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Abstract 

Given a text string S = s i a l s ~  .A,, ne want to preprocess S snch th& given a 

pattern P = p ~ ~ ~ - . . p , , , ,  we can find { i l ~ ~ . . a ~ * - ~  = P) as efficiently as possible. 

S& trees are a data structure solution to this problem. Unfortunately, when n 

is large, the storage reqnired by a satnx tree can be prohibitive. This thesis 

presents several related new representations for a dose relative of the s n f 6 r  tree, 

the PAT tree, that retain the fanctionabty of s n t a r  trees while reqniring a fraction 

of the storage used by m e n t  methods. 
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Chapter 1 

Introduction 

The electronic storage and retrieval of information in large bodies of text, such as 

genetic databases, newspaper archives, dictionaries, encydopedias and other 

reference works, requires the use of searching systems that are efficient both in 

t h e  and storage requirements. Because of their large size, s n f n x  trees[47], a 

standard text searching technique, have given way to other smaller bat less 

effective data structures such as s& arrays[35][22]. This thesis presents a new 

representation for a dose relative of the saffir tree, the PAT tree, that retains the 

functionality of a s n n i x  tree while reqairing a fraction of the storage used by 

current methods. We also present methods for managing this structure on 

secondary storage for static and dynamic documents. 

Overview 

This chapter gives a brief introduction to some of the concepts necessary to 

understanding the remahder of the thesis and the motivations for our work. The 
second chapter reviews and improves some earlier results of Jacobson[27][26] 
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required for our work and disauses some other applications of these results. The 

following tkee  chaptes present compact string searchïng indices fot severd 

classes of documents. In the conclusions, ne sammarize om results and discnss 

future no&. The appendk contains a glossary of t a m s  used in this thesis with 

short definitions and teferences to longer definitions ocearring in the text. The 

first signiricant occurrence of any tam dehed in the glossary d be printed in 

i t alics . 

1.2 Document Searching 

We consider three different classes of documents in this thesis: 

a static text in primary storage, mch as a static compression dictionary, 

0 static text on secondary storage, such as an encyclopedia, dictionary or 

other reference work, 

a dynamic text on secondary storage, such as dectronic news or a genetic 

database. 

Given a document, there are s e v d  types of queries that rnay be needed: 

search for a character seqaence, e.g. h d  all occurrences of "QU" in a paper, 

0 search for a word, e.g. find al1 occarrenees of the word "witch" in the works 

of Shakespeare; this may or may not exdade variations on the word such as 

witches or witching* 

seazch for a phrase, e.g. find dl occurrences of %om M. E." in a dictionary, 

a search for a reguiar expression, e.g. find aU occurrences of "C(CA)*CTn in a 

genetic database. 
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In each case, the query may require the exact locations of all the matches, the 

approximate locations of the matches or h p l y  a connt of the namber of 

occurrences of the pattern. An a p p r d a t e  location for a match might take the 

form of a range of charactex positions or, in the case of stmctnred documents, a 

logiea component of the document such as a chapter or paragraph that contains 

the match. When seaching stnictured documents, it may &O be desirable to 

restrict searching to parti& components of the document (e.g. h d  the string 

"compact" in a title). 

In order to answex these queries, we can either work directly on the input 

document using string searching aigorithms, or we can preprocess the text and 

b d d  an index that dows us to answer queries more qnidy. String seatching 

algorithms like those of Knnth, Moms and Pratt [30], Boyer and Moore[7] and 

other automata based methods can provide answers to the queries above in time 

linear in the document size. However, when the text is large and we expect 

multiple queries, it is often worthwhile bdding an index that allows faster 

searching than is possible with these algorithms. The index rnay restrict the type 

of queries that can be efficiently handled and the set of possible match points. A 

word indez reshicts matches to whole words, so a word index search for "the" 

would not retnni the occurrences inside "theirn ot uother." We ais0 use the term 

word index for a suf i  indcz, as expiained latex, where the matches are restricted 

to s t a r t  at the beginning of a word but where no restriction is placed on the end 

of the match. Indices capable of finding matches starting at any character are 

called churueter indices. Each possible match start in the text is ref ied  to as an 

indez point. The storage requirements of most text indices are proportional to the 

number of index points in the text so word iridices tend to be much s m a k  than 

charaetet indices. While the ratio of words to characters varies with the Ianguage, 

writing style, author, and enwding, we use the ratio of 1:s in this thesis based on 
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OUI experience with our test do~lll~lents.' Word indices may also exdude vexy 

common wotds like "and," "the," and "to," because they convey little information 

and the exclusion of these stop won& can signifieantly reduce the size of the 

index. Findly, various mappings may be pdormed on the text and q u q  prior to 

indexing and searching. Stemming is the removai of word saffixes, and occasionally 

pr$ixes, in an attempt to reduce a wotd to a canonical form. Stemming is used 

when the exact fotm of the word is not important. Stemming allows U w i t ~ g n  

and "witches" to match the word query "witch." Case conversion, the mapping of 

all characters to lower case, is used when the capitalization of the word in the text 

is not important. Fmaliy, the mapping of punetnation and other special 

characters, except those aitical to the encoding, to blanks is commoniy used 

during index bdding and searching. Case conversion and pmctuation removal 

are irrelevant to our work, however they are used for id the experimental resuits 

we quote. These assumptions are made to more closely approximate real wodd 

searching conditions. Stemming is not used because the structures considaed in 

this thesis are more appropriate when searching for atbitrary strings than when 

searching for words. While capable of efüciently answering word queries, these 

structures are more appropriate when searching for phrases as well as specialized 

applications w h a e  word smching is inappropriate, such as searching genetic 

information. Word searching is generally better handled by more speualized but 

limited structures such as those discussed in the next section. 

1.3 Searching Methods 

Several types of indices are knoum for aciently answering some of the queries 

above, including: 

'The actual average rraa neat 5.5 but the exact ratio b not aitical to our work 
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Inverted Word Lists[lô]: In an inverted word list, eaeh distinct wosd in the 

text is stosed in a secondsry sezuch structure with a list of di the 

o c ~ \ ~ ~ ~ e n c e s  of the word. Each occurrence may be a qeeific location or a 

more genaal location su& as a paragraph or section namber. Seatching is 

perfimned by looking up the words in the qaexy in the secondary structure 

and retiuning the associated word Est. kiverted word lists handle word 

queries very well. Phrase searching is handled thrmgh multiple word qnaies 

and t hen combining and filtering the results. Reguiar expression matching is 

not supported. While inverted word lists appear to require one pointer per 

index point, the actual index is fkequently much smder because repeated 

references to a single region of text are often not stored, dthough a count 

may be kept. Witten, Bell and NeviIle(491 report on a word list 

implementation which requires approximately 30% of the original text size. 

However, that implementation made such extensive use of data compression 

that pdormance problems became apparent. While it is possible that 

recent advances in processor speed make this approach feasible, a more 

reasonable ratio seems to be 50-7096 of the original text size for the index. 

Signature Files[l6] : A signature file is constructecl by first assigning a 

unique bit pattern, cded a signature, to each word in the entire document. 

Then the input document is broken up into smaIler pieces, such as 

patagraphs or sections, that we will refer to as sub-documents. A signatare 

for each sub-document is constmcted by bitwise «or"-hg the signatares for 

every nord in the sub-document.+ Given a query word or words, searching is 

performed by computing the signature for the query by "orn-ing the 

signatures for its components and then checkhg the set bits of the query's 

signature against the signatures of al1 the sabdocuments using a hear 

tHe.re we speak of the superimposed codiog variety of signatue files. Faloutsos aad 

Christodoulakis[l'l] diecuea thie and m e r d  0 t h  variants haoing simiiar properties. 
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scan. Any sub-document that has a set bit correspondhg to each set bit in 

the query's signatare is a good candidate for a match. Because the bit 

patterns of the words may overlap, some sub-documents may match aLi the 

set bits of the q u q  withottt containing the queqr words. For example, if ne 

assign the words %O," "be,' and "orn the signahues 010, 101 and 110 

respectively, then the signature for =to be" is 111 and wiU match the 

signature for "or" in its set bits withont contaihg the word 'or." These 

f&e r e d t s  are expected and must be filtered out by explicitly checking the 

query against each candidate sab-docament. A carefirl selection of 

signatares keeps the number of Calse resdts srnail. The main advantages of 

signature files are th& s m d  size relative to other indices and the ease of 

npdating the index to rdect  changes to the document. Faloutsos and 

Christodoulakis determined that the size of the signature file shodd be 

approximately 10% of that of the t&[l7]. Signature files effectiveiy hande 

word and phrase queries on moderatdy large documents but do not support 

regnlar expression searchiag. The liaear behaviour of signature files makes 

t hem less enedive for searching very large documents. 

S a  Iiees[471[36] and their derivatives are explained later in this chapter. 

This thesis concentrates on a spe&c instance of the last type of index because it 

is capable of efkiently answering all of the queries given above and others. 

1.4 Sample Documents 

For presenting empirical results on text searching structures, we use foar 

documents as test cases: 

Hoimes, an ASCII encoded extract fkom the works of Sir Arthur Conan 

Doyle, 
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1 Name 1 #Chmacters 1 #kidex Points 1 

1 Bible 1 5553621 1 1202504 1 
1 OED 1 545578702 1 108687644 ( 

- - - - - - - - 

Table 1.1: Sample Doctunents 

a Bible, an SGML[43] encoded version of the King James version of the Bible, 

a OED, an SGML encoded version of the Odord English Dictionary, Second 

Edition [39], 

a XIII, ASCII encoded genetic idormation, the nucleic acid seqnence for 

chromosone Xm from S. cerevisiae reported by the Sanoer Centre. 

In the first tkee cases we use word indices where word breaks occur at blanks, 

punctuation and SGML tags. The final document, Xm, is searched using a 

character index over the characters A,C,G and T. Various propesties of these 

documents are shown in Table 1.1. 

We h s t  cl* a few terms used in the remainder of the thesis. T h g h o u t ,  the 

logarithm to the base 2 of z is denoted lg z and the n a t d  logarithm is denoted 

ln 2. We use log z when the base of the logarithm is not crucial and can be taken 

to be any constant greater than 1. When the base is important, it wi l l  be placed 

in a subscript, as in log&). Ceiling, [zl , is the widlest integer greater than or 

equal to z and floor, [zj, is the latgest integer less than or equal to z. When 

discussing the representation of a ntunber in a base 0th- than ten, we place the 



value in parentheses and use a subsaipt to indïcate the base, as in 13 = (15)r. We 

wil l  $80 use Ive~son's convention for representing conditional expressions where 

[..] is one if the contents are mie, zero o t h d e ( s e e  Graham et d.[25]). 

When analysing the performance of our data strnctttres and algorithms we a9 

make use of order notation. Bridy, f is O(g) if there exist positive constants k 

and no such that f (B)  < kg(n) for all n > no. SimiIatly f is O(g) ifg is O(f), f is 

@(g) if f is 0 ( g )  and f is n(g) and 6ndy f is o(g) if l ia+,  # = O [25]. 

Whea reporting the sizes of objects in main memory or on secondary storage, we 

use the suffixes k,m, and g to denote multipliers of 210=1024, 220=1048576 and 

230=1073741824 respectively. 

The trees dealt with in this thesis fall into two categories: 

a finite, rooted, and ordesed general trew, and 

a &te rooted binary trees. 

A general tree T (ne omit the "finite, rooted" and "orderedn quaMers for the 

remainder of the thesis) is formdy defined as a non-empty, h i t e  set of nodes snch 

that there is one distingnished node d e d  the mot of the tree, and the remaining 

nodes are partitioned into rn 2 O disjoint snb-trees Tl, Tt, Ts...T, where the order 

of the sub-trees is signiscant[41]. Nodes having no sub-trees are called leavcs or 

ezternal nodw. Nodes with snb-trees are called intemol nodes. The degne of a 

node is the rider of sub-trees of the node.* The rmts of the sub-trees of a node 

are called the chddren of the node. Multiple nodes that are the chirdren of a 

f Some authors use the term "out-degmw for the number of nibtrres, rekning udegree* for 

the total number of edges incident on the node. 



common node are cded  siblings (the mots of Tl, T3, Ts and Tm are all siblings). 

Conversely, if a node has a chüd then it is r e f i  to as the pannt of the child 

node. We d&e the height of a node rectttsively, with leaf nodes having height one 

and interna1 nodes having a height one greater than the mrrimiim of the heights 

of th& children. The height of a node is the length of the longest path from the 

node to a I d  in its subtree. The height of a tree is the height of its mot. n e e s  

are fi:equently depicted pictoridy by plaeing the nodes in the plane and then 

&awhg Jines behreen nodes and their children. The connections betweens nodes 

and theh children are cded edgw in both the concrete diagram and the abstract 

tree definition. Figure 1.1 shows a drawing of a sample tree. All drawings of trees 

in this thesis place tree mots higher on the page than th& sab-trees. 

Figure 1.1: Sample Tkee 

When cornputhg with trees, we WU primarily be intaested in three operations: 

parent(n) given (a representation of) a node n, computes the representation of 

the parent of that node, and 

degree(n) given a node n, computes its degree, and 

child(n, i )  given a node n and an integer i retums the i'th ddd of n. 

A binary tree consists of a distingubhed node d e d  the mot. The root may have 

a left sub-tree and101 a right sub-tree each of which must itself be a binary tree. 

The important différence beheen a binary tree and a general tree where each 

node has a degree of at most two is that each sub-tree of a binary tree node is 



labelled left or rigbt - even if there h ody one of them. The general etee 

tetminology of degree, parent, a d ,  leaf and intanal node is &O used with 

binary trees. Figure 1.2 shows a drawing of a binary tree. In some portions of 

Figure 1.2: Sample Binary Tkee 

this thesis we wiU deal with a restricted form of binary tree in whïch every 

interna node has exactly two mb-trees. W e  eall such trees strictly binary trees. 

When working with binary trees, ne retain the parent and degree operations 

but replace the child operation nith tno operations: leftchild and rightchild. 

For both general and binary trees we may extend the definition to include a 

degenerate empty tree as consisting of no nodes. 

1.5.2 Machine Mode1 

We use the MBRAMmodel of computation allowing indirect addressing of 

memory and basic mathematical and bit-wise boolean operations. The MBRAM 

mode1 incorporates an accumnlator, an infinite set of memory registers each with 

a unique integer address and each capable of holding a value which may be 

interpreted as either an integer or a finite bit sequence, and a finite control 

containing a program made up of instructions fiom the following categories: 

flow contxol instructions incladhg conditional and unconditional branches, 
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O load/store instructions that trader data between the acmxnulator and the 

memory registas, 

O arithmetic and bitwiae boolean operstions that operate on the contents of 

the accxmdator and memory. 

The main distinguishing fmture of the RAM based models is the ability to 

pedorm indirect loads and stores. A memory laad (store) can 104 from (store to) 

a memosy register whose address is t aen  fiom a second regista. kiàirect memory 

operations allow the RAM to perform table loohip and pointer operations 

efficiently. The ability to pedorm rndtiplication, division and bitnise booleém 

operations sepatates the M B U  fiom the basic RAhd model. This description is 

based on that of van Emde Boas[l5]. 

To measare the performance of a program, we assign a cost to each instruction 

and defme the cost of the program as the sum of the costs of a l l  the instructions 

execnted by the program. AU of our analyses will be done using a unit oost 

approach where each instruction ha3 cost one as opposed to the logarithmic cost 

model where the cost of an instruction is based on the length of the opaands in 

bits. The use of a unit cost approaeh dows easier cornparison to existing work, 

but can resdt in mueasonable resdts if care is not taken (for fiuther information, 

see ils]). In order to avoid these problems, we WU enstue that at  no t h e  will any 

computation use integers greater than ne or bit sequences of length greater than 

clg n where n is a reasonable measure of the problem size and c is a small 

constant. Usually n is the d o m e n t  size but occasionally it wil l  be the number of 

nodes in a tree. Such a restriction dows us to obtain a bonnd on the logarithmic 

 COS^ simply by multiplying the unit wst by clg n. W e  u d l  rder to the MBRAM 

model using the mit cost approach as a Gmde b u s  modd to distinguish it 6om one 

whae bit operations are counted. 
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Table 1.2: S d i x e s  of abccubcaS 

Ofbet 

1 

1.6 Suffix Trees and Related Structures 

The structures presented in this section have been discussed, wïth minor 

variations, by several authors and hdeed have acquired several names in the 

process. In addition, some names have been nsed to refer to several distinct 

methods of searching. We wilI attempt to keep the taminology simple by choosing 

one name for each structure and refa only parenthetically to other names. 

Snffix 

a&cabca$ 

Given a text string S = slaasp ... a,, whae each 8 i  is a member of an alphabet C, 

we want to preprocess S such that given a pattern, P = piplps...p,,,(pi E C), the 

set { ~ I J ~ . . s ~ ~ - ~  = P) can be fomd as efiiciently as possible. By a m@z of S ne 

mean any substring of S ending in the final position, Le. r...s, for some value of i 

between one and n. In orda to ensure that each safnx occurs exactly once in the 
text, a special eharacter 9," not in C, is appended to S. The string 

S = a b b o o $  will be used for many of our examples. The suffixes of S are shown 

in Table 1.2. Each snt& bas a minimal prefix that distinguishes it from the other 

suffixes. This prefir appears in the thkd column of Table 1.2. If S did not end in 

0, the strings CU and a codd not uniqueiy identify the la& two s&es of S 

Unique Pr& 
abcc 
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becaase they ocear elsewhere in the string. In order to locate all occurrences of 

bc, it is snfficient to search for stlffiXes that start with that chzuacter sking. PVhile 

this search problem may not seem easier than the original problem, many existing 

structnres fm searching a set of keys can be used to solve it. We refa to any 

index that operates by searching the &es of the text as a sufi indez 

Given a set of unique string keys, a trie[20] is a search tree in which each leaf 

contains one of the strings and each edge has a single character label. A string 

occurs in the mb-tree rooted at a node if and only if the concatenation of the 

labels on the path from the mot to the node is a prefix of the string. Each 

interna1 node has cbildren for each continuation of its p r e h  that leads to one of 

the keys. Depending on the implementation, the construction continues uti l  

either there is only one key remaining or until the end of the key is reached. 

StructataIly, a hie is a general kee ahere each node has degree at most m, where 

rn is the size of the alphabet, and each edge ha3 a label drawn from C mch that 

no two edges below the same node share a label. 

Figure 1.3: S a  Tkie 

The sufi t~-ie[47](also c d e d  position tree, non-compact safn* tree and Fh'Rie) of 
S is a trie b d t  on the unique preiixes of the suffixes of S. The safnx trie for the 



example string is shown in Figure 1.3. Each leaf is labelled with the saffix offset. 

In the aaffix trie, the labels along any root-leaf path can be concatenated to 

obtain the Miqae identifier of the s d k  stored in the leaf. Similarly, the labels 

along any root-vertex path can be concatenated to farm a m e a l  prefir shared 

by the sufEixes of dl the leaves in the sub-tree rooted at the node. Using the snffix 

hie, it is possible to search for any pattern by travershg the trie until either the 

end of the pattern is encomterd or the search encounters a le& If the end of the 

pattern is encountered, any leaf in the sub-tree rooted at the last node visited is a 

match. If a lez& is encountered bdore the end of the pattern, then the remainder 

of the pattern mnst be checked against the appropriate &. The cost of 

performing this seasch is O(m + q) where nt is the size of the pattern and q is the 

size of the answer. The dependence of the search cost on the size of the answer 

can be avoided if we are p d t t e d  to r e t m  the mot of the sub-tree of answers 

instead of some 0th- representation of the answer set. By convention, the 

dependence on the answer size is omitted in the remainder of this thesis. In most 

cases, the conversion of the node to a list of s d h  offsets can be pedormed in 

linear time (the snfnr trie being a notable exception). 

While a su& trie allos~s O(m) searching, it can reqaire 8(n2) nodes: consida the 

su* trie for S = anb"anbn8 (for n = 3 the trie is shown in Figure 1.4). k 

general, this trie has (n + 1)* interna1 nodes so it is possible for snfnx tries to 

require Q(n2) space to index a string of size O(n) . 
S e  tees (&O cded compact saftir trees, preiù trees, snbword trees, position 

trees and Or'Ikies)[47][36], rednce the storage tequirementa by removing some or 

all of the degree one nodes in the s u f i ù  trie. For the example string, 

S = abcca&cuS, the snfFut tree obtained by merging all degree one nodes is shown 

in Figure 1.5. This structure ailows scient searching, O(m) tirne, and uses only 

O(n) storage if the node labels are stored as pointers into the t&. The fonn of 

snffix tree shown hae  is due to McCreight, while Weiner retained up to n degree 



Figure 1.4: 8(n2) S d h  'hie 

one nodes. Both Weiner and McCreight showed O(n) t h e  algorithms for the 

construction of thtir respective f o m  of the s e  tree. Another linear t h e  

constnidion aigorithm relating saffir tries and Directed Acydic Word Graphs 

(DAWGS), a data amichire briefly discussed lata, is presented by Chen and 

Seiferas [IO]. 

The h a 1  s n f n x  tree strnctnre considered here is obtained by asing the PATRICIA 

searching method of Morrison[38] to se& the sdixes. Given a set of unique 

string keys and a binary encoding of the letters in C U {S), a PATRICIA ttee is a 

search tree in which each leaf contains one of the shlngs and egch intemal node is 

labeiled with the position of a bit that distinguishes the keys in the left snb-tree 

fkom those in the nght sub-tree. We use the kat bit that is not identical in al l  the 

keys in a snb-tree to partition the keys into the left and right sub-trees. The use 

of PATRICIA for s d k  searching is impliut in Morrisons papa and is &O 

discussed by Knuth[29], Sedgenick[42] and Gomet et d.[22]. Following Gonnet et 

al., we use the term PAT tm for the PATRICIA tree applied to saffix searching. 



Using the encoding a = 00, b = 01, c = 10 and t = 11, the PAT tree for the 

example string is shown in Figure 1.6. 

Figure 1.6: PAT k, [k] is the node's bit o5et 

; hen AT tree is searched by generating the binaty encoding of the pattem and t 

traversing the tree. At each interna node, the bit offset is used to select a bit 

kom the pattern. Based on the bit value, the search continues with either the lefk 

or the right child of the node. Because the search can skip bits in the pattern, the 

termination of the search is more cornplex than that of simple s u f b  trees. If the 
search t d a t e s  at a leaf node, then the pattem must be compared to the le& 

su& to see if it matches. If the end of the pattern is encountered before a leaf, 

then a representative suf& fkom the current sub-tree mut  be chosen and 



compared to the pattern. The representative matches the pattem if and only if all 

of the &es in the sub-tree match the pattern. In practice, the offiet 

information stored in each node is a skip d u e  one less than the diffaence 

between the o 5 e t  value of the node end its parent (with an implicit parent ofbet 

of O for the root). The a c t d  offset is accamulated as the tree is traverseci. 

Because this stracture is central to this thesis, the pseudecode for searchïng it is 

shoum in Figare 1.7. Provided care is taken to ensate that Iocatiag a sample for 

node = root 
offset = O 
b i t  ,pat t ern = encode (pattern) 
bit,iength = bit-pattern1 
uhile (node is not a leaf and offset + node.skip <= bit-length) 

offset  = offset + node.skip + 1 
if bit-patternCoffset] is  set thea node = rightchild(node1 
else node = leftchild(node) 
endif 

end 
saiple = any sub-leaf of node 
if (pattern = SCsampïeJ) return node 
else return MOTFOUBD 
enàif 

Figure 1.7: PAT 'Eee Search 

compa,tison can be pedonned efficiently, the search cost of PAT trees is the same 

as that of s n f a x  trees, O(m). 

1.7 Properties of S& Tkees and PAT Trees 

Each PAT tree is a strictly binary tree in that each node has m t l y  zero or two 

children. In a stnctly binary h e e  the namber of leaves is exsctly one more than 
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the namber of intenid nodes, so a PAT tree has one fewer internal nodes than 

there are index points in the text. Note that there is an isomorphism between the 

strictly binary trees with 2n + 1 nodes and the binary trees on n nodes obtained 

by removing all the leaf nodes fiom the strictly bhsry tree. This isomorphism 

d o s  ns to represent the structure of a PAT tree more succinctly in the following 

chaptem. 

A second usehl property of PAT trees is the expected height of the tree. The 

technical report of Sapankowski[46] contains many r d t s  on the expected case 

behaviour of tries and saffix trees. We use his notation for the remainder of this 

section. Szpankowski shows that, snbject to some apparently reasonable 

conditions on the text, the height of a snfnr tree on a text of length n, H,, satisfies 
msrP X," h,+, 2 = & almost sumly, nhere h3 = - linin-+, ) is a parameter of n 

the model that generated the text. Ln this expression, P ( X î )  is the probabilie of 

a particnlar charaetet sequence of length n occnrrsig and the maximum is talcen 

over all such strings. The criteria for this resdt to hold essentially state that: 

1. The sequence of characters in the under1ying string is drawn using a 

stationary ergodic model under whieh a character's probability distribution 

can depend on the previous characters. 

2. No sequence of characters fidy implies any following character. 

3. The influence of any given character sequence on the probability 

distributions of characters occurring later in the string decreases rapidly 

with the distance between the h o  sets of chsrafters (strong d g  

condition). 

While vritten text is not random, the conditions above constitute a realistic 

model for reasoning about the behaviom of documents. In order to apply this 

result to PAT trees we m u t  replace chatacter sequences by bit sequences. 



Provided we use an &cient encodùig of the alphabet the conditions on the 

character strings imply similar conditions on the bit strings so the same resdt wiîl  

hold for PAT trees. The ef'âcient coding of the alphabet n9 a b  be required for 

compact storage of the PAT tree. 

Another parameter studied by SzpitILkowski is the expected height of a s& trie. 

This value is of interest to us because it is lineady reiated to the maximum ofbet 

occnrring in the PAT tree. He shows that the height of a safax trie rming H,, 

satisfies b,,+, : almost d y  where h c )  = - lim,+- "ex: P21X,") 
4 s ~  2n is 

another pumete r  of the mode1 generating the t e .  These h o  resdts wil l  be 

used thronghout this thesis to derive logarithmic boands on many propaties of 

our structures. 

1.8 Storage Requirement s 

Cornputer representations of satnr based structures reqnire the use of pointers 

and text offsets. For the purposes of cornparison, it  is usehl to assume that each 

of these reqaire lg n bits. Manber and Myers performed an analysis of various 

possible representations of snfnx trees and determined that approximately 17 

bytes per index point were used in the most compact representations[35]. Under 

the assumption that th& system was capable of handling documents of at most 

P2 charaeters, 17 bytes equates to 4.25 lg n for the texts mnsidered in their 

report. This t e d t  agrees with the "4x1 to 5n words" reported by Gonnet et a1.[22]. 

The use of PAT trees can d u c e  the storage requirements to approxhately 

2 + 31g n bits per index point if the obvious impkmentation of a node as two 

words, an integer skip, and bit flags indicating if the words contain pointers to 

other nodes or sntfix ofiets is used. On the OED, this implementation resdts in a 

word index roughly twice the size of the text - a s a f n x  tree wodd be tkee  times 
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the size. If dl the characters in a document are indexed, the siae of each of these 

indices wïll be increased by a fwtor of approximatly five as discussed earler. 

The storage costs of suf6x trees have long been a cause for concern. Several 

researchers have developed 0th- s d h  based stsuctnres that tradeoff the 

searching abilities of stiffix trees against their storage costa. These inchde, 

r Sufi Amy435][22]: Due to the large storage requkements of saffix trees 

Manba and Myers and Gomet et al. independently developed the s a f n x  

array (Gonnet et  al. used the term PAT -y) structure. The s a f a t  array 

structure is simply the list of stiffix o5ets sorted by the Iexicographic 

ordering of the safnxes to which they sefer. The & array for the example 

ushg a binary search requiring O(m lg n) t h e  because each cornparison can 

s&g is: 

reqaire O(m) chatacter compasisons. Manber and Myers, however, give a 

secondary structure that can boost the searchhg speed to O(m + Ig n). 

Both Manber and Myas and Gonnet et ai. have found it necessary to add 

an a d a r y  structure to the base sntax array to speed searchîng on 

secondary storage[35] [45]. These aaaliary stnictures range in size &om 25% 

to 100% of the size of the s n t n x  array. Barbosa et d [ 5 ]  investigated 

. In practice, saffix arrays are searched 5 

methods to speed searching on secondary storage by modifying the pivot 

element(s) chosen dnring the binary search to redace the time taken to 

1 

p d o m  the disk accesses. 

Directed Acyclic Word Graphs (DAWGs): DAWGs aze obtained by merging 

edge isomorphic sub-trees in a snfn trie[lO]. The number of nodes in the 

DAWG is linear in the size of the text. m e  DAWGs can detect the 

ocamence of phrases in a document, they cannot determine the locations of 

the occurrences or associate any data with each occurrence so they are not 

appropriate for most text searching applications. 

8 6 2 4 1 7 1 3 
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r Budceted Sofftr Trees[4]: A bncketed tree dows mdtip1e s n f n x  offsets to 

occur in each leaf. Searching is pdormed by using the txee to detamine the 

bucket and then using brute force or bliary search within the bnclrets. The 

storage savinga and performance cost vary with the size of the backets but 

the storage cost is comparable to that of s d i x  arrays because the sntnx 

offsets are still stored. 

a Prefix B-Trees[G]: A Prefix B-Tree extracts common prefixes of keys and 

uses minimal separators of the keys to increase the branch factor of each 

node. Whde not developed for saffix searching, Pr& B-Tkees are a 

competitive approach to the problem. The SB-The, àiscnssed later, appears 

to subsume the P r e h  E n e e  for s d k  searching and so wii l  be nsed for any 

cornpsrisons. 

a PaTnes[441,[37]: PaTries are s i .  in approach to the structures presented 

here but, because of the lack of an &cient tree encoding and the use of a 

non-op timal partitioning scheme, are tinlikely to be competitive on eit her 

processor time or secondary storage accesses. 

LG'Ees[2]: By s t o ~ g  a compressed trie in main memory, Andersson and 

Nhon produce a compact pre-index for a safn* array on secondary storage. 

The method is nnli%ely to scale well to very large text but codd be appiied 

recnrsively to improve performance. Such a recursive application wodd have 

much in common with the PaEe. 

SB-Ths[l9]: Essentially a B-tree on the suffixes where each node in the 

B-tree node contains a PATRICIA twe that distinguishes the keys in that 

node. Whiie the storage requirements of the SB-tree are subject to many 

performance tiadeoffs, the use of a compact tree representation ~ O W B  

implementations requiring fkom 3 to 12.3 bytes pet node for documents of 
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ap to P" characteni. The smalEa representak inam performance 

penalties to achieve th& smail size. Direct cornparison of the SB-tree to our 

structure is d S d t  because of the many space-tune tradeofh, honever an 

empmcal study is being considered and wiU be reported on later. 

The remainda of this thesis ptesents s e v d  compact representations for PAT 
trees 1116th storage reqnirements comparable to the strncttms above but offering 

greater efficiency or fnnetionality. Our interest in these straetares was initially 

motiwted by the problem of efficiently searching text on CD-ROM. Due to the 

high performance penalties inmed  when using s a f n x  anays on these devices, n e  

started searchg fot alternative methods of searching text. During the 

investigation it became clear that the primary motivation for s n f n x  arrays was the 

high storage cost for s a f f i x  trees. This lead to an investigation of s a f n x  tree 

representations and hence to compact PAT trees. 



Chapter 2 

Compact Trees and Tries 

Li this chapter, we present techniques for constmcting traversable compact 

representations of trees and hies. We fist review some tree representations fiom 

Guy Jacobson's thesis and then extend these methods to the MBRAM model of 

computation. We also show how these methods can be used to constract a 

compact traversable representation for tries. Finally, we present a second compact 

traversable representation for binary trees that is again based on earliet work by 

Jacobson but with improved space efFiciency. 

Jacobson[27] [26] presents several compact reptesentations of binary trees and 

unlabelled genaal trees with efiicient, in tezms of bit accesses, implementations 

for the selection of the parent and children of a node. We first te* two such 

representations and then extend Jambson's results to the wide bus model of 

computation we are using. Using these tools we develop a new representation for 

tries by constructing a tepresentation for trees with edge labels and efliuent 

selection of an edge based on its label. This last resdt is based on simple hashing 

so the performance daims are probabilistic, althoagh low fin ratios make 

seasonable performance likely. Finally we present an improved version of another 

of Jacobson's encodings. These representations wi l l  be used in the foilowing 
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chapters to represent the tree structure of a PAT t ree  

We are interested in compact representations of various types of trees and tries 

that d o w  common tree traversal operations to opaate dkectly on the compact 

form of the tree. The operations we aill be interested in indude: 

selecting the lefk or right child of a binsyy tree or selecting one of the 

chilcires of a node in a genaal tree based on ordinal number, or, in the case 

of a trie, edge label, 

O loeating the patent of a node, 

determinhg the size of the snb-tree rooted at a node. 

In each case, we reqaire that the operations be perfomed in a constant number of 

operations on lgn size objects so they will  operate in constant t h e  on the 

MBRAM modd. For the purposes of th& chapter, we let n represent the number 

of nodes in the trees being discussed instead of a document size. Jacobsen's 

thesis[27] presents h o  different methods of efnciently representing and traversing 

trees: rank/select directories and a recursive encodùig for binary trees. 

2.1 Rank/Select Representat ions 

Jacobson[27] [26] deiines two new operations, ronk and select, on bit-maps that can 

be efficiently implemented and are aucial in manipulating his compact bit map 

representations of treea and other structures. The operations are defined as: 

rank(z) compotes the ntunber of ones preceding (to the lef't of) and 

induding the bit in position 2, 

select (2) cornputes the position of the z'th one in the bit map. 
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Note that rank(select(z)) = z and sdect(rank(z)) = z if the z'th bit is a one. 

Ais0 define r d 0  and select0 as pedorming the analogous operatiomi of 

counting or Bnding zezoes instead of ones. 

The numba of binary trees on n vertices is denoted Cm and called the n'th 

Catalan number, C .  = & (2) [41]. A compact enwding of a binary tree 

structure should require about Ig C, bits. Using Stirling's approximation to the 

logarithm of the faetorial hct ion,  Ig C, can be shown to be approximately 2n 

(see Section 2.3 for a fi& derivation). The sarvey papers of M&inen[34] and 

Katajainen and Mi&hen[28] present many techniques for representing binary 

trees that attain the 2n bound, however none provide the functionality required. 

For representing binary trees, Jacobson starts with a level order b i n q  tree 

encoding. Consider the tree in Figure 2.1. To form the level order encoding first 

Figure 2.1: Sample Binary 'Ree 

extend the tree by adding new le& nodes below each leaf or non-fidi internal node 

in the original tree. Then assign a 1 to each node that exists in the originat tree 

and a O to each 1 4  in the extended tme, as in Figare 2.2. Note that the extended 

tree is a stnctly binary tree in that $1 intemal nodes have degree tao. The level 

order encoding of the tree is aeated by p e r f o h g  a level order traversal of the 

extended tree and recording the labels on the nodes encotmtered. The level order 

encoding of the tree in Figure 2.1 is 
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Fignre 2.2: Labelled Extended ltee 

where the node numbers appear below th& position in the encoding. The bits 

comprising the encoding are broken into segments of five solely for ease of reading. 

This encodiag ocears in the construction of Zab' sequences[50] and was also 

studied by Lee et d.[31]. This level order encoding requires 2n + 1 bits to 

represent a tree on n nodes, so it  is neatsptimal, but it does not appear to 

support the efficient location of the parent or children of a node. Jacobson noted 

that using the rank() and select() operations, the parent and &Id operations 

can be compated as 

where each function 

or parent. If the bit 

takes the offset of the node and returns the offset of the child 

at the offset returned by the chiid operations is zero, then l 

that diild is not present in the tree. As an example, node 4 is located at offset 4, 

so its right child is at o s e t  9 = 2 * 4 + 1. Similarly, the parent of the node at 

offset 13, node 9, is at selact(6 = 191 ) = 7 which is the o f k t  of node 6. 

Formulas similar to the eqnations above occm in the implicit representation of 
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complete binary trees used by Williams in Heapsort[48] where the special form of 

the tree reduces r a d  and seleet to identiiy functions. 

2.1.2 General 'Ikees 

Figure 2.3: Sample General The 

The representation of general trees, such as the one in Figure 2.3, provides 

another use for rank() and select(). By observing the ad known isomorphsm 

with the binary trees obtained by mapping a node's first child to its left child and 

its right sibling to its right drüd, one can determine that there are C, su& trees 

on n nodes and so 2n bits are again d c i e n t .  However, using this isomorphism to 

represent such trees results in a sequential scan of the children of a node in orda 

to locate the encoding of a partidar child. htead, Jacobson uses an encoding 

fiom Read[40] that is again based on a level order traversal of the nodes. The 

encoding is obtained by labelling each node with the unary eneoding of its ehild 

count using ones for the count and a zero for the terminator. In order to represent 

the empty tree, an extra ''super-rootn is added above the real r m t  of the tree. 

Figure 2.4 shows the tree from Figure 2.3 using this encoding. Again generate the 

Figure 2.4: Unary Labelling of Sample 'hee 
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bit representation for the tree using a level order traversal of the tree. The bit 

string for Figure 2.4 b 

Note that each node has one '1' bit, found in its parent's label, and one 'O' bit, 

terminaking its label, associated with it plus an extra '0' bit for the saper-root so 

2n + 1 bits are used in encoding. 

Again, efficient implementations of the traversa operations are not obvions with 

this representation, but Jacobson shows that the rank() and select() operations 

can be used to implement these operations. In this case, if ne represent a node by 

the offset of the corresponding one bit in the parent's label, then: 

degree(z) = selectO(rank(z) + 1) - selectO(rank(z)) - 1 

chüd(x,i) = selectO(rank(z)) +i  

parent (z) = select(rankO(z)) 

where children are nnmbaed starting hom 1. For convenience, we refa to the 

rank of the set bit representing a node as the rank of the node for both general 

and binary level order encoded trees. This convention allows us to associate a 

unique integer in range l..n with each node. Li Figures 2.1 and 2.3, a node's label 

is equal to its tank. 

2.2 Implementing Rank and Select 

Jacobson[27][26] presented implementations of rank() and select () that are 

&dent in terms of the numba of bits accessed. Howeva, his implementation of 

select() requires non-constant time when rnn under the MBRAM mode1 of 
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compntation. In this section ne review Jacobson's implementation of rank(), 

which rans in constant tirne on an MBRAM, and present a new implementation 

of select() that nuis in constant t h e  on an MBRAM. 

2.2.1 Jacobson's Rank Implementation 

Given a string of n bits, Jacobson constmcts a twdevel a d a r y  directory 

structure dowing constant time computation of the r d  frinction The fist  

a d a r y  directory contains rank(i) for every i a multiple of pg nl 2.* A second 

a d a r y  directory contains rankf(j) for j a maltiple of [Ig nl within each 

snbrange where r a d  compntes the tank within the subranges of size pg n12. 

Theorem 2.1 (Jacobson) Rank can be p e ~ f o m e d  on an MBRAM in constant 

time wing + O(&) bits of eztra space. 

Proofi rank(z) is calculated by locating the correct first a d a r y  directory 

entry, at position ,,+j, and the correct second level entry, st position [*J . 
Adding these tao values gives the rank of the first bit in a pg al shed range. The 

final component of rank(z) could be computed by scanning x mod rlgn] bits in 

the bit string. Using table loohip, howeves, this scan can be perfomed in 

constant tirne. We simply retain a table which for each possible bit pattern of 

length C, for some integer c > 1 (e = 2 d c e s ) ,  gives the nnmber of 1's in the 

pattern. After masking out unwanted trailing bits, our final term is found by 

adding at most c entries in the table. These are approximateiy ni entries in this 

table. 

Each of the IT*l en& in the first a d a t y  dkectory req&es [lg n] bits. 

Each of the ( & 1 entries in the second level auxiüary directories requires 

Jacobmn actually uses in n lg n. 
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2 [lg al 1 bits because they contain values lem thaa Ilg n] '. The total storage 

reqnirement, ignoting floars and ceilinga, for these directories is 6 + W. The 
final table reqtlires feaer than [dl k krill bits. Hace  the storage required in 

addition to the onginai bit map is + O ( g ) .  8ED 

2.2.2 Implementation of Select on an MBRAM 

WhJe Jacmbeon's ranlsing hc t ion  operates in constant time on a MBRAM, his 

irnpiementation of select() reqnires 8 (log log n) time because it includes a binary 

search on a region of 1g2 n bits. Li this section, ne present a new solution that 

operates in constant time under a wide bus model. As in the rank case, ne use a 

mdti-level a d a r y  ditectory structure and 6nd that the final case can be 

sc-ed nsing a constant number of table loohps. Our goal is to use O (e) 
extra bits to store the a d a r y  directory structure. In order to achieve this goal, 

we will ensure that for the ranges of length r in the anxiliary directory shctares 

we will  use bits of storage. This condition also d o m  as to index into 

these directories to locate the appropriate bit sequences for each range. 

Theorem 2.2 Select con be pegorned on an MBRAM in constant time using 

+ O(nhgnlglgn) bits of atm spote. 

Pioof: We use three le& of anxiliary directory stnictnres to compute select. 

The fust a d a r y  directory records the position of every [lg n] [lg lg nl'th one 

bit. This &tory requires *l bitcl for each en- and hm [hn,i&irnT1 entries 

so at most bits are used. Let r be the siae of a mbrange between two 

values in the first atlltiliary dwctory and consida the sab-diteetory for this range. 

Note that during traversa1 operations t is eady compated and does not need to 

be stored explicitly. W e  are rrilling to spend bits on this range in the 

second levei of directories. As with the infaence of the value T ,  we can also iafa 
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the location of this blodr of bits. To expIicitly record the p g n ]  pg lg nl possible 

ansaair in that range regaires k n12 Tig lg nl bits. If 

and we have 

If ins tead 

snfficient storage to explicitly record the answers. 

we te-subaivide the range and record the position, relative to the start of the 

range, of each pg r] [lg lg nl 'th one bit in the second level a d a r y  directory. 

Each entry requires lg T bits and there are at most [-ml atnes so again 

this takes at most bits. 

Let r' be the size of a snbrange between values in the second level aaxiliary 

directory. To q l ic i t ly  record the relative positions of all  the possible answers 

requires k r'l k rl [lg lg nl bits. If 

so there is suffiCient space to record all the answers in a t k d  levei of auxiliary 

direct ories . 
In the ha1 case we have 

T' < hr' l  k r l  hlgn12.  

Rom equation 2.1 we ob tain 

l g r  < 2(Ig(knl) +ldrlgIgnl)) 
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so lg T < 4 [lg lg nl by observing that lg lg nl c lg pg nl and 

lg Pgnl klgnl . In addition we know T' < r so lgr' < Ig t and equation 2.2 

implies r' < 16 k lg n14. Becanse (lg lg n)4 is asymptoticaily smaller than Ig n we 

know that we can perform select on a range of pgIg ni4 bits using a constant 

nnmba of operations on regions of size îIg nl bits. Computing select on a small 

range of bits is again performed nsing table lwkup. Again let e be an integer 

greater than one. For each possible bit pattern of length and each value i in 

the range 1.. we record the position of the i'th one in the bit pattern and, in a 

separate table, the number of ones in the bit pattern. To compute select on a 

small range we scan the range using the second table until we know which 

subrange contains the answer and use the f i .& table to compnte the answer. At 

most a constant number of subranges can be considered. 

Select(k) is performed by locating the pair of k s t  a d a r y  directory entries 

bracketing the desired value starting at .* [lg n] and fkom these 

computing r.  If r 2 (pg nl pglg nl)2 the storage in the second level a d a r y  

dkectoty is treated as an amay and the correct answer is read off from the correct 

entry. OthatRise a similar search is perfomed in the second level a d a r y  

dkectory resulting in either a scan of a smaü number of bits or reading the answer 

from the third level atuiliary directory and then summing the resnlts h m  ail the 

levels. The c r i t i d  point is that we know where the appropriate directory bits at 

each level are located and how to intetpret them based on the value of k and the 

preceding directory levels. The storage used for the auxiliary directories b ary& 
and the storage used for the lookup tables is nt (:lgnlglgn + Iglg n) so the 

extra storage for auxiliary directories is eT' + O(R 5 lg n lg lg n) which matches 

the statement of the theorem given c is at Least 2. Qm 
This shows that select() can be implemented in constant t h e  under a aide bus 

mode1 using asymptotidy negligible storage. 
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Theorem 2.3 A binary tme on n nodes can be npresented in 2n + o(n) bits and 

support parent, Ieftchild and rightdiüd operations in constant t h e  on an 

MBRAM. Similarly, a g e n e d  tree on'n nodur c m  6e mpnsented in 2n + o(n) bits 

and support the M d ,  parent and degree o p e d o r u  in constant tirne on an 

MBRAM. 

Proof: Using Jacobsen's rank and our select dgectory strncttues on the level 

order encodings fkom Sections 2.1.1 and 2.1.2, the resuit follovs. &&p 

While asyrnptotically small, the extra storage required by the rank and select 

directories is signaCcant when considering hees of a size comparable to modern 

cornputer mernories. For n = 216, the extra storage required by the a d a r y  

directories is slightly larger than the bit rnaps. Howew, the size of the directories 

can be reduced by storing less fiequent sarnples in the directories and perfolpung 

larger linear scans. These reductions are necessary in the next section. 

The rank/select based operations on the level order encodings of binary and 

general trees do not appear to directly support the inclusion of fixed sized fields of 

different sizes in the leaves and intemai nodes of the trees. Such fields are 

required in many applications, including the tries covered in the next section. h 

an application whae both leaves and intemal nodes reqnke fields and these fields 

are approximatdy the same size, we can store the field values in a separate array 

indexed by the rank of the corresponding node. However, when the field sizes for 

the two dasses of nodes are not eqnal, this method may waste too mnch storage 

to be prsctid. In order to solve this problem, we associate a separate bit vector, 

indexed by the ranks of the nodes, that distinguishes internal nodes &om leaves 

using a one bit for a leaf and a zero bit for an internal node. Using the rank() 

fnnction on this bit vector we can map any leaf to a nnmba in the range l..L, 

where L is the nnmber of leaves, and then store the leaf data in a separate array. 

rankO() can be used to pdorm the andogous task for internal nodes. This adds 
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n + o(n) bits or about one bit per node to the total storage requjrernents. 

2.3 Compact Tries 

Now we consider the compact implementation of a trie. The ptimary dineremes 

between a general tree and a trie are: 

0 the addition of edge lab& in the range 1.. .m such that no two edges &om 

a node have the same label (this &O places a b o ~ d  of m on the degree of a 

node but this bound is not significant to us), and 

a new operation triechiid(z, i) that returns the M d  of z with the label i 

(as opposed to child which retntns the i'th child). 

As with binary trees, we first determine the asymptotic numba of bits needed to 

represent a trie. 

Theorem 2.4 The number of bits repuind to represent an order rn trie on n 

nodes iP ut least, asymptoticdly in n, 

n(m1grn- (m-  l)lg(rn-1)) +O(logn).  (2.3) 

Proof: The nwnber of order m tries on n nodes satisfies the recurrence relation: 

The nwnbers C((n) are d e d  the hs-Catalan numbers and c m  be shown to 

eqnal -& (y') (cf. [25]). For m = 2 the superscript is omitted and we obtah 

the Catalan numbers of Section 2.1.1. To determine the minimum number of bits 
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needed to represent a trie, we need to cornpute lg c$'"". Convert the binomial to 

factorias, simpiify some ~ ~ I I R S ,  and expand the 1ogarith.m to obtain: 

k((mn)!) - ig(n!) - ig((mn - n)!) - Ig(mn - a + 1). (2.4) 

Stirling's approxjmation to In(%!) is z ln z - z - 9 + a + O (i) [25]. Substituthg 

this approximation into formula 2.4, dropping low order terms (a and the order 

term), converting from ln to lg, and cancelling some terms n e  obtain: 

lg n Ig (mn - rnn lg(mn) - lg(mn) -n Ig n+--(m-~)nIg((m-~)n)+ 
2 2 2 

n, -ig(mn-n+i). 

In order to determine the namba of bits needed asymptotieany in n, we place any 

terms not at least lin- in n in an orda term. After erpanding the logs and 

cancelling tao mnlg n terms of opposite sign, we obtain: 

n (mlgm - (rn - 1)lg (m - 1)) + O(1ogn). 

Note that binary ttees are the same as 2-ary tries, so, for m = 2, this resuit 

c o n h m  oat previous goal of 2n bits per node for binary trees. To obtain the 

asyrnptotic nnmber of bits requked for genaal rn, rewrite formula 2.3 as: 

As m + oo the second log term approaches Ig e so the nomber of bits reqnired to 

represent a trie is approximately lg m + Ig e bits p a  node where Ig e m 1.44. We 

will not actudy attain this goal but WU be satisfied with Ig m + c bits per node 

in the trie provided c is smd. As bdore we want to obtain traversai operations in 

constant time on an MBRAM. Howeva, we wiU have to be setisfted with an 

expected constant cost instead of a deterministic one. 

Our apptoach to representing a trie compactly builds on the previons structure 

for genersl kees and adds edge labels and hash tables for rapidly locating a 
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labded child. By nsing the rank() fanction, the fill ratio of the hash tables can 

be kept near 50% withoat dding greatly to the storage reqnirements. In addition 

to the above reqnirements, in a typical application each leaf of a hie is labelled 

with a data elexnent so, as dismsed in the previotts section, we reqnire one more 

ranked bit map to rnap leaves to data elements. This structure adds about one bit 

per node to the storage cost. 

Recall fiom Section 2.1.2 that, in the general tree encoding, a node is represented 

by the position of the comespondùig one in its parent node's label. This 

convention dows ns to number the nodes during a level order traversal of the tree 

and obtain each node's n u b e r  using the rank() fnnction. We move the edge 

labels to th& destination node and place the labels in a simple arrsy indexed 

fkom 1 to n. The label for a node can then be obtained using rank. The 

remaining step is to provide a mapping fiom the node labels to the ordinal 

number of a ehild. We could simply order the children of a node according to 

their label value and use a binary search to obtain logarithmic t h e  traversal 

operations. In order to obtain constant t h e  operations we resenre 2 bits per child 

in each node of the trie and use them to store a hash table. 

The 2k bits available for a hash table for k children aill be split into tao pieces: a 

bit map and a ranking directory for the bit map. Each child will be inaerted into 

the hash table using a hash value based on its label and the hash table size. We 

do aot concern otirselves with the exact hash fanctions used or the details of the 

collision resolntion strategy. The hash table is stored in the bit map with a one 

bit representing a fidl dot and a zero bit representing an empty slot. The children 

of a node are sorted according to th& final position in the hash table. Using the 

rank() h c t i o n  on a hash table position we can obtain the ordinal number of the 

chiid. Another use of rank() on the main tree representation obtains the node 

numba of the child and its label. If ne let tc  be the nnmba of bits cegnwd to 

b d d  a ranking directory on a k bit bitmap then the 6ll ratio of the hash table is 
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- By modifying the rank constniction we can stiil obtain constant time but 
2k-th 

ensure that t i  < 3. The modifications needed reduce the nnmba of samples 

stored in the directories and use Mer hear scans. With this change, the hash 

tables are at  m a t  fidi and for large k the fill ratio appsoaches f becanse t k  is 

o(k). This ensures ve can search the hash table in constant expected time[23]. 

Because we reserve eractly 2 bits per ehild we can store $1 the hash tables in a 

separate bit map with each node's hash table starting at ofiet 

2 rank(child(z, 1)). The degree() operation caa be ased to compate the size of 

the hash table and hence the correct hash hct ion.  

Theorern 2.5 A stutic trie on an alphabet of sue rn with n nodes con be 

represented in Ig m + 4 + o(1) bits  per node and protide the parent opemtion in 

constant time and the triecbild operation in constant ezpected time. 

Proof: The storage reqnired for the underlying tree representation is 272 + o(n) 

bits. The node labels require n lg m bits and the hash tables reqnire 2n bits. 

Summing up, the total storage used ia lg m + 4 + o(1) bits per node. 8m 

While higher than the previously obtained optimum, it is within our goal of 

lg m + c. The patent operation is nnchanged from the general tree and so operates 

in constant time. The triechild operation reqFlires a search t h g h  a hash table 

where each step in the se& requires a constant amber of tank and select 

operations. The expected number of steps is constant so the overall running time 

is constant. 

It is worth noting that if rn is very sman relative to n, specificdy mlg rn 2 clg n 
for some s m d  constant c, then we do not need the hash tables and can obtain 

constant time operations while eaving two bits pet node. For such m and n, we 

can scan the labels for ail of a node's children in a constant number of word 

operations. For example, for each value i in l..m we can have table, l q ,  of all bit 
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( Bible 1 120250s 1 4187104 1 9175535 1 

Name 

Holmes 

patterns of length 9 that gives the location of any aligned occurrence of i in the 

bit pattem. Using these tables, ne can seiuch for a parti& child using 2c table 

lookups. In practice, the application of some simple bitmise boolean and 

arithmetic operations ean replace the table loohips. The packing of mdtiple 

values in a single word and then using nord operations to perform pivalle1 

computations on the oigina valaes is called Uwotd-size paratlelism" and is farther 

discussed by Brodnik[8]. 

The only comparably compact representation for a trie that we are aware of is the 

Bonsai structure of Darragh et d.[13] which is stated to require f (6 + Ig rn) bits 

per node. It appeats, however, that the 6 hides some non-constant but slowly 

growing terms. The f factor is based on an 80% fnll hash table. For large n the 

structure developed here aiU be significantly smaller than the Bonsai structure. 

However, the Bonsai structure d o w s  a limited number of insertions, with a s m d  

probability of failme, and so a direct mmpasison is not r edy  meaningfd. 

#Index Points 

43743 

While we are not recommending the structure above for generd text seatching 

(our solution for that problem lies in the next chapter), we list the estimated 

index sizes for three of our test documents in Table 2.1. Using techniques similar 

to those developed in the next chapter, the trie representation here can also be 

used to develop a compact safnx tree representation for main memory. 

#Nodes 

95512 

Lndex Size (bytes) 

235726 
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2.4 Recursive Encoding: Binary Tkees Revisited 

The previous section intmduced an asymptotidy optimal aicoding for binary 

trees that provides leftchild, rightchild and parent operations. ln this section, we 

provide a slightly less space efficient encoding that provides the leftchild, 

nght~hild and sub-tree size operations. When working with PAT kees, the 

sub-tree size is the size of the query r e d t  and so is a u s a  unit cost operation, 

particularly when the search r e d t  is large. The new representatim is very 

similar to one also developed by Jacobson(271, dthough ours uses a more enicient 

prefix code to obtain a smaller representation. 

The tree encoding represents d tree as a bit string 

1 Header 1 Lelt Snb-tree Enmding 1 Right Sub-tree Encoding 1 

where the headet contains two fields: 

a a single bit indicating which of the two children has fewer nodes with an 

arbitrary choice made in the case of a tie, and, 

a pr& coded integer indicating the size of the smder child. 

To represent an integer i ,  we concatenate the Mary encoding of l lg( i  + 1) J with 

the binary encoding of i + 1. This consmicts a pmfi code such that no code value 

is a prefix of any 0th- code value and so we can, in a leR to right scan of the 

data, determine when we have the mmplete encoding of an integer. The fùst few 

code values are shown in Table 2.2. In order to ensure that the operations of 

locating the encodings of the Ieft and right sub-trees of a node can be efnüently 

implemented, each tree encoding is padded out to the length of the longest 

encoding of a tree of the same number of nodes. 



CHAPTER 2. COMPACT T m E S  AND TRIES 

Table 2.2: Iiiteger Pr& Code 

The integer prefix code reqnires 2 [1g(i + 2)l - 1 bits, so the size of the encoding 

of a tree on n vertices satisfies 

The initial values for the remence are based on the fact that we do not need to 

encode the structure of trees with zero or one nodes. The ability to solve this 

recmence is the primary requirement when ehoosing a p r e k  code for use in this 

type of tree encoding. We will see that the clased form solution to formula 2.5 is 

of the form B(n) = 3n - f (n) whae f (n) is O(lg n). Betore proving this dosed 

form, a few lemmas are needed. We use the notation (z)? to denote the base 2 

representation of z and q(x) to denote the number of ones in this representation. 

Lemma 2.1 For n > O and O 5 i n, v2(i + 1) + u2(n - i) = vr(n + 1) + k iohcre 

k is  the number of corriw thut occur when cdding i + 1 and n - i in base two. 

Proof: Each cany that occurs during the addition of ( i  + 1 ) ~  and (n - i)t 
requires h o  one bits and prodaces another. If k carries oc-, we have 

v2(i + 1) + q(n - i )  + k ones available and we requke exactly one bit for each one 
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in (n + l), and two for each c a r q  a0 

vr( i+I)  + q ( n - i )  + k =u2(n+ 1) +2k  

Lemma 2.2 I f  n k euen, r n i ~ r , ~ . . , , p - ~ y ( i  + 1) + u i ( s  - i )  + llg(n - i )  1 occws at 

i = O and so i s  1 +q(n)  + llg(n)J. 

Proof: This r d t  is a simple corollary of the previous lemma. Becaase n ia even 

there are no carries when adding 1 and n so i = O minimizes the first h o  t a m s .  

For n = 2& - 2, the lg term is constant over the range of i  values so i = O still the 

produces minimum total For other d u e s  of n ,  the Ig term takes on one of tao 

values over the cange of i: llg(n)j and llg(n)J - 1. However, those values of i 

resulting in the smaller value necessarily requke a carry when adding (i + 1)2 and 

(n - i)z so the s u m  of the first h o  terms inaeases by at least one and this 

inuease osets the saving in the Ig term. Qm 

i - l i f n = 2 j - l  

the number of trading 1 bits in the linary repnsentation of n othetr<Me 

and so is 2 + vt(n) + LlggnJ - k .  

Proof: First consider n = 2j  - 1. At least one carry must occot when adding 

(i + 1)2 and (n - i)t becanse representing n + 1 requires more bits than either of 

these two terms. Setting i = 2j-' - 1 resdts in exactly one cafiy and so 

minimizes the t i rst  two terms. [lg(n - i ) ]  is constant over the range of i d u e s  so 
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i = 2j-1 - 1 opthizes the k s t  three tennir. Selecting an even valne of i requires 

tao carries when adding (i + l)r and (n - i)a, one in the lemit significant bit and 

another in the most significant bit and so cannot lessen the total. Setting 

i = 2j-' - 1 in the s u m  and using the relationships v2(2i) = 1, 

v2(n + 1) = v2(n) - k + 1 and Llg(n - i )  J = LIg n J produces the nnal redt .  

Now consider the more general case, setting i = - 1 results in no c& and so 

mhhizes first two t a s .  As in the proof of Lemma 2.2 the lg t a m  takes on two 

successive values but choosing i dcient ly  large that the smaüer of the tao 

values oceant necessarily results in a c a q  that offsets the saving in the lg term. 

Finally, as with the fmt case, malring i even resuits in a carry in the low order bit 

that ofkets any savings in the last term. Setting i = 2' - 1 in the snm and using 

the same relationships that occaned in the fmt case yields the final total. QED 

We are non able to state and prove the closed form solution to formula 2.5. 

Thorem 2.6 B(n) = 3n + 2 - 2 Llg(n + 1)J - 2v2(n + 1) - [n i~ odd], ~ohere vi 

denotes the number of ones in the binary npresentation of its aqummt. 

Proofi Recall the remmence relation for B: 

B(n) = max B(i) + B(n - i  - 1) + 2 [lg(i + 2)l . 
i=O..L(n-l)/2J 

The proof proceeds by induction. The base cases, B(0) and B( l ) ,  satisfy the 

equation for B. Assnmuig the formula is correct for O..n - 1, the remmence 

relation gives: 

+2 - 2 llg(n - i )  J - 2u2(n - i )  - [n - i - 1 is odd] 
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-2 llg(n - i )  J - [i " odd] - [n - i - 1 is odd] . 

Consider even and odd values of n: 

If n is even, then if i is odd, n - i - 1 ia even and vice-versa so the k t  two 

terms in formula 2.6 always s u m  to minus one. Bring the -2 oatside the 

mmc and teplace the max with a min and sùnplify to obtaùi: 

Using Lemma 2.2, this simplifies to 

In this case, the ciosed form gives 

B(R) = 3n+2 -2v&+ 1)  - 2  lIg(n + l)J - [n is odd] 
= 3nf2-2(v2(n) + 1 )  -2LlgnJ 

= 3n - 2v2(n) - 2 llg gnJ . 

so the equations are equal. 

If n is odd, then n - i - 1 is odd iff i is odd so the last topo terms of formula 

2.6 become 2 [i is odd]. As befoie ne bring the -2 outside the max and 

replace the max with a min to correct the sign change to obtain: 

B(n) = 3n + 3 - 2 min ~ ( i  + 1) vt(n - i )  + Llg(a - i)J + [i is odd] -*.y 



CNAPTER 2. COMPACT TRJ3BS AND TRES 

where k is as defined in the lemma In both of the cases of Lemma 2.3, ne 

obtain v2(n) + llgn] = v2(n + 1) + [k(n + 1)J f & - 1. Using this formula, 

we obtain: 

Which is eqaal to the d o d  fom, given that n is odd. 

Table 2.3: B(n) 

R o m  the closed form equation, it is dear that B(n) < 3n so the total storage 

reqnirement for the binary tree information is Iess than three bits per node. Table 

2.3 shows the value of B for small n. Using this reptesentation, the tree strnctare 

for the tree in Figure 2.1 on page 25 is represented by the bit string 

100101011010101011. Figure 2.5 shows this tree aith eaeh sub-tree labded with 

its desaiption. 

The simple f o d a  for B(n) dows efficient implementation of the operations of 

fetching the left and right children of a node. The left child is found h e d i a t e l y  



CHAPTER 2- COMPACT TREES AND TRIES 

Figare 2.5: B e e  Encoding 

rightchild(node , size) = 

small,child = read bit at position node 

child-size = read prefix code at position node + 1 

chilchen = node+2*ceil(lg<child,1rize+2) ) 

if (small-child = ' 1 ') then 

raturn ( ch i ldren+B (child-size) ) , size-Éhild_size-1) 
else return ( ch i ldren+B (size-child-size-1) , child-size) 

end 

Figtue 2.6: Pseud+code for Rightchild 

following the p r e k  code of the integer giving the size of the smder tree and the 

right child can be found immediately a f k  the description of the leR child whose 

size can be computed based on the number of nodes in the left sab-kee which can 

in tum be computed given we hiow which sub-tree is srnaIIet, the ske of the 
s m d a  sab-tree and the ske of the overail tree. The pseud*code for the 

rightchild opaation is found in Figure 2.6. The psendcwode for l&child does not 

add B(le jtchildsize) to "childrenn and reverses the cases of the if statement. 

Each of these operations reqake and retarn both the location of the node ia the 

bit stream and the size of the snb-tree rooted at the node. 

A n a t d  question to a& is '%an ne change this encoding to obtain 2n bits pet 

node?" In his thesis, Jacobson investigates the use of optima pr& codes for this 

application and detamines that while it is theoreticdy possible to obtain a 
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bound of lesa than 2.5 bits per node asing more compact prefix codes, this 

approach has a lowez bound of about 2.3 bits pet node. We &O want to mention 

that some slight improvements can be made by inaeasing the nnmber of base 

cases in fomnla 2.5. If, for example, we add the conditions B(2) = 1, B(3) = 3 

and B(4) = 4 (ushg B(n) = Ilg C,]) to the remmence then B(n) is reduced by 

[y]. This change reduces the asymptotic requisement to 2.75 bits per node. 

Further inmemes in the namber of base cases appear to rredae the requirements 

fnrther althongh we have yet to determine a dosecl form for these cases. 

In this diapter we have provided some extensions and improvements to the resdts 

presented by Jacobson[27] [26] that will be usefal in our PAT representation as 

well as other tree based structures. We have also provided fiutber demonstration 

of the u s ~ e s s  of r a d  and seleet by using the- to construct a representation 

for static tries reqairing Igm + 4 + o(1) bits per node. 



Chapter 3 

Static Text on Primary Storage 

In this chapter, we combine the compact tree representations of Chapter 2 with 

compact representations of the skip values and s a f n x  offsets to produce a 

representation for the PAT tree that is little larges than the representation of a 

s u f i  array. Finally, we present some empmcal resdts showing the efFectiveness of 

the new s truct me. 

The information stored in the PAT tree can be broken into three categones: 

the tree structure, 

the skip values, 

the suffix ofkets in the leaves. 

By efficiently storing each dass of information, Compact PAT lkees (CPTs) 

match the storage effi&ncy of otha s n f a l  based seatch structures while retaining 

the functionality of PAT tree~. 



CHAPTER 3. STATIC TEXT ON PRIMARY STORAGE 

3.1 Choosing a Tree Representation 

In order to implement the tree operations for PAT kees, the encoding of the tree 

structure must provide the following fnnctionality: 

efficient seiection of the l& and nght dllldren of a node, 

0 support for the inclusion of constant sïze fields for each interna1 node, the 

skip, and another constant size field for each leaf, the s n t n x  offiet. Given a 

node or led, ne must be able to &cientLy determine the field values. 

In each case, we reqaire that the operations be pdormed in a constant number of 

operations on lg n size objects so they nill operate in constant t h e  on the 
MBRAM modd. h addition, the followhg tluee operations are usefil in some 

cases but are nok critical to our work: 

O given a node, locate its parent, 

O giVM a node, efficiently retrieve the su& offiet field information tkom some 

leaf descended fiom the node, 

O given a node, determine the size of the sub-tree rooted at the node. 

The parent operation is not used during the PAT tree search traversal but can be 

used to conserve memory daring npdate operations. The efficient retried of the 

s& information fiom a subtree is nsed dnring the final step of the search 

procedure and m u t  be performed efficiently. If necessary, we cap aord to 

traverse the tree downwzud until we hit a leai and then retrieve its sufEx 

idormation. Given the &ost sure expected logarithmic depth of the PAT tree, 
the cost of the downwad traversal wil l  not effect the asymptotic cost of a search. 

Determioing the sub-tree size is usefbl because it udl be a good approximation to 

the number of matches to a q u q .  



Chapter 2 presented tao compact representations for binary tsees that can be used 

to encode the structure of the PAT tree and still support the reqnired operations. 

Before deciding between these representations, we observe that, because the PAT 
tree is a stnctly binary tree, ne need oniy represent the structure of the tree made 

up of the intemal nodes. The positions of the leaves, the s d k  offsets, of the PAT 

tree are implied by the positions of the leaves and degree one nodes of the tree of 

intemal nodes. This change dows us to seduce the size of the tree ne need to 

encode ftom Zn - 1 nodes to n - I nodes, where n is the number of index points. 

As discussed in the previous chaptet, the rank/select representation for binary 

trees of Section 2.1.1 does not directly support the requkement for fixed sized 

fields in the leaves of the tree. Horever, we observe that in the level osda 

encoding of the tree of internai nodes, the ones correspond exactly to the interna1 

nodes and the zeroes correspond to leaves of the original PAT tree (see Figure 

3.1). Becanae of this property, we can store the node labels and s a f n r  offsets in 

Figure 3.1: PAT tree and Labded Extended 'Ike of Interna1 Nodes 

two atrays referenced by rank() and tank00 respectively. 

If ne hstead use the recnrsive encoding foi binary trees fiom Section 2.4 to 

represent the structure of a PAT tree, the node labels csn be stored either in the 

bit stream for the tree encoding or in a separate array created during an in-order 

traversal of the tree. Daring the downward havenrd the index for the ciurent 

node can be compnted by tracking the nnmba of nodes in each l& sub-tree that 

is slcipped. A similar method dows us to store the s n f n x  offsets at the leaves in 
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an array and ha& oat w e n t  position in that array. Retrieval of the test s n f f i r  

pointa is very efficient becanse we can simply tehieve the first entry of the 

current sub-array. 

The trade-off to be mnsidered in detaminuig which representation to chme is 

one of siee, an extra bit per node, venius fnnctionality, the ability to qnicJJy 

determine the answer size. For the static text case in primary storage the extra 

fùnctiona3ity is well worth the extra bit in the representations so we use the 

recmsive encoding. If used to represent other PATRICIA based smictures that 

require the parent operation, sach as the "blind trien used in the SB-tree of 

Ferragina and Grossi[l8], the rank/select encoding would be more appropriate. In 

deciding whether to embed the skip values and snffix offsets in the bit sequence 

for the tree encoding or place them in separate arrays, ne choose to place the skip 

values in the tree encoding and use a separate array for the snffix offsets. This 

layout improves the access locality of the searching procedme and allows aligned 

accesses into the s d i x  ofbet array which shodd improve performance. 

3.2 Storing the Skip 

Cornpressing the skip information teqnires an &standing of the distribution of 

the slrip values. For the purpose of analyshg the skips, tempotarily assume the 

sunixes are strings of independent nnifody sampled bits with O and 1 having 

equal probability. Consider an internd node with k leaves in its sub-tree, then the 

probability that the slrip value of the node is greater than 1 is the same as the 

probability that k random bit strings match in theV first 2 + 1 bits. This value is 

easily seen to be 2-(z+1)(k-1). Ekom this value, ne see that ne can expect the 

majonty of the skip values to be zero and that the Likelibood of higher values 

deaeases geornetridy. Figure 3.2 shows the skip distributions for the fom 

sample documents and illustrates the rapid deaease in the Iîkelihood of large skip 
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O 5 10 15 20 25 30 35 40 
Skip VaIue 

Figure 3.2: Fkequency of Skip Values in the Sample Documents 

values when a compact alphabet code is used. The use of a compact code for the 

alphabet is discussed later in this section. The m e  labelled "Tndependentn in 

Figtue 3.2 shows the results for a PATRICIA tree on independent pseudo-random 

keys generated using a d o m  mode1 for the charactem. 

The low likelihood of large skip values leads to a simple method of compactly 

encoding the skip dues.  We reserve a small fixed namba of bits to hold the skip 

value for each interna1 node and introduce a skategy to resolve problems caused 

by skip dues  that overflow this field. We handle ovedow by inserting a new node 

and a leaf into the tree and distributing the skip bits from the original node across 

the skip fields of the new and the original node. Figure 3.3 illustrates an ovdow 

Figure 3.3: Ovdow Nodes 

situation where 5 bits have been reserved for the skip information. The actnal skip 
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valne of 73 is encoded as (29)= and stored in the skip fields of the original node 

and the new overfbw node. The dummy leaf node mut have some special key 

value that $ l o a s  it to be easily recognized (trpically ail Os or al l  1s). H needed, 

multiple o v d o w  nodes and leaves c m  be inserted for extremely large skip values. 

When t r a v d g  the tree, simply checkhg for a single leaf with the dummy vahe  

is s d i c i e n t  to detezmine if the skip shodd be checked or the bits concatenated to 

obtain the tme skip value. The use of this overfiow handling mechani- has one 

slight drawback in that the sub-tree size is no longer the exact size of the answer. 

However, the snb-tree size is stin an npper bonnd on the size of the answer and in 

practice a good estimate of the size. 

How many bits should be reserved for the skip field? If ne let N be the set of 

interna1 nodes in the PAT tree, then the expected number of o v d o w  nodes when 

ushg a k bit skip field is, by the previoas approximation, 

where lm is the number of leaves below node m. The inner s u m  is dominated by 
the value at t = 1 so ne win ignore the other values. Let r be the storage reqaited 

for representing one node in the tree, r = c + k + lg n where c = 3 if we tue the 

tecursive encoding. The storage requirement when using k skip bits is then 

The value of k we are interested in is the smaiiest value such that the expected 

storage at k bits is less than that at k + 1 bits. So ne wmt the smallest k that 

satisfies: 
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Expand the products and simpiirj. to obtah: 

M e r  simpiiry the m m :  

The value 

sum. This 

The exact 

,& is much smder than r and so wiU not be significant in the 

observation d o n s  us to approximate the-inequality by 

value of the s a m  depends on the shape of the tree, and k, bat it is 

clearly less than -* because l,,, is at least h o  for every node m. Now consida a 

pedectly balanced binary tree on an even nnmber of leaves. There are f nodes 

with exactly two leaves below them so the sum, for this tree, will be at least ,&-. 
The s u m  for the worst case tree will be somewhere between these two bounds. 

Entering either of these bounds in equation 3.1 gives an equation of the form 

(here we use the upper bonnd): 

which is trne if P < z~'+'. Insert the definition of r to obtain c + k + Ig n < z2&+l. 

Take logarithms *ce and ignote small d u e s  (assume c and k are small) to 

derive that k = Ig lg lg n. The optimal k derived using the Iowa boand gives the 

same r e d t  so the optimd value of k for the worst case tree is about Ig Ig Ig n. 

Note that for some tree shapes the optimd value may be mach smda.  

Theorem 3.1 Under the ossrrmption of independent arf ies  d m  using ta 

symmetric model, the ezpected sire of the Compact PAT l t r e  can be mode less 

thon 3# + lg n + Ig lg lg n + O (w) bits ~ C T  indez point. We achieve this ~ i z c  

by setting the skip fieM size to Ig lglg n. 
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Proofi Unda the given assnmptioas and using the skip field size above, the 

expected numbes of interna1 nodes is, 

Set I, to 2 for al1 nodes and simple the ontet snm to obtsin the bound: 

Mdtiply this bonnd by the node storage cost and add Ign to account for the fact 

that there is one more leaf than interna1 nodes. Afta simpIifyLig, obtain: 

to obtain the per index point cost and ignore some 

terms to get: 

asymptoticdy 

Expand the product and the sum to obtain: 

Fiaally expand the 1st term to obtain: 

which satides the statement of the theorem- QED 

It is usefil to note that the final order term in Theorem 3.1 is not just 

asymptotically negligible but that for seasonable values of n, f a  example n = 216, 

it is significantly less than one. 
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There are h o  approximations in the argument above that deserve d o u s  

consideration. The h t  b the aswmption that the bit strings in the snf f ixes  are 

independent. This is deady f h  as the strings are, potentially ovalapping, 

sahtrings of a sinde string. However this approxhation dws not seem 

inappropriate because the ander1ying string is large and for all but the few nodes 

neat the root ne expect the d i x e s  belor a node to be sparse in the underlying 

string. This position is fartha supportecl by work by Szpankowski showhg that 

the expected depth of a trie does not change when moving fiom independent to 

dependent bit strings[34]. The second, more serious, problem above is the 

assumption that the binary string is generated by a d o m  symmetric random 

process. This is not a good model of nritten text or other large documents. 

Consider, for example, English text coded in ASCII, in which the high order bit of 

each byte wi l l  be zero. In addition, the codes 0..31 are irnlikely to occar in the 

text. While this is a real weakness in the approach, we can take some steps to 

alleviate it: 

0 use of a compact cbaracter code. Instead of ASCII, we use a character code 

where all bits are active for our search engines. We are considerhg the use 

of a data comptession model incorporating digrami for a fiituxe version, but 

it is dikely the pdonnance will be adequate given the large amount of 

data handled during index construction. It is not dear that the cost of 

performing even the translation to the compact code during the indexhg 

phase is worth the slight reduction in the number of ovedow nodes. W e  use 

this transktion in our test system because it is easily incorporated in the 

other translations (case conversion, merging multiple spaces) that are 

required during gegl:chhg and index construction. 

incnssing the skip field size. By adding an extra 2 or 3 bits to the skip size 

n e  can dramatidy rednce the nnmba of ovdow nodes present in the tree. 
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The final pseudo.code for searching a compact PAT tree b shown below: 

size = n // size of the cunent sub-tree 
index = 1 // index of first leaf of the current 

// sub-ttee in the suffY amay 
test-bit - O // accciaulated skip values 
b i t  ,pat tem = encode (pattern) 
while (size > O) 

save = (size, index> 
if (size > 1) 

smailer = read one b i t  
sizeofsnsller = read prefix code 
skip = read lt b i t  integer 
// loop to handle overflow nodea 
while (satalles = ' 0 ' and sizeof smaîler = O and 

suffixes [index] = d m )  do 
skip = ship*lœk 
size size - 1 
index = index + 1 
if (size > 1) 

smaller = read one b i t  
sizeofsmallet = read prefix code 

else 
smaïler = sizeofsmaller = O 

endif 
skip = skip + read k bit integer 

end 
if (smaller = ' 1') 

leftsize = sizeofemaïler 
rightsize = size - sizeof s a l e r  - 1 

else 
right size = sizeof smaller 
leftsize = size - sizeof d l e r  - 1 

endif 
else 

leftsize - rightsize = O 
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skip = read k bit integer 
endif 
test-bit  = test-bit + akip + 1 
if test-bit  > Ibit-pattern1 

Csize,index> = save // restore values 
exit the loop 

endif 
if bit-patternlfestbitl = '1' then 

skip B(1eftsize) + Ieftsize*k bits 
aize = tightsize 
index = inder + leftsize+l 

else 
size = leftsize 

endif 
end 
// slcip any dmimy nodes before doing the test 
while (suff ixedinded = d q )  do 

index = index + 1 
size = size - 1; 

end 
// compare the first suffix against the pattern 
if (pattern r suffixes [ i n d d  ) return index, size 
else retura 100TFOWD 
endif 

The specid handling of trees with zero or one inteniai nodes in the pseudcxode 

occtus because the structure of such s m d  trees does not need encoding so only 

the skip value is stored. We typicdy use a skip field size of 5 or 6 depending on 

the document size. Even these larger &es resdt in a very small index req-g 

about 10 bits per index point to represent the trie. For storing the skip values, we 

simply add a third constant size field to the tree header and m o d e  B(n) 

appropriately by adding n times the size of the skip field. 
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3.3 Suffix Offsets 

The saf f ix  o5ets take np the bulk of the storage ased by the CPT and 0th- 

sa fnx  based structp~es. While the snf6c o h t s  do not eady admit compression, 

they can be stmed mach more compactly X ne are nilling to make some sacrifices 

on pdormance. 'ïo achieve this storage reduction, we use a technique also used 

in Shang's PaEes[44]. If 2 low order bits in the snffir offiets are omitted iiom the 

CPT structure, nl bits are saved in the final index. In order to paform searching 

using these tnincated offsets, a scan t h g h  dl s d ù e s  starting in a range of 2' 

characters must be made each tirne ne require an exact satnx offset. Because the 

bits tested dong the mot-1eaf path uniqaely determine the safnx, the exact snfnx 

offset can dways be detamined by ninning each snfnr in the range through the 

PAT tree and selecting only the one that ends at the correct leaf. Alternatively, a 

simple string search for the q u q  can be made at $1 the inder points in the range 

and any matches reported. The string searching method has the advantage of 

only loading text segments once but special care must be taken when handling 

multiple matches in a block of 2' characters. If we let H be the height of the 

CPT, these changes incm an additive 2'61 cost in the seatehing time and a 2'H 

multiplicative factor on the conversion of a node to its list of leaf offsets because 

each sa fnx  tested has to be traced through the CPT to a le&. More importady, 

pronmity based queries such as %d word A within 50 charaeters of word B" 
cannot be answered nithont referring to the text becanse the s d k  ofiet values 

may not have enongh precision to determine if two matches are sdiciently dose 

to each othet. It is worth noting that snfnx arrays cannot use trnncated s a f n x  

offsets because they require the exact offset values to guide the searching 

procedure. The ability of the CPT to operate with inexact snfnx o5ets &O 

dows its efficient use on text fües compressed on a block by block basis without 

requiring complicated address translation mechanisms. 
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3.4 Empirical Results 

1 Holmes 1 4 1 5486 

1 Bible ( 4 ( 264903 

Index Size (kbytes) 1 

Table 3.1: Index Sizes  for Sampie Documents 

Table 3.1 s h s  the namber of o v d o w  nodes and the resulting index sizes for 

three of the sample documents (the OED is too large for construction of an index 

in primary storage on the machines available for these expesiments). Rom this 

table we see that the optimal slûp sizes are 5 for Holmes, 3 for Xm, and 6 for the 

Bible. Notice $so that the size of the final index for non-optimal values is etill 

dose to the optimal size. These sizes are based on fidl saffix pointers. If ae d o w  

the trwication of 8 bits then the index sizes for the examples will drop by about 

45k, 960k, and 1250k bytes respectively. 

3.5 Cornparison to Other Structures 

The storage cost of this structure is signüicantIy less than that of previous 

representations for PAT trees and s& trees with the exception of saffix arrays. 



SofGr arrays offer comparable perfcnnance in msia memory for straight 

searching. Howeva, they incar a logarithmic perfbrmance penalty when 

simuiating saffix tree operations such as th- used fot r e g t h  expression 

matching[4]. The new structure &O hss the advantage of qaickly determining an 

approxhate answer size. 



Chapter 4 

Static Text on Secondary Storage 

In this chapter, we adapt the Compact Pat Tkee fiom the precedkig chapta for 

use on secondary storage by partitioning the tree into disk block sized pieces. We 

first discnss the characteristics of secondary storage as they afEect oar design and 

then discuss some existing tree pattitioning a lgor i th .  Next ne present a new 

optimal tree partitioning algorithm that is more appropriate to our application. 

Finaliy, ne give some empir id  results demo~trating the dectiveness of the 

partitioned Compact Pat 'Ree. 

Searcbing methods for large text databases must be concerned with more than 

asymptotic time requirements; storage requirements and the number of secondary 

storage accesses are also critical. If the index requires k bytes per index point in 

the text, character indices wiU be k times the size of the document while word 

indices will be about $ times the size of document. For large documents the 

storage cost quickly becomes prohibitive as k gets large. Similarly, while the 

asymptotic operation count of the algorithm is important, the namber of accesses 

to and the amount of storage trenderrecl nom seeondary storage are Iüely to have 

a far greater &ect on the paformance, and even the feasibility, of the index. 
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The time taken to access secondary stotage can be broken into two mmponents: 

O the overhead time necessary to initiate and terminate a tead or write 

opecation. We refer to this time as the seek t h e  of the device bat it &O 

indudes other factors mch as rotational Iatency. h most of this thesis we 

assume the seek t h e  of the device is constant because we are not interested 

in optimizing the placement of data on the physical device. 

the time taken to transfer data to or fkoom the device, referred to as the 

tiansfer tirne of the device. Thur component of the time is dependent on the 

amount of data trderred. 

We assume the secondary storage operates on a block basis where each read or 

write operation traders an integral nnmber of contignous blocks. We &O assume 

the block sUe, which ne label P, is fùed by the physical device and software 

drivas and is given to us as a parameter of the problem. For the moment, we 

ignore the transfer time becanse for eunent magnetic media the t r d e r  time of 

one or two blocks is smaU when compared to the seeh time. Later, when searching 

data stored on CD-ROM, we expliutly consida the trader time. For our 

empiricd testing we use block sizes of lk, 2k, 4k and 8k bytes. 

The k s t  portion of this thesis deait with controbg the storage tequirements of 

PAT trees a d ,  as a side-effect, reduced the a m o ~ t  of data we will need to 

transfa fiom secondary storage. In the second portion of this thesis ne 

concentrate on controhg the number of accesses to seeondary storage during 

searches and updates. 
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4.1 Partitioned Compact PAT Tkees 

In order to control the number of accesses to secondary starage required daring 

CPT opaations, we p u t ü i o n  the tree into connected components each of which 

fits in a disk block. We call each component a page because of the simüanty of 

this problem to the problem of ef6ciently laying out a tree or other data structure 

in a paged virtual memory system[21]. If the disk block size is such that it can 

hold two intemal nodes then the PAT tree of Figare 1.6 could be partitioned as 

shown in Figure 4.1. In this case we need to perform three accesses to secondary 

Figure 4.1: The Partition 

storage to reach leaf 1, 5 or 8 ftom the root. The alternative partitioning 

Figure 4.2 can reach any leaf in hro accesses and so might be preferred. 

Figure 4.2: Alternative 'Ree Partition 



CEiAPTER 4. STATIC TEXT ON SECONDARY STORAGE 

Two possible criteria for ehoosing one partitionhg ovet 0th- are: 

the number of pages accessed whem travershg from the mot to a Id, 

averaged ovex $1 the laves, and 

the maximum number of pages accessed when traversing ftom the root to 

any leaf. 

We dl page partitionings that minimize these meastues avemge cme optimal and 

worst case optimal respectively. Let be the nnmber of pages accessed to reach 

the i'th leaf (under some ordering of the leaves). Then these partitionings 

minimbe Ci- and mmci respectively. Implicit in these measures is the 

assnmption that we consida all leaves equally important. Lukes[32] and Gii and 

Itai[21] consider more general cases whae nodes and edges can have weights 

associated witb them. 

The partitionings considered here are restricted such that each page holds a 

connected portion of the tree. Gil and Itai use the term convez to describe such 

partitionings and show that loosening this restriction does not allow for better 

average case partitioning[21]. Because of this restriction, each page will itseIf be a 

tree and can be stored nsing the CPT structure h m  Chapter 2. The only change 

requHed to the CPT strneture for storing the pages is that the leaf data may now 

point to either a s n f n x  in the text or a sub-tree page so an extra bit is required to 

distinguish these two cases. We let the value p denote the namber of intemal 

nodes in the largest sub-tree we can phce in a block. Using the representation 
P-lg n 

from Chapte' 39 P ~g n+lg lg lg n+* * The restriction to connected sub-trees 

~ O W S  as to r e k  to the root of the sub-tree in a page as the mot of the page. In 

addition we wil l  refér to the page containhg the sibling node of a page's root as 

the page's sibling. Note that in some cases a page's root and its sibling may be 

the same page (consider the rightmost interna1 node of Figure 4.2). 



Lukes[32] presents a dynamic progrIimming method fm hding an average case 

optimal partitioning in O(n$) the. A telated method for fiading a worst case 

optimal partitioning in O(np) t h e  is reportecl in Carlisle et d [ 9 ] .  Unfortunatdy 

both of these methods require np words of storage to cornpute the partitioning 

and so are not practid for trees of the size we are considering. Gil and Itai[21] 

devdop a similar d y n d c  programming method for the average case that 

operates in much less memory. Ho-, th& aigori th perfosms multiple passes 

over the tree and so is dikely to be efficient enough for oar purposes. 

Additiondy, these dynamic programming methods do not adapt w d  to the 

dynamic trees needed in the next chapter. Carlisle et  d.[9] also discnss a top 

down greedy heuristic that is conceptually simple and wotks well on some dasses 

of trees but can reqnire @(log n) extra page accesses on average to r d  any leaf. 

In the remainder of this chapter we present a new bottom up greedy algorithm for 

constrncting a worst case optimal partitioning of a binaty hee and demonstrate 

its use on the CPT. 

4.2 Partit ioning Algorithm 

Define the page height of a node in a partitioned tree as the maximum number of 

pages that need to be read when travershg fkom the node to any leaf in its 

sub-tree and the page height of a page as the page height of its mot. In each case 

we inclade the cment page in the page height count. For any given assignment of 

nodes to pages, also define the locd page size of a node as the number of 

descendents of that node that are on the rame page as the node, plus one for the 

original node. The page height and local page size of a node may be defined for a 

partial partitioning provided the node and $1 of its descendents have been pkced 

on pages. 
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We present a partitioning algorithm that s t a r t s  by assigning each leaf its own 

page and a page height of one. Working upward, we apply the d e  in Fignre 4.3 

at each node. 

if both children have the same page height 

if the sui of the local page rizea of the childrem is lesa than p. 
merge the pages of the children and add the node 

se t  the page height of the node t o  that of the chilàsen 
else 

close off the pages of the childrem 
create a neu page for  the cunent node 

set the page height of the node to  that of the chi leen plus one 

else 

close off the page of the child vith the l e i i e r  height 

if the local page size of the remaining child is less  than p. 
sdd the node t o  the ehild's page 
set the page height of the node to match the child 

else 

close off the page of the tenaining child 

create a new page for  the node 

set the page height of the node to  that of the child plus one 

Figure 4.3: ltee Pattitioning Rules 

Theorem 4.1 A worst cose optimal eonuez patitioning of o binury t n e  c m  be 

computed in linear time, inwpectiue of the page size. 

Proof: Using induction on the tree height, we show that the d e  in Figure 4.3 

produces a worst case optimal partitioning of the tree such that no o tha  optimal 

partitioning has a smder root page and moreover that this holds for each 

sab-tree. The basis case, k = 1, consists of a tree with a single node and so is 



trivial. Assume the statement for l..k - 1 and then consider the root of a tree of 

height &. There are several possible cases: 

1. The mot has only one child. ln which case either the root fits on the 

topmost page of the ehild or it does not. 

Root fits (the local page size of the &Id is las than p): Place the root 

in the topmost page. Any partitioning of smder page height or top 

most page m u t  contain a partitionhg for the ehild of larga page 

height that violates the induction hypothesis for k - 1. 
0 Root does not fit (the local page size of the child 5 p): Create a new 

page for the root. Clearly thae cannot be a partitioning with fewer 

than one vertex in the topmost page so any violation must be on the 

page height constraint. The existence of partitioning of lesser page 

height would imply a partitioning at height k - 1 with room for the 

new mot but the partitionhg of the height k - 1 subtree was 

completely fidl and also had s m h t  topmost page amongst all optimal 

partitioning so this situation cannot occnr. 

2. Next consider the case whae the root has hro children that diffkr in page 

height. By the d e s  above, the ehild of les= page height is dosed off. The 

root is placed in the topmost page of the o tha  child if at  all possible, and 

on a new page if not. There an tao cases that are argued exactly as case 1 

above. Case 1 is actually a specialization of case 2 so this is not surprising. 

3. F W y  assume the root ha9 h o  children each of equal page height. Under 

the d e s  above the new partitioning is formed by magiag the topmoêt 

pages of the two chüdren and adding the mot if the combined page is not 

too large. If the combined page is too large, the topmost pages of both 

children are dosed and a new page is started for the mot. 
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Root fits (sum of children's local page sizes is less than p): the page 

height of the new psrtitioning is the same as that of the chilken so the 

existence of a partitionhg of lesser page height woald vioiate the 

induction hypothesis for k - 1. If thete is a partitionhg of the same 

page height but smaüer topmost page then it must contain a height 

k - 1 partitioning for one of the two children that vidates the 

induction hypothesis. 

a Root does not fit ( m m  of children's local page sizes is at least p): Again 

the topmost page hm size one so no other partitioning of the same 

page height c m  have a smésiier topmost page. If t h a e  is a partitioning 

of smder  page height then as before, it m u t  contain a partitioning for 

one of the h o  ehildren that violates the induction hypothesis. 

The "moreovern part holds because ne never go back and indidate the 

optimality of the partitioning of sub-kees. 

The d e  in Figure 4.3 performs a constant amount of aork at each node and so 

can be applied in linear tirne. Qm 
Based on Theorem 4.1 we will sefer to a partitioning resdting from the d e s  in 

Figure 4.3 as the "optimal bottom up partitioning" of a tne. The optimal bottom 

up pastitioning is optimal in the sense that it minimir!= the namber of pages 

accessed in the worst case mot-leaf traversai. However, it can produce a large 

nnmber of very s m d  pages. This problem results &om the automatic closing off 

of a page if its sibiing hae a greater page height. Because we do not worry about 

aligning pages on block boandaries in the static text case, these s m d  pages do not 

cause serious problems. Howeva, it is still worthwhile rnnning a post-processing 

pass that merges s m d  pages into their parent whenever possible because each 

page ha9 some smail amount of storage overhead. The resdta reported later in 

this chapter indude the use of mch a pass. We wil l  have to return to this problem 
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in the next chapter rhere s m d  pages can cause storage management problems. 

In ordei to judge the overall performance of data stnictures using the optimal 

bottom up partitioning, we want to botind the psge height in tamil of the nnmber 

of nodes and the tree height, H. Betore proving the bound, two simplet resdts 

are needed. 

Lemma 4.1 In an  optimal bottom up partitioning, each sub-tne in a tree encoded 

in o page of page height k > 1 contuiw at least one node huuing c h ü d m  page 

height 6 - 1. 

Proof: If all its children have page height k - 2 or lowa, split off the snb-tree 

into its own page and obtaui a partitioning with a s m a k  mot node. The 

difference in page heights d o w s  us to make this change without increasing the 

page height of the root. Qm 
Lemma 4.1 allows the simple observation that, under an optimal bottom np 

partitioning, all nodes in a page have the same page height. 

Lemma 4.2 Wnüc on a mot-leafpath of pages in an optimal bottom u p  

partitioning, the leuvea within a page height k page where k > 1 eithet have one 

child page *th page height k - 1 containing p nodes or two chdd pages with page 

height k - 1 containing a total of ut le& p nodes. 

Pro ofi Each le& node is a sub-tree so by Lemma 4.1, it contains at least one 

page height k - 1 child. If neither of the conditions are met, then the parent 

wodd have been moved in with either or both of the children and a partitioning 

with a smder mot node obtained for that snb-tree. Q&v 

Theorem 4.2 Let O 5 t < 1 be an arbitrary constant. The page height of the 

worst case optimal partitioning of a tree is bounded aboue by 
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where H i.s the height of the tne  and n is the mmber of nodea in Me t n e .  

Proof: Our proof is based on the optimal bottom up partitioning. Given such a 

partitioning, we constnict a sequence of pages on a deepest path, in the page 

sense, mch that at each stage we either dinde the number of nodes in the cullent 

snb-tree by rpl-'1 ot teduce the height (in the node sense) of the snb-tree by rptl.  

At each point in the construction we conaider either a single page or a pair of 

sibhg pages. Start the consmiction at the mot page and select any node in the 

page that has chü&en at page height k - 1 and consider its page height k - 1 

chiidren. By Lemma 4.2, ne know that thae  are at least p nodes in these child 

pages. Because there are p nodes, one of the following two conditions must be met: 

1. there are at  least rpl-'l children pointing to child pages with page height 

k - 2, in which case we select the d3d whose page height k - 2 children 

have the smallest portion of the entire sub-tree, or 

2. there is at  least one node pointing to pages at  page height k - 2 such that 

the length of the path fkom the root of the page to the node ha9 length at 

Ieast [pt l .  Select that node's page height E - 2 children for the next step. 

If neither of these conditions are met, then we codd not be dealing with p nodes. 

Case one cari only occnt [log nl times and case two can only occar [&l 
times. Add one fot the toot page, remove the inna ceilings, and simpiify the log 

to obtain an apper bound on the length of the path constructed. Becanse this 

path is a deepest path in the page sense, the bound &O applies to the page 

height of the tree. QEn 
Tao cotollaries can be obtained by selecting specific values of t. Choosing t = i, 
we obtain a bound of the form 1 + + [210g, nl ahich is interesting for its 

sirnplicity. Choosing t = 1 - e, the bound takes the Corn 



1 + [f lg pl + [& 1% rr] vhich is intaesthg because it is approlnmatdy Ig p 

times the s a m  of the tao trivial lower boands of $ and logp n.' In ordec to 

demonstrate that these logarithmic tamir are necessary., we desaibe a method for 

constructing a tree with a worst cast optimal page height within a constamt factor 

of this b o ~ d  The general sbcture of the tree consists of a rwt node and then 

K levels each maàe np of tdorm gcoupings of nodes which we c d  c ius tas .  IP 
Figure 4.4 we show the mot and the first two layers of dusters. Each dusta 

Figure 4.4: Tkee Consmiction 

takes the form of a p d d y  balanced sub-tree of height lglgp with f strands 

below it as shown in Figure 4.5 (for t h  construction to wotk p should be of the 

form 2''). The length of eaeh strand is chosen to make the total number of nodes 

slightly more than f .  If thae are K Ievels of dusters then the worst case optimal 

partitionhg of this tree has page height K + 1 and places each duster on its own 

page. In addition we obtain, 

'The value of t chmn here ir an approximation to the solution of pl-' = which would mda 

the multipüers equd. The exact adution ia t = 1 - v. =hem w satisfies o (z) e ~ ( ~ )  = S. The 
value of t used here c m  be obtained by substituting in the first term of the asymptotic expansion 

of w found in [12j. We use the dightly less optimd b'iary logarithm in order to simplify the 
construction that follom. 
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#dusters = lgk-' p + lgko2 p... + 1 = lgL-' p 

Using these approximations, we note $ lgp a K and log, n F- m. Placing 
IUP 

these approximations in the upper bonnd and removing the fioors and ceilings, we 

obtain 1 + K + K - 1 or 2K so this tree has actuai page height about one half the 

upper bonad. 

This construction le& to the foUowing theorem: 

Theorem 4.3 Given p > 16 and < t < 1, them ezists a family of tmes Tk of 

monotone i n m a h g  size such that for lave k the ratio of the page height bound 

to the actud worst case optirnul page height is bounded above by a mal2 constant. 

Proof: First ne handle the case t 5 1 - & u h g  the duster construction fkom 

the previous discut~ion. Constrnct clusters containhg [q] iltrands nith rpLl - 1 
nodes e d .  If the total number of nodes is not greater than f, then add a single 

node to each of one or two strands until this bound is met. Becanse of the 

constraints on p and t, the total nnmba of nodes per duster wi l l  now be more 
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than : and at most p. Using k Iayers of clusters and a single mot node in its ona 

page, we obtain an actud page heïght of k + 1 and the bound is approximatdy 

1 t l  which is appto10mately k (2 + 9) if we ignore termcr not lineady dependent 

on k Note that t is bounded away fiom zero so # is at least igp. 

Now consider t > 1 - &. In this case we aonstnict a chah of length kp. The 
1 bonnd is then 1 + $ + & logJkp). Let c = t - (1 - &) and note that plsp = 4 so 

the bound becomes 1 + $ + &(1 +log, k) which is 3 + O(log k). Pinally note 

1 < p' < 4 to obtain the resdt. Qm 
This theorem shows that the boand in Theorem 4.2 is not excessively pessimistic. 

In order to understand exactly how the bound in Theorem 4.2 varies with H and 

n, we select the value of t that minjmizes the continuous vemion of formula 4.1: 

Differentiathg this formula and finding a zero of the resdting formula, ne obtain - 

t = l -  2w d w  
( I ~ P  where w ( ~ ) e ~ ( ~ )  = 2. Given p > 2, thia value ia between zero 

and one because H 2 lgn. Substitnting this value of t hto 4.2, ne obtain 

Simplifying using ew(*) = -I converting p to ehp and finaily enpressing log, n in 4=) ' 
terms of the n d u d  logarithm, we obtain: 
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so ne see that, unsurprisingiy, it is the ratio of H to Inn that is critical to the 
upper bound. Given H and n, ne can use formula 4.3 to obtain an approxhate 

bomd on the page height of a partitioned tree (a trivial Iowa bound on the page 

height is maut ($,logp)). 

For the special case of the PAT tree, ne can apply the redts  of Szpankowski 

mentioned in Chapter 1 to obtain the almost sure convergence of the boirnd to 

Corless et d.[12] show that 

Eton this expansion, ne obtain 

Substitating this expression into formula 4-4, simpIûying and placing some small 

terms in the order term (assume p is mu& krga than ha), ne obtain the h o s t  

sure convergence of the boand for pattitioned PAT trees to 

Note that this bound does not apply to the CPT because of the presence of 

overflow nodes. However, it does give gwd reason to be optimistic about the 

performance of a partitioned CPT. 

4.3 Compact PAT Tkees for Secondary Storage 

The CPT for aecondary storage is obtained by applying optimal bottom up 

partitionhg to the structure fkom Chapter 3 and using that CPT representation 
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for each page on secondary storage. As noted earlier, we add one bit to each leaf 

to indicate if it is a saffix o f k t  or a pointa to lrnotha page. When discnssing the 

partitionhg of the CPT, we have to stress that we deal only with the k e e  fomed 

by the internal nodes and, as in Chapta 3, $los the position of the intemal 

nodes to be implicit in that structure. 

For the static case, we do not concern ourselves with aligning pages on block 

boudaries. In practice, the l d  of alignment results in inaeased data tisnsfer 

t h e  but no increase in se& time. Bin packing heuristics could be used to place 

the pages in blocks if the increased data trader time presents problems. 

However, ne have not seen such a problem. The encoding of each page consists of 

a header: containing the numba of nodes on the page, 

a tree: a compact encoding of the tree structure with the skip bits as 

disenssed in Chapter 3, 

a ofbets and pointas: an array containhg the leaf labels of the tree, each of 

WW is either a snfnx offset or a snb-page location. Each array entry has a 

single bit inâicating which case is occuxring. Because they both address 

approlrimately the same amount of data, we assume snfnr offsets and page 

locations reqnire the same number of bits. 

4.3.1 Compact Sufexes On Secondary Storage 

The technique of dtopping the low order bits discassed by Shang[44] and in 

Chapter 3 has some new implications for text s t d  on secondary storage. It 

results in a smdler index and the wst of p d o h g  the search to determine the 

actual values for each 05et  is s d  relative to the time needed to access 

secondary storage. In addition, the reduced pet node storage results in a higher 
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branching factot within the indet The higher brmeiiinp factor may lower the 

page height of the d t i n g  tree dthough the partitionhg algorithm makes this 

nnlitely. Another s i d 4 e c t  of mffir pointa trancation d t s  fiom onr 

reqoEanent th& d i x  of6ds and sub-page pointers be the same size. Thncating 

safnx o h t s  reqykes a similac tnincation in the disk block addresses In onr test 

system, we achieve the page pointer h c a t i o n  by ensaring each page starts at an 

offiet that is a mdtiple of 2' whae 1 I the number of bits we need to trnncate to 

make these sizes equd. Aligning pages in thb way may result in some waste 

storage that m u t  be traded against the savings from the snfnx offset mincation. 

For word indices on documents capable of being managed on cmrent cornputers, I 

is usually the same as the nmber of bits trnncated in the text. For a character 

index, 1 needs to be inereased by approximately two bits because the page 

pointers have to address about fom or five times as much data as the safn* OMS. 

4.4 Empirical Results 

Table 4.1 shows the index &es for several indices on the test documents when 

using fidl s a f a x  pointers. When producing the empirical red t s  for indices on 

secondary storage, the optimal skip sizes from Chapter 3 were used for Holrnes, 

XIII, and the Bible. For the OED, a skip e k  of six was chosen somewhat 

arbitrarily. III each case, the height of the tree matches the rider of secesses to 

secondary storage needed to perfom a search if the mot page is held in memory 

because one fnether access is reqtiired to locate the test saffix. Table 4.2 shows 

the reduced sizes of the 4k page size indices above when some snfnx bits are 

truncated. The number of bits triuicated in each case was chosen to make the size 

of each le& an integral namber of bytes for p a f o ~ ~ ~ ~ a n c e  reasom. While the 

savings due to saffix tmncation appear modest when eompared to Table 4.1, such 

a direct cornparison is not really meaninghil. The d u e s  in Table 4.1 are based on 
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Text 
Hohes 

XI I I  

Bible 

l 

? 

OED l 

Page Size Depth #Pages hdex Size 

1K 2 178 144k 

- -  - - -  

Table 4.1: St atic hdex Sizes 

the use of 18, 20 and 23 bit sized fields for the s a f n x  ofiets. In practice, an 

integral number of bytes would be teserveci for each leaf, sigdîcantly increming 

the index size. The indices in Table 4.2 already use an integral number of bytes 

for each ka€ and so would not increarre in a practical system. 

4.5 Adapting to CD-ROM 

The disk block d e  of a CD-ROM is 2048 bytes of application data plus about 

three h d e d  bytes of error detection and correction information (see [14] for an 



CKAPTER 4. STATIC TEXT ON SECONDARY STORAGE 

1 Text 1 '&uncation 1 Index Size 1 Rednctioo 1 

-- - - - - - 

OED 1 7 4û9m 9% 

XiII 

Bible 

Table 4.2: Efkcts of Snffix k c a t i o n  

overview of the properties of CD-ROM). Ushg this block size when searching on 

CD-ROM can lead to poor pedormance because of the very high se& tirne of 

these devices. Single spin CD-ROM drives can reqaire np to 1 second to locate a 

particnlar block. The average performance is about 0.75 seconds. These same 

drives have a t r d e r  rate of about 150k bytes per second so t t d e r r i n g  a block 

requires about -014 seconds. While faster CD-ROM drives are available, the ratio 

of seek time to trader  rate remains roughly constant. 

5 

8 

For the purposes of searching data on CD-ROM, it does not seem reasonable to 

spend fifty times longer locating pages than traflsferring actnal data nom the 

disk. In order to better b h c e  these costs of searching, when applying the CPT 

structure to data on CD-ROM, a much larger page size is used during 

partitionuig. An apparently teasonable guideline is to use as much time 

handerring data as is a d  locating the data to trBIlSfer. Equating these taro 

dues leads us to use page sizes of between 10Ok and 150k bytes. The use of look 

byte pages for searEhing the OED document resuits in a tree of height two. If the 

root page is held in memory, searches esn progress with one read of the index at  a 

cost of roughly tffice the seek tirne and one smaller read of the text to acqaire the 
test sample. Even with a slow drive, the fh t  response to a queq aill be avsilab1e 

in less than three seconds. Cornmon mdti-spin drives shonld achieve subsecond 

response time on word or phrase queries. 

2845k 

421îk 

7% 

14% 
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4.6 Cornparison to Other Structures 

The Panie stmcture of Shang(44j and Mesett and Shang[37] is simikr in 

apptoach to the stmctare presented hem. It is not desr wbich of the two 

structures wil l  be more compact becaarre that wil l  likely depend on the text. 

However, the improved partitionhg algorithm nsed hae will r d t  in stiperior 

pedormance on secondary storage. Empirically, Shang shows the Pa'ïkie requires 

an average of between 5 and 7 acac~sses to secondary storage when using 1l byte 

pages for searching a text with 100 million index points. However, the Paltie 

required as many as 46 &k aecesses for some &es in that document. The 

compact PAT t ~ e e  used a maximum of 5 accesses when searching a comparable 

text (the OED). When using 8k byte pages, the CPT stmctate reqMed only 3 

accesses for searching the OED document. The compact PAT tree is &O less 

processor intensive and so should perform better on large page &es sudi as those 

used for s e a d h g  CD-ROM. Because it scans every bit in the encoding when 

travershg a block, the Paltie is nnlikely to extend well to larger page siees. Shang 

notes that the Pa'Rie is processor bound when using Ut byte pages. Use of the 

efficient tree encodings firom Chapter 2 codd remedy this weakness of the Pa'ikie. 

Anotha comparable structure is the SB-tree of Ferragina and Grmsi[l&]. On a 

100 million index point document, they report using 6 accesses to secondary 

storage using an index requiring about 8.25 bytes p a  index point. While this 

appears excessively large when compared to the CPT, it mu& be remembered 

that the SB-tree ha8 guaranteed logarithmic height while the PAT kee, and hence 

the CPT, has logsrithmic height almost surely under certain text models. Filrther 

performance tradeoib can be ased to reduce the size of the SBtree so it is 

comparable to that of the CPT, but at a cost in accesses to secondary storage. 

The SB-tree is also likely to be processor intensive bat again this problem c m  be 

easily alleviated using the &&nt tree encodings fiom Chapter 2. 



Chapter 5 

Dynamic Text on Secondary 

Storage 

In this chapta, ne extend the CPT structure to support changes to the 

underlying document or document set. in addition to detailing the changes to the 

PAT tree we show that the partitioning method of the previms chapter dows 

changes to the tree with only local changes to the page structure. Finally, we 

address the problem of placing the pages of the CPT structure into blocks on 

secondary storage. 

There are two models of updates to the text that we consider: 

r insertion, deletion, or replacement of a character in a single indexed 

document, or 

r insertion or deletion of an entire document firom an index on a set of 

documents. 

The lattes is the Extemal Dynamic Substring Search (EDSS) problem formüzed 

by Ferragina and Grossi[ld]. In both cases the changes to the text resdt in the 



insertion ot deletion of multiple d ixes  to or h m  the FAT tree. 

Simple character changes can r d t  in s number of safnr insertions and deletions 

proportional to the maximai offset ocearring in the PAT tree. For example, when 

changing the thPd character of the ejtampIe string, ubccuboot, to a b, we mwt 

delete the snffixes cc, bcc and a& and replace them with k b ,  b&, and aM. To 

detamine the exact set of gtlffiXes aEected, we etart at the fust index point 

preceding the change point and scan backwmd. Each index point encountered is 

searched in the PAT tree until a lea€ is reached. If the ha1 o&t value that 

occurs in the search is at or beyond the change point then the d i x  i s  removed 

and replaced with the new s d i x  starting at the index point. If the le& is 

e n c o u n t d  b e h e  the change point, then the tree position of the s a t n r  and any 

stiffixes to the left are not dected by the change to the string. The character 

change model is easily extended to inchde the insertion, deletion, or replacement 

of sub-skings of the original string. For such operations aU sufâxes starting b i d e  

the changed region are first inserted, deleted or replaced and then the gnffixes 

preceding the change point are handled in the same mamer as during a simple 

character change. Another basic operation that h fiequently ttsed with sufi ix  

indices b that of prepending new chscactem to the index string. The prepend 

operation is of intaest because updating a s u f b  index after a prepend operation 

only requires the insertion of the new s d f k e s .  It does not reqnPe apdating the 

index for any existing snffixes and so can be more efficiently implemented. An 

issue we will not address is the natare of saffix ofbets under the character change 

modd. If a simple o&et is used then insertion or deletion of the first character in 

the text req* an update of e v q  o&t in the CPT structure. Majster and 

Reiser(33j suggest the use of a "Dewey Decimaln numbering scheme for string 

positions that dves  this problem but do not address the implementation of such 

a scheme in a practical syatem. 

Under the EDSS model, the text being searched is made ap of multiple 
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documents, A = {JE, &, .. .6,), stored on secondary storage. The model dows the 

insertion of new documents into A or the removal of existing documents. Updates 

to the documents cas be modeled as a deiete foUowed by an insert. When asing a 

sofnx based index, incinding the CPT, i m d o n  or deletion of a document resuits 

in the d i o n  or deletion of the saf f ixes corresponding to each index point in the 

document. A minor issue for the multiple document model is the use of d 

markers to ensure the uniqueness of each suffix. In order to retain the uniquenais 

of snf f i res  across documents, the end marker must b different for each document. 

In onr test system, ne use the stniig "t<doc>Sn whae S is the previous unique 

end marker and <doc> is a Mique identifier for the document (e.g. its name). 

Even when indexing a single dynamic document, the EDSS model is likely to be 

more relevant than the single document model. Documents managed on 

second- storage tend to be large and often can be broken dom into 

sab-documents each of whîch fits in p h a r y  stoüsge. For example, a dictionary or 

encydopedia can be broken into entries, a scientific j o d  into papas and fiction 

or non-fiction books into chapters, sections, ot paragraphs. The breakdown into 

snb-documents is necessary to $lori usas and propams to efficiently manage the 

documents. In practice, the lads of sach a natural breakdom will result in the use 

of an "unnatural" breakdonni snch as one baed on disk blocking. For this reason, 

we use the EDSS model in our empirical testing. 

The preceding discussion shows that higher level document operations can be 

implemented using d i x  operations, so we will only con- oatselves with the 

insertion and deletion of snffixes f%om the CPT structure for the remainder of this 

chapter. 
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5.1 Updating PAT Tkees 

Before considering the efkct of d i x  insertions and deletions on the pastitioned 

CPT, it is worthwhile reviewing the &ect of such changes on the underIying 

PATRICIA tree. 

Adding a saffix to the tree tequires the addition of a new internd node having as 

one of its children a le& containing the new snfnx's o5et. In terms of the tree of 

interna1 nodes, the new node may either split an edge between two intemal nodes 

of the PATRTCIA tree or be inserted below an e3a8tiog 1 4  To insert a new sofnx 

into a PATRICIA tree, the following steps are taken: 

1. search the tree asing the new wffir nntil we reach a leaf, cail the s e  

located at this leaf the test si inix,  

2. determine the fkst bit position at which the new saffU and the test sriftix 

ma, 

3. if the stiffixes first dafer at a bit beyond the bits tested during the traversal, 

then replace the leaf with an internai node having the test sa f f i *  and the 

new s n f E x  as children, 

4. otheswise h d  the edge on the mot-leaf path that skips over the bit position 

whete the sufiùes diner and split the edge by inserthg a new node having 

as chilben the new snfnx and the old snb-tree r d e d  by the edge, 

5. set the o h t  or crkip values of the new node and, in the second case, the old 

subtree appropriately. 

For example, if we prepend an o to the example string, S = abccabcut, and then 

insert the new s a  aabcc ... into the PAT free we k t  search the new s d k  in 

the existing tree tetminating at le& 1. We then determine that the new s n f n x  and 
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the s a f n r  at o h t  one diffiz in th& fourth bits. This bit is skipped on the edge 

linking the nodes tabelled [3] and [7] so the new snfnx is inserted on that edge. 

The new stifiix has a zero in the fomth bit position 80 it wi l l  be the left ehild of 

the new node. The sesulting PAT tree is shown on the right of Figure 5.1. 

Figure 5.1: Original and Updated PAT Thes 

Deletion of a s u f a r  is more easily handled: 

1. search the s a f f U  in the FAT ttee to locate the saftir's leaf, 

2. remove the safnx and its parent by replacing the patent with a straight 

t h g h  edge, 

3. if the ex-sibling is not a led, then update its skip value (if offsets are wed 

then no change is needed). 

A more detailed discussion of the updating procedures can be foand in 

Sedgeaidt's discflssion of PATRICIA[42]. When the keys being inserted are 

knom to be consecutive slif6xe8, more escient methods of implementing these 

update operations on s d ù  trees are known, see McCreight[36], but they require 

the maintenance of extra data in each node. 



To adapt the PATRICIA update methob to the partitioned CPT ne need to 

haadle tkee new problems: 

maintaining the worst case optimai pattitioning, 

Neither ovedow nodes nor trnncated s a f f i x  offsets cause signifiant problems 

when updating the CPT structure. 

5.2 Dynamic Optimal Bottom Up Partitioning 

The optimal bottom up partitioning rule is based on information local to a 

subtree, so the e k t s  of repartitioning are limited to the path upward from the 

point we insert or delete a node to the mot. Because of this locality, we can 

efficiently maintain the optimality of the partitioning in the presence of update 

opaations. This Wers considaably fnmi the other partitioning strategies 

discussed in the previous chapter where a local change to a tree can have giobal 

side-effects on the partitioning. 

Because we operate on the tree of intemal nodes of the PAT hee, the tao binary 

tree opaations of interest to us are the insertion of a new node either as a leaf or 

by splitting an edge and the deletion of a leaf or straight throagh node (a node 

with only one child). W e  refer to the location of the new node or the parent of the 
node removed as the change point in the tree. We handle the insertion and 

deletion of nodes separately. 
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Theorem 5.1 An optimal bottom up partitioning of a binary tree can be updated 

to reflect a node insertion opemtion by uphting ot most 261 + 1 page definitions, 

when H is the page height of the partitioned tme p M r  to the operation. 

Proof: The optimai bottom up partionhg d e s  are based solely on information 

local to a sub-tree and its sibüng. Thdore ,  only pages containing nodes on the 

path upward fiom the change point to the root or those nodes' siblings can 

possibly change. For the same reason, within such pages only the decisions made 

at nodes on that path can change. In the remahder of the proof we consider what 

can happen when reapplying the optimal bottom ap partitioning d e s  to the 

nodes dong this path. The actual implementation of the insertion operation for a 

partitioned tree dosely follows the proof. 

At each stage in the recomputation of the tree partitioning, we have a node, i ,  that 

we are considering adding to a page and we have to detamine how its addition 

changes the page definitions. Initidy, i is the new node being inserted and the 

page is either the page containing i 's  parent if i is a ka€ or the page containing i's 

child otheraise (the only real problem is when i is inserted in an edge between 

two pages - in that case we select the lower page). Set hi, the page height of the 

node behg insded, to the page height of i's chjld or to one if i is a le&. 

Let h ,  be the page height of the current page. There are tao cases that have to 

be considered immediately: 

1. If hi < then à's sibling eithex haa page depth hpge or has a lesser page 

depth but is on its own fidl page. According to the partitioning d e s ,  i 

shotdd be placed on its own page. Once i is placed on its own page, then 

neither the page height nor the local page size of any already existing node 

are changed so the fernainder of the optimal bottom up partitioning is 

identical to the previous partitioning. 
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2. In the more general case, = b*, ne logidy add i to the page definition 

(we Say logically because this addition may cause the page size to errceed p). 

In the second case, ne have to continue reapplying the partitioning d e s  upward. 

FPst consider nodes 0th- than the mot of the page. For these nodes, the page 

height is tlflchanged so no partitioning decision b d  on page height nîll change. 

Additionally? the local page sizes for one child of these nodes has increased by 

exactly one but each of these was at most p - 2 before becanse these pages where 

later augmented with the node and its parent. So the increased local page size is 

still las than p and no partitioning decision based on page size wi l l  change either. 

Therefore the first node for which the partitioning decisions can change is the root 

of the page. Two possible sikations arise fiom application of the partitioning 

d e s  to the root of the page: 

1. If the mot of the page still fits on the page, the d e s  d o w  as to keep it in 

the page definition. The local page size and page height of any nodes further 

up the path to the mot of the tree are mchanged. Because these values do 

not change, the page definitions h m  the old partitionhg are valid. 

2. If the mot of the page no longer fits on the page, then its children and their 

sab-trees mnst be placed on th& own pages (if they are not aLeady). We 

then have to decide whae the d e s  place the old page root. If it is the root 

of the entire CPT, then they simply place it in its own page and the 

reapplication of the partitioning d e s  is eomplete. In general though, n e  

consider the effect of its insertion into its parent's page. f i e r  inczementing 

its page depth by one, the old mot becornes i and ne itesativdy apply the 

d e s  above to determine how its addition changes higher level page 

definitions . 

Based on this argument we see that only the definitions of the pages containing 



childten of the original page mots urn change daring an k t .  As rd, a new 

page definition may be required to hold the mot of the mtire CPT. There are at 

most 2 8  + 1 such pages ro the resuit foîlows. Q&v 

Theorem 5.2 An optimal bottom up  partitioning of o binary tree c m  be updated 

to reflect a node deletion operation by updating ut most H page definitions and 

removing ut most another l? - î page definittons, where E? ik the page height of 

the partiiioned t n e  prior to the opemtion. 

Proof: As with insert, we only need to consider the reapplication of the d e s  to 

nodes on the path upward fiom the change point to the rwt. Whiie the details 

are dinerent, the structure of the argument is the same as the insert case. At each 

stage we have a page that has had a node removed fkom it and we consider what 

happas as we reapply the partitioning d e s  on the path upward from the change 

point. Xnitially, this page is the one that used to contain the deleted node. 

There are three possible cases, 

1. The remaining page definition is empty and the decision to place the node 

on its oum page was based on its siblingfs page height (i.e. the sibling has a 

greater page height). In this case, ne remove the page definition. The 

removal of the node and its page does not have any effect on the decisions 

made at its parent because of the ciifference in page heights. The page 

height and local page size of $1 other nodes remain unchanged so the page 

delinitions from the origind partition are s t i n  vrrlid. 

2. The remaining page definition is empty and the dechion to place the node 

on its own page was based on the total of the locai page siees for it and its 

sibling. If the sibling now bas local page size p - 1 (it cannot be less), then 

the partitioning d e s  require the parent to be piaced on the sibling's page. 
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We remove the parent from its page definition ami are again in the position 

of having a page fiom which ne have removed a node and have to apply 

these same arguments to the parent page to detamine how the remainder of 

the partitioning might change. 0th- the s ibbgt  local page size is p, so 

the parent cannot be added to the page definition and, as b&e, the page 

height and local page size of ail other nodes remain unchangeci so the page 

definitions from the original partition are still valid. 

3. There are nodes remaining on the page. 

In the last case, we have to consider what happens as we reapply the partitioning 

rule within the page. Any decisions to aeate pages made when applying the d e s  

to nodes fiom the change point up to and induding the root of the page had to be 

based on the page height of the nodes becanse deasions based on local page siae 

break oE pages for both childrea. The page height of the nodes is unchanged so 

these decïsions wi l l  not change when the d e s  are reapplied. Thedore, the parent 

of the root of the m e n t  page is the first node on the npwerd path where the 

partitioning decisions might change. Note that if this node does not e t  then ne 

are at the root of the tree and the reapplication of the d e s  is eomplete. 

Otheraise, we have to consider the tao cases that am occar at this node: 

1. If the partitionhg deasion is unchanged then the page height and local page 

sïze of al1 nodes Wher np the path to the mot of the tree are also 

unchanged so the page definitions h m  the old partitionhg ean be used for 

the remabder of the upward path. 

2. If the partitioning decision changes to move the mot's parent (and possibly 

its sibling if it has the same page height) cm to the current page, then we 

remove that node fkom the parent page and updde the current page 

defini tion. 



In the second case, we are again le& wîth a page (the parent page) fkom which ne 

have removed a node and ne itexatively apply the arguments above. 

We have shown that the only nodes whose partitionhg decisi0118 can change are 

the parents of the rwts of the pages. For each of these ne rnay have to update the 

definition of both the root and its parent's page. As wen, we may have to delete 

the sibhg page definition. At mat  H page definitions can be updated and 

another H - 1 delinitions may be cemoved. (2m 
These two theorems lead immediatdy to the following result: 

Theorem 5.3 An optimd bottom up partüioning of a binury tne  con l e  

maàntained under node insertion and deletion operations by updating ut most 

2H + 1 page definitions pet operotion, where H is the page height of the 

partitioned Cree prior to the operation. 

Theorem 5.3 is quite pessimistic on the performance of the repartitioning process. 

As we d see, for the well balanced PAT tree, on average about one page is 

updated for eaeh node operation. Howeva, it is not difficnlt to constract trees 

such that an insert will require the fidl 2H + 1 page updates or a delete wiU 

require ii page updates and the removal of H - 1 page definitions. 

Dynamic Compact Pat Trees 

The dynamic CPT h obtained by combining the PAT tree insertion operations 

fkom Section 5.1 and the repartitioning procedure implicit in the proof of 

Theorem 5.3. We have to stress that, as in Chapter 4, we pdorm the partitionhg 

operations in temta of the tree made ap of the intelna nodes of the CPT. 
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5.3.1 Insertionof a Sunix 

When ioserting a new stdfu hto the CPT, we fint locate the page containhg the 

portion of the tree that must be changed by executing a search for the safnx (this 

search must f d  because gtlfEiXes are unique due to the end marker) and then 

determine the bit position at whieh the Sigix located at the kt ka€ encountered 

and the new safnx dina. The page containhg the portion of the tree that skips 

over that bit position is Ioaded into memory and the new saffir inserted into it. In 

the esse that the edge that contains the bit position spans a page boundary then 

the child page is ased 

The insertion of a s n f l i x  can resuit in one of three conditions: 

a an incresse of one in the number of interna1 nodes in the page, 

no change in the atmber of interna1 nodes in the page, 

a an increase of more than one in the number of nodes in the page. 

The latter two conditions are only possible due to the ase of ovdow nodes. In the 

second case, we can simply write the page back to secondary storage. This eannot 

invalidate the partitionhg because the page heights of dl nodes and size of the 

pages are nnchanged. The third case can be handled using muitiple invocations of 

the firat and is sdiciently rare that we do not concern oarselves with it. 

The steps perfomed aRer insettion are: 

1. if the s a t n x  pointer is inserted sdjaeent to another mfFix pointer*, then we 

have to consider the page height of the page into whieh it is being inserted. 

If the height of the page is greater than one then the new node and both 

leaves are split off into a new page sad repiaceû in the page with a pointer 

'Equivalently, we are iaserfing a leaf in the tzee of intenid nodes. 
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to the location of this page. Otheraise ne shply add the new node and leaf 

to the page. If the updated page fits in a block ne write it back and re are 

done. O t h d s e  we have to repdtion the page. 

2. if the s n f n x  pointer is inserted with an intanai node as its sibhg, then ne 

add the new intemal node and leaf. Again, if the updated page fits in a 

block we wxite it back and are done. Othedse we skip to the repartitioning 

phase. 

If the updated page is too large to dit on a block, then we have to adjust the 

partitionhg of the page and its parent page. The repartitioning process operates 

by piacïng the snb-tree chiltiren of the root in their own pages and then eitha 

placing the root on a new page or inserthg it in its parent's page depending on 

theh relative page heights. If the mot is inserted in its parent's page then that 

page may bemme too large and the process continues recnrsively. The steps to be 

foJlowed are: 

1. remove the root of the page snd write its non-leid children to secondary 

storage replachg them with pointers to where they were written. 

2. set the page height of the root node to one more than that of its children. 

3. if the page's root node is the mot of the entire CPT then write it to its own 

page and mark this page as the root page, 

4. &e if the page height of the mot's patent is the rame as the updated page 

height of the mot, then insert the root in the parent. If the updated page 

fits in a block then rrite it badt, otherrise tecursively repartîtion the 

puent page. 



5. otherrise the page height of the root'a patent is greater than the npdated 

page height of the mot so we write the mot to its own page and npdate the 

sttb-page pointer in the parent page. 

5.3.2 Deletion of a Sufax 

During the deletion of a safnr ,  the s& is h t  searched throngh the CPT to 

locate its leaf. That leaf and its parent are then removed and the sibling's skip 

value updated. Note that if the sibling is on anotha page, then updating its skip 

value reqnites a read and write of rreeondaty storage, In practice, this extra 110 

can be avoided if the cumulative oset  for the mot of each page is maintained in 

each page. We do not, however, cusrentty use this optimization. 

After delethg a snfnx  pointer f?om a page, there are again severai cases: 

0 a decrease of one in the number of nodes in the page, 

0 a decrease of more than one in the n& of nodes in the page, 

0 no change in the number of nodes in the page. 

As with insertion, we ody consider the fbt case. 

The repartitioning in the case of a deletion attempts to mage the ~itrrent page 

with its parent node and, if it has the same page height, its sibling page. If the 

combined structure fits in a block then their pages are combined and the resulting 

page ntitten b d .  The parent node is then removed 6rom its old page and that 

page is then considered for repartitioning. The steps pdormed aRer a deletion 

are: 

1. if the cnrrent page is the mot page then we are done, 
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2. else if the page height of the eiinent page and the page height of the sibling 

page are equal and the stun of th& &es plus one for theh patent is leas 

than or eqaal to p, then merge the pages and remove th& parent node fkom 

the parent page. k s i v e l y  repartition the parent page. 

3. else if there ras only one node in the page, then remove the page and 

replace the parent page's pointa to this page with the remaining le&, 

4. &e if the page height of the current page is greater than that of its sibling 

then move the parent node of the page fiom the parent page to the m e n t  

page and reansively repartition the parent page. 

5. othernise no fntther adjnstment is necessary and the page can be written 

back. 

For a balanced hee, the splitting and merging of pages disnissed hae is exaetly 

analogous to the spiitting and merging of nodes during Btree updates[42]. 

5.3.3 Block Layout on Secondary Storage 

While the optimal bottom ap partitioning d e  prodaees a wonrt case optimal 

partitioning, it can &O produce a large amber of small pages. In practice, many 

of these pages resdt nom sub-trees whose sibling tree h a  a higha page height. 

In sach cases, the partitioning d e  d d s  the parent into the child with the higher 

page height and ucloses off the other child irrespective of its size. Ueach page ia 

assigned its own disk blodt, these small pages w d l  resdt in v a y  Ion  stouage 

utilieation and high storage reqairements. For example, when aiiing a page size of 

8k bytes, the OED required 195994 pages so the naive dynamic index would 

require 1.5g bytes or nearly three tkaes the storage of the static index. Moreover, 

there is no guarantee that this multiplier does not get mach worse. 
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To deviate the probkm of s m d  pages, we piace multiple pages on each block of 

secondary storage. While there are many possible approaches to this problem, the 

m a t  g e n d  being Dynamic Bin PaelMg[ll], we adopt a simple approach based 

on primary storsge management techniques. We maintain &ee lists for storage 

regions of s k  24,24+', e.216P and manage these using a &binary buddy" [Il style 

splitting and codescing strategy within each block. During allocation, if there are 

no free regions of the appropriate size we recursively allocate fiom the next larger 

region and split the resdting region, using half for the page and leaving haf in 

the fiee page Est. If ne e v a  run out of fiee regions of the largest ske, a new block 

is allocated at the end of the index file. When a region b released, the fiee list is 

searched for the remaining half needed to return it to the next larger size. If the 

"buddy" region is fomd in the fiee list then the merged region is recarsively fieed 

to the next Isrger region class. While we codd set 4 to 1 and guarantee each 

allocated region is at least hdf fan, this interferes with the swings fkom su& 

trnncation and so is not worthwhile. 

5.3.4 Sufax Offsets 

In the static case, the bits in tnuicated s u 3 i x  ofkets were recovaed dnring 

searching by seaMing a range of 2' characters and finding the unique s a  that 

when searched in the CPT ended at the correct leaf. The same technique can be 

wed to k a t e  the conect saffix durîng the insertion operation. 

An alternate method for locating the s n f f i r  is based on the observation that the 

correct test s o f &  is that safnx in the range which matches the d i x  being 

inserted for the greatest number of bits. To see this, let i be the bit at tahich this 

s& diffas h m  the saffix being inserted. Consider any 0th- saffiir sta,rting in 

the range. It must fist diffa fiom the s& being inserted and the candidate test 

snf f ix  at some bit j where j < i. Ekom the properties of the PAT tree, bit j must 
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be tested at mme intemal node on the path fiom the mot to the candidate test 

safax.  Mmeover the sainr being inserted must match the test candidate at bit j 

0th- the search wodd have taken the other bganch at that node and not end 

at this leaf. 

The deciaion of which of these tao criteria to use wil l  depend on the relative 

speed of string cornparisons and tree operations in an actna implementation. 

Dnring deletio~u of sufiixes, we start a i th  the exact sufax offiet and can use the 

suf f ix  string to -ch the CPT and stop at the Mique leaf that needs deletion. 

As in the static case, any bits mincated from the sataxofkts &O have to be 

trancated h m  the page pointas. W e  accomplish this by setting the value of ko in 

the storage manager to the number of bits we need to tnuicate h m  the page 

pointers. Al1 pages are then aligned on a multiple of 2b and so ne  can truucate 

the low order bits. 

5.3.5 Pract icalit ies 

Many of the update operations reqaire howledge of the page height of sub-pages 

to make repartitioning decisions. Instead of retrieving the mb-pages to locate this 

information, we add one ftlrther element to the page pointa objects: the page 

height of the page behg pointed to. h practice, two bits are strfficient for this 

field because it can be stored as a Merence in page height between a page and its 

parent, sbifted by one to make use of zero. This requires a farther increase of 

by two. 

Finally, we have said nothing about the ocder of s d i x  insertions and deletions 

under the EDSS model. If we assame the stiffixes being updated are sparse in the 

lexicographically o r d d  set of the indexed s u 5 c e s ,  then little ean be done to 

Save reading a height one page per safn* (assnming updates occur near the leaves 

of the t~ee). However, by lexicographicdly sorting the snffixes and inserting or 
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deleting them in order, ne can avoid reading higher lwd pages more! than once 

eadi. This ordering can also be used to mage multiple page repartitioning and 

resizing operatiom. We do not amently make use of this optimization in ont test 

sys tem. 

5.4 Empirical Results 

Table 5.1: Improved Block Allocation 

The results of using the block allocation structure of Section 5.3.3 on the CPT 

index for the static OED is shown in Table 5.1. The k s t  row shows the number of 

pages and the index size for a text index using 4 byte pointers but no alignment 

of objects on secondary storage. The second row shows the index size when nsing 

naive page alignment. The remaining lines show the nnmber of blocks used for 

two leaf sizes d g  8k pages. Li the latter Lao cases, bits had to be tnuicated 

from the s&es and 4 had to be inaeased to d o w  for the smaILa leaf objects. 

These resuits have to be interpreted nith care because they do not include storage 

lost to extemal fkagmentation (blocks not enrrently allocated at aU) which would 

occur in a real system. 

For a more reaiistic test of the dynamic CPT, we g a t h d  an assortment of 161 

documents, prirndy English text, ranging in size from 21k to 1411k bytes. We 

then inserted ali bat one of these documents into a CPT using the algorithms 



descxibed here. Daring the insertion of the k t  document, ne recorded the 

number of page updates p d b r m d  dating the s d k  insections. The final 
document wntained 14482 index points and its insertion required 14597 writes of 

secondary storage f o ~  an average of 1-01 writes per index point. The final index 

size was 67m bytes on a total text size of 50m bytes d g  4 byte l d  objects. 

Cornparison Ot her Structures 

As with the static case, the most comparable stmctnres are the Pa%e and the 

SB-tree. Little data is availabIe about the dynamic PaWe so direct cornparison is 

not possible. However, it seems likdy that the concerns of the static case aill 

continue into the dynamic case. 

The SBtsee, being based on a B-tree, makes the transition to the dynamic case 

quite easily. Here it has h o  admtages: its guaranteed height and its guaranteed 

storage atilization. The latter propaty avoids the more complicated storage 

management reqaired by the CPT. These mut  be traded against the greater 

hinctionality and empkically fewer secondary storage accesses of the CPT. 



Chapter 6 

Conclusions 

This chapta presents a short overview of the results &eady discussed in this 

thesis and presents some areas for fatare research. Chapter 2 provided an 

overview of traversable compact tree representations and extended these methods 

to the MBRAM mode1 and trees with edge selection based on a label such as a 

trie. In Chapters three, four snd five, we have shown severai reptesentations for 

PAT trees that use significantly less storage than previous methods. In part idar,  

we have presented: 

r a new representation for static PAT trees in primary storage that $loris 

dcient  searcbing with an expect storage cost of less than 

3; + lg n + Ig lgig n bits p a  node for randorn text. Empiridy ne show the 

representation works weli for real world data. 

a a new representation for static PAT t~ees  in secondary storage that ne have 

shown empiridy is little larger than a s u f i ù  array and offers significantly 

better performance than that offèsed by ~offu asrays, partitioned Parnes or 

sstrees. 



a methods for managing the stractare mentioned above that aliow as to 

&ciently handle updates to documents on seconday storage. 

Eaeh of these strrictmeir represents a signifiant advance in our ability to search 

large bodies of textual data efficiently. 

6.1 Applications 

As stated in the introduction, our initial motivation for this work was the 

searching of large documents on CD-ROM. CD-ROM cliffers signXcant1y from 

magnetic disk in that the tost of seek operations is exkemely high when 

compared to magnetic dist When searching a d o m e n t  with a size comparable 

to the capacity of a CD-ROM (apprha te ly  600 mülion bytes at the t h e  of 

writing), a s d 6 . x  atray wilI require approximately 45 random seeks on the disk at 

a cost of roaghly 3/4 of a second each. Empirically, we see the structure presented 

in Chapter 4 searching files of this size in 3 disk accesses resulting in a 15 fold 

performance improvement. In addition to its uses in stzing processing, ne believe 

the CPT structure sin h d  mes in computationd biochemistry where it wil l  allow 

fast searching of even longer strings of genetic idornation. 

Finaliy, we beJieve the stmctnre presented in Chapter 5 is an extremely practical 

solution to the efficient phtase searching of large dynamic documents. It is yet to 

be seen if the added fiuictionality is d c i e n t  to make it a rival of inverted word 

lists in the large text database field, but it is dearly more suitable for many 

applications because of its ability to h a d e  string, phrase and regalat expression 

searchbg. Of parti& interest is the searching of genetic information because 

such data does not admit a word brddown. PAT trees have &O been found 

usenil for s01ving several other problems in text and data processing. In particnlar 

(see [24] unless o t h d s e  noted): 



Sesrchhg picture data. By convertiag pixel data to "semi-infinite spirab," 

Gonnet proposed the use PAT trees to create an index capable of geatching 

pictusea. 

Regular Expression searchg of text. Baeza-Yates and Gonnet show that 

PAT trees can be used to p d i  mgnh expression searches in sub-linear 

expec ted time[4]. 

Finding longest repeated strings. The deepest i n t d  node in the s& 

tree has as its children the occumences of the longest repeated substrings in 

the text. By attaching a single bit indicating which of the two chil&en is 
deeper to each intemal node a longest repeated sub-string can be etEciently 

located. In addition, given any string, the longest repeated continuation of 

that string can also be located. By adding a second bit to each node (to 

indicate two children of equal height), all of the longest repeated snb-strings 

can be located. 

0 Fiiding the most common continuation of a string. If each intemal node is 

labded with its size, sunix trees can be nsed to find the most common 

continuation of any string. With some work, similar techiques can be 

applied to PAT trees. This work is dosely relsted to work by Gomet e t  

d.. that uses the PAT ttee to generate randorn text that is "similar" to an 

input text. 

The s w e y  by Apostolico[3] gives an ovemiew of s e v d  0th- mes of sufn*  trees, 

most of which can be extended to PAT trees. There is no reason to beiieve that 

the structures reportecl here cannot be appüed to these and 0th- problems with 

equally suc ces^ results. 
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6.2 Future Work 

In addition to investigating the extensions above, we want to investigate the ase 

of compact tne sttnettues within other types of hee based stnicbes. The 

representations developed here are direetly applicable to implementing PATRICIA 

when the bits tested are monotone increasing and the diflerences in the ofbet of 

the test bits are, with high probability, smd. 0th- simih shactures may 

handle related cases. Shang ha9 invegtigated some applications of selated ideas to 

spatial data structures. An interesting problem remlu'ning fiom Chapter 2 2s the 
compact and efncïent representation of dynamic bin& or general trees. 
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Glossary 

This glossary contains deihitions for many of the topics diseassed in this thesis. 

In those cases where the fidl definition is too large to include here a page reference 

to the main text is giwn. 

rzi  

14 
aimost sure 

[*4 Iverson's convention. The expression [...] has a value of 
one if the contents of the expression are trne and zero 

otherwise. 

The representation of z in base 6. 

The smallest integer greater than or equal to z. 

The largest intega less than or equal to z. 

An event is aixnost sure if it ocears with probability- one. 

A sequence of jointly distnbuted random variables, R,,, 
convages dmost s d y  to R if P ma R,, = R) = 1. 

average trille optimal A tree partitionhg b average case optimal ifit minimizes 

the number of pages accessed when travelling 6om the 

rmt to a I d ,  averaged over aU leaves. 



biiary tree 

block 

block size 

case conversion 

Ali binaty ttees in this thesis are finite and rwted. A 

b i n q  tree consists of a distinguished node d e d  the 

mot. The mot may have a lefk snb-hee andlor a right 

sub-tree each of which must i t d  be a binary tree. See 

page 8 for more infarmation. 

A unit of data that am be tr811Sfmed to or fiom sec- 

ondaty storage in a single atomic operation. 

The size of a block. In Chapter 4 we use P to denote the 

block aize. 

The conversion of dl strings to either upper or lower 

case dtuing sesrching. Case conversion is fkequently nsed 

because in many applications the capitalization of a nord 

is not important. 

Catalan number C, = & ( y )  " the namber of binary trea with n 

character index An index that allows searching for matches that start  and 

end at any character position. 

convex partition A partition of a tree such that each page contains a con- 

nected portion of the tree. W ttee partitions considesed 

in this thesis are convex. 

degtee The degree of a tree node is the number of snb-trees of 

the node. 

extemal node A tree node is an externa1 node if it has no cbildren. 

Extemal noda are also d e d  leaves. 
mn+l EiiseCatdan number Ctm) = ( ) is the nnmber of m-ary kies with n 

nodes. 



general tree 

height 

index point 

k x 
Inz 

log 0 

MBRAM 

AU trees in this thesis are hite, rooted and ordezed. A 

general tree T is farmdly d&ed as a non-empty, finite 

set of nodes mch Chat there ia one disthguished node 

d e d  the mot of the tree, and the remaining nodes are 

partition4 into m 1 O disjoint sub-treea Tl, T2, T3...Tm 
where the order of the k e s  is signifiant. See page 8 fot 

more information. 

The height of a node b the length of the longest path 

fkom the node to a lea€ in its mb-hee. The height of a 

tree is the height of its root. Also see page height. 

A position in an indexed text that is a possible query 

r d t .  

A tree node is an intemal node if it has at least one child. 

A tree node is a lea€ if it has no chilien. Leaves are &O 

called external nodes. 

The base 2 logarithm of z. 

The nattual logarithm of z. 

A logatithm of z where the base is greater thaa one but 

otherwise unspecified. 

The base b logarithm of z. 

In a partitioned tree, the local page s i z e  of a node is the 

nnmber of nodes in the subttee rooted at the node that 

are on the same page as the node. 

A machine mode1 allowing table l w h p  and pointer 

dezeferencing operations as well as basic  thm me tic o p  

erations. See page IO for a fidl definition. 



ovedow node A node inserted into the CPT to handle a skip fidd that 

requkes more bits than are aVBi18bIe in a single node. See 

Page 

page height 

page 52 foi more inf0~1118tion. 

One contiguous section of a tree grouped as part of a 

partition. 

In a partitioned tree, the page height of a node k the 

maximnm numba of pages that occm on any path from 

the node to a led in its subtree. The page height of a 

partitioned tree is the page height of the mot of the tree. 

parent The parent of a tree node is the unique node having that 

node as a child. 

partition A breakdown of a tree into contiguous pieces, called 

pages, each of which can be represented in a single block. 

PATRICIA tree A searching structtue exploithg the binary encoding of 

the keys. Given a set of unique keys and a binary encod- 

ing of the keys, a PATRICIA txee is a search tree in which 

eaeh leaf contains one of the keys and each intemal node 

is labelled with the position of a bit that distinguishes 

the keys in the left sub-tree fkom those in the right sub- 

tree. We use the ibst bit that is not identical in dI the 

keys in a sab-tree to partition the keys into the lefk and 

PAT tree 

right sub-trees. 

A st i tnx  index created by using a PATRICIA tree to 

-ch the binary encodings of the suffixes of the text. 

See Figure 1.6 on page 16 for an example of a PAT tree. 



preftx code A code such that no code d u e  is a p r e k  of any other 

code value. 

r a d ( @  A fiinction that cornputes the number of 1s to the lefk of 

and inciuding position z in a bitmap. We also refis to 

the rank of the bit representing a node in a level order 

encoded tree as the r d  of the node, 

root The root h the unique node of a tree having alî other 

nodes in the tree as descendentir. See page 8 for a discus- 

sion of trees. 

seek time For a disk based media the seek time is the tirne taken 

to move the readjnrite head to the correct location for 

a transk. In this thesis we include 0th- factors snch as 

rotational latency in the seek thne. 

select (z) A fnaction that computes the location of the z'th 1 in a 

bit m a  p. 

sibling A tree node is a sibling of another node if they have the 

same parent. 

skip value The label on an internal node of a PATRICIA or PAT 
tree indicating the number of bits to skip to obtain the 

bit tested at the node. 

stemming The reduction of wotds to a canonid form for the pur- 

poses of searching. Word d i x e s  mch as "s," "hg" and 

%dn and occasionally prefures are often temoved daring 

se~~chjng if the exact form of the wotd i not important 

for the application. 



stop word 

su& index 

s u e  tree 

Any cornmon word that is ignored during searching. 

Words mch as 30," "the," uasn snd the wmious eoqju- 

gations of '%O ben are midy ignoced daring s e a d h g  

because they convey iittle idarmation m m p d  to other 

words in a query. Ignoring stop wmds in the index can 

sisnificantly reduce the size of an index. 

strictly bhary tree A binary tree h stndly binary if evay internai node has 

exact1y two cbildren. 

sufltrx A snbstring of a string that extends &om a given characg 

ter position to the end of the string. 

sufax array A satnx index aeated by lexicographidy sorting ail sd- 

fixes of the text and stoaing the ordered iist of snffix 

osets. 

An index that operates by searchhg the set of &es of 

the document. 

A s n f n x  index aeated by removing $1 degree one 

(straight through) nodes of a & trie. See Figure 1.5 

on page 16. 

s u f i  trie A snfax  index aeated by building a trie on the set of 

snff ixes of the text. See Figare 1.3 on page 13. 

transfer time The the taken achally t r d é r r h g  data to or fkom sec- 

o n d ~  storage, not including the seek tirne. 

trie A trie is a search tree in which each leaf contains one 

string key and each edge has a single character label. A 
key occarcl in the sub-tree roated at an interd node if 

and ody if the concatenation of the labels on the path 

nom the mot to the node are a prefix of the key. Each 
interna1 node bas chilâren for each continuation of its 

prek  that leads to one of the keys. 



word index 

The number of ones in the bioary sepresentation of z. 

A mode1 dcomputation thd assigns a wst of one to base 

operations on blocks of bits of size log n. 

An index that restncts queq answexs to &art and end 

on a word boundary, or, in the case! of a su& index, 

an index that restticts q u q  ammers to start on a word 

boundary. 

worst case optimal A tree partitionhg is womt case optimal if it mhimks 

the maximum number of paga aecessed when trav&g 

from the mot to any Ieaf. 




