cache allocated for Software Switching.

81

A diagram describing the operation of the switch when Software Switching is performed,
and there is a hit in the cache dedicated to Software Switching:

Figure 4.22: Software Switching for a packet with a destination address that has an entry
in the cache allocated for software switching.

82

Since the switch allows the user to set a limit on the number of entries dedicated to
Hardware Switching in the TCAM, setting a low limit on the cache allowed us to easily
see the effect of going from Hardware Switching to Software Switching. For the purposes
of this experiment, the limit on the number of entries for Hardware Switching has been
set to 1024 entries. This experiment involved sending TCP packets with destination IP
addresses that are not in the cache to fill it up. The number of packets was three times
the capacity of the cache dedicated to Hardware Switching, in order to fill it up, and spill
over to the cache dedicated to Software Switching. The next step was to send the same set
of packets at the maximum rate, and capture the packets at the output. The graph below
shows the inter-packet delay of the captured TCP packets:

Figure 4.23: Inter-packet delay for switching between Hardware Switching and Software
Switching. The switch is configured with a hardware limit of 1024 entries.

83

For the first portion of the data, upto the limit set for Hardware Switching, the inter-
packet delay is in the range of 1µs to 101µs. After the first 1024 packets, there is a clear
jump in the inter-packet delay time. The jump in the delay time is approximately double,
which is a fairly significant amount, and thus problematic for the switch’s performance.

The statistics for this data is split into two groups, the Hardware Switching statics which
includes the first 1024 packets, and Software Switching which includes packets starting at
1025 until the end of the data set.

Statistic Value (s)

Max Value 84.53 x 10−3

Min Value 0
Average 101.99 x 10−6

Standard Deviation 2.64 x 10−3

Variance 6.98 x 10−6

Table 4.16: Statistics of the inter-packet delay for the first 1024 packets, where Hardware
Switching was being performed.

Statistic Value (s)

Max Value 82.22 x 10−3

Min Value 2 x 10−6

Average 1.12 x 10−3

Standard Deviation 8.95 x 10−3

Variance 8.01 x 10−5s

Table 4.17: Statistics of the inter-packet delay for the packets starting at 1025, till the end
of the data set, where Software Switching is being performed.

We can see from the given statistics, that on average, Hardware Switching is in the
order of hundreds of microseconds while Software Switching is in the order of ones of
milliseconds - a significant difference. The variance and standard deviation are both low,
indicating that the distribution of the values from the mean is small, and that the values
in the data set are close to the mean - making the average a good representation of the
data. This result of course is not surprising since the whole point of Hardware Switching
is to maximize the throughput of the packets coming out of the switch.

84

Chapter 5

Conclusion and Future Work

This section will conclude the work in this thesis, with a summary of the findings, as well
as some future work and improvements.

5.1 Findings

In this thesis, a framework for simulating a small network with the switch forwarding
packets from one computer to another computer. The framework is designed in such a way
so as to minimize any delays that could occur because of the computers involved, which
would increase the accuracy of the measurements for the performance of the TCAM. The
proposed framework allows the user to fill up the switch’s TCAM, providing the basis for
investigating a number of properties for the TCAM and switch - such as investigating the
penalty associated with a cache miss. The thesis also includes information regarding the
challenges associated with implementing the presented framework, and one of many way
to overcome them.

Another important set of findings is the quantification of the penalty associated with
a miss in the cache while performing Hardware Switching, which on average, is 738µs,
compared to approximately an average of 102µs when there is a cache hit. The penalty
associated with a cache miss is divided into two components: the time it takes to realize
that there is a miss in the cache and generate an ARP request, and the time it takes to
process an ARP reply, add an entry into the cache, and forward the TCP packet. From
the results shown, the second component, is the larger portion of the penalty - this makes
sense considering the number of tasks that have to completed when processing an ARP
reply.

85

Finally, the quantification of Software Switching versus Hardware Switching. The dif-
ference of performance has been measured, and it was confirmed that Software Switching
is significantly slower. Software Switching, on average, caused an inter-packet delay of
1.12ms, while hardware switching was on average 102µs.

5.2 Future Work and Improvements

There are a few things that could be done to improve the results and the robustness of the
experiments, as well as more relevant work that could be investigated.

First of all, the rate transmission of packets being fed into the switch should be higher
through the use of hardware traffic generators. While the effects of the transmitting com-
puter were significantly minimized over the course of this thesis work, it is of course possible
to minimize it further by using hardware traffic generators. This would affect the values
measured in the first part of the pnealty, and the performance of packet processing during
cache hits.

Another improvement that could be done, and might provide other meaningful results,
is the aggregation of two or more switches together. It might also be possible to virtually
separate a few ports within the same switch to create an environment that appears to be a
different set of clusters of computers or other networking equipment on the network. This
could give us information about how the performance could change with the increased
number of clusters, or the size of each cluster.

Finally, some future work that could be investigated is a thorough study of cache re-
placement algorithms, or alternatives to that, which would help reduce the TCAM capacity,
without compromising the performance of the switch. Since TCAMs are relatively very ex-
pensive, and consume a great deal of power, it is important to optimize the TCAM capacity
and ensure that the switch has an optimal TCAM capacity. Since technology is constantly
evolving, it is possible that faster, or more efficient cache replacement algorithms, do exist
now that could help utilize smaller TCAM capacities.

86

APPENDICES

87

Appendix A

Analysis Scripts

A.1 Analyzing Experiment Data

The script used to analyze the capture files to determine the cache miss:

import os

from datetime import datetime, time

#Get the file to be analyzed from the user

fileName = raw_input("Enter the file name :")

#Read the tuples for ARP requests from the file

lineReadArpReq = os.popen("tshark -r" + fileName + " -T fields

-e frame.time_relative -e arp.dst.proto_ipv4 -R ’arp and

arp.opcode == 1’ ")

#Read the tuples for ARP replies from the file

lineReadArpReply = os.popen("tshark -r" + fileName + " -T fields

-e arp.src.proto_ipv4 -e frame.time_relative -R ’arp and

arp.opcode == 2’ ")

88

#Read the tuples for TCP packets from the file

lineReadIpPacket = os.popen("tshark -r" + fileName + " -T fields

-e ip.dst -e frame.time_relative -R ip")

#Store the tuples in seperate lists

list_of_arp_requests = lineReadArpReq.readlines()

list_of_arp_replies = lineReadArpReply.readlines()

list_of_ip_pkts = lineReadIpPacket.readlines()

counter = 0

#Create a file to store the delta t of ARP requests

f = open (fileName + ’_arp_req_analyze.csv’,’w’)

f.write("This should give us the time it takes the switch to

receive a packet, and realize there is no entry in the cache \n")

#Iterate through the list of ARP requests and calculate delta t

while (counter < (size_of_list_of_arp_requests-1)):

parsed_line = list_of_arp_requests[counter].split()

parsed_line2 = list_of_arp_requests[counter+1].split()

f.write(float(parsed_line2[0]) - float(parsed_line[0])

counter = counter + 1

f.close()

#Create tuples of source IP addresses of the ARP replies,

arp.src.proto_ipv4, and the time of capture (time the

ARP reply was transmitted), frame.time_relative

list_of_arp_replies_tuples = []

for i in list_of_arp_replies:

parsed_line = i.split()

info_tuple = (parsed_line[0].strip(), parsed_line[1].strip())

list_of_arp_replies_tuples.append(info_tuple)

89

#Convert the list of tuples to a dictionary,

keyed by arp.src.proto_ipv4, with value

frame.time_relative

dictionary_of_arp_replies =

dict(list_of_arp_replies_tuples)

#Create file to store the delta t of arp replies

and time a TCP packet is received

x = open (fileName + ’_arp_rep_ip_analyze.csv’,’w’)

#Loop through the ip readlines, and check the key

for the time of the arp reply

for i in list_of_ip_pkts:

parsed_line = i.split()

t2 = float(parsed_line[1])

if (parsed_line[0] in dictionary_of_arp_replies):

t1 = float(dictionary_of_arp_replies[parsed_line[0]])

delta_t = t2-t1

x.write (parsed_line[0] + ’,’ + str(delta_t) + ’\n’)

x.close()

The script used to analyze the capture files to determine the inter-packet delay for TCP
packets with a hit in the cache:

import os

from datetime import datetime, time

#Get the file to be analyzed from the user

fileName = raw_input("Enter the file name :")

90

#Get the tuples of information from the specified file

lineRead = os.popen("tshark -r " + fileName + " -T

fields -e ip.src -e ip.dst -e tcp.srcport -e tcp.dstport

-e frame.time_relative -e ip.len -R tcp")

#Create a file to write the results into

f = open (fileName + ’_inter_packet_delay_analysis.csv’,’w’)

delta_t = 0.0

counter = 0

second_one_done = False

array_of_lines_read = lineRead.readlines()

#Iterate through the tuples of TCP packet info, and calculate delta t

while counter < len(array_of_lines_read)

stringArray = array_of_lines_read[counter]

stringArrayNextOne = array_of_lines_read[counter+1].split()

delta_t = stringArrayNextOne[4] - float(stringArray[4])

f.write(stringArray[0] + ’,’ + stringArray[1] + ’,’ + stringArray[2] +

’,’ + stringArray[3] + ’,’ + str(delta_t) +’\n’)

counter += 1

f.close()

A.2 Sending and Receiving Packets Scripts

Script used to generate destination IP addresses

import os

#Create a file to write the destination IP addresses to

ip_addresses_writer = open(’dst_ip_addresses_eth0.txt’,’w’)

91

#The first two octets of the destination IP address

ip_address_prefix = ’1.100.’

#The third and fourth octets

third_octet = 0

fourth_octet = 2

#This will generate packets from 1.100.0.2 to 1.100.255.253

while (third_octet < 255):

while (fourth_octet < 253):

ip_addresses_writer.write(ip_address_prefix+

str(third_octet)+’.’+str(fourth_octet)+’\n’)

fourth_octet += 1

fourth_octet = 2

third_octet +=1

The Script used to generate pre-built TCP packets:

import os

import socket

from scapy.all import *

#Create and bind the socket to interface eth0

s = socket.socket(socket.AF_PACKET, socket.SOCK_RAW)

s.bind(("eth0",0))

#Read the file containing the IP addresses

read_file = open(’dst_ip_addresses_eth0.txt’,’r’)

#Create a file to store the built packets

write_file = open(’built_pkts_eth0.txt’,’w’)

list_of_ips = read_file.readlines()

92

for i in list_of_ips:

pkt = Ether()/IP(dst=’%s’%i.strip(),src=’1.2.3.4’)/TCP()

write_file.write(pkt.build()+’\n’)

read_file.close()

write_file.close()

The script used to transmit TCP packets:

import os

import socket

from scapy.all import *

#Create and bind the socket - required for transmitting packets

s = socket.socket(socket.AF_PACKET, socket.SOCK_RAW)

s.bind(("eth0",0))

#Read the file containing the IP addresses

read_file = open(’built_pkts_eth0.txt’,’r’)

#Store the built packets in a list

built_pkts = read_file.readlines()

for i in built_pkts:

s.send(i.strip())

read_file.close()

The script used to transmit TCP packets using the built in functions:

import os

import time

from scapy.all import *

93

#grab all the file names

dst_IP_addresses= open(’generated_ip_addresses.txt’,’r’)

for dstIP in dst_IP_addresses.readlines():

generated_packet = IP()/TCP()

generated_packet.src = ’20.0.0.50’ #Source IP Address

generated_packet.dst = dstIP.strip() #Destination IP Address

generated_packet.sport = 10 #Source TCP port

generated_packet.dport = 20 #Destination TCP port

send(generated_packet, verbose =0) #Send generated packet

dst_IP_addresses.close()

The script used to generate ARP packets

import os

from scapy.all import *

import socket

s = socket.socket(socket.PF_PACKET, socket.SOCK_RAW)

s.bind(("eth0",0x806))

read_file = open(’arp_dst_ips.txt’,’r’)

read_built_pkts = open(’arp_built_pkts.txt’,’r’)

def arp_monitor_callback(pkt):

global dict_of_built_pkts

if ARP in pkt and pkt[ARP].op in (1,2) and

pkt.pdst in dict_of_built_pkts:

s.send(dict_of_built_pkts[pkt.pdst])

list_of_dst_ips = read_file.readlines()

list_of_built_pkts = read_built_pkts.readlines()

list_of_pkt_tuples = []

94

counter = 0

for i in list_of_dst_ips:

pkt = list_of_built_pkts[counter]

pkt_tuple = (i.strip(), pkt)

list_of_pkt_tuples.append(pkt_tuple)

counter += 1

#Once we have the list of tuples done, we can build a

dictionary of that list

dict_of_built_pkts = dict(list_of_pkt_tuples)

print ’Finished preprocessing.. Start transmitting..’

sniff(prn=arp_monitor_callback, filter="arp", store=0)

read_file.close()

read_built_pkts.close()

A.3 Analyzing Data From CAIDA

The script used to characterize data from CAIDA:

import os

from datetime import datetime, time

#Define the class which will hold the ip_info pairs

class ipInfo (object):

"""This is my ip class"""

src_addr = ’’

dst_addr = ’’

tcp_src_port = ’’

tcp_dst_port = ’’

95

frame_time_FF = []

packets_per_FF = 0

flow_duration_FF = 0 #This is the total sum of frame_time_FF

avg_time_delay_FF = 0 #This is the sum of flow_duration_ff/packets_per_FF

total_num_bytes_per_FF = 0

def __init__(self, src_addrInit, dst_addrInit, tcpSrcPortInit,

tcpDstPortInit, frameRelativeTimeForwardInit, bytesPerFlowInit, countInit):

self.src_addr = src_addrInit

self.dst_addr = dst_addrInit

self.tcp_src_port = tcpSrcPortInit

self.tcp_dst_port = tcpDstPortInit

self.frame_time_FF = list()

self.frame_time_FF.append(frameRelativeTimeForwardInit)

self.packets_per_FF = countInit

self.total_num_bytes_per_FF = bytesPerFlowInit

#Keep track of the total number of packets

total_num_of_packets = 0

fileName = raw_input("Enter the file name :")

print "Opening the file now.."

lineRead = os.popen("tshark -r " + fileName + "

-T fields -e ip.src -e ip.dst -e tcp.srcport -e tcp.dstport

-e frame.time_relative -e ip.len -R tcp")

#Define the array to keep track of order

array_of_keys_order = []

dict_of_ip_infos = {}

for i in lineRead.readlines():

print "I read:",i,

#Split the read line and check to see if it has data

stringArray = i.split()

96

if(len(stringArray) < 4):

print "<Empty line>"

else:

dict_key = stringArray[0] + ’,’ + stringArray[1] + ’,’

+ stringArray[2] + ’,’ + stringArray[3]

dict_value = ipInfo(stringArray[0],stringArray[1],stringArray[2],

stringArray[3],float(stringArray[4]), int(stringArray[5]),1)

#check to see if the entry is in the dictionary

if (dict_key in dict_of_ip_infos):

dict_of_ip_infos[dict_key].packets_per_FF += 1

#print str(dict_value.frame_time_FF[0]) + ’\n’

dict_of_ip_infos[dict_key].

frame_time_FF.append(dict_value.frame_time_FF[0])

sumOfDeltaTimes = sum(dict_of_ip_infos[dict_key].frame_time_FF)

dict_of_ip_infos[dict_key].avg_time_delay_FF = sumOfDeltaTimes/

dict_of_ip_infos[dict_key].packets_per_FF

dict_of_ip_infos[dict_key].total_num_bytes_per_FF +=

dict_value.total_num_bytes_per_FF

total_num_of_packets += 1

else:

dict_of_ip_infos[dict_key] = dict_value

total_num_of_packets += 1

array_of_keys_order.append(dict_key)

del(stringArray)

flow_num_counter = 1

f = open (fileName + ’.csv’,’w’)

f.write ("Source_ip,destination_ip,tcp_port_src,tcp_port_dst,flow_number,

packetsPerFlowForward,avg_time_delay_FF,flow_duration_forward,

flowRateForward,inter_packet_delay\n")

97

interpacket_delay = 0.0

key_counter = 0

second_time = False

for keyInDictionary in array_of_keys_order:

if (second_time == False and key_counter == 1):

key_counter = 0

second_time = True

dict_of_ip_infos[keyInDictionary].flow_duration_FF =

sum(dict_of_ip_infos[keyInDictionary].frame_time_FF)

if (dict_of_ip_infos[keyInDictionary].flow_duration_FF > 0):

flow_rate_FF = dict_of_ip_infos[keyInDictionary].total_num_bytes_per_FF/

dict_of_ip_infos[keyInDictionary].flow_duration_FF

else:

flow_rate_FF = 0

index_of_delay_calc = array_of_keys_order[key_counter]

interpacket_delay = dict_of_ip_infos[keyInDictionary].frame_time_FF[0] -

dict_of_ip_infos[index_of_delay_calc].frame_time_FF[0]

str_to_write = "%s,%s,%s,%s,%s,%s,%s,%s,%s,%s\n" %

(dict_of_ip_infos[keyInDictionary].src_addr,

dict_of_ip_infos[keyInDictionary].dst_addr,

dict_of_ip_infos[keyInDictionary].tcp_src_port,

dict_of_ip_infos[keyInDictionary].tcp_dst_port,

str(flow_num_counter),

str(dict_of_ip_infos[keyInDictionary].packets_per_FF),

str(dict_of_ip_infos[keyInDictionary].avg_time_delay_FF),

str(dict_of_ip_infos[keyInDictionary].flow_duration_FF),

str(flow_rate_FF), str(interpacket_delay))

f.write(str_to_write)

flow_num_counter += 1

key_counter += 1

98

endTime = datetime.now()

f.write ("The total number of forward tcp packets "

+ str(total_num_of_packets) + "\n")

f.close()

lineRead.close()

del(dict_of_ip_infos)

99

Appendix B

Devices’ Configuration

B.1 Switch Configuration

Building configuration...

Current configuration : 5019 bytes

!

version 12.2

service timestamps debug uptime

service timestamps log uptime

service password-encryption

service counters max age 10

!

hostname Router

!

boot-start-marker

boot system flash disk1:s72033-adventerprise_wan-mz.122-33.SXJ1.bin

boot-end-marker

!

100

security passwords min-length 1

no logging console

enable password 7 104F0B1D001B130705

!

no aaa new-model

!

!

!

no ip domain-lookup

mls netflow interface

mls rate-limit unicast cef receive 10000 100

mls cef error action freeze

mls cef maximum-routes ip 1

!

!

!

!

!

!

!

!

spanning-tree mode pvst

no spanning-tree optimize bpdu transmission

diagnostic bootup level minimal

!

redundancy

main-cpu

auto-sync running-config

mode sso

!

vlan internal allocation policy ascending

vlan access-log ratelimit 2000

!

!

!

101

interface GigabitEthernet6/1

no ip address

shutdown

!

interface GigabitEthernet6/2

no ip address

shutdown

!

interface GigabitEthernet8/1

ip address 100.2.0.1 255.255.0.0 secondary

ip address 100.1.0.1 255.255.0.0 secondary

ip address 1.18.173.1 255.255.255.0

no ip redirects

!

interface GigabitEthernet8/2

no ip address

!

interface GigabitEthernet8/3

ip address 1.18.174.1 255.255.255.0

!

interface GigabitEthernet8/4

no ip address

!

interface GigabitEthernet8/5

ip address 1.18.175.1 255.255.255.0

!

interface GigabitEthernet8/6

no ip address

!

interface GigabitEthernet8/7

ip address 30.0.0.1 255.255.255.0

!

102

interface GigabitEthernet8/8

no ip address

!

interface GigabitEthernet8/9

no ip address

!

interface GigabitEthernet8/10

no ip address

!

interface GigabitEthernet8/11

no ip address

!

interface GigabitEthernet8/12

no ip address

!

interface GigabitEthernet8/13

no ip address

!

interface GigabitEthernet8/14

no ip address

!

interface GigabitEthernet8/15

no ip address

!

interface GigabitEthernet8/16

no ip address

!

interface GigabitEthernet8/17

no ip address

!

interface GigabitEthernet8/18

no ip address

!

103

interface GigabitEthernet8/19

no ip address

!

interface GigabitEthernet8/20

no ip address

!

interface GigabitEthernet8/21

no ip address

!

interface GigabitEthernet8/22

no ip address

!

interface GigabitEthernet8/23

no ip address

!

interface GigabitEthernet8/24

no ip address

!

interface GigabitEthernet8/25

ip address 100.8.0.1 255.255.0.0 secondary

ip address 100.9.0.1 255.255.0.0 secondary

ip address 100.10.0.1 255.255.0.0 secondary

ip address 100.11.0.1 255.255.0.0 secondary

ip address 100.12.0.1 255.255.0.0 secondary

ip address 100.13.0.1 255.255.0.0 secondary

ip address 100.14.0.1 255.255.0.0 secondary

ip address 100.15.0.1 255.255.0.0 secondary

ip address 100.16.0.1 255.255.0.0 secondary

ip address 100.17.0.1 255.255.0.0 secondary

ip address 100.18.0.1 255.255.0.0 secondary

ip address 100.19.0.1 255.255.0.0 secondary

ip address 100.20.0.1 255.255.0.0 secondary

ip address 100.21.0.1 255.255.0.0 secondary

104

ip address 100.22.0.1 255.255.0.0 secondary

ip address 100.23.0.1 255.255.0.0 secondary

ip address 100.24.0.1 255.255.0.0 secondary

ip address 100.25.0.1 255.255.0.0 secondary

ip address 100.26.0.1 255.255.0.0 secondary

ip address 100.27.0.1 255.255.0.0 secondary

ip address 100.28.0.1 255.255.0.0 secondary

ip address 100.29.0.1 255.255.0.0 secondary

ip address 100.30.0.1 255.255.0.0 secondary

ip address 100.31.0.1 255.255.0.0 secondary

ip address 100.32.0.1 255.255.0.0 secondary

ip address 100.33.0.1 255.255.0.0 secondary

ip address 100.34.0.1 255.255.0.0 secondary

ip address 199.255.253.1 255.255.255.0

no ip redirects

!

interface GigabitEthernet8/26

no ip address

!

interface GigabitEthernet8/27

ip address 199.255.254.1 255.255.255.0

no ip redirects

!

interface GigabitEthernet8/28

no ip address

!

interface GigabitEthernet8/29

ip address 199.255.255.1 255.255.255.0

no ip redirects

!

interface GigabitEthernet8/30

no ip address

shutdown

!

105

interface GigabitEthernet8/31

no ip address

!

interface GigabitEthernet8/32

no ip address

!

interface GigabitEthernet8/33

no ip address

!

interface GigabitEthernet8/34

no ip address

!

interface GigabitEthernet8/35

no ip address

!

interface GigabitEthernet8/36

no ip address

!

interface GigabitEthernet8/37

no ip address

!

interface GigabitEthernet8/38

no ip address

!

interface GigabitEthernet8/39

!

interface GigabitEthernet8/40

no ip address

!

interface GigabitEthernet8/41

no ip address

!

106

interface GigabitEthernet8/42

no ip address

!

interface GigabitEthernet8/43

no ip address

!

interface GigabitEthernet8/44

no ip address

shutdown

!

interface GigabitEthernet8/45

no ip address

!

interface GigabitEthernet8/46

no ip address

shutdown

!

interface GigabitEthernet8/47

no ip address

shutdown

!

interface GigabitEthernet8/48

no ip address

!

interface Vlan1

no ip address

shutdown

!

router rip

network 0.0.0.0

!

ip classless

ip forward-protocol nd

!

!

107

no ip http server

!

!

route-map test1 permit 10

set ip next-hop 199.255.255.2

!

!

!

control-plane

!

!

dial-peer cor custom

!

!

!

!

line con 0

line vty 0 4

password 7 121A0403440033142B3837

login

!

!

end

B.2 Network Configuration File For Transmitter Com-

puter (Computer 1)

auto lo

iface lo inet loopback

auto eth0

iface eth0 inet static

108

address 1.18.173.2

netmask 255.255.255.0

gateway 1.18.173.1

auto eth1

iface eth1 inet static

address 1.18.174.2

netmask 255.255.255.0

auto eth4

iface eth4 inet static

address 1.18.175.2

netmask 255.255.255.0

up route add -net 100.1.0.0 netmask 255.255.0.0 dev eth0

up route add -net 100.2.0.0 netmask 255.255.0.0 dev eth0

up route add -net 100.8.0.0 netmask 255.255.0.0 dev eth0

up route add -net 100.9.0.0 netmask 255.255.0.0 dev eth0

up route add -net 100.10.0.0 netmask 255.255.0.0 dev eth0

up route add -net 100.11.0.0 netmask 255.255.0.0 dev eth0

up route add -net 100.12.0.0 netmask 255.255.0.0 dev eth0

up route add -net 100.13.0.0 netmask 255.255.0.0 dev eth0

up route add -net 100.14.0.0 netmask 255.255.0.0 dev eth0

up route add -net 100.15.0.0 netmask 255.255.0.0 dev eth0

up route add -net 100.16.0.0 netmask 255.255.0.0 dev eth0

up route add -net 100.17.0.0 netmask 255.255.0.0 dev eth0

up route add -net 100.18.0.0 netmask 255.255.0.0 dev eth0

up route add -net 100.20.0.0 netmask 255.255.0.0 dev eth0

up route add -net 100.21.0.0 netmask 255.255.0.0 dev eth0

up route add -net 100.22.0.0 netmask 255.255.0.0 dev eth0

up route add -net 100.23.0.0 netmask 255.255.0.0 dev eth0

up route add -net 100.24.0.0 netmask 255.255.0.0 dev eth0

up route add -net 100.25.0.0 netmask 255.255.0.0 dev eth0

109

up route add -net 100.26.0.0 netmask 255.255.0.0 dev eth0

up route add -net 100.27.0.0 netmask 255.255.0.0 dev eth0

up route add -net 100.28.0.0 netmask 255.255.0.0 dev eth0

up route add -net 100.29.0.0 netmask 255.255.0.0 dev eth0

up route add -net 100.30.0.0 netmask 255.255.0.0 dev eth0

up route add -net 100.31.0.0 netmask 255.255.0.0 dev eth0

up route add -net 100.32.0.0 netmask 255.255.0.0 dev eth0

up route add -net 100.33.0.0 netmask 255.255.0.0 dev eth0

up route add -net 100.34.0.0 netmask 255.255.0.0 dev eth0

up route add -net 100.3.0.0 netmask 255.255.0.0 dev eth1

up route add -net 100.4.0.0 netmask 255.255.0.0 dev eth1

up route add -net 100.5.0.0 netmask 255.255.0.0 dev eth1

up route add -net 100.6.0.0 netmask 255.255.0.0 dev eth1

up route add -net 199.255.253.0 netmask 255.255.255.0 dev eth0

up route add -net 199.255.254.0 netmask 255.255.255.0 dev eth1

up route add -net 199.255.255.0 netmask 255.255.255.0 dev eth4

B.3 Network Configuration File For Receiver Com-

puter (Computer 2)

auto lo

iface lo inet loopback

auto eth0

iface eth0 inet static

address 199.255.253.2

netmask 255.255.255.0

auto eth1

iface eth1 inet static

address 199.255.254.2

netmask 255.255.255.0

110

auto eth2

iface eth2 inet static

address 199.255.255.2

netmask 255.255.255.0

up route add -net 100.1.0.0 netmask 255.255.0.0 dev eth0

up route add -net 100.2.0.0 netmask 255.255.0.0 dev eth0

up route add -net 100.8.0.0 netmask 255.255.0.0 dev eth0

up route add -net 100.9.0.0 netmask 255.255.0.0 dev eth0

up route add -net 100.10.0.0 netmask 255.255.0.0 dev eth0

up route add -net 100.11.0.0 netmask 255.255.0.0 dev eth0

up route add -net 100.12.0.0 netmask 255.255.0.0 dev eth0

up route add -net 100.13.0.0 netmask 255.255.0.0 dev eth0

up route add -net 100.14.0.0 netmask 255.255.0.0 dev eth0

up route add -net 100.15.0.0 netmask 255.255.0.0 dev eth0

up route add -net 100.16.0.0 netmask 255.255.0.0 dev eth0

up route add -net 100.17.0.0 netmask 255.255.0.0 dev eth0

up route add -net 100.18.0.0 netmask 255.255.0.0 dev eth0

up route add -net 100.19.0.0 netmask 255.255.0.0 dev eth0

up route add -net 100.20.0.0 netmask 255.255.0.0 dev eth0

up route add -net 100.21.0.0 netmask 255.255.0.0 dev eth0

up route add -net 100.22.0.0 netmask 255.255.0.0 dev eth0

up route add -net 100.23.0.0 netmask 255.255.0.0 dev eth0

up route add -net 100.24.0.0 netmask 255.255.0.0 dev eth0

up route add -net 100.25.0.0 netmask 255.255.0.0 dev eth0

up route add -net 100.26.0.0 netmask 255.255.0.0 dev eth0

up route add -net 100.27.0.0 netmask 255.255.0.0 dev eth0

up route add -net 100.28.0.0 netmask 255.255.0.0 dev eth0

up route add -net 100.29.0.0 netmask 255.255.0.0 dev eth0

up route add -net 100.30.0.0 netmask 255.255.0.0 dev eth0

up route add -net 100.31.0.0 netmask 255.255.0.0 dev eth0

up route add -net 100.32.0.0 netmask 255.255.0.0 dev eth0

up route add -net 100.33.0.0 netmask 255.255.0.0 dev eth0

up route add -net 100.34.0.0 netmask 255.255.0.0 dev eth0

111

up route add -net 100.3.0.0 netmask 255.255.0.0 dev eth1

up route add -net 100.4.0.0 netmask 255.255.0.0 dev eth1

up route add -net 100.5.0.0 netmask 255.255.0.0 dev eth1

up route add -net 100.6.0.0 netmask 255.255.0.0 dev eth1

112

References

[1] B. Agrawal and T. Sherwood. Modeling tcam power for next generation network
devices. In Performance Analysis of Systems and Software, 2006 IEEE International
Symposium on, pages 120–129. IEEE, 2006.

[2] N. Brownlee, C. Mills, and G. Ruth. Traffic flow measurement: Architecture. Traffic,
1999.

[3] CAIDA. Internet traffic data. http://www.caida.org/data/passive/passive_

2010_dataset.xml, March 2012.

[4] Haldun Hadimioglu. High Performance Memory Systems. Springer, 2003.

[5] V. Carl Hamacher. Computer Organization And Embedded Systems. McGraw-Hill,
2012.

[6] J. Handy. The Cache Memory Book. Morgan Kaufmann, 1998.

[7] AG Hanlon. Content-addressable and associative memory systems a survey. Electronic
Computers, IEEE Transactions on, (4):509–521, 1966.

[8] Craig Hunt. TCP/IP Network Administration. O’Reilly Media, 2002.

[9] C.R. Meiners. Algorithmic approaches to optimizing tcam-based packet classification.
2009.

[10] N. Mohan and M. Sachdev. Novel ternary storage cells and techniques for leakage
reduction in ternary cam. In SOC Conference, 2006 IEEE International, pages 311–
314. IEEE, 2006.

[11] P. Nicholson. The application of the in-tree knapsack problem to routing prefix caches.
2009.

113

http://www.caida.org/data/passive/passive_2010_dataset.xml
http://www.caida.org/data/passive/passive_2010_dataset.xml

[12] R. Panigrahy and S. Sharma. Reducing tcam power consumption and increasing
throughput. In High Performance Interconnects, 2002. Proceedings. 10th Symposium
on, pages 107–112. IEEE, 2002.

[13] B. Parhami. Associative memories and processors: An overview and selected bibliog-
raphy. Proceedings of the IEEE, 61(6):722–730, 1973.

[14] K. Sasai and T. Sasai. Content addressable memory, July 23 1991. US Patent
5,034,919.

[15] Nemesis Software. Nemesis. http://nemesis.sourceforge.net/, March 2012.

[16] Scapy Software. Scapy. http://www.secdev.org/projects/scapy/, March 2012.

[17] Cisco Systems. Cisco 1600 series router architecture. http://www.cisco.com/en/

US/products/hw/routers/ps214/products_tech_note09186a0080094eb4.shtml,
March 2012.

[18] Cisco Systems. Cisco catalyst 6500 series switches. http://www.cisco.com/en/US/

products/hw/switches/ps708/index.html, March 2012.

[19] Cisco Systems. Layer 3 interface configuration. http://www.cisco.com/en/US/docs/
switches/lan/catalyst6500/ios/12.2SX/configuration/guide/layer3.html,
March 2012.

[20] Cisco Systems. Rip commands. http://www.cisco.com/en/US/docs/ios/12_2/ip/
configuration/guide/1cfrip.html, March 2012.

[21] K. Thompson, G.J. Miller, and R. Wilder. Wide-area internet traffic patterns and
characteristics. Network, IEEE, 11(6):10–23, 1997.

[22] C. Williamson. Internet traffic measurement. Internet Computing, IEEE, 5(6):70–74,
2001.

[23] Wireshark. Display filter reference: Address resolution protocol. http://www.

wireshark.org/docs/dfref/a/arp.html, March 2012.

[24] Wireshark. Display filter reference: Transmission control protocol. http://www.

wireshark.org/docs/dfref/t/tcp.html, March 2012.

114

http://nemesis.sourceforge.net/
http://www.secdev.org/projects/scapy/
http://www.cisco.com/en/US/products/hw/routers/ps214/products_tech_note09186a0080094eb4.shtml
http://www.cisco.com/en/US/products/hw/routers/ps214/products_tech_note09186a0080094eb4.shtml
http://www.cisco.com/en/US/products/hw/switches/ps708/index.html
http://www.cisco.com/en/US/products/hw/switches/ps708/index.html
http://www.cisco.com/en/US/docs/switches/lan/catalyst6500/ios/12.2SX/configuration/guide/layer3.html
http://www.cisco.com/en/US/docs/switches/lan/catalyst6500/ios/12.2SX/configuration/guide/layer3.html
http://www.cisco.com/en/US/docs/ios/12_2/ip/configuration/guide/1cfrip.html
http://www.cisco.com/en/US/docs/ios/12_2/ip/configuration/guide/1cfrip.html
http://www.wireshark.org/docs/dfref/a/arp.html
http://www.wireshark.org/docs/dfref/a/arp.html
http://www.wireshark.org/docs/dfref/t/tcp.html
http://www.wireshark.org/docs/dfref/t/tcp.html

	List of Tables
	List of Figures
	Introduction
	Routers and Switches
	Catalyst 6500 Series

	Motivation and Objectives
	Thesis Organization

	Background
	Switches and Routers
	Cisco Catalyst 6500 E Series Switch

	Cache Memory
	Content Addressable Memory (CAM)
	CAMs in Catalyst 6500

	Internet Traffic Characterization
	Previous Work on Internet Traffic Characterization
	Traffic Characterization of Data from CAIDA

	Framework
	Internet Traffic Characterization
	Extraction of Data From CAIDA Dataset

	Experimental Setup
	Requirements
	Challenges
	Overcoming the Challenges and Meeting the Requirements
	Devices' Connections and Configuration
	Performing An Experiment
	Software Used

	Results And Analysis
	Internet Traffic Characterization
	Experimental Results
	Experiment 1
	Experiment 2
	Experiment 3

	Conclusion and Future Work
	Findings
	Future Work and Improvements

	APPENDICES
	Analysis Scripts
	Analyzing Experiment Data
	Sending and Receiving Packets Scripts
	Analyzing Data From CAIDA

	Devices' Configuration
	Switch Configuration
	Network Configuration File For Transmitter Computer (Computer 1)
	Network Configuration File For Receiver Computer (Computer 2)

	References

