
BridgeSPA: A Single Packet
Authorization System for Tor

Bridges

by

Robin Smits

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Computer Science

Waterloo, Ontario, Canada, 2012

c© Robin Smits 2012

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Tor is a network designed for low-latency anonymous communications. Tor clients form
circuits through relays that are listed in a public directory, and then relay their encrypted
traffic through these circuits. This indirection makes it difficult for a local adversary to
determine with whom a particular Tor user is communicating. Tor may also be used to
circumvent regional Internet censorship, since the final hop of a user’s connection can
be in a different country. In response, some local adversaries restrict access to Tor by
blocking each of the publicly listed relays. To deal with such an adversary, Tor uses
bridges, which are unlisted relays that can be used as alternative entry points into the Tor
network. Unfortunately, issues with Tor’s bridge implementation make it easy to discover
large numbers of bridges. This makes bridges easy to block. Also, an adversary that
hoards this information may use it to determine when each bridge is online over time.
If a bridge operator also browses with Tor on the same machine, this information may
be sufficient to deanonymize him. We present BridgeSPA as a method to mitigate these
issues. A client using BridgeSPA relies on innocuous single packet authorization (SPA) to
present a time-limited key to a bridge. Before this authorization takes place, the bridge will
not reveal whether it is online. We have implemented BridgeSPA as a working proof-of-
concept for GNU/Linux systems. The implementation is available under a free licence. We
have integrated our implementation to work in an OpenWRT environment. This enables
BridgeSPA support for any client behind a deployed BridgeSPA OpenWRT router, no
matter which operating system they are running.

iii

Acknowledgements

I thank my supervisor Ian Goldberg for always providing useful feedback. I also thank
my co-authors of the project (Divam Jain and Sarah Pidcock) and paper (Divam Jain,
Sarah Pidcock, Ian Goldberg and Urs Hengartner) that this work is extended from. I
thank Eugene Vasserman for some helpful discussions about his work as well as this work
during his visit to Waterloo. Finally, I thank my thesis readers (Srinivasan Keshav and
Urs Hengartner) for their time and feedback.

iv

Dedication

I dedicate this thesis to Joey, Ollie, and Suzy.

v

Table of Contents

List of Tables viii

List of Figures ix

1 Introduction 1

1.1 Tor and Bridges . 1

1.2 Bridge Aliveness Attack . 4

1.3 BridgeSPA . 6

2 Related Work 8

2.1 Comparison with Other Knocking Systems 12

2.1.1 Knockknock . 12

2.1.2 Fwknop . 13

3 The BridgeSPA Protocol 14

3.1 Adversarial Model . 15

3.2 Protocol Details . 15

4 BridgeSPA Implementations 19

4.1 Unlisted Bridges . 21

4.2 GNU/Linux Standard Implementation . 22

4.2.1 Performance Impact . 22

vi

4.3 OpenWRT Implementation . 23

4.3.1 Implementation Details . 24

4.3.2 Performance Impact . 25

5 Attacks 29

5.1 Bridge Aliveness and Enumeration Attacks 29

5.1.1 Other Aliveness Checks . 30

5.2 Bridge Client Detection Attacks . 30

5.2.1 Active Adversaries . 30

5.2.2 Passive Adversaries . 33

6 TCP/IP Covert Channels in Microsoft Windows 39

6.1 Initial Sequence Number Selection . 39

6.2 Other Covert Channels . 44

7 Future Work 45

7.1 Kernel Implementation . 45

7.2 Properly Handling SYN Retransmits . 45

7.3 Properly Handling Finished Connections 46

7.4 Bridge Authority and BridgeDB Changes 46

7.5 Multiple NAT Layers . 46

7.6 Pluggable Transports . 47

7.7 Privacy and TCP/IP Varieties . 47

8 Conclusion 49

References 50

vii

List of Tables

2.1 An IP packet header. 11

2.2 A TCP packet header. 11

4.1 Throughput measurements for the KnockProxy (standard implementation). 23

4.2 Throughput measurements for the KnockProxy (OpenWRT implementa-
tion), 100 Mb/s. 26

4.3 Throughput measurements for the KnockProxy (OpenWRT implementa-
tion), 1536 and 600 KiB/s. 26

5.1 DoorKeeper delay measurement (standard implementation). 34

5.2 DoorKeeper delay measurement in a ModelNet setting (standard implemen-
tation). 36

5.3 DoorKeeper delay measurement (OpenWRT implementation). 36

6.1 NIST test suite output, 675000 Microsoft Windows ISNs 42

6.2 NIST test suite output, 675000 GNU/Linux ISNs 43

viii

List of Figures

1.1 A client constructing a 3-node Tor circuit. 2

1.2 A bridge client constructing a 3-node Tor circuit. 3

1.3 Basic interaction among Tor bridge entities. 4

3.1 Changes to Tor bridge-related communication in BridgeSPA. 16

3.2 Basic interaction among bridge-related entities in a BridgeSPA setting. . . 17

4.1 A client using BridgeSPA to connect to a Tor bridge. 21

4.2 A failed authorization scenario with BridgeSPA. 22

4.3 The network configuration of the KnockProxy performance experiments
(OpenWRT implementation). 25

4.4 Concurrent clients throughput measurements for the KnockProxy (Open-
WRT implementation). 28

5.1 A BridgeSPA man-in-the-middle scenario. 31

5.2 BridgeSPA modified to prevent man-in-the-middle. 32

5.3 The network configuration of the DoorKeeper delay measurement experi-
ment (standard implementation). 35

5.4 DoorKeeper delay measurement experimental configuration (standard im-
plementation). 37

5.5 The network configuration of the DoorKeeper delay measurement experi-
ment (OpenWRT implementation). 38

ix

6.1 A visualization of 2500 initial TCP sequence numbers collected from a Win-
dows XP SP3 machine. 40

6.2 A visualization of 2500 initial TCP sequence numbers collected from a Win-
dows XP SP3 machine, separated by byte. 41

x

Chapter 1

Introduction

1.1 Tor and Bridges

Tor [9] is an open-source low-latency anonymity network that sees approximately 250,000
users per day [27]. Tor relies on volunteers to operate relays that forward end users’
traffic. As shown in Figure 1.1, a client fetches a list of Tor relays from the Tor directory
authority. The client selects three of these relays and establishes a layered, encrypted
connection through them to reach his desired destination. Tor may be used to defeat some
forms of Internet censorship. For example, a Canadian user wishing to access a web site
that is blocked by Canadian Internet Service Providers (ISPs) can simply configure Tor to
create circuits that must have exit nodes outside of Canada. Tor was initially designed,
however, for anonymity and not censorship resistance. A list of current Tor relays is easily
retrievable from centralized, publicly known directory authorities. This makes it trivial for
an ISP to block all connections to Tor by blocking access to the IP addresses of all Tor
relays. As of June 2011, China blocks Tor via this method [17]. Note that this is not the
only way Tor has been blocked [8].

In an attempt to mitigate the ease of blocking Tor relays, unlisted relays (known as
bridges) are available to provide alternate entry points to the Tor network. A bridge can
be hosted on a specially deployed server, or it may be run on a home computer by a Tor
user who has opted to help censored users reach Tor. All of the different components of
the Tor network are available from the same binary executable, which is easily configured
by the user. The standard Tor configuration tool makes it easy to operate as a bridge.

As shown in Figure 1.2, a bridge client operates in a similar manner as a regular Tor
client. The bridge client must first connect through the bridge to access the list of Tor

1

Directory
Server

Tor
Relay

Tor
Relay

Tor
Relay

Fetch lis
t o

f re
lays

Destination

www.freedom.site

Figure 1.1: A client constructs a 3-node Tor circuit using the list of relays from the directory
authority. The first node operates as a guard node, and remains persistent over many
circuits. The second node is referred to as the middle node. The last relay is the exit node.

relays, and is then able to construct a 3-node circuit where the bridge is always the first
node.

Bridges can be strictly unlisted (in which case information about the bridge is spread by
word of mouth), or their descriptors can be distributed online by The Tor Project. A bridge
descriptor always contains the bridge’s IP address, and port. It can optionally include a
hash of the bridge’s public key (i.e., its fingerprint). As shown in Figure 1.3, the bridge
authority keeps track of valid bridges, and the BridgeDB [19] provides the mechanisms
for distributing bridge information through the web and by e-mail. This allows people in
censored regimes to find bridge information through an encrypted webmail session. It is
The Tor Project’s aim to make it simple for users to find a few bridge descriptors, and
at the same time to make it difficult for an adversary to find many bridges. To enforce
this, The Tor Project restricts the distribution of bridge descriptors to three per week per
24-bit IP address prefix. Subsequent requests within a week will return the same bridge.
However, the distribution mechanism does not account for attacks in which an adversary
can gain control of many IP addresses through open proxies or botnets. In the case of a
state-sponsored adversary, the adversary may have access to a significant number of IP
addresses with distinct 24-bit prefixes.

It is clear that Tor bridges are not perfect. If one suspects that a particular host is
operating as a Tor bridge, it is trivial to attempt to connect to the bridge to confirm this.

2

Directory

Server

Tor

Relay

Tor

Relay

Fetc
h b

rid
ge

desc
rip

to
rs

Destination

www.freedom.site

bridgeDB

Fetch re
lays via brid

ge

Tor

Bridge

Figure 1.2: A bridge client constructs a 3-node Tor circuit. In this case, any connection to
non-bridge Tor entities are tunneled through the bridge.

Bridges often run on predictable ports (such as 9001, 443), which means this confirmation
can be performed with few resources. To gather a large list of bridges, a resourceful
adversary can even test large blocks of IP addresses, or perhaps the entire IPv4 address
space, on these ports. A less expensive way to gather bridges is to deploy a Tor relay. A
Tor relay, unless operating strictly as a guard or exit node, can expect some of its clients
to be Tor bridges. It is fairly simple to deploy a relay that is never selected as a guard or
exit node by a standard Tor client.1 A Tor relay operator can simply try to connect back
to all clients using the method described above to determine which clients are bridges. An
even more inexpensive method of determining bridges is to check if the client’s IP address
is listed as a Tor relay. If the deployed relay cannot be selected as a guard or exit relay, all
of its clients must be guards or bridges. Thus if a client’s IP address is not listed as a Tor
relay it means the client must be a bridge. Note that this particular behaviour is likely to
change in the future [6, 7, 21].

1A relay must explicitly be configured to become an exit node. Guard nodes are selected partially
based on their reliability. To avoid becoming a guard, one can simply periodically restart the relay with a
different relay identifier.

3

BridgeBridge

Bridge

Authority

Bridge

Register

(IP, port)

BridgeDB

ClientClient

Request for

bridge

information

Bridge

Client

Connect

Bridge

ClientClient

ClientClientClient

Tor

Network(IP, port)

Figure 1.3: Basic interaction among Tor bridge entities. In the bottom left, a Tor bridge
registers with the bridge authority and provides the IP address and port number for which
it will accept bridge clients. In the top left, a client receives some bridge descriptors from
the Tor BridgeDB. On the right, a client accesses the Tor network with the help of a bridge.

1.2 Bridge Aliveness Attack

McLachlan and Hopper [22] identified other issues with Tor bridges that could impact the
anonymity of the bridge operator. Specifically, these issues apply to bridge operators who
also use the bridge machine for web browsing. The attack they described is possible because
it is easy to find a large number of Tor bridges, and a bridge always accepts connections
from potential bridge clients while its operator is using Tor.

The attack considers a remote adversary who has a partial view of the Tor network. The
adversary has enough resources to enumerate a large percentage of available Tor bridges
over time. The adversary chooses a particular victim, who he knows is using Tor both as
a client and to serve as a bridge. The goal of the adversary is to find the real IP address
of this victim. The adversary must be able to detect some instances where the victim is
online and using Tor, and he must have control over some content that the victim will
access. It is not unreasonable to assume an adversary would have these abilities if he was,
for example, the moderator of a message board that his victim is a member of.

4

The attack has three phases, which we collectively refer to as the “bridge aliveness
attack.” The bridge discovery phase involves collecting a large list of bridge addresses
and descriptors for use later in the attack. Section 1.1 describes several ways an adversary
could do this. When the adversary carries out the winnowing phase, he eliminates IP
addresses from his list of bridges that he is sure do not belong to the victim. The attacker
does this by querying all bridges in his list to see which are accepting connections (“alive”)
whenever he sees that his victim is online (e.g. making a post to a forum). This can be
done by simply attempting to use each bridge as a client. Any bridge that is not accepting
connections is not operated by the victim, since we are assuming the adversary knows the
victim is online and using Tor. The adversary can continue the winnowing phase until he
is left with just a few bridges. Finally, the adversary executes the confirmation phase,
which uses a type of Tor circuit clogging attack to confirm the victim’s IP address. To do
this, the adversary embeds some content that he knows the victim will access. This content
(e.g. an image) is hosted on a server, referred to as a burst server, which is controlled by the
adversary. The rate at which the burst server tranfers data varies in a predictable way. For
example, the server might intentionally restrict its transfer rate to 5 KiB/s for 15 seconds,
and then transfer at an unrestricted rate for the following 15 seconds. While the victim
is downloading from the burst server, the adversary connects to each remaining bridge.
The adversary will attempt to correlate changes in the bridge connection’s round-trip time
(RTT) with the predictable rate changes followed by the burst server. If the adversary
observes a strong correlation for a particular bridge, he can conclude that this bridge is
likely to be the same client downloading from the burst server. The adversary now knows
the IP address of a Tor client who believed she was anonymous.

The attack discourages Tor clients from opting in to serve as bridges since there is a
chance their anonymity can be compromised.

McLachlan and Hopper [22] suggested a few methods to address different phases of
this attack. To reduce the effectiveness of the winnowing phase, one idea they proposed
was that a bridge could choose whether or not to serve clients based on a biased coin toss
when the operator starts using Tor. This removes the close relationship between a bridge
operator actively serving and using Tor as a client. Unfortunately, this results in fewer
bridge resources available for clients.

One suggested method for mitigating problems in the bridge discovery phase is that a
client should send a hash of the bridge’s public key, discovered from the bridge authority,
which must be verified by the bridge before the connection is accepted. This approach
prevents a relay from easily attempting to connect to all of its clients to test whether or not
they are serving as bridges. This change verifies that the client received a bridge descriptor
from the bridge authority. The descriptor would still be valid indefinitely, however, since

5

the hash does not change unless the bridge’s public key changes, and hoarding bridges
would still be possible.

Another suggestion to hinder bridge discovery is to require that the bridge’s port is
chosen at random. This makes bridge scanning more costly, but does not prevent scans
from occurring.

1.3 BridgeSPA

This research focuses on BridgeSPA [32], a system that introduces an innocuous single
packet authorization (SPA) system for Tor bridges. This makes it significantly more diffi-
cult to discover and hoard Tor bridge descriptors. It also eliminates the ability to arbitrar-
ily query a bridge’s aliveness. With these properties, BridgeSPA also mitigates the bridge
aliveness attack.

At a high level, BridgeSPA introduces time-limited keys for bridges. As users request
bridge information from the BridgeDB, BridgeSPA requires that the BridgeDB supplies
this additional key. This key is in addition to the bridge IP, port, and fingerprint that the
BridgeDB currently distributes. The key will only be valid for a time period defined by
the associated bridge operator. An appropriate interval would be between 1 and 7 days.
Clients using BridgeSPA must prove knowledge of this time-limited key in order to access
a bridge or to even query aliveness of the bridge. This proof is presented in an innocuous
single packet authorization (SPA) protocol [29,36], which allows the bridge to validate the
key before responding. Failed authorization attempts from a client do not reveal aliveness,
and a passive observer of the communication does not learn that the client is attempting
to circumvent censorship.

The innocuous SPA protocol used in BridgeSPA is based on an existing system, Silent-
Knock [36]. SilentKnock, out-of-the-box, unfortunately does not work well with Tor
bridges. For example, it requires that the server running SilentKnock maintains an ex-
plicit per-client counter that is synchronized with the clients. In general, an anonymizing
service should not keep logs of its clients. Also, contrary to SilentKnock, all BridgeSPA
clients for a specific bridge will use the same time-limited key. We have modified the
SilentKnock protocol to allow it to work in a Tor bridge setting.

A client who wishes to access a bridge using the BridgeSPA protocol runs the BridgeSPA
KnockProxy alongside the usual Tor client software. Similarly, bridges run the BridgeSPA
DoorKeeper to authorize valid client connections. These processes run alongside Tor, and
do not require changes to the Tor software.

6

In the next chapter, we look at some of the work BridgeSPA builds on. In Chapter 3
we describe the high-level BridgeSPA protocol. We explain and experiment on our im-
plementations of this system in Chapter 4. In Chapter 5, we outline potential attacks on
BridgeSPA, as well as countermeasures. We examine the Microsoft Windows implementa-
tion of TCP/IP for covert channels in Chapter 6. After this, we highlight potential future
work in Chapter 7. Finally, we conclude in Chapter 8.

7

Chapter 2

Related Work

The core strategies of BridgeSPA build on existing work in port scan resistance and TCP/IP
covert channels. An attacker usually launches a port scan to gather information about a
target system, such as the operating system and specific services that are running. This
helps an attacker determine what vulnerabilities may be present. One may limit a port
scan’s effectiveness by dropping all packets that do not arrive from a predefined whitelist
of IP addresses. Maintaining a whitelist is not always desirable or even feasible, and other
approaches are sometimes more appropriate.

In 2002, Barham et al. [4] proposed designs for a silent authentication service (SAS),
which hides the existence of a service to a requester until they send specially crafted packets
with an encoded secret key. They describe three possible designs for this. First, in Spread-
Spectrum TCP a client sends a series of TCP SYN packets with the destination ports and
initial sequence numbers (ISN) chosen such that the shared key is encoded. In the second
design, Tailgate TCP, a client first sends a UDP packet containing an encoded, shared key.
A TCP SYN packets follows immediately, which gives this design its name. Finally, in
Option-Keyed TCP, a client sends a specially crafted TCP SYN packet with the shared
key encoded in the ISN and TCP timestamp value. This single packet may be accepted by
the server if the key was validated. While these designs do resist port scanning, the goal
of this work was to make DoS attacks less effective since unwanted packets may be quickly
dropped by the SAS before they are passed onto an application.

In 2003, Krzywinski [16] described port knocking as a simple mitigation of port scanning.
A port knocking system will prevent access to a particular service until the requester sends
a series of packets to a pre-defined sequence of ports. The port sequence is essentially a
secret key for accessing a particular service. This is very similar to the Spread-Spectrum

8

TCP variant of SAS. Unlike SAS, port knocking was described with the intention for it to
be easily implemented in Linux with simple shell scripts interacting with firewall rules. A
client can similarly easily script a port knocking sequence with commonly installed tools
like a telnet client. In 2006, Rash [29] described single packet authorization (SPA) as a
variation of port knocking. An SPA system conceals the existence of a particular service
until the requester sends a UDP packet to a particular host with an appropriate payload.
This is very similar to the idea of Tailgate TCP. All of these systems successfully resist a
port scan; however, an adversary who is capable of passively monitoring communications
could infer the existence of an SAS, port knocking or SPA service in these scenarios by
recognising communication patterns that are not characteristic of normal TCP connections.

A number of researchers have studied the TCP/IP suite for opportunities to implement
covert channels [11, 23, 30]. In 1997, Rowland [30] described how the IP ID field in an
IP packet as well as the ISN in a TCP packet can be used to encode information. This
work was later strengthened by Giffin et al. [11] to use the TCP timestamp field, and also
to use message authentication codes to encode the covert messages. This is similar to
what Barham et al. did with SAS, but without the intention of being covert to a passive
observer. Murdoch and Lewis [23] later presented an analysis of how different versions
of Linux and OpenBSD select ISN and IP ID values. Since parts of these values are not
uniformly random, an appropriate distribution must be considered by covert messaging
systems to avoid leaking information. Related to TCP/IP covert channels, Goh et al. [12]
describe an implementation of protocol-based key recovery. They show how user-chosen
random fields in protocols such as TLS and SSH can be chosen by one of the parties such
that a passive adversary can discover the secret key protecting the session.

In 2007, Vasserman et al. presented SilentKnock [36], a form of SPA and SAS that
takes into consideration the aforementioned work on TCP/IP covert channels. They also
presented a formal model against which one may evaluate innocuous SPA systems. A client
attempting to access a service guarded by the SilentKnock daemon (sknockd) must initiate
a specially constructed TCP SYN packet to the target IP address and port. This is similar
to Option-Keyed TCP described above, but with the TCP header fields chosen in a way
such that using SilentKnock is provably undetectable to a passive observer. This packet
contains a calculated MAC encoded in the lower 3 bytes of the ISN value and the lower
byte of the TCP timestamp field. In its simplest version, the MAC is keyed with a pre-
established long term key and is applied to a per-client counter value, as well as source and
destination IP address and port pairs. The per-client counter needs to stay synchronized
between SilentKnock clients and sknockd. Upon receiving a TCP SYN packet, sknockd is
able to recompute the expected MAC value using its own copy of the pre-established long
term key and per-client counter value.

9

SilentKnock chooses to use the lower 3 bytes of the ISN value and the lower byte of the
TCP timestamp field since these values are uniformly random in Linux 2.6. The highest-
order byte of the ISN in Linux does not have the same property. While the TCP timestamp
does not need to be related to the current system time, in Linux 2.6 the timestamp values
are consistent across connections. In the case where the last byte of a TCP timestamp
needs to be increased to correctly encode the MAC output, it should not be the case that
an immediate subsequent connection contains a lower TCP timestamp value. To avoid
this, SilentKnock clients will also delay themselves accordingly before sending a TCP SYN
packet when its TCP timestamp has been increased.

As mentioned above, BridgeSPA uses a form of SPA and SAS based on SilentKnock.
BridgeSPA also attempts to use the lower 3 bytes of the ISN value, and the lower byte
of the TCP timestamp field. When the TCP timestamp field is not present, BridgeSPA
will use all 4 bytes of the ISN value. We discuss our reasoning for this in Chapter 6. In
general we will assume that the TCP timestamp field is present. We also assume that
no intermediary router will remove the TCP timestamp. Unlike SilentKnock, BridgeSPA
does not try to maintain a counter for each client to prevent replay, but instead includes
the loosely rounded UTC time in the MAC pre-image. As a trade-off, by including the
time instead of a synchronized counter we introduce a small opportunity for replay. Bridge
clients should not possess unique keys, and it is not appropriate to require Tor bridges to
maintain an access counter for each client IP address. We describe our implementation
with more detail in Chapter 4. In Chapter 2.1 we expand this discussion by comparing
BridgeSPA to other popular port knocking implementations.

For convenience, the structure of a TCP/IP packet header highlighting fields that may
be used for covert channels is shown in Tables 2.1 and 2.2.

Specific to Tor, there have been investigations [13, 26] into including keys with bridge
descriptors for the purpose of making bridges more difficult to detect. Both of these works
propose that a client should send this secret to a bridge after a standard TLS connection
has been established. If the bridge does not receive the secret, or the secret is invalid, the
bridge will act like a regular web server. Note that this alone does not protect against the
bridge aliveness checks needed for the bridge aliveness attack. We describe how this method
will, however, protect against an active adversary hijacking a client’s bridge connection in
section 5.2.

There has been a proposal to use port knocking and SPA for Tor bridges to make
them more resilient against detection [1]. This suggestion includes using DNS packets as a
transport method for SPA. While this idea would be much simpler to implement, we feel it
is necessary for the traffic that a bridge client generates while using Tor to be completely

10

T
ab

le
2.

1:
A

n
IP

p
ac

ke
t

h
ea

d
er

.
W

e
u
se

it
al

ic
s

fo
r

va
lu

es
th

at
ca

n
b
e

u
se

d
fo

r
co

ve
rt

ch
an

n
el

s,
as

d
es

cr
ib

ed
b
y

M
u
rd

o
ch

et
al

.
[2

3]
.

0
1

2
3

0
1

2
3

4
5

6
7

0
1

2
3

4
5

6
7

0
1

2
3

4
5

6
7

0
1

2
3

4
5

6
7

V
er

si
on

IH
L

T
y
p
e

of
S
er

v
ic

e
T
ot

al
L
en

gt
h

Id
en

ti
fi
ca

ti
on

(I
P

ID
)

F
la

gs
F
ra

gm
en

t
O

ff
se

t

T
im

e
to

L
iv

e
P

ro
to

co
l

H
ea

d
er

C
h
ec

k
su

m

S
ou

rc
e

A
d
d
re

ss

D
es

ti
n
at

io
n

A
d
d
re

ss

O
pt

io
n
s

P
ad

d
in

g

T
ab

le
2.

2:
A

T
C

P
p
ac

ke
t
h
ea

d
er

.
W

e
u
se

it
al

ic
s

fo
r
va

lu
es

th
at

ca
n

b
e

u
se

d
fo

r
co

ve
rt

ch
an

n
el

s,
as

d
es

cr
ib

ed
b
y

M
u
rd

o
ch

et
al

.
[2

3]
.

V
al

u
es

th
at

ar
e

in
b
o
ld

ar
e

u
se

d
b
y

B
ri

d
ge

S
P
A

.

0
1

2
3

0
1

2
3

4
5

6
7

0
1

2
3

4
5

6
7

0
1

2
3

4
5

6
7

0
1

2
3

4
5

6
7

S
ou

rc
e

P
or

t
D

es
ti

n
at

io
n

P
or

t

S
e
q
u
e
n
ce

N
u
m

b
e
r

A
ck

n
ow

le
d
ge

m
en

t
N

u
m

b
er

D
at

a
O

ff
se

t
R

es
er

ve
d

T
C

P
F
la

gs
[C

U
A

P
R

S
F
]

W
in

d
ow

S
iz

e

C
h
ec

k
su

m
U

rg
en

t
p
oi

n
te

r

O
pt

io
n
s

an
d

T
im

e
st

a
m

p
P
ad

d
in

g

11

innocuous. A DNS request to a particular IP always being followed by a TLS connection
to that same IP may stand out to an adversary who suspects that a client is using Tor
bridges.

2.1 Comparison with Other Knocking Systems

In this section we compare and evaluate BridgeSPA against popular knocking systems
in terms of properties, protocol, and implementation. Some port knocking systems have
similarities to the system implemented by BridgeSPA.

2.1.1 Knockknock

Knockknock [20] is an SPA system created by security researcher Moxie Marlinspike. Its
primary goal was to eliminate the trivial replay attacks that could occur in earlier port
knocking systems if an adversary passively monitored a successful authorization. Marlin-
spike imposed several more restrictions on his design, such as:

• The implementation should be written in a memory-safe language.

• The implementation should not run in the kernel

• The implementation should not inspect every packet

Knockknock’s protocol consists of a client sending a TCP SYN packet to a particular
port, which is monitored by a the knocknock-daemon. These TCP SYN packets contain a
MAC payload that the daemon checks before opening another port to accept connections.
Knockknock implements this with a firewall rule that logs TCP SYN packets to a file. An
unprivileged thread looks in this file for a specific MAC output encoded in the packet’s
headers.

While this is a very good design, it does not have the same goals as BridgeSPA. Knock-
knock is similar to BridgeSPA in that they both use packet header fields and MACs to
encode values, but that is the extent of the similarity.

When a client sends a valid SPA packet, the knocknock-daemon simply allows the
desired port to be accessible by the client. Another TCP connection must be initiated
after the client’s knocker has executed. To a passive observer, this protocol is not covert.

12

It may be possible to use raw sockets to respond to and initialize the client connection after
reading a valid logged TCP SYN. This would require superuser privileges. Also note that
the knockknock-daemon in this case would still likely incur a significant delay, compared
to that of the BridgeSPA DoorKeeper.

Knockknock targets the GNU/Linux operating system, and is implemented in Python.

2.1.2 Fwknop

Fwknop [28] is a popular, practical, and well-supported SPA system. It is compatible
with Linux, Mac OS X, BSD, and has partial support under Windows (with Cygwin). It
supports hiding services behind NAT devices, and allows flexible restrictions on incoming
SPA packets.

Fwknop uses libpcap to passively listen for packets, but also supports modes similar
to Knockknock. That is, it will accept a specifically formatted iptables or tcpdump output
stream.

The Fwknop protocol consists of a client sending a value that proves the possession of
a key, encoded somewhere in the body of an IP packet. By default, it operates using AES
for symmetric encryption and uses UDP as the transport layer.

Alternatively, Fwknop may be configured to use asymmetric cryptography. For exam-
ple, a client sends a signed GPG message that is encrypted for a particular GPG key-holder.
This would be the payload of the knocking packet. Fwknop can also establish a TCP con-
nection to send its payload, or use an ICMP packet.

The Fwknop is implemented in C, and is available in many operating system package
repositories, including OpenWRT.

Fwknop also does not intend to be covert. By default, the client sends a UDP payload
to a particular port. To a passive observer this would be trivial to observe. We also see
that Fwknop’s goals and default behaviour are quite different from Knockknock. Fwknop
intends to be flexible, and most qualities of its protocol are configurable. It would be
difficult to introduce covert SPA capabilities to Fwknop without breaking compatibility
with some operating systems.

13

Chapter 3

The BridgeSPA Protocol

BridgeSPA has two major goals. As suggested above, our first goal is to mitigate the ability
to easily detect bridges and carry out the bridge aliveness attack. Specifically, we wish to
remove the ability for a client to easily identify a particular host as a bridge, connect to the
bridge, or even determine if the bridge is online unless he has recently obtained a key. This
significantly increases the amount of network resources an attacker must have to carry out
the bridge aliveness attack, since bridge information received from The Tor Project will
expire.

Our other major goal states that our changes and additions should not provide addi-
tional information to an adversary who is attempting to detect clients who use bridges.
Currently Tor traffic is distinguishable from non-Tor traffic and the Tor community is
working to address this [3]. Our work should not hinder their efforts in any way. A
man-in-the-middle observing a client connecting to a bridge should not learn that a Tor
connection is being established simply because of the changes we propose.

Some secondary goals are as follows:

• Minimal communication overhead: Bandwidth is frequently a limiting resource
for Tor. It is therefore important to minimize the communication overhead our
protocol imposes on bridge operators, clients and authorities.

• Preserve the “unlisted bridge” mode: Currently, bridges can operate without
having their descriptors listed at a bridge authority. This provides the ability for a
bridge operator to manually distribute her bridge information to specific users of her
choice. This is a useful ability that we must preserve.

14

• Maximize bridge uptime: To best utilize bridge resources, we also want to allow
a bridge to serve whenever it is available to do so.

• Minimize assumptions about Tor protocols: Tor is an actively evolving net-
work. Our protocol should be agnostic to the specifics of other Tor protocols.

3.1 Adversarial Model

As our two primary goals are addressing different types of threats, the adversarial models we
must consider are also different. While addressing the bridge identification and the bridge
aliveness attack, we consider a remote non-global adversary who is capable of querying for
a reasonably large number of bridge descriptors from bridge authorities over time. This
adversary may perform aliveness tests by attempting to connect to bridges as a bridge
client. This adversary would also have access to timestamps of contributions and control
some content on a website where the bridge operator makes pseudonymous contributions,
in order to carry out the bridge aliveness attack.

When considering whether a bridge client may be identified as a Tor user, our adversary
is much more capable. We assume an active adversary with full control of the local network
in which the client is present. She is capable of monitoring, injecting, replaying, shaping
and dropping packets but only within her network bounds. This adversary has no view or
control of the outside network, where Tor relays and bridges operate.

3.2 Protocol Details

In this section we describe the life cycle and high-level interaction of bridges and clients
using the BridgeSPA protocol. BridgeSPA is an authorization protocol that allows a client
to connect to bridges for which they have a valid descriptor but prevents an adversary
from hoarding bridge descriptors over long periods of time. BridgeSPA accomplishes this
while also not permitting bridge aliveness checks from adversaries who do not possess valid
descriptors.

The BridgeSPA protocol utilizes a pre-shared key to generate MACs that are used to
determine the legitimacy of a bridge connection request. That is, they ensure that the
person making the request has recently obtained a valid key. We consider three main
phases of a bridge’s life cycle that are affected by BridgeSPA: bridge registration, bridge

15

Bridge Bridge Authority Client

SeedKey,

update frequency

MACKey =

MACSeedKey(epoch_index)

ConnectionTag =

MACMACKey(curr_time

+ header_data)

1

2

3

Figure 3.1: Changes to Tor bridge-related communication in BridgeSPA. 1. Upon registra-
tion with the bridge authority, a bridge includes a SeedKey and update frequency. 2. The
bridge authority distributes bridge information along with the current MACKey, derived
from the SeedKey. This information typically passes through the BridgeDB (not shown).
3. A client uses the MACKey to create a ConnectionTag, which must be included by the
client when connecting to this bridge.

descriptor requests and client connection. Figure 3.1 shows a high-level outline of the
changes made to the bridge’s life cycle to support BridgeSPA.

Currently during bridge registration, a bridge that wishes to be publicly listed com-
municates with the bridge authority directly and provides a descriptor with information
needed for connecting to it. This includes the IP address, port, and optionally, a finger-
print. In BridgeSPA, the SeedKey (a 256-bit random value) and an associated update
frequency are also included. This change is highlighted in Figure 3.2. A reasonable value
for an update frequency would be between 1–7 days, and may be configured by the bridge
operator.

The bridge and bridge authority are each able to calculate the current epoch index from
the update frequency and the current time. An epoch index is defined as the current Unix
time divided by the update frequency. Using the SeedKey and the current epoch index, a
bridge and the bridge authority may independently compute short-lived MACKeys valid
for any particular time period. A MACKey is what a client, using the KnockProxy, uses

16

BridgeBridge

Bridge

Authority

Bridge

Register

(IP, port,

SeedKey,

interval)

BridgeDB

ClientClient

Request for

bridge

information

Bridge

Client

Connect

(ConnectionTag)

Bridge

ClientClient

ClientClientClient

Tor

Network
(IP, port,

MACKey)

Figure 3.2: Basic interaction among bridge-related entities in a BridgeSPA setting.
Changes are highlighted in bold text.

when he connects to a bridge to demonstrate that he has recently obtained the bridge
descriptor from an appropriate source.

To initiate a connection, the client first generates a ConnectionTag that is embedded in
the first network packet (the TCP SYN) that is sent to the bridge. The ConnectionTag is a
MAC of the current time and header data from the SYN packet, keyed with the MACKey.
The time used is represented as UTC, rounded down to the minute. This is done to
make replay attacks more difficult for an active adversary. The header data includes the
source and destination IP address and port pairs, and the IP Identification field. The
ConnectionTag is used instead of sending the MACKey directly to avoid replay attacks.

A bridge, using the DoorKeeper, monitors incoming TCP connection requests. When
the DoorKeeper identifies an incoming bridge connection request it is able to check the
embedded ConnectionTag using its own copies of the MACKey, current time, and header
data. To gracefully deal with edge cases, the DoorKeeper also calculates and compares
ConnectionTags of the previous and next minutes before dropping a packet. This means
there are three ConnectionTags that the DoorKeeper will accept at any given time.

The client embeds a ConnectionTag using headers in the the TCP SYN packet as a

17

covert channel. As mentioned above, following a strategy based on SilentKnock [36], to a
passive observer the request is indistinguishable from a connection request not containing
authorization information.

18

Chapter 4

BridgeSPA Implementations

We have developed two proof-of-concept implementations of BridgeSPA to test our protocol
and the feasibility of deployment. We have implemented a version intended to run in a
standard GNU/Linux desktop or server environment, which we refer to as the “standard”
or desktop implementation.1 We have also developed a version that targets an OpenWRT
GNU/Linux environment. As mentioned, our implementations require no changes to the
Tor client or bridge software. To support a deployed instance of BridgeSPA, however, the
Tor bridge authority and BridgeDB would need to be modified as shown in Figure 3.2.

Our design targets Linux, with kernel version 2.6.4 or later due to our reliance on the
libnetfilter queue library [34]. This library provides a user-space API for manipulating
network packets in flight. Our implementations of both the DoorKeeper and KnockProxy
use libnetfilter queue to implement their respective parts of the BridgeSPA protocol.
On the client side we also developed a small tool to assist with configuration. This tool
will take a BridgeSPA bridge descriptor, optionally configure Tor to use the bridge, and
pass along the information to the running KnockProxy process. The KnockProxy allows
this by accepting connections on a configured port.

When the KnockProxy receives bridge descriptors, it keeps the MACKey for later use
and adds an iptables rule to ensure TCP packets intended for this destination will be
available through the libnetfilter queue APIs. When the KnockProxy encounters a
TCP SYN packet intended for a Tor bridge, it makes the necessary changes to the ISN
and TCP timestamp based on the calculated ConnectionTag. The ConnectionTag is only
calculated once per connection. When it is calculated, an offset from the original ISN

1The standard implementation is available at http://crysp.uwaterloo.ca/software/ under a free
licence.

19

http://crysp.uwaterloo.ca/software/

as well as the original TCP timestamp value gets stored for use later. The KnockProxy
associates these values with the TCP connection, so they may be easily looked up as
needed. All subsequent packets sent to and received from the bridge also get modified to
have their sequence and acknowledgement numbers adjusted appropriately, by applying
the offset value. Only the first TCP timestamp value sent by the client and the first TCP
echo value sent by the server need to be adjusted by the KnockProxy. This is because
the KnockProxy will actually delay itself until the time is consistent with lower byte of
the timestamp value, which is similar to the behaviour of SilentKnock. Whenever the
KnockProxy modifies the contents of the TCP header it must also recalculate the TCP
checksum.

The ConnectionTag is a SHA256-HMAC output, truncated to 32 bits. This MAC is
keyed with the MACKey from the bridge descriptor, and applied to data found in the
TCP and IP headers, along with a rounded value of the current time in UTC. It requires,
however, that the client and bridge are both loosely synchronized with an accurate NTP
server. As previously mentioned, the current time is rounded to the nearest minute.

The DoorKeeper receives the SeedKey and time interval as command line parame-
ters. The DoorKeeper similarly instructs iptables to queue SYN packets arriving at the
pre-specified bridge port. As SYN packets arrive, the ISN and timestamp are checked
to determine if they contain a valid ConnectionTag. To calculate a ConnectionTag, the
DoorKeeper also needs to find the current MACKey from the time interval and SeedKey.
To avoid having to do this while processing a packet, a separate thread will periodically
update this value. Similarly, another thread updates the current time rounded to the near-
est minute, to avoid an unnecessary system call while processing packets. The packet is
allowed to continue if the ConnectionTag matches. If the match fails, the packet is dropped
and will not be processed by the operating system’s TCP stack.

If the DoorKeeper or KnockProxy receive an interrupt or termination signal, they will
attempt to remove the configured firewall rules.

The DoorKeeper implementation meets the goal of preventing aliveness checks, since
packets that are rejected will not return any sort of response. This is outlined in Fig-
ure 4.2. When a connection is closed, the client associated with that connection can no
longer communicate with the bridge without initiating another connection with a valid
ConnectionTag.

20

Bridge

Bridge Client KnockProxy DoorKeeper Bridge

Client

TCP SYN
TCP SYN

(ConnectionTag) ConnectionTag

validated

SYN

SYN ACK

ACK

Adjust seq./

ack. value

Figure 4.1: A client using BridgeSPA to connect to a Tor bridge.

4.1 Unlisted Bridges

In Chapter 3, we described how a client who received bridge information from The Tor
Project may connect to a bridge using the BridgeSPA protocol. If an operator runs an
unlisted bridge, she must manually send some information to her clients. We outline three
possibilities for this type of scenario, two of which are already compatible with our proof-
of-concepts.

First, the bridge operator can share a SeedKey and update frequency with the client di-
rectly using an out-of-band channel. The client simply generates the current MACKey, and
then configures the KnockProxy following the same methods described above. Second, the
bridge operator could simply share the current MACKey, the same way The Tor Project
would distribute bridge information with the BridgeSPA protocol. Both of these are pos-
sible with our proof-of-concept implementations. The latter requires that the operator
continues to send updated MACKeys when the specified epoch expires. Third, the bridge
operator could offer a SeedKey or MACKey that is unique to each client’s IP address.
This is not currently implemented, and it may be less convenient for clients who do not
have static IP addresses. Note that a future DoorKeeper design implementing this scenario
ideally should not have to store a list of client IPs and their respective keys; including the

21

Bridge

Bridge Client KnockProxy DoorKeeper Bridge

Client

TCP SYN
TCP SYN

(ConnectionTag) ConnectionTag

invalid
Connection

timeout

Figure 4.2: A failed authorization scenario with BridgeSPA.

client IP in the computation of the MACKey, for example, would suffice.

4.2 GNU/Linux Standard Implementation

4.2.1 Performance Impact

When a client uses the KnockProxy, all packets are modified as they are sent and received
by the client. This could impact performance, especially for high-throughput connections.
We executed an experiment to measure the performance impact of KnockProxy. We down-
loaded a 6.3 MiB file 8 times with and without the KnockProxy, over a 100 Mb/s LAN
and from a remote server on the Internet. While our motivating use case for BridgeSPA
does not necessarily make sense in a LAN, we include a LAN experiment to capture a
high-throughput scenario with a guarantee of no interference from other traffic.

We see in Table 4.1 that the performance impact introduced by the standard Knock-
Proxy implementation is negligible. In the LAN scenario, the traffic rate only degrades
by 1.7%. In the Internet scenario, there was no statistically significant difference in the
rates. CPU and RAM usage during this experiment were also negligible. While download-
ing, KnockProxy’s share of CPU usage never exceeded 10%, and the RAM usage stayed
consistent at 20 MiB.

We see that the standard implementation of the KnockProxy is unlikely to introduce a
performance impact for users. Internet speeds (and Tor speeds) would need to dramatically

22

Table 4.1: We downloaded a 6.3 MiB file 8 times with and without the KnockProxy, over a
100 Mb/s LAN and from a remote server on the Internet. The test client was a Thinkpad
X201 with a Core i5 540M 2.53 GHz CPU and 8 GiB RAM, running Ubuntu 11.04 in
VirtualBox 4.0. The client’s host operating system was Windows 7 Professional.

Download Rate ± stddev Upload Rate ± stddev
LAN Without KnockProxy 8090 ± 50 KiB/s 5.34 ± 0.04 KiB/s

With KnockProxy 7950 ± 40 KiB/s 5.25 ± 0.03 KiB/s
Internet Without KnockProxy 583 ± 2 KiB/s 0.374 ± 0.004 KiB/s

With KnockProxy 585 ± 3 KiB/s 0.377 ± 0.002 KiB/s

increase in order for KnockProxy to become a bottleneck.

4.3 OpenWRT Implementation

Our initial GNU/Linux implementation has three apparent usability flaws. First, not
all bridge users run GNU/Linux. Ideally a user should be able to use the KnockProxy
no matter which operating system he runs. Second, the implementation does not work
correctly when running behind a home network address translation (NAT) device. Almost
all households that have multiple Internet-connected devices have deployed some type
of NAT device. If a user is behind a NAT, the source port and IP address that the
KnockProxy observes in the outgoing TCP SYN packet to calculate the ConnectionTag
will not necessarily be the same source port and IP address that the DoorKeeper sees. The
DoorKeeper would calculate a different value for the expected ConnectionTag. Finally,
both the KnockProxy and DoorKeeper need to run with superuser privileges. This is not
ideal, since if there is a vulnerability in KnockProxy or DoorKeeper an attacker could gain
control of the user’s entire system.

OpenWRT is a project that offers an alternative firmware for home NAT devices. This
firmware is a lightweight GNU/Linux distribution. We have created a version of the Knock-
Proxy and DoorKeeper specifically for OpenWRT. With this version, clients running any
operating system may use the KnockProxy in a NAT scenario. Both the KnockProxy and
DoorKeeper would still need to run as root on the router. If an attacker exploited a vul-
nerability in either of these programs he could still take control of the router. Assuming
other systems connected to the router are secure, an attacker’s access to user data would
be limited.

23

4.3.1 Implementation Details

The KnockProxy implementation for OpenWRT consists of the same source code as the
standard GNU/Linux implementation. The work to produce the OpenWRT implementa-
tion mostly involved configuring OpenWRT to support BridgeSPA, rather than modifying
the BridgeSPA software. OpenWRT simply requires that we follow their standard for in-
tegrating with their build configuration system. This also ensures that dependencies will
be identified and handled. However, using libnetfilter queue for packets that are being
handled by a NAT makes it difficult to capture packets with the same source and destina-
tion IP addresses and ports that the remote server will observe. This creates a challenge
when determining which values should be used while calculating a ConnectionTag, as well
as when pairing incoming packets and outgoing packets that are a part of the same TCP
session.

Another issue is that, since the intention is to support a wide variety of clients, outgo-
ing packets may not have the TCP timestamp option present for modification. It would
be possible to add a TCP timestamp to outgoing packets, but this would require a full
implementation of the TCP timestamp (RFC 1323). As an alternative, we have integrated
a proxy to force the router to establish new connections. From the client’s point of view,
his connections appear to work the same way as under a NAT. However, unlike with NAT,
since all external connections are actually originating directly from the router, they can
be guaranteed to carry a TCP timestamp. Further, when intercepting these packets, the
KnockProxy will observe the same source and destination IP addresses and ports that the
remote party will see.

We use a firewall rule to redirect client connections to a custom transparent proxy
application. The method we use is distinct from the GNU/Linux implementations of
“tproxy”, which intends to supply means to intercept and proxy connections while avoiding
modifications to the source and destination portions of TCP and IP packets. That is, if a
client’s IP address is routable by some remote server, “tproxy” will not insert the router’s
own IP address in the client’s outgoing packets. Conversely, with our system the intention
is to always replace the client’s IP address with the router’s.

A user executes and configures the transparent proxy program on the router as a
separate process from the KnockProxy. The same client configuration tool as with the
GNU/Linux desktop implementation may be used to register bridges with KnockProxy.

Support for our test router (Buffalo WZR-HP-G300NH2) was added only recently as
a patch to the unreleased OpenWRT branch (i.e., SVN trunk). Specifically, we tested our
implementation with the OpenWRT trunk revision 29283. While we could not deploy an

24

Client Server
DoorKeeper

Router
KnockProxy

Figure 4.3: The network configuration of the KnockProxy performance experiments (Open-
WRT implementation).

officially released version of OpenWRT to our router, we have tested our implementation
in a virtualized environment with the latest stable branch of OpenWRT, version 10.03
(“Backfire”) SVN revision 28637. We expect our implementation to be compatible with
other routers that have similar specifications to our test router, as listed below.

4.3.2 Performance Impact

We look at the performance impact of the transparent proxy and KnockProxy running in
OpenWRT, separately and together.

The experimental configuration for all experiments in the following subsections is shown
in Figure 4.3. The client is a Thinkpad X201 with a Core i5 540M 2.53 GHz CPU and
8 GiB RAM, running Microsoft Windows 7 Professional. The server is a desktop with an
AMD Phenom II 965 3.4 GHz CPU and 4 GiB RAM, running GNU/Linux 2.6.32. Our
test router has an Atheros AR7242 400 MHz CPU and 64 MiB RAM. The speed of the
wired ethernet connections is 100 Mb/s.

25

Table 4.2: Clients download a 6.3 MiB with scp 8 times under each scenario. The scenarios
vary whether the transparent proxy and KnockProxy are running.

Download Rate ± stddev Upload Rate ± stddev
No BridgeSPA processes 8100 ± 200 KiB/s 5.0 ± 0.1 KiB/s
Transparent Proxy (TP) 6040 ± 90 KiB/s 3.73 ± 0.06 KiB/s

TP and KnockProxy 2700 ± 40 KiB/s 1.67 ± 0.03 KiB/s

Table 4.3: Clients download a 6.3 MiB with wget 8 times under each scenario. The
scenarios vary by network capacity and whether the transparent proxy and KnockProxy
are running.

Server Speed Limit Configuration Download Rate ± stddev
1536 KiB/s No BridgeSPA processes 1500 ± 200 KiB/s
1536 KiB/s Transparent Proxy (TP) 1500 ± 300 KiB/s
1536 KiB/s TP and KnockProxy 1400 ± 200 KiB/s
600 KiB/s No BridgeSPA processes 590 ± 30 KiB/s
600 KiB/s TP 590 ± 30 KiB/s
600 KiB/s TP and KnockProxy 590 ± 40 KiB/s

Single Connection Throughput

We observe that both the transparent proxy and KnockProxy introduce a significant bottle-
neck while operating on a 100 Mb/s network, as shown in Table 4.2. With the transparent
proxy running, performance suffers by approximately 25%. When we add the KnockProxy,
an additional 55% degradation occurs.

To measure how the performance degradation is related to the network speed capacity,
we introduce a global speed limit on the server. For these experiments, clients downloaded
files from an instance of the Lighttpd web server [15], with the server.kbytes-per-second
configuration setting changed as desired. Note that this value introduces a per-server speed
limit, and not a per-connection speed limit.

Table 4.3 shows that performance degradation occurs less dramatically when the speed
capacity of the connection is lower. We included the 1536 KiB/s scenario since it is
the approximate average household Internet connection speed in Canada and the United
States [24]. We included 600 KiB/s to represent a generous upper bound of Tor stream
speeds [25]. With a 1536 KiB/s connection, clients only suffer a 7% performance loss
compared to when not running the KnockProxy and transparent proxy. This is significantly

26

better than the 66% speed degradation we observed with a 100 Mb/s line connection. In
the 600 KiB/s scenarios, the average speeds are not affected by the transparent proxy and
the KnockProxy.

Multiple Connections Throughput

A home router is capable of supporting many concurrent devices and connections. As we
know our OpenWRT test device’s resources are limited, we measured to see if concurrent
clients would further impact the network performance while running the transparent proxy
and KnockProxy. We tested 2, 4, and 8 clients downloading the same 6.3 MiB file from a
Lighttpd server. We first tested with no speed limit configured aside from the 100 Mb/s
line speed, and then with a global 1536 KiB/s limit in Lighttpd. Clients performed three
trials in each scenario, and an average is plotted on Figure 4.4.

Figure 4.4 shows a clear degradation in both types of connection speeds when increasing
from a single client to multiple clients. In the 100 Mb/s scenario, moving from two to
four clients only introduces another 5% slowdown, and the 1536 KiB/s connections show
almost no change. Similarly, increasing from four to eight clients shows little difference in
the transfer rate.

Improving Performance

We have not yet taken any steps to optimize the KnockProxy specifically for devices with
limited resources. One optimization could be to move the KnockProxy into kernel space.
Since a user in an OpenWRT environment typically reinstalls their router’s entire filesystem
image for updates, it would not be unreasonable to require additions to the kernel in the
image. SilentKnock [36] takes this approach to decrease the delay added by sknockd.

27

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 2 4 6 8 10

C
om

bi
ne

d
T

hr
ou

gh
pu

t (
K

iB
/s

)

Concurrent Clients

Concurrent Transparent Proxy and KnockProxy Clients

12800 KiB/s limit
1536 KiB/s limit

Figure 4.4: Concurrent clients downloading with wget through a router configured with
KnockProxy and the transparent proxy. All clients were executed on a Thinkpad X201
with a Core i5 540M CPU and 8 GiB RAM, running Microsoft Windows 7 Professional.
The depicted error bars represent one standard deviation above and below the averages.
Note that the first data point in the 12800 KiB/s line is different from the equivalent data
point in Table 4.2 due to the different transfer protocols.

28

Chapter 5

Attacks

In this chapter, we analyze BridgeSPA’s effectiveness by discussing some attacks that are
possible under the adversarial models defined in section 3.1.

5.1 Bridge Aliveness and Enumeration Attacks

We can attempt to re-apply the bridge aliveness attack from section 1.2. In the discovery
phase, an attacker was able to rely on the fact that bridge information could be collected
over a large timespan and remain mostly valid. This is no longer the case, since the
MACKey for each bridge will change between the epochs set by the update frequency. As
a result, for an attacker to obtain enough bridges in a single time interval for the winnowing
phase to be effective, she must have access to a large number of IP addresses in a short
time. Furthermore, due to constraints in the bridge information distribution protocol,
these IP addresses must have distinct /24 network addresses. Thus, the bridge aliveness
attack is still possible but requires significantly more resources. This limits the attack to
an adversary who has access to a large number of IP addresses, which we consider to be a
substantial improvement.

A determined adversary who thinks that a particular bridge is concealed by BridgeSPA
could try to determine aliveness by guessing the correct ConnectionTag. As mentioned in
Chapter 3, a DoorKeeper will accept three ConnectionTags at any time. As a Connection-
Tag is 32 bits long, this leaves an attacker with an expected 230 guesses before finding a
valid ConnectionTag. It would be possible to blacklist an IP after many incorrect guesses,
but this may be better suited as a firewall rule as opposed to an extension to BridgeSPA.

29

Also note that if an adversary is flooding a particular host with ConnectionTags, this would
appear to the host as a SYN flood, something that is often mitigated by firewalls already.
We conclude that brute force enumeration attacks are infeasible with BridgeSPA.

5.1.1 Other Aliveness Checks

BridgeSPA actively mitigates an adversary’s ability to probe aliveness from a Tor bridge.
Since the bridge aliveness attack targets bridges on home computers, a Tor bridge may
not be the only software running that can demonstrate aliveness. For example, firewalls
can be configured differently with respect to external connection requests to closed local
ports. That is, firewalls may silently drop packets, which is consistent with BridgeSPA’s
behaviour when an SPA authorization fails, or send a connection reset (“RST”) packet.
A bridge machine’s firewall should be configured such that it cannot be easily prompted
by an adversary to send a RST packet and demonstrate aliveness. Any open port on
the machine could similarly provide aliveness information to an adversary. Other publicly
accessible services running on the machine could be concealed by traditional SPA solu-
tions. Ideally, BridgeSPA would provide recommendations regarding system configuration
or other software that could be probed for aliveness.

5.2 Bridge Client Detection Attacks

We divide client attacks into those that a passive adversary might perform, and those that
an active adversary can perform. In both of these cases the adversary is attempting to
determine whether a client is attempting to use a Tor bridge.

5.2.1 Active Adversaries

We first consider what a powerful, active adversary is capable of, especially if she suspects
that a client may be connecting to a Tor bridge.

As previously mentioned, bridge hoarding could still reveal a particular host as a Tor
bridge. An adversary who observes a client connect to a host that has been previously listed
as a Tor bridge would certainly become suspicious. She could not, however, easily confirm
her suspicions by connecting to the bridge unless she also has a fresh bridge descriptor. In
the case of an unlisted bridge, the adversary will never have observed the host listed as a
Tor bridge, and it is much less likely that she would be able to obtain a valid MACKey.

30

Bridge

Bridge Client KnockProxy DoorKeeper Bridge

Client

TCP SYN
TCP SYN

(ConnectionTag) ConnectionTag

validated

SYN

SYN ACK

ACKConnection

timeout

Adversary

TCP SYN

(ConnectionTag)

Figure 5.1: A BridgeSPA man-in-the-middle scenario.

An adversary could attempt to use information from the client to connect to the bridge
herself. For example, the adversary could replay a previously seen TCP SYN packet from
a client to a suspected bridge host. The adversary would need to assume control of the
client’s IP address, and replay this before the timestamp embedded in the ConnectionTag
is stale (90 seconds on average). An even stronger attack is to hijack the TCP connection
as it is being synchronized. That is, after the bridge client sends a TCP SYN packet
with an embedded ConnectionTag, an active adversary could hijack the connection and
attempt to complete the Tor bridge connection. This active man-in-the-middle scenario is
illustrated in Figure 5.1.

A way of addressing both of these attacks would be to require that the client sends the
entire non-truncated ConnectionTag after the TLS connection is established. Until this
is done, the bridge could simply act like some other service that can run on top of TLS
(e.g., IMAP). This is similar to previous proposals [13,26], as discussed in Chapter 1. This
modification to BridgeSPA is illustrated in Figure 5.2. We note however that currently
the TLS certificates used by Tor relays and bridges are distinguishable from other types
of TLS certificates. It is impossible for a bridge to convincingly masquerade as another
service unless this is addressed. The Tor Project is actively working to address this [3].
We also note that a TCP connection hijack attack is, in general, non-trivial to carry out
in practice.

An adversary who unsuccessfully replays a past ConnectionTag might infer that some
type of innocuous SPA has taken place. It would be difficult for the adversary, however,

31

Bridge

Bridge Client KnockProxy DoorKeeper Bridge

Client

TCP SYN
TCP SYN

(ConnectionTag) ConnectionTag

validated

SYN

SYN ACK

ACK

TLS Negotiation

ConnectionTag

Figure 5.2: BridgeSPA modified to prevent man-in-the-middle.

to distinguish this scenario from a scenario where the target host runs a dynamic firewall
whose behaviour may change based on rules unknown to her.

An adversary who suspects that clients are using BridgeSPA could also modify the
sequence numbers on all packets in order to prevent SPA from succeeding for the clients
whom she suspects. She would also need to similarly change the sequence acknowledgement
field on packets inbound to these clients in order to avoid violating the rules of the TCP
protocol. In this case, BridgeSPA clients could still evade conclusive detection. If any
BridgeSPA connection fails, the client should simply discard that descriptor without any
further attempts. This would make it difficult for an adversary to determine if the ISN
modification caused the BridgeSPA authorization to fail, or if the destination server was
actually offline. Similarly, the KnockProxy could periodically generate TCP SYN packets
with invalid ConnectionTags (i.e. when the client is not using that particular bridge) to
serve as misinformation to the observer.

We also note that changes to the sequence number of packets always break some IP
extensions, such as IPSec [14]. Active modification of all packets at line speed in a non-

32

trivial manner seems to be beyond the capabilities of most large active firewalls. For
example, the Great Firewall of China examines the contents of packets but does not modify
any packets in flight [5].

5.2.2 Passive Adversaries

We also consider what a weaker, passive adversary could do to detect the use of BridgeSPA.
By simply observing the BridgeSPA protocol, an adversary can learn only that a client’s
connection timed out or that he established a TLS connection. This is the same as an ad-
versary observing a bridge client connection today. With the standard implementations of
BridgeSPA, the adversary could also conclude that the ISN distribution is consistent with
a Linux 2.6 system. Chapter 6 analyzes the potential to use covert channels that are con-
sistent with Microsoft Windows. Ideally the KnockProxy should be able to choose covert
channels that are consistent with any client’s TCP/IP stack, while still being detectable
by the DoorKeeper.

Currently, there exists a race condition between TCP connections created by Bridge-
SPA and other TCP connections. Specifically, BridgeSPA currently does not observe other
outgoing TCP SYN packets to strictly ensure that the TCP timestamp for its connections
will be ordered correctly with respect to others. If a passive adversary was sufficiently
close to the client and observed a TCP timestamp anomaly, they may suspect that a
BridgeSPA-like tool is being used.

As mentioned earlier, Tor traffic is distinguishable from, for example, HTTPS. A passive
adversary may still recognize a flow of traffic as Tor-like traffic, but BridgeSPA does not
help with this detection.

If an adversary notices a statistically significant delay in responses when a client con-
nects to a particular host, compared to hosts in the same network, he may try to infer
that the destination host is running some form of SPA. Vasserman et al. [36] consider the
delay introduced by the SilentKnock daemon that runs on the server, sknockd, the equiv-
alent of the BridgeSPA DoorKeeper. From their measurements of the userspace version of
sknockd, they consider an adversary who is several hops away and has perfect knowledge
of what the expected non-SPA timing should be. They conclude the adversary would need
to observe hundreds of successful connections before gaining an advantage in distinguishing
between whether the destination host is running SilentKnock or simply a dynamic firewall.

We similarly measured the timing of our proof-of-concept implementation of Bridge-
SPA. Table 5.1 shows the difference in timing of SYN and SYNACK packets from a
client connecting to a basic echo server when the server is running behind the DoorKeeper

33

Table 5.1: A passive listener measuring the difference in timing between 5000 sets of SYN
and SYN ACK packets between two other hosts on the same physical network hub. We
consider cases when one machine connects to an echo server running on the other machine
using the desktop versions of BridgeSPA KnockProxy and DoorKeeper, and also with no
BridgeSPA components. The values below are averaged from the 5000 sets. The echo
server machine was Thinkpad X60 with a 1.6 GHz Core 2 Duo processor and 4 GiB of
RAM.

SYN/SYNACK difference ± stddev
Without BridgeSPA 280 ± 20 µs

With BridgeSPA 370 ± 80 µs

compared to when it is not. The client and server were connected to the same network
hub as the eavesdropping machine that performed the network measurements.

The measurements show that the DoorKeeper introduces only a small amount of delay,
less than 100 µs on average. If the adversary is comparing observed BridgeSPA connection
times to the connection times of clients to similar hosts, we, like SilentKnock [36], believe
the timings would be inconclusive in detecting the use of BridgeSPA unless the adversary is
sufficiently close to this network and has collected a large amount of data. While we believe
our implementation can be further optimized, the improvements described in section 7.2
will also add a small amount of overhead for the DoorKeeper.

As shown in Figure 5.3, our experiment measures the difference an adversary could
observe in the worst-case scenario. In a more realistic scenario, higher latencies and more
variance would make it much more difficult for an adversary to observe a delay introduced
by the DoorKeeper.

To demonstrate the difficulty an adversary would have detecting the use of BridgeSPA
in scenarios with higher latency, we have conducted similar tests using ModelNet [35] to
simulate higher latency. ModelNet is a large-scale network emulator that allows users to
simulate network topologies with the specified properties. Researchers may test software
over these simulated networks usually without modifications. The BridgeSPA desktop
implementation did require some modifications to ensure that both the KnockProxy and
DoorKeeper use the same values for the source and destination IP addresses and IP ID
field when calculating ConnectionTags.

Figure 5.4 shows our ModelNet experimental configuration. Specifically, the Knock-
Proxy and DoorKeeper ran on the same machine but on different simulated networks. The
ModelNet host inserts 100 ms delays between the two simulated networks. To simulate a
passive observer, we captured outgoing traffic on the ModelNet host.

34

Client
KnockProxy

Hub

Server
DoorKeeper

Passive Adversary

Figure 5.3: The network configuration of the DoorKeeper delay measurement experiment
(standard implementation).

The results in Table 5.2 should not be surprising, as they follow closely from the results
in Table 5.1. These measurements do not account for additional variance in latency that
two Internet-connected peers often observe over time, from changes in congestion in the
route that connects them. Despite this allowance the two samples in Table 5.2 are extremely
close.

Finally, we also measured the delay introduced by running the OpenWRT version of
the DoorKeeper on our test router (described in section 4.3). Since this router is signif-
icantly less powerful than the machines used in our other DoorKeeper tests, we expect
the DoorKeeper delay to be higher. The configuration for this experiment is pictured in
Figure 5.5. Our client is connected to a hub that is also connected to the router and a
passive observer. The router also connects to the machine running the service protected
by the DoorKeeper, but on a different network interface.

Table 5.3 shows the delay introduced by our test router running the DoorKeeper. We
see that the router delays a SYNACK packet by approximately 800 µs when it is configured

35

Table 5.2: A passive listener measuring the difference in timing between 2300 sets of SYN
and SYN ACK packets between two hosts on separate simulated networks. We consider
cases when one machine connects to an echo server running on the other machine using the
desktop versions of BridgeSPA KnockProxy and DoorKeeper, and also with no BridgeSPA
components. The values below are averaged from the 2300 sets. The machine running the
BridgeSPA processes had an Intel E5620 Xeon 2.40 GHz CPU and 8 GiB of RAM.

SYN/SYNACK difference ± stddev
Without BridgeSPA 200.4 ± 0.2 ms

With BridgeSPA 200.5 ± 0.3 ms

Table 5.3: A passive listener measuring the difference in timing between 1000 sets of SYN
and SYN ACK packets between two hosts. We consider cases when one machine connects
to an echo server with and without BridgeSPA components involved. In this case, the
client runs the KnockProxy and an intermediary router runs the DoorKeeper. The values
below are averaged from the 1000 sets. The test router in this experiment is the same one
used in our other router experiments.

SYN/SYNACK difference ± stddev
Without BridgeSPA 280 ± 20 µs

With BridgeSPA 1060 ± 60 µs

36

Client
KnockProxy

Server
DoorKeeper ModelNet

100 ms

100 ms

Figure 5.4: The network configuration of the DoorKeeper (standard implementation) delay
measurement experiment in a ModelNet simulated network environment.

with BridgeSPA. This is still a reasonable delay in some scenarios, for example when the
client and adversary are in a network sufficiently distant from the BridgeSPA router, when
the adversary is unlikely to collect many sample timings, or when the adversary has no
reference to compare the collected timings with. The DoorKeeper is also likely to show
performance improvements if it is ported to run in kernel space.

Related to the attack discussed above, an adversary could also observe differences
between connection requests from a client to the bridge port on a particular host and
other services that may be running on the same machine. We discussed in section 5.1.1
why a bridge operator who is relying on BridgeSPA to mitigate the bridge aliveness attack
should not have other publicly accessible services running.

Another indicator that a client may be connecting to a Tor bridge using BridgeSPA was
first observed in Chapter 4. If a client’s connection to the bridge has a high throughput
capacity, we observed that the connection speed can be affected by the KnockProxy. We
observed this effect particularly in our OpenWRT experiments.

In 2009, Perry [25] measured the average stream transfer speed for Tor nodes to be below
100 KiB/s. In our OpenWRT experiments, the KnockProxy introduced no measurable
throughput degradation at 600 KiB/s, but increased the throughput’s variance slightly.

37

Client
KnockProxy

Hub Router
DoorKeeper

Passive Adversary Server

Figure 5.5: The network configuration of the DoorKeeper delay measurement experiment
(OpenWRT implementation).

The KnockProxy introduced only a minor speed degradation at 1536 KiB/s. The current
KnockProxy is sufficient for today’s Tor stream speeds, but there has also been a large
body of research looking at ways to increase the speed of Tor [10,33].

While we do not want to rely on Tor being slow in order for this type of attack to
be infeasible, we observe that the processing capabilities of home routers could continue
to increase over time. The popular Linksys WRT54G released in 2002 had a 125 MHz
processor and 16 MiB RAM. By 2004, Linksys released the WRT54GS with a 200 MHz
processor and 32 MiB of RAM. Our test router, a Buffalo WZR-HP-G300NH2 released in
2011, has a 400 MHz CPU and 64 MiB of RAM. As noted in section 4.3.2, the KnockProxy
could be further optimized for devices with limited resources.

38

Chapter 6

TCP/IP Covert Channels in
Microsoft Windows

The described implementations of BridgeSPA encode a truncated ConnectionTag using 3
bytes of the ISN and 1 byte of the TCP timestamp value. These fields were chosen because
they are expected to appear uniformly random under Linux 2.6. Microsoft Windows does
not include a TCP timestamp by default. Ideally, the KnockProxy would be able to alter-
natively encode values in a TCP SYN packet such that they are consistent with a Microsoft
Windows TCP/IP implementation. The issue is that packets used for the BridgeSPA pro-
tocol should not differ from other traffic that may be observed. As previously mentioned,
the OpenWRT implementation of KnockProxy will explicitly create new connections that
follow standard Linux 2.6 TCP/IP properties when it detects a client request. This is still
an issue, however, since it is not typical behaviour for Linux’s NAT implementation to add
TCP options. For this reason we look at other parts of the TCP and IP headers that can
be used to encode data in a way that is consistent with Microsoft Windows behaviour.

6.1 Initial Sequence Number Selection

We examine the distribution of ISN selection of a Windows XP SP3 machine. This was
done by collecting approximately 675000 ISNs included in TCP SYN packets to a fixed IP
address and port. We visualize the data, and analyze it using a tool intended to test the
cryptographic suitability of pseudorandom number generators [31].

Figure 6.1 shows the first 2500 collected ISN values. The data was truncated for this
visualization to better highlight any potential areas of unexpected concentration of points.

39

0

500000000

1E+09

1.5E+09

2E+09

2.5E+09

3E+09

3.5E+09

4E+09

4.5E+09

5E+09

0 500 1000 1500 2000 2500 3000

I

S

N

V

a

l

u

e

Packet #

Figure 6.1: A visualization of 2500 initial TCP sequence numbers collected from a Windows
XP SP3 machine.

Choosing other random sets of 2500 values shows a very similar picture. All we can
conclude by observing this data is that the ISN appears to follow a uniformly random
distribution and there is no obvious pattern. Note that the ISN value as graphed will
be mostly determined by the most significant byte. Murdoch and Lewis [23] show that
the implemented ISN generators in Linux and OpenBSD do not choose the values of all
bytes in the same way. For these reason, we have also visualized each byte individually to
determine if any non-uniform characteristics are more apparent.

We observe in Figure 6.2 that each individual byte of the collected data also appears
to follow a uniformly random distribution.

Next, we analyze the ISN values using a tool [31] developed by the American National
Institute of Standards and Technology (NIST). This tool is a test suite intended to deter-
mine if a given pseudorandom number generator is inappropriate for cryptographic use.
The fifteen tests range in complexity from a basic frequency analysis of the number of
zeros and ones in the binary representation of the data, to analyzing the peak heights in
the discrete fast Fourier transform of the data.

A summary of the results are listed in Table 6.1. The p-value indicates the probabil-

40

0

50

100

150

200

250

300

0 500 1000 1500 2000 2500 3000

B

y

t

e

V

a

l

u

e

Packet #

(a) Most significant byte

0

50

100

150

200

250

300

0 500 1000 1500 2000 2500 3000

B

y

t

e

V

a

l

u

e

Packet #

(b) 2nd most significant byte

0

50

100

150

200

250

300

0 500 1000 1500 2000 2500 3000

B

y

t

e

V

a

l

u

e

Packet #

(c) 2nd least significant byte

0

50

100

150

200

250

300

0 500 1000 1500 2000 2500 3000

B

y

t

e

V

a

l

u

e

Packet #

(d) Least significant byte

Figure 6.2: A visualization of 2500 initial TCP sequence numbers collected from a Windows
XP SP3 machine, separated by byte.

41

Table 6.1: The output of the NIST test suite for pseudorandom number generators applied
to approximately 675000 ISNs generated by Microsoft Windows.

Test Name Result p-value
ApproximateEntropy SUCCESS 0.147421

BlockFrequency SUCCESS 0.291548
CumulativeSums SUCCESS 0.666373, 0.831374

FFT SUCCESS 0.070172
Frequency SUCCESS 0.843605

LinearComplexity SUCCESS 0.728784
LongestRun SUCCESS 0.362664

NonOverlappingTemplate SUCCESS –
OverlappingTemplate SUCCESS 0.611957
RandomExcursions SUCCESS –

RandomExcursionsVariant SUCCESS –
Rank SUCCESS 0.029699
Runs SUCCESS 0.700467
Serial SUCCESS 0.348607, 0.251662

Universal SUCCESS 0.111980

ity that the given test will provide values that are equal or worse randomness than the
observed values, under the assumption that the input stream is truly random. The NIST
documentation [31] offers an α threshold of 0.01 before declaring the values non-random.
That is, if there is less than a 1% chance that a uniformly random generator would generate
a stream with random properties, defined by a given test, as poor as the input data, that
test fails.

Note that some tests have many variations with distinct p-values. In this case we do
not list all the results. We do not explain the purpose or methods of each test, but this
documentation is available [31].

As we see in Table 6.1, none of the NIST tests have determined that the Microsoft
Windows ISN data stream is non-random. Ultimately there is no way to be sure that the
random ISN values are chosen in a way that is cryptographically secure without examining
the implementation source code. Since it appears that the numbers are uniformly random,
we have modified the KnockProxy and DoorKeeper to use the entire 32-bits of the ISN value
to present a ConnectionTag if the timestamp is not present. When using this version, users
have to be also be careful to ensure that the TCP and IP packets are otherwise consistent

42

Table 6.2: The output of the NIST test suite for pseudorandom number generators applied
to approximately 675000 ISNs generated by GNU/Linux kernel version 2.6.32.

Test Name Result p-value
ApproximateEntropy SUCCESS 0.022442

BlockFrequency SUCCESS 0.135554
CumulativeSums SUCCESS 0.087413, 0.464093

FFT FAILURE 0.004133
Frequency SUCCESS 0.282392

LinearComplexity SUCCESS 0.207229
LongestRun SUCCESS 0.557603

NonOverlappingTemplate SUCCESS –
OverlappingTemplate SUCCESS 0.053442
RandomExcursions SUCCESS –

RandomExcursionsVariant SUCCESS –
Rank FAILURE 0.002708
Runs SUCCESS 0.489593
Serial SUCCESS 0.103278, 0.208263

Universal SUCCESS 0.914637

with an unmodified Microsoft Windows TCP/IP stack. If it is later revealed that Microsoft
Windows does not pick ISN values in a way that is uniformly random, BridgeSPA could
update the distribution of its encoded values to match.

To demonstrate that the NIST test suite is capable of detecting non-uniformly ran-
dom data, we also ran the test suite on approximately 675000 ISN values generated by
GNU/Linux. The machine used for these tests ran with a kernel version 2.6.32. Since we
know that the higher-order byte of the GNU/Linux ISN value is not calculated in a way
that is uniformly random [23], we expect some of the NIST tests to fail.

As we see in Table 6.2, two of the NIST tests failed. These tests concluded that the
there is less than a 1% chance that a uniformly random byte stream would produce data
as non-random as the input data. Most of the other tests also produced lower p-values
when compared to the Microsoft Windows test results.

43

6.2 Other Covert Channels

Another header field that could be used to encode covert channels is the 16-bit IP ID
field. Examining the network traces from the experiment above immediately shows us that
Microsoft Windows selects this value sequentially. That is, no matter if a host is generating
continuous packets to the same machine or single packets to many machines, the IP ID
can be predicted. This makes the field inappropriate for use as a covert channel.

Similarly, the 16-bit TCP source port field, when not explicitly specified by an appli-
cation, is also selected sequentially. This behaviour is also the same between cases when
packets are sent by the same machine continuously or single packets to different machines.

44

Chapter 7

Future Work

Our current implementation is still considered a proof-of-concept. Here we identify parts
of BridgeSPA that could be improved in the future.

7.1 Kernel Implementation

The desktop variant of the DoorKeeper and the OpenWRT variant of the KnockProxy
could both benefit from kernel implementations to avoid context switches from kernel space
to userspace. SilentKnock observed an approximate speed up of 85% in their DoorKeeper
kernel implementation compared to their userspace implementation.

7.2 Properly Handling SYN Retransmits

When a client, using the KnockProxy, sends a SYN packet with a ConnectionTag embed-
ded in the ISN and TCP timestamp, there is a chance this packet is lost and must be
transmitted. While a re-transmitted SYN will have the same ISN, the TCP timestamp
must be different. If the TCP timestamp has the same lower byte as the lost packet, this
could reveal information to an adversary who is attempting to detect BridgeSPA usage.
Vasserman et al. handle this with SilentKnock [36] by applying a function based on shared
knowledge about the non-truncated MACKey to the middle bytes of the timestamp to de-
termine the last byte. Our implementation does not currently handle this, but we believe
this behaviour could be properly handled without introducing much extra overhead to the
DoorKeeper.

45

7.3 Properly Handling Finished Connections

The KnockProxy tracks connections by their source and destination IP addresses and ports.
The first time it encounters a connection it calculates what the ConnectionTag should be,
and stores the offset it needs to apply to the sequence number and TCP timestamp. As
packets subsequently arrive and leave the system, the KnockProxy detects that the packets
belong to an existing connection and simply locates and applies the offsets. Currently, the
KnockProxy does not track when connections end, so if a port is re-used for a different
connection a new ConnectionTag will not be calculated.

The solution unfortunately is not as simple as monitoring for TCP FIN and RST flags.
While this does handle many cases where a TCP connection ends, if a client sends a
TCP SYN and does not get a response, after re-attempting a limited number of times the
connection will simply fail without generating additional packets that can be monitored
by the KnockProxy. A solution could be for the KnockProxy to also monitor whether a
connection has been fully established, and to remove ConnectionTag offsets calculated for
ones that have not been established after some period of time. We would need to carefully
test that all possible ways a TCP connection can be terminated are properly handled.

7.4 Bridge Authority and BridgeDB Changes

As mentioned in Chapter 4, changes are required in the bridge authority and BridgeDB
code bases to support BridgeSPA. For example, currently a bridge authority will accept
bridge fingerprints and return the corresponding bridge descriptors. This is contradictory
to the introduction of a time-limited MACKey. To introduce BridgeSPA, this particular
behaviour of bridge fingerprints would need to be changed. We do not expect our changes
to add significantly increased complexity to these components.

7.5 Multiple NAT Layers

We illustrated how the OpenWRT implementation allows clients who are behind a NAT to
use BridgeSPA. This is still limited to a single layer of NAT, where the BridgeSPA-enabled
OpenWRT router takes the place of the NAT router. If a client’s ISP has deployed its own
NAT, the KnockProxy and DoorKeeper would use different values for the header data that
is used when calculating ConnectionTags. The result is that the KnockProxy would not

46

be able to calculate ConnectionTags in a way that would be successfully validated by the
DoorKeeper.

To accommodate this issue, the KnockProxy and BridgeSPA could support a mode
that is compatible with multiple layers of NAT, but is weaker against replay threats. The
client would need to indicate to the KnockProxy his current public IP, and the KnockProxy
would not be able to include the client’s source port as a part of the header data that is
used when calculating ConnectionTags. Other clients who have the same public IP could
still replay an observed ConnectionTag before it expires. To mitigate this, the DoorKeeper
could accept a specific ConnectionTag only once within a 10 minute interval. Alternatively,
the changes described is section 5.2.1 to mitigate TCP connection hijacking would also be
applicable to this type of replay.

7.6 Pluggable Transports

There is a proposal for The Tor Project to support pluggable transports [2], which are
custom SOCKS proxies defined on a bridge-by-bridge basis to provide more opportunities
to conceal bridge traffic. For example, a bridge could require that clients run a proxy
that encapsulates regular Tor TLS traffic in specific HTTP messages. This way bridge
traffic could be disguised to appear as if a client is simply interacting with a web site. If
a bridge requires a special proxy, this information would be included in the distributed
bridge descriptor.

Not only is this goal complementary with BridgeSPA, BridgeSPA could be implemented
as a transport plugin. This alternative design would facilitate configuration for clients.
Furthermore, the proposed changes to bridge descriptors to support pluggable transports
will support the distribution of a BridgeSPA MACKey. BridgeSPA could chain with other
transport plugins, but only those that use TCP.

7.7 Privacy and TCP/IP Varieties

Consider an adversary who is capable of monitoring traffic on a household Internet con-
nection. This adversary is also aware that the connection is used by several people, who
use their own devices. By using characteristics of the packets he observes, the adversary
may be able to classify different connections by their originating operating system. If
there is sufficient diversity among operating systems in this household, the adversary can
distinguish the connections from the residents without even looking at the content.

47

Consider a situation where all but one resident has the same TCP/IP characteristics.
If our adversary is aware of this distribution, it is easy to see that the unique resident has
strictly less privacy.

We have already discussed some of the characteristics of TCP/IP packets that vary
between implementations (i.e., chosen distribution of ISN, inclusion of TCP options). In
an experiment in 2003 conducted by Lippmann et al. [18], they were able to passively detect
the operating systems of nodes generating traffic with an error rate of approximately 10%.
They used 10 packet characteristics such as the TCP maximum segment size (MSS) value
and IP time to live (TTL) value.

Since the OpenWRT version of the KnockProxy locally initializes new connections for
all outgoing connections, all clients behind the router will have the same TCP/IP charac-
teristics when observed from the Internet. In this case, an adversary would not be able to
distinguish connections made from different devices on a shared Internet connection. This
property of the KnockProxy could be extended to allow configurable TCP/IP characteris-
tics.

48

Chapter 8

Conclusion

Tor bridges are intended to help users in censored regimes, but they are easy to detect
and block. Worse, if a Tor user opts to serve as a bridge, an adversary can deanonymize a
bridge operator’s pseudonymous online activities due to the fact that a bridge will always
serve clients while its operator is using Tor. BridgeSPA mitigates these issues by making
it difficult to detect bridges and test whether they are online. BridgeSPA is based on an
SPA scheme that was proven undetectable by previous work. Our protocol is resilient to
many attacks. We provide a working proof-of-concept that targets GNU/Linux machines,
and another for OpenWRT routers.

49

References

[1] Jacob Appelbaum. Port Knocking for Bridge Scanning Resistance.
https://gitweb.torproject.org/torspec.git/blob/HEAD:/proposals/ideas/

xxx-port-knocking.txt, April 2009. [Online; accessed June 2011].

[2] Jacob Appelbaum and Nick Mathewson. Pluggable transports for cir-
cumvention. https://gitweb.torproject.org/torspec.git/blob plain/HEAD:

/proposals/180-pluggable-transport.txt, October 2010. [Online; accessed June
2011].

[3] Jacob Appelbaum and Gladys Shufflebottom. Draft spec for TLS certificate and hand-
shake normalization. https://gitweb.torproject.org/torspec.git/blob plain/

HEAD:/proposals/179-TLS-cert-and-parameter-normalization.txt, February
2011. [Online; accessed June 2011].

[4] Paul Barham, Steven Hand, Rebecca Isaacs, Paul Jardetzky, Richard Mortier, and
Timothy Roscoe. Techniques for lightweight concealment and authentication in IP
networks. Intel Research Berkeley. July, 2002.

[5] Richard Clayton, Steven J. Murdoch, and Robert Watson. Ignoring the Great Firewall
of China. In Privacy Enhancing Technologies, pages 20–35. Springer, 2006.

[6] Roger Dingledine. Behavior for bridge users, bridge relays, and bridge
authorities. https://gitweb.torproject.org/torspec.git/blob plain/HEAD:

/proposals/125-bridges.txt, November 2007. [Online; accessed July 2011].

[7] Roger Dingledine. Re: Guard nodes. http://archives.seul.org/or/dev/

Jan-2008/msg00011.htm, January 2008. [Online; accessed July 2011].

[8] Roger Dingledine. Iran blocks Tor; Tor releases same-day fix. https://blog.

torproject.org/blog/iran-blocks-tor-tor-releases-same-day-fix, Septem-
ber 2011. [Online; accessed November 2011].

50

https://gitweb.torproject.org/torspec.git/blob/HEAD:/proposals/ideas/xxx-port-knocking.txt
https://gitweb.torproject.org/torspec.git/blob/HEAD:/proposals/ideas/xxx-port-knocking.txt
https://gitweb.torproject.org/torspec.git/blob_plain/HEAD:/proposals/180-pluggable-transport.txt
https://gitweb.torproject.org/torspec.git/blob_plain/HEAD:/proposals/180-pluggable-transport.txt
https://gitweb.torproject.org/torspec.git/blob_plain/HEAD:/proposals/179-TLS-cert-and-parameter-normalization.txt
https://gitweb.torproject.org/torspec.git/blob_plain/HEAD:/proposals/179-TLS-cert-and-parameter-normalization.txt
https://gitweb.torproject.org/torspec.git/blob_plain/HEAD:/proposals/125-bridges.txt
https://gitweb.torproject.org/torspec.git/blob_plain/HEAD:/proposals/125-bridges.txt
http://archives.seul.org/or/dev/Jan-2008/msg00011.htm
http://archives.seul.org/or/dev/Jan-2008/msg00011.htm
https://blog.torproject.org/blog/iran-blocks-tor-tor-releases-same-day-fix
https://blog.torproject.org/blog/iran-blocks-tor-tor-releases-same-day-fix

[9] Roger Dingledine, Nick Mathewson, and Paul Syverson. Tor: The second-generation
onion router. In Proceedings of the 13th conference on USENIX Security Symposium.
USENIX Association, 2004.

[10] Roger Dingledine and Steven J. Murdoch. Performance Improvements on Tor or, Why
Tor is slow and what were going to do about it. http://www.torproject.org/press/
presskit/2009-03-11-performance.pdf, 2009. [Online; accessed November 2011].

[11] John Giffin, Rachel Greenstadt, Peter Litwack, and Richard Tibbetts. Covert mes-
saging through TCP timestamps. In Privacy Enhancing Technologies, pages 194–208.
Springer, 2002.

[12] Eu-Jin Goh, Dan Boneh, Benny Pinkas, and Philippe Golle. The Design and Im-
plementation of Protocol-Based Hidden Key Recovery. Information Security, pages
165–179, 2003.

[13] George Kadianakis. Re: Proposal 176: Proposed version-3 link handshake
for Tor. http://archives.seul.org/or/dev/Feb-2011/msg00012.html, February
2011. [Online; accessed June 2011].

[14] Stephen Kent and Randall Atkinson. RFC2402: IP Authentication Header. RFC
Editor United States, 1998.

[15] Jan Kneschke. Lighttpd. http://www.lighttpd.net/. [Online; accessed November
2011].

[16] Martin Krzywinski. Port knocking: Network authentication across closed ports.
SysAdmin Magazine, 12(6):12–17, 2003.

[17] Andrew Lewman. China blocking Tor: Round Two. https://blog.torproject.org/
blog/china-blocking-tor-round-two, March 2010. [Online; accessed June 2011].

[18] Richard Lippmann, David Fried, Keith Piwowarski, and William Streilein. Passive
operating system identification from TCP/IP packet headers. In Workshop on Data
Mining for Computer Security, page 40. ICDM, 2003.

[19] Karsten Loesing and Nick Mathewson. Tor BridgeDB. https://gitweb.torproject.
org/bridgedb.git/blob plain/HEAD:/bridge-db-spec.txt. [Online; accessed
June 2011].

[20] Moxie Marlinspike. Knockknock. http://www.thoughtcrime.org/software/

knockknock/, December 2009. [Online; accessed November 2011].

51

http://www.torproject.org/press/presskit/2009-03-11-performance.pdf
http://www.torproject.org/press/presskit/2009-03-11-performance.pdf
http://archives.seul.org/or/dev/Feb-2011/msg00012.html
http://www.lighttpd.net/
https://blog.torproject.org/blog/china-blocking-tor-round-two
https://blog.torproject.org/blog/china-blocking-tor-round-two
https://gitweb.torproject.org/bridgedb.git/blob_plain/HEAD:/bridge-db-spec.txt
https://gitweb.torproject.org/bridgedb.git/blob_plain/HEAD:/bridge-db-spec.txt
http://www.thoughtcrime.org/software/knockknock/
http://www.thoughtcrime.org/software/knockknock/

[21] Nick Mathewson. Bridge Guards and other anti-enumeration defenses.
https://gitweb.torproject.org/torspec.git/blob/HEAD:/proposals/

188-bridge-guards.txt, October 2011. [Online; accessed November 2011].

[22] Jon McLachlan and Nick Hopper. On the risks of serving whenever you surf: vulner-
abilities in Tor’s blocking resistance design. In Proceedings of the 8th ACM Workshop
on Privacy in the Electronic Society, pages 31–40. ACM, 2009.

[23] Steven J. Murdoch and Stephen Lewis. Embedding covert channels into TCP/IP. In
Information Hiding, pages 247–261. Springer, 2005.

[24] Ookla. Net Index Internet Data. http://www.netindex.com/source-data/. [Online;
accessed November 2011].

[25] Mike Perry. TorFlow: Tor Network Analysis. HotPETS, 2009.

[26] Shane Pope. Port-Scanning Resistance in Tor Anonymity Network. Honours thesis,
University of Texas at Austin, December 2009.

[27] The Tor Project. Tor Metrics Portal. http://metrics.torproject.org. [Online;
accessed June 2011].

[28] Michael Rash. fwknop: Single Packet Authorization and Port Knocking. http://

cipherdyne.org/fwknop/. [Online; accessed November 2011].

[29] Michael Rash. Single packet authorization with fwknop. login: The USENIX Maga-
zine, 31(1):63–69, 2006.

[30] Craig H. Rowland. Covert channels in the TCP/IP protocol suite. First Monday,
2(5), 1997.

[31] Andrew Rukhin, Juan Soto, James Nechvatal, Miles Smid, et al. A Statistical Test
Suite for Random and Pseudorandom Number Generators for Cryptographic Appli-
cations. Reports on Computer Systems Technology, 2010.

[32] Rob Smits, Divam Jain, Sarah Pidcock, Ian Goldberg, and Urs Hengartner.
BridgeSPA: Improving Tor Bridges with Single Packet Authorization. In Proceed-
ings of the 10th annual ACM Workshop on Privacy in the Electronic Society, pages
93–102. ACM, 2011.

52

https://gitweb.torproject.org/torspec.git/blob/HEAD:/proposals/188-bridge-guards.txt
https://gitweb.torproject.org/torspec.git/blob/HEAD:/proposals/188-bridge-guards.txt
http://www.netindex.com/source-data/
http://metrics.torproject.org
http://cipherdyne.org/fwknop/
http://cipherdyne.org/fwknop/

[33] Can Tang and Ian Goldberg. An improved algorithm for Tor circuit scheduling. In
Proceedings of the 17th ACM conference on Computer and Communication Security,
pages 329–339. ACM, 2010.

[34] The Netfilter Core Team. The netfilter.org “libnetfilter queue” project. http://

www.netfilter.org/projects/libnetfilter queue/index.html. [Online; accessed
June 2011].

[35] Amin Vahdat, Ken Yocum, Kevin Walsh, Priya Mahadevan, Dejan Kostić, Jeff Chase,
and David Becker. Scalability and accuracy in a large-scale network emulator. ACM
SIGOPS Operating Systems Review, 36(SI):271–284, 2002.

[36] Eugene Y. Vasserman, Nick Hopper, and James Tyra. SilentKnock: practical, prov-
ably undetectable authentication. International Journal of Information Security,
8(2):121–135, 2009.

53

http://www.netfilter.org/projects/libnetfilter_queue/index.html
http://www.netfilter.org/projects/libnetfilter_queue/index.html

	List of Tables
	List of Figures
	Introduction
	Tor and Bridges
	Bridge Aliveness Attack
	BridgeSPA

	Related Work
	Comparison with Other Knocking Systems
	Knockknock
	Fwknop

	The BridgeSPA Protocol
	Adversarial Model
	Protocol Details

	BridgeSPA Implementations
	Unlisted Bridges
	GNU/Linux Standard Implementation
	Performance Impact

	OpenWRT Implementation
	Implementation Details
	Performance Impact

	Attacks
	Bridge Aliveness and Enumeration Attacks
	Other Aliveness Checks

	Bridge Client Detection Attacks
	Active Adversaries
	Passive Adversaries

	TCP/IP Covert Channels in Microsoft Windows
	Initial Sequence Number Selection
	Other Covert Channels

	Future Work
	Kernel Implementation
	Properly Handling SYN Retransmits
	Properly Handling Finished Connections
	Bridge Authority and BridgeDB Changes
	Multiple NAT Layers
	Pluggable Transports
	Privacy and TCP/IP Varieties

	Conclusion
	References

