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Abstract

In formal language theory, studying shortest strings in languages, and variations thereof,

can be useful since these strings can serve as small witnesses for properties of the languages,

and can also provide bounds for other problems involving languages. For example, the

length of the shortest string accepted by a regular language provides a lower bound on the

state complexity of the language.

In Chapter 1, we introduce some relevant concepts and notation used in automata

and language theory, and we show some basic results concerning the connection between

the length of the shortest string and the nondeterministic state complexity of a regular

language. Chapter 2 examines the effect of the intersection operation on the length of the

shortest string in regular languages. A tight worst-case bound is given for the length of

the shortest string in the intersection of two regular languages, and loose bounds are given

for two variations on the problem. Chapter 3 discusses languages that are defined over a

free group instead of a free monoid. We study the length of the shortest string in a regular

language that becomes the empty string in the free group, and a variety of bounds are given

for different cases. Chapter 4 mentions open problems and some interesting observations

that were made while studying two of the problems: finding good bounds on the length of

the shortest squarefree string accepted by a deterministic finite automaton, and finding an

efficient way to check if a finite set of finite words generates the free monoid.

Some of the results in this thesis have appeared in work that the author has participated

in [3, 4].
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Chapter 1

Introduction

1.1 Automata, Languages and Shortest Strings

In this thesis, we discuss several problems arising from automata theory and the theory

of formal languages. While we approach the study of automata and formal languages in a

mathematical manner, with the field’s place as a cornerstone in the theory of computation

in mind, the theory has applications in a wide variety of areas including neural networks,

switching circuits and lexical analyzers. For a more complete overview of automata and

language theory and its applications, see an appropriate text like the one by Hopcroft and

Ullman [25]. The problems we consider have a common theme in that they deal with

quantitative properties of special automata and languages, most commonly the length of

the shortest accepted string. These properties have implications on the efficient use of

“resources”, which in this case refers not to computational complexity, but to descrip-

tional complexity [23]: essentially the number of symbols needed to describe the objects

in question.

In the theory of computation, problems are classified according to whether or not they

can be solved by a particular model of computation. We often restrict ourselves to decision

problems, which are problems where a given input must be mapped to a value of “yes”

or “no”. In this case, the solution to any problem can be represented by a set: the set

of all inputs for which the the answer to the problem is “yes”. In computer science we

typically encode data over an alphabet of symbols or letters, for example 0s and 1s. So
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each input that we consider can be thought of as a sequence or word made up of symbols

from an alphabet. Sometimes we also use the term string to refer to a word, and we use

the two terms interchangeably. A set of words we call a language. Typically we denote

the alphabet by Σ, and we let Σ∗ be the free monoid generated by Σ. Then a word is an

element of Σ∗ and a language is a subset of Σ∗. We denote the empty word by ε and the

empty set by ∅.

Just as with instances of any other kind of set, we can take the intersection, the union

(in addition to the usual notation we sometimes denote this with +) and the complement

of languages. Since the elements of languages are sequences, we can also generalize some

operations that rely on the order of the symbols in sequences to apply to languages. The

reversal of a word w is the word wR formed by taking the symbols of w in their reversed

order. The reversal of a language L is the language LR consisting of the reversal of each

word in L. The concatenation of two words u and v is formed by prepending the first word

to the second word, and is denoted uv. The concatenation of two languages K and L is

the language of words obtained by prepending a word from the first language to a word

from the second, and is denoted by KL. If L is a language and k a positive integer, by Lk,

or the k-th power of L, we mean the language consisting of words formed by concatenating

k words from L. The Kleene closure of L, denoted by L∗, is the language

L∗ =
∞⋃
i=0

Li

and the positive closure of L, denoted by L+, is the language

L+ =
∞⋃
i=1

Li.

The power, the Kleene closure and the positive closure can each also be applied to words

by treating a word as a singleton language.

Some very simple models of computation are the classes of finite automata (FAs). These

are systems or machines that make transitions between a finite number of states on the

basis of symbols read from input. Furthermore, a deterministic finite automaton (DFA)

has exactly one transition defined for each pair of state and input symbol. This means

that it must behave entirely deterministically and hence its name. A nondeterministic

finite automaton (NFA), on the other hand, can have any number of possible transitions
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defined for each state/input pair so that the machine can essentially choose which state

to transition to from some subset of all the states in the machine. A slight extension of

the NFA is the ε-NFA, in which one can define ε-transitions, which are transitions that

can be taken without consuming input symbols. An extension that brings us beyond the

realm of finite automata is the pushdown automaton (PDA), which is basically a finite

automaton that also has control of an unbounded amount of extra memory in the form of

a stack. There are many other kinds of automata, some of which are explained in the text

by Hopcroft and Ullman [25].

The notation we use to describe automata is as follows. We denote a DFA by a quintuple

M = (Q,Σ, δ, q0, F ), where Q is the finite set of states, Σ is the finite input alphabet,

δ : Q×Σ→ Q is the transition function, q0 ∈ Q is the initial state, and F ⊆ Q is the set of

accepting or final states. We denote an NFA by a similar quintuple except the transition

function is δ : Q × Σ → 2Q. If ε-transitions are allowed, then the transition function is

δ : Q× (Σ∪ {ε})→ 2Q. For all three kinds of finite automata we make a usual convenient

generalization on δ to the extended transition function with domain Q × Σ∗. If M is

deterministic, a word w ∈ Σ∗ is accepted by M if δ(q0, w) ∈ F , otherwise w is accepted by

M if δ(q0, w) ∩ F 6= ∅.

We denote a PDA by a 7-tuple M = (Q,Σ,Γ, δ, q0, Z0, F ), where Q is a finite set of

states, Σ is the finite input alphabet, Γ is the finite alphabet of symbols allowed on the

stack, q0 ∈ Q is the initial state, Z0 ∈ Γ is the initial stack symbol, F ⊆ Q is the set of

accepting states, and δ is the transition function that maps from Q× (Σ∪{ε})×Γ to finite

subsets of Q × Γ∗. We represent the configurations of a PDA by triples in Q × Σ∗ × Γ∗,

sometimes called instantaneous descriptions. For a ∈ {ε} ∪ Σ, for p, q ∈ Q, for w ∈ Σ∗,

and for α, β, γ ∈ Γ∗, we say that (q, aw, γα) `M (p, w, βα) if δ(q, a, γ) contains (p, β).

We use `∗M for the reflexive and transitive closure of `M . There are two ways to define

acceptance by a PDA, which we will call acceptance by empty stack and acceptance by

final state. A word w ∈ Σ∗ is accepted by empty stack by M if (q0, w, Z0) `∗M (p, ε, ε) for

some p ∈ Q. A word w ∈ Σ∗ is accepted by final state by M if (q0, w, Z0) `∗M (p, ε, γ) for

some p ∈ F, γ ∈ Γ∗.

For any automaton M , we let the language L(M) be the set of all words accepted by

M . The classes of languages accepted by each of these types of automata have been well

studied. The DFAs, NFAs and ε-NFAs are all equally powerful and accept what is known

as the class of regular languages (the set of languages generated by regular expressions),
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and the class of languages accepted by PDAs by empty stack is the same as the class

of languages accepted by PDAs by final state and is known as the class of context-free

languages (the set of languages generated by context-free grammars). For more details on

regular expressions and context-free grammars, again one may consult the text by Hopcroft

and Ullman [25].

Closure properties for both classes have been well studied. By definition, the class of

regular languages is closed under union, concatenation and Kleene closure, but it has also

been found to be closed under a variety of other operations including complementation,

intersection, reversal and homomorphisms. The class of context-free languages, which

includes all regular languages, is also closed under union, concatenation, Kleene closure

and homomorphisms, but it is not closed under intersection or complementation. Closure

properties for a wide variety of other classes of languages have been studied as well, for

example the classes of convex languages defined by binary relations such as the prefix,

suffix, factor and subword relations1 [2].

In addition to closure properties, there are also quantitative properties of languages

that are of interest and they require the following notation in order to be discussed. For

any x ∈ Σ∗, |x| denotes the length of x, and |x|a for some a ∈ Σ denotes the number of

occurrences of a in x. We let |Σ| denote the alphabet size. We define maps from nonempty

languages to nonnegative integers as follows. For a nonempty language L, let lss(L) denote

the length of the shortest string in L. If L is regular, then we let sc(L) denote the state

complexity of L (the minimum number of states in any DFA accepting L), and let nsc(L)

denote the nondeterministic state complexity of L (the minimum number of states in any

NFA accepting L).

State complexity and nondeterministic state complexity are interesting properties of a

language since they give bounds on the amount of space required to solve the problems

that correspond to the language. For this reason, this has been a well studied area with

numerous results in topics as varied as the impact of basic operations [38], the effect of

1These relations appear in this thesis and are defined in the following way. If there exist x, y, z ∈ Σ∗

and w = xyz, we say that y is a factor of w. If x = ε, we also say that y is a prefix of w. If z = ε,

we also say that y is a suffix of w. We say that y is a subword of w if we can write y = a1a2 · · · an and

w = w1a1w2a2 · · ·wnanwn+1 for some letters ai ∈ Σ and words wi ∈ Σ∗. If y is a prefix, suffix, factor or

subword of w and y 6= w, then y is a proper prefix, proper suffix, proper factor or proper subword of w,

respectively.
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combined operations on some special languages [24], bounds for finite languages [16], as

well as other works, some of which are cited later in this thesis [17, 21, 22, 27, 28, 33,

36]. Recently, Brzozowski has developed an entirely new approach to state complexity

that defines this property of regular languages in terms of characteristics of the languages

themselves as opposed to the automata that accept them [15]. There are many other

results that are not touched upon here.

In previous work, questions have been asked about shortest strings in languages to

achieve specific properties. These shortest strings are interesting because they can serve as

small witnesses for properties of the languages and can provide bounds for other problems.

For example, the length of shortest string not accepted by an NFA was studied by Ellul

et al. [17]. The fact that the shortest string in this case is exponential in length, in terms

of the number of states, implies that it is not feasible to check by brute force if an NFA

accepts Σ∗.

Shortest strings have also been studied as a measure of complexity of languages, specif-

ically in the context of rational indices of languages [11]. This notion is revisited in Section

3.3, and we provide a definition at that point in the thesis. Here we begin with a simpler

relationship between shortest strings and complexity: for any nonempty regular language

L, the quantities sc(L) and nsc(L) are bounded below by lss(L). This is due to the pump-

ing lemma for regular languages, which is stated in the text by Hopcroft and Ullman [25,

p. 56]. We state it with our own conventions as follows.

Theorem 1 Let L be a regular language. Then there is a positive integer n such that if z

is any word in L, and |z| ≥ n, we may write z = uvw in such a way that |uv| ≤ n, |v| ≥ 1,

and for all i ≥ 0, uviw is in L. Furthermore, n is no greater than the number of states of

the smallest FA accepting L.

This theorem holds for both DFAs and NFAs. The precise and tight bounds given by

lss(L) are in the following proposition.

Proposition 2 For any nonempty regular language L we have lss(L) < nsc(L) ≤ sc(L),

and for each integer k ≥ 1 there exists a language Lk such that lss(Lk) = nsc(Lk)− 1 and

nsc(Lk) = sc(Lk).

5



Proof: The inequality nsc(L) ≤ sc(L) comes from the fact that every DFA is also an

NFA. The inequality lss(L) < nsc(L) holds because the pumping lemma tells us that the

existence of any string in L of length greater than or equal to the number of states in the

minimal FA that accepts L implies that another string of shorter length is also accepted.

This is essentially because the shortest string accepted by an FA can visit each state at

most once, otherwise the states visited between the first and second visit to a repeated

state are unnecessary.

Finally, to see that the bounds are tight, observe that the language Lk = 0k−10∗ over

Σ = {0}, for any positive integer k, has lss(Lk) = k−1, has nsc(Lk) = k and has sc(Lk) = k.

The bounds given by the previous proposition are particularly interesting since if L is

represented by an NFA or DFA, then there is no known efficient way to compute nsc(L) [21,

22]. Various techniques have been used to approximate lower bounds on nondeterministic

state complexity including two similar techniques described in the following theorem.

Theorem 3 Let L ⊆ Σ∗ be a regular language, and suppose there exists a set of pairs

P = {(xi, yi) ∈ Σ∗×Σ∗ : 1 ≤ i ≤ n} such that xiyi ∈ L for 1 ≤ i ≤ n. Define the following

properties:

1. xjyi /∈ L for 1 ≤ i, j ≤ n, and i 6= j;

2. xiyj /∈ L or xjyi /∈ L for 1 ≤ i, j ≤ n, and i 6= j.

If P has either property, then any NFA accepting L has at least n states.

The first property is due to Glaister and Shallit [21], and the second is from Birget [10].

While the technique of Glaister and Shallit can be good in practice, sometimes simply

looking at the length of the shortest string in a given language can provide an arbitrarily

better lower bound on the nondeterministic state complexity.

Proposition 4 For each integer k ≥ 1, there exists a regular language Lk for which the

lower bound on nsc(L) given by the technique of Glaister and Shallit is 1 whereas the true

bound is lss(L) + 1 = k.
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Proof: Over Σ = {0}, if Lk is the language 0k−10∗, one can observe that nsc(Lk) =

k = lss(L) + 1. Now we show that the technique of Glaister and Shallit gives the bound

nsc(Lk) > 1 regardless of the value of k. For the sake of contradiction, suppose that for some

Lk there exist two pairs (x1, y1) and (x2, y2) such that x1y1, x2y2 ∈ Lk and x1y2, x2y1 /∈ Lk.
Then x1 = 0i, y1 = 0j, x2 = 0m, y2 = 0n for some integers i, j,m, n ≥ 0 such that i+j ≥ k−1

and m + n ≥ k − 1, while i + n < k − 1 and j + m < k − 1. However, combining these

inequalities gives us that i + j + m + n ≥ 2k − 2 and i + j + m + n < 2k − 2, so this is

impossible and by contradiction the proposition is true.

On the other hand, there are also cases where the technique of Glaister and Shallit finds

the true bound while the length of the shortest string does arbitrarily badly in comparison.

Proposition 5 For each integer k ≥ 1, there exists a regular language Lk for which the

lower bound on nsc(L) provided by the technique of Glaister and Shallit is the true bound

of k, while the bound given by lss(L) + 1 is 1.

Proof: Over Σ = {0}, if Lk is the language (0k)∗, then one can observe that nsc(Lk) = k

while lss(Lk) + 1 gives the bound nsc(Lk) > 1 regardless of the value of k. Now we show

that the technique of Glaister and Shallit gives the true bound for all values of k. For any

given k, for each 1 ≤ i ≤ k let Pi = (xi, yi) where xi = 0i and yi = 0k−i. Then it is easy to

verify that we have a set of k pairs that satisfy the conditions required by Theorem 3, and

that hence by the theorem we have the tight bound nsc(Lk) ≥ k.

One might observe that the length of the shortest nonempty string provides a bound

that is always at least as good as the one given by the length of the shortest string; however,

by modifying the proof of the previous proposition, we can see that in the worst case the

improvement is insignificant: over Σ = {0}, let Lk be 0(0k)∗, then the length of the shortest

nonempty string gives us a bound of 2 regardless of k while the technique of Glaister and

Shallit still gives the true bound. The technique of Birget is stronger than that of Glaister

and Shallit, and there are no languages for which the bound on nondeterministic state

complexity given by examining the length of the shortest string is better than the bound

given by the technique of Birget.

Proposition 6 If L is a regular language with lss(L) = n− 1, then there exists a set of n

pairs P = {(xi, yi) ∈ Σ∗ × Σ∗ : 1 ≤ i ≤ n} such that xiyi ∈ L for 1 ≤ i ≤ n, and xiyj /∈ L
or xjyi /∈ L for 1 ≤ i, j ≤ n, and i 6= j.
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Proof: Let w be the shortest string in L, which is of length n − 1. Define wi,j to be the

factor of w that begins at the ith position in w and ends at the jth position in w. If

i = j then wi,j is the ith letter in w, and if i > j then wi,j = ε. For each 0 ≤ i < n let

Pi = (xi, yi), where xi = w1,i and yi = wi+1,|w|. Then it is easy to verify that for any integers

1 ≤ i, j ≤ n, we have xiyi ∈ L and we have either |xiyj| < lss(L) or |xjyi| < lss(L). So we

have n pairs that meet the requirements of Birget’s technique to show that nsc(L) ≥ n.

This thesis has two main parts as outlined by the remainder of the introduction, and

then finishes by examining some open problems in Chapter 4 that were not solved during

the course of the author’s studies. Chapter 2 is centred around a new tight bound for the

length of the shortest string in the intersection of two regular languages, and takes a look

at two related problems. Chapter 3 is focused on a variety of shortest string bounds that

arise when we define languages over a free group instead of a free monoid.

1.2 The Intersection of Regular Languages

Rabin and Scott [33] observed that the state complexity of the intersection of two regular

languages that have state complexities m and n has an upper bound of mn. One can easily

verify this result using the usual cross-product construction [25, p. 59]. From Proposition

2 we have that the shortest word in such an intersection cannot be longer than mn− 1. It

is natural to wonder if this bound is the best possible over a fixed alphabet size for every

choice of m and n.

Over a one-letter alphabet, if we restrict ourselves to values of m and n such that

gcd(m,n) = 1, then there is an obvious construction that gives a tight bound.

Proposition 7 For all integers m,n ≥ 1 such that gcd(m,n) = 1, there exist DFAs

M1,M2 with m and n states, respectively, and with |Σ| = 1 such that L(M1) ∩ L(M2) 6= ∅,
and lss(L(M1) ∩ L(M2)) = mn− 1.

Proof: Let M1 be the m-state automaton that accepts L(M1) = {x : |x| ≡ m − 1

(mod m)}, and let M2 be the n-state automaton that accepts L(M2) = {x : |x| ≡ n − 1

(mod n)}. Since gcd(m,n) = 1, we have L(M1)∩L(M2) = {x : |x| ≡ mn− 1 (mod mn)},
and it follows that lss(L(M1) ∩ L(M2)) = mn− 1.
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However, when this is generalized to arbitrary values for m and n, the bound is not tight

as the difference between mn−1 and the true bound varies proportionally with Jacobsthal’s

function [36]. In order to achieve a tight bound for the general case, a two-letter alphabet

is sufficient. This is a new result shown in Section 2.2. Section 2.3 examines the case where

we take the positive closure of the two languages before taking their intersection. Finally,

Section 2.4 discusses generalizing the problem to the intersection of an arbitrary number

of languages.

1.3 Automata and Languages over Free Groups

A word in a free group can be represented in many different ways. For example, aaa−1

and aa−1baa−1b−1a are two different ways to write the word a. Among all the different

representations, however, there is one containing no occurrences of a letter next to its own

inverse. Following Berstel [7], we call such a representation reduced. Though we do first

review some closure properties and state complexity results for some operations related to

reduced words, in this part of the thesis we concern ourselves primarily with new results

for length of shortest string problems. The type of problem that we study is actually

is special case of the problem of rational indices of context-free languages, studied by

Boasson et al. [11]. Other special cases of this problem have been examined by Pierre and

Farinone [29]. Some other questions about formal languages and reduced representations

have previously been studied in contexts such as rational subsets of free groups [5], Dyck

languages [7], automatic groups [18], and string rewriting systems [6, 12, 13, 14]. The

references cited here are by no means a complete list of works in the area, but rather are

a small sample of the breadth of related studies.

In addition to the standard notation introduced in Section 1.1, we also define some

notation specific to our problem. For a letter a, we denote its inverse by a−1, and we let

the empty word, ε, be the identity. The inverse of a letter is unique and (a−1)−1 = a.

We consider only alphabets of the form Σ = Γ ∪ Γ−1, where, for a positive integer k,

Γ = {1, 2, . . . , k} and Γ−1 = {1−1, 2−1, . . . , k−1}. For a word w = a1a2 · · · an ∈ Σ∗, we

denote its inverse by w−1 = a−1
n · · · a−1

2 a−1
1 , and for a language L ⊆ Σ∗, we let L−1 =

{w−1 : w ∈ L}. Note that taking the inverse of a word is equivalent to reversing it and

then applying a homomorphism that maps each letter to its inverse. Now, we introduce a
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reduction operation on words, consisting of removing factors of the form aa−1, with a ∈ Σ.

More formally, let us define the relation ` ⊆ Σ∗×Σ∗ such that, for all w,w′ ∈ Σ∗, w ` w′

if and only if there exists x, y ∈ Σ∗ and a ∈ Σ satisfying w = xaa−1y and w′ = xy. As

usual, `∗ denotes the reflexive and transitive closure of `.

As is further discussed in Section 3.1 (see Theorem 15), it turns out that for each w ∈ Σ∗

there exists exactly one word r(w) ∈ Σ∗ such that r(w) does not contain any factor of the

form aa−1, with a ∈ Σ, and w `∗ r(w). We call this r(w) the reduced representation of w,

and it can be obtained from w by repeatedly replacing with ε all factors of the form aa−1,

for any letter a ∈ Σ, until no such factor exists. If w = r(w) we say that w is a reduced

word. If r(w) = ε we say that w is ε-reducible. We can extend the reduced representation

to languages so that for L ⊆ Σ∗, we let r(L) = {r(w) : w ∈ L}. The reduced representation

of any language is also unique, and the reduced representation of the free monoid generated

by Σ = Γ ∪ Γ−1 is the free group generated by Γ.

Given a language L, the `-closure of L is the set of the words which can be obtained by

applying the operation ` repeatedly to all words of L, i.e., the set {x ∈ Σ∗ : ∃w ∈ L s.t. w `∗

x}. For w ∈ Σ∗, the set of equivalent words is the language eq(w) = {w′ : r(w) = r(w′)}.
For L ⊆ Σ∗, the set of equivalent words is eq(L) = {eq(w) : w ∈ L}. Notice that r(L)

coincides with the intersection of the `-closure of L and r(Σ∗), and also with eq(L)∩r(Σ∗).
A set of equivalent words can be thought of as an equivalence class under an equivalence

relation described by a very particular set of equations: for all a ∈ Σ, aa−1 = ε. When

this defining set of equations is generalized to allow for an arbitrary set of equations we

are dealing with what those who study string rewriting systems refer to as a Thue system.

Section 3.1 examines the reduced representations and equivalent sets of words for regular

and context-free languages. Section 3.2 gives some bounds on the state complexity of

reduced representations. In Section 3.3 we look at bounds on the length of the shortest

ε-reducible word in a regular language in terms of the nondeterministic state complexity

of the language. Section 3.4 gives bounds on the length of shortest ε-reducible words over

restricted alphabets.
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Chapter 2

The Intersection of Regular

Languages

2.1 The Cross-Product Construction

The bound of mn on the state complexity of the intersection of two regular languages with

state complexities m and n can be verified with the cross-product construction, which is

sketched with DFAs in the text by Hopcroft and Ullman [25, p. 59], but which also works

with NFAs as follows.

Theorem 8 Given two NFAs M1 and M2 with m and n states, respectively, there exists

an NFA M with mn states that accepts L(M) = L(M1) ∩ L(M2).

Proof: The idea is that to accept the intersection of the languages accepted by two NFAs,

M1 and M2, we create a new NFA M that simulates the two NFAs in parallel. If M1 =

(Q1,Σ, δ1, q1, F1) and M2 = (Q2,Σ, δ2, q2, F2), then

M = (Q1 ×Q2,Σ, δ, [q1, q2], F1 × F2),

where for all p1 ∈ Q1, p2 ∈ Q2, a ∈ Σ,

δ([p1, p2], a) = δ1(p1, a)× δ2(p2, a).

11



To generalize the construction shown in the proof of Proposition 7, we construct au-

tomata based on integers j ≤ m, k ≤ n such that gcd(j, k) = 1 and the value jk − 1

is maximized. Shallit [36] determined that this is the best one can do over a one-letter

alphabet by showing that a tight bound on the state complexity of the intersection of two

regular languages over a unary alphabet is demonstrated by such a construction. The

general idea is based on the observation that any unary DFA is composed of a ‘tail’ and a

‘cycle’. If we intersect two DFAs, the lowest common multiple of the cycle size in each is

the dominant term in the number of distinct states in the cross-product construction.

2.2 A Tight Bound over a Two-Letter Alphabet

Here is a construction found by the author over a two-letter alphabet that achieves a tight

bound of mn−1 for the length of the shortest string found in the intersection of two regular

languages.

Theorem 9 For all integers m,n ≥ 1 there exist DFAs M1,M2 with m and n states,

respectively, and with |Σ| = 2 such that L(M1) ∩ L(M2) 6= ∅, and lss(L(M1) ∩ L(M2)) =

mn− 1.

Proof: The proof is constructive. Without loss of generality, assume m ≤ n, and set Σ =

{0, 1}. Let M1 be the DFA given by (Q1,Σ, δ1, p0, F1), where Q1 = {p0, p1, p2, . . . , pm−1},
F1 = p0, and for each a, 0 ≤ a ≤ m− 1, and c ∈ {0, 1} we set

δ1(pa, c) = p(a+c) mod m.

Then

L(M1) = {x ∈ Σ∗ : |x|1 ≡ 0 (mod m)}.

LetM2 be the DFA (Q2,Σ, δ2, q0, F2), shown in Figure 2.1, whereQ2 = {q0, q1, . . . , qn−1},
F2 = qn−1, and for each a, 0 ≤ a ≤ n− 1,

δ2(qa, c) =


qa+c, if 0 ≤ a < m− 1;

q(a+1) mod n, if c = 0 and m− 1 ≤ a ≤ n− 1;

q0, if c = 1 and m− 1 ≤ a ≤ n− 1.

12



0 0 0

1 1 1

1

1

1

000

0,1

q0

qn−1 qm qm−1

qm−2q1

Figure 2.1: The DFA M2.

Focussing solely on the 1’s that appear in some accepting path in M2, we see that we

can return to q0

(a) via a simple path with m 1’s, or

(b) (if we go through qn−1), via a simple path with m−1 1’s and ending in the transition

δ(qn−1, 0) = q0.

After some number of cycles through q0, we eventually arrive at qn−1. Letting i denote the

number of times a path of type (b) is chosen (including the last path that arrives at qn−1)

and j denote the number of times a path of type (a) is chosen, we see that the number

of 1’s in any accepted word must be of the form i(m − 1) + jm, with i > 0, j ≥ 0. The

number of 0’s along such a path is then at least i(n − m + 1) − 1, with the −1 in this

expression arising from the fact that the last part of the path terminates at qn−1 without

taking an additional 0 transition back to q0.

Thus

L(M2) ⊆ {x ∈ Σ∗ : ∃i, j ∈ N, such that i > 0, j ≥ 0, and

|x|1 = i(m− 1) + jm, |x|0 ≥ i(n−m+ 1)− 1}.

13



Furthermore, for every i, j ∈ N, such that i > 0, j ≥ 0, there exists an x ∈ L(M2) such

that |x|1 = i(m− 1) + jm, and |x|0 = i(n−m+ 1)− 1. This is obtained, for example, by

cycling j times from q0 to qm−1 and then back to q0 via a transition on 1, then i− 1 times

from q0 to qn−1 and then back to q0 via a transition on 0, and finally one more time from

q0 to qn−1.

It follows then that

L(M1 ∩M2) ⊆ {x ∈ Σ∗ : ∃i, j ∈ N, such that i > 0, j ≥ 0, and

|x|1 = i(m− 1) + jm, |x|0 ≥ i(n−m+ 1)− 1

and i(m− 1) + jm ≡ 0 (mod m)}.

Further, for every such i and j, there exists a corresponding element in L(M1 ∩ M2).

Since m − 1 and m are relatively prime, the shortest such word corresponds to i = m,

j = 0, and satisfies |x|0 = m(n −m + 1) − 1. In particular, a shortest accepted word is

(1m−10n−m+1)m−11m−10n−m, which is of length mn− 1.

2.3 The Intersection of Positive Closures

An interesting related problem arises when we take the positive closures of the two lan-

guages in question before taking the intersection. More precisely, given an n-state DFA

M1 and an m-state DFA M2, what bounds are there on lss(L(M1)+∩L(M2)+)? One might

notice that L(M1)+ ∩ L(M2)+ ⊇ L(M1) ∩ L(M2) and hence expect that lss(L(M1)+ ∩
L(M2)+) ≤ lss(L(M1)∩L(M2)); however, this reasoning does not hold if L(M1)∩L(M2) =

∅ 6= L(M1)+ ∩ L(M2)+.

Shallit [37] observed that the same upper bound of mn − 1 holds for lss(L(M1)+ ∩
L(M2)+):

Proposition 10 Given two DFAs M1 and M2 of m and n states, respectively, if (L(M1)+∩
L(M2)+) 6= ∅, then lss(L(M1)+ ∩ L(M2)+) ≤ mn− 1.

Proof: Observe that given any DFA M , we can construct an ε-NFA M ′ such that L(M ′) =

L(M)+ by adding an ε-transition from each final state to the initial state. By following this
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procedure, if we have anm-state DFAM1 and an n-state DFAM2, we can obtain anm-state

ε-NFA M ′
1, and an n-state ε-NFA M ′

2 such that L(M ′
1) = L(M1)+ and L(M ′

2) = L(M2)+.

Then by carrying out the cross-product construction on M ′
1 and M ′

2 we get an ε-NFA with

mn states that accepts L(M1)+ ∩ L(M2)+ (see Figure 2.2 for an example). Since it is well

known that any ε-NFA can be converted to an NFA with the same number of states, our

upper bound is given by this construction and Proposition 2.

q2

1

0

0
1

p1

p0 0

1

0,1

1

0

0
1

1

1

0 1

1

0

1

[p0, q0] [p0, q1] [p0, q2]

[p1, q0] [p1, q1] [p1, q2]

ε,0

ε,0

q0 q1

0

Figure 2.2: Examples for m = 2 and n = 3. Top: The DFA M2. Bottom-left: The DFA

M1. Bottom-right: An ε-NFA with mn states that accepts L(M1)+ ∩ L(M2)+.

One can see in Figure 2.2 that, due to the addition of the ε-transitions, the construction

from Theorem 9 for m = 2 and n = 3 accepts a shortest string of 1010 instead of 10010. In

general the construction from Theorem 9 only achieves a shortest string of length mn−m
when the positive closure is applied before the intersection, and the author has been unable
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to find any example that gives a better lower bound. The next theorem shows that the

upper bound from Proposition 10 is not tight, and implies that the lower bound of mn−m
is tight for m = 2.

Theorem 11 For any m-state DFA M1 and n-state DFA M2 such that L(M1)+∩L(M2)+ 6=
∅ we have lss(L(M1)+ ∩ L(M2)+) < mn− 1.

Proof: For the sake of contradiction, assume we have DFAs M1 and M2 with m and n

states, respectively, such that lss(L(M1)+ ∩L(M2)+) = mn− 1. Let M1 be the DFA given

by (Q1,Σ, δ1, p0, F1), where Q1 = {p0, p1, p2, . . . , pm−1}, and let M2 be the DFA given by

(Q2,Σ, δ2, p0, F2), where Q2 = {q0, q1, q2, . . . , qn−1}. Then let M ′
1 and M ′

2 be the ε-NFAs

obtained by adding ε-transitions from the final states to the start states in M1 and M2,

respectively. Let M be the ε-NFA obtained by applying the cross-product construction to

M ′
1 and M ′

2. Then M accepts L(M1)+ ∩ L(M2)+.

If M has more than one final state, a shortest accepting path would only visit one

of them, and this immediately gives a contradiction. So, assume each of M1 and M2

have only one final state; that is F1 = {px ∈ Q1} and F2 = {qy ∈ Q2}. Then M =

(Q1 × Q2,Σ, δ, [p0, q0], [px, qy]), where for all pi ∈ Q1, qj ∈ Q2, a ∈ Σ, δ([pi, qj], a) =

[δ1(pi, a), δ2(qj, a)]. Note that M has ε-transitions from [px, qj] to [p0, qj] for all qj ∈ Q2

and [pi, qy] to [pi, q0] for all pi ∈ Q1.

Let w1 be a shortest word accepted by M1 and w2 be a shortest word accepted by

M2. Then δ([p0, q0], w1) = [px, qi] for some i such that qi ∈ Q2, and while carrying out

this computation we never pass through two states [pa, qb] and [pc, qd] such that a = c.

Likewise, δ([p0, q0], w2) = [pj, qy] for some j such that pj ∈ Q1, and while carrying out this

computation we never pass through two states [pa, qb] and [pc, qd] such that b = d. If both

x = 0 and y = 0 the shortest accepted string is ε, so without loss of generality, assume

x 6= 0. Then δ([p0, q0], w1) = [px, q0] or else we can visit |w1| + 2 states with |w1| symbols

by using an ε-transition and we get a contradiction. If y = 0, w1 is the shortest string

accepted by M and we have a contradiction. So, y 6= 0 and δ([p0, q0], w2) = [p0, qy]. It

follows that reading w1 from the initial state brings us to [px, q0] without passing through

[p0, qy], and reading w2 from the initial state brings us to [p0, qy] without passing through

[px, q0]. So, a shortest accepting path need only visit one of [px, q0] and [p0, qy], and again

we have a contradiction.
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While the true bound must be quadratic, since it remains to be found we ask the

following question:

Open Problem 12 What is the greatest integer function f(m,n) such that for all pairs of

integers m,n ≥ 1 we can find DFAs M1 and M2 such that sc(L(M1)) = m, sc(L(M2)) = n

and lss(L(M1)+ ∩ L(M2)+) ≥ f(m,n)?

The construction from Theorem 9 and the proof from Theorem 11 narrow down the

possibilities so that mn−m ≤ f(m,n) ≤ mn− 2.

2.4 The Intersection of More than Two Automata

It is natural to try to generalize the bound from the intersection of two automata to an

arbitrary number of DFAs. However, Shallit [4] has found empirically that, over a two-

letter alphabet, the corresponding bound mnp − 1 for three DFA’s does not always hold.

For example, there are no DFA’s of 2, 2, and 3 states over a binary alphabet for which the

shortest word in the intersection is of length 2 · 2 · 3− 1.

With an alphabet size that grows with the number of automata being intersected, it is

easy to get a bound that is a polynomial of order equal to the number of automata.

Proposition 13 For all sets of n ≥ 3 integers m1,m2, . . . ,mn ≥ 1 there exist DFAs

M1,M2, . . . ,Mn with m1,m2, . . . ,mn states, respectively, and with |Σ| = n such that⋂n
i=1Mi 6= ∅, and lss(

⋂n
i=1 Mi) = (m1m2 − 1)Πn

i=3(mi − 1).

Proof: To show that this proposition holds, we outline a procedure to generate the required

DFAs. Let Σ = {0, 1, . . . , n − 1}. For M1 and M2, use the DFAs from the construction

in the proof of Theorem 9. Then have each Mi for 3 ≤ i ≤ n be the mi-state DFA that

accepts the language ((0 + 1 + . . . + i − 2)(i − 1)mi−2)∗. We accomplish this by defining

Mi = (Qi,Σ, δi, qi,0, Fi), where Qi = {qi,0, qi,1, qi,2, . . . , qi,mi−1}, Fi = qi,0, and for each a,

0 ≤ a ≤ mi − 2, and c ∈ Σ we set

δi(qi,a, c) =


qi,1, if a = 0 and c < i− 1;

qi,(a+1) mod mi−1, if c = i− 1;

qi,a, if c > i− 1.
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0,10,1

2

2

0,1,2
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Figure 2.3: The DFA M3 for m3 = 5 and n = 4.

All undefined transitions go to the rejecting state qi,mi−1. An example is illustrated in

Figure 2.3.

For 3 ≤ i ≤ n we define Xi,n = ((i − 1)Xi+1,n)mi−1 and for i > n we define Xi,n = ε.

Now we show by induction that for all n ≥ 3 the shortest string accepted by
⋂n
i=1Mi is

wn = ((1X3,n)m1−1(0X3,n)m2−m1+1)m1−1(1X3,n)m1−1(0X3,n)m2−m1 .

Observe that when n = 3, for the shortest accepted string we get

((12m3−1)m1−1(02m3−1)m2−m1+1)m1−1(12m3−1)m1−1(02m3−1)m2−m1 .

Now assume that for some k ≥ 3 we have the shortest string accepted by
⋂k
i=1Mi as

wk = ((1X3,k)
m1−1(0X3,k)

m2−m1+1)m1−1(1X3,k)
m1−1(0X3,k)

m2−m1 .
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Then we get the shortest string accepted by
⋂k+1
i=1 Mi from taking wk and inserting kmk+1−1

between each pair of adjacent letters. So by induction we have that the shortest string

accepted by
⋂n
i=1Mi is

wn = ((1X3,n)m1−1(0X3,n)m2−m1+1)m1−1(1X3,n)m1−1(0X3,n)m2−m1 ,

which is of length (m1m2 − 1)Πn
i=3(mi − 1).

Unfortunately, a tight lower bound on the length of the shortest string in the intersection

of more than two DFAs has not yet been found, so we have the following problem:

Open Problem 14 What is the greatest integer function f(S) such that for any finite set

of positive integers S = {m1,m2, . . . ,mn} we can find DFAs M1,M2, . . . ,Mn such that for

1 ≤ i ≤ n, we have sc(L(Mi)) = mi and lss(
⋂n
i=1 L(Mi)) ≥ f(S)?
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Chapter 3

Automata and Languages over Free

Groups

3.1 Reduced Representations and Sets of Equivalent

Words

Here we review some basic results concerning the closure of reduced representations and

sets of equivalent words. We examine both regular and context-free languages under these

two operations, and show that the behaviour of these operations in our special case is

indeed different from their behaviour in general Thue systems.

We begin by mentioning the following theorem that states that the reduced represen-

tation of any word is unique. This is actually the case for an entire class of Thue systems

that are referred to as having the Church-Rosser property, which is discussed, for example,

by Book [13]. This theorem is proven in a stronger form by Book and Otto [14].

Theorem 15 For each w ∈ Σ∗ there exists exactly one word r(w) ∈ Σ∗ such that r(w)

does not contain any factor of the form aa−1, with a ∈ Σ, and w `∗ r(w).

If we consider arbitrary Thue systems, as shown by the next proposition, it is no longer

necessary that reduced representations be unique. Under this generalization, a reduced

representation of a word is an equivalent word such that there are no shorter equivalent
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words. If g is our defining set of equations, and w is a word, then we denote the set

of equivalent words to w under g by eqg(w), and denote the set of generalized reduced

representations by rg(w).

Proposition 16 There exists a set of defining equations g and a word w such that rg(w)

contains more than one word.

Proof: This example proves the proposition. Let Σ = {a, b, c, d}, g = {ab = cd, bc = a},
and let w = bcbd. Then eq(w) = {abd, cdd, bcbd} and rg(w) = {abd, cdd}.

We now proceed to show that regular languages are closed under the reduction operator

by showing that for any regular language L, we can construct r(L) by taking the intersection

of r(Σ∗) and the `-closure of L, both of which are regular. The following lemma shows

that r(Σ∗) is regular.

Lemma 17 For Σ = Γ ∪ Γ−1, where, for a positive integer k, Γ = {1, 2, . . . , k} and

Γ−1 = {1−1, 2−1, . . . , k−1}, there exists a DFA Mk of 2k + 2 states that accepts r(Σ∗).

Proof: Recall that a word w is reduced if and only if it does not contain the factor

aa−1, for each a ∈ Σ. This condition can be verified by defining an automaton Mk that

remembers in its finite control the last input letter. To this aim, the automaton has a state

qa for each a ∈ Σ. If in the state qa the symbol a−1 is received, then the automaton reaches

a dead state qk+1.

Formally, Mk is the DFA (Q,Σ, δ, q0, F ) defined as follows (see Figure 3.1 for an exam-

ple): Q = {q0, qk+1} ∪ {qi : i ∈ Γ ∪ Γ−1}, F = Q \ {qk+1}, and

δ(qa, c) =

qc, if a 6= c−1 and qa 6= qk+1;

qk+1, otherwise.
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Figure 3.1: M2, a DFA that accepts r(Σ∗) for k = 2.

The following theorem shows that the `-closure of a regular language is regular. The

algorithm in the proof was discovered by Book and Otto [14]. An improved algorithm was

found by Benois and Sakarovitch [6].

Theorem 18 Given an ε-NFA M = (Q,Σ, δ, q0, F ) with n states, an automaton M ′ ac-

cepting the `-closure of L(M) can be built in O(n4) time.

Proof: The idea behind the proof is to present an algorithm that given M computes M ′

by adding to M ε-transitions corresponding to paths on ε-reducible words. The algorithm

is similar to a well-known algorithm for minimizing DFAs [25, p. 70]. It uses a directed

graph G = (Q,E) to remember ε-transitions. For each pair of states s, t, the algorithm

also keeps a set l(s, t) of pairs of states, with the following meaning: if (p, q) ∈ l(s, t) and

the algorithm discovers that there is a path from s to t on an ε-reducible word (and hence

it adds the edge (s, t) to G), then there exists a path from p to q on an ε-reducible word

(thus, the algorithm can also add the edge (p, q)).
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E ← transitive closure of {(p, q) | q ∈ δ(p, ε)}
for s, t ∈ Q do l(s, t)← ∅
for p, q, s, t ∈ Q do

if ∃a ∈ Σ s.t. s ∈ δ(p, a) and q ∈ δ(t, a−1) then

if (s, t) ∈ E then E ← update(E, (p, q))

else l(s, t)← l(s, t) ∪ {(p, q)}

The subroutine update returns the smallest set E ′ having the following properties:

• E ∪ {(p, q)} ⊆ E ′;

• if (p′, q′) ∈ E ′ then each element belonging to l(p′, q′) is in E ′;

• the graph (Q,E ′) is transitive.

At the end of the execution, the automaton M ′ is obtained by adding to M an ε-transition

from a state p to a state q for each edge (p, q) in the resulting graph G.

Now, we show that the language accepted by M ′ is the `-closure of L(M). To this aim,

we observe that for all p, q, s, t ∈ Q, such that s ∈ δ(p, a) and q ∈ δ(t, a−1) are transitions

of M for some a ∈ Σ, if M ′ contains an ε-transition from s to t then it must contain also an

ε-transition from p to q. In fact, when the algorithm examines these 4 states in the loop, if

(s, t) is in E then the algorithm calls update to add (p, q) to E. Otherwise, the algorithm

adds (p, q) to l(s, t). Since M ′ finally contains the ε-transition from s to t, then there is

a step of the algorithm, after the insertion of (p, q) in l(s, t), adding the pair (s, t) to E.

The only part of the algorithm able to perform this operation is the subroutine update.1

But when the subroutine adds the pair (s, t) to E then it must add all the pairs in l(s, t).

Hence, M ′ must also contain an ε-transition from p to q. As a consequence, if w ∈ L(M ′)

and w ` w′ then w′ ∈ L(M ′), i.e., L(M ′) is closed under `. Since the algorithm does not

remove the original transitions from M , L(M) ⊆ L(M ′) and, hence, the `-closure of L(M)

is included in L(M ′).

1Notice that the pair (s, t) can be added to E by the subroutine update either because it is the second

argument in the call of the subroutine, or because it belongs to a list l(p′, q′), where (p′, q′) is added to E

in the same call, or because there is a path from s to t consisting of some arcs already in E and at least

one arc added during the same call of update.
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On the other hand, it can be easily shown that for each ε-transition of M ′ from a state

p to a state q there exists an ε-reducible word z such that q ∈ δ(p, z) in M . Using this

argument, from each word w ∈ L(M ′) we can find a word x ∈ L(M) such that x `∗ w. This

permit us to conclude that L(M ′) accepts the `-closure of L(M).

Now we show that the algorithm works in O(n4) time. A naive analysis gives a running

time growing faster than n4. The second for-loop iterates over all 4-tuples of states, and

already gives us a total running time of n4 multiplied by the running time of the work

repeated with each iteration of the loop. Inside the loop the most expensive step is the

subroutine update. This subroutine starts by adding an edge (p, q) to E. For each new

edge (p′, q′) added to E the subroutine has to add all the edges in l(p′, q′), while keeping

the graph transitive. This seems to be an expensive part of the computation. However,

we can observe that each set l(p′, q′) contains less than n2 elements. Furthermore, a set

l(p′, q′) is examined only once during the execution of the algorithm, namely when (p′, q′)

is added to E. Hence, the total time spent while examining the sets l in all the calls of the

subroutine update is O(n4). Furthermore, no more than n2 edges can be inserted into G,

and each insertion can be done in O(n) amortized time while maintaining the transitive

closure [26, 31]. Summing up, we get that the overall time of the algorithm is O(n4).

By combining the results in Lemma 17 and Theorem 18, we are now able to show the

following:

Proposition 19 Given an ε-NFA M = (Q,Σ, δ, q0, F ) with n states, an ε-NFA Mr such

that L(Mr) = r(L(M)) can be built in O(n4) time.

Proof: The language r(L(M)) is the intersection of the `-closure of L(M) and r(Σ∗).

According to Theorem 18, from M we build an automaton M ′ accepting the `-closure

of L(M). Hence, using standard constructions, from M ′ and the automaton obtained in

Lemma 17 (whose size is fixed, if the input alphabet is fixed), we get the automaton Mr

accepting r(M) = L(M ′) ∩ r(Σ∗). The most expensive part is the construction of M ′,

which uses O(n4) time.

The following result was known by Benois [5].

Corollary 20 For any L ⊆ Σ∗, if L is regular then r(L) is regular.
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This corollary does not hold for Thue systems in general. The next result from Shallit

[3] proves that even if L is regular, it is possible for rg(L) to be noncontext-free, and hence

also nonregular.

Proposition 21 There exists a set of defining equations g and a regular language L such

that rg(L) is not context-free.

Proof: Let Σ = {a, b, c}, let g = {ab = ba, ac = ca, bc = cb} and let L = (abc)∗. Then

rg(L) is the language {x : |x|a = |x|b = |x|c}, which is known to be noncontext-free.

The analogue of Corollary 20 does not hold in the case of context-free languages either.

The proof is supplied by Shallit [3]. For this we use the notion of a quotient of two

languages.

Definition 22 Given L1, L2 ⊆ Σ∗, the quotient of L1 by L2 is

L1/L2 = {w : ∃x ∈ L2 such that wx ∈ L1}

While the class of regular languages is closed under quotients, the class of context-free

languages is not [20]. It turns out that the reduced representation of a language can be

used to compute quotients.

Lemma 23 For any two languages L1, L2 ⊆ Γ∗, the language L3 = r(L1L
−1
2 ) ∩ Γ∗ equals

the quotient L1/L2.

Proof: We notice that r(wxx−1) = w, for each w, x ∈ Γ∗. Hence, given w ∈ Γ∗, it

holds that w ∈ L3 = r(L1L
−1
2 ) ∩ Γ∗ if and only if there exists x ∈ L2 such that wx ∈ L1.

Therefore L3 = L1/L2.

Corollary 24 The class of context-free languages is not closed under r().

Proof: By contradiction, suppose that the class of context-free languages is closed under

r(). Since this class is closed under the operations of reversal, morphism, concatenation

and intersection with a regular language, for any two context-free languages L1 and L2
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over Γ, the language L3 = r(L1L
−1
2 ) ∩ Γ∗ is also context-free. However, from Lemma

23, L3 = L1/L2, implying that the class of context-free languages would be closed under

quotient, a contradiction.

Now we look at the set of equivalent words as the result of an operation on a language.

Shallit [3] has shown that regular languages are not closed under this operation:

Proposition 25 There exists a regular language L such that eq(L) is nonregular.

Proof: Let Σ = {1, 1−1} and let L = {ε}. Then eq(L) is the language {x ∈ Σ∗ : |x|1 =

|x|−1}, which is well known to be nonregular.

As we see in the next proposition from Rampersad [3], it turns out that the set of equiv-

alent words of a regular language is always context-free. More work on the relationships

between various types of Thue systems and context-free languages has been done by Book

[12].

Proposition 26 Let L be a regular language over an alphabet Σ. The language eq(L) is

context-free.

Proof: Let M be a DFA accepting L. We first construct the ε-NFA Mr of Proposition 19

that accepts r(L). We then reverse the transitions of Mr to obtain an ε-NFA A that accepts

the reversal of r(L). We now construct a PDA B that accepts eq(L). The operation of

B is as follows. On input w, the PDA B reads each symbol of w and compares it with

the symbol on top of the stack. If the symbol being read is a and the symbol on top of

the stack is the inverse of a, the machine B pops the top symbol of the stack. Otherwise,

the machine B pushes a on top of the stack. After the input w is consumed, the stack

contains a word z that is equivalent to w. Moreover, since z does not contain any factor

of the form aa−1, the word z must equal r(w) by Theorem 15. Finally, on ε-transitions,

the PDA B pops each symbol of z off the stack and simulates the computation of A on

each popped symbol. The net effect is to simulate A on zR (the reversal of z). If zR is

accepted by A, the PDA B accepts w. Since zR is accepted by A if and only if z ∈ r(L),

the PDA B accepts w if and only if r(w) ∈ r(L). However, we have r(w) ∈ r(L) if and

only if w ∈ eq(L), so B accepts eq(L), as required.
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Next we resolve the question of whether context-free languages are closed under taking

the set of equivalent words. The proof is from Shallit [37].

Proposition 27 Let L be a context-free language over an alphabet Σ. The language eq(L)

is not necessarily context-free.

Proof: Suppose that we have a context-free language L such that r(L) is not context-free.

Now assume that eq(L) is context-free. From Lemma 17 we know that the language r(Σ∗)

is regular, so from the well-known fact that the intersection of a context-free language

with a regular language is context-free, we have that eq(L) ∩ r(Σ∗) is context-free. But

eq(L) ∩ r(Σ∗) = r(L), so we have a contradiction.

3.2 State Complexity of Reduced Representations

By considering the state complexities of the automata involved in the construction used

to prove Proposition 19, we can state the following upper bound on the state complexity

of the reduced representation of a regular language in terms of its nondeterministic state

complexity.

Proposition 28 For any ε-NFA M = (Q,Γ ∪ Γ−1, δ, q0, F ) with n states, where Γ =

{1, 2, . . . , k} and Γ−1 = {1−1, 2−1, . . . , k−1} for some positive integer k, there exists a DFA

of at most 2n(2k + 2) states that accepts r(L(M)).

Proof: This upper bound follows from the algorithm in the proof of Theorem 18. The

first part of the construction (i.e., the construction of the automaton M ′ accepting the `-

closure of the language accepted by M) does not increase the number of states. Using usual

constructions, the resulting automaton M ′ can be converted into a DFA with 2n states.

Finally, to get an automaton accepting r(L(M)) we apply the cross-product construction to

this automaton and to the DFA with 2k+ 2 states accepting r(Σ∗) obtained in Lemma 17.

The intersection results in a DFA of no more than 2n(2k + 2) states.

Pighizzini [30] has supplied the lower bounds that follow, but first we give the Myhill-

Nerode theorem, which is required for one of the proofs. A proof for the Myhill-Nerode

theorem can be found in many texts including the one by Hopcroft and Ullman [25].
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Theorem 29 For a language L ⊆ Σ∗ and x, y ∈ Σ∗, let RL be the equivalence relation

defined by: xRLy if and only if for all z ∈ Σ∗, we have xz ∈ L exactly when yz ∈ L. Then

the following statements are equivalent.

1. L is regular.

2. L is the union of some of the equivalence classes of a right invariant equivalence

relation of finite index.

3. RL is of finite index.

A well-known consequence of the Myhill-Nerode theorem is the following corollary.

Corollary 30 The state complexity of a language L corresponds to the index of RL, the

relation defined in the Myhill-Nerode theorem.

Now we give the bounds from Pighizzini [30].

Proposition 31 Let k be a positive integer and define Γk = {1, 2, . . . , k} and Γ−1
k =

{1−1, 2−1, . . . , k−1}.

1. For each pair of integers k ≥ 2 and n ≥ 1, there exists an n-state NFA Mk,n over

Γk ∪ Γ−1
k such that the smallest DFA accepting r(L(Mk,n)) has 2n states.

2. For each pair of integers k ≥ 3 and n ≥ 1, there exists a DFA Mk,n over Γk ∪ Γ−1
k of

3n states such that the smallest DFA accepting r(L(Mk,n)) has 2n states.

Proof:

1. Let k be any integer ≥ 2. Since any language defined over just Γk is exactly the

same as its reduced representation, as long as there exists an n-state NFA Mk,n for

each integer n such that sc(L(Mk,n)) = 2n, then we have the desired bound. There

do indeed exist such NFAs as shown, for example, by Moore [28].
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2. If we let Ln = (1+2)∗1(33−1(1+2))n−1, we get r(Ln) = (1+2)∗1(1+2)n−1. It is easy

to see that Ln is accepted by a DFA with 3n states (see Figure 3.2). Using Corollary

30 we can show that any DFA accepting r(Ln) requires 2n states. Let x, y be two

distinct elements of (1 + 2)n. Then there is a position j, 1 ≤ j ≤ n, at which x and

y have a different letter. Without loss of generality, assume x has a 1 at position j.

Then x2j−1 ∈ r(Ln), but y2j−1 /∈ r(Ln). So each of the 2n strings in the language

(1 + 2)n are in different equivalence classes by the equivalence relation Rr(Ln), and

by Corollary 30, any DFA accepting r(Ln) requires at least 2n states.

q3n−4

1
1

2

2

3 1,2
q0 q1 q2 q3 q4

3−1

3

3

3−11,2
q3n−2 q3n−3

Figure 3.2: A DFA of 3n states that accepts Ln. The dead state is not shown.

While we know that the worst-case state complexity of the reduced representation is

exponential, no tight bound is known so we have the following open problem:

Open Problem 32 What is the greatest integer function f(n) such that for any integer

n we can find a language Ln such that sc(Ln) = n and sc(r(Ln)) ≥ f(n)?

For the nondeterministic case, Proposition 28 and the first part of Proposition 31, give

us the following corollary.
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Corollary 33 Let k ≥ 1 be an integer, Γk = {1, 2, . . . , k}, and Γ−1
k = {1−1, 2−1, . . . , k−1}.

For any ε-NFA, M with n states, over the alphabet Γk∪Γ−1
k , there exists an NFA of at most

n(2k+ 2) states that accepts r(L(M)), and for each pair of integers k ≥ 2 and n ≥ 1 there

exists an n-state NFA Mk,n over Γk∪Γ−1
k such that the smallest NFA accepting r(L(Mk,n))

has n states.

We also have the following open problem.

Open Problem 34 What is the greatest integer function f(n) such that for any integer

n we can find a language Ln such that nsc(Ln) = n and nsc(r(Ln)) ≥ f(n)?

3.3 Shortest ε-Reducible Words

In this section we turn our attention to studying bounds on the length of shortest ε-

reducible strings in regular languages. Formally, we ask: given an NFA M of n states such

that ε ∈ r(L(M)), what is the shortest w ∈ L(M) such that r(w) = ε? This is actually the

equivalent of asking for the rational index of the language eq({ε}). For a language L, its

rational index ρL is a function defined by Boasson et al. [11] as follows in our own words.

Definition 35 Let R represent the set of regular languages, let n be a positive integer, and

let L be a language. Then

ρL(n) = max{min{|x| : x ∈ L ∩K,L ∩K 6= ∅, K ∈ R, nsc(K) = n}}.

Recall from Proposition 26 that eq({ε}) is a context-free language. The more general

problem of finding bounds for the rational index of context-free languages was studied

by Boasson et al. [11], and the upper and lower bounds of 2pn
2
, where p is a function of

the size of the context-free grammar that generates the context-free language, and 2n − 2,

respectively, were found. For our special case we provide upper and lower bounds of 2n
2−n

and 2n−2, respectively. We begin with the upper bound from Rampersad [3].

Theorem 36 For any NFA M = (Q,Σ, δ, q0, F ) with n states such that there exists w ∈
L(M) with r(w) = ε, there exists w′ ∈ L(M) such that |w′| ≤ 2n

2−n and r(w′) = ε.
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Proof: Suppose M accepts w ∈ Σ+ such that r(w) = ε. Then w can be decomposed in at

least one of two ways. Either there exist u, v ∈ Σ+ such that w = uv, r(u) = ε and r(v) = ε

(Case 1), or there exist u ∈ Σ∗, a ∈ Σ such that w = aua−1 and r(u) = ε (Case 2). Any

factor z of w such that r(z) = ε can also be decomposed in at least one of these two ways,

so we can recursively decompose w and the resulting factors until we have decomposed w

into single symbols. It follows that we can specify a certain type of parse tree such that

M accepts w ∈ Σ∗ with r(w) = ε if and only if we can build this type of parse tree for w.

Define our parse tree for a given w as follows. Every internal node corresponds to a

factor z of w such that r(z) = ε, and the root of the whole tree corresponds to w. The

leaves store individual symbols. When read from left to right, the symbols in the leaves of

any subtree form the word that corresponds to the root of the subtree. Each internal node

is of one of two types:

1. The node has two children, both of which are internal nodes that serve as roots of

subtrees (corresponds to Case 1).

2. The node has three children, where the left and the right children are single symbols

that are inverses of each other, and the child in the middle is empty or it is an internal

node that is the root of another subtree (corresponds to Case 2).

An example is shown in Figure 3.3. Now, we fix an accepting computation of M on

input w. We label each internal node t with a pair of states p, q ∈ Q such that if z is the

factor of w that corresponds to the subtree rooted at t, and w = xzy, then p ∈ δ(q0, x) and

q ∈ δ(p, z) are the states reached after reading the input prefixes x and xz, respectively,

during the accepting computation under consideration. (This also implies that qf ∈ δ(q, y),

with qf ∈ F , and (q0, qf ) is the label associated with the root of the tree.)
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A B

a−1 C a a−1 D a

b b−1
b−1 E b

b−1 b

W

Figure 3.3: A sample parse tree for the word w = a−1bb−1aa−1b−1b−1bba, without the state

pair labels.

If the parse tree of w has two nodes t and u with the same state-pair label such that u

is a descendent of t, then there exists a word shorter than w that is accepted and reduces

to the empty word. This is because we can replace the subtree rooted at t with the subtree

rooted at u. Furthermore, if an internal node t is labeled with a pair (q, q), for some q ∈ Q,

then the factor z corresponding to the subtree rooted at t can be removed from w, obtaining

a shorter ε-reducible word. Hence, by a pigeonhole argument, we conclude that the height

of the subtree corresponding to the shortest ε-reducible word w′ is at most n2 − n. We

now observe that the number of leaves of a parse tree of height k defined according to our

rules is at most 2k. Such a tree is given by the complete binary tree of height k, which

has no nodes with three children. The avoidance of nodes with three children is important

because such nodes fail to maximize the number of internal nodes in the tree, which in

turn results in less than the maximum number of leaves. This permits us to conclude that

|w′| ≤ 2n
2−n.

Now we show that there is a lower bound that is exponential in the alphabet size and

nondeterministic state complexity We show this by giving a bound that is stronger in the

sense that it holds even in the deterministic case.

Theorem 37 For each integer n ≥ 3 there exists a DFA Mn with n + 1 states over the

alphabet Σ = Γ ∪ Γ−1, where Γ = {1, 2, . . . , n − 2} and Γ−1 = {1−1, 2−1, . . . , (n − 2)−1},
with the property that if w ∈ L(Mn) and r(w) = ε, then |w| ≥ 2n−1.
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Proof: The proof is constructive. Let Mn be the DFA (Q,Σ, δ, q0, F ), illustrated in

Figure 3.4, where Q = {q−1, q0, q1, . . . , qn−1}, F = {q1}, and

δ(qa, c) =


q1, if c = 1 and a = 0;

qa+1, if c = a−1 and 1 ≤ a ≤ n− 2;

q0, if either c = a and 1 ≤ a ≤ n− 2,

or c = 1−1 and a = n− 1.

Any other transitions lead to the dead state q−1.

3

2

1

q3

1−1

2−1

3−1(n− 3)−1

n− 2

1−1

qn−2

(n− 2)−1

q0 q1

qn−1

q2

Figure 3.4: Mn: an n+1 state DFA that has a shortest ε-reducible word of length ≥ 2n−1.

The dead state is not shown.

Now we show that Mn has the desired property. Assume there exists w ∈ L(Mn) such

that r(w) = ε. Then |w|a = |w|a−1 for all a ∈ Σ. Since all words in L(Mn) must contain the

symbol 1 (due to the single incoming transition to the only accepting state), it follows that

w must also contain 1−1. Furthermore, the only possible transition from q1 not leading

to the dead state uses the symbol 1−1. Hence w must begin with the prefix 11−1. Since

δ(q0, 11−1) = q2 and the only two transitions that leave q2 are on 2 and 2−1, w must contain

both of 2 and 2−1. Now assume that w contains the symbol i−1 with 1 < i < n− 2. Then
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the state qi+1 must be reached while reading w, thus implying that the symbols (i+ 1) and

(i+1)−1 also appear in w. Therefore, by induction, w must contain at least one occurrence

of each a ∈ Σ.

Now we claim that w must contain at least 2n−2−a occurrences of the symbol a, for

1 ≤ a ≤ n− 2, and hence at least 2n−2−a occurrences of the symbol a−1.

We prove the claim by induction on n− 2− a. The basis, a = n− 2, follows from the

earlier argument that w must contain at least one occurrence of each a ∈ Σ. Now, suppose

the claim holds for k = n− 2− a. We prove it is true for k + 1 = n− 2− (a− 1). By the

induction hypothesis, w contains at least 2k occurrences of the symbol a and at least 2k

occurrences of a−1. Observing the structure of the automaton, we conclude that to have

such a number of occurrences of the two letters a and a−1, the state qa must be visited at

least 2k+1 times. On the other hand, the only transition entering qa is from the state qa−1

on the letter (a − 1)−1. Hence, w must contain at least 2k+1 = 2n−2−(a−1) occurrences of

(a− 1)−1 and also at least 2k+1 = 2n−2−(a−1) occurrences of a− 1. This proves the claim.

By computing the sum over all alphabet symbols, we get that |w| ≥ 2(2n−2 − 1).

However, since the symbol (n− 2)−1 must always be followed by the symbol 1−1, w must

actually contain one additional occurrence of each of 1 and 1−1. Thus |w| ≥ 2n−1.

It turns out that wn, the shortest ε-reducible word accepted by the DFA Mn in the proof

of Theorem 37, is related to the well-known ruler sequence, (ν2(n))n≥1, where ν2(n) denotes

the exponent of the highest power of 2 dividing n. This sequence has many interesting

characterizations including being the lexicographically least infinite squarefree word over

Z. We make the following definition.

Definition 38 For all integers k > 0, let rk = (ν2(n)1≤n<2k) be the prefix of length 2k − 1

of the ruler sequence.

For example, r3 = 0102010. Observe that in general we have the recursive definition

rk+1 = rkkrk.

Proposition 39 Define the homomorphism h : (Γ ∪ Γ−1)∗ → (Γ ∪ {0})∗ such that h(a) =

a − 1 for a ∈ Γ, and h(a) = ε for a ∈ Γ−1. Then for all integers n ≥ 3, we have

h(wn) = rn−20.
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Proof: Let w′n be the prefix of w of length |w| − 2. This is well defined for n ≥ 3.

Also let wn = w′n = ε for n = 2. Then observe that for any integer n ≥ 3, we have

wn = w′n−1(n − 2)w′n−1(n − 2)−11−11 (one can verify that this word is indeed accepted

by Mn, and that it is of the minimal length specified in Theorem 37). Now we prove by

induction that h(wn) = rn−20. For the base case, observe that h(w3) = 00 and rn−2 = 0.

Now assume the inductive hypothesis that h(wk) = rk−20 for some integer k ≥ 3. It

follows from this assumption and from the structure of wk that h(w′k) = rk−2. From the

definition of h we have h(wk+1) = h(w′k)(k − 2)h(w′k)1. From our inductive hypothesis we

have h(wk+1) = rk−2(k − 2)rk−21. Since rk−1 = rk−2(k − 2)rk−2, our result follows from

induction.

While Theorems 36 and 37 show us that the length of the shortest ε-reducible word

can be exponential in worst-case, no tight bound is known so we have the following open

problem:

Open Problem 40 What is the greatest integer function f(n) such that for any integer n

we can find a language Ln such that nsc(Ln) = n and the length of the shortest ε-reducible

word is ≥ f(n)?

3.4 Bounds for Restricted Alphabets

We now turn our attention to shortest ε-reducible strings over restricted alphabets. The

next theorem from Pighizzini [3] shows that over a fixed alphabet size we can still get an

exponential lower bound in terms of state complexity.

Theorem 41 For each integer n ≥ 1 there exists a DFA, Mn with 3n + 1 states over the

alphabet Σ = Γ ∪ Γ−1, where Γ = {1, 2} and Γ−1 = {1−1, 2−1}, with the property that the

only word w ∈ L(Mn) such that r(w) = ε has length |w| = 3 · 2n − 4.

Proof: The proof is constructive. Let Mn be the DFA (Q,Σ, δ, qn, F ) where Q =

{q−1, q0, q1, p1} ∪ {pi, qi, ri : 2 ≤ i ≤ n}, F = {pn}, and

δ(qa, c) = qa−1, if 1 ≤ a ≤ n, and either c = 1 and a ≡ 1 (mod 2),

or c = 2 and a ≡ 0 (mod 2);
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δ(pa, c) =


pa+1, if 1 ≤ a ≤ n− 1, and either c = 1 and a ≡ 0 (mod 2),

or c = 2 and a ≡ 1 (mod 2);

ra+1, if 1 ≤ a ≤ n− 1, and either c = 1−1 and a ≡ 0 (mod 2),

or c = 2−1 and a ≡ 1 (mod 2);

δ(ra, c) = qa−1, if 2 ≤ a ≤ n, and either c = 1−1 and a ≡ 1 (mod 2),

or c = 2−1 and a ≡ 0 (mod 2);

δ(q0, a
−1) = p1.

Any other transitions lead to the dead state q−1. An example for n = 4 is illustrated

in Figure 3.5.
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Figure 3.5: M4: a 3 · 4 + 1 state DFA with the property that the only ε-reducible word

accepted by it has length 3 · 24 − 4. The dead state is not shown.
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In order to prove the statement, for each integer m ≥ 0, let us consider the set Cm of

pairs of states that exclude the dead state, which are connected by an ε-reducible word of

length m, i.e.

Cm = {(s′, s′′) ∈ Q′ ×Q′ : ∃w ∈ Σ∗ s.t. |w| = m, r(w) = ε, and δ(s′, w) = s′′},

where Q′ = Q \ {q−1}. We notice that Cm = ∅, for m odd. Furthermore C0 = {(s, s) : s ∈
Q′} and, for m > 0, Cm = C ′m ∪ C ′′m, where:

C ′m = {(s′, s′′) : ∃(r′, r′′) ∈ Cm−2, a ∈ Σ

s.t. δ(s′, a) = r′ and δ(r′′, a−1) = s′′}, (3.1)

C ′′m = {(s′, s′′) : ∃m′,m′′ > 0, (s′, r′) ∈ Cm′ , (r′′, s′′) ∈ Cm′′

s.t. m′ +m′′ = m and r′ = r′′}. (3.2)

We claim that, for each m ≥ 1:

Cm =


{(qk, pk)}, if ∃k, 1 ≤ k ≤ n, s.t. m = 3 · 2k − 4;

{(qk, rk), (rk, pk)}, if ∃k, 2 ≤ k ≤ n, s.t. m = 3 · 2k−1 − 2;

∅, otherwise.

(3.3)

We prove (3.3) by induction on m.

As already noticed, C1 = ∅. By inspecting the transition function of Mn, we can observe

that C2 = {(q1, p1)}. Notice that 2 = 3 · 21 − 4. This proves the basis.

For the inductive step, we now consider m > 2 and we suppose Equation (3.3) true for

integers less than m.

First, we show that we can simplify the formula in Equation (3.2) for C ′′m. In fact,

using the inductive hypothesis, for 0 < m′,m′′ < m, the only possible (s′, r′) ∈ Cm′ and

(r′′, s′′) ∈ Cm′′ satisfying r′ = r′′ are the pairs (qj, rj), (rj, pj) ∈ C3·2j−1−2, obtained by

taking m′ = m′′ = 3 · 2j−1 − 2, for suitable values of j. This, together with the condition

m′ +m′′ = m, restricts the set C ′′m to:

C ′′m = {(s′, s′′) | ∃r ∈ Q : (s′, r) ∈ Cm/2 and (r, s′′) ∈ Cm/2}. (3.4)

Now we consider three subcases:
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Case 1: m = 3 · 2k − 4, with k ≥ 2.

An easy verification shows that m− 2 cannot be expressed in the form 3 · 2j − 4 or in the

form 3 · 2j − 2, for any j. Hence, by the inductive hypothesis, Cm−2 = ∅. By Equation

(3.1), this implies C ′m = ∅, and then Cm = C ′′m.

We now compute C ′′m using Equation (3.4) and the set Cm/2 obtained according to the

inductive hypothesis. We observe that m/2 = 3 · 2k−1 − 2. Hence, for k ≤ n, Cm/2 =

{(qk, rk), (rk, pk)} and, thus, Cm = C ′′m = {(qk, pk)}. On the other hand, if k > n then

Cm/2 = ∅, which implies Cm = C ′′m = ∅.

Case 2: m = 3 · 2k−1 − 2, with k ≥ 2.

First, we observe that m/2 cannot be written either as 3 · 2j − 4 or as 3 · 2j − 2. Hence, by

the inductive hypothesis, the set C ′′m must be empty. Thus, Cm = C ′m.

We compute C ′m as in Equation (3.1), using the set Cm−2 obtained according to the

induction hypothesis. We notice that m − 2 = 3 · 2k−1 − 4. If k > n + 1 then Cm−2 = ∅,
thus implying Cm = C ′m = ∅. Otherwise, Cm−2 = {(qk−1, pk−1)}. In order to obtain

all the elements of C ′m, we have to examine the transitions entering qk−1 or leaving pk−1.

For k = n + 1 there are no such transitions and, hence, Cm = C ′m = ∅. For k ≤ n all

the transitions entering qk−1 or leaving pk−1 involve the same symbol a ∈ {1, 2} or its

inverse: there are exactly two transitions entering qk−1 (δ(qk, a) = δ(rk, a
−1) = qk−1) and

exactly two transitions leaving pk−1 (δ(pk−1, a) = pk and δ(pk−1, a
−1) = rk). Hence, by the

appropriate combinations of these transitions with the only pair (qk−1, pk−1) in Cm−2, we

get that Cm = C ′m = {(qk, rk), (rk, pk)}.

Case 3: Remaining values of m.

If m = 3 · 2k−1 with k ≥ 2, then Cm−2 = {(qk, rk), (rk, pk)}. All the transitions entering or

leaving rk use the same symbol a−1, with a ∈ {1, 2}, while all the transitions entering qk

or leaving pk use the other symbol b ∈ {1, 2}, b 6= a, or b−1. Hence, from Equation (3.1),

C ′m = ∅.

For all the other values of m, the form of m− 2 is neither 3 · 2j − 4 nor 3 · 2j − 2. This

implies that Cm−2 = ∅ and, then, C ′m must be empty. Hence, we conclude that Cm = C ′′m.

Suppose C ′′m 6= ∅. From Equation (3.4) and the inductive hypothesis, it follows that

m/2 = 3 ·2j−1−2 for some j, thus implying m = 3 ·2j−4. This is a contradiction, because

the values of m we are considering are not of this form. Hence, Cm = C ′′m must be empty.
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This completes the proof of Equation (3.3).

Recall that the initial state of Mn is qn, while the only final state is pn. Hence, the

length of the shortest ε-reducible word accepted by Mn is the smallest integer m such that

(qn, pn) ∈ Cm. According to Equation (3.3), we conclude that such a length is 3 · 2n − 4.

From Equation (3.3), it also follows that there are no ε-reducible words accepted by

Mn with length 6= 3 · 2n − 4. With some small refinements in the argument used to prove

Equation (3.3), we can show that Mn accepts exactly one ε-reducible word. In particular,

for k ≥ 1 we consider:

wk =


11−1, if k = 1;

1wk−11−11−1wk−11, if k > 1 and k odd;

2wk−12−12−1wk−12, otherwise.

By an inductive argument it can be proved that wk is the only ε-reducible word such that

δ(qk, wk) = pk and |wk| = 3 · 2k − 4.

Restricting our alphabet further to the special case where Σ = {1, 1−1}, we give a cubic

upper bound and quadratic lower bound. The next result from Rampersad [3] gives the

upper bound. Boasson et al. [11] use a very similar proof to show that the language of

balanced parentheses has a cubic upper bound for its rational index.

Theorem 42 Let M = (Q, {1, 1−1}, δ, q0, F ) be an NFA with n states such that ε ∈
r(L(M)). Then M accepts an ε-reducible word of length at most n(2n2 + 1).

Proof: We prove the result by contradiction. Assume the shortest w ∈ L(M) such

that r(w) = ε has |w| > n(2n2 + 1). For z ∈ Σ∗ let b refer to the function on words

b(z) = |z|1− |z|1−1 . Roughly speaking, the function b measures the “balance” between the

number of occurrences of the symbol 1 and those of the symbol 1−1 in a word.

Suppose that no factor w′ of w has |b(w′)| > n2. Then the function b can take on at

most 2n2 + 1 distinct values. Since |w| > n(2n2 + 1), there must be a value C such that

b takes the value C for more than n different prefixes of w. That is, there is some ` ≥ n

such that w = xy1y2 · · · y`z where the yi are nonempty and

b(x) = b(xy1) = b(xy1y2) = · · · = b(xy1y2 · · · y`).
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Consider a sequence of `+ 1 states p0, p1, . . . , p` ∈ Q, and a state qf ∈ F , such that during

an accepting computation M makes the following transitions:

p0 ∈ δ(q0, x), p1 ∈ δ(p0, y1), . . . , p` ∈ δ(p`−1, y`), qf ∈ δ(p`, z)

Since ` ≥ n, a state must repeat in the above sequence, say pi = pj with i < j. Then

u = xy1 · · · yiyj+1 · · · y`z is shorter than w (since we have omitted yi+1 · · · yj) and it is

accepted by M . Furthermore, observing that b(yi+1 · · · yj) = 0, we conclude that r(u) = ε.

Since |u| < |w|, this is a contradiction to our choice of w. Hence, w must contain a factor

w′ such that |b(w′)| > n2.

Let y be the shortest factor of w such that b(y) = 0 and |b(y′)| > n2 for some prefix

y′ of y. We can write w = xyz, for suitable words x, z. Let D be the maximum value

of |b(y′)| over all prefixes y′ of y. For i = 0, 1, 2, . . . , D, let R(i) be the shortest prefix

of y with b(R(i)) = i. Similarly, let S(i) be the longest prefix of y with b(S(i)) = i.

Again, consider an accepting computation of M on input w. For each pair [R(i), S(i)], let

[P (i), Q(i)] be the pair of states such that M is in state P (i) after reading xR(i), and M is

in state Q(i) after reading xS(i). Since D > n2, some pair of states repeats in the sequence

{[P (i), Q(i)]}. That is, there exists j < k such that [P (j), Q(j)] = [P (k), Q(k)]. We may

therefore omit the portion of the computation that occurs between the end of R(j) and

the end of R(k) as well as that which occurs between the end of S(k) and the end of S(j)

to obtain a computation accepting a shorter word u such that r(u) = ε. Again we have a

contradiction, and our result follows.

The following result from Pighizzini [3] gives a quadratic lower bound, which holds even

in the deterministic case.

Theorem 43 For each integer n ≥ 0 there exists a DFA Mn with n + 1 states, over the

alphabet Σ = {1, 1−1}, such that the only ε-reducible word w ∈ L(Mn), has length (n2−1)/2

if n is odd, and n2/2 if n is even.

Proof: The proof is constructive. Let Mn be the DFA (Q,Σ, δ, q0, F ), illustrated in Figure

3.6, where Q = {q−1} ∪ {qi : 0 ≤ i < n}, F = {qbn
2
c}, and

δ(qa, c) =


qa+1, if either c = 1 and 0 ≤ a < bn

2
c,

or c = 1−1 and bn
2
c ≤ a ≤ n− 2;

qa mod 2, if c = 1−1 and a = n− 1.
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Any other transitions lead to the dead state, q−1.

Observe that if n is odd, then each word w accepted by Mn has the form w =

(1
n−1
2 1−

n+1
2 )α1

n−1
2 , for an α ≥ 0. Computing the “balance” function b introduced in the

proof of Theorem 42, we get b(w) = 1
2
(n−1−2α), which is 0 if and only if α = n−1

2
. Finally,

by computing the length of w for such an α, we obtain (n+ 1)(n− 1)/2 = (n2 − 1)/2.

Similarly, in the case of n even, we can prove that the only ε-reducible word accepted

by Mn has length n2/2.

1 1 1−1 1−1

1−1

1−1

1−11−11 1 1

q0 qn−1

qn−1qn
2

q1q0

qn−1
2

Figure 3.6: Top: Mn where n is odd. Bottom: Mn where n is even.

We now know that in the special case where Σ = {1, 1−1} the length of the shortest

ε-reducible word is polynomial in worst-case, but no tight bound is known so we have the

following open problem:

Open Problem 44 What is the greatest integer function f(n) such that for any integer

n we can find a language Ln over Σ = {1, 1−1} such that nsc(Ln) = n and the length of

the shortest ε-reducible word is ≥ f(n)?
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Chapter 4

Open Problems

Open problems were previously stated regarding the shortest string in the intersection of

two positive closures of regular languages (Open Problem 12), the shortest string in the

intersection of three or more regular languages (Open Problem 14), tight bounds for the

state complexity and nondeterministic state complexity of reduced representations (Open

Problems 32 and 34 and tight bounds for the length of shortest ε-reducible strings (Open

Problems 40 and 44). We now discuss some additional problems related to the concept of

shortest strings that were studied but not solved.

Open Problem 45 Given a DFA M , is there an efficient method for determining if L(M)

contains a squarefree word?

A word w ∈ Σ∗ is squarefree if it contains no factor of the form u = xx, where u, x ∈ Σ∗.

Squarefree words have been the subject of much study over the last century and Berstel

has written surveys of results that go back as far as Thue [8, 9]. Open Problem 45 is very

similar to those discussed by Anderson et al. [1].

The brute force solution to deciding if a language contains a squarefree word is to

check for squares in all words accepted by the language starting the the shortest, and to

terminate if we find a word that contains no squares. In cases where there are no such

words, we need an upper bound on the length of the shortest squarefree word accepted by

regular languages to know when to terminate. Hence, to determine the complexity of this

brute force method we need good bounds on this length. This leads to the following open

shortest string problem.
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Open Problem 46 What are good bounds on the length of the shortest squarefree word

accepted by a DFA?

If we let L′ be the language of all squarefree words, then the length of the shortest

squarefree word in a language L can be expressed at lss(L ∩ L′). Unfortunately, L′ is

not even context-free [8], let alone regular, so we cannot apply our results from Chapter

2. While the author has not solved this problem, in attempting to construct an example

that gives a good lower bound, a sequence of automata that relates the ruler sequence and

Pascal’s triangle was found.

Recall from Section 3.3 that the ruler sequence is defined by (ν2(n))n≥1, where ν2(n)

denotes the exponent of the highest power of 2 dividing n. Also recall the sequence of

prefixes of the ruler sequence from Definition 38. Then we define our sequence of DFAs,

which we call the ruler automata as follows. For each n ≥ 1, the ruler automaton, R(n),

is the DFA (Qn,Σn, q0, Fn, δn), where Qn = {q0, q1, q2..., qn−1}, Σn = {0, 1, 2, ..., n − 2},
Fn = qn−1, and for qa ∈ Q, b ∈ Σ, δn(qa, b) = qa−b+1 when a− b+ 1 > 0, and δn(qa, b) = q0

otherwise. An example of this construction is shown in Figure 4.1.

q3

0 0 0 0

1 1 1 1

2 2 2

33 3

2,3

1,2,3

q4q0 q1 q2

Figure 4.1: An example of a ruler automaton: the DFA R(5).

The relationship between the ruler automata and the ruler sequence is apparent from

the simplicity of the transition functions on prefixes of the ruler sequence, and from each

ruler automaton accepting exactly one prefix of the ruler sequence.

Proposition 47 For any integers i ≥ 0, k ≥ 1, n ≥ i+ k, δn(qi, rk) = qi+k.

Proof: We prove this by induction. First observe that the base case is true: for k = 1 we

get rk = 0, and δn(qi, 0) = qi+1. Now assume that the claim is true for all k ≤ j, and that

we thus have δn(qi, rj) = qi+j. Let us show that it holds for k = j + 1.
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Since rj+1 = rjjrj, we know that

δ(qi, rj+1) = δ(qi, rjjrj)

= δ(δ(δ(qi, rj), j), rj)

= δ(δ(qi+j, j), rj)

= δ(q(i+1), rj)

= qi+j+1.

Corollary 48 The only prefix of the ruler sequence accepted by R(n) is rn−1.

The relationship between the ruler automata and Pascal’s triangle comes from the

number of times each state is reached in R(n) by rn−1.

Definition 49 We define the following three functions that map from a 4-tuple (M, qa, qi, u)

to a nonnegative integer, where M is an FA, qa is a state of interest, qi is a source state,

and u ∈ Σ∗.

• Let enter(M, qa, qi, u) be the number of times the state qa is entered in M when the

word u is read from the state qi. If either of qa or qi is not a state in M , then the

function evaluates to zero.

• Let exit(M, qa, qi, u) be the number of times the state qa is exited in M when the word

u is read from the state qi. If either of qa or qi is not a state in M , then the function

evaluates to zero.

• Let count(M, qa, qi, u) = max(enter(M, qa, qi, u), exit(M, qa, qi, u)).

So count(M, qa, qi, u) is the number of times state qa is reached in M by word u read

from state qi. We include starting in state qi as reaching it once, and any states not defined

in M are counted as being reached zero times.
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Proposition 50 For any integers a, i ≥ 0, k ≥ 1, n ≥ i+ k, count(R(n), qa, qi, rk) =

count(R(n), qa−1, qi, rk−1) + count(R(n), qa, qi, rk−1).

Proof: Here δn refers to the transition function of R(n). First note that if u and v are

words, and x is a symbol, then

count(R(n), qa, qi, uxv) = count(R(n), qa, qi, u) + count(R(n), qa, δn(qi, ux), v).

Since rk = rk−1(k − 1)rk−1, and δn(qi, rk−1(k − 1)) = qi+1, we have

count(R(n), qa, qi, rk) = count(R(n), qa, qi, rk−1) + count(R(n), qa, δn(qi, rk−1(k − 1)), rk−1)

= count(R(n), qa, qi, rk−1) + count(R(n), qa, qi+1, rk−1).

Observe that for a, i, j ≥ 0, k ≥ 1, n ≥ i+ k, and n ≥ j + k, we have

count(R(n), qi+a, qi, rk) = count(R(n), qj+a, qj, rk−1).

If j = i− 1, then

count(R(n), qa, qi+1, rk−1) = count(R(n), qa−1, qi, rk−1).

So we have

count(R(n), qa, qi, rk) = count(R(n), qa−1, qi, rk−1) + count(R(n), qa, qi, rk−1).

So, the number of times the state qi is reached in R(n) by rn−1 is the sum of the number

of times the states qi−1 and qi are reached in R(n−1) by rn−2. Hence, counting the number

of times each state in R(n) is reached by rn−1 generates Pascal’s triangle. In particular,

the number of times the qi state is reached in R(n) by rn−1 is
(
n−1
i−1

)
.

Originally the author thought that the shortest squarefree word accepted by R(n) was

rn−1, and that these automata hence provided an exponential lower bound on the length

of the shortest squarefree word accepted by a DFA. However, the author later found that

these automata accept shorter squarefree words over the symbols {0, 1, 2}. Shallit [37]

found the shortest squarefree word accepted by R(7) to be of length 40:

0102101201020121020102101201020121012010.

45



In general the shortest squarefree word accepted by R(n) appears to be the prefix of some

longer sequence that Shallit found.

Our next problem was recently asked in a paper [34] on the computational complexity

of some universality problems, but had been studied earlier by Restivo [35].

Open Problem 51 What is the computational complexity of determining, given a finite

set of finite words S ⊂ Σ∗, whether Fact(S∗) = Σ∗?

Deciding universality for a language L ⊆ Σ∗ is the problem of determining whether

L = Σ∗. We refer to the set of prefixes of L as

Pref(L) = {x ∈ Σ∗ : ∃y ∈ L such that x is a prefix of y}.

We use Suff(L), Fact(L), and Subw(L) in the analogous way for suffixes, factors, and

subwords, respectively. Rampersad et al. [34] give the computational complexity for solving

the universality problem for Pref(L), Suff(L), Fact(L), and Subw(L) where L is given by

a DFA or NFA, and then go on to consider the case where L is a finite set of finite words.

The proof of the following proposition is based on one from Rampersad et al. [34].

Proposition 52 We can test in O(n) time, where n = Σw∈S|w|, whether a finite set of

finite words S has the property that Pref(S∗) = Σ∗.

Proof: We begin by building a DFA M = (Q,Σ, q0, F, δ) that accepts all words in S. Since

S is a finite set of finite words we can do this by inserting each word, one at a time, into a

trie-shaped DFA. For each i ∈ Σ, we let li ∈ Q be the state such that δ(q0, i) = li. Then we

alter the transition function such that for each i ∈ Σ and each f ∈ F , we get δ(f, i) = li.

Subsequently we remove all unreachable states and add each remaining state to F. Any

undefined transitions at this point are sent to a rejecting state, r. Call this resulting DFA

M ′. For an example of this construction, see Figure 4.2.

Let S ′ ⊆ S be the largest set of words obtained by removing words from S that

have proper prefixes also in S. Then L(M ′) = Pref(S ′∗), and if L(M ′) = Σ∗ then also

Pref(S∗) = Σ∗. If L(M ′) 6= Σ∗ then there must be a rejecting state and a word w that

reaches it. This w cannot be in Pref(S∗). It follows that L(M ′) = Σ∗ if and only if
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Pref(S∗) = Σ∗. The DFA M ′ can be built in linear time and the presence of a rejecting

state can be checked in linear time, so the proposition is true.

0

1

1
1

1

0,1

0

1

1

0

0

r

q2

q3

q4

q5

q6

q7q0

1

q1

1

0

0
0

0

Figure 4.2: An example of DFA M ′ for S = {0, 010, 101, 1001, 1000}. Since δ(q2, 1) = r,

we know that the word 11 is not in Pref(S∗).

While the algorithm in the preceding proof can also be used to check if Suff(S∗) = Σ∗

by reversing each word in S before running the algorithm, unfortunately this algorithm

cannot easily be adapted to determine if Fact(S∗) = Σ∗. This leads to Open Problem 51.

When studying this problem, Restivo [35] found a linear time solution for the case where

the finite set of finite words S ⊂ Σ∗ is restricted to being a code: Fact(S∗) = Σ∗ if and

only if Σw∈S|Σ|−|w| = 1. For the general case it is not hard to see that the problem can be

solved with polynomial space:

Proposition 53 Given a finite set of finite words S ⊂ Σ∗, the problem of determining

whether Fact(S∗) = Σ∗ is in PSPACE where the input size is n = Σw∈S|w|.
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Proof: We begin by building a DFA M = (Q,Σ, q0, F, δ) that accepts all words in S. This

can be done in O(n) time with |Q| ∈ O(n). Then we convert M into an ε-NFA M ′ that

accepts S∗ by adding ε-transitions from each final state to the initial state. Rampersad et

al. [34] show that it is PSPACE-complete in general to check if Fact(L(M ′)) = Σ∗ for an

NFA M ′.

While it may be the case the the particular structure of the NFA M ′ in the immediately

preceding proof allows for a faster method to check if Fact(L(M ′)) = Σ∗, it is not clear

whether this is so. Another approach that the author has attempted is to rewrite Fact(S∗)

as a concatenation of the languages S∗,Pref(S), Suff(S),Pref(S∗), and Suff(S∗) with the

hope of finding a way to combine solutions to the universality problem for these different

languages.

Proposition 54 For a language L, the following four languages are equivalent to Fact(L∗):

1. Suff(L)Pref(L∗)

2. Suff(L∗)Pref(L)

3. Suff(L)L∗Pref(L)

4. Suff(L∗)Pref(L∗)

Proof: Since the only difference between Pref(L∗) and Fact(L∗) is that a word in Fact(L∗)

can begin with a proper suffix of a word in L, we get Fact(L∗) = Suff(L)Pref(L∗). By sym-

metry we have Fact(L∗) = Suff(L∗)Pref(L). The other two equivalent ways of expressing

Fact(L∗) follow from the observation that Pref(L∗) = L∗Pref(L) and Suff(L∗) = Suff(L)L∗.

Unfortunately, the author has been unable to find a way to use the different ways of

expressing Fact(S∗) to find a better upper bound on the computational complexity than

the PSPACE bound provided in Proposition 53.

Another approach to determining whether Fact(S∗) = Σ∗ is to systematically check for

the shortest word not in Fact(S∗). It is not hard to build an NFA that accepts Fact(S∗) in

O(n) time where n = Σw∈S|w|, so the efficiency of this brute force method depends on the
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length of the shortest string not in Fact(S∗). This leads to the following shortest string

problem.

Open Problem 55 Given a finite set of finite words S, what are good bounds on the

length of the shortest string not in Fact(S∗)?

Both Pribavkina [32] and Rampersad et al. [34] have independently established the

following lower bound with respect to the length of the longest word in S.

Proposition 56 For each integer n ≥ 1 there exists a set of finite words of length ≤ n,

such that the shortest word not in Fact(S∗) is of length n2 + n− 1.

Restivo [35] conjectured an upper bound of 2n2, but in a paper by Fici et al. [19] this

conjecture is shown to be false. Fici et al. [19] take a closer look at the structure of shortest

words not in Fact(S∗) and construct some examples that are quadratic in the length of the

longest string in S.
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