Compact Pat Trees

by

David Clark

A thesis
presented to the University of Waterloo
in fulfilment of the
thesis requirement for the degree of
Doctor of Philosophy
in

Computer Science
Waterloo, Ontario, Canada, 1996

©David Clark 1996

i+l

National Library Bibliothéque nationale

of Canada du Canada

Sﬁg;g%hnslcagmces Sémrv?c!idsl%ri‘glite:tgraphiques

385 Wellington Street 395, rue Wetlington

Ottawa ON K1A ON4 Ottawa ON K1A ON4

Canada Canada

Your fis Votre référence
Our e Notre référence
The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant i la
National Library of Canada to Bibliothéque nationale du Canada de
reproduce, loan, distribute or sell reproduire, préter, distribuer ou
copies of his/her thesis by any means vendre des copies de sa thése de
and in any form or format, making quelque maniére et sous quelque
this thesis available to interested forme que ce soit pour mettre des
persons. exemplaires de cette thése 3 Ia
disposition des personnes intéressées.
The author retains ownership of the L’auteur conserve la propriété du
copyright in his/her thesis. Neither droit d’auteur qui protége sa thése. Ni
the thesis nor substantial extracts la thése ni des extraits substantiels de
from it may be printed or otherwise celle-ci ne doivent étre imprimés ou
reproduced with the author’s autrement reproduits sans son
permission. autorisation.
0-612-21335-8

Canadi

The University of Waterloo requires the signatures of all persons using or

photocopying this thesis. Please sign below, and give address and date.

Abstract

Given a text string S = 3, 8233...5,, we want to preprocess S such that given a
pattern P = p\pap3...pm, We can find {z]s;..8;4m-1 = P} as efficiently as possible.
Suffix trees are a data structure solution to this problem. Unfortunately, when n
is large, the storage required by a suffix tree can be prohibitive. This thesis
presents several related new representations for a close relative of the suffix tree,
the PAT tree, that retain the functionality of suffix trees while requiring a fraction

of the storage used by current methods.

iv

Acknowledgements

There are many people without whose support this thesis would not exist, however
two stand out. First is my wife Liane. In addition to providing love and support,
she read drafts of this thesis and provided many useful comments. I also thank
Professor Ian Munro, my supervisor, for working with me on this project and

supplying many of the ideas that in some form or another made it into this thesis.

Darrell Raymond, Tim Snider, Elizabeth Blake, Professor Frank Tompa and
Professor Gaston Gonnet, members of the Electronic Oxford English Dictionary
project past and present, provided a link to the practical side of text handling.
Professor Frank Tompa was my advisor during the first portion of my program
and his support is gratefully acknowledged. I thank Professor George Labahn and
Professor Keith Geddes of the Symbolic Computation Group for financial
support. I also thank George Labahn for providing some advice along the way.

Professors Alberto Mendelzonr, Ron Read, Ian Munro, Gord Cormack and Frank
Tompa, my thesis committee members, provided many valuable comments on my
work and this thesis.

During my stay at UW, I made many friends who have helped me in one way or

another to complete this thesis. I particularly want to thank my office partner Lori
Case and my bridge partners Andrej Brodnik, Glenn Paulley and Alfredo Viola.

Finally, I want to thank my parents for their support and encouragement over the

years.

Contents

1 Introduction

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8

Document Searching
Searching Methods

Suffix Trees and Related Structures
Properties of Suffix Trees and PAT Trees

Storage Requirements

2 Compact Trees and Tries

2.1
2.2
2.3
24

Rank/Select Representations
Implementing Rank and Select
Compact Tries i i
Recursive Encoding: Binary Trees Revisited

12
17
19

3 Static Text on Primary Storage
3.1 Choosing a Tree Representation
32 StoringtheSkip.
33 SuffixOffsets
34 EmpiricalResults
3.5 Comparison to Other Structures

4 Static Text on Secondary Storage
4.1 Partitioned Compact PAT Trees
4.2 Partitioning Algorithm
4.3 Compact PAT Trees for Secondary Storage
44 EmpiricalResults
45 AdaptingtoCD-ROM

4.6 Comparison to Other Structures

5 Dynamic Text on Secondary Storage
5.1 Updating PAT Trees
9.2 Dynamic Optimal Bottom Up Partitioning
5.3 Dynamic Compact Pat Trees
54 Empirical Results

5.5 Comparison to Other Structures

6 Conclusions
6.1 Applications
6.2 Future Work

47
48
a0
38
59
59

61
63
65
74
76
17
79

80
83
85
90
97
98

Bibliography 103

Glossary 109

List of Tables

1.1
1.2

2.1
2.2
2.3

3.1

4.1

4.2

5.1

Sample Documents00.... 7
Suffixesof abceabea$ 12
Suffix Trie Sizes i i i i e e e e e e 38
IntegerPrefixCode, 40
B(n) . . . e e e e e e e e e e 4
Index Sizes for Sample Documents 59
StaticIndex Sizes, 77
Effects of Suffix Truncation 78
Improved Block Allocation 97

List of Figures

1.1
1.2
1.3
1.4
1.5
1.6
1.7

2.1
2.2
2.3
24
2.5
2.6

3.1
3.2

Sample Tree 9
Sample Binary Tree 10
Suffix Trie 13
O(n?) Suffix Trie 15
SuffixTree 16
PAT Tree, [k] is the node’s bit offset 16
PAT TreeSearch 17
Sample Binary Tree 25
Labelled Extended Tyee 26
Sample General Tree 27
Unary Labelling of Sample Tree 27
TreeEncoding 45
Pseudo-code for Rightchild 45
PAT tree and Labelled Extended Tree of Internal Nodes 49
Frequency of Skip Values in the Sample Documents 51

3.3

4.1
4.2
4.3
4.4
4.5

5.1

Overflow Nodes o i i i et e e e e e e e e e oo e e 51

TreePartition 63
Alternative Tree Partition 63
Tree Partitioning Rules 66
Tree Comstruction 71
NodeCluster 0. 72
Original and Updated PAT Trees e e e 84

Chapter 1

Introduction

The electronic storage and retrieval of information in large bodies of text, such as
genetic databases, newspaper archives, dictionaries, encyclopedias and other
reference works, requires the use of searching systems that are efficient both in
time and storage requirements. Because of their large size, suffix trees[47], a
standard text searching technique, have given way to other smaller but less
effective data structures such as suffix arrays[35](22]. This thesis presents a new
representation for a close relative of the suffix tree, the PAT tree, that retains the
functionality of a suffix tree while requiring a fraction of the storage used by
current methods. We also present methods for managing this structure on

secondary storage for static and dynamic documents.

1.1 Overview

This chapter gives a brief introduction to some of the concepts necessary to
understanding the remainder of the thesis and the motivations for our work. The

second chapter reviews and improves some earlier results of Jacobson[27][26]

CHAPTER 1. INTRODUCTION 2

required for our work and discusses some other applications of these results. The
following three chapters present compact string searching indices for several
classes of documents. In the conclusions, we summarize our results and discuss
future work. The appendix contains a glossary of terms used in this thesis with
short definitions and references to longer definitions occurring in the text. The
first significant occurrence of any term defined in the glossary will be printed in
italics.

1.2 Document Searching

We consider three different classes of documents in this thesis:

e static text in primary storage, such as a static compression dictionary,

e static text on secondary storage, such as an encyclopedia, dictionary or

other reference work,

e dynamic text on secondary storage, such as electronic news or a genetic

database.
Given a document, there are several types of queries that may be needed:

& search for a character sequence, e.g. find all occurrences of “qu” in a paper,

e search for a word, e.g. find all occurrences of the word “witch” in the works

of Shakespeare; this may or may not exclude variations on the word such as

witches or witching.
@ search for a phrase, e.g. find all occurrences of “from M. E.” in a dictionary,

e search for a regular expression, e.g. find all occurrences of “C(CA)*CT” in a

genetic database.

CHAPTER 1. INTRODUCTION 3

In each case, the query may require the exact locations of all the matches, the
approximate locations of the matches or simply a count of the number of
occurrences of the pattern. An approximate location for a match might take the
form of a range of character positions or, in the case of structured documents, a
logical component of the document such as a chapter or paragraph that contains
the match. When searching structured documents, it may also be desirable to
restrict searching to particular components of the document (e.g. find the string

“compact” in a title).

In order to answer these queries, we can either work directly on the input
document using string searching algorithms, or we can preprocess the text and
build an index that allows us to answer queries more quickly. String searching
algorithms like those of Knuth, Morris and Pratt[30], Boyer and Moore[7] and
other automata based methods can provide answers to the queries above in time
linear in the document size. However, when the text is large and we expect
multiple queries, it is often worthwhile building an index that allows faster
searching than is possible with these algorithms. The index may restrict the type
of queries that can be efficiently handled and the set of possible match points. A
word indez restricts matches to whole words, so a word index search for “the”
would not return the occurrences inside “their” or “other.” We also use the term
word index for a suffiz indez, as explained later, where the matches are restricted
to start at the beginning of a word but where no restriction is placed on the end
of the match. Indices capable of finding matches starting at any character are
called character indices. Each possible match start in the text is referred to as an
indez point. The storage requirements of most text indices are proportional to the
number of index points in the text so word indices tend to be much smaller than
character indices. While the ratio of words to characters varies with the language,

writing style, author, and encoding, we use the ratio of 1:5 in this thesis based on

CHAPTER 1. INTRODUCTION N 4

our experience with our test documents.* Word indices may also exclude very
common words like “and,” “the,” and “to,” because they convey little information
and the exclusion of these stop words can significantly reduce the size of the
index. Finally, various mappings may be performed on the text and query prior to
indexing and searching. Stemming is the removal of word suffixes, and occasionally
prefixes, in an attempt to reduce a word to a canonical form. Stemming is used
when the exact form of the word is not important. Stemming allows “witching”
and “witches” to match the word query “witch.” Case conversion, the mapping of
all characters to lower case, is used when the capitalization of the word in the text
is not important. Finally, the mapping of punctuation and other special
characters, except those critical to the encoding, to blanks is commonly used
during index building and searching. Case conversion and punctuation removal
are irrelevant to our work, however they are used for all the experimental results
we quote. These assumptions are made to more closely approximate real world
searching conditions. Stemming is not used because the structures considered in
this thesis are more appropriate when searching for arbitrary strings than when
searching for words. While capable of efficiently answering word queries, these
structures are more appropriate when searching for phrases as well as specialized
applications where word searching is inappropriate, such as searching genetic
information. Word searching is generally better handled by more specialized but
limited structures such as those discussed in the next section.

1.3 Searching Methods

Several types of indices are known for efficiently answering some of the queries
above, including:

*The actual average was near 5.5 but the exact ratio is not critical to our work

CHAPTER 1. INTRODUCTION 5

e Inverted Word Lists[16]: In an inverted word list, each distinct word in the
text is stored in a secondary search structure with a list of all the
occurrences of the word. Each occurrence may be a specific location or a
more general location such as a paragraph or section number. Searching is
performed by looking up the words in the query in the secondary structure
and returning the associated word list. Inverted word lists handle word
queries very well. Phrase searching is handled through multiple word queries
and then combining and filtering the results. Regular expression matching is
not supported. While inverted word lists appear to require one pointer per
index point, the actual index is frequently much smaller because repeated
references to a single region of text are often not stored, although a count
may be kept. Witten, Bell and Neville[49] report on a word list
implementation which requires approximately 30% of the original text size.
However, that implementation made such extensive use of data compression
that performance problems became apparent. While it is possible that
recent advances in processor speed make this approach feasible, a more

reasonable ratio seems to be 50-70% of the original text size for the index.

o Signature Files[16]: A signature file is constructed by first assigning a
unique bit pattern, called a signature, to each word in the entire document.
Then the input document is broken up into smaller pieces, such as
paragraphs or sections, that we will refer to as sub-documents. A signature
for each sub-document is constructed by bitwise “or”-ing the signatures for
every word in the sub-document.! Given a query word or words, searching is
performed by computing the signature for the query by “or”-ing the
signatures for its components and then checking the set bits of the query’s
signature against the signatures of all the sub-documents using a linear

'Here we speak of the superimposed coding variety of signature files. Faloutsos and
Christodoulakis{17] discuss this and several other variants having similar properties.

CHAPTER 1. INTRODUCTION 6

scan. Any sub-document that has a set bit corresponding to each set bit in
the query’s signature is a good candidate for a match. Because the bit
patterns of the words may overlap, some sub-documents may match all the
set bits of the query without containing the query words. For example, if we
assign the words “to,” “be,” and “or” the signatures 010, 101 and 110
respectively, then the signature for “to be” is 111 and will match the
signature for “or” in its set bits without containing the word “or.” These
false results are expected and must be filtered out by explicitly checking the
query against each candidate sub-document. A careful selection of
signatures keeps the number of false results small. The main advantages of
signature files are their small size relative to other indices and the ease of
updating the index to reflect changes to the document. Faloutsos and
Christodoulakis determined that the size of the signature file should be
approximately 10% of that of the text[17]. Signature files effectively handle
word and phrase queries on moderately large documents but do not support
regular expression searching. The linear behaviour of signature files makes
them less effective for searching very large documents.

o Suffix Trees[47]{36] and their derivatives are explained later in this chapter.

This thesis concentrates on a specific instance of the last type of index because it

is capable of efficiently answering all of the queries given above and others.

1.4 Sample Documents

For presenting empirical results on text searching structures, we use four

documents as test cases:

e Holmes, an ASCII encoded extract from the works of Sir Arthur Conan
Doyle,

CHAPTER 1. INTRODUCTION 7

Name | #Characters | #Index Points
Holmes 238551 43745
Bible 5553621 1202504
OED 545578702 108687644
X1 924430 924430

Table 1.1: Sample Documents

¢ Bible, an SGML[43] encoded version of the King James version of the Bible,

e OED, an SGML encoded version of the Oxford English Dictionary, Second
Edition[39)],

e XIII, ASCII encoded genetic information, the nucleic acid sequence for
chromosone XIII from S. cerevisiae reported by the Sanger Centre.

In the first three cases we use word indices where word breaks occur at blanks,
punctuation and SGML tags. The final document, XIII, is searched using a
character index over the characters A,C,G and T. Various properties of these

documents are shown in Table 1.1.

1.5 Preliminaries

We first clarify a few terms used in the remainder of the thesis. Throughout, the
logarithm to the base 2 of z is denoted lg z and the natural logarithm is denoted
In 2. We use log z when the base of the logarithm is not crucial and can be taken
to be any constant greater than 1. When the base is important, it will be placed
in a subscript, as in log,(z). Ceiling, [z], is the smallest integer greater than or
equal to z and floor, |z], is the largest integer less than or equal to z. When

discussing the representation of a number in a base other than ten, we place the

CHAPTER 1. INTRODUCTION 8

value in parentheses and use a subscript to indicate the base, as in 13 = (15)s. We
will also use Iverson’s convention for representing conditional expressions where

[..] is one if the contents are true, zero otherwise(see Graham et al.[25]).

When analysing the performance of our data structures and algorithms we will
make use of order notation. Briefly, f is O(g) if there exist positive constants &
and »n, such that f(n) < kg(r) for all » > n,. Similarly f is Q(g) if g is O(f), f is
O(g) if f is O(g) and f is Q(g) and finally £ is og) if imnee £2} = 0 [25].

When reporting the sizes of objects in main memory or on secondary storage, we
use the suffixes k,m, and g to denote multipliers of 2!°=1024, 22°=1048576 and
2301073741824 respectively.

1.5.1 Trees

The trees dealt with in this thesis fall into two categories:

o finite, rooted, and ordered general trees, and

o finite rooted binary trees.

A general tree T' (we omit the “finite, rooted” and “ordered” qualifiers for the
remainder of the thesis) is formally defined as a non-empty, finite set of nodes such
that there is one distinguished node called the root of the tree, and the remaining
nodes are partitioned into m > 0 disjoint sub-trees T}, T3, T5...T,, where the order
of the sub-trees is significant[41]. Nodes having no sub-trees are called leaves or
ezternal nodes. Nodes with sub-trees are called internal nodes. The degree of a
node is the number of sub-trees of the node.* The roots of the sub-trees of a node
are called the children of the node. Multiple nodes that are the children of a

$Some authors use the term “out-degree” for the number of sub-trees, reserving “degree” for
the total number of edges incident on the node.

CHAPTER 1. INTRODUCTION 9

common node are called siblings (the roots of T}, T3, T3 and T,, are all siblings).
Conversely, if a node has a child then it is referred to as the parent of the child
node. We define the height of a node recursively, with leaf nodes having height one
and internal nodes having a height one greater than the maximum of the heights
of their children. The height of a node is the length of the longest path from the
node to a leaf in its sub-tree. The height of a tree is the height of its root. Trees
are frequently depicted pictorially by placing the nodes in the plane and then
drawing lines between nodes and their children. The connections betweens nodes
and their children are called edges in both the concrete diagram and the abstract
tree definition. Figure 1.1 shows a drawing of a sample tree. All drawings of trees
in this thesis place tree roots higher on the page than their sub-trees.

10

Figure 1.1: Sample Tree

When computing with trees, we will primarily be interested in three operations:

parent(n) given (a representation of) a node n, computes the representation of
the parent of that node, and

degree(n) given a node n, computes its degree, and

child(n,t) given a node n and an integer ¢ returns the ¢’th child of r.

A binary tree consists of a distinguished node called the root. The root may have
a left sub-tree and/or a right sub-tree each of which must itself be a binary tree.
The important difference between a binary tree and a general tree where each
node has a degree of at most two is that each sub-tree of a binary tree node is

CHAPTER 1. INTRODUCTION 10

labelled left or right - even if there is only one of them. The general tree
terminology of degree, parent, child, leaf and internal node is also used with
binary trees. Figure 1.2 shows a drawing of a binary tree. In some portions of

Figure 1.2: Sample Binary Tree

this thesis we will deal with a restricted form of binary tree in which every
internal node has exactly two sub-trees. We call such trees strictly binary trees.
When working with binary trees, we retain the parent and degree operations
but replace the child operation with two operations: leftchild and rightchild.

For both general and binary trees we may extend the definition to include a

degenerate empty tree as consisting of no nodes.

1.5.2 Machine Model

We use the MBRAM model of computation allowing indirect addressing of
memory and basic mathematical and bit-wise boolean operations. The MBRAM
model incorporates an accumulator, an infinite set of memory registers each with
a unique integer address and each capable of holding a value which may be
interpreted as either an integer or a finite bit sequence, and a finite control
containing a program made up of instructions from the following categories:

e flow control instructions including conditional and unconditional branches,

e input/output instructions,

CHAPTER 1. INTRODUCTION 11

e load/store instructions that transfer data between the accumnlator and the

memory registers,

e arithmetic and bitwise boolean operations that operate on the contents of

the accumulator and memory.

The main distinguishing feature of the RAM based models is the ability to
perform indirect loads and stores. A memory load (store) can load from (store to)
a memory register whose address is taken from a second register. Indirect memory
operations allow the RAM to perform table lookup and pointer operations
efficiently. The ability to perform multiplication, division and bitwise boolean
operations separates the MBRAM from the basic RAM model. This description is
based on that of van Emde Boas15).

To measure the performance of a program, we assign a cost to each instruction
and define the cost of the program as the sum of the costs of all the instructions
executed by the program. All of our analyses will be done using a unit cost
approach where each instruction has cost one as opposed to the logarithmic cost
model where the cost of an instruction is based on the length of the operands in
bits. The use of a unit cost approach allows easier comparison to existing work,
but can result in unreasonable results if care is not taken (for further information,
see [15]). In order to avoid these problems, we will ensure that at no time will any
computation use integers greater than n° or bit sequences of length greater than
clgn where n is a reasonable measure of the problem size and ¢ is a small
constant. Usually n is the document size but occasionally it will be the number of
nodes in a tree. Such a restriction allows us to obtain a bound on the logarithmic
cost simply by multiplying the unit cost by clgn. We will refer to the MBRAM
model using the unit cost approach as a wide bus model to distinguish it from one

where bit operations are counted.

CHAPTER 1. INTRODUCTION 12

Offset | Suffix Unique Prefix
1 abccabea$ | abee

2 becabea$ | bee

3 ccabca$ | cc

4 cabca$ cab

5 abcal abca

6 bca$ bea

7 ca$ ca$

8 a$ a$

Table 1.2: Suffixes of abccabca$

1.6 Suffix Trees and Related Structures

The structures presented in this section have been discussed, with minor
variations, by several authors and indeed have acquired several names in the
process. In addition, some names have been used to refer to several distinct
methods of searching. We will attempt to keep the terminology simple by choosing
one name for each structure and refer only parenthetically to other names.

Given a text string S = s818283...8,, Where each s; is a member of an alphabet X,
we want to preprocess S such that given a pattern, P = pypaps...pm(p; € ¥), the
set {1]8i..8;4m-1 = P} can be found as efficiently as possible. By a suffiz of S we
mean any substring of S ending in the final position, i.e. s;...8, for some value of ¢
between one and n. In order to ensure that each suffix occurs exactly once in the
text, a special character “$,” not in X, is appended to S. The string

S = abccabea$ will be used for many of our examples. The suffixes of § are shown
in Table 1.2. Each suffix has a minimal prefix that distingunishes it from the other
suffixes. This prefix appears in the third column of Table 1.2. If S did not end in
$, the strings ca and a could not uniquely identify the last two suffixes of §

CHAPTER 1. INTRODUCTION 13

because they occur elsewhere in the string. In order to locate all occurrences of
be, it is sufficient to search for suffixes that start with that character string. While
this search problem may not seem easier than the original problem, many existing
structures for searching a set of keys can be used to solve it. We refer to any
index that operates by searching the suffixes of the text as a suffiz indez.

Given a set of unique string keys, a trie[20] is a search tree in which each leaf
contains one of the strings and each edge has a single character label. A string
occurs in the sub-tree rooted at a node if and only if the concatenation of the
labels on the path from the root to the node is a prefix of the string. Each
internal node has children for each continuation of its prefix that leads to one of
the keys. Depending on the implementation, the construction continues until
either there is only one key remaining or until the end of the key is reached.
Structurally, a trie is a general tree where each node has degree at most m, where
m is the size of the alphabet, and each edge has a label drawn from ¥ such that

no two edges below the same node share a label.

Figure 1.3: Suffix Trie

The suffiz trie[47}(also called position tree, non-compact suffix tree and FuTrie) of
S is a trie built on the unique prefixes of the suffixes of S. The suffix trie for the

CHAPTER 1. INTRODUCTION 14

example string is shown in Figure 1.3. Each leaf is labelled with the suffix offset.
In the suffix trie, the labels along any root-leaf path can be concatenated to
obtain the unique identifier of the suffix stored in the leaf. Similarly, the labels
along any root-vertex path can be concatenated to form a maximal prefix shared
by the suffixes of all the leaves in the sub-tree rooted at the node. Using the suffix
trie, it is possible to search for any pattern by traversing the trie until either the
end of the pattern is encountered or the search encounters a leaf. If the end of the
pattern is encountered, any leaf in the sub-tree rooted at the last node visited is a
match. If a leaf is encountered before the end of the pattern, then the remainder
of the pattern must be checked against the appropriate suffix. The cost of
performing this search is O(m + q) where m is the size of the pattern and ¢ is the
size of the answer. The dependence of the search cost on the size of the answer
can be avoided if we are permitted to return the root of the sub-tree of answers
instead of some other representation of the answer set. By convention, the
dependence on the answer size is omitted in the remainder of this thesis. In most
cases, the conversion of the node to a list of suffix offsets can be performed in

linear time (the suffix trie being a notable exception).

While a suffix trie allows O(m) searching, it can require @(n?) nodes: consider the
suffix trie for S = a"b"a"b"$ (for n = 3 the trie is shown in Figure 1.4). In
general, this trie has (n + 1)? internal nodes so it is possible for suffix tries to

require ©(n?) space to index a string of size O(n).

Suffiz trees (also called compact suffix trees, prefix trees, subword trees, position

trees and OrTries)[47](36], reduce the storage requirements by removing some or

all of the degree one nodes in the suffix trie. For the example string,

S = abccabea$, the suffix tree obtained by merging all degree one nodes is shown
in Figure 1.5. This structure allows efficient searching, O(m) time, and uses only
O(n) storage if the node labels are stored as pointers into the text. The form of

suffix tree shown here is due to McCreight, while Weiner retained up to n degree

CHAPTER 1. INTRODUCTION 15

294

Figure 1.4: ©(n?) Suffix Trie

one nodes. Both Weiner and McCreight showed O(n) time algorithms for the
construction of their respective forms of the suffix tree. Another linear time
construction algorithm relating suffix tries and Directed Acyclic Word Graphs
(DAWGs), a data structure briefly discussed later, is presented by Chen and
Seiferas(10].

The final suffix tree structure considered here is obtained by using the PATRICIA
searching method of Morrison[38] to search the suffixes. Given a set of unique
string keys and a binary encoding of the letters in £ U {8}, a PATRICIA tree is a
search tree in which each leaf contains one of the strings and each internal node is
labelled with the position of a bit that distingnishes the keys in the left sub-tree
from those in the right sub-tree. We use the first bit that is not identical in all the
keys in a sub-tree to partition the keys into the left and right sub-trees. The use
of PATRICIA for suffix searching is implicit in Morrison's paper and is also
discussed by Knuth[29], Sedgewick{42] and Gonnet et al.[22]. Following Gonnet et
al., we use the term PAT tree for the PATRICIA tree applied to suffix searching.

CHAPTER 1. INTRODUCTION 16

Figure 1.5: Suffix Tree

Using the encoding @ =00, 5 =01, ¢ = 10 and $ = 11, the PAT tree for the
example string is shown in Figure 1.6.

Figure 1.6: PAT Tree, [k] is the node’s bit offset

A PAT tree is searched by generating the binary encoding of the pattern and then
traversing the tree. At each internal node, the bit offset is used to select a bit
from the pattern. Based on the bit value, the search continues with either the left
or the right child of the node. Because the search can skip bits in the pattern, the
termination of the search is more complex than that of simple suffix trees. If the
search terminates at a leaf node, then the pattern must be compared to the leaf
suffix to see if it matches. If the end of the pattern is encountered before a leaf,

then a representative suffix from the current sub-tree must be chosen and

CHAPTER 1. INTRODUCTION 17

compared to the pattern. The representative matches the pattern if and only if all
of the suffixes in the sub-tree match the pattern. In practice, the offset
information stored in each node is a skip value one less than the difference
between the offset value of the node and its parent (with an implicit parent offset
of 0 for the root). The actual offset is accumulated as the tree is traversed.
Because this structure is central to this thesis, the pseudo-code for searching it is

shown in Figure 1.7. Provided care is taken to ensure that locating a sample for

node = root

offset = 0

bit_pattern = encode(pattern)

bit_length = |[bit_pattern|

while (node is not a leaf and offset + node.skip <= bit_length)
offset = offset + node.skip + 1
if bit_pattern[offset] is set then node = rightchild(node)
else node = leftchild(node)
endif

end

sample = any sub-leaf of node

if (pattern = S[sample]) return node

else return NOTFOUND

endif

Figure 1.7: PAT Tree Search

comparison can be performed efficiently, the search cost of PAT trees is the same
as that of suffix trees, O(m).

1.7 Properties of Suffix Trees and PAT Trees

Each PAT tree is a strictly binary tree in that each node has exactly zero or two
children. In a strictly binary tree the number of leaves is exactly one more than

CHAPTER 1. INTRODUCTION 18

the number of internal nodes, so a PAT tree has one fewer internal nodes than
there are index points in the text. Note that there is an isomorphism between the
strictly binary trees with 2n + 1 nodes and the binary trees on n nodes obtained
by removing all the leaf nodes from the strictly binary tree. This isomorphism
allows us to represent the structure of a PAT tree more succinctly in the following

chapters.

A second useful property of PAT trees is the expected height of the tree. The
technical report of Szpankowski[46] contains many results on the expected case
behaviour of tries and suffix trees. We use his notation for the remainder of this
section. Szpankowski shows that, subject to some apparently reasonable
conditions on the text, the height of a suffix tree on a text of length n, H,, satisfies
lim, oo l%,} = ;.-1; almost surely, where hy = —lim, o nmax P(X{') is a parameter of

the model that generated the text. In this expression, P(X}) is the probability of
a particular character sequence of length n occurring and the maximum is taken

over all such strings. The criteria for this result to hold essentially state that:

1. The sequence of characters in the underlying string is drawn using a
stationary ergodic model under which a character’s probability distribution

can depend on the previous characters.
2. No sequence of characters fully implies any following character.

3. The influence of any given character sequence on the probability
distributions of characters occurring later in the string decreases rapidly
with the distance between the two sets of characters (strong mixing

condition).

While written text is not random, the conditions above constitute a realistic
model for reasoning about the behaviour of documents. In order to apply this

result to PAT trees we must replace character sequences by bit sequences.

CHAPTER 1. INTRODUCTION - 19

Provided we use an efficient encoding of the alphabet the conditions on the
character strings imply similar conditions on the bit strings so the same result will
hold for PAT trees. The efficient coding of the alphabet will also be required for
compact storage of the PAT tree.

Another parameter studied by Szpankowski is the expected height of a suffix trie.
This value is of interest to us because it is linearly related to the maximum offset
occurring in the PAT tree. He shows that the height of a suffix l;:n'ie regg%)fl,.,
satisfies lim,—,co % = b,-%ﬁ almost surely where hg” = ~lim, ——XJ}“——-I-— is
another parameter of the model generating the text. These two results will be
used throughout this thesis to derive logarithmic bounds on many properties of

our structures.

1.8 Storage Requirements

Computer representations of suffix based structures require the use of pointers
and text offsets. For the purposes of comparison, it is useful to assume that each
of these require lg n bits. Manber and Myers performed an analysis of various
possible representations of suffix trees and determined that approximately 17
bytes per index point were used in the most compact representations{35]. Under
the assumption that their system was capable of handling documents of at most
232 characters, 17 bytes equates to 4.25 Ig n for the texts considered in their
report. This result agrees with the “4n to 5n words” reported by Gonnet et al.[22].
The use of PAT trees can reduce the storage requirements to approximately

2 + 3lg n bits per index point if the obvious implementation of a node as two
words, an integer skip, and bit flags indicating if the words contain pointers to
other nodes or suffix offsets is used. On the OED, this implementation results in a
word index roughly twice the size of the text - a suffix tree would be three times

CHAPTER 1. INTRODUCTION 20

the size. If all the characters in a document are indexed, the size of each of these
indices will be increased by a factor of approximately five as discussed earlier.

The storage costs of suffix trees have long been a cause for concern. Several
researchers have developed other suffix based structures that tradeoff the
searching abilities of suffix trees against their storage costs. These include,

o Suffiz Arrays{35][22]: Due to the large storage requirements of suffix trees
Manber and Myers and Gonnet et al. independently developed the suffix
array (Gonnet et al. used the term PAT array) structure. The suffix array
structure is simply the list of suffix offsets sorted by the lexicographic
ordering of the suffixes to which they refer. The suffix array for the example
stringis: [5|1[8(6]2]|4|7]|3 | Inpractice, suffix arrays are searched

using a binary search requiring O(mIg n) time because each comparisor can
require O(m) character comparisons. Manber and Myers, however, give a
secondary structure that can boost the searching speed to O(m + lgn).
Both Manber and Myers and Gonnet et ¢l. have found it necessary to add
an auxiliary structure to the base suffix array to speed searching on
secondary storage[35][45]. These auxiliary structures range in size from 25%
to 100% of the size of the suffix array. Barbosa et al.[5] investigated
methods to speed searching on secondary storage by modifying the pivot
element(s) chosen during the binary search to reduce the time taken to
perform the disk accesses.

o Directed Acyclic Word Graphs (DAWGSs): DAWGs are obtained by merging
edge isomorphic sub-trees in a suffix trie(10]. The number of nodes in the
DAWG is linear in the size of the text. While DAWGs can detect the
occurrence of phrases in a document, they cannot determine the locations of
the occurrences or associate any data with each occurrence so they are not

appropriate for most text searching applications.

CHAPTER 1. INTRODUCTION 21

e Bucketed Suffix Trees[4]: A bucketed tree allows multiple suffix offsets to
occur in each leaf. Searching is performed by using the tree to determine the
bucket and then using brute force or binary search within the buckets. The
storage savings and performance cost vary with the size of the buckets but
the storage cost is comparable to that of suffix arrays because the suffix
offsets are still stored.

o Prefix B-Trees[6]: A Prefix B-Tree extracts common prefixes of keys and
uses minimal separators of the keys to increase the branch factor of each
node. While not developed for suffix searching, Prefix B-Trees are a
competitive approach to the problem. The SB-Tree, discussed later, appears
to subsume the Prefix B-Tree for suffix searching and so will be used for any

comparisons.

o PaTries{44],(37): PaTries are similar in approach to the structures presented
here but, because of the lack of an efficient tree encoding and the use of a
non-optimal partitioning scheme, are unlikely to be competitive on either

processor time or secondary storage accesses.

o LC-Tries[2]: By storing a compressed trie in main memory, Andersson and
Nilson produce a compact pre-index for a suffix array on secondary storage.
The method is unlikely to scale well to very large text but could be applied
recursively to improve performance. Such a recursive application would have

much in common with the PaTrie.

o SB-Trees[19]: Essentially a B-tree on the suffixes where each node in the
B-tree node contains a PATRICIA tree that distinguishes the keys in that
node. While the storage requirements of the SB-tree are subject to many
performance tradeoffs, the use of a compact tree representation allows

implementations requiring from 3 to 12.3 bytes per node for documents of

CHAPTER 1. INTRODUCTION 22

up to 2% characters. The smaller representations incur performance
penalties to achieve their small size. Direct comparison of the SB-tree to our
structure is difficult because of the many space-time tradeoffs, however an
empirical study is being considered and will be reported on later.

The remainder of this thesis presents several compact representations for PAT
trees with storage requirements comparable to the structures above but offering
greater efficiency or functionality. Our interest in these structures was initially
motivated by the problem of efficiently searching text on CD-ROM. Due to the
high performance penalties incurred when using suffix arrays on these devices, we
started searching for alternative methods of searching text. During the
investigation it became clear that the primary motivation for suffix arrays was the
high storage cost for suffix trees. This lead to an investigation of suffix tree

representations and hence to compact PAT trees.

Chapter 2

Compact Trees and Tries

In this chapter, we present techniques for constructing traversable compact
representations of trees and tries. We first review some tree representations from
Guy Jacobson’s thesis and then extend these methods to the MBRAM model of
computation. We also show how these methods can be used to construct a
compact traversable representation for tries. Finally, we present a second compact
traversable representation for binary trees that is again based on earlier work by

Jacobson but with improved space efficiency.

Jacobson[27][26] presents several compact representations of binary trees and
unlabelled general trees with efficient, in terms of bit accesses, implementations
for the selection of the parent and children of a node. We first review two such
representations and then extend Jacobson’s results to the wide bus model of
computation we are using. Using these tools we develop a new representation for
tries by constructing a representation for trees with edge labels and efficient
selection of an edge based on its label. This last result is based on simple hashing
so the performance claims are probabilistic, although low fill ratios make
reasonable performance likely. Finally we present an improved version of another
of Jacobson’s encodings. These representations will be used in the following

23

CHAPTER 2. COMPACT TREES AND TRIES 24

chapters to represent the tree structure of a PAT tree.

We are interested in compact representations of various types of trees and tries
that allow common tree traversal operations to operate directly on the compact
form of the tree. The operations we will be interested in include:

o selecting the left or right child of a binary tree or selecting one of the
children of a node in a general tree based on ordinal number, or, in the case
of a trie, edge label,

¢ locating the parent of a node,

® determining the size of the sub-tree rooted at a node.

In each case, we require that the operations be performed in a constant number of
operations on lg n size objects so they will operate in constant time on the
MBRAM model. For the purposes of this chapter, we let n represent the number
of nodes in the trees being discussed instead of a document size. Jacobson'’s
thesis[27] presents two different methods of efficiently representing and traversing

trees: rank/select directories and a recursive encoding for binary trees.

2.1 Rank/Select Representations

Jacobson[27][26] defines two new operations, rank and select, on bit-maps that can
be efficiently implemented and are crucial in manipulating his compact bit map

representations of trees and other structures. The operations are defined as:

o rank(z) computes the number of ones preceding (to the left of) and
including the bit in position z,

e select(z) computes the position of the z’th one in the bit map.

CHAPTER 2. COMPACT TREES AND TRIES - 25

Note that rank(select(z)) = z and select(rank(z)) = z if the z’th bit is a one.
Also define rank0 and select0 as performing the analogous operations of

counting or finding zeroes instead of ones.

2.1.1 Binary Trees

The number of binary trees on n vertices is denoted C,, and called the n»’th
Catalan number, C, = ;i—l (2:) [41]. A compact encoding of a binary tree
structure should require about lg C, bits. Using Stirling’s approximation to the
logarithm of the factorial function, lg C,, can be shown to be approximately 2n
(see Section 2.3 for a full derivation). The survey papers of Makinen[34] and
Katajainen and Makinen{28] present many techniques for representing binary
trees that attain the 2rn bound, however none provide the functionality required.

For representing binary trees, Jacobson starts with a level order binary tree
encoding. Consider the tree in Figure 2.1. To form the level order encoding first

Figure 2.1: Sample Binary Tree

extend the tree by adding new leaf nodes below each leaf or non-full internal node
in the original tree. Then assign a 1 to each node that exists in the original tree
and a 0 to each leaf in the extended tree, as in Figure 2.2. Note that the extended
tree is a strictly binary tree in that all internal nodes have degree two. The level
order encoding of the tree is created by performing a level order traversal of the
extended tree and recording the labels on the nodes encountered. The level order

encoding of the tree in Figure 2.1 is

CHAPTER 2. COMPACT TREES AND TRIES 26

Figure 2.2: Labelled Extended Tree

1{1|1f{2]offzf1]1|1]ofo]o]1|ofo]ofof0]0
1{2)3]4] [5]6|7]8] | 9

where the node numbers appear below their position in the encoding. The bits

comprising the encoding are broken into segments of five solely for ease of reading.
This encoding occurs in the construction of Zaks’ sequences[50] and was also
studied by Lee et al.[31]. This level order encoding requires 2n + 1 bits to
represent a tree on n nodes, so it is near-optimal, but it does not appear to
support the efficient location of the parent or children of a node. Jacobson noted
that using the rank() and select() operations, the parent and child operations

can be computed as

leftchild(z) = 2 rank(z)
rightchild(z) = 2rank(z)+1
z
parent(z) = select (,.EJ)

where each function takes the offset of the node and returns the offset of the child
or parent. If the bit at the offset returned by the child operations is zero, then
that child is not present in the tree. As an example, node 4 is located at offset 4,
so its right child is at offset 9 = 2 x4 + 1. Similarly, the parent of the node at
offset 13, node 9, is at select(6 = | 1|) = 7 which is the offset of node 6.

Formulas similar to the equations above occur in the implicit representation of

CHAPTER 2. COMPACT TREES AND TRIES 27

complete binary trees used by Williams in Heapsort[48] where the special form of
the tree reduces rank and select to identity functions.

2.1.2 General Trees

10

Figure 2.3: Sample General Tree

The representation of general trees, such as the one in Figure 2.3, provides
another use for rank() and select(). By observing the well known isomorphism
with the binary trees obtained by mapping a node’s first child to its left child and
its right sibling to its right child, one can determine that there are C, such trees
on n nodes and so 2n bits are again sufficient. However, using this isomorphism to
represent such trees results in a sequential scan of the children of a node in order
to locate the encoding of a particular child. Instead, Jacobson uses an encoding
from Read[40] that is again based on a level order traversal of the nodes. The
encoding is obtained by labelling each node with the unary encoding of its child
count using ones for the count and a zero for the terminator. In order to represent
the empty tree, an extra “super-root” is added above the real root of the tree.
Figure 2.4 shows the tree from Figure 2.3 using this encoding. Again generate the

10
1110

110 1110

10

0

Figure 2.4: Unary Labelling of Sample Tree

CHAPTER 2. COMPACT TREES AND TRIES 28

bit representation for the tree using a level order traversal of the tree. The bit
string for Figure 2.4 is

tfofefa]1fo]afa]ofoa]2]2]o o] oJo]1]o]0] o
-1 1 2 3[4 5[ef[7]s] Jof10

Note that each node has one 1’ bit, found in its parent’s label, and one ’0’ bit,
terminating its label, associated with it plus an extra ’0’ bit for the super-root so
2n + 1 bits are used in encoding.

Again, efficient implementations of the traversal operations are not obvious with
this representation, but Jacobson shows that the rank() and select() operations
can be used to implement these operations. In this case, if we represent a node by

the offset of the corresponding one bit in the parent’s label, then:

degree(z) = selectO(rank(z)+ 1) — selectO(rank(z)) -1
child(z,i) = selectO(rank(z)) +¢

parent(z) = select(rank0(z))

where children are numbered starting from 1. For convenience, we refer to the
rank of the set bit representing a node as the rank of the node for both general
and binary level order encoded trees. This convention allows us to associate a
unique integer in range 1..n with each node. In Figures 2.1 and 2.3, a node’s label
is equal to its rank.

2.2 Implementing Rank and Select

Jacobson[27][26] presented implementations of rank() and select() that are
efficient in terms of the number of bits accessed. However, his implementation of

select() requires non-constant time when run under the MBRAM model of

CHAPTER 2. COMPACT TREES AND TRIES 29

computation. In this section we review Jacobson’s implementation of rank(),
which runs in constant time on an MBRAM, and present a new implementation
of select() that runs in constant time on an MBRAM.

2.2.1 Jacobson’s Rank Implementation

Given a string of n bits, Jacobson constructs a two-level auxiliary directory
structure allowing constant time computation of the rank function The first
auxiliary directory contains rank(z) for every i a multiple of [Ign].* A second
auxiliary directory contains rank’(j) for j a multiple of [lgn] within each
subrange where rank’ computes the rank within the subranges of size [lgn]’.

Theorem 2.1 (Jacobson) Rank can be performed on an MBRAM in constant

time using L’ﬁ!:}.ﬂ + 0(1—"‘;) bits of extra space.

Proof: rank(z) is calculated by locating the correct first auxiliary directory
entry, at position [ﬂ_sz;’tr." and the correct second level entry, at position l_ﬂiﬂ .
Adding these two values gives the rank of the first bit in a [lgn] sized range. The
final component of rank(z) could be computed by scanning z mod [lgn] bits in
the bit string. Using table lookup, however, this scan can be performed in
constant time. We simply retain a table which for each possible bit pattern of
length !‘cl, for some integer ¢ > 1 (c = 2 suffices), gives the number of 1’s in the
pattern. After masking out unwanted trailing bits, our final term is found by
adding at most c entries in the table. There are approximately nt entries in this

table.

Each of the I-T'!’A"T] entries in the first auxiliary directory requires [lgn] bits.
Each of the [,‘Ln] entries in the second level auxiliary directories requires

*Jacobson actually uses Innlgn.

CHAPTER 2. COMPACT TREES AND TRIES 30

2[lg [Ign]] bits because they contain values less than [lgn]®. The total storage
requirement, ignoring floors and ceilings, for these directories is i Inlglgn e

ign
final table requires fewer than [n'e'] [1g [lgn]] bits. Hence the storage required in
addition to the original bit map is 2%&l= 4 0(:%)- QED

2.2.2 Implementation of Select on an MBRAM

While Jacobson’s ranking function operates in constant time on a MBRAM, his
implementation of select() requires O (log log n) time because it includes a binary
search on a region of g n bits. In this section, we present a new solution that
operates in constant time under a wide bus model. As in the rank case, we use a
multi-level auxiliary directory structure and find that the final case can be
scanned using a constant number of table lookups. Qur goal is to use O (,s;;n)
extra bits to store the auxiliary directory structure. In order to achieve this goal,
we will ensure that for the ranges of length r in the auxiliary directory structures

we will use [ig_l;?J bits of storage. This condition also allows us to index into

these directories to locate the appropriate bit sequences for each range.

Theorem 2.2 Select can be performed on an MBRAM in constant time using

ﬂ_s%'_t'l' + O(n’lgnlglgn) bits of eztra space.

Proof: We use three levels of auxiliary directory structures to compute select.
The first auxiliary directory records the position of every [lgn] [lglgn]’th one
bit. This directory requires [lgn] bits for each entry and has I.]TsT-TﬁFET»TJ entries
so at most l.ﬁir—s?[J bits are used. Let r be the size of a subrange between two
values in the first auxiliary directory and consider the sub-directory for this range.
Note that during traversal operations r is easily computed and does not need to
be stored explicitly. We are willing to spend I.TEIIET-TJ bits on this range in the
second level of directories. As with the inference of the value r, we can also infer

CHAPTER 2. COMPACT TREES AND TRIES - 31

the location of this block of bits. To explicitly record the [lgn] [Iglgn] possible
answers in that range requires [Ign)? [Iglg =] bits. If

r > [ign]* iglgn]?
then
lflslgn]J 2 flgn!” flglgn]

and we have sufficient storage to explicitly record the answers.
If instead

r < ([lg=] Nglgn])’ (2.1)
we re-subdivide the range and record the position, relative to the start of the
range, of each [lgr] [Iglgn]’th one bit in the second level auxiliary directory.
Each entry requires Ig » bits and there are at most lmj entries so again
this takes at most l.Tl'sthTJ bits.
Let 7' be the size of a subrange between values in the second level anxiliary
directory. To explicitly record the relative positions of all the possible answers

requires [lgr'] [lgr] [lglgn] bits. If
r' > [igr'] Ngr] lglgnl®
then

[lglgn]
so there is sufficient space to record all the answers in a third level of auxiliary

[———J > Mlg+'1 Nlgr] Nglgn]

directories.

In the final case we have
v < [lgr'] (igr] [lglgn]®. (2.2)
From equation 2.1 we obtain

lgr <2(lg([lgn]) +1g([lglgnl))

CHAPTER 2. COMPACT TREES AND TRIES 32

so lgr < 4[lglgn] by observing that Ig [Iglgn] <lg[lgn] and

Ig [lgn] < [lglgn]. In addition we know r < r 50 lgr’' < lgr and equation 2.2
implies ' < 16 [lglgn]*. Because (Iglgn)* is asymptotically smaller than ign we
know that we can perform select on a range of [lglgn]* bits using a constant
number of operations on regions of size [lgn] bits. Computing select on a small
range of bits is again performed using table lookup. Again let ¢ be an integer
greater than one. For each possible bit pattern of length !‘} and each value 7 in
the range 1..!55’1 we record the position of the i’th one in the bit pattern and, in a
separate table, the number of ones in the bit pattern. To compute select on a
small range we scan the range using the second table until we know which
subrange contains the answer and use the first table to compute the answer. At

most a constant number of subranges can be considered.

Select(k) is performed by locating the pair of first auxiliary directory entries
bracketing the desired value starting at mls—nf [lgn] and from these
computing r. If r > ([lgn] [Iglgn])? the storage in the second level auxiliary
directory is treated as an array and the correct answer is read off from the correct
entry. Otherwise a similar search is performed in the second level auxiliary
directory resulting in either a scan of a small number of bits or reading the answer
from the third level auxiliary directory and then summing the results from all the
levels. The critical point is that we know where the appropriate directory bits at

each level are located and how to interpret them based on the value of k& and the

3n

preceding directory levels. The storage used for the auxiliary directories is & -

and the storage used for the lookup tables is nt (-:- Igniglgn +1glg n) so the
extra storage for auxiliary directories is m—’,’;—nT 4 O(ntlgnlglgn) which matches
the statement of the theorem given c is at least 2. QED

This shows that select() can be implemented in constant time under a wide bus

model using asymptotically negligible storage.

CHAPTER 2. COMPACT TREES AND TRIES 33

Theorem 2.3 A binary tree on n nodes can be represented in 2n + o(n) bits and
support parent, leftchild and rightchild operations in constant time on an
MBRAM. Similarly, a general tree on n nodes can be represented in 2n + o(n) bits
and support the child, parent and degree operations in constant time on an
MBRAM.

Proof: Using Jacobson’s rank and our select directory structures on the level
order encodings from Sections 2.1.1 and 2.1.2, the result follows. QED

While asymptotically small, the extra storage required by the rank and select
directories is significant when considering trees of a size comparable to modern
computer memories. For n = 26, the extra storage required by the auxiliary
directories is slightly larger than the bit maps. However, the size of the directories
can be reduced by storing less frequent samples in the directories and performing

larger linear scans. These reductions are necessary in the next section.

The rank/select based operations on the level order encodings of binary and
general trees do not appear to directly support the inclusion of fixed sized fields of
different sizes in the leaves and internal nodes of the trees. Such fields are
required in many applications, including the tries covered in the next section. In
an application where both leaves and internal nodes require fields and these fields
are approximately the same size, we can store the field values in a separate array
indexed by the rank of the corresponding node. However, when the field sizes for
the two classes of nodes are not equal, this method may waste too much storage
to be practical. In order to solve this problem, we associate a separate bit vector,
indexed by the ranks of the nodes, that distinguishes internal nodes from leaves
using a one bit for a leaf and a zero bit for an internal node. Using the rank()
function on this bit vector we can map any leaf to a number in the range 1..L,
where L is the number of leaves, and then store the leaf data in a separate array.
rank0() can be used to perform the analogous task for internal nodes. This adds

CHAPTER 2. COMPACT TREES AND TRIES 34

n + o(n) bits or about one bit per node to the total storage requirements.

2.3 Compact Tries

Now we consider the compact implementation of a trie. The primary differences

between a general tree and a trie are:

e the addition of edge labels in the range 1...m such that no two edges from
a node have the same label (this also places a bound of m on the degree of a
node but this bound is not significant to us), and

® a new operation triechild(z,t) that returns the child of z with the label ¢
(as opposed to child which returns the i’th child).

As with binary trees, we first determine the asymptotic number of bits needed to

represent a trie.

Theorem 2.4 The number of bits required to represent an order m trie onn

nodes is at least, asymptotically in n,

n(mlgm — (m — 1)1g (m — 1)) + O(log n). (2.3)

Proof; The number of order m tries on n nodes satisfies the recurrence relation:

o= 1
M = > ..ot

m+ng 4o tnm=n—1
The numbers C{™ are called the Fuss-Catalan numbers and can be shown to
equal 1= ("";"’1) (cf. [25]). For m = 2 the superscript is omitted and we obtain

the Catalan numbers of Section 2.1.1. To determine the minimum number of bits

CHAPTER 2. COMPACT TREES AND TRIES 35

needed to represent a trie, we need to compute lg C{™. Convert the binomial to
factorials, simplify some terms, and expand the logarithm to obtain:

Ig((mn)!) — Ig(n!) ~ Ig((mn ~ n)!) ~ lg(mn —n + 1). (24)

Stirling’s approximation to In(z!) is zlnz —z - 82 + o 4+ 0 (i) [25). Substituting
this approximation into formula 2.4, dropping low order terms (o and the order
term), converting from In to lg, and cancelling some terms we obtain:

lg (mn —n)
2

mnlg(mn)— g(mn) nlgn + -(m—l)n Ig((m~1)n)+ lg(mn—n+1).

In order to determine the number of bits needed asymptotically in », we place any
terms not at least linear in n in an order term. After expanding the logs and

cancelling two mnlgn terms of opposite sign, we obtain:
n(mlgm — (m —1)1g (m — 1)) + O(log n).
QED

Note that binary trees are the same as 2-ary tries, so, for m = 2, this result
confirms our previous goal of 2n bits per node for binary trees. To obtain the
asymptotic number of bits required for general m, rewrite formula 2.3 as:

mm-l
n (lgm +1g ((_nT:T)"‘_'T)) + O(log n).
As m — oo the second log term approaches lg e so the number of bits required to
represent a trie is approximately Ig m + Ig e bits per node where lge ~ 1.44. We
will not actually attain this goal but will be satisfied with Ig m + c bits per node
in the trie provided c is small. As before we want to obtain traversal operations in
constant time on an MBRAM. However, we will have to be satisfied with an

expected constant cost instead of a deterministic one.

Our approach to representing a trie compactly builds on the previous structure
for general trees and adds edge labels and hash tables for rapidly locating a

CHAPTER 2. COMPACT TREES AND TRIES 36

labelled child. By using the rank() function, the fill ratio of the hash tables can
be kept near 50% without adding greatly to the storage requirements. In addition
to the above requirements, in a typical application each leaf of a trie is labelled
with a data element so, as discussed in the previous section, we require one more
ranked bit map to map leaves to data elements. This structure adds about one bit

per node to the storage cost.

Recall from Section 2.1.2 that, in the general tree encoding, a node is represented
by the position of the corresponding one in its parent node’s label. This
convention allows us to number the nodes during a level order traversal of the tree
and obtain each node’s number using the rank() function. We move the edge
labels to their destination node and place the labels in a simple array indexed
from 1 to n. The label for a node can then be obtained using rank. The
remaining step is to provide a mapping from the node labels to the ordinal
number of a child. We could simply order the children of a node according to
their label value and use a binary search to obtain logarithmic time traversal
operations. In order to obtain constant time operations we reserve 2 bits per child

in each node of the trie and use them to store a hash table.

The 2k bits available for a hash table for k children will be split into two pieces: a
bit map and a ranking directory for the bit map. Each child will be inserted into
the hash table using a hash value based on its label and the hash table size. We
do not concern ourselves with the exact hash fanctions used or the details of the
collision resolution strategy. The hash table is stored in the bit map with a one
bit representing a full slot and a zero bit representing an empty slot. The children
of a node are sorted according to their final position in the hash table. Using the
rank() function on a hash table position we can obtain the ordinal number of the
child. Another use of rank() on the main tree representation obtains the node
number of the child and its label. If we let ¢, be the number of bits required to
build a ranking directory on a k bit bitmap then the fill ratio of the hash table is

CHAPTER 2. COMPACT TREES AND TRIES 37

EIET,,' By modifying the rank construction we can still obtain constant time but
ensure that #; < £. The modifications needed reduce the number of samples
stored in the directories and use larger linear scans. With this change, the hash
tables are at most 3 full and for large k the fill ratio approaches 1 because ¢, is
o(k). This ensures we can search the hash table in constant expected time[23].
Because we reserve exactly 2 bits per child we can store all the hash tables in a
separate bit map with each node’s hash table starting at offset

2 rank(child(z,1)). The degree() operation can be used to compute the size of
the hash table and hence the correct hash function.

Theorem 2.5 A static trie on an alphabet of size m with n nodes can be
represented in lgm + 4 + o(1) bits per node and provide the parent operation in

constant time and the triechild operation in constant ezpected time.

Proof: The storage required for the underlying tree representation is 2n + o(n)
bits. The node labels require nlgm bits and the hash tables require 2n bits.
Summing up, the total storage used is lgm + 4 + o(1) bits per node. QED

While higher than the previously obtained optimum, it is within our goal of
lg m + c. The parent operation is unchanged from the general tree and so operates
in constant time. The triechild operation requires a search through a hash table
where each step in the search requires a constant number of rank and select
operations. The expected number of steps is constant so the overall running time

is constant.

It is worth noting that if m is very small relative to n, specifically mlgm < clgn
for some small constant ¢, then we do not need the hash tables and can obtain
constant time operations while saving two bits per node. For such m and n, we
can scan the labels for all of a node’s children in a constant number of word

operations. For example, for each value ¢ in 1..m we can have table, log;, of all bit

CHAPTER 2. COMPACT TREES AND TRIES 38

Name | #Index Points | #Nodes | Index Size (bytes)
Holmes 43745 95512 235726
X111 924430 | 1728510 3931554
Bible 1202504 | 4187104 9175535

Table 2.1: Suffix Trie Sizes

patterns of length 5% that gives the location of any aligned occurrence of i in the
bit pattern. Using these tables, we can search for a particular child using 2c table
lookups. In practice, the application of some simple bitwise boolean and
arithmetic operations can replace the table lookups. The packing of multiple
values in a single word and then using word operations to perform parallel
computations on the original values is called “word-size parallelism” and is further
discussed by Brodnik(8].

The only comparably compact representation for a trie that we are aware of is the
Bonsai structure of Darragh et al.[13] which is stated to require £ (6 +lgm) bits
per node. It appears, however, that the 6 hides some non-constant but slowly
growing terms. The 3 factor is based on an 80% full hash table. For large n the
structure developed here will be significantly smaller than the Bonsai structure.
However, the Bonsai structure allows a limited number of insertions, with a small

probability of failure, and so a direct comparison is not really meaningful.

While we are not recommending the structure above for general text searching
(our solution for that problem lies in the next chapter), we list the estimated
index sizes for three of our test documents in Table 2.1. Using techniques similar
to those developed in the next chapter, the trie representation here can also be

used to develop a compact suffix tree representation for main memory.

CHAPTER 2. COMPACT TREES AND TRIES 39

2.4 Recursive Encoding: Binary Trees Revisited

The previous section introduced an asymptotically optimal encoding for binary
trees that provides leftchild, rightchild and parent operations. In this section, we
provide a slightly less space efficient encoding that provides the leftchild,
rightchild and sub-tree size operations. When working with PAT trees, the
sub-tree size is the size of the query result and so is a useful unit cost operation,
particularly when the search result is large. The new representation is very
similar to one also developed by Jacobson([27], although ours uses a more efficient

prefix code to obtain a smaller representation.

The tree encoding represents each tree as a bit string

Header | Left Sub-tree Encoding | Right Sub-tree Encoding

where the header contains two fields:

¢ a single bit indicating which of the two children has fewer nodes with an
arbitrary choice made in the case of a tie, and,

e a prefix coded integer indicating the size of the smaller child.

To represent an integer i, we concatenate the unary encoding of [lg(i + 1)] with
the binary encoding of ¢ + 1. This constructs a prefiz code such that no code value
is a prefix of any other code value and so we can, in a left to right scan of the
data, determine when we have the complete encoding of an integer. The first few
code values are shown in Table 2.2. In order to ensure that the operations of
locating the encodings of the left and right sub-trees of a node can be efficiently
implemented, each tree encoding is padded out to the length of the longest

encoding of a tree of the same number of nodes.

CHAPTER 2. COMPACT TREES AND TRIES 40

0 11 6 00111
1 010 | 7| 0001000
2 011 | 8| 0001001
3 | 00100 [9 | 0001010
4 | 00101 | 10 | 0001011

5 | 00110 | 11 | 0001100

Table 2.2: Integer Prefix Code

The integer prefix code requires 2 [Ig(i 4+ 2)] — 1 bits, so the size of the encoding

of a tree on n vertices satisfies

B(0) = 0
B(l) = 1 (2.5)
B(rn) = max B(i)+B(n-i-1)+2[lg(z+2)].

i=0..[(n~1)/2]

The initial values for the recurrence are based on the fact that we do not need to
encode the structure of trees with zero or one nodes. The ability to solve this
recurrence is the primary requirement when choosing a prefix code for use in this
type of tree encoding. We will see that the closed form solution to formula 2.5 is
of the form B(n) = 3n ~ f(n) where f(nr) is O(lg n). Before proving this closed
form, a few lemmas are needed. We use the notation (z)2 to denote the base 2

representation of z and vy(z) to denote the number of ones in this representation.

Lemma 2.1 Forn >0 and 0 <i < n, vy(i + 1) + va2(n — 1) = va(n + 1) + k where
k is the number of carries that occur when adding ¢ + 1 and n — i in base two.

Proof: Each carry that occurs during the addition of (i + 1); and (n —),
requires two one bits and produces another. If k carries occur, we have

vz(f + 1) + va(n — i) + k ones available and we require exactly one bit for each one

CHAPTER 2. COMPACT TREES AND TRIES - 41

in (n + 1), and two for each carry so
v(i+1)+van—3)+k=vy(n+1)+2k

or
va(i+ 1) +va(n~i) =va(n+1)+ k.

QED

Lemma 2.2 If n is even, mini—g_n/2-1?2(% + 1) + v2(n — i) + |lg(n — ¢)] occurs at
i =0 and so is 1 + v2(n) + [1g(n)].

Proof: This result is a simple corollary of the previous lemma. Because n is even
there are no carries when adding 1 and » so ¢ = 0 minimizes the first two terms.
For n = 2% — 2, the lg term is constant over the range of i values so ¢ = 0 still the
produces minimum total. For other values of n, the lIg term takes on one of two
values over the range of ¢: |lg(r)] and [lg(n)] — 1. However, those values of ¢
resulting in the smaller value necessarily require a carry when adding (i + 1); and
(n —)2 so the sum of the first two terms increases by at least one and this

increase offsets the saving in the lg term. QED

Lemma 2.3 Ifn is odd, mini=g_(n-1)/3 v2(¢ + 1) 4+ va(n — i)+ |lg(n — i) | + [f is odd]
occurs at t = 2% — 1 where

j-lifn=2—1

the number of trailing I bits in the binary representation of n otherwise
and so is 2 +va(n) + |lgn| — k.

k=

Proof: First consider n = 27 — 1. At least one carry must occur when adding
(2 + 1)z and (n — t); because representing n + 1 requires more bits than either of
these two terms. Setting ¢ = 29-! — 1 results in exactly one carry and so

minimizes the first two terms. |lg(n —)] is constant over the range of ¢ values so

CHAPTER 2. COMPACT TREES AND TRIES 42

¢ = 29-! — 1 optimizes the first three terms. Selecting an even value of i requires
two carries when adding (i + 1); and (n — £),, one in the least significant bit and
another in the most significant bit and so cannot lessen the total. Setting

i = 2"! — 1 in the sum and using the relationships v5(27) = 1,

v2(r +1) =va(n) —k+1 and |Ig(n —i)| = |lgn] produces the final result.

Now consider the more general case, setting ¢ = 2* — 1 results in no carries and so
minimizes first two terms. As in the proof of Lemma 2.2 the Ig term takes on two
successive values but choosing i sufficiently large that the smaller of the two
values occurs necessarily results in a carry that offsets the saving in the lg term.
Finally, as with the first case, making i even results in a carry in the low order bit
that offsets any savings in the last term. Setting i = 2* — 1 in the sum and using
the same relationships that occurred in the first case yields the final total. QED

We are now able to state and prove the closed form solution to formula 2.5.

Theorem 2.6 B(n) =3n +2 —2{lg(n +1)]| — 2v2(n + 1) — [is odd], where v,

denotes the number of ones in the binary representation of its argument.

Proof: Recall the recurrence relation for B:

B(0) = 0
Bl) =1
B(n) = B(i) + B(n—i—1) +2[lg(i + 2)] .

max
i=0..{(n~-1)/2]
The proof proceeds by induction. The base cases, B(0) and B(1), satisfy the
equation for B. Assuming the formula is correct for 0..n — 1, the recurrence

relation gives:

B(n) = max, o ozt | Ji+2-2|lg(i+1)] ~2va(t+1) —[iis odd] + 3(n —i —1)
+2-2|lg(n ~i)] = 2va(n ~ i) — [n — i — 1 is odd]
+2(lg(i + 2)].

CHAPTER 2. COMPACT TREES AND TRIES 43

Simplifying and using the fact that [lg(i + 2)] = |lg(¢i + 1}] + 1, obtain

B(n) = 3n+3+max,q a1 | —203(i +1) — 2vs(n i)
—2|lg(n —i)| — [i is odd] — [n — i — 1 is odd] . (2.6)

Consider even and odd values of n:

e If n is even, then if ¢ is odd, n — ¢ — 1 is even and vice-versa so the last two
terms in formula 2.6 always sum to minus one. Bring the —2 outside the

max and replace the max with a min and simplify to obtain:
3n+2~ 2‘,:51.1‘%11_1 va(i + 1) + va(n — 1) + [Ig(n - 1)) .
Using Lemma 2.2, this simplifies to
3n —2uy(n) —2|lgn].
In this case, the closed form gives

B(n) = 3n+2-2v(n+1)-2|lg(r+1}| — [ris odd]
= 3In+2-2vyn)+1)—2|lgn|
= 3n —2vy(n) -2|lgn].
so the equations are equal.

o If n is odd, then n —i — 1 is odd iff ¢ is odd so the last two terms of formula
2.6 become 2[i is odd]. As before we bring the —2 outside the max and

replace the max with a min to correct the sign change to obtain:
B(n) =3n +3—2-,f,ni.’.1-. v3(i + 1) + vo(n — i) + |lg(n — t)] + [{ is odd]
=053
which by Lemma 2.3 gives

B(n)=3n+3-2(2+vs(n) + |lgn| —k)

CHAPTER 2. COMPACT TREES AND TRIES 44

where k is as defined in the lemma. In both of the cases of Lemma 2.3, we
obtain vy(n) + |lgn] = va(n + 1) + |Ig(n + 1)| + k — 1. Using this formula,

we obtain:

Bn) = 3n+3-2Q2+va(n+1)+|lg(n+1)] +k-1—k)
= In+1-2vy(n+1)-2[lg(n+1)].

Which is equal to the closed form, given that n is odd.

QED

B(n)ﬂH}n B(n) " n | B(n) || n | B(n)
off 8] 16]16] 3sf24] 0
ofo| 18(17| 4of25] e2
20| 20]18] a2f26| 64
afu| 24f19| a6for| 8
6[12{ 262 4f28] 70
gf13| 28fa1| sof20| 72
10 " 14 30[22] s52[30] 74

Njolonialwlol~lols

14 || 15 36 || 23 58 || 31 82

Table 2.3: B(n)

From the closed form equation, it is clear that B(r) < 3n so the total storage
requirement for the binary tree information is less than three bits per node. Table
2.3 shows the value of B for small n. Using this representation, the tree structure
for the tree in Figure 2.1 on page 25 is represented by the bit string
100101011010101011. Figure 2.5 shows this tree with each sub-tree labelled with

its description.

The simple formula for B(n) allows efficient implementation of the operations of
fetching the left and right children of a node. The left child is found immediately

CHAPTER 2. COMPACT TREES AND TRIES 45

100101,011010,101011

0L1010, 10D,11
10

dgfo. oI

Figure 2.5: Tree Encoding
rightchild(node,size) =

small_child = read bit at position node
child_size = read prefix code at position node + 1
children = node+2*ceil(lg(child_size+2))
if (small_child = ’1’) then

return (children+B(child_size)), size-child_size-1)
else return (children+B(size-child_size-1),child_size)

end

Figure 2.6: Pseudo-code for Rightchild

following the prefix code of the integer giving the size of the smaller tree and the
right child can be found immediately after the description of the left child whose
size can be computed based on the number of nodes in the left sub-tree which can
in turn be computed given we know which sub-tree is smaller, the size of the
smaller sub-tree and the size of the overall tree. The pseudo-code for the
rightchild operation is found in Figure 2.6. The pseudo-code for leftchild does not
add B(leftchildsize) to “children” and reverses the cases of the if statement.
Each of these operations require and return both the location of the node in the

bit stream and the size of the sub-tree rooted at the node.

A natural question to ask is “can we change this encoding to obtain 2n bits per
node?” In his thesis, Jacobson investigates the use of optimal prefix codes for this

application and determines that while it is theoretically possible to obtain a

CHAPTER 2. COMPACT TREES AND TRIES 46

bound of less than 2.5 bits per node using more compact prefix codes, this
approach has a lower bound of about 2.3 bits per node. We also want to mention
that some slight improvements can be made by increasing the namber of base
cases in formula 2.5. If, for example, we add the conditions B(2) =1, B(3) =3
and B(4) = 4 (using B(n) = [lg C.]) to the recurrence then B(r) is reduced by
["‘—ﬂ J . This change reduces the asymptotic requirement to 2.75 bits per node.
Further increases in the number of base cases appear to reduce the requirements

further although we have yet to determine a closed form for these cases.

In this chapter we have provided some extensions and improvements to the results
presented by Jacobson[27][26] that will be useful in our PAT representation as
well as other tree based structures. We have also provided further demonstration
of the usefulness of rank and select by using them to construct a representation
for static tries requiring lgm + 4 + o(1) bits per node.

Chapter 3
Static Text on Primafy Storage

In this chapter, we combine the compact tree representations of Chapter 2 with
compact representations of the skip values and suffix offsets to produce a
representation for the PAT tree that is little larger than the representation of a

suffix array. Finally, we present some empirical results showing the effectiveness of

the new structure.

The information stored in the PAT tree can be broken into three categories:

e the tree structure,
o the skip values,

o the suffix offsets in the leaves.

By efficiently storing each class of information, Compact PAT Trees (CPTs)
match the storage efficiency of other suffix based search structures while retaining
the functionality of PAT trees.

47

CHAPTER 3. STATIC TEXT ON PRIMARY STORAGE 48
3.1 Choosing a Tree Representation

In order to implement the tree operations for PAT trees, the encoding of the tree
structure must provide the following fanctionality:

o efficient selection of the left and right children of a node,

e support for the inclusion of constant size fields for each internal node, the
skip, and another constant size field for each leaf, the suffix offset. Given a
node or leaf, we must be able to efficiently determine the field values.

In each case, we require that the operations be performed in a constant number of
operations on lgn size objects so they will operate in constant time on the
MBRAM model. In addition, the following three operations are useful in some

cases but are not critical to our work:

e given a node, locate its parent,

e given a node, efficiently retrieve the suffix offset field information from some
leaf descended from the node,

e given a node, determine the size of the sub-tree rooted at the node.

The parent operation is not used during the PAT tree search traversal but can be
used to conserve memory during update operations. The efficient retrieval of the
suffix information from a sub-tree is used during the final step of the search
procedure and must be performed efficiently. If necessary, we can afford to
traverse the tree downward until we hit a leaf and then retrieve its suffix
information. Given the almost sure expected logarithmic depth of the PAT tree,
the cost of the downward traversal will not effect the asymptotic cost of a search.
Determining the sub-tree size is useful because it will be a good approximation to

the number of matches to a query.

CHAPTER 3. STATIC TEXT ON PRIMARY STORAGE 49

Chapter 2 presented two compact representations for binary trees that can be used
to encode the structure of the PAT tree and still support the required operations.

Before deciding between these representations, we observe that, because the PAT

tree is a strictly binary tree, we need only represent the structure of the tree made
up of the internal nodes. The positions of the leaves, the suffix offsets, of the PAT
tree are implied by the positions of the leaves and degree one nodes of the tree of

internal nodes. This change allows us to reduce the size of the tree we need to

encode from 2r —~ 1 nodes to n — 1 nodes, where n is the number of index points.

As discussed in the previous chapter, the rank/select representation for binary
trees of Section 2.1.1 does not directly support the requirement for fixed sized
fields in the leaves of the tree. However, we observe that in the level order
encoding of the tree of internal nodes, the ones correspond exactly to the internal
nodes and the zeroes correspond to leaves of the original PAT tree (see Figure
3.1). Because of this property, we can store the node labels and suffix offsets in

(1]

[31/\[51 [s’\z
M 6247
51

Figure 3.1: PAT tree and Labelled Extended Tree of Internal Nodes

two arrays referenced by rank() and rank0() respectively.

If we instead use the recursive encoding for binary trees from Section 2.4 to
represent the structure of a PAT tree, the node labels can be stored either in the
bit stream for the tree encoding or in a separate array created during an in-order
traversal of the tree. During the downward traversal the index for the current
node can be computed by tracking the number of nodes in each left sub-tree that
is skipped. A similar method allows us to store the suffix offsets at the leaves in

CHAPTER 3. STATIC TEXT ON PRIMARY STORAGE 50

an array and track our current position in that array. Retrieval of the test suffix
pointer is very efficient because we can simply retrieve the first entry of the

current sub-array.

The trade-off to be considered in determining which representation to choose is
one of size, an extra bit per node, versus functionality, the ability to quickly
determine the answer size. For the static text case in primary storage the extra
functionality is well worth the extra bit in the representations so we use the
recursive encoding. If used to represent other PATRICIA based structures that
require the parent operation, such as the “blind trie” used in the SB-tree of
Ferragina and Grossi[18], the rank/select encoding would be more appropriate. In
deciding whether to embed the skip values and suffix offsets in the bit sequence
for the tree encoding or place them in separate arrays, we choose to place the skip
values in the tree encoding and use a separate array for the suffix offsets. This
layout improves the access locality of the searching procedure and allows aligned
accesses into the suffix offset array which should improve performance.

3.2 Storing the Skip

Compressing the skip information requires an understanding of the distribution of
the skip values. For the purpose of analysing the skips, temporarily assume the
suffixes are strings of independent uniformly sampled bits with 0 and 1 having
equal probability. Consider an internal node with k leaves in its sub-tree, then the
probability that the skip value of the node is greater than ! is the same as the
probability that k random bit strings match in their first { + 1 bits. This value is
easily seen to be 2-(+11k=1)_ From this value, we see that we can expect the
majority of the skip values to be zero and that the likelihood of higher values
decreases geometrically. Figure 3.2 shows the skip distributions for the four
sample documents and illustrates the rapid decrease in the likelihood of large skip

CHAPTER 3. STATIC TEXT ON PRIMARY STORAGE 51

30 — —r : v v r v
OFD —
S Bible — 1
i Holmes ——
20 Independent —
€
F)
g 15 L\
3
g \
B 10 b
s .
0

0 S 10 15 20 25 30 35 40
Skip Value

Figure 3.2: Frequency of Skip Values in the Sample Documents

values when a compact alphabet code is used. The use of a compact code for the
alphabet is discussed later in this section. The curve labelled “Independent™ in
Figure 3.2 shows the results for a PATRICIA tree on independent pseudo-random

keys generated using a uniform model for the characters.

The low likelihood of large skip values leads to a simple method of compactly
encoding the skip values. We reserve a small fixed number of bits to hold the skip
value for each internal node and introduce a strategy to resolve problems caused
by skip values that overflow this field. We handle overflow by inserting a new node
and a leaf into the tree and distributing the skip bits from the original node across
the skip fields of the new and the original node. Figure 3.3 illustrates an overflow

73 =
A B &
wmny
A

Figure 3.3: Overflow Nodes

situation where 5 bits have been reserved for the skip information. The actual skip

CHAPTER 3. STATIC TEXT ON PRIMARY STORAGE 52

value of 73 is encoded as (29)32 and stored in the skip fields of the original node
and the new overflow node. The dummy leaf node must have some special key
value that allows it to be easily recognized (typically all 0s or all 1s). If needed,
multiple overflow nodes and leaves can be inserted for extremely large skip values.

When traversing the tree, simply checking for a single leaf with the dummy value
is sufficient to determine if the skip should be checked or the bits concatenated to
obtain the true skip value. The use of this overflow handling mechanism has one

slight drawback in that the sub-tree size is no longer the exact size of the answer.
However, the sub-tree size is still an upper bound on the size of the answer and in

practice a good estimate of the size.

How many bits should be reserved for the skip field? If we let N be the set of
internal nodes in the PAT tree, then the expected number of overflow nodes when
using a k bit skip field is, by the previous approximation,

5 1
2 X SmoaEED

meN t=1
where [, is the number of leaves below node m. The inner sum is dominated by
the value at ¢ = 1 so we will ignore the other values. Let r be the storage required
for representing one node in the tree, r = ¢ + k + lgn where c = 3 if we use the
recursive encoding. The storage requirement when using k skip bits is then
approximately

r (u -1 +£W§Tz¢ﬁ) +lgn.

The value of k& we are interested in is the smallest value such that the expected
storage at k bits is less than that at k + 1 bits. So we want the smallest k that

satisfies:

1 1
r (n -1+ "gr —-———2(,"'_1)(2,“,) +lgn < (r+1) (n -1+ MGZN 2(,___1)(2,,““)) +lgn.

CHAPTER 3. STATIC TEXT ON PRIMARY STORAGE 53

Expand the products and simplify to obtain:
T r+1

"gv 2(Im—1)(2%+1) - (Im—1)(234+1+1) <n-1l
Further simplify the sum:
1 r+1
ngN 2(m—1)(25+1) (" - 2(1...-—1)2*) <n-1

The value —*tl-r is much smaller than r and so will not be significant in the
sum. This observation allows us to approximate the inequality by

1

r "§v S <™ 1. (3.1)

The exact value of the sum depends on the shape of the tree, and k, but it is
clearly less than 5’;‘;‘—}; because [, is at least two for every node m. Now consider a
perfectly balanced binary tree on an even number of leaves. There are } nodes
with exactly two leaves below them so the sum, for this tree, will be at least z—,;’;—,—
The sum for the worst case tree will be somewhere between these two bounds.
Entering either of these bounds in equation 3.1 gives an equation of the form

(here we use the upper bound):

which is true if r < 22*+1, Insert the definition of r to obtain c + k +Ign < 22*+1,
Take logarithms twice and ignore small values (assume c and k are small) to
derive that k = lglglgn. The optimal k derived using the lower bound gives the
same result so the optimal value of k for the worst case tree is about Iglglg n.
Note that for some tree shapes the optimal value may be much smaller.

Theorem 3.1 Under the assumption of independent suffizes draum using a
symmetric model, the ezpected size of the Compact PAT Tree can be made less
than 3} +lgn +Iglglgn + O (lﬁ:g-!“ﬂ) bits per indez point. We achieve this size
by setting the skip field size to lglglgn.

CHAPTER 3. STATIC TEXT ON PRIMARY STORAGE 54

Proof: Under the given assumptions and using the skip field size above, the

expected number of internal nodes is,

S
n—-1+ —
meN ooy moniEteiiens)

Set I, to 2 for all nodes and simplify the outer sum to obtain the bound:

e
n-1+(n-1) Z ST
=1
Multiply this bound by the node storage cost and add lgn to account for the fact
that there is one more leaf than internal nodes. After simplifying, obtain:
R
(-1 |1+ > Steienr | B t1glglgn +1gn) +lgn.

t=1
Divide by n to obtain the per index point cost and ignore some asymptotically

insignificant terms to get:

ll'c'l{?: 1

Ign
(1+§ §1 m) B+Iglglgn +1gn).

Expand the product and the sum to obtain:

3+lglglgn [1 1 lgn (1 1
3Higlglgntlgnt—— ign | 20senr T) 2 \ign T 20siear T) -

Finally expand the last term to obtain:

1 J+lglglgn 3 +1glglgn +Ign (1 1
S tlelelgntlgnt —5 0 F 2 0sien? T 30gigny) '
which satisfies the statement of the theorem. QED

It is useful to note that the final order term in Theorem 3.1 is not just
asymptotically negligible but that for reasonable values of n, for example n = 2!,

it is significantly less than one.

CHAPTER 3. STATIC TEXT ON PRIMARY STORAGE 55

There are two approximations in the argument above that deserve serious
consideration. The first is the assumption that the bit strings in the suffixes are
independent. This is clearly false as the strings are, potentially overlapping,
sub-strings of a single string. However this approximation does not seem
inappropriate because the underlying string is large and for all but the few nodes
near the root we expect the suffixes below a node to be sparse in the underlying
string. This position is further supported by work by Szpankowski showing that
the expected depth of a trie does not change when moving from independent to
dependent bit strings[34]. The second, more serious, problem above is the
assumption that the binary string is generated by a uniform symmetric random
process. This is not a good model of written text or other large documents.
Consider, for example, English text coded in ASCII, in which the high order bit of
each byte will be zero. In addition, the codes 0..31 are unlikely to occur in the
text. While this is a real weakness in the approach, we can take some steps to

alleviate it:

e use of a compact character code. Instead of ASCII, we use a character code
where all bits are active for our search engines. We are considering the use
of a data compression model incorporating digrams for a future version, but
it is unlikely the performance will be adequate given the large amount of
data handled during index construction. It is not clear that the cost of
performing even the translation to the compact code during the indexing
phase is worth the slight reduction in the number of overflow nodes. We use
this translation in our test system because it is easily incorporated in the
other translations (case conversion, merging multiple spaces) that are

required during searching and index construction.

e increasing the skip field size. By adding an extra 2 or 3 bits to the skip size

we can dramatically reduce the number of overflow nodes present in the tree.

CHAPTER 3. STATIC TEXT ON PRIMARY STORAGE

The final pseudo-code for searching a compact PAT tree is shown below:

size = n // size of the current sub-tree
index = 1 // index of first leaf of the current

// sub-tree in the suffix array
test_bit = 0 // accumulated skip values

bit_pattern = encode(pattern)
vhile (size > 0)
save = <size, index>
if (size > 1)
smaller = read one bit
sizeofsmaller = read prefix code
skip = read k bit integer
// loop to handle overflow nodes
vhile(smaller = ’0’ and sizeofsmaller = O and
suffixes[index]=dummy) do
skip = skip*2~k
size = size - 1
index = index + 1
if (size > 1)
smaller = read one bit
sizeofsmaller = read prefix code

else
smaller = sizeofsmaller = 0
endif
skip = skip + read k bit integer
end

if (smaller = ’1’)
leftsize = sizeofsmaller
rightsize = gize ~ sizeofsmaller - 1
else
rightsize = gsizeofsmaller
leftsize = size -~ sizeofsmaller - 1
endif
else
leftsize = rightsize = 0

56

CHAPTER 3. STATIC TEXT ON PRIMARY STORAGE 57

skip = read k bit integer
endif
test_bit = test_bit + skip + 1
if test_bit > Ibit_patternl|
<size,index> = save // restore values
exit the loop
endif
if bit_pattern[testbit] = ’1’ then
skip B(leftsize) + leftsizesk bits
size = rightsize
index = index + leftsize+i
else
size = leftsize
endif
end
// skip any dummy nodes before doing the test
while (suffixes[index] = dummy) do
index = index + 1
size = size - 1;
end
// compare the first suffix against the pattern
if (pattern = suffixes[index]) return index,size
else return NOTFOUND
endif

The special handling of trees with zero or one internal nodes in the pseudo-code
occurs because the structure of such small trees does not need encoding so only
the skip value is stored. We typically use a skip field size of 5 or 6 depending on
the document size. Even these larger sizes result in a very small index requiring
about 10 bits per index point to represent the trie. For storing the skip values, we
simply add a third constant size field to the tree header and modify B(n)
appropriately by adding n times the size of the skip field.

CHAPTER 3. STATIC TEXT ON PRIMARY STORAGE 58

3.3 Suffix Offsets

The suffix offsets take up the bulk of the storage used by the CPT and other
suffix based structures. While the suffix offsets do not easily admit compression,
they can be stored much more compactly if we are willing to make some sacrifices
on performance. To achieve this storage reduction, we use a technique also used
in Shang’s PaTries[44]. If [low order bits in the suffix offsets are omitted from the
CPT structure, nl bits are saved in the final index. In order to perform searching
using these truncated offsets, a scan through all suffixes starting in a range of 2
characters must be made each time we require an exact suffix offset. Because the
bits tested along the root-leaf path uniquely determine the suffix, the exact suffix
offset can always be determined by running each suffix in the range through the
PAT tree and selecting only the one that ends at the correct leaf. Alternatively, a
simple string search for the query can be made at all the index points in the range
and any matches reported. The string searching method has the advantage of
only loading text segments once but special care must be taken when handling
multiple matches in a block of 2 characters. If we let H be the height of the
CPT, these changes incur an additive 2'H cost in the searching time and a 2/'H
multiplicative factor on the conversion of a node to its list of leaf offsets because
each suffix tested has to be traced through the CPT to a leaf. More importantly,
proximity based queries such as “find word A within 50 characters of word B”
cannot be answered without referring to the text because the suffix offset values
may not have enough precision to determine if two matches are sufficiently close
to each other. It is worth noting that suffix arrays cannot use truncated suffix
offsets because they require the exact offset values to guide the searching
procedure. The ability of the CPT to operate with inexact suffix offsets also
allows its efficient use on text files compressed on a block by block basis without

requiring complicated address translation mechanisms.

CHAPTER 3. STATIC TEXT ON PRIMARY STORAGE 59

3.4 Empirical Results

Text(size) | Skip Size | #Overflow Nodes | Index Size (kbytes)
Holmes 4 5486 151
(233k) 5 1580 144
6 242 145
X1 2 123127 3197
(903k) 3 40509 3063
4 19250 3111
Bible 4 264903 5373
(5.3m) 5 127150 5032
6 48407 4887
7 19377 4923

Table 3.1: Index Sizes for Sample Documents

Table 3.1 shows the number of overflow nodes and the resulting index sizes for
three of the sample documents (the OED is too large for construction of an index
in primary storage on the machines available for these experiments). From this
table we see that the optimal skip sizes are 5 for Holmes, 3 for XIII, and 6 for the
Bible. Notice also that the size of the final index for non-optimal values is still
close to the optimal size. These sizes are based on full suffix pointers. If we allow
the truncation of 8 bits then the index sizes for the examples will drop by about
45k, 960k, and 1250k bytes respectively.

3.5 Comparison to Other Structures

The storage cost of this structure is significantly less than that of previous
representations for PAT trees and suffix trees with the exception of suffix arrays.

CHAPTER 3. STATIC TEXT ON PRIMARY STORAGE 60

Suffix arrays offer comparable performance in main memory for straight
searching. However, they incur a logarithmic performance penalty when
simulating suffix tree operations such as those used for regular expression
matching[4]. The new structure also has the advantage of quickly determining an

approximate answer size.

Chapter 4
Static Text on Secondary Storage

In this chapter, we adapt the Compact Pat Tree from the preceding chapter for
use on secondary storage by partitioning the tree into disk block sized pieces. We
first discuss the characteristics of secondary storage as they affect our design and
then discuss some existing tree partitioning algorithms. Next we present a new
optimal tree partitioning algorithm that is more appropriate to our application.
Finally, we give some empirical results demonstrating the effectiveness of the
partitioned Compact Pat Tree.

Searching methods for large text databases must be concerned with more than
asymptotic time requirements; storage requirements and the number of secondary
storage accesses are also critical. If the index requires k bytes per index point in
the text, character indices will be k times the size of the document while word
indices will be about § times the size of document. For large documents the
storage cost quickly becomes prohibitive as k gets large. Similarly, while the
asymptotic operation count of the algorithm is important, the number of accesses
to and the amount of storage transferred from secondary storage are likely to have
a far greater effect on the performance, and even the feasibility, of the index.

61

CHAPTER 4. STATIC TEXT ON SECONDARY STORAGE 62
The time taken to access secondary storage can be broken into two components:

o the overhead time necessary to initiate and terminate a read or write
operation. We refer to this time as the seek time of the device but it also
includes other factors such as rotational latency. In most of this thesis we
assume the seek time of the device is constant because we are not interested

in optimizing the placement of data on the physical device.

o the time taken to transfer data to or from the device, referred to as the
transfer time of the device. This component of the time is dependent on the
amount of data transferred.

We assume the secondary storage operates on a block basis where each read or
write operation transfers an integral number of contiguous blocks. We also assume
the block size, which we label P, is fixed by the physical device and software
drivers and is given to us as a parameter of the problem. For the moment, we
ignore the transfer time because for current magnetic media the transfer time of
one or two blocks is small when compared to the seek time. Later, when searching
data stored on CD-ROM, we explicitly consider the transfer time. For our
empirical testing we use block sizes of 1k, 2k, 4k and 8k bytes.

The first portion of this thesis dealt with controlling the storage requirements of
PAT trees and, as a side-effect, reduced the amount of data we will need to
transfer from secondary storage. In the second portion of this thesis we
concentrate on controlling the number of accesses to secondary storage during

searches and updates.

CHAPTER 4. STATIC TEXT ON SECONDARY STORAGE 63

4.1 Partitioned Compact PAT Trees

In order to control the number of accesses to secondary storage required during
CPT operations, we partition the tree into connected components each of which
fits in a disk block. We call each component a page because of the similarity of
this problem to the problem of efficiently laying out a tree or other data structure
in a paged virtual memory system[21]. If the disk block size is such that it can
hold two internal nodes then the PAT tree of Figure 1.6 could be partitioned as
shown in Figure 4.1. In this case we need to perform three accesses to secondary

(ly,
Figure 4.1: Tree Partition

storage to reach leaf 1, 5 or 8 from the root. The alternative partitioning in
Figure 4.2 can reach any leaf in two accesses and so might be preferred.

Figure 4.2: Alternative Tree Partition

CHAPTER 4. STATIC TEXT ON SECONDARY STORAGE 64
Two possible criteria for choosing one partitioning over others are:

o the number of pages accessed when traversing from the root to a leaf,

averaged over all the leaves, and

o the maximnm number of pages accessed when traversing from the root to
any leaf.

We call page partitionings that minimize these measures average case optimal and
worst case optimal respectively. Let ¢; be the number of pages accessed to reach
the ¢’th leaf (under some ordering of the leaves). Then these partitionings
minimize ¥;¢; and maxc; respectively. Implicit in these measures is the
assumption that we consider all leaves equally important. Lukes[32] and Gil and
Itai[21] consider more general cases where nodes and edges can have weights

associated with them.

The partitionings considered here are restricted such that each page holds a
connected portion of the tree. Gil and Itai use the term convez to describe such
partitionings and show that loosening this restriction does not allow for better
average case partitioning[21]. Because of this restriction, each page will itself be a
tree and can be stored using the CPT structure from Chapter 2. The only change
required to the CPT structure for storing the pages is that the leaf data may now
point to either a suffix in the text or a sub-tree page so an extra bit is required to
distinguish these two cases. We let the value p denote the number of internal
nodes in the largest sub-tree we can place in a block. Using the representation

from Chapter 3, p = g +Il,g- llggl; e The restriction to connected sub-trees

allows us to refer to the root of the sub-tree in a page as the root of the page. In
addition we will refer to the page containing the sibling node of a page’s root as
the page’s sibling. Note that in some cases a page’s root and its sibling may be
the same page (consider the rightmost internal node of Figure 4.2).

CHAPTER 4. STATIC TEXT ON SECONDARY STORAGE 65

Lukes[32] presents a dynamic programming method for finding an average case
optimal partitioning in O(np?) time. A related method for finding a worst case
optimal partitioning in O(np) time is reported in Carlisle et al.[9]. Unfortunately
both of these methods require np words of storage to compute the partitioning
and so are not practical for trees of the size we are considering. Gil and Itai[21]
develop a similar dynamic programming method for the average case that
operates in much less memory. However, their algorithm performs multiple passes
over the tree and so is unlikely to be efficient enough for our purposes.
Additionally, these dynamic programming methods do not adapt well to the
dynamic trees needed in the next chapter. Carlisle et al.[9] also discuss a top
down greedy heuristic that is conceptually simple and works well on some classes

of trees but can require ©(log n) extra page accesses on average to reach any leaf.

In the remainder of this chapter we present a new bottom up greedy algorithm for
constructing a worst case optimal partitioning of a binary tree and demonstrate

its use on the CPT.

4.2 Partitioning Algorithm

Define the page height of a node in a partitioned tree as the maximum number of
pages that need to be read when traversing from the node to any leaf in its
sub-tree and the page height of a page as the page height of its root. In each case
we include the current page in the page height count. For any given assignment of
nodes to pages, also define the local page size of a node as the number of
descendents of that node that are on the same page as the node, plus one for the
original node. The page height and local page size of a node may be defined for a
partial partitioning provided the node and all of its descendents have been placed

on pages.

CHAPTER 4. STATIC TEXT ON SECONDARY STORAGE 66

We present a partitioning algorithm that starts by assigning each leaf its own
page and a page height of one. Working upward, we apply the rule in Figure 4.3
at each node.

if both children have the same page height
if the sum of the local page sizes of the children is less than p,
merge the pages of the children and add the node
set the page height of the node to that of the children
else
close off the pages of the children
create a nev page for the current node
set the page height of the node to that of the children plus one
else
close off the page of the child with the lesser height
if the local page size of the remaining child is less than p,
add the node to the child’s page
set the page height of the node to match the child
else
close off the page of the remaining child
create a new page for the node
set the page height of the node to that of the child plus one

Figure 4.3: Tree Partitioning Rules

Theorem 4.1 A worst case optimal convez partitioning of a binary tree can be

computed in linear time, irrespective of the page size.

Proof: Using induction on the tree height, we show that the rule in Figure 4.3
produces a worst case optimal partitioning of the tree such that no other optimal
partitioning has a smaller root page and moreover that this holds for each

sub-tree. The basis case, k = 1, consists of a tree with a single node and so is

CHAPTER 4. STATIC TEXT ON SECONDARY STORAGE 67

trivial. Assume the statement for 1..k — 1 and then consider the root of a tree of
height k. There are several possible cases:

1. The root has only one child. In which case either the root fits on the
topmost page of the child or it does not.

e Root fits (the local page size of the child is less than p): Place the root
in the topmost page. Any partitioning of smaller page height or top
most page must contain a partitioning for the child of larger page
height that violates the induction hypothesis for & — 1.

e Root does not fit (the local page size of the child is p): Create a new
page for the root. Clearly there cannot be a partitioning with fewer
than one vertex in the topmost page so any violation must be on the
page height constraint. The existence of partitioning of lesser page
height would imply a partitioning at height k — 1 with room for the
new root but the partitioning of the height k — 1 sub-tree was
completely full and also had smallest topmost page amongst all optimal

partitioning so this situation cannot occur.

2. Next consider the case where the root has two children that differ in page
height. By the rules above, the child of lesser page height is closed off. The
root is placed in the topmost page of the other child if at all possible, and
on a new page if not. There are two cases that are argued exactly as case 1
above. Case 1 is actually a specialization of case 2 so this is not surprising.

3. Finally assume the root has two children each of equal page height. Under
the rules above the new partitioning is formed by merging the topmost
pages of the two children and adding the root if the combined page is not
too large. If the combined page is too large, the topmost pages of both
children are closed and a new page is started for the root.

CHAPTER 4. STATIC TEXT ON SECONDARY STORAGE 68

® Root fits (sum of children’s local page sizes is less than p): the page
height of the new partitioning is the same as that of the children so the
existence of a partitioning of lesser page height would violate the
induction hypothesis for k — 1. If there is a partitioning of the same
page height but smaller topmost page then it must contain a height
k ~ 1 partitioning for one of the two children that violates the
induction hypothesis.

e Root does not fit (sum of children’s local page sizes is at least p): Again
the topmost page has size one so no other partitioning of the same
page height can have a smaller topmost page. If there is a partitioning
of smaller page height then as before, it must contain a partitioning for
one of the two children that violates the induction hypothesis.

The “moreover” part holds because we never go back and invalidate the

optimality of the partitioning of sub-trees.

The rule in Figure 4.3 performs a constant amount of work at each node and so

can be applied in linear time. QED

Based on Theorem 4.1 we will refer to a partitioning resulting from the rules in
Figure 4.3 as the “optimal bottom up partitioning” of a tree. The optimal bottom
up partitioning is optimal in the sense that it minimizes the number of pages
accessed in the worst case root-leaf traversal. However, it can produce a large
number of very small pages. This problem results from the automatic closing off
of a page if its sibling has a greater page height. Because we do not worry about
aligning pages on block boundaries in the static text case, these small pages do not
cause serious problems. However, it is still worthwhile running a post-processing
pass that merges small pages into their parent whenever possible because each
page has some small amount of storage overhead. The results reported later in
this chapter include the use of such a pass. We will have to return to this problem

CHAPTER 4. STATIC TEXT ON SECONDARY STORAGE 69

in the next chapter where small pages can cause storage management problems.

In order to judge the overall performance of data structures using the optimal
bottom up partitioning, we want to bound the page height in terms of the number
of nodes and the tree height, H. Before proving the bound, two simpler results
are needed.

Lemma 4.1 In an optimal bottom up partitioning, each sub-tree in a tree encoded
in a page of page height k > 1 contains at least one node having children with page
height k — 1.

Proof: If all its children have page height k — 2 or lower, split off the sub-tree
into its own page and obtain a partitioning with a smaller root node. The
difference in page heights allows us to make this change without increasing the
page height of the root. QED

Lemma 4.1 allows the simple observation that, under an optimal bottom up

partitioning, all nodes in a page have the same page height.

Lemma 4.2 While on a root-leaf path of pages in an optimal bottom up
partitioning, the leaves within a page height k page where k > 1 either have one
child page with page height k ~ 1 containing p nodes or two child pages with page
height k — 1 containing a total of at least p nodes.

Proof: Each leaf node is a sub-tree so by Lemma 4.1, it contains at least one
page height k& — 1 child. If neither of the conditions are met, then the parent
would have been moved in with either or both of the children and a partitioning
with a smaller root node obtained for that sub-tree. QED

Theorem 4.2 Let 0 <t <1 be an arbitrary constant. The page height of the
worst case optimal partitioning of a tree is bounded above by

1+ [g] + [1 1tlogpn] (4.1)

CHAPTER 4. STATIC TEXT ON SECONDARY STORAGE 70

where H is the height of the tree and n is the number of nodes in the tree.

Proof: Our proof is based on the optimal bottom up partitioning. Given such a
partitioning, we construct a sequence of pages on a deepest path, in the page
sense, such that at each stage we either divide the number of nodes in the current
sub-tree by [p*~*] or reduce the height (in the node sense) of the sub-tree by [p*].
At each point in the construction we consider either a single page or a pair of
sibling pages. Start the construction at the root page and select any node in the
page that has children at page height k — 1 and consider its page height k¥ — 1
children. By Lemma 4.2, we know that there are at least p nodes in these child

pages. Because there are p nodes, one of the following two conditions must be met:

1. there are at least [p!~*] children pointing to child pages with page height
k — 2, in which case we select the child whose page height k — 2 children
have the smallest portion of the entire sub-tree, or

2. there is at least one node pointing to pages at page height £ — 2 such that
the length of the path from the root of the page to the node has length at
least [p*]. Select that node’s page height k — 2 children for the next step.

If neither of these conditions are met, then we could not be dealing with p nodes.
Case one can only occur [logﬁ,;-q n] times and case two can only occur [r:—fﬂ
times. Add one for the root page, remove the inner ceilings, and simplify the log
to obtain an upper bound on the length of the path constructed. Because this
path is a deepest path in the page sense, the bound also applies to the page
height of the tree. QED
Two corollaries can be obtained by selecting specific values of ¢. Choosing ¢ = 3,

we obtain a bound of the form 1 + [%] + [2log, n] which is interesting for its
simplicity. Choosing ¢ = 1 — 512, the bound takes the form

CHAPTER 4. STATIC TEXT ON SECONDARY STORAGE 71

1+ [g p] + [-,"-‘,‘2; log, n] which is interesting because it is approximately lgp
times the sum of the two trivial lower bounds of % and log, ».* In order to
demonstrate that these logarithmic terms are necessary, we describe a method for
constructing a tree with a worst cast optimal page height within a constant factor
of this bound. The general structure of the tree consists of a root node and then
K levels each made up of uniform groupings of nodes which we call clusters. In
Figure 4.4 we show the root and the first two layers of clusters. Each cluster

/\
\ [\
AVIAVAAV/AA ANV AVAA

Figure 4.4: Tree Construction

takes the form of a perfectly balanced sub-tree of height lglg p with 2 strands
below it as shown in Figure 4.5 (for this construction to work p should be of the
form 22*). The length of each strand is chosen to make the total number of nodes
slightly more than £. If there are K levels of clusters then the worst case optimal
partitioning of this tree has page height K + 1 and places each cluster on its own
page. In addition we obtain,

p—lgp Kp
H = 1+K{—=+1)z—
(lgp gler lgp

The value of ¢ chosen here is an approximation to the solution of p!~ = ;1> which would make
the multipliers equal. The exact solution ist =1 — 2&';& where w satisfies w (z) e¥(*) = z. The
value of ¢ used here can be obtained by substituting in the first term of the asymptotic expansion
of w found in {12]. We use the slightly less optimal binary logarithm in order to simplify the

construction that follows.

CHAPTER 4. STATIC TEXT ON SECONDARY STORAGE 72

lg p - | branching nodes

(p-lgpVigp
nodes per strand

AAAAAAAA
Ig p children = (ig p)2 strands

Figure 4.5: Node Cluster

#clusters = lg¥p+lgt-%p.. +1x1g*"p

£+—2lg-£#cl‘u.ster.s ~P2 lg" “1p.

n = 3

Using these approximations, we note %lg p~ K and log,n ~ ﬂ‘;%!,flﬂ. Placing
these approximations in the upper bound and removing the floors and ceilings, we
obtain 1+ K + K — 1 or 2K so this tree has actual page height about one half the

upper bound.

This construction leads to the following theorem:

Theorem 4.3 Given p > 16 and !ﬁff <t <1, there ezists a family of trees Ty of
monotone increasing size such that for large k the ratio of the page height bound
to the actual worst case optimal page height is bounded above by a small constant.

Proof: First we handle the case t < 1 — 2 using the cluster construction from
the previous discussion. Construct clusters containing [&‘;] strands with [p*] —1
nodes each. If the total number of nodes is not greater than £, then add a single
node to each of one or two strands until this bound is met. Because of the

constraints on p and ¢, the total number of nodes per cluster will now be more

CHAPTER 4. STATIC TEXT ON SECONDARY STORAGE 73

than £ and at most p. Using k layers of clusters and a single root node in its own
page, we obtain an actual page height of k + 1 and the bound is approximately

k - 1 ~) (k-
1+;(pt+lgpl t)+I_—_Elogppl+(1 t)(k-1)

which is approximately & (2 + (-1-77:,’—'!2) if we ignore terms not linearly dependent
on k Note that ¢ is bounded away from zero so p* is at least Ig p.

Now consider ¢ > 1 — -. In this case we construct a chain of length kp. The
bound is then 1 + h’-+ 1f_,log,,(kp) Lete=t—-(1- E’;) and note that piés = 4 so
the bound becomes 1 + 2 % + (1 +log, k) which is & %t + O(log k). Finally note

1 < p* < 4 to obtain the tesult. QED

This theorem shows that the bound in Theorem 4.2 is not excessively pessimistic.

In order to understand exactly how the bound in Theorem 4.2 varies with H and

n, we select the value of £ that minimizes the continuous version of formula 4.1:

H 1
L+ 2+ 7= log,m. (4.2)

Differentiating this formula and finding a zero of the resulting formula, we obtain

2 (V)

t =1 — —jo=—~ where w(z)e*®) = z. Given p > 2, this value is between zero
and one because H > Ign. Substituting this value of £ into 4.2, we obtain
14—p + ————xlog,n.
Inn
” 2“(¢‘«-s~)

Simplifying using e“(*) = & converting p to ¢'? and finally expressing log, n in

terms of the natural logarithm, we obtain:

nn (4.3)

CHAPTER 4. STATIC TEXT ON SECONDARY STORAGE 74

so we see that, unsurprisingly, it is the ratio of H to Inn that is critical to the
upper bound. Given H and n, we can use formula 4.3 to obtain an approximate
bound on the page height of a partitioned tree (a trivial lower bound on the page
height is max (%—, log, n)).

For the special case of the PAT tree, we can apply the results of Szpankowski

mentioned in Chapter 1 to obtain the almost sure convergence of the bound to

) e ()

Corless et al.{12] show that

Inn. (4.4)

w(z):lnz-lnlnz+o(l°—§3°ﬂ).
logz

From this expansion, we obtain

1 1 loglogz
(@) -lnz+0(log’ =)

Substituting this expression into formula 4.4, simplifying and placing some small
terms in the order term (assume p is much larger than A3}, we obtain the almost

sure convergence of the bound for partitioned PAT trees to

loglogp
1+(1+O(Togp))log,n.

Note that this bound does not apply to the CPT because of the presence of
overflow nodes. However, it does give good reason to be optimistic about the
performance of a partitioned CPT.

4.3 Compact PAT Trees for Secondary Storage

The CPT for secondary storage is obtained by applying optimal bottom up
partitioning to the structure from Chapter 3 and using that CPT representation

CHAPTER 4. STATIC TEXT ON SECONDARY STORAGE 75

for each page on secondary storage. As noted earlier, we add one bit to each leaf
to indicate if it is a suffix offset or a pointer to another page. When discussing the
partitioning of the CPT, we have to stress that we deal only with the tree formed
by the internal nodes and, as in Chapter 3, allow the position of the internal
nodes to be implicit in that structure.

For the static case, we do not concern ourselves with aligning pages on block
boundaries. In practice, the lack of alignment results in increased data transfer
time but no increase in seek time. Bin packing heuristics could be used to place
the pages in blocks if the increased data transfer time presents problems.

However, we have not seen such a problem. The encoding of each page consists of

o header: containing the number of nodes on the page,

e tree: a compact encoding of the tree structure with the skip bits as
discussed in Chapter 3,

o offsets and pointers: an array containing the leaf labels of the tree, each of
which is either a suffix offset or a sub-page location. Each array entry has a
single bit indicating which case is occurring. Because they both address
approximately the same amount of data, we assume suffix offsets and page

locations require the same number of bits.

4.3.1 Compact Suffixes On Secondary Storage

The technique of dropping the low order bits discussed by Shang[44] and in
Chapter 3 has some new implications for text stored on secondary storage. It
results in a smaller index and the cost of performing the search to determine the
actual values for each offset is small relative to the time needed to access
secondary storage. In addition, the reduced per node storage results in a higher

CHAPTER 4. STATIC TEXT ON SECONDARY STORAGE 76

branching factor within the index. The higher branching factor may lower the
page height of the resulting tree although the partitioning algorithm makes this
unlikely. Another side-effect of suffix pointer truncation results from our
requirement that suffix offsets and sub-page pointers be the same size. Truncating
suffix offsets requires a similar truncation in the disk block addresses. In our test
system, we achieve the page pointer truncation by ensuring each page starts at an
offset that is a multiple of 2! where [is the number of bits we need to truncate to
make these sizes equal. Aligning pages in this way may result in some waste
storage that must be traded against the savings from the suffix offset truncation.
For word indices on documents capable of being managed on current computers, {
is usually the same as the number of bits truncated in the text. For a character
index, [needs to be increased by approximately two bits because the page
pointers have to address about four or five times as much data as the suffix offsets.

4.4 Empirical Results

Table 4.1 shows the index sizes for several indices on the test documents when
using full suffix pointers. When producing the empirical results for indices on
secondary storage, the optimal skip sizes from Chapter 3 were used for Holmes,
XIII, and the Bible. For the OED, a skip size of six was chosen somewhat
arbitrarily. In each case, the height of the tree matches the number of accesses to
secondary storage needed to perform a search if the root page is held in memory
because one further access is required to locate the test suffix. Table 4.2 shows
the reduced sizes of the 4k page size indices above when some suffix bits are
truncated. The number of bits truncated in each case was chosen to make the size
of each leaf an integral number of bytes for performance reasons. While the
savings due to suffix truncation appear modest when compared to Table 4.1, such

a direct comparison is not really meaningful. The values in Table 4.1 are based on

CHAPTER 4. STATIC TEXT ON SECONDARY STORAGE (4

Text Page Size | Depth | #Pages | Index Size
Holmes 1K 2 178 144k
2K 2 85 144k
4K 2 40 144k
8K 2 19 144k
X1 1K 3 4770 3083k
2K 3 2365 3073k
4K 2 1179 3068k
8K 2 596 3066k
Bible 1K 3 10781 4938k
2K 3 5459 4913k
4K 3 2985 4901k
8K 2 1397 4894k
OED 1K 5 1285521 542m
2K 4 698923 541m
4K 4 374414 540m
8K 3 195994 539m

Table 4.1: Static Index Sizes

the use of 18, 20 and 23 bit sized fields for the suffix offsets. In practice, an
integral number of bytes would be reserved for each leaf, significantly increasing
the index size. The indices in Table 4.2 already use an integral number of bytes
for each leaf and so would not increase in a practical system.

4.5 Adapting to CD-ROM

The disk block size of a CD-ROM is 2048 bytes of application data plus about
three hundred bytes of error detection and correction information (see [14] for an

CHAPTER 4. STATIC TEXT ON SECONDARY STORAGE 78
Text Truncation | Index Size | Reduction
Holmes 3 134k ™%
XII1 5 2845k 7%
Bible 8 4211k 14%
OED 7 489m 9%

Table 4.2: Effects of Suffix Truncation

overview of the properties of CD-ROM). Using this block size when searching on
CD-ROM can lead to poor performance because of the very high seek time of
these devices. Single spin CD-ROM drives can require up to 1 second to locate a
particular block. The average performance is about 0.75 seconds. These same
drives have a transfer rate of about 150k bytes per second so transferring a block
requires about .014 seconds. While faster CD-ROM drives are available, the ratio

of seek time to transfer rate remains roughly constant.

For the purposes of searching data on CD-ROM, it does not seem reasonable to
spend fifty times longer locating pages than transferring actual data from the
disk. In order to better balance these costs of searching, when applying the CPT
structure to data on CD-ROM, a much larger page size is used during
partitioning. An apparently reasonable guideline is to use as much time
transferring data as is used locating the data to transfer. Equating these two
values leads us to use page sizes of between 100k and 150k bytes. The use of 100k
byte pages for searching the OED document results in a tree of height two. If the
root page is held in memory, searches can progress with one read of the index at a
cost of roughly twice the seek time and one smaller read of the text to acquire the
test sample. Even with a slow drive, the first response to a query will be available
in less than three seconds. Common multi-spin drives should achieve sub-second

response time on word or phrase queries.

CHAPTER 4. STATIC TEXT ON SECONDARY STORAGE 79

4.6 Comparison to Other Structures

The PaTrie structure of Shang[44] and Merrett and Shang[37] is similar in
approach to the structure presented here. It is not clear which of the two
structures will be more compact because that will likely depend on the text.
However, the improved partitioning algorithm used here will result in superior
performance on secondary storage. Empirically, Shang shows the PaTrie requires
an average of between 5 and 7 accesses to secondary storage when using 1k byte
pages for searching a text with 100 million index points. However, the PaTrie
required as many as 46 disk accesses for some suffixes in that document. The
compact PAT tree used a maximum of 5 accesses when searching a comparable
text (the OED). When using 8k byte pages, the CPT structure required only 3
accesses for searching the OED document. The compact PAT tree is also less
processor intensive and so should perform better on large page sizes such as those
used for searching CD-ROM. Because it scans every bit in the encoding when
traversing a block, the PaTrie is unlikely to extend well to larger page sizes. Shang
notes that the PaTrie is processor bound when using 1k byte pages. Use of the
efficient tree encodings from Chapter 2 could remedy this weakness of the PaTrie.

Another comparable structure is the SB-tree of Ferragina and Grossi[18]. On a
100 million index point document, they report using 6 accesses to secondary
storage using an index requiring about 8.25 bytes per index point. While this
appears excessively large when compared to the CPT, it must be remembered
that the SB-tree has guaranteed logarithmic height while the PAT tree, and hence
the CPT, has logarithmic height almost surely under certain text models. Further
performance tradeoffs can be used to reduce the size of the SB-tree so it is
comparable to that of the CPT, but at a cost in accesses to secondary storage.
The SB-tree is also likely to be processor intensive but again this problem can be
easily alleviated using the efficient tree encodings from Chapter 2.

Chapter 5

Dynamic Text on Secondary

Storage

In this chapter, we extend the CPT structure to support changes to the
underlying document or document set. In addition to detailing the changes to the
PAT tree we show that the partitioning method of the previous chapter allows
changes to the tree with only local changes to the page structure. Finally, we
address the problem of placing the pages of the CPT structure into blocks on

secondary storage.
There are two models of updates to the text that we consider:

e insertion, deletion, or replacement of a character in a single indexed
document, or
e insertion or deletion of an entire document from an index on a set of

documents.

The latter is the External Dynamic Substring Search (EDSS) problem formalized
by Ferragina and Grossi[18]. In both cases the changes to the text result in the

80

CHAPTER 5. DYNAMIC TEXT ON SECONDARY STORAGE 81

insertion or deletion of multiple suffixes to or from the PAT tree.

Simple character changes can result in a number of suffix insertions and deletions
proportional to the maximal offset occurring in the PAT tree. For example, when
changing the third character of the example string, abccabca$, to a b, we must
delete the suffixes cc, bec and abee and replace them with beab, bb, and abb. To
determine the exact set of suffixes affected, we start at the first index point
preceding the change point and scan backward. Each index point encountered is
searched in the PAT tree until a leaf is reached. If the final offset value that
occurs in the search is at or beyond the change point then the suffix is removed
and replaced with the new suffix starting at the index point. If the leaf is
encountered before the change point, then the tree position of the suffix and any
suffixes to the left are not effected by the change to the string. The character
change model is easily extended to include the insertion, deletion, or replacement
of sub-strings of the original string. For such operations all suffixes starting inside
the changed region are first inserted, deleted or replaced and then the suffixes
preceding the change point are handled in the same manner as during a simple
character change. Another basic operation that is frequently used with suffix
indices is that of prepending new characters to the index string. The prepend
operation is of interest because updating a suffix index after a prepend operation
only requires the insertion of the new suffixes. It does not require updating the
index for any existing suffixes and so can be more efficiently implemented. An
issue we will not address is the nature of suffix offsets under the character change
model. If a simple offset is used then insertion or deletion of the first character in
the text requires an update of every offset in the CPT structure. Majster and
Reiser[33] suggest the use of a “Dewey Decimal” numbering scheme for string
positions that solves this problem but do not address the implementation of such

a scheme in a practical system.

Under the EDSS model, the text being searched is made up of multiple

CHAPTER 5. DYNAMIC TEXT ON SECONDARY STORAGE 82

documents, A = {81, 83, ...0}, stored on secondary storage. The model allows the
insertion of new documents into A or the removal of existing documents. Updates
to the documents can be modeled as a delete followed by an insert. When using a
suffix based index, including the CPT, insestion or deletion of a document results
in the insertion or deletion of the suffixes corresponding to each index point in the
document. A minor issue for the multiple document model is the use of end
markers to ensure the uniqueness of each suffix. In order to retain the uniqueness
of suffixes across documents, the end marker must be different for each document.
In our test system, we use the string “$<doc>$” where $ is the previous unique

end marker and <doc> is a unique identifier for the document (e.g. its name).

Even when indexing a single dynamic document, the EDSS model is likely to be
more relevant than the single document model. Documents managed on
secondary storage tend to be large and often can be broken down into
sub-documents each of which fits in primary storage. For example, a dictionary or
encyclopedia can be broken into entries, a scientific journal into papers and fiction
or non-fiction books into chapters, sections, or paragraphs. The breakdown into
sub-documents is necessary to allow users and programs to efficiently manage the
documents. In practice, the lack of such a natural breakdown will result in the use
of an “unnatural” breakdown such as one based on disk blocking. For this reason,
we use the EDSS model in our empirical testing.

The preceding discussion shows that higher level document operations can be
implemented using suffix operations, so we will only concern ourselves with the
insertion and deletion of suffixes from the CPT structure for the remainder of this

chapter.

CHAPTER 5. DYNAMIC TEXT ON SECONDARY STORAGE 83

5.1 Updating PAT Trees

Before considering the effect of suffix insertions and deletions on the partitioned
CPT, it is worthwhile reviewing the effect of such changes on the underlying
PATRICIA tree.

Adding a suffix to the tree requires the addition of a new internal node having as

one of its children a leaf containing the new suffix’s offset. In terms of the tree of

internal nodes, the new node may either split an edge between two internal nodes
of the PATRICIA tree or be inserted below an existing leaf. To insert a new suffix
into a PATRICIA tree, the following steps are taken:

1. search the tree using the new suffix until we reach a leaf, call the suffix
located at this leaf the test suffix,

2. determine the first bit position at which the new suffix and the test suffix
differ,
3. if the suffixes first differ at a bit beyond the bits tested during the traversal,

then replace the leaf with an internal node having the test suffix and the
new suffix as children,

4. otherwise find the edge on the root-leaf path that skips over the bit position
where the suffixes differ and split the edge by inserting a new node having
as children the new suffix and the old sub-tree reached by the edge,

5. set the offset or skip values of the new node and, in the second case, the old
sub-tree appropriately.

For example, if we prepend an a to the example string, S = abccabca$, and then
insert the new suffix aabec... into the PAT tree we first search the new suffix in
the existing tree terminating at leaf 1. We then determine that the new suffix and

CHAPTER 5. DYNAMIC TEXT ON SECONDARY STORAGE 84

the suffix at offset one differ in their fourth bits. This bit is skipped on the edge
linking the nodes labelled (3] and [7] so the new suffix is inserted on that edge.
The new suffix has a zero in the fourth bit position so it will be the left child of
the new node. The resulting PAT tree is shown on the right of Figure 5.1.

Figure 5.1: Original and Updated PAT Trees

Deletion of a suffix is more easily handled:

1. search the suffix in the PAT tree to locate the suffix’s leaf,

2. remove the suffix and its parent by replacing the parent with a straight
through edge,

3. if the ex-sibling is not a leaf, then update its skip value (if offsets are used
then no change is needed).

A more detailed discussion of the updating procedures can be found in
Sedgewick’s discussion of PATRICIA[42]. When the keys being inserted are
known to be consecutive suffixes, more efficient methods of implementing these
update operations on suffix trees are known, see McCreight{36], but they require

the maintenance of extra data in each node.

CHAPTER 5. DYNAMIC TEXT ON SECONDARY STORAGE 85

To adapt the PATRICIA update methods to the partitioned CPT we need to

handle three new problems:

e overflow nodes,
e maintaining the worst case optimal partitioning,

e handling truncated suffix offsets.

Neither overflow nodes nor truncated suffix offsets cause significant problems
when updating the CPT structure.

5.2 Dynamic Optimal Bottom Up Partitioning

The optimal bottom up partitioning rule is based on information local to a
sub-tree, so the effects of repartitioning are limited to the path upward from the
point we insert or delete a node to the root. Because of this locality, we can
efficiently maintain the optimality of the partitioning in the presence of update
operations. This differs considerably from the other partitioning strategies
discussed in the previous chapter where a local change to a tree can have global
side-effects on the partitioning.

Because we operate on the tree of internal nodes of the PAT tree, the two binary
tree operations of interest to us are the insertion of a new node either as a leaf or
by splitting an edge and the deletion of a leaf or straight through node (a node
with only one child). We refer to the location of the new node or the parent of the
node removed as the change point in the tree. We handle the insertion and
deletion of nodes separately.

CHAPTER 5. DYNAMIC TEXT ON SECONDARY STORAGE 86

Theorem 5.1 An optimal bottom up partitioning of a binary tree can be updated
to reflect a node insertion operation by updating at most 2H + 1 page definitions,
where H is the page height of the partitioned tree prior to the operation.

Proof: The optimal bottom up partitioning rules are based solely on information
local to a sub-tree and its sibling. Therefore, only pages containing nodes on the
path upward from the change point to the root or those nodes’ siblings can
possibly change. For the same reason, within such pages only the decisions made
at nodes on that path can change. In the remainder of the proof we consider what
can happen when reapplying the optimal bottom up partitioning rules to the
nodes along this path. The actual implementation of the insertion operation for a
partitioned tree closely follows the proof.

At each stage in the recomputation of the tree partitioning, we have a node, ¢, that
we are considering adding to a page and we have to determine how its addition
changes the page definitions. Initially, ¢ is the new node being inserted and the
page is either the page containing i’s parent if ¢ is a leaf or the page containing i’s
child otherwise (the only real problem is when ¢ is inserted in an edge between
two pages - in that case we select the lower page). Set h;, the page height of the
node being inserted, to the page height of #’s child or to one if i is a leaf.

Let hpqge be the page height of the current page. There are two cases that have to
be considered immediately:

1. If h; < hpgge then i's sibling either has page depth Ag,g. or has a lesser page
depth but is on its own full page. According to the partitioning rules, ¢
should be placed on its own page. Once 1 is placed on its own page, then
neither the page height nor the local page size of any already existing node
are changed so the remainder of the optimal bottom up partitioning is

identical to the previous partitioning.

CHAPTER 5. DYNAMIC TEXT ON SECONDARY STORAGE 87

2. In the more general case, h; = hpqage, We logically add ¢ to the page definition
(we say logically because this addition may cause the page size to exceed p).

In the second case, we have to continue reapplying the partitioning rules upward.
First consider nodes other than the root of the page. For these nodes, the page
height is unchanged so no partitioning decision based on page height will change.
Additionally, the local page sizes for one child of these nodes has increased by
exactly one but each of these was at most p — 2 before because these pages where
later augmented with the node and its parent. So the increased local page size is
still less than p and no partitioning decision based on page size will change either.
Therefore the first node for which the partitioning decisions can change is the root
of the page. Two possible situations arise from application of the partitioning
rules to the root of the page:

1. If the root of the page still fits on the page, the rules allow us to keep it in
the page definition. The local page size and page height of any nodes further
up the path to the root of the tree are unchanged. Because these values do
not change, the page definitions from the old partitioning are valid.

2. If the root of the page no longer fits on the page, then its children and their
sub-trees must be placed on their own pages (if they are not already). We
then have to decide where the rules place the old page root. If it is the root
of the entire CPT, then they simply place it in its own page and the
reapplication of the partitioning rules is complete. In general though, we
consider the effect of its insertion into its parent’s page. After incrementing
its page depth by one, the old root becomes ¢ and we iteratively apply the
rules above to determine how its addition changes higher level page
definitions.

Based on this argument we see that only the definitions of the pages containing

CHAPTER 5. DYNAMIC TEXT ON SECONDARY STORAGE 88

children of the original page roots can change during an insert. As well, a new
page definition may be required to hold the root of the entire CPT. There are at
most 2H + 1 such pages so the result follows. QED

Theorem 5.2 An optimal bottom up partitioning of a binary tree can be updated
to reflect a node deletion operation by updating at most H page definitions and
removing at most another H — 1 page definitions, where H is the page height of

the partitioned tree prior to the operation.

Proof: As with insert, we only need to consider the reapplication of the rules to
nodes on the path upward from the change point to the root. While the details
are different, the structure of the argument is the same as the insert case. At each
stage we have a page that has had a node removed from it and we consider what
happens as we reapply the partitioning rules on the path upward from the change
point. Initially, this page is the one that used to contain the deleted node.

There are three possible cases,

1. The remaining page definition is empty and the decision to place the node
on its own page was based on its sibling’s page height (i.e. the sibling has a
greater page height). In this case, we remove the page definition. The
removal of the node and its page does not have any effect on the decisions
made at its parent because of the difference in page heights. The page
height and local page size of all other nodes remain unchanged so the page
definitions from the original partition are still valid.

2. The remaining page definition is empty and the decision to place the node
on its own page was based on the total of the local page sizes for it and its
sibling. If the sibling now has local page size p — 1 (it cannot be less), then
the partitioning rules require the parent to be placed on the sibling’s page.

CHAPTER 5. DYNAMIC TEXT ON SECONDARY STORAGE 89

We remove the parent from its page definition and are again in the position
of having a page from which we have removed a node and have to apply
these same arguments to the parent page to determine how the remainder of
the partitioning might change. Otherwise the sibling’s local page size is p, so
the parent cannot be added to the page definition and, as before, the page
height and local page size of all other nodes remain unchanged so the page
definitions from the original partition are still valid.

3. There are nodes remaining on the page.

In the last case, we have to consider what happens as we reapply the partitioning
rule within the page. Any decisions to create pages made when applying the rules
to nodes from the change point up to and including the root of the page had to be
based on the page height of the nodes because decisions based on local page size
break off pages for both children. The page height of the nodes is unchanged so
these decisions will not change when the rules are reapplied. Therefore, the parent
of the root of the current page is the first node on the upward path where the
partitioning decisions might change. Note that if this node does not exist then we
are at the root of the tree and the reapplication of the rules is complete.

Otherwise, we have to consider the two cases that can occur at this node:

1. If the partitioning decision is unchanged then the page height and local page
size of all nodes further up the path to the root of the tree are also
unchanged so the page definitions from the old partitioning can be used for

the remainder of the upward path.

2. If the partitioning decision changes to move the root’s parent (and possibly
its sibling if it has the same page height) on to the current page, then we
remove that node from the parent page and update the current page
definition.

CHAPTER 5. DYNAMIC TEXT ON SECONDARY STORAGE 90

In the second case, we are again left with a page (the parent page) from which we

have removed a node and we iteratively apply the arguments above.

We have shown that the only nodes whose partitioning decisions can change are
the parents of the roots of the pages. For each of these we may have to update the
definition of both the root and its parent’s page. As well, we may have to delete
the sibling page definition. At most H page definitions can be updated and
another H — 1 definitions may be removed. QED

These two theorems lead immediately to the following result:

Theorem 5.3 An optimal bottom up partitioning of a binary tree can be
maintained under node insertion and deletion operations by updating at most
2H + 1 page definitions per operation, where H is the page height of the

partitioned tree prior to the operation.

Theorem 5.3 is quite pessimistic on the performance of the repartitioning process.
As we will see, for the well balanced PAT tree, on average about one page is
updated for each node operation. However, it is not difficult to construct trees
such that an insert will require the full 2H 4 1 page updates or a delete will
require H page updates and the removal of H — 1 page definitions.

5.3 Dynamic Compact Pat Trees

The dynamic CPT is obtained by combining the PAT tree insertion operations
from Section 5.1 and the repartitioning procedure implicit in the proof of
Theorem 5.3. We have to stress that, as in Chapter 4, we perform the partitioning
operations in terms of the tree made up of the internal nodes of the CPT.

CHAPTER 5. DYNAMIC TEXT ON SECONDARY STORAGE 91

5.3.1 Insertion of a Suffix

When inserting a new suffix into the CPT, we first locate the page containing the
portion of the tree that must be changed by executing a search for the suffix (this
search must fail because suffixes are unique due to the end marker) and then
determine the bit position at which the suffix located at the last leaf encountered
and the new suffix differ. The page containing the portion of the tree that skips
over that bit position is loaded into memory and the new suffix inserted into it. In
the case that the edge that contains the bit position spans a page boundary then
the child page is used.

The insertion of a suffix can result in one of three conditions:

e an increase of one in the number of internal nodes in the page,
@ no change in the number of internal nodes in the page,

e an increase of more than one in the number of nodes in the page.

The latter two conditions are only possible due to the use of overflow nodes. In the
second case, we can simply write the page back to secondary storage. This cannot
invalidate the partitioning because the page heights of all nodes and size of the
pages are unchanged. The third case can be handled using multiple invocations of
the first and is sufficiently rare that we do not concern ourselves with it.

The steps performed after insertion are:

1. if the suffix pointer is inserted adjacent to another suffix pointer*, then we
have to consider the page height of the page into which it is being inserted.
If the height of the page is greater than one then the new node and both
leaves are split off into a new page and replaced in the page with a pointer

*Equivalently, we are inserting a leaf in the tree of internal nodes.

CHAPTER 5. DYNAMIC TEXT ON SECONDARY STORAGE 92

to the location of this page. Otherwise we simply add the new node and leaf
to the page. If the updated page fits in a block we write it back and we are
done. Otherwise we have to repartition the page.

2. if the suffix pointer is inserted with an internal node as its sibling, then we
add the new internal node and leaf. Again, if the updated page fits in a
block we write it back and are done. Otherwise we skip to the repartitioning
phase.

If the updated page is too large to fit on a block, then we have to adjust the
partitioning of the page and its parent page. The repartitioning process operates
by placing the sub-tree children of the root in their own pages and then either
placing the root on a new page or inserting it in its parent’s page depending on
their relative page heights. If the root is inserted in its parent’s page then that
page may become too large and the process continues recursively. The steps to be

followed are:

1. remove the root of the page and write its non-leaf children to secondary

storage replacing them with pointers to where they were written.
2. set the page height of the root node to one more than that of its children.

3. if the page’s root node is the root of the entire CPT then write it to its own
page and mark this page as the root page,

4. else if the page height of the root’s parent is the same as the updated page
height of the root, then insert the root in the parent. If the updated page
fits in a block then write it back, otherwise recursively repartition the

parent page.

CHAPTER 5. DYNAMIC TEXT ON SECONDARY STORAGE 93

5. otherwise the page height of the root’s parent is greater than the updated
page height of the root so we write the root to its own page and update the
sub-page pointer in the parent page.

5.3.2 Deletion of a Suffix

During the deletion of a suffix, the suffix is first searched through the CPT to
locate its leaf. That leaf and its parent are then removed and the sibling’s skip
value updated. Note that if the sibling is on another page, then updating its skip
value requires a read and write of secondary storage. In practice, this extra I/O
can be avoided if the cumulative offset for the root of each page is maintained in

each page. We do not, however, currently use this optimization.

After deleting a suffix pointer from a page, there are again several cases:

e a decrease of one in the number of nodes in the page,
¢ a decrease of more than one in the number of nodes in the page,

¢ no change in the number of nodes in the page.

As with insertion, we only consider the first case.

The repartitioning in the case of a deletion attempts to merge the current page
with its parent node and, if it has the same page height, its sibling page. If the
combined structure fits in a block then their pages are combined and the resulting
page written back. The parent node is then removed from its old page and that
page is then considered for repartitioning. The steps performed after a deletion

are:

1. if the current page is the root page then we are done,

CHAPTER 5. DYNAMIC TEXT ON SECONDARY STORAGE 94

2. else if the page height of the current page and the page height of the sibling
page are equal and the sum of their sizes plus one for their parent is less
than or equal to p, then merge the pages and remove their parent node from
the parent page. Recursively repartition the parent page.

3. else if there was only one node in the page, then remove the page and
replace the parent page’s pointer to this page with the remaining leaf,

4. else if the page height of the current page is greater than that of its sibling
then move the parent node of the page from the parent page to the current

page and recursively repartition the parent page.

5. otherwise no further adjustment is necessary and the page can be written
back.

For a balanced tree, the splitting and merging of pages discussed here is exactly
analogous to the splitting and merging of nodes during B-tree updates{42].

5.3.3 Block Layout on Secondary Storage

While the optimal bottom up partitioning rule produces a worst case optimal
partitioning, it can also produce a large number of small pages. In practice, many
of these pages result from sub-trees whose sibling tree has a higher page height.
In such cases, the partitioning rule adds the parent into the child with the higher
page height and “closes off” the other child irrespective of its size. If each page is
assigned its own disk block, these small pages will result in very low storage
utilization and high storage requirements. For example, when using a page size of
8k bytes, the OED required 195994 pages so the naive dynamic index would
require 1.5g bytes or nearly three times the storage of the static index. Moreover,

there is no guarantee that this multiplier does not get much worse.

CHAPTER 5. DYNAMIC TEXT ON SECONDARY STORAGE 95

To alleviate the problem of small pages, we place multiple pages on each block of
secondary storage. While there are many possible approaches to this problem, the
most general being Dynamic Bin Packing[11], we adopt a simple approach based
on primary storage management techniques. We maintain free lists for storage
regions of size 2%, 2%+ 216P and manage these using a “binary buddy”[1] style
splitting and coalescing strategy within each block. During allocation, if there are
no free regions of the appropriate size we recursively allocate from the next larger
region and split the resulting region, using half for the page and leaving half in
the free page list. If we ever run out of free regions of the largest size, a new block
is allocated at the end of the index file. When a region is released, the free list is
searched for the remaining half needed to return it to the next larger size. If the
“buddy” region is found in the free list then the merged region is recursively freed
to the next larger region class. While we could set ky to 1 and guarantee each
allocated region is at least half full, this interferes with the savings from suffix

truncation and so is not worthwhile.

5.3.4 Suffix Offsets

In the static case, the bits in truncated suffix offsets were recovered during
searching by scanning a range of 2' characters and finding the unique suffix that
when searched in the CPT ended at the correct leaf. The same technique can be

used to locate the correct suffix during the insertion operation.

An alternate method for locating the suffix is based on the observation that the
correct test suffix is that suffix in the range which matches the suffix being
inserted for the greatest number of bits. To see this, let ¢ be the bit at which this
suffix differs from the suffix being inserted. Consider any other suffix starting in
the range. It must first differ from the suffix being inserted and the candidate test
suffix at some bit j where j < i. From the properties of the PAT tree, bit j must

CHAPTER 5. DYNAMIC TEXT ON SECONDARY STORAGE 96

be tested at some internal node on the path from the root to the candidate test
suffix. Moreover the suffix being inserted must match the test candidate at bit j
otherwise the search would have taken the other branch at that node and not end
at this leaf.

The decision of which of these two criteria to use will depend on the relative
speed of string comparisons and tree operations in an actual implementation.
During deletions of suffixes, we start with the exact suffix offset and can use the
suffix string to search the CPT and stop at the unique leaf that needs deletion.

As in the static case, any bits truncated from the suffix offsets also have to be
truncated from the page pointers. We accomplish this by setting the value of ko in
the storage manager to the number of bits we need to truncate from the page
pointers. All pages are then aligned on a multiple of 2* and so we can truncate

the low order bits.

5.3.5 Practicalities

Many of the update operations require knowledge of the page height of sub-pages
to make repartitioning decisions. Instead of retrieving the sub-pages to locate this
information, we add one further element to the page pointer objects: the page
height of the page being pointed to. In practice, two bits are sufficient for this
field because it can be stored as a difference in page height between a page and its
parent, shifted by one to make use of zero. This requires a further increase of ko
by two.

Finally, we have said nothing about the order of suffix insertions and deletions
under the EDSS model. If we assume the suffixes being updated are sparse in the
lexicographically ordered set of the indexed suffixes, then little can be done to
save reading a height one page per suffix (assuming updates occur near the leaves
of the tree). However, by lexicographically sorting the suffixes and inserting or

CHAPTER 5. DYNAMIC TEXT ON SECONDARY STORAGE 97

deleting them in order, we can avoid reading higher level pages more than once
each. This ordering can also be used to merge multiple page repartitioning and
resizing operations. We do not currently make use of this optimization in our test

system.

5.4 Empirical Results

Page size | Leaf Size | 2% | # Blocks | Index Size
unaligned 4 195994 565m
8k 4| 8k 195994 1531m
8k 4| 32 96241 752m
8k 3| 256 77914 609m

Table 5.1: Improved Block Allocation

The results of using the block allocation structure of Section 5.3.3 on the CPT
index for the static OED is shown in Table 5.1. The first row shows the number of
pages and the index size for a text index using 4 byte pointers but no alignment
of objects on secondary storage. The second row shows the index size when using
naive page alignment. The remaining lines show the number of blocks used for
two leaf sizes using 8k pages. In the latter two cases, bits had to be truncated
from the suffixes and ko had to be increased to allow for the smaller leaf objects.
These results have to be interpreted with care because they do not include storage
lost to external fragmentation (blocks not currently allocated at all) which would

occur in a real system.
For a more realistic test of the dynamic CPT, we gathered an assortment of 161

documents, primarily English text, ranging in size from 21k to 1411k bytes. We
then inserted all but one of these documents into a CPT using the algorithms

CHAPTER 5. DYNAMIC TEXT ON SECONDARY STORAGE 98

described here. During the insertion of the last document, we recorded the
number of page updates performed during the suffix insertions. The final
document contained 14482 index points and its insertion required 14597 writes of
secondary storage for an average of 1.01 writes per index point. The final index
size was 67m bytes on a total text size of 50m bytes using 4 byte leaf objects.

5.5 Comparison to Other Structures

As with the static case, the most comparable structures are the PaTrie and the
SB-tree. Little data is available about the dynamic PaTrie so direct comparison is
not possible. However, it seems likely that the concerns of the static case will

continue into the dynamic case.

The SB-tree, being based on a B-tree, makes the transition to the dynamic case
quite easily. Here it has two advantages: its guaranteed height and its guaranteed
storage utilization. The latter property avoids the more complicated storage
management required by the CPT. These must be traded against the greater
functionality and empirically fewer secondary storage accesses of the CPT.

Chapter 6

Conclusions

This chapter presents a short overview of the results already discussed in this
thesis and presents some areas for future research. Chapter 2 provided an
overview of traversable compact tree representations and extended these methods
to the MBRAM model and trees with edge selection based on a label such as a
trie. In Chapters three, four and five, we have shown several representations for
PAT trees that use significantly less storage than previous methods. In particular,

we have presented:

¢ a new representation for static PAT trees in primary storage that allows
efficient searching with an expect storage cost of less than
3; +lgn +Iglglgn bits per node for random text. Empirically we show the

representation works well for real world data.

e a new representation for static PAT trees in secondary storage that we have
shown empirically is little larger than a suffix array and offers significantly
better performance than that offered by suffix arrays, partitioned PaTries or

SB-trees.

99

CHAPTER 6. CONCLUSIONS l 100

e methods for managing the structure mentioned above that allow us to
efficiently handle updates to documents on secondary storage.

Each of these structures represents a significant advance in our ability to search
large bodies of textual data efficiently.

6.1 Applications

As stated in the introduction, our initial motivation for this work was the
searching of large docaments on CD-ROM. CD-ROM differs significantly from
magnetic disk in that the cost of seek operations is extremely high when
compared to magnetic disk. When searching a document with a size comparable
to the capacity of a CD-ROM (approximately 600 million bytes at the time of
writing), a suffix array will require approximately 45 random seeks on the disk at
a cost of roughly 3/4 of a second each. Empirically, we see the structure presented
in Chapter 4 searching files of this size in 3 disk accesses resulting in a 15 fold
performance improvement. In addition to its uses in string processing, we believe
the CPT structure will find uses in computational biochemistry where it will allow

fast searching of even longer strings of genetic information.

Finally, we believe the structure presented in Chapter 5 is an extremely practical
solution to the efficient phrase searching of large dynamic documents. It is yet to
be seen if the added functionality is sufficient to make it a rival of inverted word
lists in the large text database field, but it is clearly more suitable for many
applications because of its ability to handle string, phrase and regular expression
searching. Of particular interest is the searching of genetic information because
such data does not admit a word breakdown. PAT trees have also been found
useful for solving several other problems in text and data processing. In particular
(see [24] unless otherwise noted):

CHAPTER 6. CONCLUSIONS 101

e Searching picture data. By converting pixel data to “semi-infinite spirals,”
Gonnet proposed the use PAT trees to create an index capable of searching
pictures.

¢ Regular Expression searching of text. Baeza-Yates and Gonnet show that
PAT trees can be used to perform regular expression searches in sub-linear
expected time[4].

e Finding longest repeated strings. The deepest internal node in the suffix
tree has as its children the occurrences of the longest repeated substrings in
the text. By attaching a single bit indicating which of the two children is
deeper to each internal node a longest repeated sub-string can be efficiently
located. In addition, given any string, the longest repeated continuation of
that string can also be located. By adding a second bit to each node (to
indicate two children of equal height), all of the longest repeated sub-strings

can be located.

¢ Finding the most common continuation of a string. If each internal node is
labelled with its size, suffix trees can be used to find the most common
continuation of any string. With some work, similar techniques can be
applied to PAT trees. This work is closely related to work by Gonnet et
al.. that uses the PAT tree to generate random text that is “similar” to an

input text.

The survey by Apostolico{3] gives an overview of several other uses of suffix trees,
most of which can be extended to PAT trees. There is no reason to believe that
the structures reported here cannot be applied to these and other problems with
equally successful results.

CHAPTER 6. CONCLUSIONS 102

6.2 Future Work

In addition to investigating the extensions above, we want to investigate the use
of compact tree structures within other types of tree based structures. The
representations developed here are directly applicable to implementing PATRICIA
when the bits tested are monotone increasing and the differences in the offset of
the test bits are, with high probability, small. Other similar structures may
handle related cases. Shang has investigated some applications of related ideas to
spatial data structures. An interesting problem remaining from Chapter 2 is the

compact and efficient representation of dynamic binaty. or general trees.

Bibliography

[1] A. V. Aho, J. E. Hoperoft, and J. D. Ullman. Date Structures and
Algorithms. Addison-Wesley, Reading, 1983.

[2] A. Andersson and Stefan Nilsson. Efficient implementation of suffix trees.
Software — Practice and Ezperience, 25(2):129-141, February 1995.

[3] A. Apostolico. The myriad virtues of subword trees. In A. Apostolico and
Z. Galil, editors, Combinatorial Algorithms on Words, NATO ASI Series F,
Computer and System Sciences, Vol. 12, pages 87-96. Springer Verlag,
Berlin, New York, 1985.

[4] R. A. Baeza-Yates and G. H. Gonnet. Efficient text searching of regular
expressions. JCALP’89, Lecture Notes in Computer Science 372, pages
46-62, 1989.

[5] E. F. Barbosa, G. Navarro, R. Baeza-Yates, C. Perleberg, and N. Ziviani.
Optimized binary search and text retrieval. Algorithms — ESA ’95, Third
Annual European Symposium, Lecture Notes in Computer Science 979, pages
311-326, September 1995.

[6] R. Bayer and K. Unterauer. Prefix B-trees. ACM Transactions on Database
Systems, 2(1):11-26, March 1977.

103

BIBLIOGRAPHY 104

[7] R. S. Boyer and J. S. Moore. A fast string searching algorithm.
Communications of the ACM, 20(10):762-772, 1977.

(8] A. Brodnik. Searching in constant time and minimum space. Technical
Report CS-95-41, Department of Computer Science, University of Waterloo,
1995.

[9] M. Carlisle, J. I. Munro, and R. Sedgewick. Data layout for memory locality.
unpublished manuscript, 1993.

[10] M. T. Chen and J. Seiferas. Efficient and elegant subword-tree construction.
In A. Apostolico and Z. Galil, editors, Combinatorial Algorithms on
Words,NATO ASI Series F, Computer and System Sciences, Vol. 12, pages
97-107. Springer Verlag, Berlin, New York, 1985.

[11] E. G. Coffman Jr., M. R. Garey, and D. S. Johnson. Dynamic bin packing.
SIAM Journal on Computing, 12(2):227-258, May 1983.

[12] R. M. Corless, G. H. Gonnet, D. E. G. Hare, and D. Jeffrey. On Lambert’s w
function. Technical Report CS-93-03, Department of Computer Science,
University of Waterloo, 1993.

[13] J. J. Darragh, J. G. Cleary, and I. H. Witten. Bonsai: A compact
representation of trees. Software - Practice and Ezperience, 23(3):277-291,

March 1993.

[14] J. Einberger. CD ROM characteristics. In S. Ropieque, editor, CD ROM,
Optical Publishing, pages 31-42. Microsoft Press, Redmond, 1987.

(15] P. van Emde Boas. Machine models and simulations. In J. van Leeuwen,
editor, Handbook of Theoretical Computer Science, Volume A, Algorithms
and Complezity, pages 1-66. Elsevier, Amsterdam, New York, Oxford, Tokyo,
1990.

BIBLIOGRAPHY 105

[16] C. Faloutsos. Access methods for text. Computing Surveys, 17(1):49-74,
March 1985.

[17] C. Faloutscs and S. Christodoulakis. Description and performance analysis of
signature file methods. ACM Transactions on Office Information Systems,
5(3):237-257, July 1987.

(18] P. Ferragina and R. Grossi. A fully-dynamic data structure for external
substring search. Proc. o7th ACM Symposium on the Theory of Computing,
pages 693-701, 1995.

[19] P. Ferragina and R. Grossi. Fast string searching on secondary storage:
Theoretical developments and experimental results. Proc. 7 Annual
ACM-SIAM Symposium on Discrete Algorithms, pages 373-382, 1996.

[20] E. H. Fredkin. Trie memory. Commaunications of the ACM, 3(9):490-500,
September 1960.

[21] J. Gil and A. Itai. Packing trees. Algorithms — ESA 95, Third Annual
European Symposium, Lecture Notes in Computer Science 979, pages
113-127, September 1995.

[22] G. H. Gonnet, R. A. Baeza-Yates, and T. Snider. New indices for text: PAT
trees and PAT arrays. In W. B. Frakes and R. Baeza-Yates, editors,
Information Retrieval, pages 66-82. Prentice Hall, Englewood Cliffs, New
Jersey, 1992.

[23] G. H. Gonnet. Handbook of Algorithms and Data Structures.
Addison-Wesley, London, 1984.

[24] G. H. Gonnet. Efficient searching of text and pictures (extended abstract).
Technical Report OED-88-02, Centre for the New OED, University of
Waterloo, 1988.

BIBLIOGRAPHY i 106

[25] R. L. Graham, D. E. Knuth, and O. Patashnik. Concrete Mathematics.
Addison-Wesley, New York, 1989.

[26] G. Jacaobson. Space efficient static trees and graphs. Proc. 30th Sympostum
on Foundations of Computer Science, pages 549-554, October 1989.

[27] G. Jacobson. Succinct static data structures. Technical Report
CMU-CS-89-112, Carnegie Mellon University, 1989.

(28] J. Katajainen and E. Makinen. Tree compression and optimization with
applications. Int. Journal of Foundations of Computer Science, 1(4):425-447,
December 1990.

[29] D. Knuth. The Art of Computer Programming: Sorting and Searching,
Volume 3. Addison-Wesley, Reading Mass., 1973.

(30] D. E. Knuth, J. H. Morris, and V. R. Pratt. Fast pattern matching in
strings. SIAM Journal on Computing, 6(2):323-350, 1977.

[31] C. C. Lee, D. T. Lee, and C. K. Wong. Generating binary trees of bounded
height. Acta Informatica, 23:529-544, 1986.

(32] J. A. Lukes. Efficient algorithm for partitioning of trees. IBM Journal of
Research and Development, 18(3):217-224, 1974.

(33] M. E. Majster and A. Reiser. Efficient on-line construction and correction of
position trees. STAM Journal on Computing, 9(4):785-807, November 1980.

[34] E. Makinen. A survey on binary tree codings. The Computer Journal,
34(5):438-443, 1991.

[35] U. Manber and G. Myers. Suffix arrays: A new method for on-line string
searches. STAM Journal on Computing, 22(5):935-948, October 1993.

BIBLIOGRAPHY 107

(36] E. M. McCreight. A space-economical suffix tree construction algorithm.
Journal of the Association for Computing Machinery, 23(2):262-272, April
1976.

[37] T. H. Merrett and H. Shang. Trie methods for representing text. Technical
Report SOCS-93.5, McGill University, 1993.

[38] D. R. Morrison. PATRICIA - practical algorithm to retrieve information
coded in alphanumeric. Journal of the Association for Computing Machinery,
15(4):514-524, October 1968.

[39] The Ozford English Dictionary, Second Edition. Clarendon Press, Oxford,
1989.

[40] R. C. Read. The coding of various kinds of unlabelled trees. In R. C. Read,
editor, Graph Theory and Computing, pages 153-182. Academic Press, New
York, 1972.

(41] E. M. Reingold, J. Nievergelt, and N. Deo. Combinatorial Algorithms:
Theory and Practice. Prentice-Hall, Englewood Cliffs, 1977.

[42] R. Sedgewick. Algorithms. Addison-Wesley, Reading Mass., 1995.

[43] (ISO 8879) Information Processing — Tezt and Office Systems — Standard
Generalized Markup Language (SGML). International Organization for
Standardization (ISQ), 1986.

[44) H. Shang. Trie Methods for Tezt and Spatial Data Structures on Secondary
Storage. PhD thesis, McGill University, 1995.

[45] T. Snider. S vectors. unpublished manuscript, 1993.

[46] W. Szpankowski. Suffix trees revisited (un)expected asymptotic behavior.
Technical Report CSD-TR-91-063, Purdue University, 1991.

BIBLIOGRAPHY 108
[47] P. Weiner. Linear pattern matching algorithm. Proc. 14t* [EEE Symposium
Switching Theory and Automata Theory, pages 1-11, October 1973.

(48] J. W. J. Williams. Algorithm 232: Heapsort. Communications of the
Association for Computing Machinery, 7(6):347-348, 1964.

[49] I. H. Witten, T. C. Bell, and C. G. Nevill. Models for compression in full-text
retrieval systems. Data Compression Conference, pages 23-32, April 1991.

[50] S. Zaks. Lexicographic generation of ordered trees. Theoretical Computer
Science, 10(1):63-82, January 1980.)

Glossary

This glossary contains definitions for many of the topics discussed in this thesis.
In those cases where the full definition is too large to include here a page reference

to the main text is given.

o]

(z)e
[z]
|z

almost sure

average case optimal

Iverson’s convention. The expression [...] has a value of
one if the contents of the expression are true and zero
otherwise.

The representation of z in base b.

The smallest integer greater than or equal to z.

The largest integer less than or equal to z.

An event is almost sure if it occurs with probability one.
A sequence of jointly distributed random variables, R,,
converges almost surely to R if P (lim,o R, = R) = 1.
A tree partitioning is average case optimal if it minimizes
the number of pages accessed when travelling from the

root to a leaf, averaged over all leaves.

109

binary tree

block

block size

case conversion

Catalan number

character index

convex partition

degree

external node

Fuss-Catalan number

110

All binary trees in this thesis are finite and rooted. A
binary tree consists of a distingnished node called the
root. The root may have a left sub-tree and/or a right
sub-tree each of which must itself be a binary tree. See
page 8 for more information.

A unit of data that can be transferred to or from sec-
ondary storage in a single atomic operation.

The size of a block. In Chapter 4 we use P to denote the
block size.

The conversion of all strings to either upper or lower
case during searching. Case conversion is frequently used
because in many applications the capitalization of a word
is not important.

Co = 1 (’:) is the number of binary trees with n
nodes.

An index that allows searching for matches that start and
end at any character position.

A partition of a tree such that each page contains a con-
nected portion of the tree. All tree partitions considered
in this thesis are convex.

The degree of a tree node is the number of sub-trees of
the node.

A tree node is an external node if it has no children.
External nodes are also called leaves.

C™ =g ("":‘") is the number of m-ary tries with n
nodes.

general tree

height

index point

internal node
leaf

gz
Inz
log z

log, z
local page size

MBRAM

All trees in this thesis are finite, rooted and ordered. A
general tree T is formally defined as a non-empty, finite
set of nodes such that there is one distinguished node
called the root of the tree, and the remaining nodes are
partitioned into m > 0 disjoint sub-trees Ty, T, Ts... T
where the order of the trees is significant. See page 8 for
more information.

The height of a node is the length of the longest path
from the node to a leaf in its sub-tree. The height of a
tree is the height of its root. Also see page height.

A positior in an indexed text that is a possible query
result.

A tree node is an internal node if it has at least one child.
A tree node is a leaf if it has no children. Leaves are also
called external nodes.

The base 2 logarithm of z.

The natural logarithm of z.

A logarithm of z where the base is greater than one but
otherwise unspecified.

The base b logarithm of z.

In a partitioned tree, the local page size of a node is the
number of nodes in the subtree rooted at the node that
are on the same page as the node.

A machine model allowing table lookup and pointer
dereferencing operations as well as basic arithmetic op-
erations. See page 10 for a full definition.

111

overflow node

page

page height

parent

partition

PATRICIA tree

PAT tree

A node inserted into the CPT to handle a skip field that
requires more bits than are available in a single node. See
page 52 for more information.

One contiguous section of a tree grouped as part of a
partition.

In a partitioned tree, the page height of a node is the
maximum number of pages that occur on any path from
the node to a leaf in its sub-tree. The page height of a
pattitioned tree is the page height of the root of the tree.
The parent of a tree node is the unique node having that
node as a child.

A breakdown of a tree into contiguous pieces, called
pages, each of which can be represented in a single block.
A searching structure exploiting the binary encoding of
the keys. Given a set of unique keys and a binary encod-
ing of the keys, a PATRICIA tree is a search tree in which
each leaf contains one of the keys and each internal node
is labelled with the position of a bit that distinguishes
the keys in the left sub-tree from those in the right sub-
tree. We use the first bit that is not identical in all the
keys in a sub-tree to partition the keys into the left and
right sub-trees.

A suffix index created by using a PATRICIA tree to
search the binary encodings of the suffixes of the text.
See Figure 1.6 on page 16 for an example of a PAT tree.

112

prefix code

rank(z)

root

seek time

select(z)

sibling

skip value

stemming

A code such that no code value is a prefix of any other
code value.

A function that computes the number of 1s to the left of
and including position z in a bitmap. We also refer to
the rank of the bit representing a node in a level order
encoded tree as the rank of the node.

The root is the unique node of a tree having all other
nodes in the tree as descendents. See page 8 for a discus-
sion of trees.

For a disk based media the seek time is the time taken
to move the read/write head to the correct location for
a transfer. In this thesis we include other factors such as
rotational latency in the seek time.

A function that computes the location of the z’th 1 in a
bitmap.

A tree node is a sibling of another node if they have the
same parent.

The label on an internal node of a PATRICIA or PAT
tree indicating the number of bits to skip to obtain the
bit tested at the node.

The reduction of words to a canonical form for the pur-
poses of searching. Word suffixes such as “s,” “ing” and
“ed” and occasionally prefixes are often removed during
searching if the exact form of the word is not important

for the application.

113

114

stop word Any common word that is ignored during searching.
Words such as “to,” “the,” “as” and the various conju-
gations of “to be” are typically ignored during searching
because they convey little information compared to other
words in a query. Ignoring stop words in the index can
significantly reduce the size of an index.

strictly binary tree A binary tree is strictly binary if every internal node has
exactly two children.

suffix A substring of a string that extends from a given charac-
ter position to the end of the string.

suffix array A suffix index created by lexicographically sorting all suf-
fixes of the text and storing the ordered list of suffix
offsets.

suffix index An index that operates by searching the set of suffixes of
the document.

suffix tree A suffix index created by removing all degree one
(straight through) nodes of a suffix trie. See Figure 1.5
on page 16.

suffix trie A suffix index created by building a trie on the set of
suffixes of the text. See Figure 1.3 on page 13.

transfer time The time taken actually transferring data to or from sec-
ondary storage, not including the seek time.

trie A trie is a search tree in which each leaf contains one
string key and each edge has a single character label. A
key occurs in the sub-tree rooted at an internal node if
and only if the concatenation of the labels on the path
from the root to the node are a prefix of the key. Each
internal node has children for each continuation of its
prefix that leads to one of the keys.

115

va(z) The number of ones in the binary representation of z.

wide bus A model of computation that assigns a cost of one to base
operations on blocks of bits of size logn.

word index An index that restricts query answers to start and end

on a word boundary, or, in the case of a suffix index,
an index that restricts query answers to start on a word
boundary.

worst case optimal A tree partitioning is worst case optimal if it minimizes
the maximum number of pages accessed when travelling
from the root to any leaf.

