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Abstract

In many practical problems in applied sciences, the features of most interest cannot be

observed directly, but have to be inferred from other, observable quantities. In particular,

many important data acquisition devices provide an access to the measurement of the partial

derivatives of a feature of interest rather than sensing its values in a direct way. In this case,

the feature has to be recovered through integration which is known to be an ill-posed problem

in the presence of noises.

Moreover, the problem becomes even less trivial to solve when only a portion of a complete

set of partial derivatives is available. In this case, the instability of numerical integration is

further aggravated by the loss of information which is necessary to perform the reconstruction

in a unique way. As formidable as it may seem, however, the above problem does have a

solution in the case when the partial derivatives can be sparsely represented in the range

of a linear transform. In this case, the derivatives can be recovered from their incomplete

measurements using the theory of compressive sampling (aka compressed sensing), followed

by reconstruction of the associated feature/object by means of a suitable integration method.

It is known, however, that the overall performance of compressive sampling largely depends

on the degree of sparsity of the signal representation, on the one hand, and on the degree

of incompleteness of data, on the other hand. Moreover, the general rule is the sparser the

signal representation is, the fewer measurements are needed to obtain a useful approximation

of the true signal. Thus, one of the most important questions to be addressed in such a case

would be of how much incomplete the data is allowed to be for the signal reconstruction to

remain useful, and what additional constraints/information could be incorporated into the

estimation process to improve the quality of reconstruction in the case of extremely under-

sampled data. With these questions in mind, the present proposal introduces a way to

augment the standard constraints of compressive sampling by additional information related

to some natural properties of the signal to be recovered. In particular, in the case when

the latter is defined to be the partial derivatives of a multidimensional signal (e.g. image),

such additional information can be derived from some standard properties of the gradient

operator. Consequently, the resulting scheme of derivative compressive sampling (DCS)
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is capable of reliably recovering the signals of interest from much fewer data samples as

compared to the case of the standard CS. The signal recovery by means of DCS can be used

to improve the performance of many important applications which include stereo imaging,

interferometry, coherent optical tomography, and many others. In this proposal, we focus

mainly on the application of DCS to the problem of phase unwrapping, whose solution is

central to all the aforementioned applications. Specifically, it is shown both conceptually and

experimentally that the DCS-based phase unwrapping outperforms a number of alternative

approaches in terms of estimation accuracy. Finally, the proposal lists a number of research

questions which need to be answered in order to attach strong theoretical guarantees to the

practical success of DCS.
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Chapter 1

Introduction

1.1 Problem Statement

Reconstruction of signals from random incomplete samples is a task of considerable impor-

tance in signal processing, where it belongs to a general class of inverse problems. Factors

such as signal corruption due to noises and technical limitations of the acquisition hard-

ware give rise to corrupted or missing data samples, thereby necessitating the developments

of methods for signal reconstruction from sub-critically sampled measurements. Compres-

sive sampling (CS) is a framework for finding a solution for such problems by exploiting

significant redundancy which may exist in digitally sampled signals.

Specifically, compressive sampling relies on two major concepts: sparsity and incoherency,

which are properties of the signal of interest and the sensing modality, respectively. Sparsity

exemplifies the degree to which the information contained in the signal can be concisely rep-

resented in a properly chosen basis Ψ. In other words, the number of non-zero coefficients

in basis domain gives a measure of signal compressibility. Incoherency, on the other hand,

provides a measure of the degree of similarity between the atoms of sensing (Φ) and repre-

sentation (Ψ) dictionaries. This notion expands upon the idea of Heisenberg’s uncertainty

principle [1–11].

A compressed sensing scheme, which achieves a high degree of reconstruction accuracy,

requires the signal of interest to be represented as sparsely as possible in the domain of Ψ.
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The related representation domain required to be as incoherent as possible with respect to

Φ. Unfortunately, finding proper bases Ψ and Φ is not a trivial task, since the definition of Φ

is typically constrained by the nature of a data acquisition device at hand. This necessitates

the use of specific sensing modality in compressed sensing and since the coherency of the

latter should remain low with representation dictionary, finding a proper modal for sparse

representation could be a challenge.

For instance, numerous applications are known in which one is provided with the mea-

surements of the gradient of a multidimensional signal, rather than of the signal itself [12–18].

Central to such applications is, therefore, the problem of reconstruction of signals from their

partial derivatives, subject to some a priori constraints which could be either probabilistic or

deterministic in nature. The problem is further complicated when only a subset of the partial

derivatives is provided via measurements. In this case the solution involves two concurrent

inverse problems and the uncertainty of the scenario becomes more complicated. At the first

glance, one might overcome the problem by demonstrating energy minimization methods

in order to approximate the corrupted derivatives. Then applying least squares solution to

bring approximated derivatives to the spatial domain to represent the estimated signal.

In many cases, the signals of interest are the functions of bounded variation whose distri-

butional derivative is a set of locally finite measurement, i.e. f ∈ BV (Ω) where Ω be a open

subset of Rn for multi-dimentional space. Therefore, the gradient values can be sparsely

represented by choosing proper bases for encoding (e.g., DCT) and the question of whether

the partial derivative of an image can be recovered through a compressive sampling (CS)

scheme from partial observations must be asked. If so, the estimate of the original signal can

be recovered from its recovered gradients by solving a convex optimization problem. The

principal contribution of the proposed research is to demonstrate that the performance of

such a reconstruction algorithm can be improved via introducing a priori knowledge which

exist in the signal of recovery, e.g., cross-derivative equality in the case of partial derivative

samples.

This proposal introduces a scheme called derivative compressive sampling (DCS), which

aims to solve the image recovery inverse problem in two steps. First, image gradients are
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recovered from an incomplete data set using a modified version of the compressive sampling

algorithm. Then, an estimate of the image is recovered from its gradients through solving a

least squares problem. Figure 1.1 elaborates on the proposed DCS methodology, to be fully

explained in subsequent sections. Among the advantages of such an approach are:

• sparse representation of image gradients in a proper basis, e.g., DCT. The sparser is

the representation, the fewer data samples are needed to recover the estimate of the

signal via compressive sampling.

• cross-derivative constraints is incorporated as a priori information to the signal to be

recovered. The observed samples along the mentioned side information is an intriguing

combination to improve the performance of proposed decoder.

Figure 1.1: A general structure of DCS - based decoder

1.1.1 Concept of Sparse Representation

The image gradient needs to be compressible (sparsely represented) with respect to the prop-

erly chosen dictionary Ψ for decomposition. This intriguing challenge of transformation is

critical since there is a trade-off between the number of measurements and sparsity level.
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The most sparse the partial derivatives can be represented, fewer samples will be needed

from the signal of interest. This proposal uses a discrete cosine transform (DCT) represen-

tation to present our preliminary results as an illustration. However, finding the optimal

representation among all possible choices is a future research task to be accomplished.

1.1.2 Augmenting CS with Side Information

The domain to which the compressive sampling framework is applied is that of partial

derivatives, which doubles the number of samples used to represent an image. Since the

cross-derivative equality constraint must hold, this side information is added as a-priori

knowledge of the recovery algorithm in DCS. Imposition of this constraint allows some of

the observed samples to be discarded where they already can be incorporated from the cross-

derivative constraints. This constraint prevents retaining redundant information where the

half of the partial derivatives can be interpreted from the related equality.

1.2 Applications

Image interferometry is an important application of remote sensing which allows one to

perform earth observation on terrain heights, depth sounding of coastal and ocean depths,

weather monitoring, monitoring of glaciers in the Arctic and Antarctic regions, or mine detec-

tion [19,20]. Such sensing makes it possible to remotely collect information from dangerous

locations or otherwise inaccessible sources.

Aperture synthesis refers to the problem of recovering surfaces of an object using an

interferometer. This method combines signals received from individual antennas to provide

an image with a resolution declaring the maximum distance between the antennas. This

is done by using correlation techniques where the image i(x, y) then is restored by inverse

Fourier transform of the measured function of the related coordinates [19].

For instance, interferometric synthetic aperture radar (InSAR) uses two or more antennas

to collect the phase difference between antennas and terrain to infer the topography of such

areas. In such acquisition systems, phase is measured via modulo-2π so called principle
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phase value or wrapped phase, i.e., φ = ψ + 2kφ where φ is the true phase value and ψ

is the measured quantity. ψ is wrapped between [−π, π] and k ∈ Z is an integer number

of wavelength [21]. Phase unwrapping refers to the problem of recovering the true phase

φ from wrapped phase ψ. However, the related task is an ill-posed problem if no further

information is been provided. This information comes from the Itoh’s condition [22] where it

assumes that the absolute value of phase difference between neighbouring pixels is bounded

by π. This assumption is no longer been guaranteed if there exist a discontinuity in true

phase where it originates from insufficient sampling grids in steep terrain heights (Nyquist-

Shannon sampling condition). It can also be originated from noisy measurements where in

either cases, phase unwrapping becomes a very difficult problem to solve [21].

Methods which have been introduced to solve the problem of phase unwrapping use

a variety of approaches which can be divided into two categories: Path following algo-

rithms [23–25] and minimum Lp-norm solutions [26–33]. Path following algorithms use line

integration schemes over wrapped phase image where it relies on the Itoh’s condition to

hold along the integration path. This condition along the all possible shortest paths, 2 × 2

neighbouring pixels, is been checked and if it get violated it refers to as inconsistent points

so-called residual points. Although many efficient algorithms have been introduced for phase

unwrapping in 2-D, most of them nevertheless struggle with the task of interpreting such

residual points in their algorithms. These points present ambiguities to the algorithms caus-

ing them to fail in successfully unwrapping phase images when the total number of residual

points increases in the wrapped images beyond a certain amount.

The wrapped version of the difference of wrapped phase is analogous to the derivative of

true phase. Since the signal of interest in DCS is the derivative of the signal, this interesting

analogy brings the idea whether the problem of phase unwrapping can be fitted to the

derivative compressive sampling scheme or not. As mentioned before, residual points brings

inconsistency to the phase unwrapping methods, so these points are in direct relationship

with corrupted data in DCS scheme and the remaining points can be considered as observed

samples. The next challenge is to represent such derivatives sparse in a domain that the

dictionary used for sparse representation is highly incoherent with sampling dictionary which

is dot-sampling in the case of phase unwrapping. Subsequently, this proposal provides a new
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solution to the phase unwrapping problem, which compares favourably with other approaches

based on the presented preliminary results for terrain height recovery.

1.3 Organization of the Proposal

The remainder of the proposal is organized as follows. Chapter 2 provides a literature

review on two major subjects: 2-D phase unwrapping and compressive sampling. Phase

unwrapping is discussed in Section 2.1. In this section, the problem of remote sensing

and phase measurement is explained. Synthetic aperture radar (SAR) interferometry is

stated as an example where the concept of the phase principle values, wrapped phase, is

explained. Residual points and its practical implication is elucidated in Subsection 2.1.3.

Since the residual points contaminate the measured phase values, Subsection 2.1.4 clarifies

how to locate such points in wrapped phases. The quality of measured phase is discussed in

Subsection 2.1.5 where it is used as a quality guide map in phase unwrapping process. Many

unwrapping algorithms have been introduced in the literature. A short survey on the latter

is been exemplified in Subsection 2.1.6.

The second portion of the Chapter 2 defines the theory of compressive sampling given

in Section 2.2. The origination of the latter is explained and possible generalization of the

theory is issued in Subsection 2.2.1. Subsection 2.2.2 provides a formal description of the

compressive sampling problem. Stability analysis and recoverability of the CS problem is

provided by two types of analysis, one with restricted isometry property (RIP) in Subsection

2.2.3 and the other with distortion of the kernel spaces in Subsection 2.2.4.

Chapter 3 presents the formulation of derivative compressive sampling (DCS) as well

as the system architecture. Design of the method is explained in Section 3.1. Since the

recovered signal via DCS is the image gradient, Section 3.2 applies the least squares solution

to recover the image surface from its gradients. Section 3.3 clarifies the space of the solution

and necessary number of samples to uniquely recover the signal of interest via DCS. The

problem of redundant measurement in DCS is explained in Subsection 3.3.1 and proposes a

solution to eliminate non-necessary samples. The DCS is applied on the problem of phase
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unwrapping and preliminary results are demonstrated in Section 3.5. The following chapter

is summarized in Section 3.6.

Finally, Chapter 4 outlines the conclusion and the research plan of the following thesis.
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Chapter 2

Literature Review

Since the proposed methodology is derived as a symbiosis of two distinct areas of scientific

research - phase unwrapping and compressive sensing - Section 2 provides an overview of

existing literature on both fields. First, the problem of phase unwrapping is discussed.

Phase unwrapping is a challenging task due to the existence of residual points where they

impose ambiguities in unwrapping process. Path following, minimum Lp-norm, bayesian and

parametric modelling methods are the main approaches for phase unwrapping algorithms.

The second part focuses on the problem of compressed sensing where it expands the main

ideas and results. This area has been vastly investigated both in theoretical and applicational

aspects.

The following chapter is organized as follows. Section 2.1 explains the problem of phase

unwrapping. Next, in subsection 2.1.3, the concept of residual points is introduced. These

points are known as inconsistent points where subsection 2.1.4 explains the locating method-

ology in order to incorporate such information to prevent unstability of unwrapping process.

The quality of the measured phase at a discrete level is affected by the residual points in

wrapped phases. Subsection 2.1.5 gives an analogy to determine such quality by introducing

quality maps and subsection 2.1.6 gives a short overview on the existing methodologies for

phase unwrapping.

As mentioned in Section 1.2, the problem of phase unwrapping can be solved as a specific

instance of compressive sampling scheme. The remainder of this chapter gives an overview
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of the compressive sampling (CS) problem in Section 2.2. The basic intuitions of CS is given

in subsection 2.2.2. Based on the analytical improvement of the field, two main categories

have been separated in compressive sampling defined in Sections 2.2.3 and 2.2.4 by means of

restricted isometry property (RIP) and kernel measurements, respectively. Finally Section

2.3 concludes the chapter.

2.1 Phase Unwrapping

Phase interferometry refers to the technique that infers the direction of the arrival of the

signal collected by at least two separated antennas through measuring the difference in phase.

This technique is used in many applications to estimate the amplitude differences from the

ground. Among such applications are synthetic aperture radar (SAR) imaging [19], magnetic

resonance imaging (MRI) [34], fringe pattern analysis [35], tomography and spectroscopy [36].

The phase is collected from the argument of complex functions of transferred signals used

to record the data in such applications. The difference in phase magnitude is expressed as an

integer number of wavelengths with addition of fraction of one wavelength, so the measured

phase lyes between (−π, π] [21].

2.1.1 Synthetic Aperture Radar (SAR) Interferometry

In this subsection, we exemplify the problem of phase unwrapping using the example of

synthetic aperture radar (SAR) interferometry as an important application in remote sensing.

This imaging technique is of great importance in geophysical monitoring [20]. It provides high

resolution images at higher altitudes from the ground regardless of any climate conditions,

day or night. It utilizes two or more reflected coherent signals from terrain to elicit relevant

phase information through their interference. These signals are sent by an aircraft or satellite

platform differ in the sensor flight track, acquisition time or used wavelengths [37]. Figure

2.1 demonstrates the geometry of synthetic aperture radar (SAR) interferometry by means

of two antennas S1 and S2 separated by the baseline B. The phase difference between the

two SAR images is referred as interferometric phase ∆φ.
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Figure 2.1: Geometry of SAR interferometry by means of two antennas. S1 and S2 are the

antennas position. B refers to the baseline of the difference of two sources and Bn refers to

the perpendicular baseline. LOS is the line of sight.
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For instance, in the case of two coherent signals they can be approximated as

G1(x, y) ∼= A1(x, y) exp
(
j4πR1(x,y)

λ

)
,

G2(x, y) ∼= A2(x, y) exp
(
j4πR2(x,y)

λ

)
,

(2.1)

where Ai is the complex terrain reflectivity, Ri is the range from satellite i to the point

(x, y) and λ is the microwave’s wavelength [21]. The reflectivity terms are usually highly

correlated and can be considered to be equal, i.e., A1(x, y) = A2(x, y) = A(x, y). The inter-

ferometric phase is related to the difference in the propagation path of the two transmitted

signals, so the interfered of the two images can be expressed by conjugate multiplication,

G1(x, y)G∗2(x, y) ∼= |A(x, y)|2 exp

{
j

4π

λ
[R1(x, y)−R2(x, y)]

}
, (2.2)

The phase difference is measured by the argument function operating on the complex

quantity in (2.2). This provides wrapped version of the phase, i.e.,

W

(4π/λ) [R1(x, y)−R2(x, y)]︸ ︷︷ ︸
∆φ

 ∈ (−π, π] . (2.3)

The wrapping operator W here adds a piecewise constant function to the original interfero-

metric phase ∆φ resulting in

W [∆φ] = ∆φ+ 2πk, k ∈ Z. (2.4)

So, in conclusion the wrapped phase lyes between −π ≤ W [φ] ≤ π. The difference in phase

originates from the elevation change in the ground where the relation between these two

variation builds the topographic mapping, i.e.,

∆φ = ∆z
4π

λ

Bn

R sin θ
(2.5)

where θ here is the direction of arrival signal and ∆z is the difference in elevation from the

ground [38].

2.1.2 Principal (Wrapped Phases)

As mentioned before, there are different application in phase interferometry that the gener-

ated images are wrapped between ±π. Let F (x, y) be an arbitrary continuously differentiable
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(a) (b) (c)

Figure 2.2: (a) Original phase; (b) the same phase represented as gray-scale image; (c) Its

corresponding wrapped phase.

function defined over a closed subset of the real plane R2. If F happens to be the phase of

a complex-valued function, it can only be measured in its wrapped form, i.e. modulo 2π.

Formally, the process of phase wrapping can be represented by its associated operator

W : R2 → (−π, π]. In this notation, the wrapped principal phase R is given as R = W [F ].

Specifically, the operator W adds to F a piecewise-constant function K : R2 → {2π k}k∈Z

resulting in R =W [F ] = F +K that obeys [39]:

−π <W [F (x, y)] ≤ π, ∀(x, y) ∈ R2. (2.6)

In complex notation, the gradients of F and R can be defined by applying the following

operator

∇ =
∂

∂x
i +

∂

∂y
j, (2.7)

where i and j denote the unit vectors associated with the x- and y-axis, respectively. Con-

sequently the gradient of R is given by

∇R = ∇W [F ] = ∇F +∇K. (2.8)

Finally, applying the wrapping operator W one more time to both sides of (2.8) results in

W [∇W [F ]] =W [∇R] = ∇F +∇K +K ′. (2.9)
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Due the property of operator W to produce the values in interval [−π, π], the term K +K ′

vanishes as long as [21]

−π < ∇F ≤ π. (2.10)

Therefore, as long as the condition (2.10) above holds, the gradient of the original phase F

can be unambiguously recovered from the gradient of the corresponding principal phase R

according to

∇F =W [∇R] . (2.11)

Provided (2.11) holds, in 1-D, the original phase can therefore be recovered through

integrating the wrapped differences of wrapped phases done by Itoh’s method [22]. The

notion can be extended for higher dimensions e.g. 2-D signals (images ) simply considering

a path for integration along the phase gradients. In this case, the original phase is estimated

by applying an optimization problem, given a measured wrapped phase R, an estimate F̂ of

the original phase F could be obtained as a solution to the following minimization problem

F̂ = arg min
F

∫ ∫
‖∇F −W{∇R}‖2 dx dy, (2.12)

which amounts to solving a Poisson equation subject to appropriate boundary conditions.

Unfortunately, situations are rare in which the condition (2.10) can be a priori guaranteed.

In this case, the estimate of ∇F as W [∇R] is contaminated by, so called, residuals, which

cause the solution of (2.11) to be of little practical value.

2.1.3 Residue Theorem and Its Practical Implications

As mentioned, the concept of Itoh’s integration method [22] for phase unwrapping can be

extended to the case of N dimensions, where by integrating from an initial point r0 any point

r can be carried out through a line integral [21],

F (r) =

∫
∂S

∇F · dr + F (r0), (2.13)

where ∂S is any path in N -dimensional space connecting the points r0 and r and ∇F is

the phase gradient field. Assuming ∇F ∈ C1 is a differentiable vector field defined over
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a piecewise C2 bounded oriented surface S ∈ R3 whose boundary ∂S has the inherited

orientation, then the line integral in (2.13) is equivalent to the surface integral from Stoke’s

theorem ∫
∂S

∇F · dr =

∫ ∫
S

(∇× (∇F )) · da. (2.14)

This theorem is also regarded as curved version of Green’s theorem in the plane [40]. An

special case of this theory states that if the surface S is a closed surface (∂S = 0) then the

path integral of gradient field in (2.13) becomes path independent, i.e.,∫ ∫
S

(∇× (∇F )) · da = 0. (2.15)

By substituting ∇F = i∂F/∂x+ j∂F/∂y and dr = idx+ jdy where i and j are coordinate

directions in two dimension, the integral in (2.13) along any path ∂S becomes

I =

∫
∂S

(
∂F

∂x
dx+

∂F

∂y
dy

)
, (2.16)

Recalling from the vector calculus, the curl of the gradient vanishes if the cross-derivatives

are equal, i.e.,

∇× (∇F ) = ∇×
{

i
∂F

∂x
+ j

∂F

∂y

}
= 0i + 0j +

(
∂

∂y

(
∂F

∂x

)
− ∂

∂x

(
∂F

∂y

))
k = 0, (2.17)

which happens if and only if
∂

∂y

(
∂F

∂x

)
=

∂

∂x

(
∂F

∂y

)
. (2.18)

The cross-derivative constraint in (2.18) holds for any differentiable function (gradient

field here) ∇F ∈ C1 where it can be violated in isolated points. In this case, the path

integral in (2.16) becomes path dependent. In conclusion, the integral in (2.16) will turn to

zero through any closed contour (path) if, and only if, the condition in (2.18) holds,∮ (
∂F

∂x
dx+

∂F

∂y
dy

)
= 0, (2.19)

If this condition holds for any closed path, the integration in (2.13) becomes path independent

and the wrapped phase can be unwrapped by evaluating the related integral, starting from

any initial point. In the case of 2−D phase unwrapping, the condition for path independency

(2.18) can be violated if the condition in (2.10) does not hold. The failure of such condition in
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practical implementation can be motivated by noisy measurements and sub-nyquist sampling

problem where it can affect the process of phase unwrapping algorithms [21].

As was mentioned before, the closed loop integration in (2.19) can be non-zero for specific

paths if it violates the condition in (2.18). The smallest closed path in two dimensional

discrete case can be defined by a 2 × 2 pixel neighbourhood. This small loop can help to

locate phase inconsistency in all over the sampled image, where it is called the “residues”

by Goldstein et al [23]. The “residue theorem” for two-dimensional phase unwrapping is

introduced by the following integration∮
∇F · dr = 2π × (sum of enclosed path residue charges), (2.20)

where it defines that the closed path integral around any residue will equal some integer

multiple of 2π radians. The line integral around a balanced residue is equal to zero for any

simple path. Thus, two-dimensional phase unwrapping is possible if, and only if, balanced

residues lye in all integral paths and the integration do not encircle any unbalanced residues.

2.1.4 Locating Residues in Two-Dimensional Arrays

Locating the residues is a crucial step of phase unwrapping due to the inconsistence infor-

mation contain in such points. Let Ri,j be the wrapped counterpart of the original phase

Fi,j. Recalling Equation (2.11), the wrapped difference of wrapped phase is analogous to the

original phase difference, except for the phase residues. Thus, evaluating Equation (2.20) on

all phase gradient fields will provide balanced and unbalanced phase residual information for

all 2 × 2 pixel closed paths in the image. Lets assume that we have access to the sampled

of wrapped phase arrays Ri,j. A small portion of such portion can be modelled as shown in

Figure 2.3(a) and the wrapped difference of wrapped phase can be formulated by,

∆y
i,j =W {Ri+1,j −Ri,j} , i ∈ {0, . . . ,M − 2} , j ∈ {0, . . . , N − 1}

∆y
i,j = 0, otherwise,

(2.21)

and

∆x
i,j =W {Ri,j+1 −Ri,j} , i ∈ {0, . . . ,M − 1} , j ∈ {0, . . . , N − 2}

∆x
i,j = 0, otherwise,

(2.22)
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(a) (b)

Figure 2.3: (a) Closed contour evaluated of 2 × 2 pixel neighbourhood of wrapped phase ;

(b) A residue maps with its positive and negative pixels indicating the positive and negative

residues, respectively.

where reflective boundary conditions are used. x an y superscripts refer to wrapped difference

in the j and i indexes, respectively. Integration of the gradient along 2×2 pixel closed path,

shown in Figure 2.3(a), can be evaluated by summing the phase differences around the closed

path. Referring to Figure 2.3(a),

∆1 = ∆y
i,j =W {Ri+1,j −Ri,j}

∆2 = ∆x
i+1,j =W {Ri+1,j+1 −Ri+1,j}

∆3 = −∆y
i,j+1 =W {Ri,j+1 −Ri+1,j+1}

∆4 = −∆x
i,j =W {Ri,j −Ri,j+1}

⇒ Residue Charge =
∑4

k=1 ∆k

(2.23)

The closed path integral along any 2 × 2 pixel is equal to zero if the cross-derivative

condition in (2.18) holds, otherwise there will exist an unbalanced residue of the closed

integral with±2π value. Figure 2.3(b) demonstrates the location of residual point of wrapped

phase in Figure 2.2(c). Positive and negative charges are shown by white and black pixels,

respectively. Residues mark near origination/termination of end points of disconnected lines

in wrapped phase image along which the true phase gradient exceeds ±π. Such disconnected

lines are also known as fringe-patterns.
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2.1.5 Quality Maps and Masks

Residues make the process of phase unwrapping path dependent and the problem turns to

be ill-posed. In fact, given a wrapped phase, one can retrieve infinite number of possible cor-

responding unwrapped images. In many algorithms the performance of unwrapping process

depends on how such residues are going to be incorporated in the procedure. For example,

in many path-following algorithms, the performance of the methods depends on the path

chosen for unwrapping. Goldstain’s brach cut algorithm [23], known as a classical algorithm,

is one of fastest methods which connects nearby residues to make them balanced and mini-

mize the length of branch cuts. However, this method is not an optimal solution. In several

path following methods [41,42] and weighted Lp-norm solutions [26–29], the measured phase

is qualified to guide the unwrapping procedure. This is done by quantifying the quality

information generated by residual points.

The quality maps are arrays of values which define the quality of given phase data. For

each two dimensional wrapped phase we can define a quality map that measures the quality

or “goodness” of each pixel in the image [21]. Amongst many maps, the following maps are

commonly used in the field of phase unwrapping

• Pseudocorrelation is analogous to the correlation map of the complex-valued SAR

images,

|Qm,n| =

√
(
∑

cosψi,j)
2 + (

∑
sinψi,j)

2

k2
(2.24)

where the sum are evaluated over a k × k neighbourhood of each pixel (m,n) and ψi,j

is the arrayed measured phase. Figure 2.4(c) shows the related Pseudocorrelation map

of the wrapped image in Figure 2.4(a).

• Phase Derivative Variance is the statistical variance of difference of wrapped phase,

Qm,n =

√∑(
∇yψi,j −∇yψm,n

)2

+

√∑(
∇xψi,j −∇xψm,n

)2

k2
(2.25)

where the sum is taken over k×k windows centred at (m,n) pixel in the image. ∇yψi,j

and ∇xψi,j are the y and x gradients which can be approximated by (2.21) and (2.22),
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respectively. Finally, ∇yψm,n and ∇xψm,n are the averages of y and x gradients defined

on k × k windows, respectively. This quality map is shown in Figure 2.4(d).

• Maximum Phase Gradient defines the largest phase gradient in k × k windows, see

Figure 2.4(e) and 2.4(f).

Qy
m,n = max

{∣∣∆y
i,j

∣∣}
Qx
m,n = max

{∣∣∆x
i,j

∣∣} (2.26)

On phase that remains in constant variation, the phase derivative variance is zero and it

differs from pseudocorrelation measure, see Figure 2.4(c) and 2.4(d) for comparison. In

addition to the mentioned three quality maps, there is an extra correlation map which is been

calculated via tilted baseline, see Figure 2.1 in SAR imaging. This map is the best estimation

of the quality of measured phase in SAR imaging since it measures the decorrelated phase

caused by SAR layover. The baseline distance B between two antennas S1 and S2 and the

tilt of this base line (see Figure 2.1) generates two complex-valued SAR images, ui,j and vi,j,

where it generates the correlation map, i.e.

Qm,n =

∑
ui,jv

∗
i,j√∑

|ui,j|2
∑
|vi,j|2

, (2.27)

where v∗i,j is the complex conjugate of vi,j. The sum in (2.27), called “multilook averaging,” is

evaluated over the k×k neighbourhood centred at (m,n) pixels. Among the three introduced

quality maps, phase derivative variance highlight the same regions of decorrelated values in

correlated map. This quality map is the most reliable one for phase quality measurement

when the correlation map data is not available [21].

In order to depict the quality of measured phase, the arrays of the quality map is quan-

tized and variates between [0, 1] increasing from the poor to the best quality. Usually the

unwrapping methods require mask for each pixel instead of the quality value in order to

depict whether the related pixel is going to be considered in unwrapping procedure or not.

So, in practice, the quality map are binarized by means of global thresholding to produce

the related mask. Usually this threshold value is extracted by an adaptive method called

quality re-mapping [43] or manually by a human factor [42], see Figure (2.5) for the binarized

masks.
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(a) (b)

(c) (d)

(e) (f)

Figure 2.4: (a) Wrapped phase; (b) Residues of the wrapped phase; (c) Pseudocorrelation

map of the wrapped phase; (d) Phase gradient variance of the wrapped phase; (e) Maximum

phase y-gradient map; (f) Maximum phase x-gradient map.
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(a) (b)

(c) (d)

Figure 2.5: (a) Mask obtained by thresholding pseudocorrelation quality map; (b) Phase

Gradient Variance Mask; (c) Maximum Phase Zy-Gradient Mask; (d) Maximum Phase Zx-

Gradient Mask.
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2.1.6 phase Unwrapping in 2D

An increasing number of research methods have been introduced over the past three decades

for two dimensional phase unwrapping. These methods are mainly classified in two parts:

path-following algorithms and Lp-norm solutions.

Branch cut algorithms by Goldstein et al [23] was introduced in 1988 which is regarded

as classical path-following method. The aim of the method was to connect nearby residues

with opposite polarities by branch cuts in order to minimize the sum of the cut lengths.

The integration path in this method is not allowed to have cross-overs, so the closed loop

integral of phase difference in the related path will vanish to zero. The algorithm generates

minimum branch cuts and is extremely fast. However, Goldstein algorithm suffers from the

noisy measurements since it generates branch-cuts that joins the residues in clumps rather

than pairs. Some other branch cut algorithms are addressed in [24] and [25] overcome this

problem by restricting the branch-cuts to dipole cuts.

The second approach for phase unwrapping is the minimum Lp-norm methods, where

these methods try to match local derivatives with measured derivatives “as closely as possi-

ble” through minimizing the norm of the error in (2.12). Least squares solution (L2-norm)

first proposed by Fried and Hudgin [26, 27] in 1977 to minimize the sum of squares of gra-

dients between the wrapped phase and reconstructed surface. Fornaro et al [28] improved

the method by introducing a weighted mask on the least squares. Ghiglia and Romero [44]

developed wighted least square method by combining fast cosine transform and iterative

method to unwrap the phase. The L2-nomr method has also been investigated by Pritt [43]

where he used multigrid techniques to solve Gauss-Seidel relaxation schemes.

L2-norm solutions are sensitive to the outliers, so the solution does not pass through the

data points exactly. The minimum absolute error occurs where p = 1 where the outliers

have lower impact on the solution. The solution to the problems is addressed by Flynn [29]

and Costantini [30] where they used discontinuity modelling approaches and network flow

for global minimization, respectively. In particular, for the case 0 ≤ p < 1 the discontinuity

is preserved as feature of Lp-norm algorithms and enhanced by Chen [31]. Although some

of these algorithms are more accurate and stable, but they lack from the computational
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efficiency and practically heavy to implement.

L0-norm optimized solutions are the most desirable methods in practice. These methods

impose a constraint to the solution such that the phase difference of wrapped phase should

matches with the unwrapped phase in the sense of minimum L0-norm. During the process,

the weighting coefficients from quality maps are required to mask the phase inconsistencies

[21, 45]. Unfortunately, since the L0-minimization method is non-convex, the search space

is non-feasible and the unique minimized solution is not guaranteed. In addition, these

methods need combinatorial searching and computationally heavy to implement.

Some other unwrapping methods have been introduce where they combine both path-

following and minimum Lp-norm methods. Bioucas-Dias and Valado [32] proposed new

energy minimization framework (PUMA) in 2007 on phase unwrapping based on graph cuts

optimization technique, where the algorithm considers convex pairwise pixel interaction using

classical minimum Lp-norm problems for p ≥ 1. Later on, Bioucas-Dias [33] improved the

methodology by means of adaptive local de-noising based on local polynomial approximation

prior to their phase unwrapping algorithm.

2.2 Compressive Sampling

The idea of sparse signal recovery was first introduced by Donoho [46] in the form of the

generalized uncertainty principle. In this initial setup, a band limited signal f(t) ∈ L2(R) is

used for transmission over a channel, in which it “loses” its values on a subset T . Formally,

one can define

r (t) = (I−PT ) f(t) + n(t), (2.28)

where I denotes the identity operator (If)(t) = f , n(t) is observation noise, and PT denotes

the spatial limiting operator of the form

PTf(t) =

f(t), t ∈ T

0, otherwise

(2.29)
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The second operator used in [46] is a band limiting operator defined by

PΩf(t) ≡
∫

Ω

f̂(ω)e2πıωtdω, (2.30)

where f̂(ω) denotes the Fourier transform of f(t). The function f and its Fourier transformed

f̂(ω) are mainly concentrated on the measured subsets T and Ω, respectively, such that

‖f −PTf(t)‖2 ≤ εT (2.31)

and ∥∥∥f̂ −PΩf̂(t)
∥∥∥

2
≤ εΩ. (2.32)

By the above assumption, the following theorem is introduced [46].

Theorem 1 Let T and Ω be measurable sets and suppose there is a Fourier transform pair

(f, f̂), with f and f̂ of unit norm, such that f is εT -concentrated on T and f̂(ω) is εΩ-

concentrated on Ω. Then the following inequality holds

|1− (εT + εΩ)| ≤ ‖PΩPT‖ ≤
√
|Ω| · |T |, (2.33)

where for the bounded linear operator PTPΩ the norm of the operator is

‖PTPΩ‖ = sup
f∈L2(R)

‖PTPΩf‖
‖PΩf‖

. (2.34)

The operator norm ‖PTPΩ‖ measures how a band-limited function (i.e., g ∈ B2(Ω) implies

PΩg=g) can be concentrated on T. The inequality ‖PΩPT‖ ≤
√
|Ω| · |T | implies that there is

a limited “energy” concentration on T for band limited signals. For example, if |Ω| · |T | = 0.5

then it implies no band limited function can be located on T with more than 50% of its

“energy”. The same theory applies for the finite dimensional signals where the sets T and

Ω become index set.

The main goal in [46] is to reconstruct the transmitted signal f from the noisy received

signal r. The possibility of such a recovery is assured by Theorems 1 above and Theorem 4

in [46] asserting that if |Ω| |T c| < 1, where T c indicates the zero measure set of the function

(complement of the set T ), then there exists a linear operator Q and a constant p such that

‖f −Q[r]‖ ≤ p‖n‖, (2.35)

23



where p ≤
(

1−
√
|T c| |Ω|

)−1

. Specifically, the reconstruction operator Q is given by

Q = (I−PTPΩ)−1 =
∞∑
k=0

(PTPΩ)k . (2.36)

Moreover, the resulting solution is unique, and it can be approximated by computing a

truncated Neumann series for some finite k = N . This interesting result indicates that if

a band-limited signal corrupts in the receiver such that |Ω| |T c| < 1 then the signal can be

recovered via iterative method introduced by Neumann series. Such condition is analogues to

the Heisenberg inequality where the support of the signal in spatial and frequency domains

have inverse relation with each other.

Over the past two decades, the idea of sparse signal recovery has been generalized and

investigated with wavelets analysis. Sparse representation of the signals by means of multi-

resolutional analysis brought many attentions to the field over the past decade where it

originated the concept of compressed sensing to recover signals with fewer sample rates.

This concept is in exact opposite definition of Nyquist-Shannon condition, where it indicates

that in order to avoid aliasing in signal recovery, the signal should be sampled with twice the

frequency exist in the signal. But, compressive sampling propose the idea that if the signal

can be represented sparse in a domain then with much fewer sampling rate, the recovery is

possible.

2.2.1 Possible Generalization of CS Problem

The theory of “Compressive Sampling (CS)”, also referred as compressed sensing, is a novel

pattern of sampling strategy which is against the conventional approach of data acquisition.

The theory asserts that one can recover signals of interest with an incomplete measurements

compared to traditional method used for signal recovery. This theory has been attracted a

lot of attention both in mathematics and application. Generally speaking, this idea refers

to recovering n-dimensional signals f approximately from linear measurements 〈x, φi〉 where

φi ∈ RN may form an orthonormal basis,

yi = 〈f, φi〉 , i ∈ Ω ⊂ {1, . . . , n} , (2.37)

24



where m = |Ω| is the cardinality of Ω defines the number of partial indices, usually picked

uniformly at random, such that m < n. Let ΦΩ be the n × m matrix whose columns are

restricted to φi for which i ∈ Ω. Then, assuming that the signal f can be sparsely represented

by a dictionary, for example usually wavelet domains, as f = Ψ c for some coefficient vector

c ∈ Rn, the signal can be exactly recovered by solving combinatorial optimization problem

(P0) minc ‖c‖0 s.t. ΦT
ΩΨc = y, (2.38)

where y ∈ Rm stands the vector of m measurements in (2.11) and ‖c‖0 is the number of

nonzero components in c. K = # {ci 6= 0, i ∈ {1, . . . , n}}. However, this minimization is

a non-convex problem and the searching space is unfeasible, so the unique minimization is

not guaranteed. Instead, a more computationally efficient strategy for recovering c from its

measurements can be carried out by solving convex L1-minimization problem

(P1) minc ‖c‖1 =
∑n

k=1 |ck|, s.t. ΦT
ΩΨc = y, (2.39)

The above problem can be solved by means of linear programming which, among all solu-

tions obeying the measurement constraint ΦT
ΩΨc = y, picks the one that has the sparsest

representation in the domain of Ψ as measured by the `1-norm of c.

One can show that, under certain conditions, the problem P0 and P1 are equivalent. For

instance , Donoho et al showed in [1] that unique sparse representation ĉ to the solution of

P1 is equivalent to P0 if, and only if,

k = ‖ĉ‖0 < (1 + 1/M)/2 (2.40)

where M is the mutual coherency of the overcomplete dictionary [Φ, Ψ],

M = max

1 ≤ i, j ≤ n

i 6= j

|〈φi, ψj〉| (2.41)

This result provides a bound on the number of elements of sparse vectors that can be

recovered via linear programming LP (P1) and allow to construct a matrices [Φ, Ψ] with

k �
√
n. Recent surveys in compressed sensing [2, 3] provide results in the existence of
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matrices with k � n/ log (m/n) which is substantially larger than
√
n. Extensive research

has been done in the field to extract bounds for stable recoveries. The sampling rate versus

sparsity of the vectors is the main issue to guarantee unique and efficient recoveries.

2.2.2 Formal Definitions and Underlying Principles

The idea of compressive sampling was first formulated by Candes in [4] showing that certain

classes of vectors can be recovered from their partial measurements via solving the mini-

mization problem P1. Formally speaking, the necessary and sufficient condition for c to

be a unique minimizer of (P1) is dependent on the existence of a trigonometric polynomial

function P (t). Suppose our sampling is limited to partial information on ĉ such that any

solution to (P1) should obey,

ATΩc = ATΩĉ, Ω ⊂ Zn (2.42)

where AΩ ∈ Rn×m. Lets define a subset of vectors u ∈ X which has the following features,

1. The support of the vector obeys supp(u) = T

2. There exist a polynomial function P (t) :

= sign(u(t)), t ∈ T

|P (t)| < 1, t ∈ T c

3. The polynomial functioned defined be u exist in the kernel of the sensing matrix re-

stricted to the complement of the sampled indices Ωc, i.e., P (t) ∈ N
(
ATΩc

)
where supp(.) denotes the support of a function by obtaining the indices where the function

is non-zero. The main theorem in [4] can now be stated as follows.

Theorem 2 The necessary and sufficient condition for the solution c to be the solution to

(P1) is that c ∈ X. If this holds, then adding any vector from the kernel of the operator

∀η(t) ∈ ker(AΩ) will increase the norm, i.e. ‖c+ η‖1 ≥ ‖c‖1. Moreover, if ATΩ is injective,

then ‖c+ η‖1 = ‖c‖1 which means the minimizer ĉ to (P1) is unique and is equal to c.

ATΩ here denotes AΩ whose rows are restricted to T . If T ≤ Ω and the matrix ATΩ is of

full row rank, then it is injective operator. This theorem states that certain class of vectors
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which obeying the three conditions above can be the unique minimizer to (P1) if the sensing

matrix holds injectivity. Analogous results have been driven from uncertainty principles

in [46], where it states that if the sparsity level and sampling rate hold |T ||Ω| < n/2, then

(P1) uniquely recovers the signal of interest. Donoho et al [47] expressed this classical results

in more generalized format that c is the unique minimizer to (P1) if, and only if,∑
t∈Zn

|c(t) + η(t)| >
∑
t∈Zn

|c(t)| , ∀η 6= 0, η ∈ ker(AΩ) (2.43)

by partition of the left sides of the inequality to T and T c and applying triangle inequality,∑
t∈Zn

|c(t) + η(t)| =
∑
t∈T

|c(t) + η(t)|+
∑
t∈T c

|η(t)| ≥
∑
t∈T

|c(t)| −
∑
t∈T

|η(t)|+
∑
t∈T c

|η(t)| . (2.44)

Hence, the sufficient condition for c to be a unique minimizer of (P1) is∑
t∈T

|η(t)| <
∑
t∈T c

|η(t)| , ∀η 6= 0, η ∈ ker(AΩ). (2.45)

By adding
∑

t∈T |η(t)| to both sides in (2.45), consequently, the inequality can be redefined

as,

‖ηT‖1 <
1

2
‖η‖1 , ∀η 6= 0, η ∈ ker(AΩ) (2.46)

where ηT is a vector in kernel of the operator AΩ whose indices are restricted to the support

of the vector c. The analogy is now clear, which tells that c is the unique minimizer of (P1)

if we can not concentrate half of the l1-norm of a vector in the kernel of sensing matrix AΩ

(missing information) on a small set T . This results, as mentioned above, connects the main

theorem 2 in [4] with results of uncertainty principle in [46] by searching for the existence of

a polynomial function P (t) in second condition discussed before. This limits the choice of

vectors to be sparse and unique minimizer to the (P1). Candes defined this polynomial by,

P , AΩA
∗
TΩ (ATΩA

∗
TΩ)−1 sgn(cT ) (2.47)

where it satisfies P (t) = sgn(c(t)) for t ∈ T . If the set of observation Ω is chosen unformly

at random, such that

m = |Ω| ≥ C−1
M · |T | · log n (2.48)

where CM is an accuracy parameter, then
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• Invertibility of ATΩA
∗
TΩ holds by means of the injectivity of ATΩ with overwhelming

probability of 1−O(n−M)

• The polynomial function P (t) will obey |P (t)| < 1 for T c with the same probability

Several measurement models have been studied in [4] to analyze the stability of the recovery.

The above conditions are defined as Exact Reconstruction Principle (ERP) in [5] in order to

establish exact reconstruction of ĉ in (P1) by truncating c, keeping only T largest values.

The choice of sampling basis is of importance in CS since the linear measurement combine

correlation of the atoms in dictionary with the signal of interest by means of inner product

in (2.37). If this correlated value remains high it means the signal is observable by the atoms

of the sampling dictionary, otherwise the amount of information measured by the related

inner product will remain low and nothing can be done. Discrete Fourier dictionary for

sampling basis has been studied by Candes and Romberg in [6] to justify the principles of

exact recovery in CS. They have derived a bound on the number of measurements in the

frequency domain (which chosen uniformly at random) versus sparsity in any orthogonal

basis

|T |+ |Ω| � (log n)−1/2 · n. (2.49)

The result in (2.49) states that if the signal c is supported on T , then less than half of the

energy of the signal in Fourier domain, ATΩc, will concentrate on Ω.

Fourier basis is not the only sampling/representation system which can be used in com-

pressive sampling. Gaussian white noise and Bernoulli random matrices with ±1 values

distributed uniformly at random are also studied in [5, 8, 48, 49] where it has been shown

that the sparse signals can be recovered with near-minimal number of measurements. As a

matter of fact we are not in liberty to define the measurement ensembles, where there are

two circumstances that are imposed to limit our choice in practice. First, the modalities used

for data acquisition, e.g., magnetic resonance imaging (MRI) where we have control over the

Fourier coefficients for sampling or tomographic imaging where the machinery measures the

radon slices. The second drawback is the computational burden where the random measure-

ment ensembles are widely numerically; for large scale problem (image reconstruction), the

storage of atoms in dictionary are nearly impossible. So the goal is to find sampling matrices
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that provide the same recovery bounds and can be quicklly applied in practice. Such restric-

tions have been taken to the account in compressed sensing by Candes and Romberg [7].

They have shown that the relationship between the sensing modality (Φ) and signal model

(Ψ) affects the number of samples for sparse signals reconstruction. Simply, the recovery is

possible if the number of observations exceeds

|Ω| ≥ C · µ2(Φ,Ψ) · |T | · log n, (2.50)

where C is a positive constant and µ(Φ,Ψ) is the mutual incoherence between two dictionaries

Φ and Ψ by measuring similarities of the atoms in two bases

µ(Φ,Ψ) = max
i,j∈Zn

|〈φi, ψj〉|. (2.51)

Stability of the recovery is an important issue in the field of compressive sampling in order

to analyze the performance of the minimization algorithms. The remainder of this chap-

ter addresses two approaches for performance analysis: restricted isometry property (RIP)

introduce by Candes et al [8, 9] and width of finite dimensional sets, called distortion of a

subspace, introduce by Kashin, Garnaev and Gluskin [50,51].

2.2.3 Restricted Isometry Property (RIP)

Suppose we can recover sub-sampled version of a signal f which is sparse (compressible) in

the domain of Ψ, i.e. c = ΨTf . The stability of such recovery was first reported by Candes

et al [8, 9], introducing restricted isometry property (RIP) of the sensing matrix A = ΦTΨ.

A is said to obey the RIP of order k, RIPk, if there is a 0 < δk < 1 such that

(1− δk) ‖c‖2
2 ≤

∥∥ATΩc∥∥2

2
≤ (1 + δk) ‖c‖2

2 (2.52)

holds for all T of cardinality at most k, i.e., |T | ≤ k. Property (2.52) gives,

(1− δk) ≤ λmin

(
ATΩA

T
TΩ

)
≤ λmax

(
ATΩA

T
TΩ

)
≤ (1 + δk). (2.53)

So, the condition number of the sensing matrix is bounded by

κ (ATΩ) =
λmax

λmin

≤ 1 + δk
1− δk

(2.54)

29



As δk → 0 the bounds in (2.52) become more tight and the condition number of ATΩ decreases

to 1 and makes the matrix ATΩA
T
TΩ invertible. Candes and Tao [10] proved if the sensing

matrices AΩ meets the condition δ2k + δ3k < 1 for the sparsity level of k � n/ logm/n then

c will be the unique minimizer to (P1). They also prove in [9] that if δ3k + δ4k < 2 then the

error of recovery is bounded by

‖ĉ− c‖ ≤ C · k−1/2σk(c)1 (2.55)

where C is some positive constant and σk(c)1 is the best k term approximation of vector c

in l1-norm,

σk(c)1 , min
u∈Rn: |supp(u)|≤k

‖c− u‖1 . (2.56)

Further results on RIP analysis has been provided by Cohen et al [11] where they proved

that if the sensing matrix satisfies RIP of order 2k with δ2k < δ < 1/3 then the error of

recovery is bounded by

‖ĉ− c‖ ≤ 2 + 2δ

1− 3δ
σk(c)1. (2.57)

Several methods conducted the RIP condition as their framework of performance analysis for

the sparse signal recovery [52–55]. The RIP condition also has been reshaped in generalized

format, called GRIP [56], with equivalent term preserved by angels between sparse vectors.

Although RIP analysis is a fundamental platform for performance measurements of (P1)

algorithm, but there are some restrictions that makes this framework arguable. For instance,

Chander [57] raised negative results on explicit matrices whose entries are all 0 and 1 and

he reported poor performance from RIP property.

Using RIP property for measuring the stability of (P1) recovery is basically matrix de-

pendent [58], where by multiplying the sensing matrix AΩ with a fullrank matrix G can

change the characterization of such stability analysis. In particular, any designed model for

recovery, using the system of equation ATΩc = y, contains the whole information about the

signal that is going to be recovered. The equation ATΩc = y is equivalent to be multiplied

from both sides to a non singular matrix G ∈ Rm×m, i.e., GATΩc = Gy. From numerical con-

siderations,
(
GATΩ, Gb

)
carries the same amount of information that (A, b) does. However,

the RIP properties of two equivalent equations can be vastly different such that the RIP of
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GA to be bad no matter how good the RIP of A is. To show this, Equation (2.52) can be

revised as

(1− δk) ≤
∥∥ATΩc∥∥2

2

‖c‖2
2

≤ (1 + δk), (2.58)

so, the bounds in (2.58) controls the the matrix norm
∥∥ATTΩ

∥∥2

2
. Lets define

λkmin = min
‖c‖0=k

∥∥ATΩc∥∥2

2

‖c‖2
2

= 1− δk, (2.59)

λkmax = max
‖c‖0=k

∥∥ATΩc∥∥2

2

‖c‖2
2

= 1 + δk (2.60)

and

Γk(A
T
Ω) =

λkmax

λkmin

=
1 + δk
1− δk

(2.61)

Equation (2.61) can be solved for δk, i.e.,

δk
(
ATΩ
)

=
Γ(ATΩ)− 1

Γ(ATΩ) + 1
. (2.62)

Lets assume AΩ is stacked by two sub-matrices: AΩ = [A1; A2] where A1 ∈ Rm×m is

a non-singular matrix. Set G = BA−T1 for some non-singular B ∈ Rm×m. Then GATΩ =[
B, GAT2

]
. Let B1 ∈ Rm×k corresponds to the first k columns of B and let the condition

number of κ
(
BT

1 B1

)
= λ1/λk where λ1 and λk are the maximum and minimum eigenvalue

of BT
1 B1, respectively. Then κ

(
BT

1 B1

)
≤ Γk(GA

T
Ω) and we have

δk
(
GATΩ

)
=

Γ(GATΩ)− 1

Γ(GATΩ) + 1
= 1− 2

Γ(GATΩ) + 1
≥ 1− 2

κ (BT
1 B1) + 1

. (2.63)

Suppose one can choose B1 such that κ
(
BT

1 B1

)
would be arbitrary large and δk

(
GATΩ

)
→ 1.

As long as the matrix B remains non-singular, the recoverability and stability of the system

of equation GATΩc = Gy for l1-minimization will remain exactly the same as (P1). But since

the RIP property of GATΩ varies with G, it implies that the recoverability and stability of the

decoder will vary as well. Beside the theoretical implication, the RIP based analysis remains

conservative in practice for different sensing modalities, e.g. Gaussian or the ±1 Bernoulli

matrices [58]. These issues make the implication of RIP conditions weak for stability analysis

and not reliable to guarantee the recoverability of the implemented decoders.
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2.2.4 Kernel Measurements

Suppose we are interested to define conditions on which the problem (P1) admits a unique

solution. An alternative approach for stability and recoverability analysis of the problem,

instead of RIP, is analyzed by the theory of spherical section property of the subspace

generated by the sensing operator in (P1) [58–60].

Suppose the sensing matrix is defined by AΩ ∈ Rn×m, where Ω denotes the indices

referring to the columns of A. for any measurement vector y = ATΩĉ the class of all observable

signals, which fit the same measurement model, will belong to the affine space F(y) defined

as

F(y) ,
{
c : ATΩc = y

}
. (2.64)

So, any vector belong in F(y) can be expressed as the sum of two vectors, namely, a vector

in the affine space ĉ ∈ F(y) and a vector in the null space N (ATΩ) =
{
η : ATΩη = 0

}
.

c = ĉ+ η (2.65)

The vector in the null space η, also referred as the error vector, is generated in the process

of recovery using (P1) decoder. So, any solution to the problem exists in the radius ball

centred by the unique minimizer with the radius vector introduced by the null space. The

geometric structure of this null space, X ⊂ Rn, can be characterized with the classical results

introduced by Kashin [50], Figiel et al [61] and Garnaev and Gluskin [51], such that the ratio

of the l1-norm and l2-norm is bounded and varies from 1 to
√
n, for every η ∈ X,

1 ≤ ‖η‖1

‖η‖2

≤
√
n, ∀η ∈ X \ {0} (2.66)

where the right inequality follows from Cauchy-Schwartz,

‖η‖1 =
∑
i∈Zn

|ηi| =
∑
i∈Zn

ηi · sgnηi ≤

[∑
i∈Zn

η2
i

]1/2 [∑
i∈Zn

(sgnηi)
2

]1/2

=
√
n ‖η‖2 (2.67)

Furthermore, the Cauchy-Schwartz inequality holds with equality for scalers. The ratio

in (2.66) is relatively small for sparse vectors and as a matter of fact this ratio in most

subspaces have much larger lower bound than 1. This implies that most subspaces do

not contain excessively sparse vectors [58]. Thus, the following definition is used by many

authors, e.g. [50,51,58–60,62,63]
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Definition 1 Let m, n be two positive integer where m < n. Let X ⊂ Rn be an (n − m)

dimensional subspace. The distortion of the subspace X is defined by

∆(X) , sup
η∈X\{0}

√
n ‖η‖2

‖η‖1

(2.68)

In particular ∆(X) lies between [1,
√
n]. Kashin [50] and [51] demonstrated that for random

matrices, with i.i.d. Bernoulli entries ∆(X) ≤
√

(n/m) · log n/m holds with high probability.

Similar results have been also reported in [62–64]. The important question to be asked

here is, how the distortion measurement relates to the compressive sampling problem. The

operator AΩ in (P1) maps sparse vector ATΩ : Rn 7→ Rm from an n-dimensional space to

an m-dimensional subspace. Since the sensing matrix is full rank, its kernel is a non-empty

subspace X ∈ Rn−m which maps any vectors from this subspace to zero.

Let T = supp(x) ≤ k. Any measurement vector c, which is a solution to (P1), satisfies

ATΩc = y and lies in the affine space F(y) in (2.65). From the classical argument, c is the

unique minimizer to (P1) if (2.43) holds. From Definition 1, ∆(X) is bounded by

∆(X) ≥
√
n ‖η‖2

‖η‖1

(2.69)

The condition of unique minimization in (2.43) is equivalent to the condition expressed for

the kernel of the operator in (2.46). Lets assume ηT the null vector restricted to the indices

of T . Then, the l1-norm of ηT is bounded by

‖ηT‖1 =
∑
i∈T

ηi · sgnηi ≤

[∑
i∈T

η2
i

]1/2 [∑
i∈T

(sgnηi)
2

]1/2

=
√
|T | ‖ηT‖2 ≤

√
|T | ‖η‖2 (2.70)

By substituting (2.69) in (2.70),

‖ηT‖1 ≤
√
|T | ‖η‖2 ≤

∆(X)
√
|T |√

n
‖η‖1 (2.71)

If the right term of the inequality in (2.71) is bounded by 1
2
‖η‖1 from (2.46), then exact

recovery is guaranteed via (P1) decoder, i.e.,

∆(X)
√
|T |√

n
‖η‖1 <

1

2
‖η‖1 ⇐⇒

∆(X)
√
|T |√

n
<

1

2
. (2.72)

The following theorem [59] defines conditions for exact reconstruction via (P1) minimization,

which provides a bound to recover any sparse vector c measured by a linear mapping ATΩ

whose kernel has low distortion.
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Theorem 3 Let c ∈ Rn with cardinality at most k , i.e., |supp(c)| ≤ k. c is the unique

solution to (P1) if, and only if,

k <
n

4∆(X)2
(2.73)

where X = N (ATΩ) is the null space of X

The theorem specifies the necessary number of measurements for exact reconstruction. The

error of the recovery is bounded by the kernel measure given by Temlyakov [59]. In similar

fashion, Vavasis [60] proved the necessary condition of recoverability by restricting kernel

members in (2.43) to best S-term approximation indices of a solution to (P1) in order to

derive the error bounds. Related analysis can also be found in [48] on the range space of the

sensing operator and it has been proven that if the operator satisfies three condition (CS1-

CS3), then there exists a constant ρ such that the recovery will be exact via l1 minimization

for sparse vectors, where |T | < ρ · |Ω| / log n. Zhang [58] used the same concept of the null

space property to show stability and recoverability of (P1) in the presence of prior information

which exist in some signals of interest.

2.3 Summary

The problem of phase unwrapping is still a challenge when the number of residual points

increases in the wrapped images. This affects the existing unwrapping methods and increase

the error of recovery. Interpretation of Such inconsistent points in phase unwrapping algo-

rithms is still a challenge to the criteria. Path-following methods perform fast computations,

however the accuracy of these algorithms is greatly influenced in the presence of noisy mea-

surements. Quality guided maps ease the problem by masking the candidates of residual

points in wrapped phases in order to prevent inconsistencies in unwrapping process.

The conditions of exact recovery in compressive sampling are dependent on compress-

ibility of the signal and the number of measurements. RIP condition and Kernel analysis

properties are the present methods in literature to exam and analyze the performance of CS

algorithms and state the condition of exact recoveries. Both methods suffer from some tech-

nical issues. RIP methods are matrix dependent and are not reliable to perform theoretical
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analysis on the stability and recoverability of (P1) decoder. On the other hand, kernel based

analysis has difficulties in practical implementation where only some bounds are available

on the distortion of sensing operators in (P1), e.g., random matrices and Bernoulli matrices.

In some application, one can be provided with a priori knowledge where it carries extra

information in addition to the system of equation in (P1). This information limits the

searching space in the decoder and hence can enhance recovery results. which is of great

interest in the field of CS nowadays. Preliminary contribution is done by Zhang [58] where he

showed that assuming the solution of the recovery to be close to a prior signal, the accuracy

of the recovery increases .
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Chapter 3

Proposed Method

As previously mentioned, there are many applications in which one is provided with the

measurements of the gradient of an image rather than of the values of the image itself.

Given the measurements of the gradient, the corresponding image can be reconstructed

subject to an initial knowledge which comes from the boundary condition being considered

for derivative approximation. One of such applications, which has been chosen to exemplify

the major contribution of this proposal, is the problem of phase unwrapping.

In this proposal, we introduce a different solution to the problem of phase unwrapping

which is based on the theory of compressive sampling. In particular, let Γ ⊂ R2 be a finite

discrete subset over which the values of a phase F need to be recovered. Let further Γ0 denote

a subset of those points in Γ at which the condition (2.10) is known to hold, and hence at

which the gradient ∇F estimated according to (2.11) can be assumed to be errorless. (Note

that the subset Γ0 can be identified by quality maps as detailed in 2.1.5). Subsequently,

we first recover the values of ∇F over the whole Γ from its incomplete measurements over

Γ0, followed by estimating the original phase F using (2.11). Moreover, in addition to the

standard constraints of compressive sampling, we propose to use the constraints stemming

from the nature of the gradient as a potential field in (2.18). We refer to the problem

of reconstruction of F from {∇F (x, y)}(x,y)∈Γ0 as the problem of derivative compressive

sampling (DCS), and show that using (2.18) allows considerably reducing the cardinality of

Γ0, while preserving a predefined error rate.
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Section 3.1 introduces the DCS method. This section defines how the derivative con-

straints can be used to improve the performance of CS. Since the signal recovered via DCS

is an image gradient, Section 3.2 explains how the original image can be recovered from its

derivatives through Least squares minimization. In Section 3.3, we introduce a procedure

to find the linear dependency of the sensing matrix with cross-derivative matrix and specify

a way to eliminate the unnecessary samples in Subsection 3.3.1. Preliminary results are

demonstrated in Section 3.5.3 where the sampling indices for phase unwrapping are clarified

by defining a quality map. This map uses two separate terms which is extracted from phase

gradient variance method. Finally Section 3.6 concludes the chapter.

3.1 Derivative Compressive Sampling (DCS)

In the case when only partial derivatives of a signal of interest are available, the sampling

operator of compressive sampling becomes the kernel of a derivative operator. In particular,

in the 2-D case, we are given the measurements of Fx = ∂F/∂x and Fy = ∂F/∂y. At this

point, there are two possibilities to find F . The first would be to define Φ to be a discretized

version of the 1st-order derivative operator. This choice, however, could result in relatively

large values of the coherency µ(Φ,Ψ) = 2
√

2/n for the case when Ψ is a DCT orthobasis

(which is the choice in the present study). This would, in turn, increase the bound in (2.50),

which could be unacceptable for practical considerations. On the other hand, one can define

Φ to be the Dirac comb (i.e., Φ = I), so µ(Φ,Ψ) =
√

2/n. In this case, the partial derivatives

can be recovered first, followed by integrating the latter using (2.12).

To proceed with the second of the above-mentioned possibilities, we turn to a discrete

setup in which F , Fx and Fy are considered to be n× n matrices. In this case, the maximal

possible number of measurements is equal to 2n2, and hence Γ0 ⊂ {1, 2, . . . , 2n2}. Specifi-

cally, we are interested in the case when m = #Γ0 < n2. In the two dimensional case, the

partial derivatives Fx and Fy can be approximated according to

Fx =
∂F

∂x
∼= FDT (3.1)

Fy =
∂F

∂y
∼= DF,
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where D is two dimensional difference matrix given by (3.2) where, for the sake of concrete-

ness, reflective boundary conditions have been assumed.

D =



−1 1 0 · · · 0 0

0 −1 1 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · −1 1

0 0 0 · · · 0 0


(3.2)

For the sake of notational simplicity, let Φ⊗ = Φ⊗Φ and Ψ⊗ = Ψ⊗Ψ, where ⊗ stands for

the Kronecker matrix product. Moreover, since the sampling sets for the x- and y-derivatives

may be in general different, we denote the corresponding sampling matrices by Φ⊗x and Φ⊗y ,

respectively. Hence, assuming that there exist sparse coefficients cx and cy which can be

decomposed by Ψ basis such that vec(Fx) = Ψ⊗ vec(cx) and vec(Fy) = Ψ⊗ vec(cy) (with vec

denoting the operation of matrix concatenation), the measurement constraints of the DCS

problem are defined as

Φ⊗x Ψ⊗ vec (cx) = Yx

Φ⊗y Ψ⊗ vec (cy) = Yy,
(3.3)

where Yx and Yy are the vectors of measured derivatives. In what follows, the constraints in

(3.3) will be referred to as primary. As it will be discussed later, sparse representation of the

image gradients is an important criteria where discrete cosine transform (DCT) is used here

to approximately reach the sparsity level. Nonetheless, finding suitable dictionary is critical

to the field since the sparsity is in direct relation with the sampling rate.

On the other hand, the cross-derivative (secondary) constraints in (2.18) can now be

expressed as

∇x

{
Ψ cyΨ

T
}︸ ︷︷ ︸

Fy

= ∇y

{
Ψ cxΨ

T
}︸ ︷︷ ︸

Fx

, (3.4)

Using the approximation in (3.1), (3.4) can be expressed as

Ψ cyΨ
TDT = DΨ cxΨ

T , (3.5)

Suppose the coefficients used in (P1) minimization algorithm are concatenated as column-
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wise. In the vectorized notation, the derivative constraint can be defined as[
Ψ⊗ (DΨ)︸ ︷︷ ︸

Bx

− (DΨ)⊗Ψ︸ ︷︷ ︸
By

] vec (cx)

vec (cy)


︸ ︷︷ ︸

c

= 0 (3.6)

The matrix B = [Bx, −By] is of rank n2−1 because the derivative operator D used in (3.2) is

not full rank, i.e, rank (D) = n−1 . In the DCS formulation, this matrix of secondary (cross-

derivative) constraints is combined with the primary constraints to result in the following

optimization problem

min
c
‖c‖1 =

n2∑
k=1

|cx(k)|+
n2∑
k=1

|cy(k)|, (3.7)

subject to AT
Γ0

B

 c =

 Y4

0

 , where AT
Γ0

=

 Φ⊗x Ψ⊗ 0

0 Φ⊗y Ψ⊗

 , Y =

 Yx

Yy

 (3.8)

The proposed L1-norm minimization in (3.7) is a large scale problem due to the nature

of Kronecker products. To alleviate the computational burden the large scale solutions have

been found using the algorithm detailed in [65]. This algorithm seeks a minimum l1-norm

solution of an underdetermined least-squares problem by introducing a curve that traces the

optimal trade-off between the least-squares fit. This curve is convex and differentiable in the

feasible region, which is analogous to basis pursuit denoise (BPDN) fits.

3.2 Least-Squares Surface Reconstruction

Having estimated the partial derivatives Fx and Fy as Ψ⊗cx and Ψ⊗cy, respectively, the

phase F needs to be recovered next. We use least-squares solution to (2.12) to reconstruct

the image of corresponding gradients introduced in (3.1). So the cost function can be written

by

Cost = ‖D · f − dy‖2 +
∥∥f ·DT − dx

∥∥2
, (3.9)

where f ∈ Rn×n denoted the original image that should be recovered, and dx and dy are the

estimated x and y derivatives, respectively. The normal system corresponding to minimiza-
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tion of Cost is given by

DTD · f + f ·DTD = DT · dy + dx ·D. (3.10)

This equation is known as Lyapunov or Sylvester equation which is linear respect to f and the

solution to equation is basically dependent to boundary conditions for difference calculation

in two dimensional case [66,67]. The boundary condition here is reflective boundary condition

which is known also as Hudgin geometry in [68]. The term DTD in (3.10) can be diagonalized

by DCT orthonormal matrix M in Fourier domain, i.e.,

DTD = MΛ(DT D)M
T . (3.11)

By the definition of orthonormality, the transpose ofM is equal to its inverse, i.e., M−1 = MT

and alternatively MMT = MTM = I. So, by substituting (3.11) in (3.10), it yields

Λ(DT D)M
TfM +MTfMΛ(DT D) = MT (DTdy + dxD)M (3.12)

As it turns, MT (·)M is two dimensional DCT transform applied here on f and DTdy + dxD

in (3.12). The left and right multiplication of MTfM by Λ(DT D) is equivalent to multi-

plying every row and column of the two dimensional spectrum with the eigenvalue in the

corresponding row and column of matrix Λ(DT D), respectively. So the final solution can be

expressed by

f = M

[
MT (DTdy + dxD)M

λuT + uλT

]
MT , (3.13)

where λ = diag(Λ(DT D)) and u = [1, 1, · · · , 1]T . Applying derivative operator D on an image

will loose the bias information exist in the data (dc information) and will set the zero-

frequencies to zero. So, In order to compare the original signal with the recovered version,

both signals will be normalized between [0, 1].

3.3 Space of Solutions and Its Analysis

Referring to the problem of (P1), any solution is combined with two elements, one in the

kernel space of the sensing operator and the other in the range space. In the case of derivative

compressive sampling (DCS), the cross-derivative constraints in (3.6) have the form of Bc =
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0 in addition to the system of equation AT
Γ0

c = Y. So, any solution to l1-minimization in

(3.7) exists in the intersection of the affine and kernel space, i.e.,

c ∈ F(Y) ∩N (B). (3.14)

In other words, any solution to l1-minimization in (3.7) should belong to the kernel of B

in addition to the affine subspace in (2.64). So, the general problem of derivative compressive

sampling (DCS) in (3.7) can be interpreted as,

ĉ = arg min
c∈F(Y)∩N (B)

‖c‖1, (3.15)

In practice, data acquisition is contaminated by noisy measurements which makes the system

of equations in (3.8) difficult to hold. As a consequence, in order to make this optimiza-

tion problem more practical in implementation, a more robust and relaxed version of such

minimization can be defined as,

min
c
‖c‖1 (3.16)

s.t. (a) :
∥∥AT

Γ0
c−Y

∥∥
2
≤ ε1

(b) : ‖Bc‖2 < ε2

The total number of samples in DCS is twice the number of image pixels. This is because

of the image gradients, Fx and Fy, being considered to be recovered by compressive sampling

scheme. By randomly sampling the gradients, linear dependency of primary with secondary

constraints (cross-derivative equality Bc = 0) of sensing matrix in (3.7) is probable. Given

the cross-derivative constraints, the following lemma defines the maximum number of samples

that should be taken to recover the solution exactly.

Lemma 1 Suppose the sampling matrix AT
Γ0
∈ R|Γ0|×2n2

is defined by (3.8). Let the cross-

derivative matrix B ∈ R(n2−1)×2n2
be of full rank. Then the condition that the solution c to

(3.7) to be unique and exact is,

• |Γ0| = dim N (B)

•
∥∥PN (B) {rng(AΓ0)}

∥∥ > 0 where PN (B) denotes the linear projection operator to the

kernel space N (B) and rng(AΓ0) is the range space of the sensing matrix defined by

rng(AΓ0) =
{
AΓ0x | x ∈ R|Γ0|

}
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Proof Define the affine space V and the kernel space U by

V =
{
c | AT

Γ0
c = Y

}
U = N (B) = span

{
θk ∈ R2n2

}n2+1

k=1

(3.17)

Where θk is a basis to expand the kernel space of B. The solution exist in the intersection of

the nullspace U and the affine space V . The necessity of these two conditions implies that

any solution c in affine space can be expressed by a linear combination of the basis functions

Θ =
{
θk ∈ R2n2

}n2+1

k=1
of U , i.e.,

AT
Γ0

Θα = Y (3.18)

The dimension of both matrices AT
Γ0

and Θ are [|Γ0| × 2n2] and [2n2 × n2 + 1], respectively.

The unique minimizer α̂ which satisfies (2.42) can be found without any minimization prob-

lem if the number of sampling exceeds |Γ0| ≥ n2 + 1 since the system of equation in (2.42)

becomes overcomplete and we just need to calculate the pseudo inverse of the matrix. In

the case |Γ0| < dim N (B) = n2 + 1 the dimension of the kernel of the matrix in (3.18) will

be non-zero, i.e., dim N
(
AT

Γ0
Θ
)
> 0 and any solution to the system of equation in (3.18)

can also exist in the related kernel space where by applying the minimization problem in

(3.7) there would be a probability that the solution will not be exact. When the number of

samples is equal to the dimension of the kernel space of B, i.e.,

|Γ0| = n2 + 1 then the matrix AT
Γ0

Θ will be a n2 + 1 squared matrix. However, there is

a probability that this matrix will not be full rank if there will be non-empty intersection

between the range space of AΓ0 and the range space of BT. So the samples should be selected

in a scheme that to avoid such correlation. Among the available samples Γ0 ⊂ {1, 2, . . . , 2n2}

there is only one combination that prevents such intersection since the number of samples

been taken (n2 + 1) and the dimension of the range space of BT completes the space, i.e.,

dim N (B)︸ ︷︷ ︸
|Γ0|

+ dim rng
(
BT
)︸ ︷︷ ︸

n2−1

= 2n2 (3.19)

As we can conclude form Lemma 1, the total number of samples necessary for l1-

minimization problem in (3.7) is at most the half of the gradient samples in the image

such that the primary constraint and the secondary constraint remain independent from
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each other i.e.,

|Γ0| < dim N (B). (3.20)

3.3.1 The Problem of Redundant Measurements and Its Solutions

The second condition in Lemma 1 indicates that the primary and secondary constraints in

(3.8) should not be linearly dependent, otherwise the problem of redundant will occur. This

will impose an ambiguity to the problem of minimization in (3.7). To avoid such linear

dependency, one can exclude the dependent rows of primary from secondary constraints or

the other way around. This can be done by projecting each columns of AΓ0 or BT on the

null-space of B or AT
Γ0

, respectively, to determine dependent columns. Algorithm 1 and 2

explain the procedure of excluding dependent rows for both cases.

Algorithm 1 Excluding dependent columns of AΓ0 with BT

1: for k = 0 to |Γ0| do

2: if ‖PN (B){colk AΓ0}‖ > ε then

3: keep the k-th column of AΓ0

4: else

5: exclude the k-th column of AΓ0

6: end if

7: end for

Algorithm 2 Excluding dependent columns of BT with AΓ0

1: for k = 0 to n2 − 1 do

2: if ‖PN(AT
Γ0

){colk BT}‖ > ε then

3: keep the k-th column of BT

4: else

5: exclude the k-th column of BT

6: end if

7: end for

Since any solution to (3.8) exist in the kernel space of B, the minimization problem in

(3.7) finds the appropriate solution by projecting a vector to the the related null-space. This

projection can be done by

PN (B) = I −BT
(
BBT

)−1
B (3.21)
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Substituting B defined in (3.6) to BBT in (3.21), yields

BBT =
[
I ⊗D −D⊗ I

] Ψ⊗ 0

0 Ψ⊗

 Ψ⊗
T

0

0 Ψ⊗
T


︸ ︷︷ ︸

I

 I ⊗DT

−DT ⊗ I


=
[
I ⊗DDT + DDT ⊗ I

]
=
[
DDT ⊕DDT

]
(n2−1)×(n2−1)

,

(3.22)

which ends up calculating the Kronecker sum of DDT with itself. Ψ⊗ is an orthonormal

basis and it turns to an identity when it multiplies to its transpose.The inverse of the Kro-

necker sum is equivalent to solve a sylvester equation, similar to what defined in (3.12) and

(3.13). The term DDT is diagonalizable in discrete Fourier domain using (3.11). The related

diagonalized eigenvalues obeys the spectrum of 2−2 cosπtn/n in n discrete sequences where

it is sketched for 256× 256 resolution in Figure 3.1(a). The condition number is calculated

by λmax/λmin, where it increases in order of O (n2) by increasing the discrete resolution n,

see Figure 3.1(b).

(a) (b)

Figure 3.1: a) Diagonal spectrum diag (ΛDT D) of the matrix DTD in Fourier domain; b)

Condition number of DTD for different image resolutions

Among the introduced algorithms for excluding dependent rows, one should be selected

such that to make the system of equations in (3.8) well-conditioned. Since Algorithm 1 keeps

all rows of B, this algorithm will not be suitable because it imposes a high condition matrix

to the system of equation in (3.8). But, Algorithm 2 excludes the corresponding dependent

rows in B such that it increases the probability of being well-conditioned system of equations
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in (3.8). To proceed with Algorithm 2, the rows of B can be projected to the null-space of

AT
Γ0

by applying

PN(AT
Γ0

){B
T} =

[
I−AΓ0

(
AT

Γ0
AΓ0

)−1
AT

Γ0

]
BT. (3.23)

Substituting (3.8) to the term AT
Γ0

AΓ0 in (3.23), yields

AT
Γ0

AΓ0 =

 Φ⊗x 0

0 Φ⊗y

 Ψ⊗ 0

0 Ψ⊗

 Ψ⊗
T

0

0 Ψ⊗
T


︸ ︷︷ ︸

I

 Φ⊗x
T

0

0 Φ⊗y
T



=

 Φ⊗x Φ⊗x
T

0

0 Φ⊗y Φ⊗y
T

 = [I]|Γ0|×|Γ0| .

(3.24)

So, the inverse of AT
Γ0

AΓ0 is identity and (3.23) continues as follows,

PN(AT
Γ0

){B
T} =

[
I−AΓ0A

T
Γ0

]
BT

=

I −
 Ψ⊗

T
0

0 Ψ⊗
T

 Φ⊗x
T

0

0 Φ⊗y
T

 Φ⊗x 0

0 Φ⊗y

 Ψ⊗ 0

0 Ψ⊗

BT

=

 Ψ⊗
T

0

0 Ψ⊗
T

I −
 Φ⊗x

T
Φ⊗x 0

0 Φ⊗y
T

Φ⊗y

 Ψ⊗ 0

0 Ψ⊗

BT

=

 Ψ⊗
T

0

0 Ψ⊗
T

 diag
(
1Γc

0

) I ⊗DT

−DT ⊗ I


(3.25)

Here, 1Γc
0

indicates a vector with 1 values restricted to the complement indices of Γ0. After

projecting each rows of B to the related null-space, the norm of the produced vector provides

a weight for each indices indicating the amount of the liner dependency. If the value is greater

than a threshold then it will remain in the system of equation for minimization. Figure 3.2(a)

shows l2-norm value of the projected rows of B to the null-space of AT
Γ0

for 256× 256 pixel

image. Each pixel value in the image corresponds to the row indices of B. The primary

samples observed here is 60% of the image gradients. The histogram of the related gray-

value image is plotted in Figure 3.2(c). In order to define excluded samples, a threshold

value should be determined to mask them out. Figure 3.2(c) demonstrates the thresholded

image in Figure 3.2(a) by 1.7 value.
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(a) (b) (c)

Figure 3.2: a) Norm of the projected rows of B to the null-space of AT
Γ0

shown in gray-value;

b) Histogram of the norm of the projected rows

3.4 Generalization of DCS Problem

The problem of derivative compressive sampling, after excluding redundant measurements

from cross-derivative constraints, can be generalized as follows,

min
c
‖c‖1, (3.26)

subject to  AT
Γ0

BΓB

 c =

 Y

0


where, ΓB is the indices corresponding to the remaining rows of B after excluding redundant

measurements. So, both stacked matrices
[
AT

Γ0
; BΓB

]
is a (|Γ0|+ |ΓB|)×2n2 full rank matrix.

Subsequently, the sensing matrix AT
Γ0

and the sub-sampled cross-derivative matrix BΓB
are

defines as follows,

AT
Γ0

=

 Φ⊗x 0

0 Φ⊗y

 Ψ⊗ 0

0 Ψ⊗

 ;

BΓB
= Φ⊗ΓB

[
I ⊗D −D⊗ I

] Ψ⊗ 0

0 Ψ⊗

 (3.27)

where, Φ⊗ and Ψ⊗ are the sampling and representation matrices, respectively, which are

defined in 3.1. Reminding from Equation 2.65, any solution to the problem 3.26 is divided
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to two parts, one, unique minimizer ĉ and the second is the error vector η, i.e., c = ĉ + η.

Consequently, the error vector η is originated by the intersection of two kernel subspaces

defined by sensing matrix and cross-derivative constraint. The intersection of both null-

spaces in 3.28 is the smaller null-space of larger matrix stacked by AT
Γ0

and BΓB
[69], i.e.,

η ∈

N (AT
Γ0

)
∩N (BΓB

) = N

 AT
Γ0

BΓB

 . (3.28)

Projecting any vector z ∈ R2n2
to the intersection of null-spaces can be carried out by

excluding the range space of
[
AΓ0 ,B

T
ΓB

]
from the identity operator using

η = Pnz =

I−
[

AΓ0 BT
ΓB

] AT
Γ0

BΓB

[ AΓ0 BT
ΓB

]−1  AT
Γ0

BΓB

 z. (3.29)

The 2 cross 2 partitioned matrix in (3.29) can be redefined as, AT
Γ0

BΓB

[ AΓ0 BT
ΓB

]
=

 AT
Γ0

AΓ0 AT
Γ0

BT
ΓB

BΓB
AΓ0 BΓB

BT
ΓB

 . (3.30)

Each element of the partitioned matrix can be defined by the sampling and representation

bases as follows,

AT
Γ0

AΓ0 =

 Φ⊗x 0

0 Φ⊗y

 Ψ⊗ 0

0 Ψ⊗

 Ψ⊗
T

0

0 Ψ⊗
T

 Φ⊗
T

x 0

0 Φ⊗
T

y

 = [I]m×m

AT
Γ0

BT
ΓB

=

 Φ⊗x 0

0 Φ⊗y

 Ψ⊗ 0

0 Ψ⊗

 Ψ⊗
T

0

0 Ψ⊗
T

 I ⊗DT

−DT ⊗ I

Φ⊗
T

ΓB

=

 Φ⊗
T

x

(
I ⊗DT

)
Φ⊗

T

ΓB

−Φ⊗
T

y

(
DT ⊗ I

)
Φ⊗

T

ΓB


m×|ΓB |

BΓB
AΓ0 =

[
Φ⊗ΓB

(I ⊗D) Φ⊗x −Φ⊗ΓB
(D⊗ I) Φ⊗y

]
|ΓB|×m

BΓB
BT

ΓB
= Φ⊗ΓB

[
I ⊗D −D⊗ I

] Ψ⊗ 0

0 Ψ⊗

 Ψ⊗
T

0

0 Ψ⊗
T

 I ⊗DT

−DT ⊗ I

Φ⊗
T

ΓB

= Φ⊗ΓB

[
I ⊗DDT + DDT ⊗ I

]
Φ⊗

T

ΓB
= Φ⊗ΓB

[
DDT ⊕DDT

]
Φ⊗

T

ΓB

(3.31)

The fact that the first row in Equation (3.31) turns to an identity is because Ψ⊗ is an

orthonormal basis.
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As the projection operator has the property (I−PB)2 = (I−PB), Equation (3.34) can

be proceed as follows,

Pn = (I−PB)2 −AΓ0M
−1AT

Γ0
(I−PB) + PBAΓ0M

−1AT
Γ0

(I−PB)

=
(
I−PB −AΓ0M

−1AT
Γ0

+ PBAΓ0M
−1AT

Γ0

)
(I−PB)

=
(
I−PB − (I−PB) AΓ0M

−1AT
Γ0

)
(I−PB)

= (I−PB)
(
I −AΓ0M

−1AT
Γ0

)
(I−PB)

(3.35)

The above Equation (3.35) gives an analogy to the intersection of both null-spaces in (3.28).

In comparison, both methods of compressive sampling and derivative compressive sampling

can be generalized in Table 3.1.

Table 3.1: Generalizing the problem of derivative compressive sampling (DCS) compared to

conventional compressed sensing (CS)

CS DCS

{ĉ} = arg min
c∈F

‖c‖1 {ĉ} = arg min
c∈F

‖c‖1

F = {c : AT
Γ0

c = Y} F = {c : AT
Γ0

c = Y} ∩ N (BΓB
)

c = ĉ + η, where η ∈ N
(
AT

Γ0

)
c = ĉ + η, where η ∈ N

(
AT

Γ0

)
∩N (BΓB

)

η =
(
I−AΓ0A

T
Γ0

)
z, z ∈ R2n2

η = (I−PB)
(
I−AΓ0M

−1AT
Γ0

)
(I−PB) z, z ∈ R2n2

M = I−AT
Γ0

PBAΓ0

PB = BT
ΓB

(
BΓB

BT
ΓB

)−1
BΓB

The error of the recovery is controlled by the null-space of the sensing matrix in l1-

minimization algorithm. In the case of DCS, this null-space is limited to the intersection of

the two null-spaces related to the sensing and cross derivative matrices. In order to have

access to such error vector, η, in related space we need to calculate the inverse of M in (3.35).

This is problematic in large-scale problem and it can not be used directly. This inverse can

be approximated by the Neumann series formula if the norm of ‖AT
Γ0

PBAΓ0‖ < 1. To show

this, the results from Equation (3.31) can be substituted in AT
Γ0

PBAΓ0 where it yields,

AT
Γ0

PBAΓ0 = AT
Γ0

BT
ΓB

(
BΓB

BT
ΓB

)−1
BΓB

AΓ0

=

 Φ⊗x 0

0 Φ⊗y

P

 Φ⊗
T

x 0

0 Φ⊗
T

y

 (3.36)
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where, P is a projection matrix to the rang space of [ (I ⊗D) − (D⊗ I) ]T , i.e.,

P = Φ⊗
T

ΓB

 I ⊗DT

−DT ⊗ I

[Φ⊗ΓB

[
DDT ⊕DDT

]
Φ⊗

T

ΓB

]−1

Φ⊗ΓB

[
I ⊗D −D⊗ I

]
(3.37)

The norm of the projection matrix is ‖P‖ = 1. The matrix Φ⊗x and Φ⊗y in (3.36) are the

sub-sampled of the rows of identity matrix and multiplying both from right and left hand

side will produce a sub-matrix of P. The norm of a sub-matrix does not exceed the norm of

the matrix so the norm of ‖AT
Γ0

PBAΓ0‖ < 1. The projection Pn matrix in (3.35) can now

be approximated by the Neumann series approximation, i.e.,

Pn = (I−PB)

(
I−AΓ0

∞∑
i=0

(
AT

Γ0
PBAΓ0

)i
AT

Γ0

)
(I−PB) (3.38)

The above equation provides an analogy to access a vector member in the intersection of

null-spaces for the case of derivative compressive sampling.

3.5 Phase Unwrapping by Means of DCS

This section provides the preliminary results of the proposed solution to the problem of two-

dimensional phase unwrapping. We demonstrate the performance of the proposed method-

ology using fractal landscapes (terrain) data. The synthetic fractal terrains are generated

by midpoint displacement (diamond square algorithm). The terrain is created iteratively by

performing diamond step for every level of the full terrain and applying square step after-

wards. An example of the terrain data with 256 × 256 pixels and its wrapped version are

shown in Figure 3.3(d) and (3.3), respectively.

3.5.1 Sparse Representation of Image Gradients

The compressibility of a signal implies that the latter is sparse in the domain of a linear

transform. In the present case, the partial derivatives of a phase surface are assumed to be

compressible in the domain of orthonormal bases Ψ. Finding an optimal sparse representa-

tion of the image gradients is of a great interest since it can reduce the necessary number of
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(a) (b)

(c) (d)

Figure 3.3: (a) Original phase in a ”terrain view”; (b) DCT coefficients of the partial deriva-

tive of the phase sorted in descend order; (c) Original phase represented as grayscale image;

(d) Its corresponding wrapped phase
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samples for image recovery. This investigation is of future plan of this research, but never-

theless, as an initial step, we use discrete cosine transform (DCT) to approximately achieve

the desired sparsity level. Figure 3.3(b) demonstrates the x and y derivative coefficients,

where the images is approximately 10% sparse in DCT domain for both derivatives.

3.5.2 Data Classification using Quality Maps

As it mentioned in Section 2.1.5, the quality maps can be used to indicate the quality

of measured phase in each pixel. Phase gradient variance marks highly varying phases in

terrain data (steep heights). Such pixels cause the integral in (2.19) to be path dependent.

In DCS recovery, the sampling indices, Φ⊗x and Φ⊗y in (3.7), are analogues to the non-residual

points in phase unwrapping. So, we can select derivative samples for each pixel in which

good quality map is provided. We define two quality maps for x and y gradient domain by

separating the gradient variance in (2.25) as follows,

Qx
m,n =

√∑(
∇xψi,j −∇xψm,n

)2

Qy
m,n =

√∑(
∇yψi,j −∇yψm,n

)2 (3.39)

These two equations define the quality of measured phase, separately, in both derivative

domains. Figure 3.4(a) and 3.4(b) demonstrates Qx
m,n and Qx

m,n, respectively. Here, the

gray-values increase from white to black and the sum is taken over 3 windows (k = 3). In

order to specify the locations of reliable data samples we threshold the quality maps and

generate a mask template, see Figure 3.4(c) and 3.4(d). These two masks, corresponding x

and y phase gradient variances, combined together, produce the observed indices Γ0 in (3.8).

The threshold value here is applied manually of 0.13. This threshold value should be taken

such that to prevent observing phase values contaminated by residual points.

3.5.3 Simulation Results

As stated previously, we use fractal terrain image in size of 256× 256 pixel and it is approx-

imately 10% sparse in gradient domain using Daubechies transform (Ψ) with 10 vanishing

moments. We manually define the threshold value to binarize the quality map in (3.39) by
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(a) (b)

(c) (d)

Figure 3.4: (a) Phase x-gradient VQM of wrapped phase R; (b) Phase y-gradient VQM of

wrapped phase R; (c) x-gradient VQM after applying a threshold of 0.13 ; (d) y-gradient

VQM after applying a threshold of 0.13.
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(a) (b)

Figure 3.5: The error surface of phase reconstruction by : (a) DCS; (b) Standard CS; The

surface are show as a function of visualized

extracting pixel coordinates which satisfies
∣∣Qx

m,n

∣∣ > threshold and
∣∣Qy

m,n

∣∣ > threshold for x

and y indices, respectively. In order to have a small number of samples, a lower threshold

should be applied to exclude more pixels that are likely to contain residual points.

We compared the performance of the DCS algorithm with that of the standard CS

method. Figure 3.5(a) shows the phase diagram of error recovery through l1-minimization

problem using DCS method. This figure demonstrates a shaded surface contributing to the

error of recovery with different sparsity levels on vertical axes and different sampling ratios in

horizontal axes. Shaded attribute is the number of coordinate of reconstruction and displays

its transition from perfect disagreement to perfect reconstruction. As it can be seen, the

method exactly recovers the signal at 15% of sparsity level by reaching to its 30% of total

number of samples. Since, the cross-derivative is provides as side information to the problem

as an orthogonal complement of the sensing matrix, this method shows better performance

on the recovery compared to the CS method, please see Figure 3.5(b).

Figure 3.6 shows the recovery results of terrain height for both CS and DCS cases. Figure

3.6(c) demonstrates the unwrapped phase estimated using the DCS algorithm. The mean-
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squared error (MSE) of the estimation was found to be 0.03%. As a comparison, the same

solution was computed using the standard CS, whose MSE was found to be equal to 0.41%

(see Figure 3.6(b)).

The performance of the proposed method is evaluated under the condition of noisy mea-

surements which has been described in Equation 3.16 and shown in Figure 3.7.a. As it can be

seen, the proposed DCS method performs better job by including secondary constraints and

remain more stable compared to CS problem. Robustness of the proposed DCS has been

also evaluated and compared with two distinctive phase unwrapping methods: Network-

Flow [30] and PUMA [32, 71]. In addition, different number of residual points have been

introduced in wrapped fractal terrains to outperform the robustness of phase unwrapping

methods demonstrated in Figure 3.7.b. Each method is evaluated at its best performances

on 20 different wrapped phases, where they have been recovered and averaged per-point.

The number of residues is relaxed in lower rate where all of the methods recover the ter-

rain with high accuracies. By increasing this number more samples are contaminated by

residual points. DCS performs a better job in this case and remains more stable among the

all implemented methods, where it retain its rest of the information from cross-derivative

constraints. In the case of DCS, the number of sampling points cannot exceed the number

that include residual points. This will effect the accuracy of recovered terrain and to prevent

such ambiguity, the mask driven by thresholding quality map was defined by excluding the

pixels which were found to be likely to violate the condition in (2.18).

3.6 Summary

The main idea of the derivative compressive sampling is to reconstruct image gradients via

its incomplete samples using compressive sampling scheme. The image gradients assumed

to be sparse in an orthonormal basis Ψ. The sparsity of the image gradients is the key role

to achieve higher accuracies in the presence of lower sampling rates. The second factor is

introduce by cross-derivative equality which plays an important role here since it provides

additional information (secondary constraint) beside the observed gradient samples (primary

constraints). Since there is a correlation between these two constraints, primary and sec-

55



(a)

(b) (c)

Figure 3.6: (a) Original Terrain; (b) estimate obtained by the standard CS (c) estimate

obtained by the proposed DCS method.
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(a) (b)

Figure 3.7: (a) MSE of phase estimation by DCS method in the presence of introduced noisy

measurements varying from 15 db - 35 db. Here, the ratio of random sampling is 38.83%

and the method is evaluated and averaged on 20 different noisy scheme for each SNR value;

(b) MSE of phase estimation by three different methods: Network-Flow, PUMA, CS and

DCS. The total percentage of residual points in measured wrapped phases increases from

1% - 20%
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ondary, the linear dependency is removed to avoid redundant measurements. This is done

by projecting the range space of two operators, AT
Γ0

and BT, to the null-space of each other,

respectively, and exclude dependent vectors. The secondary constraint B contain derivative

operator which makes it ill-conditioned matrix and can affect the l1-minimization algorithm.

So, the dependent rows in B is excluded to make the system of equation in (3.8) well-posed.

This side information from secondary constraint is interpreted to the recovery procedure

to reduce the error of the estimation. This is because the searching space of the proposed

l1-minimization problem in (3.8) is limited to the intersection of two subspaces introduced by

the kernel space of B and the range space of AΓ0 . However, it should be defined whether this

limitation contains excessively sparse vectors, otherwise it can harm the recovery and increase

the error bound. The experimental results grantees such enhancement, but nevertheless it is

a future plan of this research to investigate on the stability and recoverability analysis of the

proposed DCS method. Consequently, the error vector produced in l1-minimization belongs

to the intersection of both primary and secondary’s kernel spaces. This subspace has lower

perturbation compared to CS problem.

The proposed DCS method provides different solution to the problem of phase unwrap-

ping compared to what exist in the literature which is mostly dominated by path-follow

and lp-norm methods. Contaminated pixels by residual points in wrapped phase affects the

unwrapping procedure where DCS method show better performance and reliability than the

other methods, e.g. PUMA and Network-Flow.
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Chapter 4

Conclusion and Future Plan

4.1 Introduction

To this point in this proposal we have done the following,

• Description of the DCS scheme and implementation issues

• Redundant measurements and excluding procedure

• Preliminary results of DCS on phase unwrapping and comparison of the results with

PUMA and Network-Flow algorithms. Simulated terrain data were used as the frame-

work to demonstrate and compare the output results.

4.2 Proposed Research Plan

The proposed research plan can be divided into three main categories,

1. The application of DCS on phase unwrapping should be optimized. The threshold level

should be automatically defined instead in order to find pixel candidates for residual

points in the wrapped image. The next criteria is to optimize the procedure used to find

independent primary constraint from cross-derivative matrix B. Finally, discovering

different applications for DCS.
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2. Since we used DCT transform for sparse representation of the derivatives in the domain,

this framework could achieve the sparsity at an approximate level. Approximation of

the sparsity will bring ambiguity to the error rate and will effect the recovery procedure.

Optimal sparse representation of the image gradients can be found through Curvelet

transforms [72], KSVD algorithms [73] or orthogonal matching pursuits [74].

3. The main principle of derivative compressive sampling (DCS) is the cross-derivative

information provided as additional constraint to the problem of usual compressive

sampling. The latter can be analyzed through stability and recoverability analysis to

exemplify the improvement of the error recovery, capability of handling less sparse

signals or need for lower rate of sampling. Two concepts in the literature are available

to show such development by means of restricted isometry property (RIP) condition

and distortion of kernel subspaces. The source of the recovery error in DCS is limited

to the intersection of two kernel spaces introduced by N (B) ∩ N
(
AT

Γ0

)
. Distortion

of this subspace can provide an analogy that how much it contains sparse vectors. In

fact by adding cross-derivative constraints this value is expected to decrease. All of

the related analysis should be analytically expressed and derived.

4. More general question is how to interpret any other side information to the problem

of the compressive sampling. Many criteria can be considered,

• The signal is bandlimitted due to the communication channel is used in transmis-

sion, i.e., c ∈ B2(Ω) where Ω here denotes the frequency limit of the channel.

• In the case when we are provided with information that the steep of the terrain

in DCS recovery is monotonically increasing or decreasing, then this means that

the derivative coefficients are positive (c > 0) or negative (c < 0), respectively.

4.3 summary of Contributions and Publications

The preliminary research has resulted in a paper in the 17th European signal processing

conference (EUSIPCO 2009) [75] which has been rated amongst the top 5% in 550 presented
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papers. The results are invited to submit a manuscript in EURASIP journal SIGNAL

PROCESSING at Elsevier. Most recent research results in Chapter 3, Sections 3.5.3 and

3.3, are going to be submitted as a journal paper to Transaction on Image Processing (TIP).
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[50] B. S. Kašin, “The widths of certain finite-dimensional sets and classes of smooth func-

tions,” Izv. Akad. Nauk SSSR Ser. Mat., vol. 41, no. 2, pp. 334–351, 478, 1977.

66



[51] A. Y. Garnaev and E. D. Gluskin, “The widths of a Euclidean ball,” Dokl. Akad. Nauk

SSSR, vol. 277, no. 5, pp. 1048–1052, 1984.

[52] E. Candes, “The restricted isometry property and its implications for compressed sens-

ing,” Comptes Rendus Mathematique, vol. 346, pp. 589–592, May 2008.

[53] R. A. Devore, “Deterministic constructions of compressed sensing matrices,” tech. rep.,

List of References November 2001 B.1 Complete IDL Listing OMG IDL B // File:

CosActivity, 2007.

[54] R. Baraniuk, M. Davenport, R. Devore, and M. Wakin, “A simple proof of the restricted

isometry property for random matrices,” Constr. Approx, vol. 2008, 2007.

[55] J. Blanchard, C. Cartis, and J. Tanner, “Decay properties of restricted isometry con-

stants,” Signal Processing Letters, IEEE, vol. 16, pp. 572–575, July 2009.

[56] J. Haupt and R. Nowak, “A generalized restricted isometry property,” tech. rep., De-

partment of Electrical and Computer Engineering, University of Wisconsin Madison,

2007.

[57] V. Chandar, “A negative result concerning explicit matrices with the restricted isometry

property,” 2008.

[58] Y. Zhang, “Theory of compressive sensing via l1-minimization: A non-rip analysis and

extensions,” tech. rep., Department of computational and Applied Mathematics, Rice

Univesity, 2008.

[59] B. Kashin and V. Temlyakov, “A remark on compressed sensing,” Mathematical Notes,

vol. 82, pp. 748–755, May 2007.

[60] S. A. Vavasis, “Derivation of compressive sensing theorems from the spherical section

property,” tech. rep., Department of Combinatorics and Optimization, University of

Waterloo, 2009.

[61] T. Figiel, J. Lindenstrauss, and V. Milman, “The dimension of almost spherical sections

of convex bodies,” Acta Mathematica, vol. 139, no. 1, pp. 53–94, 1977.

67



[62] V. Guruswami, J. R. Lee, and A. Razborov, “Almost euclidean subspaces of &ell;n1

via expander codes,” in SODA ’08: Proceedings of the nineteenth annual ACM-SIAM

symposium on Discrete algorithms, (Philadelphia, PA, USA), pp. 353–362, Society for

Industrial and Applied Mathematics, 2008.

[63] P. Indyk, “Uncertainty principles, extractors, and explicit embeddings of l2 into l1,”

in STOC ’07: Proceedings of the thirty-ninth annual ACM symposium on Theory of

computing, (New York, NY, USA), pp. 615–620, ACM, 2007.

[64] S. Artstein-Avidan and V. Milman, “Logarithmic reduction of the level of randomness

in some probabilistic geometric constructions,” Journal of Functional Analysis, vol. 235,

no. 1, pp. 297 – 329, 2006.

[65] E. v. Berg and M. P. Friedlander, “Probing the pareto frontier for basis pursuit solu-

tions,” Tech. Rep. TR-2008-01, Department of Computer Science, University of British

Columbia, Vancouver, January 2008. To appear in SIAM J. Sci. Comp.

[66] M. Harker and P. O’Leary, “Least squares surface reconstruction from measured gra-

dient fields,” in Computer Vision and Pattern Recognition, 2008. CVPR 2008. IEEE

Conference on, pp. 1–7, June 2008.

[67] H. Ren and R. Dekany, “Fast wave-front reconstruction by solving the sylvester equation

with the alternating direction implicit method,” Opt. Express, vol. 12, no. 14, pp. 3279–

3296, 2004.

[68] B. R. Hunt, “Matrix formulation of the reconstruction of phase values from phase dif-

ferences,” J. Opt. Soc. Am., vol. 69, no. 3, pp. 393–399, 1979.

[69] G. Strang, Introduction to Linear Algebra, Fourth Edition. Wellesley-Cambridge Press,

2009.

[70] H. Lutkepohl, Handbook of Matrices. New York: John wiley & Sons, 1996.

[71] J. M. Dias and J. M. Leitao, “The zπm algorithm for interferometric image reconstruc-

tion in sar/sas,” IEEE Transactions on Image Processing, vol. 11, 2002.

68



[72] J.-L. Starck, F. Murtagh, E. Candes, and D. Donoho, “Gray and color image contrast

enhancement by the curvelet transform,” Image Processing, IEEE Transactions on,

vol. 12, pp. 706–717, June 2003.

[73] M. Aharon, M. Elad, and A. Bruckstein, “K -svd: An algorithm for designing overcom-

plete dictionaries for sparse representation,” Signal Processing, IEEE Transactions on,

vol. 54, pp. 4311–4322, Nov. 2006.

[74] D. L. Donoho, I. Drori, Y. Tsaig, and J. L. Starck, “Sparse solution of underdetermined

linear equations by stagewise orthogonal matching pursuit,” tech. rep., 2006.

[75] M. S. Hosseini and O. V. Michailovich, “Derivative compressive sampling with ap-

plication to phase unwrapping,” in Proceed. of the 17th European Signal Processing

Conference (EUSIPCO), August 2009.

69


