
New Conic Optimization Techniques

for Solving Binary Polynomial

Programming Problems

by

Bissan Ghaddar

A thesis

presented to the University of Waterloo

in fulfillment of the

thesis requirement for the degree of

Doctor of Philosophy

in

Management Sciences

Waterloo, Ontario, Canada, 2011

c© Bissan Ghaddar 2011

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,

including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Polynomial programming, a class of non-linear programming where the objective and the

constraints are multivariate polynomials, has attracted the attention of many researchers

in the past decade. Polynomial programming is a powerful modeling tool that captures

various optimization models. Due to the wide range of applications, a research topic of

high interest is the development of computationally efficient algorithms for solving polyno-

mial programs. Even though some solution methodologies are already available and have

been studied in the literature, these approaches are often either problem specific or are

inapplicable for large-scale polynomial programs. Most of the available methods are based

on using hierarchies of convex relaxations to solve polynomial programs; these schemes

grow exponentially in size becoming rapidly computationally expensive. The present work

proposes methods and implementations that are capable of solving polynomial programs

of large sizes. First we propose a general framework to construct conic relaxations for

binary polynomial programs, this framework allows us to re-derive previous relaxation

schemes and provide new ones. In particular, three new relaxations for binary quadratic

polynomial programs are presented. The first two relaxations, based on second-order cone

and semidefinite programming, represent a significant improvement over previous prac-

tical relaxations for several classes of non-convex binary quadratic polynomial problems.

The third relaxation is based purely on second-order cone programming, it outperforms the

semidefinite-based relaxations that are proposed in the literature in terms of computational

efficiency while being comparable in terms of bounds. To strengthen the relaxations fur-

ther, a dynamic inequality generation scheme to generate valid polynomial inequalities for

general polynomial programs is presented. When used iteratively, this scheme improves the

bounds without incurring an exponential growth in the size of the relaxation. The scheme

can be used on any initial relaxation of the polynomial program whether it is second-order

cone based or semidefinite based relaxations. The proposed scheme is specialized for binary

polynomial programs and is in principle scalable to large general combinatorial optimiza-

tion problems. In the case of binary polynomial programs, the proposed scheme converges

to the global optimal solution under mild assumptions on the initial approximation of the

binary polynomial program. Finally, for binary polynomial programs the proposed relax-

ations are integrated with the dynamic scheme in a branch-and-bound algorithm to find

global optimal solutions.

iii

Acknowledgements

I would like to express my sincere gratitude to my supervisors, Professor Miguel Anjos

and Professor Juan Vera. Thank you for your support and advice throughout my graduate

studies.

I would like to thank the members of my examination committee: Professor Etienne de

Klerk, Professor Stephen Vavasis, Professor Samir Elhedhli, and Professor David Fuller.

I am very grateful for their comments and helpful suggestions on my thesis. Having the

opportunity to visit Professor Michael Jünger and PD Dr. Frauke Liers at the University

of Köln in Germany for three months in 2010 was a truly amazing experience. I would

like to sincerely thank Frauke and Angelika for their collaboration on solving partition

problems. I am also grateful to the Department of Management Sciences for assisting me

in many different ways. The financial support of the Ontario Graduate Scholarship, the

NSERC Alexander Graham Bell Canada Graduate Scholarship, and the NSERC Canada

Graduate Scholarship - Michael Smith Foreign Study Supplement were very appreciated.

Thanks to my friends and colleagues at Waterloo for all the great times we shared and for

providing the friendly environment which I had the pleasure to work in. I would like also

to thank Loulou, Huss, Sam, and Mac for the great friendship, all the emotional support,

entertainment, and caring they provided.

I want to thank my beloved Joe Naoum-Sawaya. The love, joy, courage, and motivation

you bring me is beyond description. My time in Waterloo and everywhere else was magical

with you by my side. This thesis couldn’t become a reality without your support.

Lastly and most importantly, I am indebted to my parents Taha and Fatima Ghaddar and

my two wonderful sisters Ninar and Ruha for providing me with a loving and supportive

environment and for encouraging me all the way. I can not thank you enough. It is to you

that I dedicate this thesis.

iv

Table of Contents

List of Tables ix

List of Figures x

Notation xi

1 Introduction 1

2 Background 5

2.1 Conic Programming . 5

2.1.1 Linear Programming . 9

2.1.2 Second-Order Cone Programming 10

2.1.3 Semidefinite Programming . 10

2.2 Polynomial Programming . 13

2.2.1 Sum-of-Squares . 14

2.2.2 Polynomial Programming Relaxations 16

2.2.3 Special Cases of Polynomial Programs 18

2.2.4 Approximation Hierarchies for Polynomial Programs 28

2.2.5 Handling Equality Constraints . 29

2.2.6 Primal and Dual Perspective . 31

v

3 New Conic Relaxations 36

3.1 Binary Quadratic Polynomial Programming 37

3.1.1 Polynomial Programming-Based Relaxations 38

3.1.2 New Conic Relaxations of BQPP 38

3.2 Applications . 43

3.2.1 General Quadratic Polynomial Problems 43

3.2.2 Quadratic Assignment Problem . 47

3.2.3 Quadratic Linear Constrained Problems 54

3.2.4 Quadratic Knapsack Problem . 59

3.3 Computational Results . 64

3.3.1 General BQPPs Computational Results 65

3.3.2 QAP Computational Results . 67

3.3.3 QLCP Computational Results . 69

3.3.4 QKP Computational Results . 71

3.4 Concluding Remarks . 72

4 Dynamic Inequality Generation Scheme 75

4.1 General Case . 76

4.1.1 Dynamic Inequality Generation Scheme (DIGS) 78

4.2 Binary Case . 87

4.2.1 Specializing the Dynamic Inequality Generation Scheme 88

4.2.2 Lift-and-Project . 95

4.2.3 Convergence Results . 98

4.3 Examples and Computational Results . 100

4.3.1 General case . 100

vi

4.3.2 Binary case . 104

4.4 Concluding Remarks . 116

5 Branch-and-Dig Scheme 117

5.1 Bounding Function . 118

5.2 Branching Rules . 118

5.3 Feasible Solution . 120

5.4 Node Selection . 121

5.5 Inequality Generation Scheme . 122

5.6 Branch-and-Dig Algorithm . 122

5.7 Computational Results . 125

5.7.1 QKP Instances . 125

5.7.2 QAP Instances . 127

5.7.3 Cubic BPP . 129

5.8 Concluding Remarks . 132

6 APPS: A Polynomial Programming Solver 133

6.1 Formulating and Solving PP . 134

6.2 Inequality Generation . 139

6.3 Concluding Remarks . 142

7 Conclusion and Future Directions 143

References 154

vii

List of Tables

3.1 Problem dimension for various BQPP relaxations. 45

3.2 Problem dimension for various QAP relaxations. 53

3.3 Problem dimension for various QLCP relaxations. 59

3.4 Problem dimension for various QKP relaxations. 64

3.5 Computational results for the BQPP instances. 66

3.6 Computational results for the QAP instances. 68

3.7 Computational results for the QLCP instances. 70

3.8 Computational results for the QKP instances. 73

4.1 DIGS Results for Example 4.1.4. 86

4.2 Lasserre’s Hierarchy for Example 4.1.4. 86

4.3 Results for Lasserre’s hierarchy. 94

4.4 Results for DIGS-B. 95

4.5 DIGS Results for Example 4.3.1. 101

4.6 Lasserre’s Hierarchy for Example 4.3.1. 101

4.7 DIGS Results for the Motzkin Polynomial, Example 4.3.2-(4.11). 102

4.8 DIGS Results for the Robinson Polynomial, Example 4.3.2-(4.12). 102

4.9 DIGS Results for Example 4.3.3. 103

viii

4.10 Lasserre’s Hierarchy for Example 4.3.3. 104

4.11 Computational results for quadratic knapsack instances. 105

4.12 Computational results for quadratic assignment instances. 106

4.13 Computational results for the max-2-sat problem: Lasserre’s relaxation. . . 107

4.14 Computational results for the max-2-sat problem: DIGS. 107

4.15 Computational results for the max-2-sat problem: DIGS-B. 108

4.16 Computational results for the stable set problem: DIGS 111

4.17 Computational results for the stable set problem. 112

4.18 Computational results for degree 3 BPP: Lasserre’s relaxation 113

4.19 Computational results for degree 3 BPP: DIGS 114

4.20 Computational results for degree 3 BPP: DIGS-B cubic inequalities 115

4.21 Computational results for degree 3 BPP: DIGS-B quadratic inequalities . . 115

4.22 Computational results for degree 3 BPP: DIGS-B linear inequalities 115

5.1 QKP: Branching on xj = 1 and xj = −1 126

5.2 QKP: Branching on xi + xj = 0 and xi − xj = 0 127

5.3 QKP: Branching on xixj = −1 and xixj = 1 128

5.4 QAP: Branching on xj = 1 and xj = −1 128

5.5 QAP: Branching on xi + xj = 0 and xi − xj = 0 129

5.6 QAP: Branching on xixj = −1 and xixj = 1 129

5.7 CBPP: Branching on xj = 1 and xj = −1, (CBPPL1) 131

5.8 CBPP: Branching on xixj = 1 and xixj = −1, (CBPPL1) 131

5.9 CBPP: Branching on xj = 1 and xj = −1, (CBPPSOC) 131

ix

List of Figures

3.1 Sparsity of the constraint matrices for BQPPSOC and BQPPSS. 46

3.2 Computational time for BQPP . 67

3.3 Computational time for QAP . 69

3.4 Computational time for QLCP . 71

3.5 Computational time for QKP . 74

4.1 DIGS lower bounds for Example 4.1.4. 85

4.2 Size of the linear system of equations for Example 4.1.4. 87

4.3 Size of the linear system of equations for Example 4.2.3. 94

4.4 DIGS lower bounds for Example 4.3.1. 101

x

Notation

Rn
+ the non-negative orthant cone

Ln the second-order cone

Sn+ the semidefinite cone

deg(·) the degree of a polynomial

Md(x) the set of monomials of x of degree at most d

R[x] the set of polynomials in n variables with real coefficients

Rd[x] the set of polynomials in n variables with real coefficients of degree at most d

Ψ[x] the cone of real polynomials that are sum-of-squares

Ψd[x] the cone of real polynomials of degree at most d that are sum-of-squares

B {x ∈ Rn : ‖x‖2 = n}, the sphere of radius
√
n

Pd(S) the cone of polynomials of degree at most d that are non-negative over S

LP linear program

SOC second order cone program

SDP positive semidefinite program

SOS sum-of-squares

PP polynomial program

BPP binary polynomial program

BQPP binary quadratic polynomial program

xi

Chapter 1

Introduction

A polynomial programming problem has the form:

(PP-P) zPP = max f(x)

s.t. gi(x) ≥ 0 1 ≤ i ≤ m,

where f(x) and gi(x) are real-valued multivariate polynomials for 1 ≤ i ≤ m. Equality

constraints of the form hj(x) = 0 can be included as they can be expressed as the inequality

constraints hj(x) ≥ 0 and hj(x) ≤ 0.

Solving polynomial programming problems is an area being actively studied. The impor-

tance of polynomial programming (PP) is that it captures an important class of non-linear

programming problems and has a wide range of practical applications in the context of

control, process engineering, facility location, economics and equilibrium, and finance. PP

generalizes several special cases that have been thoroughly studied in optimization, includ-

ing mixed binary linear programming, convex/non-convex quadratic programming, and

complementarity programming. It is well known that solving polynomial programs is an

NP-hard problem.

Several authors have proposed methods for constructing semidefinite relaxations of (PP-P),

based on results about moment sequences [53] and representations of nonnegative polyno-

mials as sum-of-squares (SOS). The key ingredient is to re-cast the feasibility of a finite

1

CHAPTER 1. INTRODUCTION

system of polynomial equalities and inequalities in terms of an alternative polynomial

involving squares of (unknown) polynomials. Shor introduced the idea that given an un-

constrained polynomial problem, one can compute the minimum value λ such that λ−f(x)

is a sum-of-squares to obtain an upper bound on z (the global optimum of f) [91]. λ can be

computed in polynomial time using semidefinite programming (SDP) [96]. This idea was

further developed by Parrilo [75] and Parrilo and Sturmfels [78] to the non-restricted case

using sum-of-squares decomposition. Lasserre [53] proposed a general solution approach

for polynomial optimization problems via semidefinite programming using methods based

on moment theory.

Since the seminal work of Lasserre and Parrilo, intense research activity has been carried

out on solving polynomial programming using sum-of-squares representations and the re-

lated theory of moments. This research includes the recent work of de Klerk and Pasechnik

[20] where they approximated the copositive cone via a hierarchy of linear or semidefinite

programs of increasing size using the idea of sum-of-squares and polynomials with non-

negative coefficients. Lasserre [53, 54] presented a hierarchy of semidefinite programming

approximations to polynomial programs which converges under mild assumptions to the

optimal solution of the original polynomial program. Laurent [57] provided a comparison of

the Sherali-Adams, Lovász-Schrijver, and Lasserre relaxations for binary programs. Lau-

rent [58] also used real algebraic geometric tools to find solution schemes for polynomial

programs on finite varieties. Nie, Demmel, and Sturmfels [74] proposed a method for find-

ing the global minimum of a multivariate polynomial via sum-of-squares relaxation over

its gradient variety. Nie [72] also presented regularization type methods which would solve

significantly larger problems than interior-point type methods used to solve sum-of-squares

and Lasserre’s relaxations. Parrilo [76, 77] combined ideas from algebraic geometry and

convex optimization to solve a wide range of computational problems appearing in real

algebraic geometry. Peña, Vera, and Zuluaga [80, 104] presented solution schemes exploit-

ing the equality constraints. In addition, the idea of approximating a set of non-negative

polynomials is also present in the work of several authors such as the early work of Nesterov

[70], Shor [91], and the S-Lemma of Yakubovich (see [83]) among others. Specifically for

binary optimization, the specialization of Lasserre’s construction to binary PPs (BPP) was

shown to converge in a finite number of steps in [54] and the relationship of the Lasserre

hierarchy to other well-known hierarchies was studied in works such as [55, 57].

2

CHAPTER 1. INTRODUCTION

The main idea for solving polynomial programs is the application of representation theo-

rems to characterize the set of polynomials that are non-negative on a given domain. Most

PP approaches can be seen as the construction of SOS certificates of non-negativity for a

suitable representation of the PP problem. Using the complexity (degree) of the certificates

as a parameter, produces a hierarchy of approximations. While the resulting hierarchies

yield very tight approximations of the original PP problem, from a computational perspec-

tive, these hierarchies all suffer from a common limitation, namely the explosion in size

of the semidefinite relaxations involved. One way to overcome this difficulty is to exploit

the structure of the problem. This can be done either by taking advantage of symmetry

as in Bai, de Klerk, Pasechnik, and Sotirov [5], de Klerk [16], de Klerk, Pasechnik, and

Schrijver [19], de Klerk and Sotirov [21], and Gatermann and Parrilo [29], or by exploiting

sparsity to reduce the size of the semidefinite relaxation as in Kojima, Kim, and Waki

[48], Waki, Kim, Kojima, and Muramatsu [98, 99], and several others [45, 46, 47, 49, 73].

However, in the absence of any favorable structure, the practical application of the SOS

approach is severely limited. The motivation for this research is to devise new techniques

to take advantage of the strength of the PP approach without relying on the presence of

exploitable structure in the problem or suffering from the computational burden resulting

from the exponential growth in the hierarchy. To achieve this objective, it is imperative to

avoid the growth of the complexity of the non-negativity certificates involved.

In this thesis we develop algorithms to solve PPs in general and BPPs in particular. For

this purpose we put together results about new relaxations of PPs and a dynamic inequality

generation scheme which are then applied in the context of a branch-and-bound approach.

The first contribution of this thesis, presented in Chapter 3, is to use a characteriza-

tion of non-negative linear polynomials over the ball to propose second-order cone (SOC)

relaxations for binary polynomial programs. We use the polynomial programming frame-

work to present a new second-order and semidefinite-based construction where we are able

to theoretically show that the resulting relaxations provide bounds stronger than other

computationally practical semidefinite-based relaxations proposed in the literature for bi-

nary quadratic polynomial programs. Additionally, our proposed framework enables us

to isolate expensive components of existing relaxations, namely the semidefinite terms.

By removing the semidefinite terms, we obtain relaxations based purely on second-order

3

CHAPTER 1. INTRODUCTION

cones. The computational experiments confirm our theoretical results, we obtain that the

SOC-SDP-based relaxations give the best bounds. Our experiments also show that the

purely SOC-based relaxations produce bounds that are competitive with the existing SDP

bounds but computationally much more efficient.

The second contribution of this thesis, presented in Chapter 4, is to improve PP relaxations

without incurring exponential growth in the size of the relaxation. The key ingredient is a

dynamic generation scheme for general polynomial programs where instead of growing the

degree of the certificates (which results in an exponential growth of the size of the relax-

ation), we fix the degree of the polynomials that we use and increase the set of polynomial

inequalities describing the feasible region of the PP problem. These valid inequalities are

then used to construct new certificates that provide better approximations. We obtain valid

inequalities by means of a dynamic inequality generation scheme (DIGS) that makes use

of information from the objective function to dynamically generate polynomial inequalities

that are valid on the feasible region of the PP problem. The result is an iterative scheme

that provides a sequence of improving approximations without growing the degree of the

certificates involved. Depending on the original problem and the type of relaxation used,

DIGS solves a sequence of linear, second-order cone, or semidefinite problems. Convergence

to the global optimal solution is proven for a family of problems including binary quadratic

programming with linear constraints. The computational results highlight the advantages

of DIGS with respect to Lasserre’s approach [54] as well as to the lift-and-project method

of Balas, Ceria, and Cornuéjols [6].

The third contribution, presented in Chapter 5, is to develop a branch-and-dig algorithm,

that is, a branch-and-bound algorithm that combines the proposed relaxations with DIGS

to provide globally optimal solutions for binary polynomial programming problems. Fi-

nally, in Chapter 6 we present a computational tool that can be applied to solve a broad

class of polynomial programs. The potential impact of the methodology presented in this

thesis is significant, since it provides a means to tightly approximate PPs that, unlike pre-

viously proposed hierarchies of SDP relaxations, is in principle scalable to large general

combinatorial optimization problems.

4

Chapter 2

Background

We present conic programming formulations reviewing some important properties, and

special cases of conic programming. The importance of conic programming is that it allows

to reveal rich structure which usually is possessed by a convex program and to exploit this

structure in order to solve the program efficiently.

In Section 2.1, we focus primarily, on linear, second-order and semidefinite programming.

Then in Section 2.2, we present polynomial programming problems. We also present

Lasserre’s hierarchy of improving relaxations for PP using the SOS certificates approach.

2.1 Conic Programming

Most of the definitions in this section have been taken from [59]. A set C is convex if

y1, y2 ∈ C ⇒ λy1 + (1− λ)y2 ∈ C ∀ 0 ≤ λ ≤ 1.

The dual of a set C is denoted by C∗ and is defined by

C∗ = {a ∈ Rn : y ∈ C, 〈a, y〉 ≥ 0}.

5

CHAPTER 2. BACKGROUND

A set C ⊆ Rn is a said to be a cone if

λ ≥ 0, y ∈ C ⇒ λy ∈ C.

A cone C is pointed if C ∩ (−C) = {0}, and solid if the interior of C is not empty. The dual

cone of C, C∗, is always a convex cone and in case C∗∗ = C then C is said to be self-dual.

A cone is said to be homogeneous if for any two points x, y in the interior of C there exist

a linear transformation F such that F (x) = y and F (C) = C. A cone is symmetric if it is

self-dual and homogeneous.

Conic optimization unifies a wide variety of optimization problems. A general conic opti-

mization problem is of the form:

(CP-P) min cTx

s.t. Ax = b (2.1)

x ∈ C

where C ⊆ Rn is a closed convex pointed cone, c ∈ Rn, b ∈ Rm, and A ∈ Rm×n. Hence, we

optimize a linear function subject to a system of linear equations, and the condition of the

decision variable x lying in C.

The dual problem can be derived by introducing a Lagrangian multiplier y ∈ Rm for

constraint (2.1). Define the Lagrangian function L(x, y) = cTx+ yT (b− Ax). Then,

min
x∈C
{cTx : Ax = b} = min

x∈C
max
y∈Rm

cTx+ yT (b− Ax)

≥ max
y∈Rm

min
x∈C

cTx+ yT (b− Ax)

= max
y∈Rm

(
bTy + min

x∈C
(c− ATy)Tx

)
= max

y∈Rm
{bTy : c− ATy ∈ C∗}

where C∗ is the dual cone of C and is defined by

C∗ = {u ∈ Rn : uTx ≥ 0,∀x ∈ C}.

6

CHAPTER 2. BACKGROUND

Hence, we define the dual of (CP-P) as follows:

(CP-D) max bTy

s.t. c− ATy ∈ C∗ (2.2)

x ∈ C is said to be feasible for (CP-P) if Ax = b. Similarly, y ∈ Rm is said to be feasible for

(CP-D) if c−ATy ∈ C∗. If x is a primal feasible solution and y is a dual feasible solution,

then their duality gap is defined as the difference between the objective values of (CP-P)

and (CP-D):

cTx− bTy.

By construction, (CP-P) and (CP-D) satisfy weak duality:

Theorem 2.1.1. Conic-Weak Duality Theorem: Let x ∈ C such that Ax = b, and

y ∈ Rm such that ATy − c ∈ C∗, then the duality gap satisfies

cTx− bTy ≥ 0.

When cTx− bTy = 0, we say that strong duality holds. In the case where (CP-P) satisfies

the Slater’s constraint qualification, i.e., there exists an x in the interior of C such that

Ax = b, we have strong duality. The dual problem (CP-D) satisfies Slater constraint

qualification if there exists a y such that with c− ATy = z is in the interior of C∗.

Theorem 2.1.2. [23] Let p∗ = inf{cTx : Ax = b, x ∈ C} and d∗ = sup{bTy : z =

c− ATy, z ∈ C∗}, then we have the following:

• If (CP-P) satisfies Slater’s condition and p∗ is finite, then p∗ = d∗ and this value is

attained for (CP-D).

• If (CP-D) satisfies Slater’s condition and d∗ is finite, then p∗ = d∗ is attained for

(CP-P).

• If (CP-P) and (CP-D) both satisfy Slater’s condition, then p∗ = d∗ is attained for

both problems.

7

CHAPTER 2. BACKGROUND

For the conic relaxations of the polynomial programs that we consider, we have in general

that both the primal and the dual problems satisfy the Slater constraint qualification and

hence strong duality holds and both optima are attained.

Examples of pointed convex cones:

• the non-negative orthant cone, Rn
+ = {x ∈ Rn : x ≥ 0}.

• the second-order cone, Ln = {x ∈ Rn+1 : x0 ≥
√∑n

i=1 x
2
i }, x0 ≥ 0.

• the semidefinite cone, Sn+ = {X ∈ Rn×n : XT = X, aTXa ≥ 0 ∀a ∈ Rn}.

• the Cartesian product of the non-negative orthant, second-order cones, and positive

semidefinite cones.

Each of these cones is a closed convex pointed cone with nonempty interior. Moreover,

each of these cones is self-dual, i.e., C∗ = C. When considering these cones, the general

conic programming formulation (CP-P) reduces to linear programming, second-order cone

programming, and semidefinite programming formulations. In these particular cases, conic

programming problems can be solved efficiently by interior-point methods. In the last

decade, several efficient algorithms and software packages were developed to solve linear,

second-order cone, and semidefinite optimization problems see e.g., Vandenberghe and

Boyd [96], Lewis and Overton [62], Lobo, Vandenberghe, Boyd, and Lebret [63], Ben Tal

and Nemirovski [8], Alizadeh and Goldfarb [2], Wolkowicz, Saigal, and Vandenberghe [100],

and Todd [95].

Other examples of convex cones that we are interested in are:

• Ψd[x] =
{
p(x) ∈ Rd[x] : p(x) =

∑N
i=1 q

2
i (x), qi(x) ∈ Rb d

2
c[x]
}

where N =
(
n+d
d

)
. No-

tice that in particular Ψd[x] = Ψd−1[x] for every odd degree d.

• Pd(S) = {p(x) ∈ Rd[x] : p(x) ≥ 0 ∀x ∈ S}, for any S ⊆ Rn.

• P+
d (S) = {p(x) ∈ Rd[x] : p(x) > 0 ∀x ∈ S}, for any S ⊆ Rn.

Ψd[x] ∼= SN+ so we know how to optimize over it. On the other hand, the decision problem

for Pd(S) and P+
d (S) is NP-hard. These cones are convex but not self-dual and thus not

symmetric. It is unknown how to efficiently optimize over these cones.

8

CHAPTER 2. BACKGROUND

2.1.1 Linear Programming

Linear programming (LP) aims to optimize a linear objective function subject to linear

equality and inequality constraints. LP is equivalent to the particular case of conic pro-

gramming (CP-P) where C = Rn
+. LP can be formulated as:

(LP-P) min cTx

s.t. Ax = b (2.3)

x ≥ 0

where x ∈ Rn is a vector of variables (x1, · · · , xn) and c ∈ Rn, A ∈ Rm×n, and b ∈ Rm are

given. And x ≥ 0 is a notation for x ∈ Rn
+, i.e., that all coordinates, x1, · · · , xn, of the

vector x are non-negative.

We refer to (LP-P) as the primal problem. Since, (Rn
+)∗ = Rn

+, the dual problem, (LP-D),

can be expressed as follows:

(LP-D) max bTy

s.t. c− ATy ≥ 0 (2.4)

Using Theorem 2.1.1, if x is feasible to (LP-P) and y is feasible to (LP-D), weak duality

holds:

cTx− bTy ≥ 0.

For LP, strong duality is stronger than Theorem 2.1.2.

Proposition 2.1.3. If either the primal or the dual is feasible, then the optima of the

primal and the dual are attained and are equal to each other. In particular, using strong

duality if x∗ is optimal to (LP-P) and y∗ is optimal to (LP-D), then we obtain

cTx∗ = bTy∗.

9

CHAPTER 2. BACKGROUND

2.1.2 Second-Order Cone Programming

Second-order cone programming (SOC) is a convex optimization problem having linear

constraints and second-order cone constraints. An SOC primal problem is of the form [63]:

(SOC-P) min cTx

s.t. Ax = b (2.5)

x ∈ Ln,

where the problem parameters are c ∈ Rn+1, A ∈ Rm×(n+1), and b ∈ Rm. Since, (Ln)∗ =

Ln, the dual problem, (SOC-D), can be expressed as:

(SOC-D) max bTy

s.t. c− ATy ∈ Ln. (2.6)

SOC is stronger than LP in the sense that every LP problem can be expressed as an SOC

problem. Several efficient primal-dual interior-point methods for SOC have been developed

in the last decade [51].

2.1.3 Semidefinite Programming

Semidefinite programming (SDP) is now well recognized as a powerful tool for combi-

natorial optimization. Early research in this vein has yielded improved approximation

algorithms and very tight bounds for some hard combinatorial optimization problems, see

[59] and the references therein. As a consequence, interest in the application of semidefi-

nite techniques to combinatorial optimization problems has continued unabated since the

mid-1990s. This has included not only theoretical approximation guarantees but also the

development and implementation of algorithms for efficiently solving semidefinite relax-

ations of combinatorial optimization problems. Noteworthy developments in this direction

include the biqmac solver for max-cut [88], an SDP-based branch-and-bound solver for

max-k-cut [31], extremely tight bounds for the quadratic assignment problem [89], and ex-

act solutions for single-row layout [4] as well as related quadratic linear ordering problems

10

CHAPTER 2. BACKGROUND

[41]. Grötschel, Lovász, and Schrijver [34] proved that a semidefinite optimization problem

can be solved in polynomial time, hence making semidefinite relaxations an attractive tool

for deriving bounds for combinatorial optimization problems.

Semidefinite programming is an extension of linear programming in which the variable is a

symmetric matrix which is required to be positive semidefinite. SDP optimizes (minimizes

or maximizes) a linear function of a symmetric matrix variable X subject to linear con-

straints on X and X being positive semidefinite. The set of positive semidefinite matrices

is a closed convex cone, but it is not polyhedral. There are several equivalent conditions

for a matrix to be positive semidefinite (PSD):

• The matrix X ∈ Sn is positive semidefinite X � 0.

• aTXa ≥ 0 ∀a ∈ Rn.

• All eigenvalues of X are non-negative.

• All 2n − 1 principal minors of X are non-negative.

• There exists a factorization of X of the form X = V TV .

We consider SDP problems in standard form:

(SDP-P) min 〈C,X〉
s.t. 〈Ai, X〉 = bi 1 ≤ i ≤ m (2.7)

X � 0

where C and Ai are matrices in Sn and bi ∈ R. Since Sn+ is self dual, the conic-dual

problem of (SDP-P) is as follows:

(SDP-D) max bTy

s.t. C −
m∑
i=1

yiAi � 0. (2.8)

The duality theory for semidefinite programming is not as tight as that of linear pro-

gramming since a gap between the optimal primal and dual objective function values is

11

CHAPTER 2. BACKGROUND

possible. From Theorem 2.1.1, we have weak duality between the primal and the dual

objective. However, unlike for linear programming, Vandenberghe and Boyd [96] exem-

plify that optimality does not imply a zero gap between the primal and the dual objective.

Slater constraint qualification provides sufficient (but not necessary) conditions for strong

duality, see Theorem 2.1.2.

Linear programming and second-order cone programming are a particular case of SDP

problems. In particular, the linear programming problem: min {cTx : Ax = b, x ≥ 0}
where A ∈ Rm×n, can be written as the SDP problem

min {cT Diag(x) : 〈A, Diag(x)〉 = b, Diag(x) � 0},

where Diag(x) is a diagonal matrix with the vector x on the diagonal.

In addition, SOC is a particular case of SDP since ‖x‖2 ≤ t can be written as a positive

semidefinite constraint as follows:

‖x‖2 ≤ t ⇔

(
tI x

xT t

)
� 0.

For several combinatorial problems, the LP relaxations are weak, even when using the

reformulation-linearization methods, unless other effective constraints are added which

usually are computationally expensive. The bounds provided by using SOC relaxations are

not as weak as those from LP relaxations which make it attractive to solve problems that

cannot be handled by LP [63]. Although in many cases the SDP relaxation provides a better

bound than the LP and SOC relaxations, this comes at the expense of the computational

time required to solve the SDP which becomes rapidly huge and expensive. Theoretical

results and numerical experiments [43, 44] show that the computational cost of solving

SOC is much less than that of solving SDP, and is similar to that of LP. Solving a large-

scale SDP problem remains a difficult problem though in the past decade a lot of progress

has been made in this direction [10, 35].

12

CHAPTER 2. BACKGROUND

2.2 Polynomial Programming

Given an n-tuple α = (α1, · · · , αn) where αi ∈ N, the total degree of the monomial xα :=

xα1
1 x

α2
2 · · ·xαnn is the non-negative integer d = |α| :=

∑n
i αi. A polynomial is a finite linear

combination of monomials

f(x) =
∑
α

fαx
α =

∑
α

fαx
α1
1 · · ·xαnn = 〈f,Md(x)〉 ,

where the vector of coefficients f ∈ RN with N =
(
n+d
d

)
and Md(x) = (xα)|α|≤d is the

vector of monomials of x of degree at most d. Recall that polynomial programs are of the

form:

(PP-P) zPP = max f(x) (2.9)

s.t. gi(x) ≥ 0 1 ≤ i ≤ m,

where f(x) and gi(x) are multivariate polynomials.

Linear, binary, and linear complementary problems are special cases of polynomial pro-

gramming problems and hence various applications can be expressed in terms of polynomial

problems (see Example 2.2.1).

Example 2.2.1.

min x3
1 + x2

1x2x3

s.t. x2
1 + 5x2x3 + 1 ≥ 0 (2.10)

− x2
1 − x2

2 − x2
3 + 1 ≥ 0 (2.11)

x2
1 − 1 = 0 (2.12)

x2x3 = 0 (2.13)

x2 ≥ 0 x3 ≥ 0. (2.14)

where (2.12) is a binary constraint and (2.13) is a complementary constraint.

13

CHAPTER 2. BACKGROUND

Consider λ to be the optimal value for (PP-P), then λ is the smallest value such that

λ − f(x) ≥ 0 for all x ∈ S := {x : gi(x) ≥ 0; 1 ≤ i ≤ m}. As a result, we can express

problem (PP-P) as:

(PP-D) zPP = min λ

s.t. λ− f(x) ≥ 0 ∀x ∈ S. (2.15)

The main idea for solving polynomial programming problems is to relax (PP-D) to solve

an easier problem based on the construction of non-negative certificates. For instance, one

way to obtain computable relaxations is to represent non-negative polynomials as sum-of-

squares polynomials. To obtain a tractable relaxation, one can use a sum-of-squares decom-

position with restricted degree of the (unknown) polynomials which can be re-phrased in

terms of a linear system of equations involving positive semidefinite matrices [91, 100, 104].

2.2.1 Sum-of-Squares

Consider a polynomial p(x) ∈ Rd[x] with n variables and degree d. We are interested in

studying when p(x) ≥ 0 ∀x ∈ Rn which can be written as the conic decision prob-

lem p(x) ∈ Pd(Rn). A necessary condition is that the degree of p is even. A sufficient

condition is the existence of a sum-of-squares decomposition, i.e., there exist polynomials

q1(x), · · · , qN(x) such that p(x) =
∑N

i=1 qi(x)2, i.e., p(x) ∈ Ψd[x]. If p(x) is a sum-of-

squares polynomial then it is a non-negative polynomial for all values of x; however the

converse does not hold. Hilbert [39] studied the sum-of-squares representations of homo-

geneous polynomials (forms) of even degree d with n variables. He showed that in the

homogeneous case, quadratic forms, forms of two variables, and forms of degree four with

three variables are non-negative over Rn if and only if they have SOS representations.

Theorem 2.2.2 translates Hilbert’s results to non-homogeneous polynomials as follows:

Theorem 2.2.2. [39] Ψd[x] = Pd(Rn) if and only if n = 1, d = 2, or n = 2 and d = 4.

Hilbert showed that for n = 3, d ≥ 6 and n ≥ 4, d ≥ 4, there exist non-negative polynomials

with no SOS representation for general classes of polynomials. For instance, the Motzkin

polynomial x4
1x

2
2 + x2

1x
4
2 − 3x2

1x
2
2 + 1 is non-negative but not an SOS [66].

14

CHAPTER 2. BACKGROUND

An advantage of approximating the non-negativity constraint using sum-of-squares is that

checking if a polynomial is sum-of-squares is equivalent to solving an SDP problem and

hence it can be solved efficiently in polynomial time. The reason is the following theorem:

Theorem 2.2.3. [91] A polynomial p(x) of degree d is SOS if and only if p(x) = σ(x)TQσT (x),

where Q ∈ SN+ and σ is the vector of monomials of degree at most d
2

in the x variables (of

length N), i.e., σ(x) = [xα] with |α| ≤ d
2

and N =
(
n+d/2
d/2

)
.

Proof. Assume p(x) is SOS. Then p(x) =
∑

i qi(x)2. Each polynomial qi(x) can be written

as qi(x) = δTi σ(x), where δTi ∈ RN . Therefore,

p(x) =
k∑
i=1

qi(x)2 =
k∑
i=1

(
δTi σ(x)

)2
= σ(x)T

k∑
i=1

(
δiδ

T
i

)
σ(x) = σ(x)TQσ(x)

where Q =
∑k

i=1

(
δiδ

T
i

)
∈ SN+ .

Now assume p(x) = σ(x)TQσ(x) where Q ∈ SN+ . Then, we can factorize Q and obtain

Q =
∑k

i=1 δiδ
T
i , where δi ∈ RN . Hence,

p(x) = σ(x)TQσ(x) = σ(x)T
k∑
i=1

(
δiδ

T
i

)
σ(x) =

k∑
i=1

(
δTi σ(x)

)2

and one can take qi(x) = δTi σ(x).

In other words, every SOS polynomial can be written as a quadratic form in a set of

monomials, σ of cardinality
(
n+d/2
d/2

)
where d is the degree of p, with the corresponding

matrix being positive semidefinite.

In the representation p(x) = σ(x)TQσT (x), for the right and left-hand sides of the equation

to be identical, all the coefficients of the corresponding monomials should be equal which

is a linear system of equations in terms of the coefficients of p and the enteries of Q. Hence,

Q is constrained by linear equalities and a positive semidefinite constraint. As a result,

the sum-of-squares representation problem can be easily seen to be equivalent to an SDP

15

CHAPTER 2. BACKGROUND

feasibility problem in the standard primal form:∑
i,j:i+j=α

Qij = pα ∀|α| ≤ d (2.16)

Q � 0.

The size of the matrix Q in the corresponding SDP is
(
n+d/2
d/2

)
×
(
n+d/2
d/2

)
. In addition, we

have
(
n+d
d

)
equality constraints. This problem is polynomial time solvable if d is fixed.

Example 2.2.4. Consider the polynomial p(x1, x2) = 4x2
1 + x2

2 − 3x1x2 + 2:

p(x1, x2) =
(

1 x1 x2

)
Q

 1

x1

x2

 =
(

1 x1 x2

)2 0 0

0 4 −1.5

0 −1.5 1

 1

x1

x2

Since Q is a positive semidefinite matrix, p(x1, x2) has a sum-of-squares decomposition

which immediately establishes global non-negativity, i.e., p(x1, x2) ≥ 0 for all x1, x2.

2.2.2 Polynomial Programming Relaxations

For the unconstrained version of (PP-P):

zPP = max
x

f(x) ≡ min
λ
{λ : λ− f(x) ≥ 0 ∀x ∈ Rn}.

Relaxing the condition λ− f(x) ≥ 0 to λ− f(x) ∈ Ψd[x] ⊆ Pd(Rn), we have the following:

zPP = min
λ
λ ≤ µsos = min

λ,Q
λ

s.t. λ− f(x) ≥ 0 s.t. λ− f(x) = σ(x)TQσT (x)

Q � 0.

Therefore, µsos is an upper bound on zPP .

16

CHAPTER 2. BACKGROUND

For the constrained version of (PP-P),

zPP = max
x∈S

f(x) ≡ min
λ
{λ : λ− f(x) ≥ 0 ∀x ∈ S}.

The condition λ− f(x) ∈ Pd(S) is NP-hard in general for interesting cases of S and d as

discussed in Section 2.2.3. Relaxing this condition to λ−f(x) ∈ K for a suitable K ⊆ Pd(S)

and defining

µK = min
λ
λ

s.t. f(x)− λ ∈ K,

we have µK ≥ zPP . Finding a good approximation of Pd(S) is a key factor in obtaining a

good bound on the problem. At the same time, we need a tractable approximation, i.e., one

that uses LP, SOC, and SDP cones, and thus can be solved efficiently using interior-point

methods.

For instance, using Putinar’s representation theorem [87]:

Example 2.2.5. Assume there exists a real-valued polynomial u(x) with u(x) ∈ Ψ[x] +∑m
i=1 Ψ[x]gi(x) such that {x ∈ Rn : u(x) ≥ 0} is compact then

P(S) ⊇

{
p(x) : p(x) = σ0(x) +

m∑
i=1

σi(x)gi(x), s(x) ∈ Ψ[x]

}
⊇ P+(S).

Define g0(x) = 1 and G = {gi(x) : i = 0, . . . ,m}. For r > 0 defining

Γ r
G =

(
Ψr[x] + g1(x)Ψr−deg(g1)[x] + · · ·+ gm(x)Ψr−deg(gm)[x]

)
∩Rd[x],

we have

Γ 2
G ⊆ Γ 3

G ⊆ Γ 4
G ⊆ . . . ⊆ Γ r

G ⊆ Pd(S) and P+
d (S) ⊆

∞⋃
r=0

Γ r
G.

Remark: We use the notation Γ r
G ↑ Pd(S) of [104] as a short hand for the following two

conditions Γ r
G ⊆ Γ r+1

G ⊆ Pd(S) and P+
d (S) ⊆

⋃∞
r=0 Γ

r
G.

Notice that Γ r
G ↑ Pd(S) implies µΓ rG ↑ zPP .

17

CHAPTER 2. BACKGROUND

So, using Putinar’s representation theorem, replacing the non-negativity condition by a

tractable stronger condition in terms of sum-of-squares, one obtains a hierarchy of upper

bounds µΓ rG on zPP , each µΓ rG can be found by solving an SDP relaxation.

2.2.3 Special Cases of Polynomial Programs

In this section, we study special cases of (PP-P).

Unrestricted Polynomial Optimization

From Theorems 2.2.2 and 2.2.3, it follows that optimizing (unrestricted) polynomials of

degree d over Rn can be expressed as an SDP for any d when n = 1, for any n when d = 2,

and for n = 2 and d = 4 and thus is solvable in polynomial time.

On the other hand, optimizing degree four polynomials over Rn is NP−hard. This can

be shown by considering the problem of partitioning a sequence of n integers a1, · · · , an in

two sets of equal sum, which is known to be NP−hard. The sequence can be partitioned

if and only if the optimal solution of

min
x∈Rn

(
n∑
i=1

aixi

)2

+
n∑
i=1

(x2
i − 1)2,

is zero.

Moreover, deciding whether p(x) ∈ P4(Rn) contains the problem of deciding whether a

matrix is copositive, which is known to be NP−hard [67]. A n× n matrix A is copositive

if ∑
i,j

Aijx
2
ix

2
j ∈ P4(Rn).

Union and Intersection of Regions

Given S, T ⊆ Rn, we study the relationship between optimizing over S, T , S ∩ T , and

S ∪ T .

18

CHAPTER 2. BACKGROUND

Lemma 2.2.6. Consider the sets S and T , where S ⊆ T then we have Pd(S) ⊇ Pd(T).

Proof. Consider p(x) in Pd(T). Let a ∈ S, then a ∈ T and p(a) ≥ 0. So, p(x) ∈ Pd(S).

Corollary 2.2.7. Let S ⊆ T , then

µS = min
λ
λ ≤ µT = min

λ
λ

s.t. λ− f(x) ∈ Pd(S) s.t. λ− f(x) ∈ Pd(T)

Lemma 2.2.8. For any sets S and T

Pd(S ∪ T) = Pd(S) ∩ Pd(T).

Proof. Using S, T ⊆ S ∪ T , from Lemma 2.2.6 Pd(S),Pd(T) ⊇ Pd(S ∪ T). Hence, Pd(S)∩
Pd(T) ⊇ Pd(S ∪ T).

Next consider a polynomial p(x) in Pd(S) ∩ Pd(T). Let a ∈ S ∪ T , then p(a) ≥ 0, hence

p(x) is in Pd(S ∪ T).

Corollary 2.2.9. For any sets S and T ,

µS∪T = min
λ
λ = µS∪T = min

λ
λ

s.t. λ− f(x) ∈ Pd(S ∪ T) s.t. λ− f(x) ∈ Pd(S) ∩ Pd(T)

Lemma 2.2.10. For any sets S and T

Pd(S ∩ T) ⊇
d∑
t=0

Pt(S)Pd−t(T)

⊇ Pd(S) + Pd(T).

Proof. Consider p(x) ∈
∑d

t=0Pt(S)Pd−t(T). There are qt(x) in Pt(S) and rt(x) in Pd−t(T)

such that p(x) =
∑d

t=0 qt(x)rt(x). Let a ∈ S ∩ T , then p(a) =
∑d

t=0 qt(a)rt(a) ≥ 0. Hence,

p(x) ∈
∑d

t=0Pt(S)Pd−t(T).

For the second line of the lemma, we use
∑d

t=0Pt(S)Pd−t(T) ⊇ Pd(S)P0(T)+P0(S)Pd(T) =

Pd(S)R+ + R+Pd(T) = Pd(S) + Pd(T).

19

CHAPTER 2. BACKGROUND

Corollary 2.2.11. For any sets S and T

µS∩T = min
λ
λ ≥ µS,T = min

λ
λ

s.t. λ− f(x) ∈ Pd(S ∩ T) s.t. λ− f(x) ∈ Pd(S) + Pd(T)

Lemma 2.2.12. For any S, d, and f ∈ Rd[x]

Pd (S ∩ {x : f(x) ≥ 0}) ⊇ Pd(S) + f(x)Pd−deg(f)(S).

Optimizing over Subsets of Reals

To motivate the result of this section, we first consider the following example.

Example 2.2.13. Is the polynomial p(y) = 3y2+2y−1 non-negative over the interval [4, 5]?

We have a = 4, b = 5, and d = 2. Substituting y = x+ 4, we obtain

p1(x) := p(x+ 4) = 3(x+ 4)2 + 2x+ 8− 1

= 3x2 + 24x+ 48 + 2x+ 7

= 3x2 + 26x+ 55.

p1(x) = 3x2 + 26x+ 55 and p1(x) ∈ P2([0, 1])⇔ p(y) ∈ P2([4, 5]). Substituting x = 1
z+1

, in

p1(x)

p2(z) := p1

(
1

z + 1

)
=

3

(z + 1)2
+

26

z + 1
+ 55

=
3 + 26(z + 1) + 55(z + 1)2

(z + 1)2

=
3 + 26z + 26 + 55z2 + 110z + 55

(z + 1)2

=
55z2 + 136z + 84

(z + 1)2
.

20

CHAPTER 2. BACKGROUND

And p2(z) ∈ P2(R+)⇔ p1(x) ∈ P2([0, 1]). Substituting z = w2, we obtain

p3(w) := p2(w2) = 55w4 + 136w2 + 84

and p3(w) ∈ P2(R) ⇔ p2(z) ∈ P2(R+). Since p3(w) is an SOS, it is non-negative for all

w ∈ R, then p(y) is non-negative for all y ∈ [4, 5].

The next lemma follows from the results of [86, 17] on sos representations of polynomials

that are nonnegative on an interval:

Lemma 2.2.14. Problem (PP-P) can be expressed as an SDP for any d for

1. S = [0,∞)

2. S = [a, b].

Proof.

1. p(x) ∈ Pd([0,∞))⇔ p(x2) ∈ Pd(R)

2. p(y) ∈ Pd([a, b])⇔ p((b− a)x+ a) ∈ Pd([0, 1])⇔ p(b−a
z+1

+ a)(z + 1)d ∈ Pd(R+)

From Lemma 2.2.8 and Pd(S) = Pd(closure(S)), we have the following corollary.

Corollary 2.2.15. When S ⊆ R is a finite union of intervals, (PP-P) can be casted as an

SDP for any d.

Optimizing a Linear Polynomial

We consider a linear objective function subject to a set of constraints.

21

CHAPTER 2. BACKGROUND

Theorem 2.2.16.

P1(S) =

{
aTx+ b :

[
a

b

]
∈ S̃∗

}
,

where S̃ =

[
ts

t

]T
: s ∈ S, ∀t ≥ 0

 and S̃∗ is the dual cone of S̃.

Proof.
[
a

b

]
:

[
a

b

]T [
s

1

]
∈ P1(S)

 =

[
a

b

]
:

[
a

b

]T [
s

1

]
≥ 0 ∀s ∈ S

=

[
a

b

]
:

[
a

b

]T [
ts

t

]
≥ 0 ∀s ∈ S, t ≥ 0

=

[
a

b

]
:

[
a

b

]T
y ≥ 0 ∀y ∈ S̃

 ,

=S̃∗,

Hence, the complexity of P1(S) depends on the complexity S̃∗.

Example 2.2.17. Define B := {x : ‖x‖2 = n}, convex(B̃) = Ln and thus B̃∗ = Ln∗ = Ln,

where Ln is the second-order cone, we have:

P1(B) =

{
aTx+ b :

[
a

b

]
∈ Ln

}
.

Example 2.2.18. Consider a polyhedron H

P1(H) =

{
aTx+ b :

[
a

b

]
∈ H̃∗

}
,

and the set H̃∗ is a polyhedral cone. In this example, (PP-D) is the LP-dual of (PP-P).

22

CHAPTER 2. BACKGROUND

Optimizing over the Ball

Consider the polynomial f(x) of degree one, then f(x) ≥ 0 for x ∈ B can be represented

using second-order cone due to the following lemma

Lemma 2.2.19. f(x) ∈ P1(B) implies that f(x) = fT

(√
n

x

)
with f ∈ Ln.

Example 2.2.20. Consider the polynomial f(x1, x2) = 4 + x1 + x2:

f(x1, x2) = fT

√

2

x1

x2

where f =

(
2
√

2 1 1
)T
∈ L2 hence f(x1, x2) ∈ P1(B).

By the S−Lemma of Yakubovich (see [85]) p(x) ∈ P2(B) may be rewritten as a semidefinite

constraint.

Lemma 2.2.21.

p(x) ∈ P2(B)⇔ p(x) =

(
1

x

)T

M

(
1

x

)
+ h(n−

∑
i

x2
i),

where M � 0 and h ≥ 0.

Nesterov [71] showed that optimizing a polynomial of degree d = 3 on the ball is an NP-

hard problem, using a reduction from the maximum stable set problem. de Klerk [15]

showed that for any graph G = (V,E) with stability number α(G),√
1− 1

α(G)
= 3
√

3 max
‖x‖2+‖y‖2=1

∑
i<j

(i,j)/∈E

yijxixj.

Hence for d ≥ 3 and S = B, (PP-P) is NP-hard problem.

23

CHAPTER 2. BACKGROUND

Quadratic Optimization

Assume

S = {x ∈ Rn : qi(x) ≥ 0, i = 1, · · · ,m},

where qi(x) = xTQix+ 2bTi x+ ci, hence quadratic inequalities (and equalities).

Solving a quadratic problem is known to be NP-hard in general as seen in [28]. On the

other hand, solving a convex quadratic problem can be done in polynomial time. Solving

an indefinite quadratic objective subject to a single quadratic constraint (inequality or

equality) or a concave quadratic inequality constraint and a linear inequality constraint

can be solved in polynomial time by first solving a specific form of SDP relaxation, followed

by a matrix decomposition procedure as shown in Sturm and Zhang [94] and Yakubovich’s

S-lemma (see [83, 85]).

Example 2.2.22. [94] P2(B ∩ {x : aTx ≥ b}) = P2(B) + (aTx− b)P1(B)

In Ye and Zhang [101], more special cases of quadratic optimization problems are solved

in polynomial time by showing that a certain SDP relaxation is exact.

We consider the following general quadratic optimization problem:

(QP) min q0(x)

s.t. qi(x) ≥ 0, i = 1, · · · ,m

A semidefinite programming relaxation of (QP) is

(SDP-PQ) min

〈(
c0 bT0
b0 Q0

)
, X

〉

s.t.

〈(
ci bTi
bi Qi

)
, X

〉
≥ 0 i = 1, · · · ,m

X00 = 1, X � 0

24

CHAPTER 2. BACKGROUND

The SDP problem (SDP-PQ) has a dual, which is given by

(SDP-DQ) max y0

s.t.

(
c bT

b Q

)
− y0

(
1 0

0 0

)
−

m∑
i

yi

(
ci bTi
bi Qi

)
� 0

yi ≥ 0 i = 1, · · · ,m

Assuming (QP) satisfies the Slater condition, it follows that (SDP-PQ) satisfies the Slater

condition too. Additionally, (SDP-DQ) satisfies the Slater condition in the following cases

as shown in [101].

Proposition 2.2.23. The problem (SDP-DQ) satisfies the Slater regularity condition, ei-

ther when at least one of the m constraints is ellipsoidal or when the objective function is

strictly convex.

Theorem 2.2.24. [101] Suppose that (SDP-PQ) and (SDP-DQ) both satisfy the Slater

condition and m = 2. Furthermore, suppose that (SDP-PQ) has at least one non-binding

constraint at optimality. Then, (QP) can be solved in polynomial time.

Another polynomially solvable special case of (QP) is when m = 2 and the quadratic

functions q(x), q1(x), and q2(x) are homogeneous, i.e., there are no linear terms [101].

Optimizing over Polyhedral Cones

We assume that the domain S is a polyhedral cone

S = {x : aix− bi ≥ 0 i = 1, · · · ,m}.

We saw in Example 2.2.18 that in this case P1(S) is a polyhedral cone. The optimization

of degree 1 polynomials over S corresponds to LP-programming which is known to be

polynomial-time solvable. The degree two case is NP-hard, actually Bellare and Rogaway

[7] proved that, unless P = NP , if ε ∈ (0, 1
3
) there is no polynomial time-approximation

algorithm for the problem of minimizing a polynomial of degree d ≥ 2 over the set S =

{x ∈ [0, 1]n : Ax ≤ b}.

25

CHAPTER 2. BACKGROUND

Optimizing over the Simplex

Consider the problem of minimizing a polynomial p(x) of degree d on the standard simplex

∆ :=

{
x ∈ Rn

+ :
n∑
i=1

xi = 1

}
.

The problem

min
x
p(x)

s.t. x ∈ ∆ (2.17)

is NP−hard even for degree d = 2 as it contains the maximum stable set problem. Let G

be a graph with adjacency matrix A and I is the identity matrix, then the maximum size

α(G) of a stable set in G can be expressed as [18]

1

α(G)
= min

x∈∆
xT (I + A)x.

Some easy cases:

When p(x) is concave then the global minimum of p is attained at one of the n extreme

points of ∆. When p is convex of degree 2 the problem becomes a convex quadratic problem

that may be solved in polynomial time.

Bomze and de Klerk [9] showed that problem (2.17) with d = 2 allows a polynomial time

approximation scheme (PTAS). This result was extended to polynomials of fixed degree d

by de Klerk, Laurent, and Parrilo [18]. On the other hand, this problem does not have a

fully polynomial time approximation scheme (FPTAS) [15].

Lemma 2.2.25. [18] For a fixed degree d, there exists a PTAS for maximizing polynomials

of degree d over the unit simplex.

Using

p(x) ∈ Pd(∆)⇔ p(x2) ∈ Pd(B)

we obtain the following corollary:

26

CHAPTER 2. BACKGROUND

Corollary 2.2.26. There exists a PTAS for maximizing polynomials with even exponents

and fixed degree on the ball.

Optimizing over the Hypercube

Consider the problem of minimizing a polynomial p(x) of degree d on the hypercube. The

problem

min p(x)

s.t. x ∈ [0, 1]n (2.18)

is NP−hard even for degree d = 2 since it contains the max-cut problem with non-negative

weights [15]. Moreover, the max-cut problem does not have a PTAS and hence for d = 2

and S = {x : x ∈ [0, 1]n} the optimization problem does not have a PTAS. As a result,

optimizing over the unit hypercube is much harder than optimizing over the simplex.

Optimizing over the Vertices of the Hypercube

If S = {x : x ∈ {0, 1}n} and d = 1, the problem of optimizing a linear objective function

over S can be solved in polynomial time since this can be seen as solving a linear objective

over the convex hull of S which is a linear programming problem. However, if S = {x :

ATx ≤ b, x ∈ {0, 1}n} and d = 1, the problem corresponds to binary programming which

is NP−hard [28].

If S = {x : x ∈ {0, 1}n} and d = 2 then (PP-P) is NP−hard as it contains the max-

cut problem as a special case. For the max-cut problem with non-negative weights there

are approximation results due to Goemans and Williamson [32] and Nesterov [69]. For

non-negative weights, the objective function of the max-cut problem is convex quadratic

since the Laplacian matrix of a graph is always positive semidefinite, hence optimizing over

{0, 1}n and [0, 1]n is the same for that case.

27

CHAPTER 2. BACKGROUND

2.2.4 Approximation Hierarchies for Polynomial Programs

Lasserre [53] introduced semidefinite relaxations corresponding to liftings of the polyno-

mial programs into higher dimensions. The construction is motivated by results related

to representations of non-negative polynomials as sum-of-squares and the dual theory of

moments (see Section 2.2.6). Lasserre shows that the global maximum of f(x) over a set

S defined by polynomial inequalities reduces to solving a sequence of sum-of-squares type

representations of polynomials that are non-negative on S. The convergence of Lasserre’s

method is based on the assumption that G = {g1(x), . . . , gm(x)}, the given description of

S, allows the application of Putinar’s Theorem [87] (see Example 2.2.5). In particular, it

assumes S is compact.

Recall the approximation Γ r
G of Pd(S):

Γ r
G =

(
Ψr[x] +

m∑
i=1

gi(x)Ψr−deg(gi)[x]

)
∩Rd[x]. (2.19)

Using the approximation Γ r
G, a relaxation on the original polynomial program (PP-P) is

obtained,

µΓ rG = inf
λ
λ

s.t. λ− f(x) ∈ Γ r
G,

that is,

µΓ rG = inf
λ,σi(x)

λ (2.20)

s.t. λ− f(x) = σ0(x) +
m∑
i=1

gi(x)σi(x)

σ0(x) ∈ Ψr[x]

σi(x) ∈ Ψr−deg(gi)[x] i = 1, . . . ,m.

28

CHAPTER 2. BACKGROUND

The optimization problem (2.20) can be reformulated as a semidefinite problem as described

in Section 2.2.6. For a problem with n variables and m inequality constraints, the size of

the optimization problem (2.20) is as follows:

• One psd matrix of dimension
(
n+r
r

)
;

• m psd matrices, each of dimension
(
n+r−deg(gi)
r−deg(gi)

)
for i ∈ {1, . . . ,m};

•
(
n+r
r

)
constraints.

By increasing the value of r for the approximation Γ r
G, Lasserre builds up a sequence of

convex semidefinite relaxations of increasing size. Under mild conditions the optimal values

of these problems converge to the global optimal value of the original non-convex problem

(PP-P) [53]. The next theorem states the result using our notation.

Theorem 2.2.27. [53] Let S = {x ∈ Rn : gi(x) ≥ 0, i = 1, · · · ,m} and {gi(x) : i =

1, . . . ,m}. Assume S is a compact semialgebraic set (not necessarily convex) and for some

i, {x ∈ Rn : gi(x) ≥ 0} is compact, then

Γ r
G ↑ Pd(S),

and therefore

µΓ rG ↑ zPP .

Hence, using Lasserre’s approach for general polynomial programs one may approach the

global optimal value as closely as desired by solving a sequence of semidefinite problems

that grow in the size of the semidefinite matrices and in the number of constraints. The

larger the degree r, the better the optimal value µΓ rG .

2.2.5 Handling Equality Constraints

As opposed to Lasserre’s sequence of relaxations of Pd(S) where equality constraints are

treated as a set of two inequalities, we differentiate between equality and inequality con-

straints as proposed in [80]. Given S = {x : gi(x) ≥ 0, i = 1, . . . ,m1, hi(x) = 0, i =

29

CHAPTER 2. BACKGROUND

1, . . . ,m2}, let G = {gi(x) : i = 1, . . . ,m1, hi(x) : i = 1, . . . ,m2}. Consider the following

approximation of Pd(S):

Kr
G =

(
Ψr[x] +

m1∑
i=1

gi(x)Ψr−deg(gi)[x] +

m2∑
i=1

hi(x)Rr−deg(hi)[x]

)
∩Rd[x]. (2.21)

The corresponding optimization problem over S can be written as:

inf
λ,σi(x),δi(x)

λ

s.t. λ− f(x) = σ0(x) +

m1∑
i=1

σi(x)gi(x) +

m2∑
i=1

δi(x)hi(x) (2.22)

σ0(x) ∈ Ψr[x]

σi(x) ∈ Ψr−deg(gi)[x] i = 1, . . . ,m1

δi(x) ∈ Rr−deg(hi)[x] i = 1, . . . ,m2.

Similar to problem (2.20), problem (2.22) can also be reformulated as a semidefinite prob-

lem. The following theorem follows by applying Corollary 1 of [80] and Putinar’s theorem

[87]

Theorem 2.2.28. The sequence of cones Kr
G satisfies

Kr
G ↑ Pd(S).

Hence µKrG ↑ zPP .

Lemma 2.2.29. Given G = {gi(x) : i = 1, . . . ,m1, hi(x) : i = 1, . . . ,m2}, let G̃ = {gi(x) :

i = 1, . . . ,m1, hi(x),−hi(x) : i = 1, . . . ,m2}. Then Γ r
G̃
(Kr

G.

Notice that from equations (2.19) and (2.21), Kr
G = Γ r

G̃
for even r, since Rr[x] = Ψr[x] −

Ψr[x]. However, when r is odd, Ψr[x] = Ψr−1[x] so that Rr[x]) Ψr−1[x] − Ψr−1[x], and

thus Γ r
G̃
⊂ Kr

G.

30

CHAPTER 2. BACKGROUND

2.2.6 Primal and Dual Perspective

Recall the polynomial programming problem and its reformulation:

maxx f(x) minλ∈R λ

s.t. x ∈ S s.t. λ− f(x) ∈ Pd(S).
(2.23)

We will abuse the notation and we identify Rd[x] with RN where N =
(
n+d
d

)
, i.e. by

identifying each polynomial f(x) ∈ Rd[x] with its vector of coefficients f ∈ RN . In this

way Pd(S) is a cone in RN . We endow RN with an inner product 〈·, ·〉 such that for each

f(x) ∈ Rd[x] and each u ∈ Rn, 〈f,Md(u)〉 = f(u).

Then we define conic primal-dual pair that form the basis of the relaxations and algorithms

that we develop in later chapters:

minλ∈R λ maxY 〈f, Y 〉
s.t. λ− f(x) ∈ Pd(S) s.t. 〈1, Y 〉 = 1

Y ∈ Pd(S)∗,

(2.24)

where Pd(S)∗ is the dual cone defined in Section 2.1. Pd(S)∗ is actually the cone generated

by the convex hull of the set of monomials over S, as stated in the following lemma.

Lemma 2.2.30. Let S ⊆ Rn be a compact set, then

{X ∈ Pd(S)∗ : 〈1, X〉 = 1} = conv(Md(S)).

Proof. Let Md(S) = {Md(x) : x ∈ S}. Then

Md(S)∗ = {p : 〈p,X〉 ≥ 0 ∀X ∈Md(S)}
= {p(x) : 〈p,Md(s)〉 ≥ 0 ∀s ∈ S}
= {p(x) : p(s) ≥ 0 ∀s ∈ S}
= Pd(S).

31

CHAPTER 2. BACKGROUND

Therefore, Pd(S)∗ =Md(S)∗∗ = closure(cone(conv(Md(S)))). Since S is compact,Md(S)

is compact. Also, for all x ∈ S, 〈1,Md(x)〉 = 1 and thus

{X ∈ Pd(S)∗ : 〈1, X〉 = 1} = {X ∈Md(S)∗∗ : 〈1, X〉 = 1} = conv(Md(S)).

In the following two sections we show that Lasserre’s hierarchy of semidefinite relaxations

obtained using the idea of moments is analogous to our approach when the approximation

of Pd(S) has Putinar’s representation result (as given in (2.19)). In the next section, we

show how to obtain (2.23) using the moment problem.

Moment Perspective

Problem (2.9) is of the form:

zPP = max
x

f(x) (2.25)

s.t. x ∈ S.

For S a compact semialgebraic set, Lasserre [53] reformulates (2.25) as

zmom = max
µ∈M(S)

∫
S

fdµ (2.26)

s.t.

∫
S

dµ = 1,

where M(S) is the space of finite measures supported on S.

Theorem 2.2.31. [53] Problems (2.25) and (2.26) are equivalent, that is zPP = zmom.

Proof. We consider the case where zPP is bounded. Since f(x) ≤ zPP for all x ∈ S, then

for any µ ∈M(S),
∫
S
fdµ ≤ zPP and thus zmom ≤ zPP . Conversely, with every x ∈ S, we

associate the Dirac measure at x in M(S) which is a feasible solution of problem (2.26)

and hence zmom ≥ zPP . This leads to the desired result zPP = zmom.

32

CHAPTER 2. BACKGROUND

In other words, one can formulate the general polynomial program as a moment problem.

In contrast to problem (2.25), problem (2.26) is linear, convex, and a conic problem.

However, (2.26) is infinite dimensional. The moment problem

max
µ∈M(S)

∫
S

fdµ

s.t.

∫
S

dµ = 1.

can be written as an infinite dimensional LP

max
µ∈M(S)

〈f, µ〉

s.t. 〈1, µ〉 = 1,

where 1 is the vector of all ones. The dual LP reads:

min
λ∈R

λ

s.t.λ− f(x) ≥ 0 ∀ x ∈ S,

and hence obtaining (2.23).

Semidefinite Relaxation

Let y := (yα)α∈Nn be an infinite sequence. We say, y has a representing measure µ ∈M(S),

if

∃µ ∈M(S) s.t. yα =

∫
S

xαdµ ∀α ∈ Nn.

Given y and p(x) ∈ R[x], let Ly : R[x]→ R be a linear function where each monomial xα

in p(x) is replaced by yα:

Ly(p) =
∑
α

pαyα.

33

CHAPTER 2. BACKGROUND

From Putinar’s Theorem [87], if the set {x : gi(x) ≥ 0} is compact for some i = 1, . . . ,m,

then y has a representing measure µ on S if and only if

Ly(σ
2), Ly(σ

2gi) ≥ 0, ∀i = 1, . . . ,m ∀σ(x) ∈ R[x]. (2.27)

We show that for a fixed degree r, checking condition (2.27) for all σ(x) ∈ Rr[x] reduces

to solving a semidefinite problem. This allows us to obtain a SDP relaxation of (2.26).

One can introduce the moment matrix Mr(y) with rows and columns indexed in the basis

defined by v

v := [1, x1, x2, · · · , xn, x2
1, x1x2, · · · , x1xn, x

2
2, · · · , x2

n, x
3
1, · · · , xr1, · · · , xrn]T ,

then Mr(y) is of dimension N =
(
n+d
d

)
and is defined by:

Mr(y)(α, β) := Ly(x
αxβ) = Ly(x

α+β) = yα+β, α, β ∈ Nn, | α |, | β |≤ r.

For instance, for clarification, consider the two-dimensional case. The moment matrix

Mr(y) with r = 2 consists of block matrix {Mi,j(y)}0≤i,j≤r and has the following form

M2(y) =

y00 y10 y01

y10 y20 y11

y01 y11 y02

 .
On the other hand, for a given g(x) ∈ R[x], define the localizing moment matrix:

Mr(gy)(α, β) := Ly(g(x)xα+β) =
∑
γ

gγyα+β+γ, α, β ∈ Nn, | α |, | β |≤ r.

Lemma 2.2.32. Ly(s
2
0), Ly(s

2
i gi) ≥ 0 for all s0(x) ∈ Rb r

2
c[x] and si(x) ∈ Rb r−deg(gi)

2
c[x] ⇔

Mr(y),Mr−deg(gi)(y) � 0 for all i = 1, . . . ,m.

34

CHAPTER 2. BACKGROUND

Proof. Let y be a finite sequence of moments, up to order r. Then y has a representing

measure µ with support contained in S:

Ly(s
2
0) = 〈s0,Mr(y)s0〉 =

∫
S

s2
0dµ =

∫
S

s0(x)2µ(dx) ≥ 0, ∀s0(x) ∈ Rb r
2
c[x],

and

Ly(s
2
i gi) =

〈
si,Mr−deg(gi)(giy)si

〉
=

∫
S

s2
i gidµ =

∫
S

si(x)2gi(x)µ(dx) ≥ 0, ∀si(x) ∈ Rb r−deg(gi)

2
c[x],

so that Mr(y),Mr−deg(gi)(giy) � 0 for all i = 1, . . . ,m.

Using Lemma 2.2.32, an SDP relaxation for (2.26) can be formulated as:

max
y

Ly(f) (2.28)

s.t. Ly(1) = 1

Mr(y) � 0

Mr−deg(gi)(giy) � 0 i = 1, . . . ,m.

The SDP-dual of (2.28) can be reformulated as (2.20)

35

Chapter 3

New Conic Relaxations

In this chapter, we present new relaxations for BPP problems. In particular, we use

characterizations of non-negative degree 1 and 2 polynomials over the ball to propose

SDP/SOC relaxations of binary polynomial programs. We focus on BPPs that are of degree

two and use the polynomial programming framework to re-derive, compare and strengthen

existing relaxation schemes for binary quadratic polynomial programs (BQPP). We present

a new second-order and semidefinite-based construction where we are able to theoretically

show that the resulting relaxations provide bounds stronger than other computationally

practical semidefinite-based relaxations proposed in the literature. In Section 3.1, we

describe our solution methodology and present several relaxations for the binary quadratic

polynomial problem including our three new proposed relaxations.

In Section 3.2, we apply our proposed relaxations to general quadratic constrained prob-

lems, quadratic assignment problems, quadratic linear constrained problems, and quadratic

knapsack problems and theoretically compare them to other existing relaxations from the

literature. In Section 3.3, we report computational results for BQPPs exploring the per-

formance of several relaxations, comparing them to existing ones in terms of bounds and

computational time on the four classes of problems mentioned above.

36

CHAPTER 3. NEW CONIC RELAXATIONS

3.1 Binary Quadratic Polynomial Programming

Binary quadratic polynomial programming problem is a classical combinatorial problem. It

is the problem of minimizing or maximizing a quadratic function of several binary variables,

subject to quadratic and linear constraints. The problem can be formally expressed as:

(BQPP) zBQPP = max xTQx+ pTx

s.t. aTj x = bj j = 1, · · · , t (3.1)

cTj x ≤ dj j = 1, · · · , u (3.2)

xTFjx+ eTj x = kj j = 1, · · · , v (3.3)

xTGjx+ hTj x ≤ lj j = 1, · · · , w (3.4)

xi ∈ {−1, 1} i = 1, · · · , n. (3.5)

Note that constraint (3.5) can be modified to allow some continuous variables. In this part,

we focus on pure binary quadratic polynomial programs although the solution methodology

can be applied to mixed-binary quadratic polynomial programs with bounded continuous

variables. Furthermore, although one could consider an equivalent form of the problem

with only inequality constraints, we treat equality and inequality constraints separately

because this is beneficial from a computational perspective (see Section 2.2.5).

There are many well-known problems that can be naturally written as binary quadratic

polynomial problems. For instance, folding of proteins in three-dimension by Phillips and

Rosen [81], machine scheduling and unconstrained task allocation by Alidaee, Kochen-

berger, and Ahmadian [1], capital budgeting and financial analysis such as in Laughhunn

[56], as well as other examples arising in physics and engineering applications such as the

spin glass problem and circuit board layout design by Grötschel, Jünger, and Reinelt [33].

Furthermore, Boros and Hammer [11] and Boros and Prekopa [12] formulated many sat-

isfiability problems as BQPPs. In addition, there are several applications related to com-

binatorial problems such as the single-row facility layout problem [3] and the quadratic

assignment problem [60].

37

CHAPTER 3. NEW CONIC RELAXATIONS

3.1.1 Polynomial Programming-Based Relaxations

Following Section 2.2, (BQPP) can be reformulated as

min
λ
λ

s.t. λ− q(x) ∈ P2(D ∩H),

where q(x) =
∑

i,j Qijxixj +
∑

i pixi, D = {x : aTj x = bj, c
T
j x ≥ dj, x

TFjx + eTj x =

kj, x
TGjx+hTj x ≥ lj}, and H = {−1, 1}n. Since even checking if a polynomial is in P2(H)

is NP-hard, tractable approximations of P2(D ∩ H) are needed. Using Section 2.2.5, a

hierarchy of approximations to P2(D ∩ H) is obtained using the cone Kr
G ⊆ P2(D ∩ H),

where G is the set of polynomials defining D and H. The result is a hierarchy of relaxations:

(BQPPKrG) µBQPPKr
G

= min
λ
λ

s.t. λ− q(x) ∈ Kr
G (3.6)

whose optimal value converges to the optimal value of (BQPP).

The size of the relaxations produced in (3.6) grows exponentially in r. For this reason,

instead of looking at the hierarchy of relaxations, we will concentrate on the first and

simplest relaxation where r = 2, i.e., K2
G. We study how to improve the approximation of

P2(D∩H) using variations of the cone K2
G. The fundamental tool that we use to construct

such inner approximations of P2(D∩H) is Lemma 2.2.19, a representation theorem for non-

negative linear polynomials over B which results in second-order cone conditions. These

yield stronger bounds than K2
G with an insignificant impact on the computational time.

3.1.2 New Conic Relaxations of BQPP

In this section, we present three relaxations for the BQPP problem. Two of these re-

laxations are based on second-order cone and semidefinite programming and the final

relaxation is solely based on second-order cone programming.

38

CHAPTER 3. NEW CONIC RELAXATIONS

SOC-SDP-based Relaxations of BQPP

Recall the previous polynomial formulation of the binary quadratic polynomial problem.

First, notice that x ∈ H implies ‖x‖2 = n. Given B = {x ∈ Rn : ‖x‖2 = n}, we have

D ∩H ⊆ B and by defining K̄2 as

K̄2 = P2(B) +
∑
i

(1 + xi)P1(B) +
∑
i

(1− xi)P1(B) +
∑
i

(1− x2
i)R0 +

∑
j

(bj − aTj x)R1[x]

+
∑
j

(dj − cTj x)P1(B) +
∑
j

(kj − xTFjx− eTj x)R0 +
∑
j

(lj − xTGjx− hTj x)R+
0 ,

we have K̄2 ⊆ P2(D ∩ B ∩H) = P2(D ∩H).

Using Lemmas 2.2.19 and 2.2.21 and the fact that the vector [n xT]T belongs to the

second order cone, we can write the condition λ− q(x) ∈ K̄2 as

λ− q(x) =s(x) +
∑
i

αi(x)(1 + xi) +
∑
i

βi(x)(1− xi) +
∑
i

γi(1− x2
i) +

∑
j

δj(x)(bj − aTj x)

+
∑
j

ηj(x)(dj − cTj x) +
∑
j

θj(kj − xTFjx− eTj x) +
∑
j

ξj(lj − xTGjx− hTj x),

with s(x) =
(

1 xT
)
S

(
1

x

)
where S ∈ Sn+1

+ and αi(x) = αTi

(√
n

x

)
, βi(x) = βTi

(√
n

x

)
,

and ηj(x) = ηTj

(√
n

x

)
where αi, βi, ηj ∈ Ln, δj(x) ∈ R1[x], γi, θj ∈ R, and ξj ∈ R+.

39

CHAPTER 3. NEW CONIC RELAXATIONS

We then obtain the following relaxation of (BQPP):

(BQPPSS) min λ

s.t. λ− q(x) =
(

1 xT
)
S

(
1

x

)
+
∑
i

(1 + xi)α
T
i

(√
n

x

)
+
∑
i

(1− xi)βTi

(√
n

x

)

+
∑
i

γi(1− x2
i) +

∑
j

δj(x)(bj − aTj x) +
∑
j

(dj − cTj x)ηTj

(√
n

x

)
+
∑
j

θj(kj − xTFjx− eTj x) +
∑
j

ξj(lj − xTGjx− hTj x),

S ∈ Sn+1
+ , αi, βi, ηj ∈ Ln, δj(x) ∈ R1[x], γi, θj ∈ R, ξj ∈ R+.

To strengthen this relaxation we can add valid inequalities to the original problem (BQPP)

which is equivalent to adding more variables to the relaxation due to Lemma 2.2.12.

Notice that products of linear constraints, such as (dk − cTk x)(1 + xi), (dk − cTk x)(1 − xi),
(dk−cTk x)(dl−cTl x), (1−xj)(1−xi), (1+xj)(1+xi), and (1−xj)(1+xi) are also considered

as valid inequalities and can be added to (BQPPSS) to further strengthen the relaxation.

40

CHAPTER 3. NEW CONIC RELAXATIONS

Hence we obtain

(BQPPSS+) min λ

s.t. λ− q(x) =
(

1 xT
)
S

(
1

x

)
+
∑
i

(1 + xi)α
T
i

(√
n

x

)
+
∑
i

(1− xi)βTi

(√
n

x

)

+
∑
i

γi(1− x2
i) +

∑
j

δj(x)(bj − aTj x) +
∑
j

(dj − cTj x)ηTj

(√
n

x

)
+
∑
j

θj(kj − xTFjx− eTj x) +
∑
j

ξj(lj − xTGjx− hTj x)

+
∑
i,k

σik(dk − cTk x)(1 + xi) +
∑
i,k

µik(dk − cTk x)(1− xi)

+
∑
k≤l

νkl(dk − cTk x)(dl − cTl x) +
∑
i≤j

τij(1− xi)(1− xj)

+
∑
i≤j

ωij(1 + xi)(1 + xj) +
∑
i,j

φij(1− xi)(1 + xj)

S ∈ Sn+1
+ , αi, βi, ηj ∈ Ln, δj(x) ∈ R1[x], γi, θj ∈ R, ξj, σik, µik, νkl, τij, ωij, φij ∈ R+.

Pure SOC-based Relaxations of BQPP

The relaxation (BQPPSS) can further be relaxed by removing the positive semidefinite

variable leading to the following relaxation:

min λ

s.t. λ− q(x) =
∑
i

(1 + xi)α
T
i

(√
n

x

)
+
∑
i

(1− xi)βTi

(√
n

x

)
+
∑
i

γi(1− x2
i)

+
∑
j

δj(x)(bj − aTj x) +
∑
j

(dj − cTj x)ηTj

(√
n

x

)
+
∑
j

θj(kj − xTFjx− eTj x)

+
∑
j

ξj(lj − xTGjx− hTj x),

αi, βi, ηj ∈ Ln, δj(x) ∈ R1[x], γi, θj ∈ R, ξj ∈ R+.

41

CHAPTER 3. NEW CONIC RELAXATIONS

One type of valid inequalities that we consider for BQPP is:

−1 ≤ xixj ≤ 1. (3.7)

These inequalities are redundant in the presence of the SDP and x2
i = 1 terms. However,

once the SDP term is removed adding these constraints will strengthen the SOC relaxation.

Note that there are O(n2) inequalities and they can be added iteratively to the SOC

relaxation using a separation algorithm as described in Section 5.5. In this section, we

include all these valid inequalities since we are comparing the quality of the bounds.

Hence, we obtain our proposed SOC-based relaxation:

(BQPPSOC) min λ

s.t. λ− q(x) =
∑
i

(1 + xi)α
T
i

(√
n

x

)
+
∑
i

(1− xi)βTi

(√
n

x

)
+
∑
i

γi(1− x2
i)

+
∑
j

δj(x)(bj − aTj x) +
∑
j

(dj − cTj x)ηTj

(√
n

x

)
+
∑
j

θj(kj − xTFjx− eTj x) +
∑
j

ξj(lj − xTGjx− hTj x)

+
∑
i<j

h+
ij(1 + xixj) +

∑
i<j

h−ij(1− xixj)

αi, βi, ηj ∈ Ln, δj(x) ∈ R1[x], γi, θj ∈ R, ξj, h
+
ij, h

−
ij ∈ R+.

By construction we have the following theorem relating the three presented relaxations:

Theorem 3.1.1. Let µBQPPSOC
, µBQPPSS

, and µBQPP
SS+

be the optimal solution value of

(BQPPSOC), (BQPPSS), and (BQPPSS+) respectively, then

µBQPPSOC
≥ µBQPPSS

≥ µBQPP
SS+
≥ zBQPP.

42

CHAPTER 3. NEW CONIC RELAXATIONS

3.2 Applications

In this section, we apply our proposed framework to the following classes of constrained

BQPPs:

• General quadratic polynomial problems;

• Quadratic linear constrained problems;

• Quadratic assignment problem;

• Quadratic knapsack problems.

First, we start with the most general class of binary quadratic polynomial problems where

we have quadratic and linear constraints. Then we consider the special case with only linear

constraints and finally we consider problems with a single linear constraint. We re-derive

existing relaxations that have been proposed in the literature for each of these problems

and theoretically compare our proposed two SOC-SDP-based relaxations to them. We

show theoretically that we obtain stronger relaxations based on applying the methodology

of Section 3.1. In addition, in Section 3.3 we compare the relaxations computationally for

each of these four classes of binary quadratic problems. Our computational results show

that more time efficient relaxations are obtained if the SDP term is omitted.

3.2.1 General Quadratic Polynomial Problems

We consider the general binary quadratic problem (BQPP). Building on the ideas presented

in Section 2.2.4, Lasserre [54] introduced SDP relaxations for binary polynomial programs

43

CHAPTER 3. NEW CONIC RELAXATIONS

by approximating P2(D ∩H) using the cone Γ r
G, that is,

Γ r
G =

(
Ψr[x] +

∑
i

(1− x2
i)Ψr−2[x] +

∑
i

(x2
i − 1)Ψr−2[x] +

∑
i

(bi − aTi x)Ψr−2[x]

+
∑
i

(aTi x− bi)Ψr−2[x] +
∑
i

(di − cTi x)Ψr−2[x] +
∑
i

(ki − xTFix− eTi x)Ψr−2[x]

+
∑
i

(xTFix+ eTi x− ki)Ψr−2[x] +
∑
i

(li − xTGix− hTi x)Ψr−2[x]

)
∩R2[x],

for even r ≥ 2. Taking r = 2, we obtain the Lasserre relaxation of order 1 (L1) for (BQPP):

(BQPPL1) min λ

s.t. λ− q(x) ∈ Γ 2
G.

Theorem 3.2.1 shows that (BQPPSS+) provides the best bound for the BQPP problem

while (BQPPSS) has a better bound than Lasserre’s relaxation of order 1.

Theorem 3.2.1. Let µBQPPL1
, µBQPPSS

, and µBQPP
SS+

be the optimal solution value of (BQPPL1),

(BQPPSS), and (BQPPSS+) respectively, then

µBQPPL1
≥ µBQPPSS

≥ µBQPP
SS+
≥ zBQPP.

44

CHAPTER 3. NEW CONIC RELAXATIONS

Proof. Define

H1 =Ψ2[x] +
∑
i

(1− x2
i)R0 +

∑
i

(bi − aTi x)R1[x] +
∑
i

(di − cTi x)P1(B)

+
∑
i

(ki − xTFix− eTi x)R0 +
∑
i

(li − xTGix− hTi x)R+
0 .

H2 =H1 + (di − cTi x)P1(B) +
∑
i

(1 + xi)P1(B) +
∑
i

(1− xi)P1(B) = K̄2.

H3 =H2 +
∑
i,k

(1 + xi)(dk − cTk x)Ψ0[x] +
∑
i,k

(1− xi)(dk − cTk x)Ψ0[x]

+
∑
k≤l

(dk − cTk x)(dl − cTl x)Ψ0[x] +
∑
i≤j

(1 + xi)(1 + xj)Ψ0[x]

+
∑
i≤j

(1− xi)(1− xj)Ψ0[x] +
∑
i,j

(1 + xi)(1− xj)Ψ0[x].

We have

Ψ1[x] = R+
0 ⊆ P1(B)⇒ K2

G ⊆ H1.

In addition, from Lemma 2.2.29, by setting r to two we have Γ 2
G ⊆ K2

G and therefore,

Γ 2
G ⊆ K2

G ⊆ H1 ⊆ H2 ⊆ H3.

We now compare the relaxations in terms of computational complexity. Table 3.1 sum-

marizes the number of variables (and for SDPs, the dimension) for each of the resulting

optimization problems. Recall that the (BQPP) problem has t linear equalities, u linear

inequalities, v quadratic equalities, w quadratic inequalities, and n binary variables.

Table 3.1: Problem dimension for various BQPP relaxations.

Relaxation SDP SOC Linear Non-negative Linear Free

(BQPPSS+) 1, (n+ 1)× (n+ 1) (2n+ u) , (n+ 1) w + 2tn+
(
t+1
2

)
+ 2
(
n+1
2

)
+ n2 n+ (n+ 1)t+ v

(BQPPSS) 1, (n+ 1)× (n+ 1) (2n+ u) , (n+ 1) w n+ (n+ 1)t+ v
(BQPPL1) 1, (n+ 1)× (n+ 1) - 2n+ 2t+ 2v + u+ w -
(BQPPSOC) - (2n+ u) , (n+ 1) w + n(n− 1) n+ (n+ 1)t+ v

45

CHAPTER 3. NEW CONIC RELAXATIONS

While the complexity of (BQPPSS+), (BQPPSS) and (BQPPL1) is similar, we see that

(BQPPSOC) trades off an (n + 1) × (n + 1) SDP matrix variable for n(n − 1) linear non-

negative variables. If one applies an interior-point method to solve the relaxations, it is

not immediately clear that (BQPPSOC) is computationally cheaper. To see this, recall

that the most time-consuming step for an interior-point algorithm is solving the Schur

complement equation at each iteration. For this task, sparsity of the constraint matrices

is key, and in this regard the trade-off is to the advantage of (BQPPSOC). This is because

in semidefinite programming, the Schur complement matrix is typically dense even when

the constraint matrix is sparse, and hence computing the Cholesky factorization remains

expensive. In contrast, for linear programming, a sparse constraint matrix results in a

sparse Schur complement matrix, and this sparsity property can be exploited to speed up

the computation of the Cholesky factorization [26]. To illustrate that sparsity is present in

our relaxations, we present in Figure 3.1 the non-zero elements of the constraint matrices of

(BQPPSOC) and (BQPPSS) for an instance of the quadratic knapsack problem with n = 10.

0 50 100 150 200 250 300

0

20

40

60

nz = 762

0 50 100 150 200 250 300 350

0

20

40

60

nz = 703

Figure 3.1: Sparsity of the constraint matrices for BQPPSOC (top) and BQPPSS (bottom).

46

CHAPTER 3. NEW CONIC RELAXATIONS

3.2.2 Quadratic Assignment Problem

We consider the quadratic assignment problem (QAP) which is a particular case of BQPP.

The quadratic assignment problem, a well-known NP-hard problem, has attracted a lot

of attention in literature in terms of theory, applications, and solution methodologies.

The QAP was first introduced by Koopmans and Beckmann [50] as a mathematical model

related to facility layout problem where you need to assign departments to locations having

material flow between departments.

Several applications of the QAP come from assigning facilities to locations with spatial

interactions. For example, hospital layout by Elshafei [24] and the assignment of buildings

in a University campus by Dickey and Hopkins [22]. In addition, QAP has applications

such as designing the keyboards and control panels for typewriter by Pollatschek, Ger-

shoni, and Radday [84], minimizing the number of connections between components in a

backboard wiring by Steinberg [92], statistical analysis by Hubert [40], machine scheduling

by Geoffrion and Graves [30], and several others (see survey [64]).

Given n facilities, n locations, the flow fik between every pair facilities, the distance djl

between every pair of locations, and a setup cij cost for allocating facilities to locations.

The objective is to find an assignment of all facilities to all locations, such that the total

cost of the assignment is minimized. Considering the binary variable xij to be

xij =

1 if facility i is assigned to location j

0 otherwise.

The QAP problem can be formulated as

(QAP-P) min
∑

i 6=k,j 6=l

fikdjlxijxkl + 2
∑
i,j

cijxij

s.t.
∑
i

xij = 1 1 ≤ j ≤ n∑
j

xij = 1 1 ≤ i ≤ n

xij ∈ {0, 1} 1 ≤ i, j ≤ n.

47

CHAPTER 3. NEW CONIC RELAXATIONS

It is known that solving QAP problems are among the most difficult discrete optimization

problems. In practice, QAP problems with n ≥ 30 are still considered very hard to solve to

optimality. Using a similar approach to Section 3.1.2, we obtain three different relaxations

for (QAP-P). Considering the change of variables from {0, 1} to {−1, 1}, the first relaxation

is based on semidefinite programming and second-order cone as shown below:

(QAPSS) max λ

s.t. q(x)− λ =
(

1 x
)
S

(
1

x

)
+
∑
i

ri(x)(1−
∑
j

xij) +
∑
j

tj(x)(1−
∑
i

xij)

+
∑
i,j 6=l

uijl(xijxil) +
∑
j,i6=k

vikj(xijxkj) +
∑
i,j

xijfij
T

(√
n2

x̄

)

+
∑
i,j

(1− xij)gijT
(√

n2

x̄

)
+
∑
i,j

cij(xij − x2
ij)

cij, uijl, vikj ∈ R, ri(x), tj(x) ∈ R1[x] fij, gij ∈ Ln
2

, S ∈ Sn2+1
+ ,

where x̄ = 2x − 1 and q(x) =
∑

i 6=k,j 6=l fikdjlxijxkl + 2
∑

i,j cijxij. Note that the equality

constraints of the form xijxil = 0 and xijxkj = 0 are added to the above formulation for

reasons that will become apparent in the next section. The second relaxation is (QAPSS+)

with additional constraints involving products of inequality constraints:

(QAPSS+) max λ

s.t. q(x)− λ =
(

1 x
)
S

(
1

x

)
+
∑
i

ri(x)(1−
∑
j

xij) +
∑
j

tj(x)(1−
∑
i

xij)

+
∑
i,j 6=l

uijl(xijxil) +
∑
j,i6=k

vikj(xijxkj) +
∑
i,j

xijfij
T

(√
n2

x̄

)

+
∑
i,j

(1− xij)gijT
(√

n2

x̄

)
+
∑
i,j

cij(xij − x2
ij) +

∑
i≤k,j≤l

γijklxijxkl

+
∑

i≤k,j≤l

δijkl(1− xij)(1− xkl) +
∑

i≤k,j≤l

ζijkl(1− xij)(xkl)

cij, uijl, vikj ∈ R, ri(x), tj(x) ∈ R1[x], γijkl, δijkl, ζijkl ∈ R+, fij, gij ∈ Ln
2

, S ∈ Sn2+1
+ .

48

CHAPTER 3. NEW CONIC RELAXATIONS

The third relaxation is based on second-order cone programming and is given below:

(QAPSOC) max λ

s.t. q(x)− λ =
∑
i

ri(x)(1−
∑
j

xij) +
∑
j

tj(x)(1−
∑
i

xij)

+
∑
i,j 6=l

uijl(xijxil) +
∑
j,i6=k

vikj(xijxkj) +
∑
i,j

xijfij
T

(√
n2

x̄

)

+
∑
i,j

(1− xij)gijT
(√

n2

x̄

)
+
∑
i,j

cij(xij − x2
ij)

+
∑

i≤k,j≤l

h+
ijklxijxkl +

∑
i≤k,j≤l

h−ijkl(1− xijxkl)

cij, uijl, vikj ∈ R, ri(x), tj(x) ∈ R1[x], h+
ijkl, h

−
ijkl ∈ R+, fij, gij ∈ Ln

2

.

Zhao-Karisch-Rendl-Wolkowicz QAP Relaxation

Semidefinite-based relaxations for the QAP have been known to provide strong bounds.

Zhao, Karisch, Rendl, and Wolkowicz [102], Rendl and Sotirov [89], and de Klerk and

Sotirov [21] lifted the problem from the vector space Rn×n to the cone of positive semidef-

inite matrices of order Sn2+1 and formulated several semidefinite relaxations which give

tight bounds for the QAP. The QAP formulation presented by Zhao et al. [102] is:

min
X∈Π

trace FXDXT + 2CXT

Xe = e

XT e = e

X ∈ {0, 1}n×n.

49

CHAPTER 3. NEW CONIC RELAXATIONS

where X is an n × n permutation matrix, F,D, and C are n × n matrices. Another

formulation presented by Zhao et al. in [102]:

(QAPZKRW) min
X

trace (FXDXT + 2CXT)

Xe = e

XT e = e

XXT = I

XTX = I

Xij ≥ 0 1 ≤ i, j ≤ n.

X2
ij −Xij = 0 1 ≤ i, j ≤ n.

Zhao et al. relaxed the constraints in (QAPZKRW) via Lagrangian duality and showed that

the dual of the Lagrangian dual results in an SDP relaxation for the QAP. Although there

are a lot of redundant constraints in (QAPZKRW), when taking the SDP relaxation these

constraints aren’t redundant and are helpful in terms of tightening the bound. Recent work

by Rendl and Sotirov [89] has considered the application of bundle methods to handle the

constraints that appear in the SDP relaxations for QAP.

Let X be a permutation matrix, x = vec(X) and c = vec(C). Then the objective function

for QAP is

q(x) = trace (FXDXT + 2CXT)

= xT (D ⊗ F)x+ 2cTx

= trace xxT (D ⊗ F) + 2cTx

= trace QY,

where

Q :=

(
0 vec(C)T

vec(C) D ⊗ F

)
and

Y :=

(
1 xT

x xxT

)
.

50

CHAPTER 3. NEW CONIC RELAXATIONS

Zhao et al. SDP relaxation can be written as:

(QAPZKRW-R) min
Y
〈Q, Y 〉

Yij,kj = 0 ∀i 6= k, j

Yij,il = 0 ∀i, j 6= l∑
j

Yij,ij = 1 ∀i∑
i

Yij,ij = 1 ∀j

Yij,ij − Y00,ij = 0 ∀i, j
Y � 0.

Comparing Relaxations for QAP

We compare Zhao et al. SDP relaxation to our three proposed relaxations. First we

re-derive (QAPZKRW-R) using polynomial programming as described in Section 2.2

(QAP-D) max λ

s.t. q(x)− λ ∈ P2({0, 1}n×n ∩D),

where D := {x :
∑

i xij = 1∀j,
∑

j xij = 1∀i, xijxkj = 0∀i 6= k, j, xijxil = 0∀i, j 6= l}. This

problem can be relaxed using

P2({0, 1}n×n ∩D) ⊇Ψ2[x] +
∑
i

(1−
∑
j

xij)R0 +
∑
j

(1−
∑
i

xij)R0 +
∑
i,j 6=l

(xijxil)R0

+
∑
j,i6=k

(xijxkj)R0 +
∑
ij

xij(1− xij)R0,

51

CHAPTER 3. NEW CONIC RELAXATIONS

obtaining

max λ

s.t. q(x)− λ =
(

1 x
)
S

(
1

x

)
+
∑
i

ri(1−
∑
j

xij) +
∑
j

tj(1−
∑
i

xij)

+
∑
i,j 6=l

uijl(xijxil) +
∑
j,i6=k

vikj(xijxkj) +
∑
i,j

cij(xij − x2
ij),

where S ∈ Sn2+1
+ and ri, tj, uijl, vikj, cij ∈ R.

By equating the coefficients of the monomials of the above problem, we rewrite it as

(QAPZKRW-D) max λ

s.t. λ+ S00,00 +
∑
i

ri +
∑
j

tj = 0

ri + tj + cij + S00,ij + Sij,00 = 0 ∀i, j
Sij,ij − cij = Qij,ij ∀i, j
uijlδi=k,j 6=l + vikjδi 6=k,j=l + Sij,kl + Skl,ij = Qij,kl ∀i 6= k, j 6= l

S � 0,

where δi=k,j 6=l equals 1 if i = k and j 6= l and 0 otherwise and δi 6=k,j=l equals 1 if i 6= k and

j = l and 0 otherwise. The dual of the above problem is a reformulation of (QAPZKRW-R).

Theorem 3.2.2. Let µQAPZKRW-D
and µQAPSS

be the optimal solution values of (QAPZKRW-D)

and (QAPSS) respectively, then

µQAPZKRW-D
= µQAPZKRW-R

≤ µQAPSS
≤ zQAP.

52

CHAPTER 3. NEW CONIC RELAXATIONS

Proof. Define

H4 =Ψ2[x] +
∑
i

(1−
∑
j

xij)R0 +
∑
j

(1−
∑
i

xij)R0 +
∑
i,j 6=l

(xijxil)R0

+
∑
j,i6=k

(xijxkj)R0 +
∑
ij

xij(1− xij)R0,

H5 =H4 +
∑
i,j

(xij)P1(B) +
∑
ij

(1− xij)P1(B).

Hence,

H4 ⊆ H5.

H4 corresponds to the approximation of P2({0, 1}n×n∩D) that is equivalent to (QAPZKRW-D)

and since R0 ⊆ R1[x], then H5 corresponds to a weaker representation of (QAPSS).

Table 3.2 presents the number of variables for the relaxations (QAPSS+), (QAPSS), (QAPZKRW-D),

and (QAPSOC). Notice that the first three relaxations have the same computational com-

plexity. However, the (QAPSS+) relaxation provides the best bounds as shown in Theorem

3.2.2.

Table 3.2: Problem dimension for various QAP relaxations.

Linear Linear
Relaxation SDP SOC Non-negative Free

(QAPSS+) 1, (n2 + 1)× (n2 + 1) 2n2 , (n2 + 1) - n2 + 2n(n2 + 1) + 2n2(n− 1)
(QAPSS) 1, (n2 + 1)× (n2 + 1) 2n2 , (n2 + 1) - n2 + 2n(n2 + 1) + 2n2(n− 1)
(QAPZKRW-D) 1, (n2 + 1)× (n2 + 1) - - n2 + 2n+ 2n2(n− 1)
(QAPSOC) - 2n2 , (n2 + 1) n2(n2 − 1) n2 + 2n(n2 + 1) + 2n2(n− 1)

53

CHAPTER 3. NEW CONIC RELAXATIONS

3.2.3 Quadratic Linear Constrained Problems

Without loss of generality, we formulate the binary quadratic linear constrained problem

as:

(QLCP) max xTQx+ pTx

s.t. aTj x ≤ bj ∀j ∈ {1, · · · ,m}
x ∈ {−1, 1}n.

Specializing the results of Section 3.1.2 to (QLCP), we obtain the following relaxations:

(QLCPSS) min λ

s.t. λ− q(x) =
(

1 x
)
S

(
1

x

)
+

m∑
j=1

(bj − aTj x)dTj

(√
n

x

)
+

n∑
i=1

(1 + xi)fi
T

(√
n

x

)

+
n∑
i=1

(1− xi)giT
(√

n

x

)
+

n∑
i=1

ci(1− x2
i)

ci ∈ R, fi, gi, dj ∈ Ln, S ∈ Sn+1
+ ;

54

CHAPTER 3. NEW CONIC RELAXATIONS

(QLCPSS+) min λ

s.t. λ− q(x) =
(

1 x
)
S

(
1

x

)
+

m∑
j=1

(bj − aTj x)dTj

(√
n

x

)
+

n∑
i=1

(1 + xi)fi
T

(√
n

x

)

+
n∑
i=1

(1− xi)giT
(√

n

x

)
+

n∑
i=1

m∑
k=1

αik(1 + xi)(bk − aTk x)

+
n∑
i=1

m∑
k=1

βik(1− xi)(bk − aTk x) +
n∑
i=1

n∑
j=i

γij(1 + xi)(1 + xj)

+
n∑
i=1

n∑
j=i

δij(1− xi)(1− xj) +
n∑
i=1

n∑
j=1

ζij(1 + xi)(1− xj)

+
m∑
k=1

m∑
l=k

ηkl(bk − aTk x)(bl − aTl x) +
n∑
i=1

ci(1− x2
i)

ci ∈ R, αik, βik, γij, δij, ζij, ηkl ∈ Rn
+, fi, gi, dj ∈ Ln, S ∈ Sn+1

+ ;

(QLCPSOC) min λ

s.t. λ− q(x) =
m∑
j=1

(bj − aTj x)dTj

(√
n

x

)
+

n∑
i=1

(1 + xi)fi
T

(√
n

x

)

+
n∑
i=1

(1− xi)giT
(√

n

x

)
+

n∑
i=1

ci(1− x2
i)

+
∑
i<j

h+
ij(1 + xixj) +

n∑
i<j

h−ij(1− xixj)

ci ∈ R, h+
ij, h

−
ij ∈ R+ fi, gi, dj ∈ Ln.

The Relaxation of Burer and Lovász-Schrijver

Burer [13] presented an SDP-based relaxation for the QLCP where the variables are 0-1.

We introduce the following relaxation that is at least as strong as the relaxation presented

55

CHAPTER 3. NEW CONIC RELAXATIONS

by Burer [97]:

(QLCPBurer’) min λ

s.t. λ− q(x) =
(

1 x s t
)

(M +N)

1

x

s

t

+
n∑
i=1

cixi(1− xi)

+
n∑
i=1

(1− xi − si)li(x) +
m∑
j=1

(bj − aTj x− tj)kj(x)

ci ∈ R, li, ki ∈ R1[x, s, t], M ∈ S2n+m+1
+ , N ∈ R(2n+m+1)×(2n+m+1)

+ ,

where m is the number of linear constraints. Further (QLCPBurer’) is equivalent to:

min λ

s.t. λ− q(x) =
(

1 x 1− x b− aTx
)

(M +N)

1

x

1− x
b− aTx

+
n∑
i=1

cixi(1− xi)

ci ∈ R, M ∈ S2n+m+1
+ , N ∈ R(2n+m+1)×(2n+m+1)

+ ,

56

CHAPTER 3. NEW CONIC RELAXATIONS

which can be written as

min λ

s.t. λ− q(x) =
(

1 x
)
M ′

(
1

x

)
+

n∑
i=1

cixi(1− xi)

+
n∑
i=1

m∑
k=1

αikxi(bk − aTk x) +
n∑
i=1

m∑
k=1

βik(1− xi)(bk − aTk x)

+
n∑
i=1

n∑
j=i

γijxixj +
n∑
i=1

n∑
j=i

δij(1− xi)(1− xj)

+
n∑
i=1

n∑
j=1

ζijxi(1− xj) +
m∑
k=1

m∑
l=k

ηkl(bk − aTk x)(bl − aTl x)

ci ∈ R, αik, βik, γij, δij, ζij, ηkl ∈ R+, M ′ ∈ Sn+1
+ .

Notice that (QLCPBurer’) reduces to the N+ relaxation of Lovász and Schrijver [65] by

setting the variables γij, δij, ζij, and ηkl to zero. That is, N+ is equivalent to the following

relaxation:

(QLCPN+) min λ

s.t. λ− q(x) =
(

1 x
)
S

(
1

x

)
+

n∑
i=1

cixi(1− xi) +
n∑
i=1

m∑
k=1

αikxi(bk − aTk x)

+
n∑
i=1

m∑
k=1

βik(1− xi)(bk − aTk x)

ci ∈ R, αik, βik ∈ R+, S ∈ Sn+1
+ .

Comparing Relaxations for QLCP

We can prove the following result:

57

CHAPTER 3. NEW CONIC RELAXATIONS

Theorem 3.2.3. Let µQLCP
N+

, µQLCPBurer’
, and µQLCP

SS+
be the optimal solution value of

(QLCPN+),(QLCPBurer’), and (QLCPSS+) respectively, then

µQLCP
N+
≥ µQLCPBurer’

≥ µQLCP
SS+
≥ zQLCP.

Proof. Define

H6 =Ψ2[x] +
∑
i,k

(1 + xi)(bk − aTk x)Ψ0[x] +
∑
i,k

(1− xi)(bk − aTk x)Ψ0[x] +
∑
i

(1− x2
i)R0

H7 =H6 +
∑
i≤j

(1 + xi)(1 + xj)Ψ0[x] +
∑
i≤j

(1− xi)(1− xj)Ψ0[x] +
∑
i,j

(1 + xi)(1− xj)Ψ0[x]

+
∑
k≤l

(bk − aTk x)(bl − aTl x)Ψ0[x]

H8 =H7 +
∑
j

(bj − aTj x)P1(B) +
∑
i

(1 + xi)P1(B) +
∑
i

(1− xi)P1(B).

Hence,

H6 ⊆ H7 ⊆ H8.

After a simple change of variables from {−1, 1} to {0, 1}, H6 and H7 correspond to the

representations (QLCPN+) and (QLCPBurer’) respectively, while H8 corresponds to the rep-

resentation (QLCPSS+).

Table 3.3 lists the number of variables required to formulate the various relaxations for

the QLCP problem of Theorem 3.2.3 , in addition to (QLCPSS) and (QLCPSOC) where

we have m linear constraints and n binary variables. While (QLCPBurer’) and (QLCPSS+)

have the same computational complexity, (QLCPSS+) provides the best bounds as shown

in Theorem 3.2.3 and confirmed by the computational results of Section 3.3.

Remark 3.2.4. We are unable to compare theoretically the bounds obtained by (QLCPSS),

(QLCPN+) and (QLCPBurer’). However in our computational experiments in Section 3.3.3,

(QLCPSS) always provides a strictly better bound than (QLCPN+) while (QLCPBurer’) pro-

vides a strictly better bound than (QLCPSS).

58

CHAPTER 3. NEW CONIC RELAXATIONS

Table 3.3: Problem dimension for various QLCP relaxations.

Relaxation SDP SOC Linear Non-negative Linear Free

(QLCPSS+) 1, (n+ 1)× (n+ 1) (2n+m) , (n+ 1) 2nm+ n2 + 2
(
n+1

2

)
+
(
m+1

2

)
n

(QLCPBurer’) 1, (n+ 1)× (n+ 1) - 2nm+ n2 + 2
(
n+1

2

)
+
(
m+1

2

)
n

(QLCPSS) 1, (n+ 1)× (n+ 1) (2n+m) , (n+ 1) - n
(QLCPN+) 1, (n+ 1)× (n+ 1) - 2nm n
(QLCPSOC) - (2n+m) , (n+ 1) n(n− 1) n

3.2.4 Quadratic Knapsack Problem

We consider the quadratic knapsack problem (QKP) which is the particular case of QLCP

where m = 1. The QKP was introduced by Gallo, Hammer, and Simeone [27] and is

NP-hard. The QKP can be interpreted as follows: we are given n items with a non-

negative weight wi assigned to item i, and a (n + 1) × (n + 1) symmetric matrix Q with

real entries. The QKP is the problem of selecting a subset of items so as to maximize

the overall profit such that the total weight of the selected items does not exceed a given

capacity c. Introducing the binary variable xi such that

xi =

1 if item i is selected

−1 otherwise,

the problem may be formulated as:

(QKP-P) max q(x) =
(

1 x
)
Q

(
1

x

)
s.t. wTx ≤ c

x ∈ {−1, 1}n.

The QKP is a generalization of the linear knapsack problem (where the objective function

is linear). As in the case of the linear knapsack problem, the QKP often appears as a

sub-problem to other complex problems such as the graph partitioning problem described

59

CHAPTER 3. NEW CONIC RELAXATIONS

in Johnson, Mehrotra, and Nemhauser [42]. Since the QKP is a constrained version of the

binary quadratic problem, all valid inequalities for the unconstrained BQPP problem are

also valid for the QKP and hence they can be used to tighten bounds for this problem.

Using the same approach as in Section 3.1.2, we obtain the following relaxations of (QKP-

P):

(QKPSS) min λ

s.t. λ− q(x) =
(

1 x
)
S

(
1

x

)
+ (c− wTx)dT

(√
n

x

)
+

n∑
i=1

(1 + xi)fi
T

(√
n

x

)

+
n∑
i=1

(1− xi)giT
(√

n

x

)
+

n∑
i=1

ci(1− x2
i)

ci ∈ R, fi, gi, d ∈ Ln, S ∈ Sn+1
+ ;

(QKPSS+) min λ

s.t. λ− q(x) =
(

1 x
)
S

(
1

x

)
+ (c− wTx)dT

(√
n

x

)
+

n∑
i=1

(1 + xi)fi
T

(√
n

x

)

+
n∑
i=1

(1− xi)giT
(√

n

x

)
+

n∑
i=1

αi(1 + xi)(c− wTx)

+
n∑
i=1

βi(1− xi)(c− wTx) +
∑
i≤j

γij(1 + xj)(1 + xi)

+
∑
i≤j

δij(1− xj)(1− xi) +
∑
i,j

ζij(1− xj)(1 + xi)

+
n∑
i=1

ci(1− x2
i)

ci ∈ R, αi, βi, γij, δij, ζij ∈ R+, fi, gi, d ∈ Ln, S ∈ Sn+1
+ ;

60

CHAPTER 3. NEW CONIC RELAXATIONS

(QKPSOC) min λ

s.t. λ− q(x) = (c− wTx)dT

(√
n

x

)
+

n∑
i=1

(1 + xi)fi
T

(√
n

x

)
+

n∑
i=1

(1− xi)giT
(√

n

x

)

+
n∑
i=1

ci(1− x2
i) +

∑
i<j

h+
ij(1 + xixj) +

∑
i<j

h−ij(1− xixj)

ci ∈ R, h+
ij, h

−
ij ∈ R+ fi, gi, d ∈ Ln.

Helmberg-Rendl-Weismantel QKP Relaxation

Helmberg et al. [36] presented four SDP-based relaxations for the QKP where the discrete

set is {0, 1}n. These relaxations are obtained by considering the semidefinite matrix X =

xxT . In particular they studied the relaxation

(QKPHRW4) max 〈P,X〉+ cst

s.t.
∑
j

wjXij − c̄Xii ≤ 0 1 ≤ i ≤ n

X −Diag(X)Diag(X)T � 0,

where c̄ = 1
2
(
∑

iwi − c), P is an n × n matrix with entries Pij = 4Qij (for i 6= j) and

Pii = 4Qii−4
∑

j Qij + 4Q0i, and cst = Q00−2
∑

iQ0i +
∑

i,j Qij are obtained by mapping

the variables from {−1, 1} to {0, 1}. Helmberg et al. [36] showed that the optimal objective

value of (QKPHRW4), µQKPHRW4
, provides the best bound among the SDP relaxations they

provided. Actually, (QKPHRW4) provides the tightest previously known SDP relaxation for

the QKP in the literature. We will be using this relaxation for comparison purposes in

our computational results. In addition, Helmberg et al. [36] strengthen these proposed

relaxations by using cutting planes that are valid for BQPP. To illustrate the quality of

these SDP relaxations and of the cutting planes, Helmberg et al. [36] present computational

results on instances with up to 61 items.

61

CHAPTER 3. NEW CONIC RELAXATIONS

Comparing Relaxations for QKP

We compare (QKPHRW4) and our proposed relaxation. First we re-derive (QKPHRW4) in a

different way by considering the problem

(QKP-D) min λ

s.t. λ− p(x) ∈ P2({0, 1}n ∩ {x : (c̄− wTx) ≥ 0}),

where p(x) =
∑

i,j Pijxixj + cst. This problem can be relaxed using

P2({0, 1}n ∩ {x : (c̄− wTx) ≥ 0}) ⊇ Ψ2[x] +
∑
i

xi(c̄− wTx)Ψ0[x] +
∑
i

xi(1− xi)R0,

obtaining

min λ

s.t. λ− p(x) =
(

1 x
)
S

(
1

x

)
+
∑
i

dixi(c̄− wTx) +
∑
i

cixi(1− xi),

where S ∈ Sn+1
+ , di ∈ R+, and ci ∈ R. By equating the coefficients of the monomials of

the above problem, we rewrite it as

(QKPHRW4-D) min λ

s.t. λ− cst− S00 = 0

ci + c̄di + Si0 + S0i = 0

diwj + djwi
2

− Sij + ciδi=j = Pij 1 ≤ i ≤ j ≤ n

S � 0, di ≥ 0.

62

CHAPTER 3. NEW CONIC RELAXATIONS

where δi=j equals 1 if i = j and 0 otherwise. Taking the dual of (QKPHRW4-D), we obtain

max
〈
P̄ , X̄

〉
s.t. X̄00 = 1 (3.8)

X̄ii − X̄i0 = 0 1 ≤ i ≤ n (3.9)
n∑
j=1

wjX̄ij − c̄X̄ii ≤ 0 1 ≤ i ≤ n (3.10)

X̄ � 0, (3.11)

where P̄ =

(
cst 0

0 P

)
. Since X −Diag(X)Diag(X)T � 0 is equivalent to

X̄ =

(
1 Diag(X)T

Diag(X) X

)
� 0,

the above problem is a reformulation of (QKPHRW4). Taking X = I, X is strictly feasible

for (QKPHRW4), therefore Slater’s constraint qualification is satisfied for (QKPHRW4). In

addition, X−Diag(X)Diag(X)T � 0 implies −1
8
≤ Xij ≤ 1 [36]. As a result, the objective

〈P,X〉 is bounded by
∑

i,j |Pij| and we have strong duality.

Theorem 3.2.5. Let µQKPHRW4-D
and µQKP

SS+
be the optimal solution values of (QKPHRW4-D)

and (QKPSS+) respectively, then

µQKPHRW4-D
= µQKPHRW4

≥ µQKP
SS+
≥ zQKP.

Proof. Define

H9 =Ψ2[x] +
∑
i

(1 + xi)(c− wTx)Ψ0[x] +
∑
i

(1− x2
i)R0

H10 =H9 +
∑
i

(1− xi)(c− wTx)Ψ0[x] +
∑
i≤j

(1 + xi)(1 + xj)Ψ0[x] +
∑
i≤j

(1− xi)(1− xj)Ψ0[x]

+
∑
i,j

(1 + xi)(1− xj)Ψ0[x] + (c− wTx)P1(B) +
∑
i

(1 + xi)P1(B) +
∑
i

(1− xi)P1(B).

63

CHAPTER 3. NEW CONIC RELAXATIONS

Hence,

H9 ⊆ H10.

After mapping the variables from {−1, 1} to {0, 1}, H9 corresponds to the approximation

of P2({0, 1}n∩{x : (c̄−wTx) ≥ 0}) that is equivalent to (QKPHRW4-D) and H10 corresponds

to the representation (QKPSS+).

Table 3.4 presents the number of variables for the relaxations (QKPHRW4-D), (QKPSS+),

(QKPSS), and (QKPSOC). Notice that the first two relaxations have the same computational

complexity. However, the (QKPSS+) relaxation provides the best bounds as shown in

Theorem 3.2.5.

Table 3.4: Problem dimension for various QKP relaxations.

Relaxation SDP SOC Linear Non-negative Linear Free

(QKPSS+) 1, (n+ 1)× (n+ 1) (2n+ 1) , (n+ 1) 2n+ n2 + 2
(
n+1

2

)
n

(QKPSS) 1, (n+ 1)× (n+ 1) (2n+ 1) , (n+ 1) - n
(QKPHRW4-D) 1, (n+ 1)× (n+ 1) - n n
(QKPSOC) - (2n+ 1) , (n+ 1) n(n− 1) n

Remark 3.2.6. In some instances, even when using the relaxation (QKPSS), we obtain

a strictly better bound than (QKPHRW4) as shown in Section 3.3.4. For those instances

(QKPSS+) is also strictly better than (QKPHRW4).

3.3 Computational Results

In this section, we present computational results obtained by implementing the proposed

relaxations of Section 3.1.2 to the four classes of BQPP problems considered in Section 3.2.

We conduct comparisons based on computational time and on the quality of the bounds.

The focus is on verifying the efficiency of the proposed SOC relaxations compared to the

SOS/SDP-based relaxations. All relaxations were implemented with Matlab 7.9.0 using

64

CHAPTER 3. NEW CONIC RELAXATIONS

APPS (see Chapter 6) for constructing the problems and SeDuMi solver version 1.3 [93]

was used to solve the conic problems. The experiments were done on a 1200 MHz Sun

Sparc machine and the reported computational time is in cpu seconds.

3.3.1 General BQPPs Computational Results

We compare our proposed relaxations with Lasserre’s relaxation of order 1 for solving

general binary quadratic problems. We compare the following four relaxations:

(BQPPSS+): the relaxation presented in Section 3.1.2;

(BQPPSS): the SOC-SDP-based relaxation presented in Section 3.1.2;

(BQPPL1): the relaxation presented in Section 3.2.1;

(BQPPSOC): the SOC relaxation presented in Section 3.1.2.

We consider 100 randomly generated instances that vary in size, n, from 10 items up to 70

and density from 20% to 100%. Each instance has n quadratic equality constraints of the

form 1−x2
i = 0 to formulate the binary constraints. In addition each instance has an equal

number m of linear inequality constraints and of quadratic inequality constraints, with m

varying from 1 to n
2
. We implemented (BQPPL1) using our code. In Table 3.5, we report

the average gap and the average computational time of all four relaxations (the average is

computed over 5 instances for each combination of n and m). The gap (in %) is calculated

as follows:

gap = 100× ubrelaxation − ubbest

ubbest

%,

where the best upper bound is the one obtained by the (BQPPSS+) relaxation.

The bound of (BQPPSS+) is the strongest among the four relaxations, therefore we report

the average gaps of (BQPPSS), (BQPPL1), and (BQPPSOC) relative to (BQPPSS+). Observe

that (BQPPSS) provides better gaps than (BQPPL1) and (BQPPSOC) for all instances. To

facilitate the comparison of (BQPPL1) and (BQPPSOC), we indicate the lower gap between

them in bold. Notice that (BQPPSOC) frequently has better gaps than (BQPPL1).

65

CHAPTER 3. NEW CONIC RELAXATIONS

Table 3.5: Computational results for the BQPP instances. The avg. gaps are with respect
to (BQPPSS+).

n m (BQPPSS+) (BQPPSS) (BQPPL1) (BQPPSOC)
T(sec) Gap T(sec) Gap T(sec) Gap T(sec)

10 1 2.03 0.85 1.98 12.50 1.49 2.40 1.47
5 1.99 2.15 1.71 32.40 1.27 2.63 1.07

20 1 5.42 0.24 5.36 7.96 4.18 1.78 1.81
5 10.60 2.64 6.37 20.37 5.56 16.59 2.12

10 14.96 4.26 6.66 72.30 5.36 8.08 2.42
30 1 22.33 1.09 16.39 2.36 10.32 28.11 7.69

5 35.95 2.84 19.17 23.88 14.30 26.21 9.11
15 73.29 10.74 22.94 32.92 17.02 53.21 11.19

40 1 78.18 1.66 56.30 34.89 34.59 29.97 33.07
5 122.37 2.33 67.54 36.38 44.66 28.18 37.47

20 306.31 5.71 88.80 50.60 48.27 38.60 44.11
50 1 268.93 0.68 179.74 5.12 112.49 15.16 48.72

5 397.34 3.44 193.86 17.71 122.32 39.05 117.75
25 1245.49 12.27 258.77 94.54 142.29 43.08 190.33

60 1 970.00 3.15 626.87 19.61 375.24 65.83 94.16
5 1169.37 3.69 663.09 40.75 397.93 39.75 183.34

30 5637.18 9.42 850.83 58.95 473.50 52.10 650.46
70 1 2793.31 0.93 2515.31 29.44 1214.23 31.51 165.63

5 3848.18 2.50 2532.18 53.64 1245.09 26.98 549.22
35 15420.53 14.85 2429.09 47.51 1446.99 46.99 1818.69

Avg. - - 4.27 - 34.69 - 30.06 -

66

CHAPTER 3. NEW CONIC RELAXATIONS
Sheet1

Page 1

0 10 20 30 40 50 60 70 80

1.00

10.00

100.00

1000.00

10000.00

Computational Time

SOC-SDP+
SOC-SDP
L1
SOC

Instance Size

T
im

e
 (

se
c)

Figure 3.2: Computational time for BQPP (logarithmic scale).

In terms of computational cost, Table 3.5 and Figure 3.2 show that (BQPPSOC) is the

cheapest relaxation in most cases. When the number of linear constraints has a value of
n
2
, (BQPPL1) is slightly cheaper, but for those cases the bounds provided by (BQPPL1)

are weaker than those provided by (BQPPSOC). One can also observe that for n ≥ 50,

higher computational times correspond to better bounds in most cases. However, this is

misleading, and is due to the averaging over 5 instances per line in the table. Looking at

the detailed results for the 45 instances considered with n ≥ 50, (BQPPL1) is better than

(BQPPSOC) in terms of both time and bounds for 7 instances, and (BQPPSOC) is better

than (BQPPL1) by both measures for 15 instances. Thus, higher times correspond to better

bounds for only roughly half of the instances, and no clear conclusions can be drawn.

3.3.2 QAP Computational Results

We compare the performance of our proposed relaxations for the QAP with the relaxation

of Zhao et al. [102] presented in Section 3.2.2. The data set used in the computational

results is taken form the QAPLIB [14].

The presented computational results are based on the following four types of relaxations

for the quadratic assignment problem:

67

CHAPTER 3. NEW CONIC RELAXATIONS

Table 3.6: Computational results for QAP instances.

Instance Optimal (QAPSS+) (QAPSS) (QAPZKRW-R) (QAPSOC)
Gap T(sec) Gap T(sec) Gap T(sec) Gap T(sec)

Nug5 50 0.00 18.01 0.63 10.25 2.10 7.69 0.00 15.54
Nug6 86 0.00 282.55 14.70 22.60 14.99 23.30 0.00 43.12
Nug7 148 0.00 740.78 10.07 97.44 11.04 56.02 0.00 97.46
Nug8 214 0.23 3914.61 15.57 454.48 16.70 404.47 4.89 493.00
Nug12 578 1.73 134303.15 14.80 57644.38 15.75 53200.21 9.46 50651.62

Avg. - 0.39 - 11.15 - 12.12 - 2.87 -

(QAPSS+): the relaxation presented in Section 3.2.2;

(QAPSS): the SOC-SDP relaxation presented in Section 3.2.2;

(QAPZKRW-D): the Zhao et al. SDP relaxation presented in Section 3.2.2;

(QAPSOC): the SOC relaxation presented in Section 3.2.2.

Table 3.6 and Figure 3.3 reports results for 5 instances. The size for the instances varies

from 25 to 144. For each instance, we report the percentage gap between the lower bound

of the relaxation and the optimal value and the solution time in seconds.

From Table 3.6, when n gets large, (QAPSOC) gets more computationally efficient compared

to the other three relaxations. Further, (QAPSOC) provides better lower bounds than

(QAPZKRW-D) and (QAPSS) due to the inequalities added for the pure SOC relaxation, these

inequalities can be separated to make the SOC relaxation computationally cheaper. As

shown in Theorem 3.2.2 and Table 3.6, (QAPSS+) and (QAPSS) bounds are strictly tighter

than the ones provided by (QAPZKRW-D), even though the bounds for the (QAPZKRW-D)

relaxation are known to be strong [102]. Additionally, (QAPSOC) provides much better

bounds than (QAPZKRW-D) with an average gap of 2.87% compared to 12.12%.

68

CHAPTER 3. NEW CONIC RELAXATIONS

0 20 40 60 80 100 120 140 160

1.00

10.00

100.00

1000.00

10000.00

100000.00

1000000.00

Computational Time

SOC-SDP+
SOC-SDP
ZKRW
SOC

Instance Size

Ti
m

e
(s

ec
)

Figure 3.3: Computational time for QAP (logarithmic scale).

3.3.3 QLCP Computational Results

We compare our proposed relaxations of QLCP with the approach proposed by Burer [13] to

solve binary quadratic polynomial problems with linear constraints. Table 3.7 reports the

average gap (in %) between each relaxation’s upper bound and the optimal objective value

(known a priori), as well as the average computational time. We compare five relaxations:

(QLCPSS+): the strengthened SDP relaxation presented in Section 3.2.3;

(QLCPBurer’): the relaxation presented in Section 3.2.3;

(QLCPSS): the SOC-SDP relaxation presented in Section 3.2.3;

(QLCPN+): the Lovász-Schrijver relaxation presented in Section 3.2.3;

(QLCPSOC): the SOC relaxation presented in Section 3.2.3.

We consider 732 instances that vary in size from 10 up to 50 items, and with density

varying from 1% to 100%. The number of the linear constraints varies from 1 to 25. The

data for the instances and their optimal objective values, as well as the upper bounds

69

CHAPTER 3. NEW CONIC RELAXATIONS

and computational time of Burer’s specialized implementation, labeled as T1 in Table 3.7,

were all provided by Burer [13]. We also implemented Burer’s relaxation using our code

(as described in Section 3.2.3) and we report the average computational time we obtained

for it as T2 in Table 3.7.

Table 3.7: Computational results for the QLCP instances.

n m (QLCPSS+) (QLCPBurer’) (QLCPSS) (QLCPN+) (QLCPSOC)
Gap T(sec) Gap T1(sec) T2(sec) Gap T(sec) Gap T(sec) Gap T(sec)

10 1 7.76 1.54 7.77 0.66 1.17 9.00 1.44 11.27 1.11 9.63 0.94
5 11.28 2.82 11.30 0.72 2.18 16.60 1.77 21.59 1.63 18.73 1.15

20 1 3.72 6.90 3.75 1.24 5.95 4.94 5.19 7.89 4.40 7.84 1.80
5 8.44 14.23 8.48 2.01 12.56 12.09 6.58 17.58 7.95 17.86 2.31

10 10.62 20.10 10.64 2.22 17.53 15.70 7.11 21.86 11.63 23.19 2.45
30 1 1.74 20.52 1.80 2.17 17.64 2.32 13.66 3.40 12.00 5.94 8.50

5 5.75 47.14 5.79 3.35 40.39 8.40 17.96 13.49 22.45 19.43 10.09
15 10.09 76.75 10.14 4.76 64.28 15.41 20.52 22.66 34.63 29.21 11.84

40 1 1.26 72.38 1.31 3.76 63.50 1.84 41.09 2.91 34.29 8.86 29.63
5 2.77 150.43 2.81 5.30 128.28 3.77 54.23 5.91 68.33 14.19 37.28

20 9.94 297.52 10.01 10.21 245.19 16.03 66.26 26.89 120.24 33.11 42.54
50 1 1.07 222.98 1.11 4.96 200.60 1.31 134.42 2.07 104.82 4.79 32.99

5 2.64 495.88 2.71 8.00 447.68 4.00 161.79 6.69 204.87 17.50 109.17
25 9.57 1163.82 9.77 18.13 865.09 16.78 199.60 30.64 365.35 34.76 158.80

Avg. - 6.19 - 6.24 - - 9.16 - 13.92 - 17.50 -

From Table 3.7, we see that Burer’s relaxation is the most efficient in terms of compu-

tational time but this is due to the fact that Burer’s algorithm is specialized for solv-

ing problems of this form. However, in theory, it is an SDP-based relaxation and thus

the computational time has a higher order of complexity than the SOC-based relaxation,

(QLCPSOC). This can be seen when comparing T2 with the computational time of the

(QLCPSOC) relaxation where the latter is on average 4 times more efficient for large n (see

Figure 3.4). Among the four SDP-based relaxations, (QLCPSS) is the most computation-

ally efficient as seen from Figure 3.4.

As shown in Theorem 3.2.3 and Table 3.3, (QLCPSS+) provides the strongest bounds for

70

CHAPTER 3. NEW CONIC RELAXATIONS

Sheet1

Page 1

5 10 15 20 25 30 35 40 45 50 55

1

10

100

1000

Computational Time

SOC-SDP+
Burer
N+
SOC-SDP
SOC

Instance Size

T
im

e
 (

se
c)

Figure 3.4: Computational time for QLCP (logarithmic scale).

the QLCP relaxation and has the same computational complexity as (QLCPBurer’). On the

other hand, both (QLCPN+) and (QLCPSS) are semidefinite-based relaxations but with less

computational complexity than (QLCPSS+) and (QLCPBurer’). We notice that (QLCPSS)

provides better bounds than (QLCPN+) for all instances and is more computationally ef-

ficient. The average percentage gap for (QLCPSS) is 9.16% while that of (QLCPN+) is

13.92%. In addition,(QLCPSOC) provides comparable bounds with (QLCPN+) with an

average percentage gap of 17.50% but is computationally the most efficient.

3.3.4 QKP Computational Results

We compare the performance of our proposed relaxations for the QKP with the relaxation

of Helmberg et al. [36] presented in Section 3.2.4. We generated test instances using the

approach proposed in [82]. The Pij and wj values are discrete taken from a uniform random

distribution in [1, 100] and [1, 50] respectively. The capacity c̄ is uniformly distributed in

[50,
∑n

j=1 wj]. The density ρ of the P matrix varies from 10 to 90 %.

The presented computational results are based on the following four types of relaxations

for the quadratic knapsack problem:

71

CHAPTER 3. NEW CONIC RELAXATIONS

(QKPSS+): the relaxation presented in Section 3.2.4;

(QKPSS): the SOC-SDP relaxation presented in Section 3.2.4;

(QKPHRW4): the Helmberg et al. SDP relaxation presented in Section 3.2.4;

(QKPSOC): the SOC relaxation presented in Section 3.2.4.

Table 3.8 reports results for 45 instances. These instances vary in size and density. The

size varies from 20 to 100 items and the density varies from 10 to 90% with a step size of

20%. For each instance, we report the upper bound and the solution time in seconds.

In terms of computational time, (QKPSOC) is the most computationally efficient for all

instances. For example, for the largest instances (n = 100) the (QKPSOC) relaxation is on

average 23 times faster than the (QKPSS+), 19 times faster than the (QKPSS) relaxation,

and 10 times faster than the (QKPHRW4) relaxation (see Figure 3.5).

Further for all the tested instances, the (QKPSS+) and (QKPSS) bounds are strictly tighter

than the ones provided by (QKPHRW4), even though the bounds for the (QKPHRW4) relax-

ation are known to be strong [36, 82]. In addition, we report the gap between the bounds

of (QKPSS), (QKPHRW4), and (QKPSOC) and the bound of (QKPSS+). Over all instances,

the percentage gap of the (QKPSOC) relaxation with respect to the (QKPHRW4) relaxation

ranges from -8% to around 31% with an average of 4.39%, where a negative sign im-

plies that the (QKPSOC) relaxation is better. Notice that (QKPSOC) performs particularly

well for instances with high density. In particular, (QKPSOC) obtains better bounds than

(QKPHRW4) for all the instances with d = 90%.

3.4 Concluding Remarks

We used polynomial programming approaches to produce tractable relaxations for general

binary polynomial optimization problems. These approximations utilize second-order and

semidefinite cones over which it is known how to optimize efficiently. We proposed a

second-order cone relaxation for general BPP problems with constraints of degree d−1 and

applied it to several binary quadratic polynomial instances. When compared to SDP-based

72

CHAPTER 3. NEW CONIC RELAXATIONS

Table 3.8: Computational results for QKP instances. The gaps are with respect to
(QKPSS+).

n ρ (QKP
SS+) (QKPSS) (QKPHRW4) (QKPSOC)

UB T(sec) UB Gap T(sec) UB Gap T(sec) UB Gap T(sec)

20 10 809.00 8.66 811.22 0.27 6.19 814.84 0.72 4.10 811.74 0.34 4.54
20 30 2617.50 4.01 2619.34 0.07 5.68 2623.98 0.25 3.10 2619.48 0.08 1.97
20 50 1120.90 7.52 1137.25 1.46 6.09 1175.07 4.83 4.14 1262.98 12.68 1.42
20 70 2340.94 5.53 2356.25 0.65 5.51 2397.20 2.40 4.14 2540.40 8.52 1.69
20 90 6082.09 5.61 6083.70 0.03 5.72 6086.12 0.07 3.85 6083.80 0.03 1.75
30 10 1011.34 20.83 1022.20 1.07 18.24 1044.39 3.27 9.31 1129.01 11.63 6.91
30 30 3451.65 24.15 3470.97 0.56 16.37 3511.30 1.73 9.77 3939.00 14.12 6.01
30 50 8116.24 17.14 8125.16 0.11 19.48 8142.11 0.32 12.25 8127.76 0.14 9.83
30 70 8042.65 15.01 8047.03 0.05 18.20 8073.14 0.38 10.78 8108.38 0.82 6.94
30 90 5114.00 15.96 5127.57 0.27 15.78 5150.78 0.72 9.35 5136.34 0.44 8.81
40 10 3845.33 51.43 3853.49 0.21 55.43 3864.51 0.50 38.72 3875.12 0.77 32.86
40 30 11807.67 40.09 11809.44 0.02 59.27 11828.42 0.18 32.40 11811.54 0.03 34.71
40 50 4298.30 93.95 4309.76 0.27 69.20 4365.56 1.56 34.06 5161.31 20.08 26.29
40 70 17415.63 76.24 17424.10 0.05 60.41 17446.14 0.18 35.92 17447.01 0.18 31.18
40 90 25599.30 64.70 25612.48 0.05 59.17 25630.04 0.12 39.15 25615.00 0.06 36.12
50 10 2316.83 274.29 2353.89 1.60 158.24 2412.48 4.13 96.62 2846.05 22.84 44.32
50 30 11414.34 186.91 11433.16 0.16 188.84 11485.59 0.62 114.12 12050.94 5.58 64.22
50 50 23823.61 270.40 23846.12 0.09 181.09 23863.04 0.17 116.33 23850.99 0.11 27.62
50 70 32567.32 133.12 32571.10 0.01 213.29 32626.49 0.18 113.25 32575.12 0.02 26.29
50 90 17658.96 167.46 17671.03 0.07 168.55 17682.63 0.13 91.98 17672.78 0.08 23.05
60 10 7173.33 705.30 7188.68 0.21 673.37 7215.96 0.59 394.70 7410.08 3.30 138.25
60 30 26403.91 552.28 26496.51 0.35 644.20 26530.82 0.48 312.36 26502.66 0.37 79.46
60 50 13853.47 726.82 13871.42 0.13 682.12 13895.51 0.30 355.53 14396.64 3.92 78.18
60 70 56556.58 663.95 56561.20 0.01 797.11 56583.48 0.05 343.42 56561.20 0.01 58.54
60 90 62009.00 357.10 62009.00 0.00 478.40 62015.61 0.01 391.59 62009.00 0.00 38.21
70 10 3961.79 2969.84 4036.66 1.89 1689.45 4109.61 3.73 954.02 5104.22 28.84 230.87
70 30 20191.73 2698.05 20208.57 0.08 2262.87 20275.13 0.41 1237.78 21826.79 8.10 296.70
70 50 45493.48 2760.52 45507.07 0.03 2407.57 45573.21 0.18 1224.95 45752.77 0.57 154.61
70 70 1621.19 2900.58 1631.57 0.64 2308.23 1882.75 16.13 1081.38 1737.92 7.20 143.12
70 90 32850.56 1777.27 32857.31 0.02 2574.93 32913.98 0.19 1157.09 32876.13 0.08 102.06
80 10 13062.74 4407.65 13074.13 0.09 5008.22 13118.78 0.43 2584.26 13506.53 3.40 564.75
80 30 1480.00 3327.65 1480.00 0.00 4388.67 1537.29 3.87 2143.41 1532.02 3.51 264.94
80 50 23126.43 6694.43 23141.40 0.06 4650.24 23220.33 0.41 2494.70 25240.44 9.14 365.01
80 70 58613.63 5422.86 58621.35 0.01 5419.69 58649.30 0.06 2979.25 59322.02 1.21 270.39
80 90 112167.40 4178.58 112184.20 0.01 5052.10 112202.99 0.03 2958.44 112184.53 0.02 185.92
90 10 6189.28 15610.86 6311.21 1.97 7057.15 6447.72 4.18 4818.87 8500.89 37.35 517.90
90 30 30656.56 16455.66 30710.62 0.18 9398.88 30829.68 0.56 5587.52 36535.46 19.18 740.54
90 50 81336.10 10319.41 81344.17 0.01 12623.02 81393.43 0.07 6233.23 81385.48 0.06 426.81
90 70 8004.38 12082.24 8014.95 0.13 11942.53 8312.97 3.86 4292.94 8297.26 3.66 458.36
90 90 55262.87 11603.07 55285.71 0.04 8883.04 55305.54 0.08 5640.32 55291.14 0.05 295.34
100 10 23941.78 23975.63 23951.45 0.04 18831.11 23977.05 0.15 9883.59 24021.78 0.33 1867.44
100 30 40216.48 31499.01 40257.87 0.10 17673.77 40370.14 0.38 9832.83 45597.97 13.38 973.49
100 50 11707.00 27958.75 11737.62 0.26 18867.58 11879.03 1.47 8553.04 13937.02 19.05 1308.24
100 70 122205.33 20428.73 122215.14 0.01 24684.33 122305.61 0.08 9482.50 122476.61 0.22 431.02
100 90 63378.00 12182.11 63378.00 0.00 14881.31 63411.61 0.05 10280.16 63378.00 0.00 484.25
Avg. - - - 0.30 - - 1.34 - - 5.81 -

73

CHAPTER 3. NEW CONIC RELAXATIONS

Sheet1

Page 1

10 20 30 40 50 60 70 80 90 100 110

1

10

100

1000

10000

100000

Computational Time

SOC-SDP+
SOC-SDP
HRW
SOC

Instance Size

Ti
m

e
(s

ec
)

Figure 3.5: Computational time for QKP (logarithmic scale).

relaxations, these SOC-based relaxations of BQPP are significantly more computationally

efficient with only a small degradation of bounds.

The main contribution of this section is the use of SOC for general binary polynomial

programs. The SOC relaxations show strong potential, both in terms of bounds and of

computational time, to be used in an exact algorithm scheme to find optimal solutions for

large instances of such problems in a reasonable time. In the following sections, we use these

SOC approximations in particular when adding valid inequalities to BPPs. Additionally,

we investigate the use of SOC-based relaxations with additional valid inequalities in a

branch-and-bound framework.

74

Chapter 4

Dynamic Inequality Generation

Scheme

In this chapter, we propose a dynamic inequality generation scheme (DIGS) for general

polynomial programs. The key idea of DIGS is to bound the complexity (degree) of the

non-negative certificates, avoiding the exponential growth of relaxation size as in the hier-

archies presented in Section 2.2.4. Instead, our approach makes use of information from

the objective function to construct improved approximations of the polynomial program,

by dynamically generating polynomial inequalities that are valid on the feasible region.

Iteratively the new valid inequalities are used to construct new non-negative certificates,

obtaining improving approximations to the polynomial program without growing the degree

of the certificates involved. Depending on the original problem and the type of relaxation

used, the iterative procedure solves a sequence of linear, second-order cone, or semidefinite

problems. For illustrative purposes, we focus on semidefinite relaxations in this chapter

and thus obtain a sequence of semidefinite problems. In the next chapter, we use SOC

relaxations from Section 3.1.2 and obtain a sequence of second-order cone problems. The

general scheme is presented in Section 4.1.

Further, we propose a dynamic inequality generation scheme specialized to polynomial

programs where (some) all of the variables are binary. Our method for the binary case

can be seen as a generalization, from binary linear programs to BPP, of the lift-and-

75

CHAPTER 4. DYNAMIC INEQUALITY GENERATION SCHEME

project methods of Balas, Ceria, and Cornuéjols [6], Sherali and Adams [90], and Lovász

and Schrijver [65]. Convergence to the global optimal solution is proven for a family of

problems including binary quadratic programming with linear constraints. The specialized

scheme and the convergence results are presented in Section 4.2.

To evaluate the proposed approach, we apply it computationally to general polynomial

programs and binary polynomial programs, comparing the results to Lasserre’s approach

[54, 53] for the general and binary cases and to the lift-and-project method of Balas, Ceria,

and Cornuéjols [6] for the binary linear case. The computational results are presented in

Section 4.3.

4.1 General Case

In this section, we propose a scheme to dynamically generate valid polynomial inequalities

for general PPs. Given any hierarchy, instead of growing r, which increases the size of

the problem exponentially, we fix r to a small value (mainly to d, the degree of (PP-P))

and improve the approximation Kr
G of Pd(S) by growing the set G, e.g., by adding valid

polynomial inequalities to the description of S. Our approach makes use of information

from the objective function to dynamically generate polynomial inequalities that are valid

on the feasible region. These valid inequalities are then used to construct new non-negative

certificates, obtaining better approximations to (PP-P). We can use any approximation K
of Pd(S), however for ease of exposition we work with the hierarchy Kr

G presented in Section

2.2.5.

Notice that if p(x) ∈ Kr
G, then Kr

G = Kr
G∪{p}, and thus we do not obtain better non-

negative certificates. On the other hand, if p(x) ≥ 0 is a valid inequality outside Kr
G

then the approximation Kr
G∪{p} to Pd(S) is improved and thus we may obtain an improved

bound for (PP-P).

Lemma 4.1.1. Let r ≥ d and p(x) ∈ Pd(S) \Kr
G.

Kr
G (Kr

G∪{p} ⊆ Pd(S) and thus µrG ≥ µrG∪{p}.

76

CHAPTER 4. DYNAMIC INEQUALITY GENERATION SCHEME

Using Lemma 4.1.1, given a finite G ⊆ Pd(S) and d ≥ 1, the following procedure is an

idealized generic iterative scheme to find improving approximations to Pd(S):

Algorithm 1: Iterative Scheme for PP

Input: G

Output: A sequence (Gi){i=0,1,...} such that Kd
Gi
↑ Pd(S)

set: i = 0, G0 = G, and Stop=01

while Stop=0 do2

Given Gi, find pi(x) ∈ Pd(S) \Kd
Gi

;3

if pi(x) does not exist then4

Stop=1;5

return Gi;6

else7

set: Gi+1 := Gi ∪ {pi};8

set: i := i+ 1;9

end10

end11

Remark: We can not solve Algorithm 1 due to Step 3 of the algorithm. In Section 4.1.1,

we discuss how to tackle this problem.

Notice that Kd
G0

(Kd
G1

(· · · (Kd
Gs

(Kd
Gs+1
· · · ⊆ Pd(S). Defining the sequence of

problems:

(PP-Ms) µs = inf
λ
λ

s.t. λ− f(x) ∈ Kd
Gs , (4.1)

from Lemma 4.1.1, it follows that:

Lemma 4.1.2.

µ0 ≥ · · · ≥ µs ≥ µs+1 ≥ · · · ≥ zPP .

77

CHAPTER 4. DYNAMIC INEQUALITY GENERATION SCHEME

For any s ≥ 0, the optimization problem (PP-Ms) can be written as:

µs = inf
λ,σi(x),ηi

λ

s.t. λ− f(x) = σ0(x) +
m∑
i=1

σi(x)gi(x) +
s∑
i=1

ηipi(x) (4.2)

σ0(x) ∈ Ψd[x]

σi(x) ∈ Ψd−deg(gi)[x] i = 1, . . . ,m

ηi ∈ R+ i = 1, . . . , s.

For a problem with m inequality constraints and performing s iterations of the iterative

scheme, the size of (4.2) is:

• One psd matrix of dimension
(
n+d
d

)
;

• m psd matrices, each of dimension
(
n+d−deg(gi)
d−deg(gi)

)
for i ∈ {1, . . . ,m};

• s non-negative variables;

•
(
n+d
d

)
constraints.

By fixing the degree of the relaxation, we are able to handle larger problem sizes. Problem

(2.20) presented in the Section 2.2.4, has m + 1 psd matrices of size O(nr) and O(nr)

constraints while (4.2) has m+1 psd matrices of size O(nd) plus O(s) non-negative variables

and O(nd) constraints. When d� r, the size of the positive semidefinite matrices and the

number of constraints are significantly lower in (4.2) compared to (2.20). This reduction

in the order of magnitude of the number of variables and the number of constraints is a

key factor in reducing the total computational time required.

4.1.1 Dynamic Inequality Generation Scheme (DIGS)

Now we look closely at how to generate a valid inequality, that is at how to execute Step

3 of the generic iterative scheme given in Algorithm 1:

GIVEN Gi, FIND p(x) ∈ Pd(S) \Kd
Gi
.

78

CHAPTER 4. DYNAMIC INEQUALITY GENERATION SCHEME

We need to tackle two problems, first how to generate p(x) ∈ Pd(S) and second how to

ensure p(x) /∈ Kd
G.

To tackle the first issue, we approximate Pd(S) using K ⊆ Pd(S) such that K\Kd
G 6= ∅.

Notice that K = Kr
G where r ≥ d + 1 would work. So one could use approximations of

degree d + 1 and have p(x) ∈ Kd+1
G \ Kd

G, however when d is even, this might result in a

very slow improvement in the bound of (PP-P) as Ψd+1[x] = Ψd[x]. Thus, for even d, we

use Kd+2 and for odd d we can use Kd+1
G . For the rest of the section, we consider Kd+2

G for

ease of notation.

To solve the second issue, i.e, to ensure p(x) /∈ Kd
G, we use the optimal dual solution of

(4.2), denoted by Y . In this way, the relaxation (4.1) and its SDP dual correspond to the

conic primal-dual pair:

infλ λ supY 〈f, Y 〉
s.t. λ− f(x) ∈ Kd

G s.t. 〈1, Y 〉 = 1

Y ∈ (Kd
G)∗.

From the definition of dual cone (Kd
G)∗, we have the following lemma,

Lemma 4.1.3. Let Y be a dual solution of (4.1). For all p(x) ∈ Kd
G, 〈p, Y 〉 ≥ 0.

Thus to generate p(x) ∈ Pd(S) \ Kd
G, we need to find p(x) ∈ Kd+2

G such that 〈p, Y 〉 < 0.

This can be done by solving the following semidefinite problem. We refer to this problem

as the polynomial generation subproblem:

(PP-Sub) inf
p
〈p, Y 〉 (4.3)

s.t. p(x) ∈ Kd+2
G

‖ p ‖ ≤ 1.

The normalization constraint is added since p(x) and cp(x) are equivalent inequalities for

any c > 0, i.e., the inequality can be scaled arbitrarily. Moreover, without the normalization

constraint, (PP-Sub) is unbounded. There are several options for choosing the norm ‖ · ‖.
In the following section, we discuss different ways to normalize p(x).

79

CHAPTER 4. DYNAMIC INEQUALITY GENERATION SCHEME

Normalization

There are several options for choosing the norm ‖ . ‖. The three normalizations proposed

are aimed at guaranteeing the existence of a finite optimum for subproblem (4.3). Consider

the three different norms for a given p(x) denoted by ‖ p ‖1, ‖ p ‖2, and ‖ p ‖α defined

respectively as follows:

1. The first norm is the `1 norm of p(x), that is ‖ p ‖1=
∑
|α|=d |pα|.

2. The second norm is the `2 norm of p(x), ‖ p ‖2=
∑
|α|=d p

2
α. This gives a second-order

cone condition on the coefficients of the polynomial p(x).

3. The third norm is the polynomial norm. Recall the form of the polynomial p(x):

p(x) =
∑
|α|=d

pαx
α =

∑
|α|=d

c(α)p̄αx
α,

where c(α) := d!
α1!...αn!

. The polynomial norm of p is: ‖ p ‖α=
∑
|α|=d

|pα|
c(α)

.

Normalization Approach 1: The first normalization approach takes one of the norms

discussed above and sets it to 1. As a result we obtain the following subproblem:

min 〈p, Y 〉
s.t. p(x) ∈ Kd

G

‖ p ‖≤ 1

Normalization Approach 2: The second normalization is the one that maximizes the

norm between Y , the optimal dual solution of (4.2), and the set {Md(x) : p(x) = 0}. The

polynomial p(x) can be written in the form of p =

[
p0

pα

]
and Y =

[
Y0

Yα

]
where Y0 = 1

and |α| > 0. Let Ŷ =

[
1

Ŷα

]
be the projection of Y on the hyperplane corresponding to

80

CHAPTER 4. DYNAMIC INEQUALITY GENERATION SCHEME

{Md(x) : p(x) = 0} and consider Ŷ = Yα + tpα where t is a direction, then

‖ Y − Ŷ ‖=‖ tpα ‖=| t |‖ pα ‖

Since Ŷ is on the hyperplane defining {M(x) : p(x) = 0} then it satisfies the following

pTα Ŷα + p0 = 0.

Substituting Ŷ by Yα + tpα we obtain:

pTαYα + tpTαpα + p0 = 0.

We maximize the following

max | t |‖ pα ‖
s.t. p(x) ∈ Kd

G

pTαYα + tpTαpα + p0 = 0

‖ pα ‖≤ 1,

which is equivalent to

max | t |
s.t. p(x) ∈ Kd

G

t = −pTαYα − p0

‖ pα ‖≤ 1.

Maximizing the absolute value of t is equivalent to maximizing the absolute value of pTαYα+

p0 which is a negative value equivalent to 〈p, Y 〉. Hence the problem can be written as

min 〈p, Y 〉
s.t. p(x) ∈ Kd

G

‖ pα ‖≤ 1

81

CHAPTER 4. DYNAMIC INEQUALITY GENERATION SCHEME

where |α| > 0 and ‖ · ‖ is any of the norms previously discussed.

The normalization used in the following sections is the `2 norm combined with Approach

2, i.e., the one that maximizes the `2 distance between Y and the set {Md(x) : p(x) = 0}.
For a polynomial p(x), this normalization constraint is equivalent to

∑
|α|>0 p

2
α ≤ 1.

82

CHAPTER 4. DYNAMIC INEQUALITY GENERATION SCHEME

DIGS Algorithm

Using the ingredients discussed in this section, the dynamic inequality generation scheme

can be summarized as follows:

Algorithm 2: DIGS for General Polynomial Programs

Input: G = {gi(x) : i = 1, . . . ,m}, f(x)

Output: µ

set: i = 0, G0 = G, and Stop=01

while Stop=0 do2

Let Y i be a optimal dual solution of:3

µ = min
λ
λ

s.t. λ− f(x) ∈ Kd
Gi

;

Let pi(x) ∈ Rd[x] be a solution to:4

min
p

〈
p, Y i

〉
s.t. p(x) ∈ Kd+2

Gi

‖ p ‖ ≤ 1

;

if 〈p, Y i〉 > −10−3 then5

Stop=1;6

else7

set: Gi+1 := Gi ∪ {pi};8

set: i := i+ 1;9

end10

end11

83

CHAPTER 4. DYNAMIC INEQUALITY GENERATION SCHEME

To show how the method works, we use an illustrative example. Consider the following

non-convex quadratic problem:

Example 4.1.4. Problem 3.5 in [25]:

min
x
− 2x1 + x2 − x3 (4.4)

s.t. 24− 20x1 + 9x2 − 13x3 + 4x2
1 − 4x1x2 + 4x1x3 + 2x2

2 − 2x2x3 + 2x2
3 ≥ 0

x1 + x2 + x3 ≤ 4

3x2 + x3 ≤ 6

0 ≤ x1 ≤ 2, 0 ≤ x2, 0 ≤ x3 ≤ 3.

Let G0 = {1, 24−20x1 +9x2−13x3 +4x2
1−4x1x2 +4x1x3 +2x2

2−2x2x3 +2x2
3, 4−x1−x2−

x3, 6− 3x2− x3, x1, x2, x3, 2− x1, 3− x3}. Solving the master problem (4.2) with s = 0, we

obtain µ0=-6.000 which is a lower bound on (4.4) with the optimal dual solution

Y0 =
[
1.0 2.0 −0.0 2.0 5.2 0.5 3.4 1.7 0.2 5.6

]
.

To obtain a valid inequality for (4.4), we solve subproblem (4.3) with Y = Y0, G = G0,

and d = 2. We obtain

p0(x) =0.4693 + 0.3959x1 + 0.4802x2 + 0.3553x3 − 0.3148x2
1 + 0.1455x1x2

− 0.0530x1x3 − 0.3569x2
2 + 0.0221x2x3 − 0.1231x2

3.

Define G1 = G0∪{p0}. Solving the master problem (4.2) with s = 1, we improve the lower

bound to µ1 = −5.8746. Solving the subproblem with Y = Y1, G = G1, and d = 2, we

obtain

p1(x) =0.7678 + 0.1591x1 + 0.2569x2 + 0.1234x3 − 0.2707x2
1 + 0.1081x1x2

− 0.4243x1x3 + 0.1007x2
2 + 0.10431x2x3 + 0.1341x2

3

Solving the relaxation with G2 = G1 ∪ {p1} we obtain an objective value of µ2 = −5.6672.

84

CHAPTER 4. DYNAMIC INEQUALITY GENERATION SCHEME

We perform this approach iteratively obtaining a tighter approximation of the original

problem and improving the bound. After adding 25 inequalities we obtain an objective

value of -4.0047 which is very close to the optimal value of -4.00 as seen in Figure 4.1 and

Table 4.1 the total time is 20.18 seconds.
Sheet2

Page 1

0 5 10 15 20 25

-6

-5.5

-5

-4.5

-4

-3.5

-3

Iteration

L
o

w
e

r
B

o
u

n
d

Figure 4.1: DIGS lower bounds for Example 4.1.4. The dotted line is the optimal objective
value.

85

CHAPTER 4. DYNAMIC INEQUALITY GENERATION SCHEME

Table 4.1: DIGS Results for Example 4.1.4.
Iteration 0 1 5 10 15 20 25

objective value -6.0000 -5.8746 -5.0497 -4.2508 -4.1092 -4.0140 -4.0047
Accumulated time (sec) 0.11 0.54 2.95 6.41 10.85 16.35 20.18

Master Problem
psd matrices 4×4(1) 4×4(1) 4×4(1) 4×4(1) 4×4(1) 4×4(1) 4×4(1)
non-negative vars 8 9 13 18 23 28 33
total # of vars 18 19 23 28 33 38 43
of constraints 10 10 10 10 10 10 10
time (sec) 0.11 0.19 0.24 0.37 0.38 0.53 0.62

Subproblem
psd matrices 4×4(8), 4×4(9), 4×4(13), 4×4(18), 4×4(23), 4×4(28),

10×10(1) 10×10(1) 10×10(1) 10×10(1) 10×10(1) 10×10(1)
non-negative vars 0 0 0 0 0 0
free vars 10 10 10 10 10 10
total # of vars 145 185 195 245 295 345
of constraints 35 35 35 35 35 35
time (sec) 0.24 0.39 0.41 0.50 0.60 0.63

In Table 4.2 can be seen that using Lasserre’s approach, the optimal solution is obtained by

solving a problem over Γ 8
G0

. However, using DIGS we are able to obtain a bound close to

the optimal value while using a cheaper low degree problem (r = 2 for the master problem

and r = 4 for the subproblem).

Table 4.2: Lasserre’s Hierarchy for Example 4.1.4.
r 2 4 6 8

objective value -6.0000 -5.6923 -4.0685 -4.0000
psd matrices 4×4(1) 4×4(8), 10×10(8), 20×20(8),

10×10(1) 20×20(1) 35×35(1)
non-negative vars 8 0 0 0
total # of vars 18 135 650 2310
of constraints 10 35 84 165
time (sec) 0.11 0.62 8.04 23.55

86

CHAPTER 4. DYNAMIC INEQUALITY GENERATION SCHEME

From Figure 4.2, it is clear that the size of the problem grows exponentially when increasing

r in the Lasserre’s hierarchy. For r = 2, the linear system of equations is of size 10×25

which grows to 165×4426 for r = 8.

0 5 10 15 20 25

0

2

4

6

8

10

r=2

0 50 100 150 200

0

5

10

15

20

25

30

35

r=4

0 200 400 600 800 1000 1200

0

10

20

30

40

50

60

70

80

r=6

0 500 1000 1500 2000 2500 3000 3500 4000

0

20

40

60

80

100

120

140

160

r=8

Figure 4.2: Size of the linear system of equations for Lasserre’s hierarchy: Example 4.1.4.

More examples of the DIGS method are presented in Section 4.3.

4.2 Binary Case

In this section we specialize the results presented in Section 4.1 to the binary case. Al-

gebraic geometry representation techniques are used to obtain a scheme particular for the

binary case that iteratively improves the bound converging to the optimal objective value

of the original binary polynomial program. Using the approach proposed in [80] and [103],

we obtain a computationally cheaper subproblem for the binary case. Further, we present

convergence results for some important cases. We prove that the resulting iterative scheme

converges to the global optimal solution of the binary polynomial program when starting

from the exact representation of the domain set excluding the binary constraints. As such a

representation is not tractable in general, we show that a suitable tractable initial approx-

87

CHAPTER 4. DYNAMIC INEQUALITY GENERATION SCHEME

imation ensures convergence for binary polynomial programs with a quadratic objective

and linear constraints.

4.2.1 Specializing the Dynamic Inequality Generation Scheme

In this section, we consider the domain S in (2.15) to be of the form S = D ∩ H where

D = {x : gi(x) ≥ 0, i = 1, . . . ,m} ⊆ [−1, 1]n and H = {−1, 1}n. Problem (2.15) becomes

(BPP-P) zBPP = max f(x)

s.t. x ∈ D ∩H.
(BPP-D) zBPP = min λ

s.t. λ− f(x) ∈ Pd(D ∩H).

To solve (BPP-P), we follow similar approach to the general case presented in Section 4.1.

Let G = {g0(x), g1(x), . . . , gm(x)} where g0(x) = 1. Using Kr
G as the approximation to

Pd(S), we define the polynomial programming master problem

ϕdG = inf
λ
λ (4.5)

s.t. λ− f(x) ∈ Kd
G,

which can be written as

ϕdG = inf
λ,σi(x),δi(x)

λ

s.t. λ− f(x) = σ0(x) +
m∑
i=1

σi(x)gi(x) +
n∑
i=1

δi(x)(1− x2
i).

σ0(x) ∈ Ψd[x]

σi(x) ∈ Ψd−deg(gi)[x] i = 1, . . . ,m

δi(x) ∈ Rd−2[x] i = 1, . . . , n.

Let Hj = {x ∈ Rn : xj ∈ {−1, 1}} and H = {−1, 1}n. Notice that H = ∩j∈{1,...,n}Hj.

Instead of solving the polynomial generation subproblem over Kd+2
G as defined in Section

4.1.1, we use the following theorem to obtain a polynomial generation subproblem for the

binary case that is computationally cheaper:

88

CHAPTER 4. DYNAMIC INEQUALITY GENERATION SCHEME

Theorem 4.2.1. [80] For any degree d and compact set D,

Pd(D ∩Hj) =
(
(1 + xj)Pd(D) + (1− xj)Pd(D) + (1− x2

j)Rd−1[x]
)
∩Rd[x].

Proof. Define Cdj := ((1 + xj)Pd(D) + (1− xj)Pd(D) + (1− x2
j)Rd−1[x]) ∩Rd[x].

⊇ : Consider p(x) ∈ Cdj , that is p(x) = (1 + xj)q
+(x) + (1− xj)q−(x) + (1− x2

j)r(x) where

r(x) ∈ Rd−1[x], and q+(x), q−(x) are in Pd(D).

Let s ∈ D ∩Hj, then sj ∈ {−1, 1}. For the case of sj = −1 we have

p(s) = 2q−(s) ≥ 0.

Similarly for the case of sj = 1, we obtain

p(s) = 2q+(s) ≥ 0.

Hence, p(s) ≥ 0 for all s ∈ D ∩Hj.

⊆ : Take a polynomial p(x) ∈ Pd(D ∩ Hj), we have hj = (1 − xj)(1 + xj). Define

η1(xj) =
(1−xj)

2
and η2(xj) =

(xj+1)

2
. We have η(xj) = η1(xj) + η2(xj) = 1.

First consider the case where p(x) ∈ P+(D) then p(x) = η1(xj)p(x)+η2(xj)p(x) ∈ Cdj .

For the second case where p(x) /∈ P+(D), consider ν = |min{p(x) : x ∈ D}| ≥ 0

and ε1 = {(xj + 1)2 : p(x) ≤ 0, x ∈ D} > 0, ε2 = {(xj − 1)2 : p(x) ≤ 0, x ∈ D} > 0.

Note: the reason we need compactness on D for this theorem is to ensure that ν, ε1,

and ε2 are attained and finite.

Let φ1(x) = p(x) +µ(xj + 1)2 and φ2(x) = p(x) +µ(xj − 1)2, where µ > max{ ν
ε1
, ν
ε2
}.

We have φ1(x), φ2(x) ∈ P+
d (D) and hence,

p(x) = −µ(η1(xj)(xj + 1)2 + η2(xj)(xj − 1)2) + η1(xj)φ1(x) + η2(xj)φ2(x) ∈ Cdj .

89

CHAPTER 4. DYNAMIC INEQUALITY GENERATION SCHEME

From Theorem 4.2.1, it is natural to define the operator

Cdj (K) :=
(
(1 + xj)K + (1− xj)K + (1− x2

j)Rd−1[x]
)
∩Rd[x],

for any K ⊆ Rd[x].

The following lemma captures the main properties of the operator Cdj , which are key to

obtain a more efficient DIGS for the binary case:

Lemma 4.2.2. Let D ⊂ [−1, 1]n and let K ⊆ Pd(D ∩H).

1. For every j, 2K ⊆ Cdj (K) ⊆ Pd(D ∩H),

2. If Pd(D) ⊆ K then Pd(D ∩Hj) ⊆ Cdj (K),

3. Moreover, if Pd(D) ⊆ K (Pd(D ∩H) then for some j, K (Cdj (K).

Proof.
1. From the definition of Cdj , 2K = (1−xj)K+(1+xj)K ⊆ Cdj (K). Now, let q(x) ∈ Cdj (K),

then

q(x) = (1 + xj)p1(x) + (1− xj)p2(x) + (1− x2
j)c(x)

with p1(x), p2(x) ∈ K and c(x) ∈ Rd−1[x]. For all x ∈ Hj, q(x) = 2p1(x) or q(x) =

2p2(x). Thus, since K ⊆ Pd(D ∩H), q(x) ≥ 0 for all x ∈ D ∩H.

2. Follows from Theorem 4.2.1.

3. For sake of contradiction, assume K = Cdj (K) for all j. Applying part 2 inductively,

Pd(D ∩ ∩i≤jHj) ⊆ Cdj (K) = K for all j = 1, . . . , n. In particular Pd(D ∩H) ⊆ K.

From Lemma 4.2.2, if K ⊂ Pd(S) then Cdj (K) \ K 6= ∅. Therefore, we can substitute Kd+2
G

with Cdj (Kd
G) in the definition of Subproblem (4.3). Let Y be the optimal dual variable for

(4.5), we define the j-th polynomial generation subproblem for the binary case as:

ωj = min
p
〈p, Y 〉 (4.6)

s.t. p(x) ∈ Cdj (Kd
G)

‖ p ‖≤ 1.

90

CHAPTER 4. DYNAMIC INEQUALITY GENERATION SCHEME

The first constraint of Problem (4.6), implies that p(x) = (1 + xj)q
+(x) + (1− xj)q−(x) +

(1−xj)2r(x) where q+(x), q−(x) ∈ Kd
G, r(x) ∈ Rd−1[x], and p(x) ∈ Rd[x]. Using the proof

of Theorem 4.2.1, we have

p(x) = q+(x)− µ(xj + 1)2 = q−(x)− µ(xj − 1)2

where q+(x), q−(x) ∈ Kd
G and µ ∈ R+. Assuming p(x) ∈ Rd[x] the polynomial generation

subproblem (4.6) involves double the variables of the original problem (4.5) in addition to

the
(
n+d
d

)
variables corresponding to p(x). The number of constraints is at most

(
n+d+1
d+1

)
(since we solve a problem of degree d+1, however not all the terms of degree d+1 appear).

Related to (4.6), we define a similar but less expensive subproblem by replacing the operator

Cdj (Kd
G) in Problem (4.6) with C̄dj (Kd

G), where

C̄dj (Kd
G) := {p(x) ∈ Rd[x] : p(x) = q+(x)− µ(xj + 1)2, p(x) = q−(x)− µ(xj − 1)2}

and the unknowns are q+(x), q−(x) ∈ Kd
G and µ ∈ R+. Using C̄dj (Kd

G), the polynomial

generation subproblem involves almost the same number of variables as before but the

number of constraints in this case is 2
(
n+d
d

)
which is significantly less than

(
n+d+1
d+1

)
.

For the binary case, DIGS-B is computationally more efficient than the DIGS presented in

Section 4.1.1 for the general case. The master problem in both cases is of the same size, but

solving the subproblem (4.6) is basically of the same order as solving the master problem

(4.5). At each iteration, Subproblem (4.6) has twice the number of variables and at most
n+d+1
d+1

times the number of constraints of the master problem when using Cdj (Kd
G). This

is much smaller than subproblem (4.3) obtained for the general case which has O(n2/d2)

times the number of variables and O(n2/d2) times the number of constraints compared to

the master problem. Using Algorithm 2 with the master problem and subproblem replaced

by (4.5) and (4.6) respectively, we obtain a specialized DIGS for the binary case, which we

call DIGS-B.

91

CHAPTER 4. DYNAMIC INEQUALITY GENERATION SCHEME

Algorithm 3: DIGS-B for Binary Polynomial Programs

Input: G = {gi(x) : i = 1, . . . ,m}, f(x)

Output: µ

set: i = 0, G0 = G, and Stop=01

while Stop=0 do2

Let Y i be a optimal dual solution of:3

µ = min
λ
λ

s.t. λ− f(x) ∈ Kd
Gi

;

Let pi(x) ∈ Rd[x] be a solution to:4

min
p

〈
p, Y i

〉
s.t. p(x) ∈ Cdj (Kd

Gi
)

‖ p ‖ ≤ 1

where j ≤ n is a given index ;

if 〈p, Y i〉 > −10−3 for all j then5

Stop=1;6

else7

set: Gi+1 := Gi ∪ {pi};8

set: i := i+ 1;9

end10

end11

The algorithm terminates when for all indexes j, the subproblem has an objective value

equal to zero. In practice, we stop when for all j the value of the subproblem is sufficiently

close to zero. We need to choose a variable xj to apply the iterative procedure on. For

this, we propose a heuristic that allows us to choose the xj variable as described below.

92

CHAPTER 4. DYNAMIC INEQUALITY GENERATION SCHEME

Let [f(x)]α be the vector of coefficients of the polynomial f(x). At a given iteration, we

want to minimize 〈p, Y 〉 which is equivalent to minimizing〈
[q+(x)− µ(xj + 1)2]α, Y

〉
=
〈
q+, Y

〉
− µ

〈
[(xj + 1)2]α, Y

〉〈
[q−(x)− µ(xj − 1)2]α, Y

〉
=
〈
q−, Y

〉
− µ

〈
[(xj − 1)2]α, Y

〉
We have 〈q+, Y 〉 and 〈q−, Y 〉 are always nonnegative, and µ is nonnegative. Hence to

minimize the objective of the subproblem we need to find the xj that will take a minimum

value in:

max
j

min{
〈
[1 + 2xj + x2

j]α, Y
〉
,
〈
[1− 2xj + x2

j]α, Y
〉
}

so we evaluate
〈
[1 + 2xj + x2

j]α, Y
〉

and
〈
[1− 2xj + x2

j]α, Y
〉

to be equal to Y00 + 2Y0j +Yjj

and Y00 − 2Y0j + Yjj respectively. Note that Y00 and Yjj are each equal to 1, hence we

choose the index j that correspond to the most fractional Y0j. That is we choose the xj

closest to zero (most fractional from {−1, 1}).

In order to avoid repetition of variables one can use a weighted version of the method

where the variables are assigned with weights wj. The weights of all the variables are

all initialized to one. Once the variable is chosen at a given iteration, then its weight is

doubled, i.e., wj = 2wj. Otherwise, if a variable is not chosen its weight is the maximum

of one and its previous weight minus one, i.e., wj = max{1, wj − 1}.

To show how the DIGS-B works, we consider the following example:

Example 4.2.3. Consider the non-convex quadratic knapsack problem with n = 3 and

d = 2:

max 62x1 + 19x2 + 28x3 + 52x1x2 + 74x1x3 + 16x2x3

s.t. 12x1 + 44x2 + 11x3 ≤ 66 (4.7)

x1, x2, x3 ∈ {0, 1}.

The optimal value for (4.7) is z = 164. Let f(x) = 62x1 + 19x2 + 28x3 + 52x1x2 + 74x1x3 +

16x2x3. Setting r = 2 and replacing the condition xi ∈ {0, 1} with 0 ≤ xi ≤ 1 and

93

CHAPTER 4. DYNAMIC INEQUALITY GENERATION SCHEME

x2
i − xi = 0, we obtain the following relaxation

min λ

s.t. λ− f(x) = s(x) + a(66− 12x1 − 44x2 − 11x3) +
3∑
i=1

bi(1− xi) +
3∑
i=1

cixi +
3∑
i=1

di(xi − x2
i),

s(x) ∈ Ψ2[x], a, bi, ci ∈ R+, di ∈ R

which has an objective value of 249.16. This is an upper bound on the optimal value of

(4.7).

If one wants to improve the value using Lasserre’s method, the hierarchy of SDPs shown

in Table 4.3 must be solved. From Figure 4.3, one can see the exponential increase in the

linear system of equations one has to solve when performing Lasserre’s method for r = 2, 4,

and 6 respectively. For r = 2, the linear system of equations is of size 10×30 which grows

to 84×1701 for r = 6.

Table 4.3: Results for Lasserre’s hierarchy. The optimal solution is obtained with r = 6.
r 2 4 6 8

objective value 249.1 226.2 164.0 164.0
psd matrices 4×4(1) 10×10(1) 20×20(1) 35×35(1)

1×1(13) 4×4(13), 10×10(13), 20×20(13)
total # of vars 23 185 925 3360
total # of constraints 10 35 84 165

0 5 10 15 20 25 30

0

2

4

6

8

10

r=2

0 50 100 150 200 250 300

0

10

20

30

r=4

0 200 400 600 800 1000 1200 1400 1600

0

20

40

60

80

r=6

Figure 4.3: Size of the linear system of equations for Lasserre’s hierarchy: Example 4.2.3.

94

CHAPTER 4. DYNAMIC INEQUALITY GENERATION SCHEME

By contrast, using our method we first generate a quadratic valid inequality

p(x) = 0.809− 0.388x1 − 0.037x2 − 0.361x3 − 0.099x1x2 − 0.086x2x3

and solve (4.5) with r = 2 again, this time taking G = {1, 66− 12x1 + 44x2 + 11x3, xi, 1−
xi, x

2
i − xi,xi−x2

i , p(x)}. An objective function value of 243.22 is obtained. Performing this

approach iteratively, one is able to improve the bound and obtain a tighter approximation of

the original problem. After adding 11 inequalities we obtain an objective of 164.00 which

is the optimal value of (4.7). In Table 4.4, the details on the size of the corresponding

master problem and polynomial generation subproblem are given.

Table 4.4: Results for DIGS-B.
i 0 1 2 3 · · · 9 10 11

objective value 249.1 243.2 238.9 235.1 · · · 164.2 164.0 164.0
Master Problem
psd matrices 4×4(1) 4×4(1) 4×4(1) 4×4(1) · · · 4×4(1) 4×4(1) 4×4(1)
non-negative vars 7 8 9 10 · · · 16 17 18
free vars 3 3 3 3 · · · 3 3 3
total # of vars 20 21 22 23 · · · 29 30 31
total # of constraints 10 10 10 10 · · · 10 10 10
Subproblem
psd matrices 4×4(2) 4×4(2) 4×4(2) 4×4(2) · · · 4×4(2) 4×4(2)
non-negative vars 14 16 18 20 · · · 32 34
free vars 20 20 20 20 · · · 20 20
total # of vars 54 56 58 60 · · · 72 74
total # of constraints 20 20 20 20 · · · 20 20

4.2.2 Lift-and-Project

Lift-and-project is a well-known method for generating cutting planes. Balas et al. [6]

propose an iterative lift-and-project procedure which after n iterations yields the convex

hull of the feasible binary points. Sherali and Adams propose a similar lift-and-project

approach where the lifting part is obtained through simultaneous multiplication of the

original constraint set by all the binary variables and their complements (i.e., xi and

95

CHAPTER 4. DYNAMIC INEQUALITY GENERATION SCHEME

(1 − xi)) followed by projection to the original space. Lovász and Schrijver presented

and LP and SDP-based procedures for obtaining strong relaxations. In this section, we

re-derive the lift-and-project approach presented by Balas et al. [6] and show that the

approach presented in Section 4.2.1 generalizes this result.

For the case of binary linear programming, define D = {x ∈ Rn : aTi x ≥ bi, i = 1, . . . ,m} ⊆
[−1, 1]n and K1

G =
∑m

i=1(aTi x − bi)Ψ0[x] = P1(D). From Proposition 4.2.4, we can use

Algorithm 3 to obtain Balas et al. results (see Example 4.3.7).

Proposition 4.2.4. For d = 1 and D a polyhedron, our method is a generalization of

Balas, Ceria, and Cornuéjols lift-and-project method.

Proof. The set presented in [6] (denoted as Pj(x) there) is the dual of {p(x) ∈ Rd[x] :

p(x) ∈ C1
j (K1

G)}, the set of valid inequalities of the convex hull of D ∩Hj.

To show the relation between Balas et al. method and our approach in more details, we

consider the LP relaxation of the following binary problem

min cTx

s.t. Ax ≥ b,

x ∈ {0, 1}.

Using Balas et al. lift and project on the variable xj (for a given j), we obtain for the

lifting step

min cTx

s.t. (1 + xj)(Ax− b) ≥ 0

(1− xj)(Ax− b) ≥ 0,

where the constraints include the box constraints −1 ≤ xi ≤ 1 for all i. Next we apply

the linearization/projection by substituting the product of xjxk by a new variable xjk and

96

CHAPTER 4. DYNAMIC INEQUALITY GENERATION SCHEME

setting x2
j = 1,

(PL) min
∑
i

cix0i

s.t.
∑
i

aikx0i +
∑
i

aikxij − bkx0j ≥ bk ∀k (4.8)∑
i

aikx0i −
∑
i

aikxij + bkx0j ≥ bk ∀k (4.9)

xjj = 1. (4.10)

On the other hand, the problem

max λ

s.t.
∑
i

cixi − λ ∈ C1
j (K1

G)

is equivalent to

maxλ

s.t.
∑
i

cixi − λ = (1 + xj)

[∑
k

µk(a
T
k x− bk)

]
+ (1− xj)

[∑
k

νk(a
T
k x− bk)

]
+ r(1− x2

j).

97

CHAPTER 4. DYNAMIC INEQUALITY GENERATION SCHEME

Equating the coefficients of the monomials of the left side to the ones on the right side

maxλ

s.t. λ =
∑
k

µkbk +
∑
k

νkbk − r

cj = −
∑
k

bkµk +
∑
k

bkνk +
∑
k

akjµk +
∑
k

akjνk

ci =
∑
k

akjµk +
∑
k

akjνk

0 = −
∑
k

akjµk −
∑
k

akjνk − r

0 = −
∑
k

akjµk −
∑
k

akjνk

Substituting λ by
∑

k µkbk +
∑

k νkbk − r in the objective, we obtain the dual problem of

(PL) where µk, νk, and r are the dual variables of constraints (4.8)-(4.10) respectively.

4.2.3 Convergence Results

We provide proof of convergence for DIGS-B procedure for some important cases including

binary polynomial programs with quadratic (or linear) objective and linear constraints

(including the unconstrained case).

We first start by providing a proof of convergence for the case when the approximation

Kd
G contains Pd(D). Notice that if Kd

G ⊇ Pd(D) by Lemma 4.2.2-2, Subproblem (4.6) is

equivalent to optimizing over a set containing Pd(D ∩Hj). Intuitively, if the subproblem

has a value of 0, it is because “using the fact that xj is binary cannot help”, i.e., the

solution is already “binary” in that coordinate. Thus if the value of all subproblems is zero

we have converged to the optimal value. This intuition is formally expressed in Theorem

4.2.5.

Theorem 4.2.5. Let d ≥ 2 and let D ⊆ [−1, 1]n be a compact set. Assume Pd(D) ⊆ Kd
G ⊆

Pd(D ∩ {−1, 1}n). Let ωj, ϕ, z be the optimal objective value of subproblem (4.6), master

problem (4.5), and the original binary polynomial program (BPP-P) respectively. If ωj= 0

for all indexes j, then ϕ = z.

98

CHAPTER 4. DYNAMIC INEQUALITY GENERATION SCHEME

Proof. Let (λ, Y) be the optimal primal-dual solution of (4.5). Then ϕ = λ ≥ z and

Y ∈ {X ∈ (Kd
G)∗ : 〈1, X〉 = 1} ⊆ conv(Md(D)), using Lemma 2.2.30. As D is compact,

conv(Md(D)) is compact. Thus, by Caratheodory’s Theorem, Y can be written as Y =∑
i aiMd(ui) with ai > 0,

∑
i ai = 1 and each ui ∈ D.

Notice that 〈f, Y 〉 =
∑

i ai 〈f,Md(ui)〉 =
∑

i aif(ui). If ui ∈ H for all i, ϕ = 〈f, Y 〉 ≤ z

and we are done. To get a contradiction, assume uk /∈ H for some k. Then there is j ≤ n

such that uk /∈ Hj. Consider p(x) = 1− x2
j . We have p(x) ∈ Pd(Hj) ⊆ Pd(D ∩Hj) ⊆ Kd

G,

and p(uk) > 0. Therefore,

ωj ≥ 〈p, Y 〉 =
∑
i

ai 〈p,Md(ui)〉 =
∑
i

aip(ui) ≥ akp(uk) > 0,

which is a contradiction.

We apply Theorem 4.2.5 in the case of pure quadratic binary programming. Taking D as

the ball B = {x ∈ Rn : ‖x‖2 ≤ n} and d = 2, it follows from the S−Lemma [83] that

P2(D) = Ψ2[x] + (n− ‖x‖2)R+ and we can apply Theorem 4.2.5.

Theorem 4.2.6. When Algorithm 3 is applied to the case of pure binary quadratic pro-

gramming, starting with G0 = {n− ‖x‖2, 1}, if all the subproblems have an optimal value

0, then the value of the master is equal to the optimal value.

For linearly constrained binary quadratic programming, when all the linear constrains are

equalities, we can also show that Algorithm 3 converges. This case does not follow directly

from Theorem 4.2.5 but rather from a modification of the proof.

Theorem 4.2.7. When Algorithm 3 is applied to the case of a binary quadratic program-

ming, constrained to Ax = b, starting with G0 = {1, n−‖x‖2, (ATi x−bi)2,−(ATi x−bi)2, i =

1, . . . , n} if all the subproblems have an optimal value 0, then the value of the master prob-

lem is equal to the optimal value.

Proof. Let Y be the optimal dual solution of (4.5). As in the proof of Theorem 4.2.5 we

write Y =
∑

j ajM2(uj), with uj ∈ B. Let h(x) =
∑

i(A
T
i x− bi)2, we claim h(uj) = 0 for

all j. Notice that this is enough, as Theorem 4.2.5 implies that each uj is binary. During

99

CHAPTER 4. DYNAMIC INEQUALITY GENERATION SCHEME

any step s of the Algorithm 3, ±h(x) ∈ K2
GA,b
⊆ K2

Gs
. If we are at step s, Y ∈ (K2

Gs
)∗

and hence 〈±h, Y 〉 ≥ 0. Thus, 0 = 〈h, Y 〉 =
∑

j ajh(uj), which implies h(uj) = 0 for each

j.

4.3 Examples and Computational Results

In this section, to illustrate the iterative dynamic scheme, we apply Algorithms 2 and 3

to several examples and report computational results. To solve these examples, we devel-

oped a Matlab code that constructs and builds the resulting relaxations of the polynomial

program and solves them using the SeDuMi solver [93], see APPS in Chapter 6 for details.

The subproblems are solved with 10−4 precision. To obtain a fair comparison, Lasserre’s

relaxation was solved using the same code, on the same machine.

4.3.1 General case

Unless otherwise specified, the following topping criteria are used

• For all algorithms a time limit of 5 hours (18000 seconds) is imposed. When the

algorithm does not terminate in the time limit this is expressed using a dash (-).

• For the dynamic scheme, DIGS, an iteration limit of at most 10 added inequalities.

Example 4.3.1.

min
x

x1 − x1x3 − x1x4 + x2x4 + x5 − x5x7 − x5x8 + x6x8

s.t. x3 + x4 ≤ 1

x7 + x8 ≤ 1

0 ≤ xi ≤ 1 ∀i ∈ {1, . . . , 8}.

The optimal objective value of the above problem is 0. Lasserre’s hierarchy needs r ≥ 10

to obtain the optimal value. However, for r = 8 even constructing the problem couldn’t

100

CHAPTER 4. DYNAMIC INEQUALITY GENERATION SCHEME

be done within five hours as shown in Table 4.6. Using DIGS, we are able to use relax-

ations of degree 2 and add quadratic inequalities. Table 4.5, presents the bounds and the

computational time for 10 iterations.

Table 4.5: DIGS Results for Example 4.3.1.
Iter. 0 1 2 3 4 5 6 7 8 9 10

Obj. unb. -0.109 -0.073 -0.069 -0.068 -0.066 -0.062 -0.060 -0.060 -0.059 -0.057
T(sec)
Master 0.2 0.3 0.3 0.4 0.5 0.5 0.5 0.5 0.6 0.6 0.6
Sub. 1.5 1.8 2.1 1.9 2.0 2.1 2.2 2.3 2.4 2.5
Accum. 1.7 3.8 6.2 8.5 11.0 13.6 16.3 19.1 22.1 25.2 25.8

Performing 50 iterations of DIGS, we obtain a lower bound of value -0.014 in 200.1 seconds.

Figure 4.4 illustrates the bound improvement.

Sheet1

Page 1

0 5 10 15 20 25 30 35 40 45 50

-0.35

-0.25

-0.15

-0.05

0.05

Iteration

L
o

w
e

r
B

o
u

n
d

Figure 4.4: DIGS lower bounds for Example 4.3.1. The dotted line is the optimal objective
value.

Table 4.6: Lasserre’s Hierarchy for Example 4.3.1.
r 2 4 6 8 10

Obj. unb. -0.03550 -0.00192 - -
T(sec) 1.02 2.81 726.50 - -

101

CHAPTER 4. DYNAMIC INEQUALITY GENERATION SCHEME

Example 4.3.2. Motzkin and Robinson Polynomials:

min
x,y,z∈R

x2y2(x2 + y2 − 3z2) + z6 (4.11)

min
x,y,z∈R

x6 + y6 + z6 − (x4y2 + x2y4 + x4z2 + x2z4 + y4z2 + y2z4) + 3x2y2z2 (4.12)

The Motzkin and Robinson Polynomials ((4.11) and (4.12) respectively) are non-negative

polynomial that are not a sum-of-squares. The global optimum when minimizing over these

polynomials is 0. For both problems, at Iteration 0 we obtain an unbounded objective

function value. Using the dynamic scheme and adding 10 nonlinear inequalities of degree

6 we obtain the following results as shown in Tables 4.7 and 4.8.

Table 4.7: DIGS Results for the Motzkin Polynomial, Example 4.3.2-(4.11).
Iter. 0 1 2 3 4 5 6 7 8 9 10

Obj. unb. -8591.8 -5687.1 -663.8 -643.8 -640.7 -640.4 -618.8 -618.3 -614.4 -613.5
T(sec)
Master 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3
Sub. 0.4 0.3 0.3 0.4 0.4 0.4 0.5 0.5 0.5 0.5
Accum. 0.7 1.3 1.9 2.6 3.3 4 4.8 5.6 6.4 7.2 7.5

Table 4.8: DIGS Results for the Robinson Polynomial, Example 4.3.2-(4.12).

Iter. 0 1 2 3 4 5 6 7 8 9 10

Obj. unb. -7848.5 -5501.7 -5149.3 -5122.1 -5110.6 -4228.7 -3287.6 -3024.3 -1862.0 -1849.1
T(sec)
Master 0.3 0.3 0.3 0.4 0.4 0.4 0.4 0.4 0.3 0.3 0.3
Sub 0.3 0.3 0.3 0.4 0.4 0.4 0.4 0.4 0.4 0.5
Accum. 0.6 1.2 1.8 2.6 3.4 4.2 5.0 5.8 6.5 7.3 7.6

102

CHAPTER 4. DYNAMIC INEQUALITY GENERATION SCHEME

Note that because the Motzkin and the Robinson are homogeneous polynomials then the

optimum value is either 0 or −∞. Using the dynamic scheme we obtain a finite lower

bound after iteration 1 and therefore we have a proof that the global minimum is zero.

As a result, we can terminate the algorithm after iteration 1 of DIGS with an optimum

value of zero. On the other hand, using Lasserre’s hierarchy we obtain an unbounded

problem for all values of r since the Motzkin and Robinson Polynomials cannot be written

as sum-of-squares.

Example 4.3.3. Consider the Motzkin Polynomial again but with the additional constraint

where the solution has norm at least 1:

min
x,y,z∈R

x2y2(x2 + y2 − 3z2) + z6

s.t. x2 + y2 + z2 ≥ 1.

We obtain an unbounded problem at Iteration 0 of DIGS. However, after applying one

iteration of DIGS we have a finite bound. Comparing with Lasserres relaxation, when

r = 6 and 8 the problem is still unbounded as show in Table 4.10. Gloptipoly [38] gives

numerical errors for 10 ≤ r ≤ 16. Using DIGS we obtain a finite bound within 1.4 seconds.

Table 4.9 shows the results for 10 iterations of DIGS.

Table 4.9: DIGS Results for Example 4.3.3.

Iter. 0 1 2 3 4 5 6 7 8 9 10

Obj. unb. -6485.9 -3516.3 -3508.8 -2999.4 -2998.6 -2910.7 -2900.2 -2896.0 -2877.3 -2871.3
T(sec)
Master 0.3 0.3 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4
Sub. 0.4 0.4 0.4 0.5 0.5 0.5 0.6 0.6 0.6 0.7
Accum. 0.7 1.4 2.2 3.1 4.0 4.9 5.9 6.9 7.9 9.0 9.5

103

CHAPTER 4. DYNAMIC INEQUALITY GENERATION SCHEME

Table 4.10: Lasserre’s Hierarchy for Example 4.3.3. A (*) means that SeDuMi reported a
gap between the primal and dual optimal values.

r 6 8 10 12 14 16 18 20 22 24

Obj. unb. unb. * * * * -3.0×10−3 -4.4×10−4 -4.3×10−5 -
T(sec) 0.7 3.9 * * * * 160.9 368.4 1132.1 -

4.3.2 Binary case

As examples for the binary case, we consider constrained binary polynomial programs of

degree 2 and 3. Unless otherwise specified, the following stopping criteria are used

• For all algorithms a time limit of 5 hours (18000 seconds) is imposed. When the

algorithm does not terminate in the time limit this is expressed using a dash (-)

• For the dynamic schemes, DIGS and DIGS-B, an iteration limit of at most 10 added

inequalities.

• For DIGS-B we stop if the subproblems have a value close to 0 (≤ 10−3) or if we

are able to extract a feasible optimal solution and report optimality. To extract a

solution, we round the linear monomials to -1 or 1 according to their sign and check

for feasibility and optimality.

For the examples presented, we report the objective function value at Iteration 0 and

after performing a number of iterations of DIGS-B. As a reference for comparison we

also present Lasserre’s results. Bold values indicate that the approach used terminated

reporting optimality.

For the stable set example, we report results of DIGS-B within a specific time limit of 300

seconds and compare with Balas et al. lift-and-project method. We note that using the

Matlab code we developed, it is possible to capture Lasserre and Balas et al. approaches

and hence we use the same code and machine for all comparisons.

104

CHAPTER 4. DYNAMIC INEQUALITY GENERATION SCHEME

Example 4.3.4. Quadratic Knapsack Problem (QKP):

Recall the QKP problem (QKP-P) defined in Section 3.2.4.

max xTPx

s.t. wTx ≤ c

x ∈ {0, 1}n.

Table 4.11 presents computational results for QKP instances where the parameters are

generated according to [82]. The results show that DIGS-B is much more time efficient

than Lasserre’s approach, in particular when n gets large. For n > 20, we are not able

to go beyond r = 2 for Lasserre’s hierarchy in the given time limit of 5 hours while using

DIGS-B we are able to improve the bounds by using this iterative scheme.

Table 4.11: Computational results for quadratic knapsack instances.
Lasserre r = 4 Lasserre r = 2 DIGS-B

n Optimal Obj. T(sec) Obj. T(sec) Iter. 0 Iter. 1 Iter. 5 Iter. 10 T(sec)

10 1653 1707.3 28.1 1857.7 0.8 1857.7 1821.9 1797.4 1784.8 5.8
20 8510 8639.7 17269.1 9060.3 2.9 9060.3 9015.3 8925.9 8850.3 35.4
30 18229 - - 19035.9 4.3 19035.9 18920.2 18791.7 18727.2 196.6
40 2679 - - 4735.9 6.8 4735.9 4590.7 4248.2 4126.7 1009.7
50 16192 - - 21777.9 19.2 21777.9 21390.3 20162.1 19407.1 7014.3
60 58451 - - 62324.4 126.6 62324.4 62019.1 60906.0 60585.5 17961.1
70 16982 - - 23884.9 231.4 23884.9 23484.0 22852.8 - 15582.2
80 - - - 80482.7 365.4 80482.7 79738.9 - - 11072.3

Example 4.3.5. Quadratic Assignment Problem (QAP):

Recall the QAP problem (QAP-P) defined in Section 3.2.2:

min
∑

i 6=k,j 6=lfikdjlxijxkl

s.t.
∑

ixij = 1 1 ≤ j ≤ n∑
jxij = 1 1 ≤ i ≤ n

x ∈ {0, 1}n×n.

105

CHAPTER 4. DYNAMIC INEQUALITY GENERATION SCHEME

Table 4.12 presents computational results for quadratic assignment instances where fik

and djl are integers randomly generated uniformly between 0 and 5 with density 80%.

Using Lasserre’s hierarchy we can only solve the case r = 2 for instances of dimension

n > 4 within 5 hours, while the dynamic scheme improves significantly on the bounds of

Lasserre’s r = 2 relaxation without as much computational effort.

Table 4.12: Computational results for quadratic assignment instances.
Lasserre r = 4 Lasserre r = 2 DIGS-B

n Optimal Obj. T(sec) Obj. T(sec) Iter. 0 Iter. 1 Iter. 5 Iter. 10 T(sec)

3 46 46.0 0.3 46.0 0.3
4 52 52.0 1154.8 50.8 1.0 50.8 51.8 52.0 6.3
5 110 - - 104.3 3.4 104.3 105.1 106.3 106.8 68.5
6 272 - - 268.9 9.3 268.9 269.4 269.8 270.2 404.4
7 356 - - 344.2 18.1 344.2 344.9 345.6 346.0 3331.3
8 100 - - 77.2 73.2 77.2 77.8 78.9 - 11413.9
9 280 - - 247.5 281.7 247.5 248.6 - - 13171.5

Example 4.3.6. Max-Sat Problem:

Given a set of boolean clauses on n variables, find an assignment that maximizes the number

of satisfied clauses. The max-sat problem can be formulated as follows

min
m∑
j=1

∏
i∈Pj

(1 + xi)

2
×
∏
k∈Nj

(1− xk)
2

s.t. x ∈ {−1, 1}n.

where Pj and Nj are subsets of {1, . . . , n}, Pj ∩Nj = ∅, and m is the number of clauses.

In Tables 4.13-4.15, we present results on max-2-sat instances with randomly generated

clauses and applying Laserre’s relaxation, DIGS and DIGS-B. In Tables 4.14 and 4.15

results for iterations 0, 1, 5, and 10 and the total time in seconds are reported for DIGS

and DIGS-B respectively.

106

CHAPTER 4. DYNAMIC INEQUALITY GENERATION SCHEME

Table 4.13: Computational results for the max-2-sat problem: Lasserre’s relaxation.
Lasserre r = 4 Lasserre r = 2

n m Optimal Obj. T(sec) Obj. T(sec)

10 45 4 4.00 15.6 3.54 0.4
15 65 3 3.00 1103.8 2.75 0.9
20 85 8 8.00 11567.2 6.93 1.7
30 130 6 - - 5.47 6.5
40 170 13 - - 12.00 14.7
50 215 15 - - 13.86 41.3
60 252 - - - 11.37 106.0
70 295 - - - 17.08 258.3
80 340 - - - 16.77 579.1

Table 4.14: Computational results for the max-2-sat problem: DIGS.
DIGS

n m Optimal Iter. 0 Iter. 1 Iter. 5 Iter. 10 T(sec)

10 45 4 3.54 3.85 4.00 97.8
15 65 3 2.75 2.78 2.98 3.00 7451.8
20 85 8 6.93 7.34 - - 11829.0

In Table 4.15, instances of sizes 10, 15, and 20 are the same instances used in Table 4.14.

Comparing the results of Table 4.14 with Table 4.15, it is clear that using the specialized

DIGS-B reduces the computational time significantly and provides better bounds.Further,

for n ≥ 25 we are not able to perform any iterations of DIGS within the time limit, whereas

we are able to go up to 80 variables using DIGS-B. Looking at the instance with n = 15

we can perform 10 iterations of DIGS-B in around 16 seconds whereas using the general

DIGS, solving 10 iterations for n = 15 takes almost two hours of computational time.

107

CHAPTER 4. DYNAMIC INEQUALITY GENERATION SCHEME

Table 4.15: Computational results for the max-2-sat problem: DIGS-B.
DIGS-B

n m Optimal Iter. 0 Iter. 1 Iter. 5 Iter. 10 T(sec)

10 45 4 3.54 3.80 4.00 6.0
15 65 3 2.75 2.77 2.90 2.97 16.0
20 85 8 6.93 7.04 7.29 7.42 28.5
30 130 6 5.47 5.54 5.69 5.80 175.6
40 170 13 12.00 12.16 12.41 12.63 793.5
50 215 15 13.86 14.12 14.67 14.96 4025.8
60 252 - 11.37 11.56 11.94 12.19 14548.6
70 295 - 17.08 17.35 17.55 - 16722.3
80 340 - 16.77 16.88 - - 10062.8

Further, since we have a proof of convergence for the DIGS-B that applies to the max

2-sat problem, we can prove optimality for the instance with n = 10. From Tables 4.13

and 4.15, the results show that DIGS-B is much more efficient than Lasserre’s approach,

in particular for n > 20, we are not able to go beyond r = 2 for Lasserre’s hierarchy in the

given time limit while using DIGS-B we are able to improve the bounds iteratively.

Example 4.3.7. Maximum Stable Set Problem:

Given an undirected graph G(V,E), a stable set of G is a set of vertices U ⊆ V such that

there is no edge connecting any two vertices in U . The maximum stable set problem is to

find a stable set of maximal cardinality. Letting n = |V |, and identifying V with {1, . . . , n}
the maximum stable set problem can be formulated as follows:

max

(
n∑
i=1

xi

)2

s.t. xixj = 0 ∀(i, j) ∈ E
n∑
i=1

xi = 1.

We present computational results on the maximum stable set problem on instances taken

from [79]. Notice that Laserre’s relaxation for r = 2, denoted by (SS-L2), is equivalent to

108

CHAPTER 4. DYNAMIC INEQUALITY GENERATION SCHEME

the Lovász theta relaxation, ϑ(G), as shown below:

ϑ(G)= max
∑
i,j>0

Xij

s.t. Xij = 0 ∀(i, j) ∈ E∑
i

X0i = 1

X � 0.

The Lasserre’s stable set relaxation for r = 2 is formulated as follows:

min λ

s.t. λ−

(
n∑
i=1

xi

)2

= s(x) +
∑

(i,j)∈E

dijxixj + c(1−
∑
i

xi)

where s(x) is SOS of degree 2, dij, and c are free variables. The above formulation is

equivalent to

(SS-L2) min λ (4.13)

s.t. λ− S00 − c = 0 → u (4.14)

S0i − c = 0 ∀i = 1, . . . , n → vi (4.15)

− 2Sij − 2dijδij = 2 ∀i, j = 1, . . . , n → Yij (4.16)

S � 0, λ, c, dij ∈ R, (4.17)

109

CHAPTER 4. DYNAMIC INEQUALITY GENERATION SCHEME

where δij equals 1 if (i, j) ∈ E and 0 otherwise. The dual variables of each constraint are

given on the right hand side of each constraint. Taking the dual of (SS-L2), we obtain:

max
∑
i,j

Yij (4.18)

s.t. u = 1 → λ (4.19)

− u−
∑
i

vi = 0 → c (4.20)

Yij = 0 ∀(i, j) ∈ E → dij (4.21)

u

(
1 0

0 0

)
−
∑
i

vi

(
0 1

1 0

)
+

(
0 0

0 Y

)
� 0 → Sij. (4.22)

From equations (4.19) and (4.20), we get −
∑

i vi = 1. Let X =

(
1 −vi
−vi Y

)
we obtain:

max
∑
i,j>0

Xij

s.t.
∑
i

X0i = 1 ∀i = 1, . . . , n

Xij = 0 ∀(i, j) ∈ E
X � 0

which is equivalent to ϑ(G).

Thus, DIGS can be interpreted here as adding quadratic valid inequalities to strengthen

the Lovász theta relaxation, as described in Section 4.1. In Table 4.16, Iteration 0 refers

to the Lovász theta bound and iterations 1, 5, and 10 correspond to the upper bounds

obtained after performing 1, 5, and 10 iterations of DIGS respectively. The total time is

reported in seconds.

110

CHAPTER 4. DYNAMIC INEQUALITY GENERATION SCHEME

Table 4.16: Computational results for the stable set problem: DIGS
Lasserre r = 4 Lasserre r = 2 DIGS

n Optimal Obj. T(sec) Obj. T(sec) Iter. 0 Iter. 1 Iter. 5 Iter. 10 T(sec)

8 3 3.00 3.8 3.44 0.4 3.44 3.10 3.04 3.02 12.3
11 4 4.00 32.2 4.63 0.7 4.63 4.18 4.09 4.08 55.8
14 5 5.00 359.4 5.82 0.9 5.82 5.26 5.13 5.11 608.8
17 6 6.00 2386.4 7.00 1.3 7.00 6.33 6.24 6.01 4642.8
20 7 7.00 13793.7 8.18 1.6 8.18 7.40 - - 10834.7
23 8 - - 9.36 2.0 9.36 8.48 - - 16965.8

The maximum stable set problem can also be formulated as a binary problem as follows:

(SS-LP) max
∑

ixi

s.t. xi + xj ≤ 1 ∀(i, j) ∈ E
x ∈ {0, 1}n.

It can also be formulated as a problem with quadratic constraints by replacing the con-

straint xi + xj ≤ 1 with xixj = 0, we refer to this problem as (SS-D2).

In this case, we compare DIGS-B with the lift-and-project method of Balas et al. [6].

This comparison provides a fair indication of the advantages of our method in terms of

bound quality. For each instance we impose a 300 seconds time limit for each procedure.

The upper bound for Balas et al. is compared to three approaches of DIGS-B. Linear

refers to generating linear inequalities that are added to the master problem by using a

non-negative multiplier. SOC refers to generating linear inequalities that are added to the

master problem by using a polynomial multiplier that is in P1(B) as described in Section

2.2.2. Quadratic refers to generating quadratic inequalities similar to the previous examples

described.

111

CHAPTER 4. DYNAMIC INEQUALITY GENERATION SCHEME

Table 4.17: Computational results for the stable set problem with a time limit of 300
seconds.

DIGS-B
(SS-LP) Balas et al. (SS-D2) Linear SOC Quadratic

n Optimal UB UB Iter. UB UB Iter. UB Iter. UB Iter.

8 3 4.00 3.00 197 3.44 3.00 186 3.00 126 3.02 49
11 4 5.50 4.00 160 4.63 4.00 139 4.00 130 4.05 109
14 5 7.00 5.02 135 5.82 5.02 114 5.01 91 5.14 82
17 6 8.50 6.22 121 7.00 6.23 84 6.09 63 6.30 54
20 7 10.00 7.46 104 8.18 7.43 68 7.25 45 7.42 38
23 8 11.50 8.81 88 9.36 8.61 50 8.36 33 8.67 22
26 9 13.00 10.11 77 10.54 9.84 37 9.60 25 9.96 14
29 10 14.50 11.65 65 11.71 11.10 24 10.87 17 11.18 10
32 11 16.00 13.03 56 12.89 12.37 18 12.20 14 12.53 6
35 12 17.50 14.48 49 14.07 13.49 13 13.32 10 13.66 4
38 13 19.00 16.05 43 15.24 14.80 8 14.74 7 14.85 4
41 14 20.50 17.69 39 16.42 15.88 7 15.77 6 16.26 1
44 15 22.00 19.10 34 17.59 17.19 6 17.09 5 17.30 1
47 16 23.50 20.78 29 18.77 18.39 4 18.26 4 18.59 1
50 17 25.00 22.18 27 19.94 19.52 4 19.42 4 19.77 1

The results are reported in Table 4.17. Balas et al. performs the largest number of itera-

tions for these instances since it utilizes linear programming which is computationally more

efficient, however this efficiency comes at the expense of the bounds. For all instances the

bounds obtained by using the SOC version of DIGS-B are the best bounds obtained within

300 seconds. These bounds are comparable with those from the Linear and Quadratic

approaches, however Quadratic performs the least number of iterations and still achieves

a competitive bound.

Example 4.3.8. Degree Three BPP

As a final example, we consider the general BPP problem with degree 3 objective. The

112

CHAPTER 4. DYNAMIC INEQUALITY GENERATION SCHEME

problem can be formulated as follows

max
∑
|α|≤3

cαx
α

s.t. aTx ≤ b

x ∈ {−1, 1}n.

In Tables 4.18-4.20, we present Lasserre’s, DIGS, and DIGS-B results on degree three

instances where cα is generated randomly between 0 and 10, each a is generated randomly

between 1 and 50, and b is generated randomly between 50 and
∑n

i=1 ai.

Laserre’s relaxation is not defined for r = 2. For n ≥ 25, we are not able to compute any

bound using Laserre’s relaxation within the time limit bound of 5 hours.

Table 4.18: Computational results for degree 3 BPP: Lasserre’s relaxation
Lasserre r = 6 Lasserre r = 4

n Optimal Obj. T(sec) Obj. T(sec)

5 58 58.00 9.6 59.37 2.1
10 139 139.00 4866.0 148.97 35.9
15 1371 - - 1524.71 1436.2
20 1654 - - 1707.95 18106.6
25 - - - - -

As we are working with a degree 3 BPP, we apply DIGS with a master problem of degree

3 (i.e. d = 3) and a subproblem of total degree 4, creating inequalities of degree 2. That

is, applying Algorithm 2 with Step 3 replaced by:

3. LET pi(x) ∈ Rd−1[x] be a solution of:

min
p

〈
p, Y i

〉
s.t. p(x) ∈ Kd+1

Gi

‖ p ‖ ≤ 1.

113

CHAPTER 4. DYNAMIC INEQUALITY GENERATION SCHEME

The results for iterations 0, 1, 5, and 10 are reported in Table 4.19 and the total time is

given in seconds.

Table 4.19: Computational results for degree 3 BPP: DIGS
DIGS

n Optimal Iter. 0 Iter. 1 Iter. 5 Iter. 10 T(sec)

5 58 67.16 63.62 58.00 - 7.1
10 139 154.59 153.22 142.32 139.19 606.3
15 1371 1582.04 1569.92 1498.60 1470.98 9622.2
20 1654 1718.53 1716.67 - - 16009.2
25 - 3967.12 - - - 5038.6

Remark 4.3.9. Experimentally, for degree 3 BPP using the same number of iterations

of DIGS K5
G provides better bounds than K4

G but is K5
G is more expensive in terms of

computational time. For example for the case where n = 10, performing one iteration of

Algorithm 2 with K5
g results in a bound of 147.34 in 656.5 seconds while having K4

G results

in a better bound of 142.32 in 5 iterations and 297.3 seconds.

Table 4.20 presents computational results of applying Algorithm 3. We report results

for iterations 0, 1, 5, and 10 and the total time in seconds. At Iteration 0, we use a

relaxation of order 3 and then apply DIGS-B to add valid degree 3 inequalities to improve

the bounds of the relaxation. Comparing the results of Table 4.19 with Table 4.20, we

see that using the specialized DIGS-B reduces the computational time significantly and

provides better bounds. In addition to the cubic inequalities we compare two types of

inequalities generated by DIGS-B. Tables 4.20-4.22 present computational results for DIGS-

B with cubic, quadratic, and linear inequalities respectively. Cubic, quadratic, and linear

inequalities are added to the master problem by using a polynomial multiplier that is in

R+
0 , P1(B), and Ψ2[x] respectively. The bounds obtained using linear inequalities are the

best compared to quadratic and cubic inequalities. Additionally, the bounds provided by

using quadratic inequalities outperform the ones obtained when using cubic inequalities.

This is mainly due to the polynomial multiplier that provides better certificates and better

approximations of the original BPP.

114

CHAPTER 4. DYNAMIC INEQUALITY GENERATION SCHEME

Table 4.20: Computational results for degree 3 BPP: DIGS-B cubic inequalities
DIGS-B

n Optimal Iter. 0 Iter. 1 Iter. 5 Iter. 10 T(sec)

5 58 67.16 58.45 58.00 5.2
10 139 154.59 148.85 143.41 139.12 75.3
15 1371 1582.04 1575.49 1519.88 1494.01 1319.9
20 1654 1718.53 1716.00 1708.66 1705.15 15763.9
25 - 3967.12 3960.78 - - 14287.3

Table 4.21: Computational results for degree 3 BPP: DIGS-B quadratic inequalities
DIGS-B

n Optimal Iter. 0 Iter. 1 Iter. 5 Iter. 10 T(sec)

5 58 67.16 58.00 2.4
10 139 154.59 147.00 139.00 31.9
15 1371 1582.04 1558.37 1477.52 1436.68 1003.0
20 1654 1718.53 1713.69 1691.76 1682.42 11913.7
25 - 3967.12 3955.07 - - 10993.4

Table 4.22: Computational results for degree 3 BPP: DIGS-B linear inequalities
DIGS-B

n Optimal Iter. 0 Iter. 1 Iter. 5 Iter. 10 T(sec)

5 58 67.16 58.00 2.1
10 139 154.59 143.86 139.00 35.8
15 1371 1582.04 1494.34 1391.12 1371.34 1164.1
20 1654 1718.53 1706.65 1674.87 1654.74 12518.5
25 - 3967.12 3910.05 - - 13332.7

115

CHAPTER 4. DYNAMIC INEQUALITY GENERATION SCHEME

4.4 Concluding Remarks

In this section, we have presented a dynamic scheme for iteratively generating valid polyno-

mial inequalities that can be used to improve the approximations of polynomial programs.

The dynamic scheme described in this section is quite general and applicable to any poly-

nomial programming problem. For the binary case we present a specialized scheme. This

scheme is more efficient and provides theoretical convergence warranties.

Additionally, we provide several examples and present comparisons with existing solution

methodologies for solving polynomial programs. The methodology presented provides a

means to tightly approximate polynomial programs that, unlike previously proposed hierar-

chies of SDP relaxations, is in principle scalable to large general combinatorial optimization

problems.

A topic of further research is to improve the efficiency of solving the subproblem which

is essential in terms of the computational efficiency of the algorithm. In future work, we

focus on approaches to solve the subproblem more efficiently and utilizing the subproblem

to generate more than one inequality. The solving process for the generating subproblems

can be improved either by reducing the size of the subproblems or by the application of

fast solvers since it is not necessary to find the optimal solution of the subproblem but a

feasible solution with negative objective value should suffice. In the next section, the valid

inequalities obtained are exploited within a branch-and-dig framework.

116

Chapter 5

Branch-and-Dig Scheme

One of the most successful frameworks for solving binary programs is branch-and-bound

algorithms [52, 61, 68]. Similar to previous sections, we consider optimization problems

where the objective function is a multivariate polynomial of degree d and a set of poly-

nomial equalities and inequalities with (some of) the variables being binary. We focus on

pure binary quadratic and cubic polynomial programs, however the proposed method is

targeted to solve general mixed-binary polynomial programs. The success and the com-

putational efficiency of the branch-and-bound procedure strongly depends on the quality

of the relaxation bounds, the early generation of good binary feasible solutions, and the

branching rules used to obtain the subproblems [68]. Applying the dynamic inequality gen-

eration scheme can help speed up the branch-and-bound process by improving the bounds

at each node, thus reducing the number of nodes of the tree, we will refer to this approach

as branch-and-dig.

The following sections describe the branch-and-bound algorithm that we implemented to

solve binary polynomial programming problems. The general algorithm, node selection

strategies, branching rules, and integration with DIGS-B are described in details. We

also provide computational results on BQPP and cubic BPP where we compare various

bounding schemes and branching rules in the branch-and-dig framework.

Similar to previous sections, we let S = D∩H be the feasible set of the binary polynomial

program where D = {x ∈ Rn : gi(x) ≥ 0, i = 1, . . . ,m} ⊆ [−1, 1]n and H = {x ∈ Rn : x ∈

117

CHAPTER 5. BRANCH-AND-DIG SCHEME

{−1, 1}n}. Each node NG of the branch-and-bound tree is defined by a set of polynomial

equalities and inequalities. Let G0 = {gi(x) : i = 1 . . .m}, NG0 is the root node of the

branch-and-bound tree.

5.1 Bounding Function

The bounding function is the key component of any branch-and-bound algorithm. To

obtain a bound at node NG, we use the approximation Kr
G. Any approximation K ⊆ Pd(S)

can be used and there is a trade off between quality of the bound and computational time

when choosing the approximation K. The approximation Kr
G is used throughout this

section for illustration purposes. Therefore, at a given node NG we solve the following

problem:

(BPP-NG) µrG = min λ (5.1)

s.t. λ− f(x) ∈ Kr
G.

In this case, µrG is an upper bound on the optimal solution of (BPP-P).

5.2 Branching Rules

At each node of the branch-and-bound tree, NG, we branch by adding equality or inequality

constraints to obtain two children nodes, i.e., adding polynomials to the set G to obtain G1

and G2. For (G1, G2) to be a branching rule, the following conditions need to be satisfied:

1. G ⊆ G1, G2,

2. {x : g(x) = 0 ∀g ∈ G} = {x : g(x) = 0 ∀g ∈ G1} ∪ {x : g(x) = 0 ∀g ∈ G2},

where the symbol = refers to equalities and inequalities. Each node in the tree is equal

to its parent node plus additional constraints. Each of these nodes of the tree is the root

of a subtree. Each node in the branch-and-bound tree provides an upper bound on the

objective value of all feasible solutions in the subtree of this node.

118

CHAPTER 5. BRANCH-AND-DIG SCHEME

To show that the upper bound is improving in the tree we consider a node NG and its two

children nodes, NG1 and NG2 .

Lemma 5.2.1. Assume G ⊆ G1, G2, then

µrG ≥ µrG1
and µrG ≥ µrG2

.

Proof. Since G ⊆ G1, G2, then Kr
G ⊆ Kr

G1
,Kr

G2
.

Let

zG = max f(x) s.t. x ∈ {x : g(x) = 0, ∀g ∈ G}.

Lemma 5.2.2. If µ̄G1 ≥ zG1 and µ̄G2 ≥ zG2, then max(µ̄G1 , µ̄G2) ≥ zG.

Proof. The statement follows from condition 2 of (G1, G2) being a branching rule.

Applying Lemma 5.2.2 inductively, we obtain the following corollary:

Corollary 5.2.3. The maximum bound over the leaves of the branch-and-bound tree is a

global upper bound of (BPP-P).

Since we are dealing with polynomial programs, the constraints forming the branching

rules need not be linear. In the branching rules we consider, we branch by adding one

equality constraint p1(x) for the left child and one equality constraint p2(x) for the right

child. Therefore, G1 = G∪ {p1} and G2 = G∪ {p2}. We present three different branching

rules that can be applied to BPPs. The three branching rules that we consider in this

section are:

Branching on a Single Variable: The first branching rule is by branching on a variable

xj to two subproblems with xj = 1 or xj = −1. This is done by adding a constraint

1 + xj = 0 for the left subproblem and 1− xj = 0 for the right subproblem. So given

the parent node, NG, the child nodes are NG1 and NG2 such that G1 = G ∪ {1 + xj}
and G2 = G ∪ {1− xj}.

Since the variables are binary, the set of possible configurations of the variables

is finite and equal to 2n thus the branch-and-bound procedure stops after a finite

number of nodes.

119

CHAPTER 5. BRANCH-AND-DIG SCHEME

Branching on Two Variables: Linear Case: Next, we describe branching on two vari-

ables xj and xl to two subproblems with xi + xj = 0 or xi− xj = 0. The child nodes

in this case are NG1 and NG2 where G1 = G ∪ {xi + xj} and G2 = G ∪ {xi − xj}.

Note that in this case the branch-and-bound approach might not guarantee an in-

tegral solution. However, this can be overcome by branching on xj = ±1 after the

algorithm presents no change in the solution and in the corresponding upper bound

when branching on xi ± xj = 0.

Branching on Two Variables: Non-linear Case: Similar to the previous point, we

branch on two variables xi and xj to obtain two subproblems but with non-linear

constraints: xixj = 1 or xixj = −1. The child nodes in this case are NG1 and NG2

where G1 = G ∪ {xixj + 1} and G2 = G ∪ {xixj − 1}.

5.3 Feasible Solution

During a branch-and-bound procedure, it is of particular importance to find a feasible

solution to be able to fathom nodes in the tree reducing the search space. Unfortunately,

it is hard to obtain a feasible solution for general BPP since it is already hard to find feasible

solutions for general binary linear programs [68]. In our branch-and-bound algorithm, we

overcome this problem by rounding the optimal dual solution Y .

Let Y be the optimal dual solution of (5.1). At a given node, we set x̄ to be the sign of

the terms of Y that correspond to the linear monomials. Since x̄ is already binary, we

check whether x̄ is feasible or not. If gi(x̄) ≥ 0 for i = 1, . . . ,m then xf = x̄ is a feasible

120

CHAPTER 5. BRANCH-AND-DIG SCHEME

solution for (BPP-P) and one can find the corresponding objective value. The algorithm

is described in details in Algorithm 4.

Algorithm 4: Generating a Feasible Solution

Input: Y = (Yα)α where α is all the monomials up to degree d and gi(x)

Output: x feasible solution for (BPP-P)

Let x̄ = sign((Yα)|α|=1);1

if gi(x̄) ≥ 0 ∀i = 1, . . . ,m. then2

return x̄;3

else4

return Fail ;5

end6

Every feasible solution occurring during the branch-and-bound process provides a lower

bound on the optimal objective value of (BPP-P).

5.4 Node Selection

The choice of the next node to solve affects the performance of the branch-and-bound tree.

For the node selection we consider three options:

Depth First The next node to be solved of the branch-and-bound tree is one of the child

nodes of the current node solved. Depth-first node selection goes deep into the branch

and bound tree at each iteration, so it reaches the leaf nodes quickly. This is one

way of achieving an early incumbent solution.

Breadth First All the nodes at each level of the branch-and-bound tree have to be con-

sidered before a node in a new level can be considered.

Worst Bound The next node to be selected in the branch-and-bound tree is the one with

the greatest upper bound so far. This leads to reducing the gap between the upper

and the lower bounds.

121

CHAPTER 5. BRANCH-AND-DIG SCHEME

Choosing which node selection criterion to use depends on empirical studies and is appli-

cation dependent [68]. In our computational results, we use breadth first strategy for node

selection.

5.5 Inequality Generation Scheme

The branch-and-bound approach can be sped up considerably by the employment of an

inequality generation scheme, either just at the root node of the tree, or at every node of

the tree. Hence in Algorithm 5, one can add inequalities to improve the performance of the

branch-and-bound method. Using DIGS-B, we produce polynomial inequalities that are

valid for (BPP-P) and at the same time are intended to be violated by Y , the dual variable

of the corresponding relaxation. The effectiveness of an inequality can be measured by

its depth, 〈p, Y 〉. The more negative 〈p, Y 〉 the deeper the inequality is relative to Y . As

discussed in Section 4.2, these inequalities are generated by solving a polynomial generating

subproblem. Because of the expense, the inequalities are only generated at the root node,

but since they are valid to all the children nodes, they are added to each node of the

tree. At the root node, valid inequalities are added until no significant improvement in the

bound is obtained.

5.6 Branch-and-Dig Algorithm

Before describing the branch-and-bound algorithm, we discuss the conditions for eliminat-

ing a node from further consideration, i.e., fathoming the node. A node of the branch-and-

bound tree is fathomed in one of the following cases:

• If the objective value of a node is the same as the objective value of x̄ obtained

from Algorithm 4, the children of this node will not produce better solutions and the

subtree must not be searched.

• If the objective value of a node is less than or equal to the current incumbent (the

best lower bound), we do not need to branch further on this node, since all possibly

122

CHAPTER 5. BRANCH-AND-DIG SCHEME

feasible solutions in the subtree will not provide better objective values than the

current feasible solution.

• If a node problem is unbounded since this implies that the primal problem of the

relaxation of (BPP-P) is infeasible and hence all primal subproblems will be infeasible

too.

123

CHAPTER 5. BRANCH-AND-DIG SCHEME

Given f(x), gi(x), and the binary index set J ⊆ {1, . . . , n}, a sketch of the branch-and-

bound algorithm is given as follows:

Algorithm 5: Branch-and-Bound Algorithm for Binary Polynomial Programs

Input: f(x), G := {gi(x) : i = 1, . . . ,m}, J ⊆ {1, · · · , n}
Output: xBPP and zBPP optimal solutions for (BPP-P)

set:G0 = G ∪ {1− x2
i : i ∈ J}, µG0 =∞, zBPP = −∞, xG = [], Nodes = {NG0}1

while Nodes 6= φ do2

Choose node NG ∈ Nodes;3

set: Nodes = Nodes\NG ;4

Solve (BPP-NG) to obtain µG and YG;5

if µG = −∞ then6

Fathom NG;7

else if µG ≤ zBPP , then8

Fathom NG;9

else10

Apply Algorithm 4 to YG to obtain xG;11

if f(xG) ≥ zBPP then12

zBPP = µG, xBPP = xG;13

end14

if µG = f(xG) then15

Fathom NG;16

else17

Choose (G1, G2) as a branching rule for G;18

set: Nodes = Nodes ∪ {NG1 , NG2};19

end20

end21

end22

124

CHAPTER 5. BRANCH-AND-DIG SCHEME

5.7 Computational Results

In this section we describe application problems that are used to test the branch-and-

bound algorithm. The test instances considered in this section are quadratic knapsack,

quadratic assignment, and cubic problems. For the branch-and-bound algorithm, we use

breadth first branching strategy with a limit of 1000 nodes for the branch-and-bound tree.

Based on these instances we compare in the branch-and-bound and the branch-and-dig

algorithms. For the branch-and-dig algorithm we add valid inequalities at the root node

using the DIGS-B scheme discussed in Section 5.5. The number of inequalities added

depend on the bound improvement and the subproblem objective function value. In this

case, we keep adding inequalities as long as the improvement of the bound is greater than

0.5% and the subproblem objective is greater than −10−3. Additionally, we compare with

respect to different branching rules in the framework of the branch-and-bound approach.

The branch-and-dig algorithm is implemented in Matlab and the SOC and/or the SDP

relaxations are constructed using APPS (see Chapter 6) and solved using SeDuMi [93].

For BPPs with degree 2, we use the SOC-based relaxation presented in Section 3.1.2 and

add the branching constraints for each subproblem hence obtaining SOC relaxations. The

computational results presented in Section 5.7 for the quadratic knapsack, and quadratic

assignment problem are based on SOC relaxations. While the results for the cubic BPP

are based on SOC and SDP relaxations.

5.7.1 QKP Instances

Recall the QKP problem (QKP-P) defined in Section 3.2.4, we use (QKPSOC) relaxation as

a bounding function. The instances used in this section are generated using the approach

presented in Example 4.3.4.

Tables 5.1-5.3 provide computational results for QKP instances using different branching

rules. In Table 5.1 we study branching on xj = ±1, Table 5.2 we present results when

branching on two variables using the linear branching rule xi ± xj = 0, and Table 5.3

we present branching on two variables using the quadratic branching rule xixj ± 1. For

125

CHAPTER 5. BRANCH-AND-DIG SCHEME

each case, we also study the effect of applying valid inequalities at the root node of the

branch-and-dig tree.

It is clear from the results that the number of nodes of the branch-and-bound tree are

reduced once DIGS-B is applied at the root node. For example, the average reduction

in the number of nodes is 16% for Table 5.1, 20% for Table 5.2, and 7% for Table 5.3.

The impact of the reduction of the number of nodes is not directly translated to savings

in the computational time. This is due to the DIGS-B subproblem computational time.

The second observation is that branching on xj = ±1 and xi ± xj = 0 is much better

than branching on xixj = ±1 for this particular problem. A possible explanation is that

when the quadratic branching rules of the form xixj = ±1 are added, the polynomial

multiplier in this case is a free variable in R0 while using linear branching rules like xj = ±1

and xi ± xj = 0 the polynomial multiplier is a degree one polynomial of free coefficient

variables. Adding a linear polynomial multiplier, p(x), seems to perform better than a

constant multiplier, c, since having p(x)(1± xj) or p(x)(xi± xj) provides more freedom in

the polynomial representation than cxixj. See also Example 4.3.7 in Section 4.3.2.

Table 5.1: QKP: Branching on xj = 1 and xj = −1

n Optimal Branch-and-Bound Branch-and-Dig
Root Obj. T(sec) Nodes Gap Root Obj. T(sec) Nodes Gap #Ineq.

10 1653.0 1789.9 6.1 13 0 1711.3 17.3 9 0 8
15 2022.0 2042.7 30.2 63 0 2040.7 22.2 11 0 2
20 8510.0 8690.1 36.2 53 0 8683.1 47.4 41 0 2
25 8806.0 8974.1 257.5 205 0 8962.6 253.3 197 0 2
30 18229.0 18626.7 212.6 99 0 18613.3 286.6 89 0 2
35 25457.0 25717.6 76.9 15 0 25707.2 97.3 15 0 2
40 2679.0 2746.6 546.6 79 0 2743.9 551.3 71 0 2
45 42494.0 43054.2 1877.4 169 0 43045.8 1955.1 163 0 2
50 16192.0 16741.0 8144.9 1000 3.01 16726.8 10280.9 1000 3.01 2
55 19594.0 19929.1 4601.4 405 0 19905.8 5056.8 391 0 2
60 58451.0 58809.1 5819.6 403 0 58778.5 5078.8 295 0 2
65 33878.0 33878.0 133.7 1 0 33878.0 133.7 1 0 0
70 16982.0 17135.5 10072.8 359 0 17111.5 11444.9 301 0 2

126

CHAPTER 5. BRANCH-AND-DIG SCHEME

Table 5.2: QKP: Branching on xi + xj = 0 and xi − xj = 0

n Optimal Branch-and-Bound Branch-and-Dig
Root Obj. T(sec) Nodes Gap Root Obj. T(sec) Nodes Gap #Ineq.

10 1653.0 1789.9 6.8 15 0 1711.3 16.5 11 0 8
15 2022.0 2042.7 17.9 33 0 2040.7 23.1 11 0 2
20 8510.0 8690.1 31.6 39 0 8683.1 70.6 31 0 2
25 8806.0 8974.1 288.9 201 0 8962.6 223.2 159 0 2
30 18229.0 18626.7 179.8 77 0 18613.3 209.0 75 0 2
35 25457.0 25717.6 201.7 35 0 25707.2 120.3 15 0 2
40 2679.0 2746.6 482.4 63 0 2743.9 363.3 55 0 2
45 42494.0 43054.2 1734.4 137 0 43045.8 1490.2 129 0 2
50 16534.0 16741.0 4735.9 601 0 16726.8 5252.8 577 0 2
55 19588.0 19929.1 4050.9 319 0 19905.8 5674.5 315 0 2
60 58451.0 58809.1 4261.0 277 0 58778.5 6775.4 227 0 2
65 33878.0 33878.0 134.7 1 0 33878.0 134.7 1 0 0
70 16982.0 17135.5 7486.1 271 0 17121.2 7306.0 193 0 2

5.7.2 QAP Instances

Recall the QAP problem (QAP-P) defined in Section 3.2.2, we use (QAPSOC) relaxation as

a bounding function however we do not include the inequalities −1 ≤ xijxkl ≤ 1 to obtain

faster relaxations. Instead for the branch-and-dig algorithm we add valid inequalities as

discussed in Section 5.5. The instances presented in this section generated using the same

approach discussed in Example 4.3.5 but the density in this case is 100%.

Tables 5.4-5.6 present computational results for the branch-and-bound and branch-and-dig

algorithms for the QAP problem using the three different branching rules. Table 5.4 uses

a single variable and linear branching rule xj = ±1, Table 5.5 uses two variables and a

linear branching rule xi ± xj = 0, and finally Table 5.6 uses two variables and a quadratic

branching rule xixj = ±1.

A similar conclusion as the QKP results can be extracted from these tables. The xi±xj = 0

branching rule perform the best in terms of number of nodes and computational time.

127

CHAPTER 5. BRANCH-AND-DIG SCHEME

Table 5.3: QKP: Branching on xixj = −1 and xixj = 1

n Optimal Branch-and-Bound Branch-and-Dig
Root Obj. T(sec) Nodes Gap Root Obj. T(sec) Nodes Gap #Ineq.

10 1653 1789.9 67.4 43 0 1711.3 92.4 23 0 8
15 2022 2042.7 50.7 17 0 2040.7 65.6 17 0 2
20 8510 8690.1 546.3 189 0 8683.1 695.7 183 0 2
25 8806 8974.1 4106.8 1000 1.39 8962.6 4232.6 1000 1.38 2
30 18229 18626.7 8010.2 1000 1.42 18613.3 9008.2 1000 1.31 2
35 25457 25717.6 1377.8 85 0 25707.2 1955.1 83 0 2
40 2679 2746.6 13481.0 545 0 2743.9 11068.5 337 0 2
45 42494 43054.2 44331.9 1000 0.95 43045.8 50162.3 1000 0.94 2
50 16192 16741.0 16062.2 1000 3.18 16726.8 23788.5 1000 3.16 2
55 19594 19929.1 22791.4 1000 1.30 19905.8 48574.0 1000 1.28 2
60 58451 58809.1 32330.3 1000 0.41 58778.5 63784.4 1000 0.40 2
65 33878 33878.0 124.0 1 0 33878.0 124.0 1 0 0
70 16982 17135.5 117973.2 1000 0.70 17121.2 120183.9 1000 0.68 2

Additionally, the linear branching rule xi = ±1 performs better than the quadratic rule

xixj = ±1 as in the previous case. Adding valid inequalities enhances the performance of

the branch-and-bound tree by reducing the number of nodes visited particularly for Tables

5.4 and 5.5. The reduction can be significant in some cases, for example in Table 5.4 the

largest instance (n = 7) the reduction in the number of nodes is around 28% and in Table

5.5 the reduction is 36%. On average the reduction in the number of nodes is 37%, 43%,

and 8% for Tables 5.4-5.6 respectively.

Table 5.4: QAP: Branching on xj = 1 and xj = −1
n Optimal Branch-and-Bound Branch-and-Dig

Root Obj. T(sec) Nodes Gap Root Obj. T(sec) Nodes Gap #Ineq.

4 62 55.0 19.5 6 0 61.3 34.9 3 0 5
5 116 93.2 63.5 15 0 106.4 86.8 9 0 8
6 272 249.3 425.1 19 0 259.9 438.5 13 0 4
7 292 239.3 8620.9 135 0 252.3 7880.4 97 0 5

128

CHAPTER 5. BRANCH-AND-DIG SCHEME

Table 5.5: QAP: Branching on xi + xj = 0 and xi − xj = 0
n Optimal Branch-and-Bound Branch-and-Dig

Root Obj. T(sec) Nodes Gap Root Obj. T(sec) Nodes Gap #Ineq.

4 62 55.0 21.6 6 0 61.3 41.3 3 0 5
5 116 93.2 66.2 15 0 106.4 89.1 9 0 8
6 272 249.3 406.2 13 0 259.9 305.0 7 0 4
7 292 239.3 7825.3 105 0 252.3 6110.9 67 0 5

Table 5.6: QAP: Branching on xixj = −1 and xixj = 1
n Optimal Branch-and-Bound Branch-and-Dig

Root Obj. T(sec) Nodes Gap Root Obj. T(sec) Nodes Gap #Ineq.

4 62 55.0 19.0 4 0 61.7 55.3 3 0 7
5 116 93.2 324.1 94 0 107.4 987.0 88 0 10
6 272 249.3 21154.8 1000 2.45 259.9 20694.3 1000 1.74 4
7 292 239.3 73038.6 1000 15.22 252.3 87066.3 1000 12.50 5

5.7.3 Cubic BPP

Recall the BPP Problem with cubic objective function given in Example 4.3.8:

max
∑
|α|≤3

cαx
α

s.t. aTx ≤ b

x ∈ {−1, 1}n.

For the branch-and-bound results we use two types of relaxations. The first is (CBPPL1)

Lasserre’s first order SDP-based relaxation [54] and the other relaxation is a new SOC-

129

CHAPTER 5. BRANCH-AND-DIG SCHEME

based relaxation. Let q(x) =
∑
|α|≤3 cαx

α, the SOC relaxation is given as follows:

(CBPPSOC) min λ

s.t. λ− q(x) =
∑
i

(b− aTx)(1 + xi)d
+
i
T

(√
n

x

)
+
∑
i

(b− aTx)(1− xi)d−i
T

(√
n

x

)

+
∑
i<j

(1 + xixj)h
+
ij
T

(√
n

x

)
+
∑
i<j

(1− xixj)h−ij
T

(√
n

x

)

+
∑
i

(1 + xi)fi
T

(√
n

x

)
+
∑
i

(1− xi)giT
(√

n

x

)
+

n∑
i=1

ci(1− x2
i)

ci ∈ R, d+
i , d

−
i , fi, gi, h

+
ij, h

−
ij ∈ Ln+1.

The instances of this section are the same instances of Example 4.3.8. Tables 5.7-5.9

provide the branch-and-bound and the branch-and-dig results for the cubic BPP problem

using two different branching rules and two different relaxations. The first branching rule

branches on xj being 1 or -1 and is presented in Tables 5.7 and 5.9. The second branching

rules is quadratic, branching on xixj being -1 or 1 and it is presented in Table 5.8. We

also present two different relaxations, Lasserre’s first order SDP-based relaxation results

are presented in Tables 5.7 and 5.8 while the SOC relaxation results are presented in Table

5.9.

Unlike the quadratic problems discussed earlier, in this case using the quadratic branching

rule performs better than the linear as shown in Tables 5.7 and 5.8 particularly when the

problem size is large. A possible explanation for this difference is that the polynomial

multiplier is no longer a constant but is a polynomial in R1[x]. Additionally, adding

inequalities to the problem seems to improve in terms of reducing the number of nodes for

all three tables. Although few inequalities are added the number of nodes is reduced for

each instance. For example from the results of Table 5.7, the number of nodes is reduced

by 37% on average over all the instances and from Table 5.8 the number of nodes is reduced

by 43% on average. Finally, from Table 5.9, we notice that the SOC relaxation results in

more nodes than the SDP relaxation for the cubic case since the bounds at the root node

are weaker in this case as opposed to quadratic problems where the bound of the SOC

130

CHAPTER 5. BRANCH-AND-DIG SCHEME

relaxation at the root node is strong. For cubic problems, we need to further investigate

finding a stronger SOC relaxation than the one presented.

Table 5.7: CBPP: Branching on xj = 1 and xj = −1, (CBPPL1)
n Optimal Branch-and-Bound Branch-and-Dig

Root Obj. T(sec) Nodes Gap Root Obj. T(sec) Nodes Gap #Ineq.

5 58 67.2 14.2 3 0 57.9 18.4 1 0 1
10 139 154.6 91.8 7 0 138.7 126.4 3 0 3
15 1371 1582.0 1008.9 17 0 1391.1 1500.6 9 0 5
20 1654 1718.5 11559.6 29 0 1664.0 12876.1 13 0 4

Table 5.8: CBPP: Branching on xixj = 1 and xixj = −1, (CBPPL1)
n Optimal Branch-and-Bound Branch-and-Dig

Root Obj. T(sec) Nodes Gap Root Obj. T(sec) Nodes Gap #Ineq.

5 58 67.2 13.3 3 0 57.9 18.9 1 0 1
10 139 154.6 111.3 7 0 138.7 186.5 3 0 3
15 1371 1582.0 1225.1 13 0 1391.1 1992.7 9 0 5
20 1654 1718.5 10666.5 19 0 1664.0 11668.0 10 0 4

Table 5.9: CBPP: Branching on xj = 1 and xj = −1, (CBPPSOC)
n Optimal Branch-and-Bound Branch-and-Dig

Root Obj. T(sec) Nodes Gap Root Obj. T(sec) Nodes Gap #Ineq.

5 58 76.3 16.5 5 0 59.9 27.6 3 0 5
10 139 388.2 229.5 31 0 357.6 357.7 29 0 5
15 1371 2359.8 1601.1 49 0 2333.6 2006.1 45 0 2
20 1654 5047.4 26365.1 1000 42.4 4781.5 35668.3 1000 39.8 2

131

CHAPTER 5. BRANCH-AND-DIG SCHEME

5.8 Concluding Remarks

In this chapter, we presented an algorithm to find global solutions for mixed binary poly-

nomial programming problems using a non-linear branch-and-bound method. Inequality

generating techniques based on a hierarchy of lift-and-project relaxations of the binary fea-

sible set were developed for binary polynomial problems. For the generation of non-linear

inequalities, a sequence of second order cone or positive semidefinite programs are solved.

An implementation of the polynomial programming solver are used in the branch-and-

bound and the branch-and-dig framework. Computational results for small test problems

and application problems are given. In the computational study we investigate the perfor-

mance of different branching rules and the impact of the inequality generation technique,

DIGS-B. In the context of branch-and-dig we observed a reduction of the search trees of

most of the test problems when DIGS-B was applied. Thereby, the non-linear inequali-

ties were able to reduce the search trees of most of the problems and led also to the best

reductions with respect to all test instances.

A drawback of the encouraging reductions of the search trees by DIGS-B are the high

computational costs due to the polynomial generating subproblems. For higher degree

BPPs, we can investigate the performance of different types of inequalities with different

degrees and different sparsity. We can also use a heuristic to generate a feasible solution

earlier in the branch-and-bound tree based on Lasserre’s solution extraction for PP [37].

Another way to improve the implementation of the branch-and-dig algorithm is prepro-

cessing at each node. That is instead of adding the constraints xj = ±1 for the child

nodes, one can fix the variables to their corresponding value and thus reducing the number

of monomials of the polynomial program. Once some variables have been fixed in this

manner and unnecessary constraints have been eliminated, the problem dimension can be

significantly reduced as we go further down in the tree.

132

Chapter 6

APPS: A Polynomial Programming

Solver

APPS is a Matlab-based solver that builds and solves conic relaxations of polynomial

programs. The techniques behind APPS are based on the earlier chapters of this thesis.

To solve the conic relaxations, APPS calls SeDuMi or SDPT3 solvers. The interface has

been designed to be as simple as possible while keeping a large degree of flexibility for the

user. General features of APPS are listed below:

1. Builds and solves general conic relaxations of PPs.

2. Generates and adds valid inequalities for general and binary PPs using DIGS and/or

DIGS-B.

3. Solves binary PPs to optimality.

4. Generates input and output data in SeDuMi format.

133

CHAPTER 6. APPS: A POLYNOMIAL PROGRAMMING SOLVER

6.1 Formulating and Solving PP

Recall, we are interested in solving PPs of degree d of the form:

max f(x)

s.t. gi(x) = 0 i = 1, . . . ,m.

To define and solve a PP using APPS we need to follow these steps:

1. Declare the PP variables.

2. Initialize the PP.

3. Define the PP constraints.

4. Define the PP objective function.

5. Call conic solver.

6. Obtain solutions.

The key element of defining the PP is the structure prog with the following fields

Variables Degree Monomials Conic Polynomial
Program Multipliers

prog.vars prog.maxDeg prog.alpha prog.Ased prog.Free

prog.numVars prog.totalDeg prog.numAlpha prog.bsed prog.Linear

prog.csed prog.Soc

prog.Ksed prog.Sdp

prog contains all the information necessary to build and solve the PP. For building the PP,

we have prog.vars is a vector of prog.numVars variables. prog.alpha is a matrix whose

rows are the degree vectors of all the monomials where the variable prog.vars[i] has a

maximum degree prog.maxDeg[i] and total degree ≤ prog.totalDeg. prog.numAlpha is

the number of monomials, i.e, the number of rows in prog.alpha. Some other information

kept in prog is related to initializing the conic relaxation. In particular, prog.Ased,

prog.bsed, prog.csed, and prog.Ksed are the elements of the conic program in SeDuMi

134

CHAPTER 6. APPS: A POLYNOMIAL PROGRAMMING SOLVER

format. For instance, prog.Ased has prog.numAlpha rows where each row i corresponds

to the coefficient of the monomial saved in prog.alpha[i]. prog.Free, prog.Linear,

prog.Soc, and prog.Sdp are structures used to keep track of the constraints according to

the type of polynomial multiplier to be used.

Next, we describe a small example to illustrate the basic use APPS . We consider non-

convex quadratic problem of Example 4.1.4:

min
x
− 2x1 + x2 − x3

s.t. 24− 20x1 + 9x2 − 13x3 + 4x2
1 − 4x1x2 + 4x1x3 + 2x2

2 − 2x2x3 + 2x2
3 ≥ 0

x1 + x2 + x3 ≤ 4

3x2 + x3 ≤ 6

0 ≤ x1 ≤ 2, 0 ≤ x2, 0 ≤ x3 ≤ 3.

The following Matlab script uses APPS to solve Lasserre’s approximation using Kr
G with

r = 2:

135

CHAPTER 6. APPS: A POLYNOMIAL PROGRAMMING SOLVER

Matlab Code: General PP
%Creating the variables and the monomials up to degree r

n=3;

r=2;

x=varsVector(’x’,n);

prog=createProg(x,r,[r*ones(1,n)]);

%Adding sos polynomial multipliers

prog=add_sos(prog,1,r);

cS1=24-20*x(1)+9*x(2)-13*x(3)+4*x(1)^2-4*x(1)*x(2)...

+4*x(1)*x(3)+2*x(2)^2-2*x(2)*x(3)+2*x(3)^2;

prog=add_sos(prog,cS1,r-2);

prog=add_sos(prog,4-x(1)-x(2)-x(3),r-1);

prog=add_sos(prog,6-3*x(2)-x(3),r-1);

prog=add_sos(prog,x(1),r-1);

prog=add_sos(prog,x(2),r-1);

prog=add_sos(prog,x(3),r-1);

prog=add_sos(prog,2-x(1),r-1);

prog=add_sos(prog,3-x(3),r-1);

%Adding objective function

q=-(-2*x(1)+x(2)-x(3)); %negative for minimization.

prog=add_objective(prog,q);

%Call solver

prog = prog_solve(prog);

The following describe the steps of the above script.

• The function varsVector creates the vector x ∈ Rn:

Matlab Code: Construct Variable Vector
n=3;

x=varsVector(’x’,n)

Matlab Output: Construct Variable Vector
x =

[x1 , x2 , x3]

136

CHAPTER 6. APPS: A POLYNOMIAL PROGRAMMING SOLVER

• The function createProg initializes the polynomial program by taking as inputs: the

vector x, the degree of the relaxation of the polynomial program r, and the maximum

degree of each variable (usually this is r). This can be done by typing the following

commands:

Matlab Code: Construct Prog
r=2;

n=3;

prog = createProg(x,r,[r*ones(1,n)]);

Matlab Output: Construct Prog
prog =

vars: [3x1 polynomial]

numVars: 3

maxDeg: [2 2 2]

totalDeg: 2

alpha: [10x3 double]

numAlpha: 10

Ased: 0

bsed: 0

csed: 0

Ksed: 0

Free: [1x1 struct]

Linear: [1x1 struct]

Soc: [1x1 struct]

Sdp: [1x1 struct]

• The functions add free, add linear, add soc, and add sos handle the addition

of constraints by generating a polynomial multiplier of degree k to constraint g(x)

in Rk[x],R+
k [x],P1(B), and Ψk[x] respectively. Each function takes three inputs, the

first input is prog, the second is the polynomial g(x), and the third input is the degree

of the polynomial multiplier which is optional (by default k is set to r−deg(g) where

r is the degree of the relaxation). For add sos function, Ψk[x] = Ψk−1[x] for odd k

and for add soc the degree of the polynomial multiplier should be 1.

• The function add objective adds the objective function of the PP.

137

CHAPTER 6. APPS: A POLYNOMIAL PROGRAMMING SOLVER

• The function prog solve generates A, b, and c matrices and the cone C of the conic

program as defined in (2.2). The function also solves the conic program using Se-

DuMi (default) or SDPT3 and returns a primal-dual solution, prog.primalSol and

prog.dualSol respectively, and the objective function value, prog.obj, which is

equal to λ.

Next we describe the use of APPS to solve a binary PP. Recall the QKP problem described

in Section 3.2.4. The following script describes how to code (QKPSS) relaxation. Given

Q, c, w and n we use the following Matlab script to solve the QKP problem using APPS :

Matlab Code: Binary PP
%Creating the variables and the monomials up to degree r

x = varsVector(’x’,n);

prog = createProg(x,r,[r*ones(1,n)]);

r=2;

%Adding sos polynomial multipliers

prog= add_sos(prog,1,r);

%Adding soc and free polynomial multipliers

for i = 1:n

prog= add_free(prog,1-x(i)^2,r-2);

prog= add_soc(prog,1+x(i),r-1);

prog= add_soc(prog,1-x(i),r-1);

end

prog= add_soc(prog,c-w*x’,r-1);

%Adding objective function

q=x*Q’*x’;

prog=add_objective(prog,q);

%Call solver

prog = prog_solve(prog);

For a quadratic knapsack problem of 10 variables, we obtain the following result:

138

CHAPTER 6. APPS: A POLYNOMIAL PROGRAMMING SOLVER

Matlab Output: Binary PP
prog =

vars: [10x1 polynomial]

numVars: 10

maxDeg: [2 2 2 2 2 2 2 2 2 2]

totalDeg: 2

alpha: [66x10 double]

numAlpha: 66

Ased: [66x163 double]

bsed: [66x1 double]

csed: [163x1 double]

Ksed: [1x1 struct]

primalSol: [163x1 double]

Free: [1x10 struct]

Linear: [1x1 struct]

Soc: [1x1 struct]

Sdp: [1x21 struct]

q_x: [1x1 polynomial]

info: [1x1 struct]

obj: 1.8011e+03

dualSol: [66x1 double]

The objective function value is 1801.1, the dual optimal solution, and the total cpu time

are stored in prog.obj, prog.dualSol, and prog.info.totaltime respectively.

6.2 Inequality Generation

In this section we describe how to solve the subproblem and generate a valid polyno-

mial inequality of degree r. Recall the generating subproblem of DIGS-B presented in

139

CHAPTER 6. APPS: A POLYNOMIAL PROGRAMMING SOLVER

Section 4.2.1. The subproblem is of the form

min
〈
pi, Y

i
〉

s.t. pi(x) ∈
(
(1 + xj)K + (1− xj)K + (1− x2

j)Rr−1[x]
)
∩Rr[x]∑

|α|>0

(pi)
2
α ≤ 1,

where i is the iteration number, j is the index of x chosen, and Y is prog.dualSol the

optimal dual solution of master problem. The following is an implementation of Algorithm

3 of DIGS-B.

Matlab Code: DIGS-B

weight=ones(1,n);

while(iter < iterlimit & cputime-t < timelimit & objSubi < -1e-3)

[indexi weight]=index_select(prog,weight);

[digi objSubi timeSubi] = prog_createdigs(prog,indexi);

%transform from vector to polynomial

poly_digi=vec2pol(digi,prog);

prog= add_sos(prog,poly_digi,0);

prog=prog_solve(prog);

iter=iter+1

end

• The function index select generates an index based on the heuristic described in

Section 4.2.1.

• The function prog createdigs implements line 4 of Algorithm 3. It generates a

vector of coefficients digi which is then transformed into a polynomial poly digi

using vec2pol function.

The inequality is then added to the set of constraints, using prog= add sos(prog,poly dig,0)

and the master problem is then solved again using prog=prog solve(prog).

Performing one iteration of DIGS-B:

140

CHAPTER 6. APPS: A POLYNOMIAL PROGRAMMING SOLVER

Matlab Output: DIGS-B

obj: [1.8011e+03 1.7879e+03]

dualSol: [66x1 double]

index: 3

Subobj: -0.7930

info: [1x1 struct]

The upper bound improved from 1801.1 to 1787.9 and the subproblem objective value is

-0.793 and the index j chosen for the subproblem is 3. In case it is needed to generate a

polynomial inequality of degree less than r, the following script is used:

Matlab Code: DIGS-B (inequality of degree < r)
weight=ones(1,n);

while(iter < iterlimit & cputime-t < timelimit & objSubi < -1e-3)

[indexi weight]=index_select(prog,weight);

[digi objSubi timeSubi] = prog_binarydigs(prog,indexi,deg);

%transform from vector to polynomial

poly_digi=vec2pol(digi,prog);

prog= add_sos(prog,poly_digi,r-deg);

prog=prog_solve(prog);

iter=iter+1

end

To apply DIGS, first one needs to construct the subproblem. Recall Algorithm 2 in Section

4.1.1). The subproblem has the form:

min
〈
pi, Y

i
〉

s.t. pi(x) ∈ Kr+2
G∑

|α|>0

(pi)
2
α ≤ 1,

To apply DIGS for Example 4.1.4, we set r = 2 and generate quadratic inequalities. First

we need to build the subproblem which is in K4
G in this case, then generate the quadratic

141

CHAPTER 6. APPS: A POLYNOMIAL PROGRAMMING SOLVER

inequalities, and add them to the master and subproblem. prog stores information of the

master problem and prog sub stores those of the subproblem. Algorithm 2 of DIGS can

be called using the following script:
Matlab Code: DIGS

t=cputime;

r2=r+2;

prog_sub=createsubproblem(prog,r2);

while(iter < iterlimit & cputime-t < timelimit & objSubi < -1e-3)

[prog_sub digi] = prog_generaldigs(prog_sub,prog.dualSol);

%transform from vector to polynomial

poly_digi=vec2pol(digi,prog);

prog= add_sos(prog,poly_digi,0);

prog_sub= add_sos(prog_sub,poly_digi,r2-r);

prog=prog_solve(prog);

iter=iter+1

end

Performing one iteration of DIGS:
Matlab Output: DIGS

obj: [-6.0000 -5.8746]

dualSol: [10x1 double]

Subobj: -1.1621

info: [1x1 struct]

Therefore, the lower bound improves from -6.00 to -5.87.

6.3 Concluding Remarks

APPS is a general-purpose software that provides bounds and solves a wide range of non-

convex polynomial programs. It constructs and solves Linear, SOC, and/or SDP relax-

ations for PPs and strengthens these relaxations by adding valid inequalities. Further, for

binary PPs, APPS finds optimal solutions by using a branch-and-dig algorithm.

142

Chapter 7

Conclusion and Future Directions

In this dissertation, we have discussed several theoretical and computational aspects related

to solving general polynomial programs and in particular binary polynomial programs.

In Chapter 3, we introduced several conic relaxations for binary polynomial programs that

results in SOC and/or SDP relaxations. The SOC-based relaxations for binary quadratic

polynomial programs provide comparable bounds to SDP-based relaxations and are com-

putationally efficient. On the other hand, we presented SOC-SDP-based relaxations that

provide stronger bounds than the current practical SDP-relaxations presented in the liter-

ature. Computational Results on four quadratic applications were provided.

Chapter 4 then proceeded to introduce a dynamic inequality generation scheme for poly-

nomial programs. We further specialized the scheme to binary polynomial programs. We

showed theoretically that for special cases the iterative scheme for the binary case con-

verges to the optimal solution of the original BPP. We considered several applications for

quadratic and cubic problems and we showed that adding valid inequalities to the SDP-

based relaxations of the binary polynomial programs is more computationally efficient than

applying Lasserre’s hierarchy and substantially reduces the optimality gap. The iterative

scheme can also be applied to SOC-based relaxations to strengthen them further as done

in the Chapter 5. The main improvements that can be done to the performance of the

iterative scheme are in terms of choosing the index for the subproblem and solving the

143

CHAPTER 7. CONCLUSION AND FUTURE DIRECTIONS

subproblem more efficiently. In future work one can investigate the effect of generating

sparse inequalities on the improvement of the bounds and running times.

Chapter 5 considered integrating the conic relaxations with the iterative scheme to solve

binary polynomial programs to optimality in a branch-and-bound framework. The second-

order conic or semidefinite programming relaxations can be further strengthened by adding

valid inequalities using DIGS-B. This can be observed in the reduction of the search space

of the resulting branch-and-dig algorithm. Computational results confirm that the number

of nodes of the branch-and-bound algorithm are reduced once these inequalities are added.

In the context of branch-and-dig we observed a remarkable reduction of the search tree

on most of the test problems when the dynamic inequality generation scheme is applied.

The average reduction in the number of nodes ranges between 7% and 43% for the test

instances used. Thereby, the non-linear inequalities based on BPP problems were able to

reduce the search trees of most of the problems. In the computational study we investigated

the impact of the dynamic scheme and different branching rules. A possible challenge for

the future is the attempt to translate the search tree reductions induced by the dynamic

scheme into an improvement of the running time. One the one hand, the solving process

for the generating subproblems must be improved. This could be tried either by reducing

the size of these problems or by the application of fast convergent solvers. On the other

hand, investigating different branching rules are also a topic for future research which can

include general branching for general PPs. Finally extracting a feasible solution early in

the tree might enhance the performance of the branch-and-dig algorithm.

Finally, Chapter 6 presented an implementation of APPS , a Matlab based solver for

polynomial programs. The solver utilizes the ideas used in the Chapters 3, 4, and 5 to

provide bounds and optimal solutions for polynomial programs. APPS is used for all the

computational results presented in this thesis. For the sake of fair comparisons between

our proposed approaches and the results from the literature APPS is also used to construct

and solve the relaxations presented in the literature.

144

References

[1] B. Alidaee, G. Kochenberger, and A. Ahmadian. 0-1 quadratic programming ap-

proach for the optimal solution of two scheduling problems. International Journal of

Systems Science, 25:401–408, 1994. 37

[2] F. Alizadeh and D. Goldfarb. Second-order cone programming. Mathematical Pro-

gramming, 95(1):3–51, 2003. 8

[3] M.F. Anjos, A. Kennings, and A. Vannelli. A semidefinite optimization approach

for the single-row layout problem with unequal dimensions. Discrete Optimization,

2(2):113–122, 2005. 37

[4] M.F. Anjos and A. Vannelli. Computing globally optimal solutions for single-row

layout problems using semidefinite programming and cutting planes. INFORMS

Journal on Computing, 20(4):611–617, 2008. 10

[5] Y.Q. Bai, E. de Klerk, D.V. Pasechnik, and R. Sotirov. Exploiting group symmetry

in truss topology optimization. Optimization and Engineering, 10(3):331–349, 2009.

3

[6] E. Balas, S. Ceria, and G. Cornuéjols. A lift-and-project cutting plane algorithm for

mixed 0-1 programs. Mathematical Programming, 58:295–324, 1993. 4, 76, 95, 96,

111

[7] M. Bellare and P. Rogaway. The complexity of approximating a nonlinear program.

Mathematical Programming, 69:419–441, 1995. 25

145

REFERENCES

[8] A. Ben-Tal and A. Nemirovskii. Lectures on modern convex optimization: analysis,

algorithms, and Engineering Applications, volume 2. MPS/SIAM Series on Opti-

mization, SIAM, Philadelphia, 2001. 8

[9] I. Bomze and E. de Klerk. Solving standard quadratic optimization problems via

linear, semidefinite and copositive programming quadratic programs. Journal of

Global Optimization, 24(2):163–165, 2002. 26

[10] B. Borchers. CSDP, a C library for semidefinite programming. Optimization Methods

and Software, 11-12(1-4):613–623, 1999. 12

[11] E. Boros and P. Hammer. Pseudo-boolean optimization. Discrete Applied Mathe-

matics, 123(1-3):155–225, 2002. 37

[12] E. Boros and A. Prekopa. Probabilistic bounds and algorithms for the maximum

satisfiability problem. Annals of Operations Research, 21:109–126, 1989. 37

[13] S. Burer. Private communication. 55, 69, 70

[14] R.E. Burkard, S.E. Karisch, and F. Rendl. QAPLIB - a quadratic assignment problem

library. Journal of Global Optimization, 10, 1997. 67

[15] E. de Klerk. The complexity of optimizing over a simplex, hypercube or sphere: a

short survey. Central European Journal of Operations Research, 2008. 23, 26, 27

[16] E. de Klerk. Exploiting special structure in semidefinite programming: A survey

of theory and applications. European Journal of Operational Research, 201(1):1–10,

2010. 3

[17] E. de Klerk, G.E.E Elfadul, and D. den Hertog. Optimization of univariate func-

tions on bounded intervals by interpolation and semidefinite programming. Technical

Report 2006-26, Tilburg University, Center for Economic Research, 2006. 21

[18] E. de Klerk, M. Laurent, and P. Parrilo. A ptas for the minimization of polynomials

of fixed degree over the simplex. Theoretical Computer Science, 361(2):210–225, 2006.

26

146

REFERENCES

[19] E. de Klerk, D. Pasechnik, and A. Schrijver. Reduction of symmetric semidefinite pro-

grams using the regular∗-representation. Mathematical Programming, 109(2-3):613–

624, 2007. 3

[20] E. de Klerk and D.V. Pasechnik. Approximation of the stability number of a graph

via copositive programming. SIAM Journal on Optimization, 12(4):875–892, 2002. 2

[21] E. de Klerk and R. Sotirov. Exploiting group symmetry in semidefinite program-

ming relaxations of the quadratic assignment problem. Mathematical Programming,

122(2):225–246, 2010. 3, 49

[22] J.W. Dickey and J.W. Hopkins. Campus building arrangement using topaz. Trans-

portation Research, 6, 1972. 47

[23] R. Duffin. Infinite programs. In Linear inequalities and related systems, Annals of

Mathematics Studies, 38:157–170, 1956. 7

[24] A.N. Elshafei. Hospital layout as a quadratic assignment problem. Operations Re-

search Quarterly, 28(1):167–179, 1977. 47

[25] C. A. Floudas, P. M. Pardalos, C. S. Adjiman, W. R. Esposito, Z. H. Gümüs, S. T.

Harding, J. L. Klepeis, C. A. Meyer, and C. A. Schweiger. Handbook of Test Problems

in Local and Global Optimization. Kluwer Academic Publishers, Dordrecht, 1999. 84

[26] K. Fujisawa, M. Kojima, and K. Nakata. Exploiting sparsity in primal-dual interior-

point methods for semidefinite programming. Mathematical Programming, 79:235–

253, 1997. 46

[27] G. Gallo, P.L. Hammer, and B. Simeone. Quadratic knapsack problems. European

Journal of Operational Research, 12:132–149, 1980. 59

[28] M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the Theory

of NP-Completeness (Series of Books in the Mathematical Sciences). W. H. Freeman,

1979. 24, 27

[29] K. Gatermann and P. Parrilo. Symmetry groups, semidefinite programs, and sums

of squares. Journal of Pure and Applied Algebra, 192(1-3):95–128, 2004. 3

147

REFERENCES

[30] A.M. Geoffrion and G.W. Graves. Scheduling parallel production lines with

changeover costs: Practical applications of a quadratic assignment/LP approach.

Operations Research, 24:595–610, 1976. 47

[31] B. Ghaddar, M.F. Anjos, and F. Liers. A branch-and-cut algorithm based on semidef-

inite programming for the minimum k-partition problem. Annals of Operations Re-

search, November 2008. Available online, DOI: 10.1007/s10479-008-0481-4. 10

[32] M. Goemans and D. Williamson. Improved approximation algorithms for maximum

cut and satisfiability problems using semidefinite programming. Journal of the ACM,

42(6):1115–1145, 1995. 27

[33] M. Grötschel, M. Jünger, and G. Reinelt. An application of combinatorial optimiza-

tion to statistical physics and circuit layout design. Operations Research, 36(3):493–

513, 1988. 37

[34] M. Grötschel, L. Lovász, and A. Schrijver. Geometric Algorithms and Combinatorial

Optimization, volume 2 of Algorithms and Combinatorics. Springer, 1988. 11

[35] C. Helmberg and F. Rendl. A spectral bundle method for semidefinite programming.

SIAM Journal on Optimization, 10:673–696, 2000. 12

[36] Christoph Helmberg, Franz Rendl, and Robert Weismantel. A semidefinite program-

ming approach to the quadratic knapsack problem. Combinatorial Oprimization,

4(2):197–215, 2000. 61, 63, 71, 72

[37] D. Henrion and J. B. Lasserre. Detecting global optimality and extracting solutions

in GloptiPoly. LAAS-CNRS Research Report No. 03541, 29(2), 2003. 132

[38] D. Henrion and J. B. Lasserre. GloptiPoly: global optimization over polynomials

with Matlab and SeDuMi. ACM Transactions on Mathematical Software, 29(2),

2003. 103

[39] D. Hilbert. Uber die darstellung definiter formen als summe von formenquadraten.

Mathematische Annalen, 32, 1888. 14

148

REFERENCES

[40] L. Hubert. Assignment methods in combinatorial data analysis, volume 73. Statistics:

Textbooks and Monographs Series, Marcel Dekker, 1987. 47

[41] P. Hungerländer and F. Rendl. Semidefinite relaxations of ordering problems. Tech-

nical report, Alpen-Adria-Universität Klagenfurt, August 2010. 11

[42] E. L. Johnson, A. Mehrotra, and G. L. Nemhauser. Min-cut clustering. Mathematical

Programming, 62:133–151, 1993. 60

[43] S. Kim and M. Kojima. Second-order cone programming relaxation of nonconvex

quadratic optimization problems. Optimization Methods and Software, 15(3-4):201–

224, 2001. 12

[44] S. Kim and M. Kojima. Exact solutions of some nonconvex quadratic optimization

problems via SDP and SOCP relaxations. Computational Optimization and Appli-

cations, 26(2):143–154, 2003. 12

[45] S. Kim, M. Kojima, M. Mevissen, and M. Yamashita. Exploiting sparsity in linear

and nonlinear matrix inequalities via positive semidefinite matrix completion. To

appear in Mathematical Programming, 2009. 3

[46] S. Kim, M. Kojima, and Ph. Toint. Recognizing underlying sparsity in optimization.

Mathematical Programming, 9(2):273–303, 2009. 3

[47] K. Kobayashi, S. Kim, and M. Kojima. Correlative sparsity in primal-dual interior-

point methods for LP, SDP and SOCP. Applied Mathematics and Optimization,

58(1):69–88, 2008. 3

[48] M. Kojima, S. Kim, and H. Waki. Sparsity in sums of squares of polynomials.

Mathematical Programming, 103(1):45–62, 2003. 3

[49] M. Kojima and M. Muramatsu. A note on sparse SOS and SDP relaxations for poly-

nomial optimization problems over symmetric cones. Computational Optimization

and Applications, 42(1):31–41, 2009. 3

[50] T.C. Koopmans and M.J. Beckmann. Assignment problems and the location of

economic activities. Econometrica, 25:53–76, 1957. 47

149

REFERENCES

[51] Y. Kuo and H. Mittelmann. Interior point methods for second-order cone program-

ming and or applications. Computational Optimization and Applications, 28(3):255–

285, 2004. 10

[52] A.H. Land and A.G. Doig. An automatic method of solving discrete programming

problems. Econometrica, 28(3):pp. 497–520, 1960. 117

[53] J. Lasserre. Global optimization problems with polynomials and the problem of

moments. SIAM Journal on Optimization, 11:796–817, 2001. 1, 2, 28, 29, 32, 76

[54] J.B. Lasserre. An explicit equivalent positive semidefinite program for nonlinear 0-1

programs. SIAM Journal on Optimization, 12(3):756–769, 2001. 2, 4, 43, 76, 129

[55] J.B. Lasserre. Semidefinite programming vs. LP relaxations for polynomial program-

ming. Mathematics of Operations Research, 27(2):347–360, 2002. 2

[56] D.J. Laughhunn. Quadratic binary programming with application to capital-

budgeting problems. Operations Research, 18:454–461, 1970. 37

[57] M. Laurent. A comparison of the Sherali-Adams, Lovász-Schrijver and Lasserre

relaxations for 0-1 programming. Mathematics of Operations Research, 28:470–496,

2001. 2

[58] M. Laurent. Semidefinite representations for finite varieties. Mathematical Program-

ming, 109(Ser. A):1–26, 2007. 2

[59] M. Laurent and F. Rendl. Handbook on Discrete Optimization, volume 12, chap-

ter Semidefinite programming and integer programming, pages 393–514. Elsevier,

Amsterdam, Netherlands, 2005. 5, 10

[60] E. Lawler. The quadratic assignment problem. Management Science, 9:586–599,

1963. 37

[61] E. L. Lawler and D.E. Wood. Branch-and-bound methods: A survey. Operations

Research, 14(4):pp. 699–719, 1966. 117

150

REFERENCES

[62] A.S. Lewis and M.L. Overton. Eigenvalue optimization. Acta Numerica, 5:149–190,

1996. 8

[63] M.S. Lobo, L. Vandenberghe, S. Boyd, and H. Lebret. Applications of second-order

cone programming. Linear Algebra and its Applications, 284(1-3):193–228, 1998. 8,

10, 12

[64] E.M. Loiola, N.M. Maia de Abreu, P.O. Boaventura-Netto, P. Hahn, and T. Querido.

A survey for the quadratic assignment problem. European Journal of Operational

Research, 176(2):657–690, 2007. 47

[65] L. Lovász and A. Schrijver. Cones of matrices and set-functions and 0-1 optimization.

SIAM Journal on Optimization, 1:166–190, 1991. 57, 76

[66] T. S. Motzkin. The arithmetic-geometric inequality. O. Shisha, Inequalities, pages

205–224, 1967. 14

[67] K.G. Murty and S.N. Kabadi. Some np-complete problems in quadratic and nonlinear

programming. Mathematical Programming, 39:117–129, 1987. 18

[68] G.L. Nemhauser and L.A. Wolsey. 117, 120, 122

[69] Y. Nesterov. Semidefinite relaxation and non-convex quadratic optimization. Opti-

mization Methods and Software, 12:1–20, 1997. 27

[70] Y. Nesterov. Structure of non-negative polynomials and optimization problems. Tech-

nical report, Technical Report 9749, CORE, 1997. 2

[71] Y. Nesterov. Random walk in a simplex and quadratic optimization over convex

polytopes. Core discussion papers, Université catholique de Louvain, Center for

Operations Research and Econometrics (CORE), 2003. 23

[72] J. Nie. Regularization Methods for Sum of Squares Relaxations in Large Scale Poly-

nomial Optimization. eprint arXiv:0909.3551, 2009. 2

[73] J. Nie and J. Demmel. Sparse SOS relaxations for minimizing functions that are

summation of small polynomials. SIAM Journal on Optimization, 19(4):1534–1558,

2008. 3

151

REFERENCES

[74] J. Nie, J. Demmel, and B. Sturmfels. Minimizing polynomials via sum of squares

over the gradient ideal. Mathematical Programming: Series A and B, 106(3):587–606,

2006. 2

[75] P. Parrilo. Structured semidefinite programs and semialgebraic geometry methods in

robustness and optimization. PhD thesis, Department of Control and Dynamical

Systems, California Institute of Technology, Pasadena, CA., 2000. 2

[76] P. Parrilo. An explicit construction of distinguished representations of polynomials

nonnegative over finite sets. Technical report, IFA Technical Report AUT02-02,

Zurich - Switzerland, 2002. 2

[77] P. Parrilo. Semidefinite programming relaxations for semialgebraic problems. Math-

ematical Programming, 96(2):293–320, 2003. 2

[78] P.A. Parrilo and B. Sturmfels. Minimizing polynomial functions, algorithmic and

quantitative real algebraic geometry. DIMACS Series in Discrete Mathematics and

Theoretical Computer Science, 60:83–89, 2003. 2

[79] J. Peña, J. Vera, and L.F. Zuluaga. Computing the stability number of a graph via

linear and semidefinite programming. SIAM Journal on Optimization, 18(1):87–105,

February 2007. 108

[80] J. F. Peña, J. C. Vera, and L. F. Zuluaga. Exploiting equalities in polynomial

programming. Operations Research Letters, 36(2), 2008. 2, 29, 30, 87, 89

[81] A.T. Phillips and J.B. Rosen. A quadratic assignment formulation of the molecular

conformation problem. Journal of Global Optimization, 4:229–241, 1994. 37

[82] D. Pisinger. The quadratic knapsack problem-a survey. Discrete Applied Mathemat-

ics, 155(5):623–648, 2007. 71, 72, 105

[83] I. Pólik and T. Terlaky. A survey of the S-lemma. SIAM Review, 49:371–418, 2007.

2, 24, 99

[84] M.A. Pollatschek, N. Gershoni, and Y.T. Radday. Optimization of the typewriter

keyboard by simulation. Angewandte Informatik, 17:438–439, 1976. 47

152

REFERENCES

[85] B. T. Polyak. Convexity of quadratic transformations and its use in control and

optimization. Journal of Optimization Theory and Applications, 99:553–583, 1998.

23, 24

[86] V. Powers and B. Reznick. Polynomials that are positive on an interval. Transactions

of the American Mathematical Society, 352:4677–4692, 2000. 21

[87] M. Putinar. Positive polynomials on compact semi-algebraic sets. Indiana University

Mathematics Journal, 42:969–984, 1993. 17, 28, 30, 34

[88] F. Rendl, G. Rinaldi, and A. Wiegele. A branch and bound algorithm for max-cut

based on combining semidefinite and polyhedral relaxations. Integer programming

and combinatorial optimization, 4513:295–309, 2007. 10

[89] F. Rendl and R. Sotirov. Bounds for the quadratic assignment problem using bundle

method. Mathematical Programming, Series B, 109:505–524, 2007. 10, 49, 50

[90] H. D. Sherali and W. P. Adams. A hierarchy of relaxations between the continuous

and convex hull representations for zero-one programming problems. SIAM Journal

on Discrete Mathematics, 3(3):411–430, 1990. 76

[91] N.Z. Shor. A class of global minimum bounds of polynomial functions. Cybernetics,

23(6):731–734, 1987. 2, 14, 15

[92] L. Steinberg. The backboard wiring problem: A placement algorithm. SIAM Review,

3:37–50, 1961. 47

[93] J. Sturm. Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric

cones. Optimization Methods and Software, 11-12, 1999. 65, 100, 125

[94] J Sturm and S. Zhang. On cones of nonnegative quadratic functions. Technical

report, Chinese University of Hong Kong, 2001. 24

[95] M.J. Todd. Semidefinite optimization. Acta Numerica, 10:515–560, 2001. 8

[96] L. Vandenberghe and S. Boyd. Semidefinite programming. SIAM Review, 38:49–95,

1996. 2, 8, 12

153

REFERENCES

[97] J.C. Vera, L.F. Zuluaga, and J. Peña. Positive polynomials on equality constrained

domains. Working Paper. 56

[98] H. Waki, S. Kim, M. Kojima, and M. Muramatsu. Sums of squares and semidefi-

nite programming relaxations for polynomial optimization problems with structured

sparsity. SIAM Journal on Optimization, 17(1):218–242, 2006. 3

[99] H. Waki, S. Kim, M. Kojima, and M. Muramatsu. SparsePOP : a sparse semidefinite

programming relaxation of polynomial optimization problems. ACM Transactions

on Mathematical Software, 35(2):15, 2008. 3

[100] H. Wolkowicz, R. Saigal, and L. Vandenberghe. Handbook of Semidefinite program-

ming -Theory, Algorithms, and Applications. Kluwer, 2000. 8, 14

[101] Y. Ye and S. Zhang. New results on quadratic minimization. SIAM Journal on

Optimization, 14:245–267, 2001. 24, 25

[102] Q. Zhao, S.E. Karisch, F. Rendl, and H. Wolkowicz. Semidefinite programming relax-

ations for the quadratic assignment problem. Journal of Combinatorial Optimization,

2:71–109, 1998. 49, 50, 67, 68

[103] L.F. Zuluaga. A conic programming approach to polynomial optimization problems:

Theory and applications. PhD thesis, The Tepper School of Business, Carnegie Mellon

University, Pittsburgh, 2004. 87

[104] L.F. Zuluaga, J. C. Vera, and J. Peña. LMI approximations for cones of positive

semidefinite forms. SIAM Journal on Optimization, 16(4), 2006. 2, 14, 17

154

	List of Tables
	List of Figures
	Notation
	Introduction
	Background
	Conic Programming
	Linear Programming
	Second-Order Cone Programming
	Semidefinite Programming

	Polynomial Programming
	Sum-of-Squares
	Polynomial Programming Relaxations
	Special Cases of Polynomial Programs
	Approximation Hierarchies for Polynomial Programs
	Handling Equality Constraints
	Primal and Dual Perspective

	New Conic Relaxations
	Binary Quadratic Polynomial Programming
	Polynomial Programming-Based Relaxations
	New Conic Relaxations of BQPP

	Applications
	General Quadratic Polynomial Problems
	Quadratic Assignment Problem
	Quadratic Linear Constrained Problems
	Quadratic Knapsack Problem

	Computational Results
	General BQPPs Computational Results
	QAP Computational Results
	QLCP Computational Results
	QKP Computational Results

	Concluding Remarks

	Dynamic Inequality Generation Scheme
	General Case
	Dynamic Inequality Generation Scheme (DIGS)

	Binary Case
	Specializing the Dynamic Inequality Generation Scheme
	Lift-and-Project
	Convergence Results

	Examples and Computational Results
	General case
	Binary case

	Concluding Remarks

	Branch-and-Dig Scheme
	Bounding Function
	Branching Rules
	Feasible Solution
	Node Selection
	Inequality Generation Scheme
	Branch-and-Dig Algorithm
	Computational Results
	QKP Instances
	QAP Instances
	Cubic BPP

	Concluding Remarks

	APPS: A Polynomial Programming Solver
	Formulating and Solving PP
	Inequality Generation
	Concluding Remarks

	Conclusion and Future Directions
	References

