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Abstract

Josephson junctions are dissipationless elements used notably in superconducting nanocir-
cuits. While being indispensable for the making of superconducting quantum bits, they
are plagued by intrinsic noise mechanisms that reduce the coherence time of the quantum
devices. An important source of such fluctuations may come from the non-cristallinity and
disorder of the oxide layer sandwiched between the two superconducting leads. In this work,
roughness in a Josephson junction is modeled as a set of pinholes with a universal bimodal
distribution of transmission eigenvalues that sum incoherently in the noise power. Each
of these channels is treated as a ballistic quantum point contact with a thin barrier that
determines the transmission eigenvalue. The noise spectrum is calculated using the quasi-
classical Green’s function method to analyze high and low transmission limits at non-zero
temperature for all interesting frequencies. As suggested by experiments, low transmission
channels generate shot noise while fast switching between subgap states creates strong
non-poissonian low-frequency noise. However, when analyzed for three different universal
models of disorder, the principal contribution to noise is found to come from the partially
opened channels. Finally, fluctuations of the noise from sample to sample is seen to be
dominated by the contribution of opened channels which may reduce the reproducibility
of results between different experiments.
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Chapter 1

Introduction

1.1 Quantum Computing with Superconducting Qubits

A quantum bit (qubit) [1] is the fundamental unit of quantum information. As a classical
bit can be either in the state 0 or 1, the state |ψ〉 of a qubit can be represented as a pure
superposition of computational states

|ψ〉 = α |0〉+ β |1〉 (1.1)

where |α|2 + |β|2 = 1. Universal quantum computation relies on the ability to implement
any unitary operator U on an initial state and take it to a desired final state.

|ψ (t)〉 = U (t, t0) |ψ (t0)〉 . (1.2)

However, the pure state description of the system may not be complete if there is uncer-
tainty in the preparation of the state. If we are given a system that has been prepared in
a state ψi with probability pi, then we can fully describe the ensemble of possible states as
a density operator

ρ =
∑
i

pi |ψi〉 〈ψi|. (1.3)

Given the density operator of a system, the amount of quantum information it contains
can be measured using Von Neumann’s entropy formula:

S (ρ) = −tr (ρ log ρ) . (1.4)
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This definition of the entropy implies that a pure state has no entropy and can be used as
a resource for quantum computing. On the contrary, Von Neumann’s entropy is maximal
if nothing is known about the given state. In the case of a fully mixed state, its density
operator is simply the unit matrix, which is invariant with respect to unitary transforma-
tions. Decoherence corresponds to an increase of the entropy of an open quantum system
when it leaks information to its environment.

The technological challenge of implementing a physical quantum computer [2] has been
divided in five objectives by DiVincenzo. To be used as a general purpose quantum com-
puter, a system should:
1. Have well defined addressable qubits
2. Be initializable to a pure state
3. Have access to a universal set of quantum gates
4. Allow the measurement of any qubit
5. Have a coherence time much longer than any gate implementation or measurements.

A promising technology for the implementation of quantum computers are supercon-
ducting nanocircuits. Superconducting materials are characterized by two important prop-
erties [3]: below a certain critical temperature they exhibit dissipationless current and they
expel all magnetic field from their bulk. While dissipationless currents means that no in-
formation should leak out of a circuit in the form of resistive heating, the later property,
known as the Meissner effect, allows flux and fluxoid quantization which is a fundamental
effect used by SQUIDs.

Furthermore, superconducting circuits have several other advantages. The fabrication
of micrometre to centimetre sized circuit is a very mature technological field requiring rel-
atively basic equipment to manufacture compared to modern semiconductors. Also, the
microscopic physics of simple superconductors has been well established for more than 50
years. The Bardeen-Cooper-Schrieffer (BCS) theory of Cooper pairing where electrons in
a metal pair up through an attractive phonon interaction explains all properties of con-
ventional superconductors. The paired electrons form a new collective ground state with
an energy lower than the usual Fermi surface. This collective state can be characterized
by an amplitude and a phase such that ψ (r, t) = |ψ (r, t)| eiφ(r,t). Let’s note that this wave
function oscillates on a scale which is much larger than the lattice spacing of the mate-
rial, implying that superconductivity can be seen as a macroscopic quantum phenomenon.
Supercurrent in superconductors is explained by the centre-of-mass movement of the collec-
tive state which is left invariant by the individual scattering of electrons on impurities, the
mechanism inducing resistivity in normal metals. Supercurrent is not carried by low-energy
excitations but is rather an equilibrium phenomena where the collective state acquire a
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spatially oscillating phase through a Galileo transformation. The effective charge of the
Cooper pairs carrying the current is twice the charge and mass of the electron and has
zero spin. Dissipative quasiparticles are separated from the condensate by an energy gap
∆ = 1.76kBTc, where Tc is the critical temperature of the superconductor. Therefore to
operate a superconducting device, the temperature must be lowered far below Tc and the
system must be electrically isolated from the environment to minimize dissipation. As
we’ll show in the following part, the dissipationless current can be used in principle to
make qubits with long coherence times.

1.1.1 Superconducting Nanocircuits

There are three important passive building blocks of superconducting circuits. While there
are no resistors, there are inductors, capacitors and Josephson junctions, which are the
characteristic elements of superconducting circuit. Josephson junctions are tunnel junc-
tions coupling two superconductors with arbitrary phases with and intermediate insulating
layer usually 2 to 3 nm thick. The spatial variation of the phase imposes a finite group ve-
locity of the condensate, which translate as an equilibrium supercurrent without applying
any voltage difference across the junction. If we know the gauge invariant phase difference
across the junction, the supercurrent is given by the first Josephson relation

I = Ic sin (φ) . (1.5)

The critical current Ic can be computed at finite temperature T using the Ambegaokar-
Baratoff formula if we know the normal state conductance of the junction GN and the gap
∆ of the superconductor:

Ic =
πGN∆

2e
tanh

(
∆

2kBT

)
. (1.6)

Let’s note that the phase difference across a Josephson junction can be by applying a
voltage difference V . This effect is described by the second Josephson relation

~φ̇ = 2eV. (1.7)

If we were to use conventional LC resonators to build qubits, the harmonic spectrum would
make the proper addressability of qubits impossible as all transitions of an harmonic oscil-
lator have the same energy. The inclusion of Josephson junction as non-linear inductance
allows one to engineer non-quadratic potentials which lift the degeneracy of level transi-
tions. Therefore Josephson junctions are key elements if one endeavor to build a practical
quantum computer out of superconducting nanocircuits.
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The allowed energy states of a classical circuit form a continuum. To implement quan-
tum processing devices, well resolved discrete energy states are required. Since the electrons
in a superconductor behave as a single collective state, Schrödinger’s equation describes
the dynamic of the circuit and discrete energies eigenstates can be found if the temperature
is low enough.

Here is an overview of the procedure to quantize the energy levels of an electrical circuit.
First write the Kirchhoff laws and extract an equation of motion as a function of the flux
Φ and its first time derivative. From this a Lagrangian can be found and transformed
to a Hamiltonian form from which we can proceed to do canonical quantization with
the appropriate commutation relation. Finally the energy spectrum can be solved from
Schrödinger’s time-independent equation. If a Josephson junction is present, the current
in Kirchhoff law is found from formula 1.5 using φ = 2π Φ

Φ0
. If several junctions are used

then the phases are found from fluxoid quantization.

1.1.2 Examples of Qubit Design

Three important circuit topologies have been developed to implement superconducting
qubits, namely the charge qubit, the flux qubit and the phase qubit [4].

Vg
gC

jC

Charge
Island

Figure 1.1: Circuit diagram of a charge qubit. The cross corresponds to the Josephson junction.
Cj is the junction capacitor and Cg is the gate capacitor. The number of Cooper pairs on the
island is controlled by the gate voltage Vg.

Charge qubit
An example of a charge qubit circuit is shown in figure 1.1. In a charge qubit, the degree
of freedom encoding the computational state is the number of Cooper pairs on a supercon-
ducting island formed between a gate capacitor Cg and a Josephson junction. By varying
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the gate voltage Vg, Cooper pairs can tunnel in and out the the island. Once extracted
with the method from the previous subsection and expressed in the charge representation,
the Hamiltonian of the charge qubit describe well this situation:

H = Ec (n+ ng)
2 − EJ

2

∑
n

(|n〉 〈n+ 1|+ |n+ 1〉 〈n|) . (1.8)

In this Hamiltonian, EC = 2e2

Cg+Cj
is the charging energy and EJ = Ic

Φ0

2π
is the Josephson

energy. Furthermore, n = Q
2e

is the discrete number of excess pairs on the island while

ng = CGVG
2e

, a continuous classical variable, is the gate voltage in units of charge number.
Charge qubits require that EC � EJ in such a way that the number of Cooper pairs on
the island is fixed around a certain value and the tunnelling rate is controlled by the ratio
of the junction area over its thickness. There exists a useful operating point at ng = n+ 1

2

in the energy diagram of the charge qubit such that small fluctuations of the gate voltage
will only induce second order fluctuations of the number of charges on the island. At this
“sweet spot” there are two energy wells separated from lower and higher energy levels, in
this case the Hamiltonian takes the simplified form

HSP =

(
ECn

2
g

EJ
2

EJ
2

EC (ng + 1)2

)
. (1.9)

It can be noticed that if the Josephson energy was to fluctuate, it would create undesired
transitions between the energy levels and increase the entropy of the qubit. Finally, mea-
suring the charge on the island can be done directly with a single-electron transistor or
dispersively by coupling the qubit to a cavity.

CIIB AC IJ

Figure 1.2: Circuit diagram of a phase qubit. A bias current IB creates an effective tilted
washboard potential in the Josephson junction (cross) and an alternating current source IAC
drives transitions between the qubit’s levels.

Phase qubit
An example of a phase qubit is shown in figure 1.2. In this device, the quantum information
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is encoded in the phase φ degree of freedom of a Josephson junction. By biasing the junction
at a given current IB, the equation of motion of φ obtained is analogous to the one of a
particle in a tilted washboard potential, where the phase is represented by the position of
the particle and the capacitance C by its mass. In the representation where φ and the
charge Q are conjugate variables [φ,Q] = 2ie, the Hamiltonian takes the form

H =
Q

2C
− EJ cos (φ)− IB

Φ0

2π
φ. (1.10)

If the current bias and the junctions parameters are chosen appropriately, the potential
can be made such that the solution to the Schrödinger equation has only 3 to 6 bound
states in each potential well at φ = π

2
. The plasma oscillation frequency of the lowest levels

of those wells is given by

ωp (I) = 2
1
4

(
2πI0

Φ0C

) 1
2
(

1− I

I0

) 3
2

. (1.11)

Those levels have different transition frequencies, which means they can be addressed
individually using an alternating current source IAC . The computational states are usually
chosen to be the ground state and the first excited state. Measurements can be done by
lowering the potential barrier such that the ground state probability of tunnelling stays
low but higher energy states quickly tunnel through the barrier, producing a stream of
quasiparticles and a voltage spike in accordance with the second Josephson relation. We
note that the potential barrier height is given by

∆U (I) =
2
√

2

3π
I0Φ0

(
1− I

I0

) 3
2

. (1.12)

Let’s remark that fluctuations of the critical current Ic modulate the barrier height which
has two possible effects. It broadens the levels of the qubit, which produces dephasing,
and it raises the chance of tunnelling out of the potential well, reducing the lifetime of the
qubit.

Flux qubit
An example of a third type of qubit, the flux qubit, is shown in figure 1.3. In this case,
the quantum information is encoded in states of clockwise and counterclockwise currents.
The flux Φ is such that the frustration of the loop

f = 2π
Φ

Φ0

= π, (1.13)
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E C
αC

C

αE

J

J

EJ
Φ

Figure 1.3: A circuit diagram of a flux qubit is shown. A loop with three Josephson junctions is
threaded by a flux Φ. The smaller junction is made such that α is around 0.8. The self-inductance
of the loop must be much smaller than the inductance of the junctions.

which means from fluxoid quantization that the sum over the phase of all junctions must
be equal to π. This is such that clockwise and counterclockwise states of currents have
the same energy. If the charging energy EC < EJ by a factor of about 40 to 80 and α is
around 0.8, then the energy barrier between the two states becomes small enough to allow
tunnelling between the opposing states of current. The tunnel coupling ∆ can be found
from a WKB calculation. This coupling implies that there exists a ground state with a
symmetric superposition of opposing currents and an excited state with an antisymmetric
superposition of currents. In its ground state, the system naturally implement a NOT
gate by cycling between states of opposing currents. By varying the frustration, we lift
the degeneracy between the clockwise and the counterclockwise currents, which creates a
Z gate. In the computational basis, the Hamiltonian is therefore

H =
1

2

(
Ip
(
Φ− Φ0

2

)
∆

∆ −Ip
(
Φ− Φ0

2

) ) , (1.14)

where Ip is the magnitude of the opposing currents which are created by the small junction
whose phase φ = π ± ε. The qubit state can be measured with a SQUID which collapses
the system to one of its classical states of current. We notice that if there are current
fluctuations in the Josephson junctions, this can create energy fluctuations and induce
dephasing. Also, since the critical current also modulates the height of the coupling barrier,
current fluctuations could produce undesired transitions between the levels of the flux qubit.

If we analyze superconducting qubits in the light of DiVincenzo’s criteria, we find that,
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using Josephson junctions, non-harmonic potentials with a few well defined levels can be
created. At very low temperature EC , EJ � kBT , qubits in thermodynamic equilibrium
are in their ground state, they can therefore be initialized. Gate implementations are
well mastered and can be very precise. Superconducting qubits can be coupled together.
Measurements can be done with a good fidelity. However, the qubits lifetime are not yet
sufficiently long to use them as memory. This is caused by decoherence for which a possible
cause is explored in the next subsection.

1.2 Current Fluctuations in Superconducting Qubits

The technology of superconducting qubits is evolving fast. However, we still haven’t
reached the point where we can do universal quantum computing with these devices. Their
limited lifetimes is currently the major source of errors during their operations as quantum
information processing devices. Despite their superconducting nature, they still dissipate
energy to the environment, which brings them back quickly to their ground state in a char-
acteristic time T1. Other unwanted interactions with the environment or control errors
may also be causing dephasing by making the qubits’ Hamiltonians fluctuate. However,
the qubits’ lifetimes do not have to be infinite to do universal quantum computation. In-
deed, if the error rate reaches below a certain threshold, fault-tolerant control schemes can
be implemented and we can then proceed with arbitrarily long computations. This is why
sources of decoherence must be identified and engineered out.

Several sources of decoherence are being investigated. For example, noise and dissipa-
tion may come from the Purcell effect, from dielectric losses, from sources of dissipative
quasiparticles, from flux noise, from surface defects interacting with the electron conden-
sate or from current fluctuations. In our case, we focus on current fluctuations and their
effect on the decoherence of superconducting qubits. Previous works on the subject [5] [6]
[7] [8] [9] [10] have been done for junctions at zero-frequency and finite voltage and for
quantum point contacts at finite frequency, but never for junctions at finite frequency and
vanishing voltage, which is the regime of operation of superconducting qubits.

At finite frequency ω, what are the possible sources of current fluctuations? At finite
temperature T there may be transitions between the internal states of the junctions re-
sponsible for charge transport. These states are called Andreev reflections, they are the
mechanism by which supercurrent is transformed into normal current in the junction’s ox-
ide layer. In a SNS structure, Andreev reflections going in and out of the normal layer form
a pair of bound states responsible for the Josephson effect. Unwanted thermal transitions
between these bound states may be a cause of current fluctuations. Furthermore, these
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bound states may have an imaginary part to their self-energy caused by electron-phonon
interactions or impurity scattering. Transitions within these energy bands may also be
sources of current fluctuations. Also, since the physics of Andreev reflection is strongly
dependent on the value of the transmission eigenvalues composing the junction, disorder
and chaotic transport may have an effect on the current noise spectrum. Disorder itself
may take different forms. It can come from the roughness of the junction, from its geom-
etry or from the quality of the crystal lattice. In this work, we will take a closer look at
the contributions to the noise spectrum by these sources of disorder. An analysis of their
impact on the sample-to-sample noise fluctuations will also be provided.

1.2.1 Measuring the Noise Spectrum with a Qubit

A qubit can be used as a spectrometer to experimentally access the noise spectrum of one
of its parameters [11]. To measure classical noise, we select a specific frequency to analyze
with a resonant circuit. The signal is then amplified and a square law detector such as a
diode rectifier measures the square amplitude of the noise at the chosen frequency.

Superconducting nanocircuits operating in the GHz frequency range and a few tens of
millikelvins enter a regime where ~ω > kBT for which quantum noise has to be measured
with quantum amplifiers and quantum detectors. While thermal noise in a resistor may
vanish at low temperature when thermal fluctuations progressively reach zero, quantum
fluctuations however remain even at T = 0. To measure the zero point motion of the noise,
a quantum system may be used. The spontaneous decay rate of such a system contains
information about the noise spectrum even at zero temperature. For non vanishing tem-
peratures, the spectrum will also contain blackbody radiation where stimulated emission
and absorption rates additional yield information about the noise spectrum.

Let’s suppose we have a two-level system with an Hamiltonian

H = −~Ω

2
σz, (1.15)

where Ω is a tunable frequency. An external noise source induces transitions of the two-
level system. The transition rate gives information on the amplitude of the noise at the
particular frequency Ω. The noise source with amplitude f (t) is modeled as a transition-
inducing perturbation

V = Af (t)σx, (1.16)

where A is the coupling constant to the measuring system. We suppose that initially the
system is prepared in its ground state and left to evolve freely under the perturbation until
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time t where its state is measured. First-order time-dependent perturbation theory can be
used to compute the average time evolution of the system. It is assumed that the noise
correlation function is stationary and has a small autocorrelation time τF � t. The noise
spectral density is defined as

Sf (ω) =

∫ ∞
−∞

dteiωt 〈f (t) f (0)〉. (1.17)

The correlation function can be computed from first principles using the Green’s function
method and it connects to different measurable quantities in experiments. One of those
cases is the transition rate if the system is initially in the ground state

Γ↑ =
A2

~2
Sf (−Ω) . (1.18)

Alternatively if the system is initially in the excited state we get

Γ↓ =
A2

~2
Sf (Ω) . (1.19)

For example, a resistor can be modeled as a set of harmonic oscillators in series [11]. Its
voltage fluctuations are given by

SV (ω) =
2R0~ω

1− e−
~ω
kBT

. (1.20)

At high temperature we obtain the Johnson noise SV (ω) = 2R0kBT while in the quantum
limit we get SV (ω) = 2R0~ωΘ (ω) where energy can only be absorbed. Another connection
of the noise spectral density with experiments is the steady-state polarization of the qubit
given by

Pss =
Γ↓ − Γ↑
Γ↓ + Γ↑

. (1.21)

If the system’s polarization is in a non-equilibrium state, then the relaxation rate to the
steady state is given by

Γ1 =
1

T1

= Γ↓ + Γ↑. (1.22)

So to fully describe quantum noise we need either the full spectrum at negative and positive
frequencies or the polarization and T1, which contain information on both the antisymmet-
ric and symmetric part of the noise.

From there, sample-to-sample fluctuations of the noise can easily be accessed by com-
puting the root mean square of the noise found for an ensemble of similar device.
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1.2.2 Overview of the Theoretical Method

In chapter 2, we will compute the noise spectrum for an arbitrary superconducting channel.
This will provides insights on the mechanisms of current noise involving thermal transitions
between the microstates of a junction and give us a building block to analyze the effect of
disorder in Josephson junctions in chapter 3.

Since finite frequency noise at finite temperature involves absorption and emission of
energy inside a Josephson junction, it has to be treated with non-equilibrium methods of
many-body physics. The Keldysh formalism is the appropriate tool to tackle the problem
and it will first be introduced. Also, since transport in superconducting system is especially
related to the physics of states near the Fermi surface, the quasiclassical method for Green’s
functions will be introduced briefly.

After we will describe the model of a SNS channel and find the complete form of
the Green’s functions which are solutions to the Gor’kov equation in this model. From
there, numerical tools are used to compute the noise for a channel at arbitrary frequency,
temperature, relaxation rate, phase and transparency. We will vary these parameters and
analyze their effects on the current noise in regimes similar to those of superconducting
qubits.

In the last chapter we will use that knowledge to compute the average noise and the
sample-to-sample noise fluctuations of disordered structures like diffusive wire, chaotic
cavities and dirty interfaces. These structures model different types of Josephson junctions.
Their similarities and differences will be highlighted.
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Chapter 2

Non-equilibrium Transport in
Josephson Junctions

2.1 Keldysh Formalism

2.1.1 General Concepts

The many-body Green’s function method is a powerful tool of condensed matter physics[12][13].
The determination of the Green’s function of a given system gives access to all its physical
observables at equilibrium for any temperature. The effects of time independent interac-
tions between particles of many-body systems can be computed using Feynman diagrams
and a Dyson equation can be used to compute the perturbation expansion up to any desired
order.

In the case where the disturbance of the system is time-dependent and produces transi-
tions between the states of the system, other methods need to be employed. The standard
linear response theory being only valid up to first order in the disturbance, a more general
Green’s function approach is required to compute the effects of the perturbation up to any
order. The tool for this job is the nonequilibrium Green’s function method which uses
several Green’s functions to characterize a contour along the real time axis instead of the
standard time-ordering procedure. Its most elegant form being the Keldysh formulation,
we proceed to show in this section how the new Green’s functions are defined and how
they can be applied to problems involving superconductivity.

The standard method [14] to obtain a nonequilibrium state is to first consider an en-
semble of interacting particles such that their time-independent Hamiltonian has the form

12



H = H0 + H i, where H0 represents the free particles and H i contains the information
about their mutual interactions. The system is assumed to be in thermodynamic equilib-
rium until time t0, where a disturbance H ′ (t) is turned on such that the full Hamiltonian
becomes H (t) = H + H ′ (t). The average value of an observable of interest can then be
computed in the Heisenberg picture

〈OH (t)〉 = Tr [ρ (H) OH (t)] . (2.1)

At equilibrium, the density matrix is known to be ρ (H) = e−βH

Tr{e−βH} from statistical me-

chanics and it is computable for quadratic Hamiltonians such as mean-field BCS. The grand
canonical ensemble is used where particle energies are measured relative to the chemical
potential µ.

The lesser and greater Fermionic Green’s functions linking the measurable observables
to the easily calculable quantities are defined as

G< (1, 1′) = i
〈
ψ†H (1′)ψH (1)

〉
G> (1, 1′) = −i

〈
ψH (1)ψ†H (1′)

〉 . (2.2)

The notation where 1 → r1, t1 is used. In principle, any single-particle operator can be
expressed as a function of those Green’s functions. A closed time path Green’s function

t t
t

t

0
1

1’

c

Figure 2.1: Closed time path contour c. The contour starts at t0, goes to t and then comes back
to t0 by following the real axis.

with a simple perturbation expansion can be defined on the contour c shown in figure 2.1:

G (1, 1′) = −i
〈
Tc

[
ψH (1)ψ†H (1′)

]〉
. (2.3)

In this case, Tc orders the field operators according to the position of their time argument
on the contour c such that

G (1, 1′) =

{
G> (1, 1′) t1 >c t1′
G< (1, 1′) t1 <c t1′

(2.4)
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t
t

0

ct

Figure 2.2: Transformation contour ct. A single time argument starts and ends at t0.

This new Green’s function now contains all the information on G> and G<. The opera-
tor OH in the Heisenberg picture should now be represented as a function of OH in the
interaction picture with respect to H using

OH (t) = u† (t, t0)OH (t)u (t, t0) (2.5)

where

u (t, t0) = T exp

(
−i

∫ t

t0

dt′H′H (t′)

)
. (2.6)

Here T is the usual time ordering operator and H ′H (t) is H ′ (t) in the interaction picture
with respect to H. Equation 2.5 can be rewritten in the form

OH (t) = Tct

{
exp

[
−i

∫
ct

dτH′H (τ)

]
OH (t)

}
(2.7)

where ct is the contour shown in figure 2.2. The Green’s function in the interaction picture
with respect to H is then given by

G (1, 1′) = −i
〈
Tc

[
SHc ψH (1)ψ†H (1′)

]〉
(2.8)

where c is the contour shown in figure 2.1 and

SHc = exp

[
−i

∫
c

dτH′H (τ)

]
. (2.9)

To use Wick’s theorem, we must go in the interaction picture with respect to H0 which
is assumed to be quadratic with respect to the field operators. The following relation is
used

e−βH = e−βH0T exp

[
−i

∫ t−iβ

t0

dt′Hi
H0

(t′)

]
, (2.10)
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t t
t

t

0
1

1’

ci

t0-iβ

Figure 2.3: Interaction contour ci. This contour is similar to figure 2.1 but it adds an imaginary
part to account for the initial thermal equilibrium between the particles.

where H i
H0

(t) is H i in the interaction picture with respect to H0. We get

G (1, 1′) = −i
Tr
[
e−βH0Tc

(
SciScψH0 (1)ψ†H0

(1′)
)]

Tr [e−βH0Tc (SciSc)]
(2.11)

where
Sci = exp

[
−i
∫

ci dτHi
H0

(τ)
]

Sc = exp
[
−i
∫

c
dτH′H0

(τ)
] (2.12)

Let’s note that ci is the interaction contour shown in figure 2.3. Wick’s theorem is valid for
those contours, we can use it just as in equilibrium theory to extract Feynman diagrams
of a perturbation expansion for G. Equilibrium and nonequilibrium statistical mechanics
have the same form and structure, except that the later orders field operators around
a contour instead of the usual time ordering procedure for the equilibrium case. In the
density matrix formalism, the bra vectors are propagated backward from t to t0 while the
ket vectors are propagated in the forward time direction.

The part of the contour from t0 to t0 − iβ in figure 2.3 contains the information about
the initial conditions which can be discarded and imposed directly on the integral form of
the Dyson equation. We can let t0 → −∞. Since the evolution operator is unitary, we
can also set the largest time to +∞ in such a way that the contours c and ci becomes the
same. This is the Keldysh contour a shown in figure 2.4 that extends from −∞ to +∞ in
c1 and then back from +∞ to −∞ in c2.

The Green’s function GcK defined on the Keldysh contour takes different values depend-
ing on the relative position of the time arguments t1 and t1′ . It can therefore be mapped
onto a matrix space such that

GcK (1, 1′) 7−→ Ğ ≡
(
G11 G12

G21 G22

)
. (2.13)
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c1

2c

Figure 2.4: The Keldysh contour cK run from t = −∞ to t = +∞ along the real time axis and
then back again.

The time arguments t1 and t1′ of the Gij (1, 1′) respectively reside on ci and cj. The
components can be written as

G11 (1, 1′) = −i
〈
Tc1

[
ψH (1)ψ†H (1′)

]〉
G12 (1, 1′) = G< (1, 1′)
G21 (1, 1′) = G> (1, 1′)

G22 (1, 1′) = −i
〈
Tc2

[
ψH (1)ψ†H (1′)

]〉 (2.14)

Since these components are not linearly independent, there exists a more convenient repre-
sentation of GcK such that one-body coupling has the simplest possible form using standard
and retarded Green’s functions. Using the following identities

GR (1, 1′) = G11 (1, 1′)−G12 (1, 1′)
= G21 (1, 1′)−G22 (1, 1′)

GA (1, 1′) = G11 (1, 1′)−G21 (1, 1′)
= G12 (1, 1′)−G22 (1, 1′)

GK (1, 1′) = G21 (1, 1′) +G12 (1, 1′)
= G11 (1, 1′) +G22 (1, 1′) ,

(2.15)

the Green’s function GcK can then be mapped onto the matrix Ǧ such that

GcK (1, 1′) 7−→ Ǧ ≡
(
GR GK

0 GA

)
. (2.16)

In the case of superconducting transport, the standard field operator are replaced by the

Nambu pseudospinor field ψ̂ =

(
ψ↑
ψ†↓

)
. This implies that ĜR,ĜA and ĜK must written in

particle-hole space (Ĝ notation) to account for the pairing interaction of superconductors.

16



The lesser and greater Green’s functions for superconductors are then given by

Ĝ> (1, 1′) = −iτ̂z

 〈ψ↑ (1)ψ†↑ (1′)
〉
〈ψ↑ (1)ψ↓ (1′)〉〈

ψ†↓ (1)ψ†↑ (1′)
〉 〈

ψ†↓ (1)ψ↓ (1′)
〉  ; (2.17)

Ĝ< (1, 1′) = iτ̂z

 〈ψ†↑ (1′)ψ↑ (1)
〉
〈ψ↓ (1′)ψ↑ (1)〉〈

ψ†↑ (1′)ψ†↓ (1)
〉 〈

ψ↓ (1′)ψ†↓ (1)
〉  . (2.18)

The diagonal elements are the standards Fermionic Green’s functions, while the off-diagonal
elements take care of the effect of Cooper pairing. These last components have a non-zero
expectation value because the BCS ground state does not conserve the number of particles.
A useful approximation can be made to simplify the calculation of the properties of struc-
tured superconducting nanodevices. Assuming the the interesting physics of transport in
Josephson junctions is determined by a thin band of states near the Fermi surface, we
introduce the quasiclassical approximation in the next subsection.

2.1.2 Quasiclassical Superconductivity

The Green’s function is known to oscillate in the relative coordinates |r1 − r2| roughly
at the Fermi wavelength 2π

pF
[15]. These oscillations are much shorter than the coherence

length vF
∆

of the superconductors used in typical nanocircuits. In problems involving the
proximity effect or Andreev reflections, we can ignore the information from fast oscillations
by integrating out the relative coordinates dependence since the physics of transport in
Josephson junction depend on the ratio ∆

EF
which is always small[16]. Indeed, after doing a

spatial Fourier transform, we find the Green’s function is highly peaked at |p| = pF . How-
ever it is important to keep its dependence on the direction of pF for transport problems.
The quasiclassical approximation then involves keeping only the terms proportional to the
first order spatial derivatives in the equation defining the Green’s function. If we define
ξ = p2

2m
− µ, the quasiclassical Green’s function can be written [17] as

ǧ (r,vF , E) ≡ i

π

∫
dξǦ (ξ,vF , r, E). (2.19)
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2.2 Transport Through a Ballistic Quantum Point Con-

tact

2.2.1 The Model

L R
z

Scatterer
Ballistic zone
Isotropization zone

Figure 2.5: A channel is divided in three zones to account for the boundary conditions on both
sides of the scatterer and in the terminals[18].

As shown in figure 2.5, a conduction channel is modelled as a device with two terminals
such that their Green’s function is static and given by ǦL on the left and ǦR on the right.
A ballistic region contains a scatterer with potential U (z) whose dimensions are assumed
to be much small than the Fermi wavelength and the mean free path of the electrons and
holes[10]. In this region it is assumed that the kinetic energy of the particles is conserved
such that we can describe the transport of electrons using a transfer matrix without any
loss. Finally an isotropization zone is used to describe the relaxation process by which the
Green’s function in the ballistic zone is conditioned to relax to its value in the terminals.
This can occur through scattering with phonons or impurities and this is where the self-
energy picks up an imaginary part.

In one dimension, the Gor’kov equation defining the Keldysh Green’s function Ǧ is [19](
iτ̌z

∂

∂t
+

1

2m

∂2

∂z2
+ ∆̌− Φ− U − Σ̌ + µ

)
Ǧ (z, z′; t, t′) = 1̌δ (z − z′) δ (t− t′) (2.20)

as well as its conjugate. The Nambu-Keldysh Green’s function has the form Ǧ =

(
ĜR ĜK

0̂ ĜA

)
and the self-energy can be written as Σ̌ =

(
Σ̂R Σ̂K

0̂ Σ̂A

)
. The product denotes a convolu-
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tion in the internal time argument

Σ̌Ǧ =

∫
dt1Σ̌ (t, t1) Ǧ (t1, t

′) . (2.21)

The potential U (z) is such that

εFL + U (z < −δ) = εFR + U (z > δ) = µ (2.22)

and the chemical potential µ remains constant through the system. Also, a matrix τ̌z =(
τ̂z 0̂

0̂ τ̂z

)
is defined and the pairing matrix takes the form

∆̌ =

(
∆̂ 0̂

0̂ ∆̂

)
∆̂ =

(
0 ∆
−∆∗ 0

)
. (2.23)

If we suppose that the Fermi energy is the same on both side εF = εFL = εFR, then
condition 2.22 allows to rewrite equation 2.20 as(

1

2m

∂2

∂z2
+ εF + iτ̌z

∂

∂t
+ ∆̌− Φ− Σ̌

)
Ǧ (z, z′; t, t′) = 1̌δ (z − z′) δ (t− t′) . (2.24)

2.2.2 Quasiclassical Approximation

We want to obtain a function Ǧ (z, z′) which is continuous at z = z′ and can be evaluated
at any point of the channel. We can expand the Green’s function as

Ǧ (z, z′) =
∑
pz ,p′z

eipzz−ip
′
zz
′
Ǧpzp′z (2.25)

It is strongly peaked around |pz| = pF , to take this into account we can replace pz by pF
and represent the quasiclassical function as

Ǧ (z, z′) =
∑

σ,σ′=±1

eipF (σz−σ′z′)Ǧσσ′ (2.26)

where σ and σ′ are the directions of propagation. The functions Ǧσσ′ have the property
that ∂2

∂z2 Ǧσσ′ (z, z
′) ≈ 0. Using this property, we can show that(

1

2m

∂2

∂z2
+ εF

)
Ǧ (z, z′) =

∑
σ,σ′=±1

eipF (σz−σ′z′)iσvF
∂

∂z
Ǧσσ′ (z, z

′) (2.27)
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In the case z 6= z′, the Dirac delta δ (z − z′) of equation 2.24 becomes zero and each
component of the left-hand side becomes(

iσvF
∂

∂z
+ iτ̌z

∂

∂t
+ ∆̌− Φ− Σ̌

)
Ǧσσ′ (z, z

′) = 0̌. (2.28)

We can get the conjugate equation in a similar way

Ǧσσ′ (z, z
′)

(
−iσ′vF

∂

∂z′
− iτ̌z

∂

∂t′
+ ∆̌− Φ− Σ̌

)
= 0̌. (2.29)

To match the functions Ǧσσ′ (z, z
′) at z = z′, we impose the continuity condition

Ǧ (z + 0, z) = Ǧ (z − 0, z) (2.30)

and find the jump in the spatial derivative by integrating equation 2.24 from z = z′− 0 to
z = z′ + 0 such that [

∂

∂z
Ǧ (z, z′)

]z=z′+0

z=z′−0

= 2m1̌δ (t− t′) . (2.31)

By replacing 2.26 into 2.30 and 2.31, we get the continuity condition of the Ǧσσ′

Ǧσσ′ (z + 0, z)− Ǧσσ′ (z − 0, z) = − iσ
vF

1̌δσσ′δ (t− t′) . (2.32)

This condition is satisfied if we define the components as

Ǧσσ′ (z, z
′; t, t′) = − i

2vF
[ǧσσ′ (z, z

′; t, t′) + σδσσ′δ (t− t′) sign (z− z′)] (2.33)

where the functions ǧσσ′ are continuous at z = z′.

We go in the center-of-mass frame z̄ = z+z′

2
and ∆z = z − z′[20]. This allows us to

define two new functions where the fast oscillation in ∆z has been integrated out. In the
case σ = σ′ we get

ǧ ≡ ǧσ (z̄; t, t′) =
∑
σ′

∫
d (∆z) eiσ

′pF∆zδσσ′Ǧσσ′

(
z̄ +

∆z

2
, z̄ − ∆z

2
; t, t′

)
. (2.34)

In the case σ = −σ′, we find

Ǧ ≡ Ǧσ (z̄; t, t′) =
∑
σ′

∫
d (∆z) eiσ

′pF∆z [1− δσσ′ ] Ǧσσ′

(
z̄ +

∆z

2
, z̄ − ∆z

2
; t, t′

)
. (2.35)
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If we integrate equations 2.28 and 2.29 with the operator
∑

σ′

∫
d (∆z) eiσ

′pF∆zδσσ′ and
subtract them then we get the quasiclassical equation for ǧ:

σvF
∂

∂z̄
ǧ + τ̌z

∂

∂t
ǧ +

∂

∂t′
ǧτ̌z + Ȟ (t) ǧ − ǧȞ (t′) + i

(
Σ̌ǧ
)

(t, t′)− i
(
ǧΣ̌
)

(t, t′) = 0̌. (2.36)

Here iȞ (t) = ∆̌ (t)− Φ (t). In the same way, if we integrate equations 2.28 and 2.29 with
the operator

∑
σ′

∫
d (∆z) eiσ

′pF∆z [1− δσσ′ ] and add them then we get the quasiclassical
equation for Ǧ[19]:

σvF
∂

∂z̄
Ǧ + τ̌z

∂

∂t
Ǧ − ∂

∂t′
Ǧτ̌z + Ȟ (t) Ǧ + ǦȞ (t′) + i

(
Σ̌Ǧ
)

(t, t′) + i
(
ǦΣ̌
)

(t, t′) = 0̌. (2.37)

2.2.3 Boundary Condition from the Scatterer

Now we take care of the boundary condition at the scattering interface. It is assumed that
the barrier potential U (z) varies smoothly compared to the interatomic distance such that
the scattering formalism can be used. The transfer matrix M̄ relates the wavefunctions on
the right (ψRσ ≡ ψσ (z̄ > 0)) to the wavefunctions on the left (ψLσ ≡ ψσ (z̄ < 0)) such that

ψLσ =
∑
σ′

M̄σσ′ψ
R
σ′ (2.38)

The Green’s functions Ǧσσ′ transform as a product of wavefunctions such that

ǦL
σσ′ =

∑
σ′′,σ′′′

(
M̄ †)

σ′σ′′′
ǦR
σ′′′σ′′M̄σ′′σ′ (2.39)

If we plug back equation 2.33 into 2.39 we get

ǧLσσ′ =
∑
σ′′,σ′′′

(
M̄ †)

σ′σ′′′
ǧRσ′′′σ′′M̄σ′′σ′ (2.40)

The bar notation was introduced Ā ≡
{
Ǎσσ′

}
for matrices whose elements are the Keldysh

matrices over the different directions σ and σ′. Some important properties of the transfer
matrix will be used. If the matrix Σ̄z

σσ′ ≡ σδσσ′ is defined, conservation of probability
imposes a pseudo-unitarity condition for the transfer matrix

M̄Σ̄zM̄ † = Σ̄z. (2.41)
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The transmission eigenvalues of M̄ will be extracted using the self-adjoint matrix Q̄ =
M̄ †M̄ and its inverse Q̄−1 = Σ̄zQ̄Σ̄z, which have the same set of inverse pairs of eigenvalues.

Let’s make the boundary condition 2.40 more meaningful. We introduce quasiclassical
Green’s functions symmetrical and antisymmetrical in direction space such that ǧσ (z̄) =
ǧs (z̄) + σǧa (z̄) and Ǧσ (z̄) = Ǧs (z̄) + σǦa (z̄). The antisymmetric Green’s function is

ǧa (z̄) =
1

2

∑
σ=1,−1

σδσσ′ ǧσ (z̄) =
1

2
Trσ

[
Σ̄zḡ (z̄)

]
(2.42)

where Trσ
(
Ḡ
)

=
∑

σ=1,−1 Ǧσσ and in the same way,

ǧs (z̄) =
1

2
Trσ [ḡ (z̄)] . (2.43)

For the reflection Green’s functions Ǧσ, we introduce a matrix Σ̄x such that Σ̄x
σσ′ = 1− δσσ′

is 1 if σ 6= σ′ and 0 if σ = σ′. Then we have

Ǧa (z̄) =
1

2
Trσ

[
Σ̄zḡ (z̄) Σ̄x

]
(2.44)

and

Ǧs (z̄) =
1

2
Trσ

[
ḡ (z̄) Σ̄x

]
(2.45)

Using 2 + MM † +
(
MM †)−1

= 1
4

(
tt† 0
0 t′†t′

)
, as well as the cyclical property of the

trace and the properties of the transfer matrix we get the set of four conditions imposed
by the scattering interface

ǧRa = ǧLa ≡ ǧa
ǦRa = ǦLa ≡ Ǧa

ǧRs − ǧLs = −
√
R
(
ǦRs + ǦLs

)
√
R
(
ǧRs + ǧLs

)
= ǦLs − ǦRs

(2.46)

where R = 1−D.

2.2.4 Isotropization

Far from the boundary (z̄ � l), the current and the particle density can be expressed in
terms of the standard quasiclassical Green’s function ǧσ (z̄). Let us express the boundary
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condition as functions of ǧσ (z̄). Indeed, it is possible to establish the following relations
[19]:

ǧσǦσ = sign (z̄)σǦσ (2.47)

ǧ2
σ = 1̌δ (t− t′) = 1̌ (2.48)

From these we can show that {ǧs, ǧa} = 0̌ and (ǧs)
2 + (ǧa)

2 = 1̌. From there, we define
ǧ±s = 1

2

(
ǧRs ± ǧLs

)
for which we can show that {ǧ+

s , ǧ
−
s } = 0̌ and {ǧ±s , ǧa} = 0̌. The

boundary conditions 2.46 can be rewritten using only ǧσ’s [19]:

ǧa

[
R
(
ǧ+
s

)2
+
(
ǧ−s
)2
]

= Dǧ−s ǧ
+
s (2.49)

The solution to equation 2.36 can be written in the form [21]

ǧσ (z̄) = e
−Ǩ(z̄) z̄

vF Čσ (z̄) e
Ǩ(z̄) z̄

vF + ǦBulk (z̄) (2.50)

where vF
∂
∂z̄
Čσ (z) = 0̌. Using 2.46, we get ČL

a = ČR
a ≡ Ča where Ča (z̄) = 1

2

∑
σ σČσ (z̄).

To make sure that limz̄→±∞ ǧσ (z̄) = Ǧ
R/L
Bulk, we get the conditions

ǧσ (z̄) Čσ (z̄) = −sign (z̄)σČσ (z̄)
Čσ (z̄) ǧσ (z̄) = sign (z̄)σČσ (z̄)

(2.51)

We define Ǧ±Bulk = 1
2

(
ǦR

Bulk ± ǦL
Bulk

)
. These relations imply that ǧ+

s = Ǧ+
Bulk + Ǧ−BulkČa

and ǧ−s = Ǧ+
BulkČa + Ǧ−Bulk. We have

{
Ǧ±Bulk, Ča

}
= 0̌ and

(
Ǧ+

Bulk

)2
+
(
Ǧ−Bulk

)2
= 1̌. From

this we can show using 2.49 that

ǧa = DǦ−BulkǦ
+
BulkŇ

−1 (2.52)

where Ň = 1̌−D
(
Ǧ−Bulk

)2
. After some algebra we get

ǧRs = D
(
Ǧ+

Bulk +RǦ−Bulk

)
Ň−1 (2.53)

Finally, using 2.47, we get [22]

Ǧa = −
√
RŇ−1 (2.54)

ǦRs = −
√
RǦR

BulkŇ
−1 (2.55)
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2.2.5 Bulk Solutions

Let’s note that the bulk solution to the quasiclassical equations are given by [19]

ǧj (t, t′) = Šj (t) ǧ (t− t′) Š†j (t′) (2.56)

where ǧ (t) =
∫
ǧ (ε) e−iεt dε

2π
and the matrices

Šj =

(
Ŝj 0̂

0̂ Ŝj

)
Ŝj =

(
ei
φj
2 0

0 e−i
φj
2

)
. (2.57)

The retarded and advanced Green’s functions take the form

ĝR(A) = gR(A)τ̂z + fR(A)iτ̂y (2.58)

where
gR(A) =

( ε
∆

)
fR(A) =

ε√
(ε± iγ)2 −∆2

. (2.59)

In the energy representation, the homogeneous Green’s function take the form

ǧ (ε) =

(
ĝR (ε)

[
ĝR (ε)− ĝA (ε)

]
tanh

(
ε

2T

)
0̂ ĝA (ε)

)
. (2.60)

2.2.6 Computing Observables

We can extract the bound state energy by setting Ň = 0̌ and we find

EJ± = ±∆

√
1−D sin2

(
φ

2

)
. (2.61)

These energies are plotted in figure 2.6, where it can be seen that the pair of levels is
pinned at the Fermi surface when D = 1 and φ = π. When we change the phase, the
degeneracy of the bound states is lifted and the level gets closer to the gap. At D = 0 or
φ = 0, the bound state energy becomes pinned to the gap energy. The density of states
can be computed from

N (ε) =
N0

4
Tr
(
ĝK

s

)
. (2.62)

The noise at a given frequency moves a particle from an occupied state at energy ε to an
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Figure 2.6: Bound state energy as a function of phase φ for different transparencies D.

empty state with energy ε± ω. As seen in figure 2.7, the density of states depends on the
phase difference and the transmission eigenvalue across the channel while the temperature
determine the occupancy of those states. At temperature T � ∆, there can be four
possible processes for the generation of noise. First there can be low-frequency transitions
within a bound state with non-zero linewidth. A second type of transitions between bound
states can also occur for ω < ∆. Furthermore, there can be transitions between a bound
state to the continuum of states (ε > ∆). Finally we should observe transitions from one
continuum to the other when ω > 2∆.

If one was interested in computing the current in the junction, the first quantity to
evaluate [18] would be the matrix current

〈
Ǐ
〉

=
2e2

π
ǧa. (2.63)

However, we note that the matrix current does not contains enough information to compute
the noise, which is treated in the next section. The electrical current could be computed
from this quantity using

〈I〉 =
1

4e

∫
dεTr

(
τ̂zÎ

K
)

(2.64)

where ÎK is the Keldysh component of Ǐ. This last formula would be sufficient to recover
the first Josephson relations as well as the Ambegaokar-Baratoff formula in the limit of
small D. Let’s finally note that the frequency and phase-dependent Fano factor, which is
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Figure 2.7: (Left) Density of states as a function of phase for a perfectly transmitting channel.
(Right) Density of states for different transparencies when φ = π.

the ratio of the variance over the average current, is given by

F =
SI (ω, φ)

〈I (φ)〉
. (2.65)
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2.3 Supercurrent Noise

The symmetrized current-current correlation function is defined [22] as

KI (t1, t2) = 1
2
〈δI (t1) δI (t2) + δI (t2) δI (t1)〉

= 1
2
〈I (t1) I (t2) + I (t2) I (t1)〉 − 〈I (t1)〉 〈I (t2)〉 (2.66)

where I (t) is the time-dependant current operator in the Heisenberg picture. The time
arguments t1,2 follow the real time Keldysh contour from t = −∞ to t = ∞ then back
again. For a channel of area A, the current density operator is given by

j (r) = − ie~
2m

[
ψ̂† (r)∇ψ̂ (r)−

(
∇ψ̂† (r)

)
ψ̂ (r)

]
. (2.67)

The field operators are meant to be interpreted as Nambu fields.

In 1D, we plug 2.67 into 2.66 and expand in electron creation and annihilation operators.
Then we use Wick’s theorem and the definition of the Nambu-Keldysh Green’s function to
rewrite the current-current correlation function as

KI (t1, t2) = −e
2

8

[
∂z1 − ∂z′1

] [
∂z2 − ∂z′2

]
Tr

{
Ĝ> (1′, 2) τ̂zĜ

< (2′, 1) τ̂z
+Ĝ< (1′, 2) τ̂zĜ

> (2′, 1) τ̂z

}
z1=z′1=z2=z′2=0

.

(2.68)

We then go in the Fourier representation of the quasiclassical function ǧ (1, 1′) and
reflections function Ǧ (1, 1′). The terms that do not cancel are such that the current-
current correlation function becomes

KI (t1, t2) = −e
2p2
F

16π

∫
d2ρ

∑
σ=±1

Tr

{
ĝ>σ (t1, t2) τ̂zĝ

<
σ (t2, t1) τ̂z + ĝ<σ (t1, t2) τ̂zĝ

>
σ (t2, t1) τ̂z

−Ĝ>σ (t1, t2) τ̂zĜ<−σ (t2, t1) τ̂z − Ĝ<σ (t1, t2) τ̂zĜ>−σ (t2, t1) τ̂z

}
.

(2.69)
We then represent these Green’s function by their symmetric and antisymmetric compo-
nents for which we already know the full form. From [22], we get the full form of the
two-point current-current correlation function.

KI (t1, t2) = −e
2p2
F

8π

∫
d2ρTr


ĝ>s (t1, t2) τ̂zĝ

<
s (t2, t1) τ̂z + ĝ<s (t1, t2) τ̂zĝ

>
s (t2, t1) τ̂z

+ ĝ>a (t1, t2) τ̂zĝ
<
a (t2, t1) τ̂z + ĝ<a (t1, t2) τ̂zĝ

>
a (t2, t1) τ̂z

− Ĝ>s (t1, t2) τ̂zĜ<s (t2, t1) τ̂z − Ĝ<s (t1, t2) τ̂zĜ>s (t2, t1) τ̂z
+ Ĝ>a (t1, t2) τ̂zĜ<a (t2, t1) τ̂z + Ĝ<a (t1, t2) τ̂zĜ>a (t2, t1) τ̂z


(2.70)
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We finally Fourier transform the time coordinates and get the final noise expression of a
channel to evaluate. From [5]

SI (ω) = 1
2π

∫
dτe−iωτK (τ)

= e2

32π2~
∑
±ω,±

∫
dεTr


ĝ>s (ε) τ̂zĝ

<
s (ε± ω) τ̂z + ĝ<s (ε) τ̂zĝ

>
s (ε± ω) τ̂z

+ ĝ>a (ε) τ̂zĝ
<
a (ε± ω) τ̂z + ĝ<a (ε) τ̂zĝ

>
a (ε± ω) τ̂z

− Ĝ>s (ε) τ̂zĜ<s (ε± ω) τ̂z − Ĝ<s (ε) τ̂zĜ>s (ε± ω) τ̂z
+ Ĝ>a (ε) τ̂zĜ<a (ε± ω) τ̂z + Ĝ<a (ε) τ̂zĜ>a (ε± ω) τ̂z

.
(2.71)

We finally have all the required equations to compute the noise as a function of the
parameters ω,T ,γ,D and φ. Considering that the superconducting gap of Al is about
9 Ghz and that superconducting qubits are operated near 50 mK, we estimate that the
temperature T/∆ ≈ 0.1. While unknown, it makes sense that the relaxation rate γ/∆� 1.

The expression for the frequency dependent noise can hardly be evaluated analytically,
the convolution is done numerically over an energy range and a coarse-graining such that
the numerical error drops to less than 1%. Also, the spectra are shown in the range
−3∆ < ω < 3∆ to highlight the absorption processes ω > 0 and the emission processes
ω < 0. The symmetrized noise as it is measured corresponds to “folding” the spectrum
around ω = 0 such that, if ω > 0, Ssymm

I (ω) = SI(ω)+SI(−ω)
2

.

The results highlight different aspects of Andreev physics. Near ω = 0, we observe
the effect of transitions within the bound state linewidth (or within the continuum if it is
thermally occupied). A peak can also occur at low frequencies if the bound state levels are
very close to the Fermi level, which is the case for open channels D ≈ 1. In some case we
can also see the effect of transitions between the bound states in the range ω < 2∆ as an
additional peak in the spectrum when D < 1. Furthermore, transitions between the bound
state and the continuum can produce two step-like features in the spectrum, one has to be
in the range 0 < ω < ∆ and the other in the range ∆ < ω < 2∆. Finally, transitions from
one continuum to the other appear in the spectrum when ω > 2∆ as a linear contribution
and correspond to resistive quasi-particle generation. A high-energy cutoff is not provided
but it is assumed to exist at frequencies ω � 2∆.

The noise spectrum for different channel transparencies is shown in figure 2.8 for a
phase difference φ = π. We observe a strong non-linear relation between the height of the
zero-frequency peak and the transmission eigenvalue. Indeed, it can be seen from figure
2.6 that a slight deviation from D = 1 leads to lifting the degeneracy of the bound state
pinned at the Fermi level. Lowering the transparency separates those level even more such
that a second peak can already be seen appearing at ω > 0 when D = 0.9.
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Figure 2.8: (Left) The transparency dependence of the noise spectrum is shown. The case φ = π
is the most interesting as the effect of the opening of the bound state can be seen. (Right)
The possible transitions contributing to the noise are shown. A are continuum to continuum
transitions, B are bound state to continuum transitions, C are subgap transitions and D are
transitions within the linewidth of a bound state.

As shown in figure 2.9, the opening of the bound state is well seen if we look at the
spectrum at different phases. In the case of a fully open channel, the noise is greater
at φ = π where the bound state is pinned to the Fermi level. We also notice the step
feature near ω = ∆ corresponding to transition from the bound state to the continuum.
At φ = π

2
, we notice a small zero-frequency noise contribution coming from transition

within the thermally occupied bound state. A second “peak” is visible and correspond to
transition from one bound state level to the other. At φ = 0, the small contribution of
zero-frequency noise remaining comes from thermally occupied states in the continuum and
we can clearly see the appearance of an absorption band around ω > 2∆. In the case of an
half-open channel, we first observe a strong suppression of the low-frequency noise relative
to the fully opened channel case. This is explained by the absence of occupied states near
the Fermi level. We can also see that φ = π noise is no longer dominant at φ = π and that
the absorption bands ω > 2∆ do not have the same amplitude, as a bound state near the
Fermi level “steals” spectral weight in the continuum so that the total number of states is
unchanged as a function of φ.

An analysis of the ω = 0 peak at full transmission and φ = π reveals its Lorentzian
character as a function of the relaxation rate γ in figure 2.10. A sharp Lorentzian peak
γ � 1 is likely closer to the reality of typical BCS superconductors but each 1/10 factor
increase the computation time by a factor 100, which is impractical when a lot of channel
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Figure 2.9: Phase dependence of the noise spectrum for pinholes with different transmissions is
shown.

are to be considered. Values ranging from 0.01 to 0.3 can be used to extract the physics
relevant to the interplay between the temperature and the relaxation rate.

If we take a look at the temperature dependence of the noise spectrum of a fully
open channel at φ = π (figure 2.11), we first notice that the height of the zero-frequency
peak is constant as long as T > γ. This implies that the bound state linewidth is fully
saturated and its occupation changes only slightly. As the temperature gets lower than
the characteristic energy of the relaxation process, the height of the peak diminishes and
emission processes are suppressed as the Fermi function is turning in a Heaviside function
as T → 0. Since T < 2∆, the continuum to continuum transitions stay unaffected by
temperature change. At φ = π

2
where the bound state is somewhere in the middle of the

gap, the thermal activation of the bound state to bound state transition becomes obvious
as a zero-frequency noise appears when the temperature becomes comparable to the energy
splitting inside the gap.
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Figure 2.10: The low-frequency noise spectrum as a function of the relaxation rate γ for a
fully opened channel is shown. Assuming that γ is a constant over energy, then the peak has a
lorentzian shape.
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Figure 2.11: Temperature dependence of the noise spectrum for different phases is shown. The
left plot corresponds to an opened channel and highlights the diminishing emission processes as
T is lowered. The right plot has D = 0.5 and shows the activation of transitions between the
bound states at high temperature.
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Chapter 3

Models of Roughness

This chapter aims to answer the question: what is the noise of a rough Josephson junction?
The roughness of a device in the context of quantum transport is modeled as a scattering
matrix S over N transverse modes[23]. We assume this scattering matrix is energy inde-
pendent and its set of transmission eigenvalues t†t form a random set of values Dn. This
implies that for a given device, roughness can be modeled as a set of independent channels
each with their own Dn as illustrated in figure 3.1. In a large ensemble of similar devices,

Top Superconducting Electrode

Bottom Superconducting Electrode

Insulating Barrier

Figure 3.1: Pinhole model.

the distribution of transmission eigenvalues is defined by

P (D) ≡

〈∑
n

δ (D −Dn)

〉
(3.1)
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where 〈. . .〉 designates an average over all possible realizations of disorder of a given Hamil-
tonian. It is normalized such that ∫ 1

0

dDP (D) = N. (3.2)

The distribution function 3.1 is usually obtained by averaging an ensemble of scattering
matrices over a random parameter given by the symmetries of the Hamiltonian. Methods
and results from random matrix theory are useful to effectuate these computations. Any
property A (D) can be averaged over the distribution using

〈A〉 =

〈∑
n

A (Dn)

〉
=

∫
dDA (D)P (D) (3.3)

The quantity A is called a linear statistics on the transmission eigenvalues if it does not
depend on the product of different eigenvalues. For example, the conductance of a normal
metal is given by the Landauer formula 〈G〉 = G0 〈

∑
nDn〉, where G0 = 2e2

h
. [24] For

typical junctions used in nanocircuits, G/G0 is estimated to range between 250 to 650 in the
normal regime[25][26]. However, persistent currents in superconductors are an equilibrium
phenomenon whose intensity and direction depend on the phase difference between the two
reservoirs as well as the transparency of the barrier between them. If we assume that the
scattering zone is much smaller than the coherence length then we can suppose that the
phase is constant over each reservoir. Furthermore, we assume there is no phase coherence
between the reflections inside the barrier such that there is no Fabry-Perot interference
within the device. It means that the transmission eigenvalues used for supercurrent are
the same as for normal metals and that we can use the linear statistics method to analyze
current and its higher moments in devices which satisfies these conditions.

Since low-frequency noise is an important dephasing mechanism in superconducting
qubits, we focus our attention on the noise at zero frequency SI (ω = 0). In the following
sections, its average and fluctuations from sample to sample are computed for three uni-
versal models of disorder. These bimodal distribution are universal in the sense that they
do not depend on any microscopic parameters, they only depend on macroscopic conduc-
tance. We first look at the behavior of the zero-frequency noise as a function of phase and
transparency, especially in the low and high transmission limits where Andreev physics
has its most significant effect. We then look at disorder in chaotic cavities, diffusive wires
and dirty interfaces, which are common elements of superconducting nanocircuits. A brief
description of the derivation of the distribution of transmission eigenvalues for each model
is provided. We find out that the average noise is mostly influenced by the physics of par-
tially opened holes which determine a phase φmax such that 〈SI (ω = 0, φmax)〉 is maximal.
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However, sample-to-sample fluctuations for disordered devices operating near φ = π are
mostly caused by the fluctuation of the likelihood of fully open channels between samples.

3.1 Sample-to-sample Fluctuations

Since nanofabrication techniques are not perfectly reproducible down to the crystal lattice
of the deposited material layers, the configuration of defects or impurities producing disor-
der has to be different in every devices coming out of a wafer. Also, the observed number
of pinholes in typical samples is not high enough to average out the effect of its fluctuations
on the noise of several samples. Therefore an analysis of the sample-to-sample fluctuations
of the noise is required to reveal which parameters affect critically the reproducibility of
the noise from one device to another.

Using equation 3.3, we can write the average noise over several samples as

〈SI (0)〉 =

∫
dDSI (ω = 0, D)P (D). (3.4)

Fluctuations of the noise from sample to sample can be computed for a given phase by
taking the root mean square of the distribution of noise calculated for each realization of
disorder [27]:

δSI (0) =
〈
(SI (0)− 〈SI (0)〉)2〉 1

2 . (3.5)

To compute these quantities, we first discretize P (D) into 10000 bins of equal proba-
bility with an average Dn for each bin. We then compute the noise contribution of each
bin SI (ω = 0, φ,Dn) and generate around 20000 samples from which we can do statistics
and find the noise and its fluctuations.
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3.2 Tunnel Junction

In this section, we analyze the behavior of the zero-frequency noise SI (ω = 0) for the
various parameters D, φ, γ and T . We also take a closer look at the behavior of the noise
for thick tunnel junction (L� λF ) where all Dn � 1.

As shown in figure 3.2, we first vary the transparency and the phase. In the neighbor-
hood of D = 1 at φ = π we see a rapid increase of the noise as the bound state gets closer
to the Fermi energy. Then as we lower the transparency, the φ = π noise is quickly reduced
below the noise of the same channel at a different phase. In the middle transparency range
the noise scales as ln (SI (0)) ∝ D. Then as D → 0, the noise is strongly suppressed. This
implies that the noise of a thick tunnel junction without pinholes should be determined by
its most transmitting channel. At φ = π, the presence of a few pinholes are expected to
contribute significantly to the sample-to-sample fluctuations of the noise. From the right
plot, it can be seen that for a given phase, the noise is always greater for higher trans-
mission channels. But for a given transparency, φ = π does not usually yield the highest
noise, except if D = 1. Indeed, for an almost closed channel D → 0, the strongest noise
should be obtained near φ = 0. We also remark that since the noise is symmetric around
φ = π such that SI (φ) = SI (2π − φ) when π < φ < 2π and then 2π-periodic, then the

derivative
[
∂
∂φ
SI (φ)

]
φ=0,π

= 0.
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Figure 3.2: The transparency (Left) and phase (Right) dependence of the zero-frequency noise
for a single channel are shown.

The temperature dependence of the noise is mainly driven by the thermal activation of
the bound state. As can be seen in figure 3.3, the noise of an open pinhole drops significantly
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when the temperature gets below the bound state transition energy. Inversely, the noise
saturates when the temperature is much greater than the transition energy. In the case
of an almost closed channel, the noise becomes very small and temperature independent
when T � ∆.
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Figure 3.3: These plots show tthe emperature dependence of the zero-frequency noise for an
open channel (Left) and a low transmission channel (Right).

For completeness, we study the noise as a function of the relaxation rate γ in figure 3.4.
For a pinhole, the power law behavior of the noise confirms the Lorentzian character of
the zero-frequency peak, as we increase γ the peak gets broader and smaller. As expected
for that case, the current fluctuations are greater for φ = π. As D → 0, the bound state
contribution to the noise is reduced and the later becomes almost γ independent. We also
confirm that the maximal noise at low transmission is obtained at φ = 0.

Therefore, we confirm that the zero-frequency noise is mostly influenced by the trans-
mission eigenvalue of a channel and the phase difference across the two superconducting
leads. In the case of tunnel junctions, the current fluctuations are almost independent of
the temperature and the relaxation rate when γ < T � ∆. Finally, let’s note that figure
3.2 contains the information SI (ω = 0, D) required by equation 3.4 to compute the noise
over different realizations of disorder in superconducting nanodevices.
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Figure 3.4: On the left side we have the effect of the relaxation rate on the low-frequency noise
for an opened channel. The right side corresponds to a low transmission channel.
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3.3 Chaotic Cavity

A chaotic cavity is a microstructure with an irregular geometry such that no particles are
directly transmitted across the reservoirs. The time tdwell spent by particles to cross a
chaotic cavity is supposed much smaller than the time tergodic for the particle to acquire a
random direction by bouncing off the boundaries of the structure. However, the dimensions
of the cavity have to be small enough so that impurity scattering can be neglected and
transport is assumed to be ballistic [28]. In some sense, a chaotic cavity is very analogous
to a asymmetric (quantum) billiard table[29].
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Figure 3.5: Probability density of transmission eigenvalues for a chaotic cavity.

The method that leads to the probability distribution of transmission eigenvalues of

the scattering matrix S =

(
r t′

t r′

)
is random matrix theory, which is well described in

[30] and [24]. The scattering matrix of a given chaotic cavity is a member of the circular
unitary ensemble. This ensemble is defined through its invariant measure dµ (S) = dµ (S ′)
which remains constant under any transformation S ′ = U0SV0, where U0 and V0 are some
fixed unitary matrices. The matrices S are assumed to cover this matrix space with equal
probability. A unitary scattering matrix can be parametrized as a function of D in the
following way:

S =

[
v(1) 0
0 v(2)

] [
−
√

1−D
√

D√
D

√
1−D

] [
v(3) 0
0 v(4)

]
, (3.6)

where D is the N × N diagonal matrix of the {Dn} and the v(i) are arbitrary unitary
matrices. A differential arc length in this matrix space can be written as dσ2 = Tr

(
dS†dS

)
.
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Using a general property of measures on vector spaces, namely that for a differential arc
length having the form dσ2 =

∑
ab gabdx

adxb we can write the volume measure dµ (V ) =√
det (g)

∏
a dx

a, we find that

dµ (S) = P ({Dn})
∏
a

dDa

∏
i

dµ
(
v(i)
)
. (3.7)

The joint probability is identified to be

P ({Dn}) = Cexp

{
−2
∑
a<b

ln |Da −Db|

}
(3.8)

where C is a normalization constant. We remark that this has the form of the joint density
in the global-maximum-entropy approach to transport in disordered systems [28]. Using the
method of orthogonal polynomials in random matrix theory, the transmission eigenvalue
density probability can be computed exactly using Legendre polynomials (because 0 <
D < 1). In the case where N →∞, one gets P (D) such that

P (D) =
1

π
√
D (1−D)

(3.9)

This probability distribution in plotted in figure 3.5 and can be integrated with no lower
bound in the interval

0 < D < 1. (3.10)

We notice this is a bimodal distribution symmetric around D = 1
2

with equal weight in
the low and high-transmission regimes, which implies 〈D〉 = 1

2
. This distribution is also

universal in the sense that it does not depend on parameters of the cavity.

The average noise and the sample-to-sample fluctuations can now be computed using
equations 3.4 and 3.5. The results are shown in figure 3.6. We find that the zero-frequency
noise in a chaotic cavity scales linearly with the number of channels N times a phase-
dependent function. Indeed, the probability distribution 3.9 implies that the conductance
of the junction should be proportional to the number of channels in the cavity, therefore
noise scales with conductance in a chaotic cavity. However, the sample-to-sample fluctua-
tions are shown to scale as N−

1
4 over a large range of channel numbers. Since computing

the noise amounts to sampling the data in figure 3.2 with a fixed number of channels, the
cavities with a few channels are expected to have more fluctuations in the relative number
of high-noise pinholes than samples with a lot of channels and a rather constant fraction
of pinholes.
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Figure 3.6: The average noise (Left) and the noise fluctuations (Right) of a chaotic cavity as a
function of the number of channels are shown.

In figure 3.7, the phase-dependence of the average noise reveals that for all numbers of
channels, the noise maximum is not at φ = π but rather somewhere between 0.8π < φ < π.
Indeed, the few D = 1 pinholes only have a significant effect when φ = π, but a large
quantity of channels with D < 1 whose maximum noise is at a different phase contribute
more significantly to the overall current fluctuations. The exact number of D = 1 pinholes
is the main source of noise in the case φ = π, therefore we observe that a fluctuation of
this quantity can produce a large sample-to-sample fluctuation of the noise.
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Figure 3.7: The phase-dependence of the average noise (Left) and its fluctuations (Right) of a
chaotic cavity are shown.
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3.4 Diffusive Wire

A diffusive conductor is a wire of length L � λF such that l � L � Nl, where l is
the mean free path of particles and Nl is the localization length [31]. In this case, the
conductance of the wire diminishes linearly with increasing length 〈G〉 = G0

Nl
L

rather than
exponentially as in the insulating regime. This implies that

1� 〈G〉 � N. (3.11)
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Figure 3.8: Probability density of transmission eigenvalues for a diffusive wire with a given
conductance.

The usual approach to solve the diffusion problem in superconducting device is to use
the Usadel equations [32]. If the system’s dimensions are small enough such that there
is no decay of superconductivity, diffusion can be described using ballistic channels with
a relaxation mechanism which induces dephasing[18]. In our case, we model the wire as
a set of ballistic point contacts connected through their transfer matrices M . The total
transfer matrix is obtained by multiplying individual transfer matrices together such that
the 2N eigenvalues of MM † denoted sech2 (xn) are uniformly distributed in the interval
L
l
< xn <∞. The resulting probability distribution is

P (D) =
〈G〉

2D
√

1−D
. (3.12)

As shown in figure 3.8, the probability distribution is bimodal. While most of the trans-
mission channels have D � 1, a few of them are open at D = 1. The distribution can be
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integrated in the interval

Dmin = sech2 N

〈G〉
< D < 1 (3.13)

such that
∫ 1

Dmin
dDP (D) = N . Therefore the distribution depends only on the total

conductance 〈G〉 and well as the number of channels N .
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Figure 3.9: Average noise (Left) and noise fluctuations (Right) of a diffusive wire.

The noise and its sample-to-sample fluctuations are computed for a fixed value of the
conductance while varying the number of channels. As shown in figure 3.9, the average
noise is independent of the number of channels. The sample-to-sample fluctuations of the
noise are also fairly flat functions of the number of channels. Therefore the noise in a
superconducting wire and its reproducibility is only a function of the phase-dependent
conductance.

The phase-dependence of the noise shown in figure 3.10 shows that the majority of
the noise comes from partially opened pinholes and that the maximum is not at φ = π.
For a fixed conductance, the sample-to-sample fluctuations are most important at φ = π
except when the number of channels becomes so high that only channels with D < 1 and
no pinholes are needed to reach 〈G〉. In this case the sample-to-sample fluctuations range
between 10% and 30% of the actual noise.
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Figure 3.10: Phase-dependence of the average noise (Left) and its fluctuations (Right) of a
diffusive wire.
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3.5 Dirty Interface

Dirty interfaces are another class of universal disorder model [33][34]. In this case, the
dimension of the zone where electron are strongly scattered is L� λF .
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Figure 3.11: Probability density of transmission eigenvalues of a dirty interface.

To find the distribution of transmission eigenvalues of a dirty interface, it is first as-
sumed that all states should lie near the Fermi level and that the short range scatterers
modeled as delta functions are all located in a plane perpendicular to the transport direc-
tion. It can be shown that

tt† =
[
I + Γ̃Γ̃

]−1

, (3.14)

where t is the transmission matrix of propagating states and Γ̃ is the matrix of scattering
amplitudes. Average quantities can be obtained from configurational averaging over all
possible impurity positions. The analytical calculation of the distribution function is done
by expanding t in powers of Γ̃. Two Ward identities can be found so that any product of
t and t† can be reduced to expressions containing only first order t and t†:

tt† = 1
2

(
t+ t†

)
tt =

(
1 +m ∂

∂m

)
t.

(3.15)

The first comes from current conservation and continuity of the wave function across the
interface. The second is less general and valid in the case of weak scattering regime where
evanescent wave can be neglected or when Γ̃ is proportional to m (strong scattering regime).
The model is not valid in the intermediate scattering regime.
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The delta peaks of the probability distribution function are Fourier transformed and the
exponential is expanded in powers of tt†. Using the Ward identities and a Kramers-Kronig
relation, the distribution can be rewritten as a function of the conductance〈

g
(
m2
)〉

= Tr
〈
tt†
〉

= Re [Tr 〈t〉] . (3.16)

The calculation of the distribution function is reduced a configurational averaging of t. A
Green’s function is introduced and a set of diagrams is obtained from the expansion in Γ̃.
A Dyson equation is used to relate the configurationnally averaged Green’s function to the
unperturbed one and the self-energy. The conductance can then be computed from the
Green’s function and inputted back into the distribution function, which give the following
result (see figure 3.11):

P (D) =
〈G〉

πD3/2
√

1−D
. (3.17)

Specifically, this distribution is only valid in the strong scattering regime where

〈G〉 � N. (3.18)

Again, this is a universal bimodal function which needs a low transmission cut-off

1

1 +
(
πN
2〈G〉

)2 < D < 1 (3.19)

such that
∫ 1

Dmin
dDP (D) = N .

The analysis of the noise of a strong scattering dirty interface is very similar to the case
of a diffusive wire since both distribution functions have the same behavior near D = 1
and show a non-integrable singularity near when D → 0. Indeed, in figure 3.12 we see that
for a fixed conductance 〈G〉, the noise and the fluctuations remain fairly constant for all
channel numbers.

Again, there is an exception for a large number of channels when φ = π because no
pinholes are required for the interface to reach its full conductance and their influence is
removed from the sample-to-sample noise fluctuations.
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Figure 3.12: Average noise and noise fluctuations of a dirty interface.
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Figure 3.13: Phase-dependence of the average noise and its fluctuations of a dirty interface.
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Chapter 4

Conclusion

By modelling the roughness of a junction as a set of channels with a bimodal distribu-
tion of transmission eigenvalues, the noise and its sample-to-sample fluctuations could be
computed using the non-equilibrium many-body Green’s function method.

The noise of a single channel is found to be strongly dependent on its transparency and
the phase difference across its terminals. Channels set at φ = 0 as well as low transmission
channels D � 1 exhibit a shot noise spectrum at frequencies ω > 2∆. Strong non-
poissonian noise is found at low frequencies when φ = π for fully transmitting pinholes.
This low frequency noise is induced by fast switching between states of opposing currents
pinned at the Fermi level.

For different models of roughness with a few pinholes, the low frequency noise is found
to be dominated by the partially transmitting channels. Experimentally, the roughness
model could be confirmed by looking at the phase dependence of the noise of a single
junction. From one sample to the other, the largest variation of the zero-frequency noise
should be found at φ = π where the variation in the number of pinholes has the most
impact.
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