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Abstract

For condensed explosives containing metal particle additives, interaction of the

detonation shock and reaction zone with the solid inclusions leads to non-ideal detonation

phenomena. Features of this type of heterogeneous detonation are described and the

behaviour is related to momentum loss and heat transfer due to this microscopic interaction.

For light metal particles in liquid explosives, 60–100% of the post-shock velocity and

20–30% of the post-shock temperature are achieved during the timescale of the leading

detonation shock crossing a particle. The length scales corresponding to particle diameter

and detonation reaction-zone length are related to define the interaction into three classes,

bound by the small particle limit where the shock is inert, and by the large particle limit

dominated by thin-detonation-front diffraction. In particular, the intermediate case, where

the particle diameter is of similar order of magnitude to the reaction-zone length, is most

complex due to two length scales, and is therefore evaluated in detail.

Dimensional analysis and physical parameter evaluation are used to formalize the

factors affecting particle acceleration and heating. Examination of experimental evidence,

analysis of flow parameters, and thermochemical equilibrium calculations are applied to

refine the scope of the interaction regime. Timescales for drag acceleration and convective

heating are compared to the detonation reaction time to define the interaction regime

as a hydrodynamic problem governed by inviscid shock mechanics. A computational

framework for studying shock and detonation interaction with particles is presented,

including assumptions, models, numerics, and validation. One- and two-dimensional

mesoscale calculations are conducted to highlight the fundamental physics and determine

the limiting cases. Three-dimensional mesoscale calculations, with up to 32 million mesh

points, are conducted for spherical metal particles saturated with a liquid explosive

for various particle diameters and solid loading conditions. Diagnostic measurements,

including gauges for pressure, temperature, and flow velocity, as well as mass-averaged

particle velocity and temperature, are recorded for analysis.

Mesoscale results for particle acceleration and heating are quantified in terms of shock

compression velocity and temperature transmission factors. In addition to the density ratio

of explosive to metal, the solid volume fraction and the ratio of detonation reaction-zone

length to the particle diameter are shown to significantly influence the particle acceleration

and heating. A prototype heterogeneous explosive system, consisting of mono-disperse

spherical aluminum particles saturated with liquid nitromethane explosive, is studied to

develop fitting functions describing the shock compression transmission factors.
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Results of the mesoscale calculations are formulated into a macroscopic physical model

describing an effective shock compression drag coefficient and Nusselt number. The novel

models are explored analytically and are then applied to two challenging sets of test cases

with comparison to experiment. Heterogeneous detonation is considered for aluminum

particles saturated with liquid nitromethane, and inert particle dispersal is studied using

a spherical explosive charge containing steel beads saturated in nitromethane. Finally,

discussion of practical considerations and future work is followed by concluding remarks.
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Chapter 1

Introduction

High explosives, since they were discovered, have become commonplace in both constructive

and destructive applications. The rapid chemical energy release and ability of expanding

gases to perform useful work is unparalleled by other means. Metal particles are commonly

added to explosives to enhance the overall performance—chief among them is aluminum

powder. Scientists are charged with understanding the fundamentals of such metalized

explosives, yet diagnostic techniques are limited and many questions remain unsolved.

While experiments have inarguably demonstrated the phenomenology of this class of

explosives, there is a need for a quantitative description of the underlying mechanisms

for detonation interaction with particle additives. The goal of this work is to develop novel

physics-based descriptions to help understand and explain key detonation phenomena. This

involves exploring detonation behaviour using numerical studies at a mesoscopic scale. In

particular, the acceleration and heating of metal particles in a high explosive detonation are

studied to quantify the resultant physical behaviour. Based on this detailed examination

of detonation interaction with metal particles, global models are proposed which capture

the essential underlying physics. These high-level descriptions are suitable for practical

problems involving metalized explosives and shock propagation in systems containing dense

particles.

1.1 Brief theory of detonation

A detonation wave consists of a leading shock wave supported by chemically-reacting flow.

An ideal one-dimensional detonation structure is the Zel’dovich-von Neumann-Döering
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Figure 1.1: Structure of homogeneous detonation: (left) one-dimensional ZND wave adapted

from [64]; and, (right) transverse wave structure and triple points in cellular detonation [205].

(ZND) wave (see Fickett and Davis [64]). The ZND model of a detonation was developed

independently by Zel’dovich (1940) [224], von Neumann (1942) [209], and Döering (1943)

[48]. It involves a thin shock followed by a finite reaction zone, where the flow is steady

in the frame of reference attached to the shock. For a planar detonation wave to be self

propagating at a steady velocity, simple detonation theories rely on a condition postulated

by Chapman [37] and Jouguet [102], known as the CJ condition. The CJ condition states

that an unsupported detonation will propagate at a minimum velocity where a sonic point

terminates the reaction zone.

Detonation in condensed explosives typically features wave propagation speeds from 6

to 9 mm/µs and peak pressures from 10 to 50 GPa, where the leading shock front is often

modeled by the von Neumann (VN) spike in the ZND wave. Behind the reaction zone,

there is an unsteady expansion commonly called the Taylor wave [64]. The one-dimensional

detonation wave structure is illustrated in Figure 1.1. In reality, detonation in most

homogeneous explosives features an unsteady three-dimensional structure characterized

by transverse waves (Figure 1.1).

Detonation theory, applicable to solids, liquids, and gases, is often treated in self-

contained chapters in combustion texts (e.g., Glassman [81, 82], Strehlow [192], and

Williams [218]). Full texts on the subject are also available (e.g., Zel’dovich [224], Fickett

and Davis [64], and Fickett [63]). Detonation of condensed matter (solids and liquids)

is the subject of this thesis. Specific details for condensed matter are treated by Taylor
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Figure 1.2: Microstructure of heterogeneous explosives from Baer [6]: (left) HMX crystals;

(centre) TATB platelets; and, (right) PETN needles. Reprinted with permission of Elsevier.

[201], Zel’dovich and Kompaneets [225], Johansson and Persson [100], Mader [132, 133],

and Dremin [51].

1.2 Heterogeneous explosive matter

Ideal detonation involves prompt and complete decomposition or oxidation of the explosive

molecules forming condensed matter. Strictly speaking, homogeneous explosives are

limited to pure liquids and single solid crystals, which in practise are only utilized in

laboratory tests. Therefore most condensed-phase explosives are, in fact, heterogeneous

mixtures of solids, or mixtures of solids and liquids. Whereas homogeneous explosives

are presumedly formed from a single-molecule liquid or solid, or a liquid mixture of fuels,

oxidizers, and sometimes sensitizers mixed at the molecular level, heterogeneous explosive

matter often consists of one or more grain-scale or discrete components.

At the microscopic level, heterogeneous explosives include crystals, binders, plasticizers,

solid particles, and voids. In some cases, the additives may be non-energetic but participate

mechanically in the detonation process. The inhomogeneities introduce a number of

physical phenomena that are characterized by the length scale of the microscopic material.

Figure 1.2 illustrates some examples of components used in heterogeneous explosive matter.

A common example of a heterogeneous explosive is ammonium nitrate fuel oil (ANFO),

which consists of solid oxidizer particles (NH4NO3) and a liquid hydrocarbon fuel.

Aluminum powder is often added to increase both the detonability and explosive power.

In general, the reaction of aluminum provides 18–31 MJ/kg-Al of energy release compared

with 5–6 MJ/kg-explosive of detonation energy. Tritonal (80/20 TNT/aluminum) is

3



a standard military explosive that employs the aluminum energy release to improve

underwater performance.

Due to the random packing and orientation of the explosive grains and additives,

the detonation propagation is typically characterized by an irregular structure with

transverse waves. The propagation is affected by local concentration gradients and density

discontinuities at material interfaces. Waves reverberate within the solid matter, but also

in the gaps and voids, producing a microscopic oscillation feature in the resulting shock

pressure. The detonation interacts with material interfaces that include metal particle

additives, voids, and the free boundary at the explosive-air interface. The main features

of heterogeneous detonation include: detonation velocity deficit; altered sensitivity and

initiation effects; decreased critical diameter for detonation failure; microscopic pressure

fluctuations; and, increased detonation reaction-zone length.

The heterogeneous detonation features are strongly influenced by localized energy

concentrations that form so-called hot spots. In homogeneous explosives, hot spots may

form naturally due to instabilities in the wave structure (transverse waves). Hot-spot

theory for condensed explosives is treated by Campbell et al. [33] and Mader [131].

Davis [44] reviews the mechanisms responsible for hot spots: material jetting between

explosive grains; impact of material thrown across a void during collapse; viscous heating

in material near the surface of a collapsing void; interaction of shocks around a high-

impedance inclusion; friction between crystallites; and, internal shear (slippage) within

crystallites. The addition of heterogeneities, such as metal particles, into condensed

explosives introduces microscopic interactions between the detonation shock and the

particles which artificially produce localized hot spots due to shock reflection, focusing,

and transmission. Kato and Brochet [103] were among the first to visualize the hot spots

in liquid explosives with particles.

1.3 Slurry detonation phenomena

A particular class of heterogeneous explosives called ‘slurry’ explosives includes wetted

powders, emulsions, and aqueous gels. In general, a slurry is defined as a liquid that

contains very finely dispersed solid particles. The solid particles are usually completely

saturated by the liquid, filling all interstitial voids. The most common metal fuel used in

slurry explosives is aluminum [41]; at the microscopic level, these powders may be flaked

or spherical. Figure 1.3 shows scanning electron microscope photographs of various types
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Figure 1.3: Micrographs of metal powders: spherical [227], conglomerated [72], and flaked

[222] particle shapes. Images used with permission from the original authors.

of metal particles commonly used in slurry explosives.

Particles saturated with liquid explosives form a convenient system for fundamental

studies of detonation. Examples of liquid explosives include nitroglycerin, isopropyl

nitrate, nitromethane, tetranitromethane, trinitrotoluene (above 81◦C), ammonium nitrate

/ hydrazine (trade name Astrolite), and diethylene glycol dinitrate (see Fordham [65]

and Dobratz and Crawford [47] for details of manufacture, properties, and performance).

Inert particle additives include microballoons (air voids), glass/silica beads, talcum powder

(magnesium silicate), carborundum (silicon carbide), and corundum (aluminum oxide).

Microscopic elemental metal powders commonly studied in scientific experiments include

aluminum, copper, magnesium, titanium, tungsten, and zirconium; metal particles are

often chosen based on their solid density, impedance matching, and reactivity. Detonation

of slurry explosives is reviewed in a book chapter by Frost and Zhang [76].

The effect of a large volume fraction of metallic particle additives on the detonation

properties of slurry explosives has been investigated by a number of researchers. In general,

adding particles reduces the detonation velocity below that of the neat explosive (called

a velocity deficit), since some of the chemical energy released goes into heating and,

in particular, accelerating the particles. Detonation velocity deficit in liquid explosives

containing heterogeneities have been observed experimentally by Engelke [58], Baudin et

al. [18], Haskins et al. [94], Zhang et al. [234], and Kato et al. [107]. They related the bulk

propagation speed to the particle properties, morphology, and loading ratio. For example,

pure liquid explosives (e.g., nitromethane and TNT) have very little velocity deficit in

tubes much larger than the critical diameter; whereas Lee et al. [126, 127] showed large

velocity deficits (from 1 to 20%) when particles are added to nitromethane.

Figure 1.4 illustrates a typical heterogeneous detonation of a long cylindrical explosive
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Figure 1.4: Cylindrical slurry detonation: (left) NM/Al explosive in a glass cylinder – high-

speed photograph from Haskins et al. [94], reprinted with permission from the American

Institute of Physics; and, (right) IPN/Al in a thin PVC tube – flash x-ray radiograph from

Zhang et al. [234], image courtesy of Dr. Fan Zhang.

from the work of Haskins et al. [94] and Zhang et al. [234], which shows the detonation shock

traveling from top to bottom and the expanding products flow. The explosive reaction-zone

length is much smaller than the charge dimensions (length and diameter).

Experiments involving long cylindrical explosives, such as those shown in Figure 1.4,

are also known as rate stick experiments, and are used to measure the detonation velocity

as a function of charge diameter. The interaction of the detonation front with the free

boundary alters the wave speed to accommodate the flow divergence. This results in a

curved detonation shock front, an elongated reaction zone, and a corresponding detonation

velocity deficit. Detonation front curvature theory was proposed by Eyring et al. [61] and

by Bzdil [19]. Decreasing the charge diameter both increases the detonation curvature and

radial expansion rate, and reduces the shock pressure and velocity that eventually leads to

detonation failure. The critical charge size for detonation failure is known as the failure

diameter, which is one of many explosive characterization metrics.

The solid particles in slurry explosives increase the detonation reaction-zone length due

to momentum and heat losses to the particles; however, particles also form hot spots that

sensitize the explosive. For cylindrical slurry explosives, the failure diameter depends on

the competing effects of the explosive sensitization due to the formation of hot spots near

the particles and the increasing detonation reaction length with momentum and energy
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absorbed into the particles, apart from the detonation front curvature effect caused by the

lateral expansion. Engelke [58] and Lee et al. [126, 127] extensively studied the critical

diameter of nitromethane containing silica glass beads. They observed the detonation

propagation and failure transition from large to small bead regimes for a 1.2 mm particle

size, which is considerably larger than the estimated reaction-zone length of sensitized

nitromethane (ca. 10 µm).

Kurangalina [118], Frost et al. [74], and Kato and Murata [105, 106] studied

nitromethane detonation failure with aluminum powders. Unlike small concentrations of

inhomogeneities that tend to increase detonation sensitivity, Kurangalina [118] found that

large concentrations of powder decreased the sensitivity of liquid explosive slurries. Pure

nitromethane has a failure diameter of 16.2 mm; when silica is added to nitromethane, the

failure diameter is reduced to 9.6 mm [58]. Frost et al. [74] and Kato and Murata [105, 106]

showed a U-shaped detonation failure diameter curve as a function of particle diameter for

packed beds of aluminum particles saturated with nitromethane, thus suggesting a strong

dependence on particle diameter. In particular, the charge diameter for detonation failure

increases for the smallest particles.

In slurry explosives, particle ignition delay and reaction times are typically greater than

the explosive detonation reaction timescale, and the resulting metal particle combustion

heat release occurs predominantly behind the sonic point in the detonation. The products

of detonation usually contain CO2 and H2O with the potential to oxidize metal particle

additives. Baudin et al. [18] suggested for spherical aluminum particles as small as 100 nm,

there is insufficient time for particles to react within the detonation reaction zone; this is

consistent with Gogulya et al. [85], Haskins et al. [94], and Zhang et al. [234] who reported

detonation velocity deficits using nanometric aluminum particles.

Kato et al. [107] and Kato and Murata [106] showed in time-resolved detonation profiles

that aluminum reaction contributes to the nitromethane detonation only for particles

smaller than 2 µm. Figure 1.5 gives the results of Kato et al. [107] that illustrate some of

the slurry detonation behaviours for a nitromethane/aluminum mixture compared with a

baseline pure liquid explosive pressure profile. The smallest particle size (3 µm) resulted

in a pressure increase due to aluminum reaction inside the detonation zone. For the 5 µm

particle size, the abrupt pressure rise beginning 3 µs after the leading shock indicates a

subsequent aluminum reaction behind the detonation reaction zone. The pressure histories

involving larger particle sizes show extended steady zones, a feature that was also shown

numerically by Milne [144]. Baer [6] also demonstrated that highly-fluctuating stress states

persist over several particle diameters. This feature is believed to apply for packed particle
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Figure 1.5: Time-resolved detonation profiles of NM and NM/Al recorded in a PMMA plate.

Data of Kato and Murata [105], used with kind permission from Dr. Yukio Kato.

beds in which the solid sound speed is comparable to the bulk detonation velocity. Clearly,

the pressure-time profiles in Figure 1.5 strongly depend on particle size.

Reaction of particles is contingent on heating, melting, and vaporization of the metal,

in addition to availability of oxidizing gases. The results of Yoshinaka et al. [222] for 30 µm

aluminum particles showed that particle melting did not occur within a 13 – 30 GPa shock

compression environment in condensed matter, although there was damage and breakup of

the aluminum particles. Thus, micrometric metal particles can usually be considered inert

within the condensed detonation reaction zone. The interaction between the particles and

explosive is therefore dominated by shock interactions in addition to momentum and heat

transfer.

Figure 1.6 illustrates the cylindrical detonation of nitromethane/aluminum from the

work of Frost et al. [74]. The later dispersal of particles into shock-heated air exhibits

no reaction of the aluminum particles, since the charge diameter is below a critical value.

Combinations of small cylindrical charge diameters with large-diameter particles showed

no reaction of the dispersed particles due to insifficient particle heating time and rapid

cooling in expanding gases. Frost et al. [77] introduced a second critical charge diameter,

the critical diameter for particle ignition (CDPI), above which the dispersed particles ignite

and react. For aluminum, the CDPI has a U-shaped dependence on particle diameter (Frost

et al. [74]). It has been hypothesized that the particle size dependence of CDPI is influenced

by the mechanisms responsible for the similar U-shaped failure diameter curve [164].
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Figure 1.6: Cylindrical heterogeneous detonation and inert particle dispersal of 114 µm

aluminum particles in a 19 mm diameter tube from Frost et al. [74, 76]. Five instances

in time shown with 114 µs between frames. High-speed photographs from Defence R&D

Canada – Suffield, courtesy of Dr. David Frost.

1.4 Particle dispersal phenomena

Lanovets et al. [120] modeled the dispersion of chemically-inert solid inclusions in the

detonation products from a spherical condensed explosive charge. During detonation, they

remarked that the particles entrained by the detonation wave acquire a high velocity and

are grouped in the region adjacent to the leading front. The mechanism for accelerating

the particles in the detonation flow was explained as a simple drag force. Lanovets et

al. [120] numerically predicted that, for a certain range of particle size and density, the

particles could penetrate the shockwave; this was confirmed experimentally by Zhang et al.

[226]. Lanovets et al. [120] further stated that the particles destabilize the contact surface

as they cross out of the fireball.

Figure 1.7 shows high-speed radiographs of the initial dispersal of iron beads in

a centrally-initiated, glass-cased, spherically-symmetric charge. Although the gaseous

detonation products and air shock are not visible in the radiographs, the particle front

and glass fragments can be seen clearly. Analysis of these results by Frost et al. [75]

notes that at 43 µs, a 1 mm thick particle layer has separated from the particle surface,

in a similar fashion to spallation physics. The subsequent dispersal process shows strong

spherical symmetry of the particle cloud, despite the detonation products fireball typically
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Figure 1.7: Radiographs of particle dispersal for an 11.8 cm diameter, glass-cased, spherical

charge containing sensitized nitromethane and steel beads: (a) initial configuration at 0 µs;

(b) dispersal of 275 µm iron particles at 43 µs; and, (c) dispersal of 463 µm particles at 75 µs.

Figure from Frost et al. [75] and Zhang et al. [226]. Images from Defence R&D Canada –

Suffield, courtesy of Dr. David Frost.

featuring large-scale Rayleigh-Taylor instabilities and small-scale turbulence at later times.

As suggested by Zhang et al. [226], this indicates that the acceleration of particles at the

outer edge of the charge occurs during the very initial stage of the particle dispersal.

In the experiment of Zhang et al. [226], the initial volume fraction of particles was

62 ± 1% (mass fraction 92 ± 1%). After 43 and 75 µs (corresponding to times shown

in Figure 1.7), the average volume occupied by the particles decreased to 35% and 10%

respectively, although locally the volume fraction is lower. Below 8% volume fraction,

the particle flow is considered dilute where the boundary layers on individual particles no

longer interact (Rudinger [176]). For spherical explosions, the dense-to-dilute transition

occurs very rapidly (under 100 µs in this example) and within an expansion of one charge

radius. As evidenced by larger heavy particles, high momentum dominates the dispersal

at nearly constant velocity until the particle passes the air shock. Frost et al. [75] showed

for 463 µm steel particles that the velocity of the leading edge of the particle front was

1.280 km/s for 600 µs. Figure 1.8 shows the late-time dispersal process.
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Figure 1.8: High-speed photograph of explosive dispersal of 275 µm inert particles in an

11.8 cm diameter, glass-cased, spherical charge from Frost et al. [75]. Times are 0, 40, 80,

160, 240, 360, 560, and 840 µs, respectively. High-speed photographs from Defence R&D

Canada – Suffield, courtesy of Dr. David Frost.

Most models for shock/particle interaction are based on empirical drag and heat transfer

laws developed for a single particle in steady isothermal flow. These models perform

relatively well for dilute particle conditions in low-pressure gas flows. Successful simulation

of dusty-gas experiments include Saito [178], Elperin et al. [56], and Rogue et al. [172]

for particles of glass and Nylon. Rudinger [173, 174] gives drag coefficients for shock

interaction in gas experiments. For dense particle conditions in condensed media, such

as during detonation and early explosion expansion flow, the traditional momentum and

heat exchange correlations are no longer valid. In fact, Zhang et al. [226] showed an

empirical drag enhancement factor was required to correctly model the dispersed particle

front crossing the shock. A momentum enhancement factor of 6 applied during the first

0.4 ms of dispersal from a constant-volume explosion state provided good agreement with

experimental data. In similar dispersal modeling, Tanguay et al. [195] varied the particle

velocity using 0, 0.5, 1, and 1.5 km/s as the detonation shock passes. Engelhardt [57]

initialized particle velocity using a modified Gurney velocity ranging from 0 to 2.3 km/s as

a function of radius. These ad hoc approaches have been employed to mimic the physical

processes that occur at the detonation reaction zone and particle scale. Physical models

are required for predictive modeling of particle dispersal for use in engineering applications.
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1.5 Multiscale physics modeling

The scientific understanding of condensed explosives falls into two broad categories:

initiation and detonation. Both are multiscale physical phenomena that begin at the atomic

level where molecular excitation and then molecular vibration, chemical decomposition,

and recombination lead to an increase in kinetic energy that increases the temperature

and pressure. This produces waves that coalesce and amplify to support the detonation

shock front, which accelerates and heats the explosive molecules (see Tarver [197, 198] and

Baer [5]). Atomistic modeling includes first principles methods, such as quantum mechanics

and ab initio molecular dynamics. At the microscopic scale, the structural arrangement of

molecules into liquids, solids, and crystals includes directional-dependent microstructure

and imperfections such as dislocations, cracks, inclusions, and oxide coatings on the

individual constituents. At a much larger scale, the macroscopic scale widely used

for engineering simulation, the explosive behaves as a continuous medium. In between

the microscale and macroscale is the mesoscopic scale, or so-called mesoscale, which is

characterized by heterogeneous components at the granular scale of the explosive. The

mesoscale, however, cannot capture subgranular features such as microstructural crystal

lattice defects or thin oxide coatings on metal particles. Figure 1.9 illustrates the modeling

regimes for various length and time scales. The mesoscale is essentially a continuum system

and typically covers geometric length scales of 0.1 µm – 1 mm and time horizons of 1 ns –

1 ms.

Although there is general agreement on the continuum theory (see Drumheller [55])

and conservation laws governing the multiphase flow (see Baer and Nunziato [10] and

Powers et al. [160]), closure of the exchange terms between phases remains a challenge (see

Bdzil et al. [21], Zhang et al. [226, 229], and Baer [6]). Considering a macroscopic control

volume typically containing 102 – 104 physical particles (Figure 1.10), the complex process

of shock and detonation interaction with the individual particles cannot be resolved at the

macroscopic scale. Instead, the interaction occurs at a sub-grid scale where the momentum

and heat transfer may be viewed as a process occurring over a shock-particle interaction

timescale.

Studies of detonation interaction with particles at the sub-grid scale are required to

develop new physical models. While experimental methods can provide information on

the bulk detonation response, the diagnostics available today do not have the resolution

required to record individual particle behaviour. On the other hand, direct numerical

simulation using mesoscale modeling approaches is a practical alternative to gain insight
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Figure 1.9: Length and time scales for physical modeling.

into detonation at the grain scale (0.1 µm – 1 mm) in condensed heterogeneous matter,

where very high resolutions (Figure 1.10) are required to capture the small geometric

features and shock interaction.

Modeling this range of physical mechanisms is a multiple length-scale problem. From

a macroscopic viewpoint, Baer and Nunziato [10] and Baer et al. [9] have developed a

macroscopic multiphase fluid dynamics model applicable to dense fluid-solid flow involving

chemical reaction. These types of models average over the heterogeneities by using a mesh

resolution much coarser than the particle size, where frozen shock interaction is assumed,

in which the particle velocity and temperature are unaffected during the shock passage,

and drag behind the shock accounts for the momentum transfer. Numerical simulation of

particle dispersal by Zhang et al. [226] indicated that momentum transfer far beyond the

standard drag magnitude is required for heterogeneous or granular explosives and the dense

flow that follows detonation. Unfortunately, physical models describing the momentum and

heat transfer between the explosive and particles have yet to be established.

Homogenization of the physical behaviour at one scale can be used to develop models

for use at a larger scale (see Baer [5]). In this thesis, mesoscale simulation results for shock

and detonation interaction are used to develop models at the macroscale. There are two

approaches for entering the mesoscale: upscale from the microscopic level, or downscale
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Figure 1.10: Comparison of particle and mesh size for the macroscale (left) and mesoscale

with N ≫ 1 (right). Two dimensions illustrated for simplicity.

from the macroscale. Both approaches inherit the same methods from their parent scale.

Upscaling from the microscopic level involves adding more ‘particles’ (molecules or atoms)

and looking at a larger section of matter; downscaling from the macroscale involves using

finer mesh resolutions and focusing on a smaller piece of multi-component matter. Both

methods are limited by computational power. Continuum approaches are adopted in this

thesis to leverage the available macroscale framework.

1.6 Shock interaction at the mesoscale

Shock interactions, and related momentum and heat transfer from the explosive to

the particles within the detonation zone, are important mechanisms associated with

macroscopic detonation initiation, propagation, stability, and failure phenomena. On the

other hand, the detonation transmits a strong shock into the solid particles that rapidly

accelerates and heats the material as the wave passes. Internal wave reflections and

external interactions with neighbouring particles dominantly affect the particle velocity

and temperature due to shock compression, before viscous interaction takes over. Thus,

the acceleration and heating of particles within the detonation shock compression regime

will significantly determine the particle dynamics from the explosive dispersal and the

subsequent reaction of the dispersed particles. Zhang et al. [230, 229] showed that light

metal particles, such as aluminum, beryllium, and magnesium, achieve 60–100% of the

shocked fluid velocity immediately behind the shock front. They demonstrated that the

initial material density ratio of the explosive to solid particle was the most significant
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Figure 1.11: Two-dimensional mesoscale inert shock interaction with cylindrical particle

matrices. Shock traveling from bottom to top. Figure enhanced from Zhang et al. [229],

used with permission from the author.

factor affecting particle acceleration. Further, the influence of other parameters affecting

particle acceleration and heating have been studied including particle matrix properties

and explosive reactivity (see Ripley et al. [166, 169, 170]).

Mader [132] conducted some of the pioneering work in mesoscale modeling using 2D

simulation of shock interaction with single air spheres and aluminum cylinders to study

shock initiation of heterogeneous explosives. Following this early work, microstructural

heterogeneities were typically modeled in 2D using ordered matrices of packed circles or

simple polygons (e.g., [14, 24, 219]). Milne [144] used 2D domains to study nitromethane

detonation in heterogeneous mixtures containing glass beads, aluminum particles, and

steel particles. To simulate layers of particles, Milne’s geometry consisted of stacked

particles surrounded by either a rigid cylindrical wall or by toroidal ‘particles’ to simulate

the increased detonation path length expected from real geometries. Zhang et al.

[230, 229] used 2D mesoscale calculations involving single spherical particles and matrices

of cylindrical ‘particles’ (see Figure 1.11) to quantify the acceleration of particles during

the inert shock interaction. Two-dimensional calculations have provided fundamental

knowledge of mesoscale physics using systematic studies; even though the real geometries

are 3D, these models allowed finer meshes and shorter run times than possible in 3D.

Mader and Kershner [135, 136] were perhaps the first to employ 3D mesoscale modeling,

as an extension of earlier 2D calculations. Their original simulation of 3D reaction zones

in heterogeneous explosives, consisting of a solid explosive containing a small void fraction,

aimed to study hot-spot formation and detonation initiation. The voids were modeled as

spherical holes regularly spaced in a 3D matrix of continuous media, requiring only a single
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material to describe a heterogeneous microstructure. The resolution used was 2 – 6 cells

across each void, although they noted that three cells are sufficient.

Modern 3D mesoscale calculations typically employ at least 107 computational cells and

contain O(100) particles. Multiple materials are required to describe the heterogeneous

condensed matter. Baer [6] performed 3D numerical simulations using the Eulerian CTH

shock physics code [141] which includes the effects of material strength, thermal dissipation,

and reaction on shock loading behaviour at the mesoscale. Statistical interrogation has

been performed on this extensive data with the goal to develop continuum-level descriptions

of the fluctuating shock fields [11]. Cooper et al. [40] demonstrated 3D CTH mesoscale

results for an energetic mixture of randomly oriented RDX cubes, aluminum platelets and

IPN liquid filling the interstitial sites. This complex calculation illustrated high shear and

subsequent breakup of the aluminum flakes behind the detonation.

In general, only a very small material sample (up to millimeter size) can be modeled

using mesoscale simulation; a noteworthy exception is Baer [6] who modeled a one-

centimeter disk of material in 3D, requiring 1.3 × 109 mesh points and the use of 4500

CPU computing in parallel. Recently, mesoscale simulation has gained wide-spread use

since computing power increased, where it has been used to develop constitutive models,

and to design and interpret experiments.

1.7 Motivation and state of the art

The scope of the present work is limited to liquid explosive / metal powder systems.

While the effect of the particles on hot-spot sensitization, detonation wave structure,

and propagation velocity is phenomenologically characterized, a theoretical description

has not been developed. Furthermore, the commensurate effects of particle acceleration

and heating on the detonation are not completely established. Whereas hot spots formed

by particles are presumed to sensitize the explosive, momentum and heat transfer to the

particles can provide a competing desensitizing effect. This desensitizing effect has not

been properly quantified; hence, it has not been adequately considered in the explanation

of particle size effects on critical diameter for detonation failure and particle ignition.

In the case of detonation failure, the momentum loss within the detonation reaction zone

further exacerbates the strong free-edge expansion for small cylindrical and spherical charge

diameters. For particle reaction, heating during the detonation stage may contribute

to subsequent ignition. The reviewed literature pertaining to slurry detonation and
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subsequent particle acceleration, heating, and reaction during dispersal suggests strong

a dependence on the size of particles. However, particle size needs to be considered in the

context of other length scales present in the problem.

Knowledge of the acceleration and heating imparted on metal particles in condensed

matter during explosive detonation remains a significant gap. Enhancement factors

and ad hoc corrections have indicated that insufficient momentum and heat transfer

are represented by current models in the literature. Physics-based models for shock

compression particle acceleration and heating are therefore required. These physical

models are necessary to further explore and understand the mechanisms responsible for

the detonation and explosive dispersal phenomena observed in experiments.

The state-of-the-art mesoscale studies of momentum transfer of Zhang et al. [230, 229]

have clearly demonstrated the effects of density ratio for a single particle and indicated

the importance of volume fraction for clusters of particles subjected to a shock wave; their

work has paved the way for quantitative accounting of the shock transmission. However,

work remains to be conducted for a quantitative description of the acceleration and heating

of particles in a matrix subjected to a shock wave and, particularly, a detonation wave.

Extension of the original works of Milne [144] and Zhang et al. [230, 229] requires full

three-dimensional effects and sufficient resolution of the detonation reaction zone to be

included. Finally, development of the mesoscale results into macroscale models remains to

be conducted.

1.8 Objective and plan of thesis

The objective of this thesis is to develop novel physical models for acceleration and heating

of metal particles in condensed explosive detonation. A more quantitative description of the

resultant momentum and heat transfer is sought in conjunction with determination of the

principal shock interaction mechanisms. This is achieved using a theoretical dimensional

analysis to identify key parameters, applying 3D mesoscale continuum modeling of packed

particle matrices saturated with liquid explosive to understand the mechanisms and

behaviour of the key parameters, and by compiling results into transmission factors that

quantify the momentum and heat transfer from the explosive to the particles. The

transmission factors are then incorporated into momentum and heat exchange source terms

developed for the macroscopic computational fluid dynamics framework, which is suitable

for modeling detonation shock compression in metal particles-condensed explosive systems.
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Finally, the new models are applied and validated against macroscopic experimental test

cases involving slurry detonation and dense particle dispersal.

This thesis is organized as follows:

Chapter 2 reviews fundamental considerations for the fluid-particle interaction regimes.

Chapter 3 presents a formal dimensional analysis with a discussion of the resulting

parameter groups.

Chapter 4 provides the methodology adopted for mesoscale calculation, including as-

sumptions, models, and validation.

Chapter 5 presents the mesoscale results for shock and detonation interaction, followed

by compilation and reduction of the resulting velocity and temperature transmission

factors.

Chapter 6 formulates the macroscopic physical models and applies the shock compression

models to detonation and dispersal test cases with comparison to experiment.

Chapter 7 addresses final discussion and concluding points.

18



Chapter 2

Regimes for fluid-particle interaction

in detonation and explosion flow

Particles involved in multiphase detonation and explosive dispersal are subject to a wide

range of interaction regimes. Figure 2.1 schematically illustrates the wave processes and

particle trajectory during the detonation of a spherical slurry explosive and early dispersal

of particles. The detonation is centrally initiated (r = 0) and the detonation wave travels

radially outward, followed by a Taylor expansion wave. When the detonation shock reaches

the edge of the explosive, it transmits a strong shock into the air, while a rarefaction

wave travels back into the explosive. The air shock is driven by the expanding detonation

products interface (commonly called the fireball) at the contact surface. Particles contained

in the explosive are stationary until the arrival of the detonation shock, which during

the interaction, promptly imparts a velocity to the particles due to shock compression

momentum transfer. Subsequently, the Taylor expansion slows the particles, particularly

those closer to the centre of the charge. Near the outer edge of the charge, the strong edge

expansion rapidly accelerates the particles, most significantly at the outermost particle

layers. Depending on the particle size and solid density, the particles may escape the

fireball and pierce through the primary shock wave (Lanovets et al. [120] and Zhang et al.

[226]).

The flow field can be categorized into three major regimes by spatially dividing the

radial flow. A proposed working description of the regimes is illustrated in Figure 2.2. For

each regime, the force acting on particles in the flow, Fd, is normalized by the aerodynamic

force on a single sphere, Fd,S. Regime I is the detonation flow regime, which is contained

within one charge radius. Regime II is the dense particle flow regime and extends from
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Figure 2.1: Schematic x− t diagram for spherical detonation and early dispersal of particles

(R0 = charge radius).

the outer edge of the charge to a distance between two and three charge radii. Beyond

the dense particle flow regime is the dilute particle flow in the far field, denoted as Regime

III. The transition from dense to dilute particle flow is smooth. In contrast, the transition

from the detonation to the dense particle flow regime contains a discontinuity caused by

the abrupt detonation termination and expansion at the edge of the explosive.

The main features of these regimes as they pertain to particle acceleration and

heating are briefly discussed in the following sections. For the generalized fluid-solid flow

description that follows, subscript f denotes the fluid (gas or liquid) and p denotes the

particle (solid). Additional nomenclature is given on Page xxi.

2.1 Dilute particle flow regime

Dilute particle-gas flow is well established in the literature (e.g., Soo [188] and Rudinger

[176]), and is reviewed first since it is the most fundamental and to serve as a prerequisite

for later discussion of the dense and detonation flow regimes. The primary interaction

mechanisms between the two phases are acceleration, heating, and reaction. For the present
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Figure 2.2: Flow regimes for spherical multiphase explosion (R0 = charge radius).

analysis, the particles are assumed to be inert without evaporation, and therefore, mass

transfer is not considered.

In the dilute limit, the particles are far apart and it is assumed that neither the particles

nor the flow fields around each particle interact with each other. The dilute flow regime

therefore consists of individual particles that exchange momentum and energy with the

surrounding fluid. Therefore, the following discussion considers only a single particle, but

is approximately applicable to a collection of non-interacting particles by multiplying by

the number of particles. For gas-solid interaction where ρs ≫ ρf , there are only very weak

shock waves near the solid sound speed transmitted into the particle. Frozen interaction

can be assumed, where the particle does not respond to gas shocks until after the wave

passes the particle. Basically, there are only relaxation processes due to drag and heat

transfer, between the particle and the shocked flow.

2.1.1 Particle acceleration

Acceleration of the particle occurs any time when there is a relative velocity between the

fluid and particle, commonly defined as the slip velocity: uslip = uf − up. For spherical

particles, Newton’s law of motion can be used to define the interaction:

πd3p
6

ρs
dup

dt
= Cd

1

2
ρf (uf − up)|uf − up|

πd2p
4

(2.1)
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where ρ is the density, u is the velocity, dp is the particle diameter, and Cd is the drag

coefficient. In Equation (2.1), dup/dt is the particle acceleration in the Eulerian frame

(fixed laboratory coordinates), and is related to the particle acceleration in the Lagrangian

frame (attached to the particle), ∂up/∂t, as follows:

dup

dt
=

∂up

∂t
+ up

∂up

∂x
(2.2)

The drag coefficient, Cd, is defined in terms of the dynamic head of the relative flow

and the frontal area of the particle:

Cd =
Fd

1
2
ρf (uf − up)2Ap

(2.3)

where Fd is the drag force acting on the particle, including both viscous and pressure drag,

and Ap is the frontal area of the particle (for spheres, Ap = πd2
p/4). Based on Reynolds’

principle of dynamic similarity, Cd is a function of the Reynolds number and the Mach

number in a compressible fluid (Schlichting [181]).

The particle Reynolds number, Re , and Mach number, M , are defined using the relative

slip velocity:

Re =
ρfdp|uf − up|

µf

, M =
|uf − up|

af
(2.4)

where µf is the dynamic viscosity (i.e., the molecular viscosity) of the fluid and af is the

speed of sound in the fluid.

Equation (2.1) can be re-written for the particle acceleration as:

dup

dt
=

3Cdρf
4dpρs

(uf − up)|uf − up| (2.5)

For uf 6= up, there is a drag force (defined on the RHS of Equation 2.1) that causes the

fluid and particle velocity to approach an equilibrium value over a mechanical relaxation

time. The particle acceleration can be expressed in discrete form:

dup

dt
=

uf − up

τV
(2.6)

where τV is the velocity relaxation time. Equating (2.5) and (2.6) yields the velocity

relaxation time:
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τV =
4dpρs

3Cdρf |uf − up|
(2.7)

Rudinger [173, 175] determined that the drag coefficients for particles in a gaseous

shock flow have a steeper dependence on Reynolds number when compared to the drag

coefficients in steady flow. Several numerical investigations of the unsteady drag coefficient

on cylinders and spheres have been conducted, including Ripley et al. [167] and Sun et al.

[193], which show the drag coefficient in a gaseous shock flow is greater than the steady

value.

The Basset, Boussinesq, and Oseen (BBO) equation (see Soo [188], Rudinger [176]),

given in Equation (2.8), is applicable to unsteady flow mainly in the dilute regime. The

BBO equation is used to further analyze the contributions to the drag force magnitude

using a more general unsteady form of the drag force.

πd3p
6

ρs
dup

dt
= Cd

1

2
ρf (uf − up)|uf − up|

πd2p
4

−
πd3p
6

∂p

∂x

+
1

2

πd3p
6

ρf
d

dt
(uf − up)

+
3

2
d2p
√
πρfµf

∫ t

t0

(d/dt′)(uf − up)√
t− t′

dt′

+ Fa

(2.8)

Examining the various force contributions on the RHS of Equation (2.8), the first term

is the viscous drag force for steady flow (cf. Equation 2.1). The second term accounts

for the pressure gradient in the flow acting on the particle. The third term is the added

mass term, which is the force required to accelerate the virtual mass of fluid surrounding

the particle; the apparent added mass is equal to one-half of the particle volume of the

displaced mass of fluid. The fourth term is the Basset history force, or Basset integral,

which represents the additional resistance due to unsteady motion; it considers the history

of the force caused by deviation from the steady flow as a correction to the first term. The

last term, Fa, represents external forces such as gravity.

The Basset force term addresses the temporal delay in boundary layer development

as the relative velocity changes with time [176]. Thomas [202] studied the significance of
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the Basset history force on particle drag in oblique aerodynamic shocks; Sommerfield and

Decker [187] evaluated the Basset history force for planar shocks. Thomas [202] showed

that in the immediate vicinity of the shock, the Basset integral can be many times larger

than the viscous drag; however, the overall Basset force can be neglected when considering

the overall particle motion.

2.1.2 Particle heating

The unsteady energy equation describing heat transfer (convection and radiation) to a

spherical particle is given in Equation (2.9), which is valid below the solid melting point

and assumes a constant specific heat capacity:

πd3p
6

ρscs
dTp

dt
=
[
h(Tf − Tp) + εsσB(T

4
f − T 4

p )
]
πd2p (2.9)

where T is the temperature, cs is the solid heat capacity, h is the convective heat transfer

coefficient, εs is the emissivity of the particle, and σB is the Stefan-Boltzmann constant

(σB = 5.6704× 10−8 W/m2T4).

In Equation (2.9), dTp/dt is the particle heating rate in the Eulerian frame of reference,

which is related to heating in the Lagrangian frame as follows:

dTp

dt
=

∂Tp

∂t
+ up

∂Tp

∂x
(2.10)

and the convective heat transfer coefficient in Equation (2.9) is defined as:

h =
Nukf
dp

(2.11)

where Nu is the Nusselt number and kf is the fluid thermal conductivity. The Nusselt

number is a function of the Mach number, Reynolds number, and Prandtl number: Nu =

f(M ,Re,Pr), where the Prandtl number is defined by Pr = cpµf/kf , with cp being the

fluid specific heat capacity at constant pressure. A wide range of empirical correlations

for the Nusselt number are available in the literature, cf., Oseen [154], Knudsen and Katz

[113], Drake [50], and White [216]. The effect of compressibility was considered in Nusselt

number correlations by Fox et al. [67] and Sauer [180], but the Mach number correction

mostly affects low Reynolds numbers (Re < 100).
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Equation (2.9) can be re-written for the particle heating rate:

dTp

dt
=

6(Tf − Tp)

dpρscs

[
Nukf
dp

+ εsσB(T
2
f + T 2

p )(Tf + Tp)

]

(2.12)

Introducing the timescales for thermal equilibrium by convection, τT , and radiation,

τR, the particle heating rate simplifies to:

dTp

dt
= (Tf − Tp)

(
1

τT
+

1

τR

)

(2.13)

Convection and radiation can be considered independently by evaluating the dominant

timescale when they are disparate. Evaluating the convective heat transfer timescale using

Equations (2.12) and (2.13) and assuming τT ≪ τR shows:

τT =
ρsd

2
pcs

6kfNu
(2.14)

Similarly, evaluating the radiation timescale assuming τR ≪ τT gives:

τR =
dpρscs

6εsσB(T 2
f + T 2

p )(Tf + Tp)
(2.15)

In general, convective heat transfer is the dominant energy exchange mechanism for small

particles.

In addition to the unsteady heat transfer between the fluid and particle, the temperature

distribution within the particle may be non-uniform. The Biot number, Bi, is the ratio

of convective heat transfer from the fluid to the conductive heat transfer within the solid

particle:

Bi =
hdp
6ks

=
Nu

6

(
kf
ks

)

(2.16)

The Biot number can be used to judge the uniformity of the internal temperature

distribution. For Bi < 0.1 the temperature distribution inside the particle is generally

assumed to be uniform and a lumped capacitance method (see Incropera and DeWitt

[98]) can be used to describe the heat transfer at the particle surface. Figure 2.3 plots

Bi (Equation 2.16) for various metal particles in high-temperature gaseous detonation

products. The Nusselt number correlation of Knudsen and Katz [113] is used, where Nu =
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Figure 2.3: Biot number for various particle diameters and metals. Gas thermal conductivity

is approximated from CO2 at unexpanded detonation products temperature (3000 K) and

density (1.535 g/cc). Relative flow velocity of 1.775 mm/µs assumed.

2+ 0.6Re0.5Pr 0.33. For large particles or metals having low thermal conductivity, Bi > 0.1

and the unsteady temperature distribution inside the particle needs to be considered.

Figure 2.3 shows that aluminum, magnesium, and tungsten can reasonably be represented

by the lumped capacitance model for dp < 10 µm.

2.2 Dense particle flow regime

The dense particle flow regime is characterized by a high volume fraction of solid particles,

φp = Vp/(Vp + Vf), where V is the volume occupied by the particles or fluid phase. The

extreme limit of granular flow occurs for φp ≥ φpacked, where particles are tightly packed.

Above the packing limit, forces are exerted on the particles by direct contact with the

neighbouring particles and also by the gas pressure in the pores [226]. Resistance to changes

in the packing configuration is called compaction [10], which is caused by a competition

between the contact forces and compression deformation. For φp ≥ 0.49, the flow behaves

more like a solid [158], where the pressure and sound speed of the flow approach those of

the solid itself.
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In the dense particle flow regime, the particles interact with one another through

random elastic collisions. However, unlike molecular kinetic theory, the dense particle

regime features additional interaction forces due to the surrounding fluid flow. Since

particle wakes occupy much more volume than the particles themselves [181], particle-wake

interactions are much more likely than particle-particle collisions. Xu et al. [221, 220] have

studied the turbulent wake interaction and collision in dense flows of particles (φp = 0.25).

Close-proximity particles in supersonic gas flow also introduce the interaction of shock

wave structures (see Laurence et al. [121] and Zarei et al. [223]). In the dense particle flow

regime, therefore, the flow pressure and sound speed are not satisfactorily described by

theory. A heuristic model for compressible dense solid flow is discussed by Zhang et al.

[226].

The transition from dense to dilute flow occurs when the boundary layers between

neighbouring particles no longer interact. A particle volume fraction of 0.08 corresponds

to a one-particle-diameter spacing between mono-sized spherical particles. The particles

and flow fields are completely independent for volume fractions below 0.02, as suggested

by Steinoir (1944) as cited in Soo [188], or below 0.05, as observed by Kaye (1962) and

cited in Soo [188], depending on Reynolds number. The dilute limit is generally assumed

for φp ≤ 0.01, as in [226].

For low-density gas flow, Figure 2.4 shows photographs of high-volume-fraction particle

layers from the experiment of Rogue et al. [172]. Acceleration is dominated by the drag

behind the shock front since ρf ≪ ρs. Rogue et al. estimated that the drag was higher

than that given by dilute correlations.

Several drag correlations for high volume fractions are available in the literature

(e.g., Zuber [235], Soo [188], Smirnov [186], and Tam [194]). For example, the Smirnov

correlation is given in Equation (2.17), which is valid for 1.5 < Re < 105. Figure 2.5

plots the drag coefficient from the Smirnov correlation over a wide range of Reynolds

number with a volume fraction range of 0.1 ≤ φp ≤ 0.6. The resulting Cd has an order-of-

magnitude spread at a given Re for various φp. The high-volume-fraction drag coefficient

relative to the single drag coefficient is plotted in the ratio Cd/Cd,s in Figure 2.5, assuming

Cd,s = Cd(φp = 0). For φp = 0.1, Cd/Cd,s ranges from 1 to 1.28; in comparison, for

φp = 0.6, Cd/Cd,s ranges from 13.8 to 30.7 depending on Reynolds number.
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Figure 2.4: Photographs of high-volume-fraction particle flow accelerated by a Mach 1.3 air

shock from Rogue et al. [172]. Results for three different configurations: a thin layer of

2 mm glass spheres (left); a double layer of 2 mm glass spheres (centre); and, a thick bed of

1.5 mm glass spheres (right). Reprinted with kind permission from Springer Science.
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(2.17)

Convective heat transfer correlations for high volume fractions are generally limited to

low-Reynolds-number flow such as in heat exchangers and fluidized beds.

In addition to featuring a high volume fraction of solid particles, the dense particle

flow regime may also consist of dense gas flow and unsteady wave dynamics such as in the

near-field expansion of condensed-phase detonation. Real dense gas flow should consider

molecular collision effects to correct the molecular transport coefficients, including viscosity

and conductivity, as well as accounting for shock transmission into the particles (this issue

is discussed further in §2.3.2).

2.3 Detonation regime

The above discussion demonstrates that the dilute and dense particle flow regimes are

well characterized and generally understood from a variety of experimental and numerical

investigations. As such, both the dilute and dense fluid-particle interactions can be
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Figure 2.5: Plot of the high-volume-fraction correlation for drag coefficient based on the

equation in Smirnov [186].

quantified in terms of standard drag coefficients and heat transfer correlations, Cd =

f(Re,M , φp) and Nu = f(Re,Pr ,M , φp). When considering the detonation regime and

subsequent transition to dense flow, momentum and heat transfer become dominated by

shock compression interaction, rather than aerodynamic forces.

In the 1D detonation model, the detonation zone contains a shock wave followed by

a reaction zone. Behind the reaction zone, there is an unsteady flow region. Relevant

physical considerations for these zones are reviewed in this section. Before considering the

interaction of the detonation wave with particles, additional background on homogeneous

detonation theory is presented first.

2.3.1 Homogeneous detonation

Theories for homogeneous detonation in gases and high explosives must satisfy the Rankine-

Hugoniot equations, given in Equation (2.18), which are conservation laws for mass,

momentum and energy across a shock front traveling with velocity D (see Figure 2.6).

The Rankine-Hugoniot equations are as follows:
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D = Shock Velocity

 0, e0, p0, u0 = 0

 1, e1, p1, u1

Shock Wave

Figure 2.6: Schematic of a shock Hugoniot.

u1 = D

(

1− ν1
ν0

)

(2.18a)

ρ20D
2 = (p1 − p0)/(ν0 − ν1) (2.18b)

e1 − e0 =
1

2
(p1 + p0)(ν0 − ν1) (2.18c)

The line determined by Equation (2.18b) is called Rayleigh line; the curve obtained

from Equation (2.18c), given an equation of state, is called the Hugoniot curve.

In the ‘Simplest Theory’ of detonation [64], the reaction is completed in a single

discontinuity that includes both the shock and reaction zone. Fickett and Davis state

“the simplest theory assumes the following:

1. The flow is one-dimensional (laminar).

2. The plane detonation front is a jump discontinuity, a shock in which the chemical

reaction is assumed to be completed instantaneously. The material emerging from the

discontinuity is assumed to be in thermochemical equilibrium, and is thus described

by a thermodynamic equation of state.

3. The jump discontinuity is steady (independent of time), so that the state of the

material emerging from the front is independent of time. The flow following this

point may be time-dependent” [64].

Detonation waves represented by the simplest theory have no initiation transients and are

self-similar in time with a constant reactive shock velocity.

For a planar detonation wave to be self-propagating at a steady velocity, the simple

detonation theories rely on the Chapman-Jouget (CJ) condition. The CJ condition states
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that an unsupported detonation will propagate at a minimum velocity found where the

Rayleigh line has the least slope while remaining tangent to the detonation products

Hugoniot curve. This minimum velocity is uniquely defined as the CJ velocity.

Figure 2.7 illustrates the CJ point and Rayleigh line in the p−ν plane. Hugoniot curves

are loci of possible end states for adiabatic shock compression (Q = 0 for no chemical

reaction or heat losses); Hugoniot curves in Figure 2.7 are denoted as lines of H = 0.

The initial condition (State 0) and von Neumann point (VN state) are both found on the

unreacted Hugoniot curve. Dashed lines are partial reaction Hugoniot curves proceeding

from unreacted (λ = 0) to completely reacted (λ = 1). Rayleigh lines, denoted by R = 0,

have slopes proportional to the square of the detonation velocity, D. Detonation velocities

below that of a CJ wave, e.g., D2 in Figure 2.7, do not intersect the completely reacted

(λ = 1) Hugoniot curve, consistent with the CJ postulate. For detonation velocities D1

greater than the CJ velocity, called overdriven detonations, two possible intersections with

the detonation products Hugoniot are possible corresponding to strong (S) and weak (W)

detonations. For completeness, lines of constant products flow velocity are shown in Figure

2.7 through the CJ, S and W points. Depending on the rear boundary condition, the final

state may end at the CJ point, or follow an isentrope in a rarefaction.

The Zel’dovich-von Neumann-Döering (ZND) model of detonation involves a thin shock

followed by a finite reaction zone, where the flow is steady in the frame of reference attached

to the shock. The ZND detonation is shown schematically in Figure 1.1. For the ZND

model, Fickett and Davis state “the explicit assumptions are as follows:

1. The flow is one-dimensional,

2. The shock is a jump discontinuity, because transport effects (heat conduction,

radiation, diffusion, viscosity) are neglected,

3. The reaction rate is zero ahead of the shock and finite behind, and the reaction is

irreversible (proceeds in the forward direction only),

4. All thermodynamic variables other than the chemical composition are in local thermal

thermodynamic equilibrium everywhere” [64].

The final state occurs where the reaction approaches equilibrium, and is identical

for both the simplest theory (unresolved reaction zone and infinite reaction rate) and

the ZND theory (finite reaction rate). The final state only depends on the explosive
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Figure 2.7: Detonation Hugoniot curves illustrated in the p− ν plane. Figure adapted from

Fickett and Davis [64].

products composition and equation of state, and consists of detonation products that are

in thermochemical equilibrium.

Cheetah is a thermochemical equilibrium code designed to analyze energetic materials

(see Fried et al. [68]). It employs predefined gas species libraries and balances chemical

potentials using Gibb’s free-energy minimization. Cheetah version 2.0 was produced in

1999 at the University of California, Lawrence Livermore National Laboratory. Cheetah

was used in this work for various purposes, including determining the equilibrium CJ state

for detonation, thermodynamic properties of the detonation products, and the detonation

velocity. Furthermore, Cheetah was used to compute the adiabatic expansion of detonation

products with equation-of-state parameter fitting. Finally, Cheetah was used to determine

the heat of detonation of the explosive decomposition.

Some liquid explosives in particular, namely nitroglycerin, dinitroglycerin, tetrani-

tromethane and 87/13 nitromethane/benzene, have apparently one-dimensional detonation
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fronts (Dremin et al. [54]). In reality, the homogeneous detonation structure is three-

dimensional. Instabilities in the shock front result in a regular 3D cellular structure with

transverse waves and natural hot spots (see Erpenbeck [60], Shchelkin [184], and Urtiew

[205]). The present focus is on the primary detonation flow pressure and temperature

interaction with particles, and therefore the disturbances induced by natural cellular

instability will not be treated within the context of this thesis. Instead, significant

disturbances and strong interactions are dominated by the detonation interaction with

the particles.

2.3.2 Dilute heterogeneous detonation

Figure 2.8 schematically illustrates detonation in a heterogeneous mixture of reactive fluid

and inert particles. The distance between particles is sufficient for dilute flow where the

particles and particle flows are not interacting. The particle diameter is much greater than

the shock thickness. For the conditions depicted in Figure 2.8, the detonation reaction-

zone length (LR) is much larger than the particle diameter; however, the situation may be

reversed for large particles or small reaction-zone lengths.

D       - uf   = af D

DetonationSonic Plane

uf >      u p uf

LR

Figure 2.8: Heterogeneous detonation with dilute conditions (φp ≈ 0.05). Figure adapted

from Zhang et al. [231].

In detonation in dense heterogeneous flow, the shock impedance of each material (Z =

ρD) become comparable in magnitude, and therefore, the detonation shock transmits a

strong shock into the particle. The jump condition across this transmitted shock provides

a large velocity and temperature discontinuity that in turn provides the initial acceleration

and heating. Depending on the impedance ratio between the explosive and particles, there

is usually a wave speed mismatch between the shock in the fluid passing over the particle
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Figure 2.9: Condensed shock interaction with a solid metal particle: (left) high impedance

ratio; and, (right) low impedance ratio. Nomenclature: I, incident shock; R, reflected shock;

M, Mach shock; T, transmitted shock; T’, re-transmitted shock; and E, head of expansion

wave. Dashed line denotes undeformed particle shape.

surface and the shock traveling within the particle. For shock impedance ratios differing

from unity, the shock reflects and diffracts from the curved particle surface, inhibiting the

shock propagation in the vicinity of the particle. The transmitted wave and the interaction

with the surrounding waves provide a shock compression effect that is mainly responsible

for the particle acceleration and heating, and occurs primarily within the timescale of

the detonation shock crossing the particle diameter. The process for a single particle

is illustrated schematically in Figure 2.9. When densely-packed particles are considered,

multiple reflections further complicate the shock interactions.
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2.3.3 Dense heterogeneous detonation

Figure 2.10 schematically illustrates heterogeneous detonation in a slurry of liquid explosive

saturating dense-packed particles. The particles are compressed by the shock as the

detonation crosses the particles. In Figure 2.10, the detonation reaction-zone length (LR)

is much larger than the particle diameter; however the situation may be reversed for large

particles or small reaction-zone lengths. Behind the detonation shock and reaction zone in

the explosive, there is mechanical and thermal relaxation due to viscous drag effects.

D

Detonation

Sonic Plane

uf >   up

uf

LR

D       - uf   = af

Mechanical 

Relaxation

Figure 2.10: Heterogeneous detonation in dense conditions (φp ≈ 0.5).

The presence of multiple particles increases the complexity of the condensed shock

interaction. Figure 2.11 illustrates the shock interaction process in the vicinity of a pair

of particles. In both the dilute and dense heterogeneous detonation conditions, hot spots

are formed at the particle leading edges due to the strong wave reflection. For dense

packing in particular, hot spots are also formed during the shock wave collapse in the

concave or convex regions between neighbouring particles [45]. For high-impedance metal

particles, the shock interaction downstream of the particles forms hot spots in the void

region between the particles. Alternatively, for low-impedance metal particles, the hot

spots are formed directly behind the particles. Figure 2.11 also illustrates the transverse

wave structure that is established with regularly sized and spaced particles. High pressure

fluctuations are expected due to complex wave interactions, which are dependent on the

size and spacing of the particles.
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Figure 2.11: Shock interaction near particles in dense heterogeneous detonation: (left) high-

impedance metal particle; and, (right) low-impedance particle. Nomenclature: I, incident

shock; R, reflected shock; M, Mach shock; T, transmitted shock; and, T’, re-transmitted

shock. Particle deformation omitted in schematic. * denotes hot-spot location.
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2.4 Detonation-to-dense flow transition

Figure 2.12 schematically illustrates the shock interaction process at the edge of the charge,

where the detonation shock transmits into an air shock and forms a strong rarefaction wave

that travels back into the charge. This relief wave accelerates the particles layer by layer

beginning at the outermost layer. The interaction is the strongest at the free edge of the

charge, which imparts the highest velocities in the outermost layer.

RW RW SWSWDW

t1 t2 t3

Free edge

of charge

Figure 2.12: Schematic of edge expansion: (left) time t1 prior to detonation shock reaching

free-edge of the charge; (centre) time t2 immediately after detonation shock exits the free

edge of the charge and rarefaction wave travels back into the charge; and, (right) later time

t3. Figure nomenclature: DW = detonation wave; SW = shock wave in air; and, RW =

head of rarefaction wave.

Figure 2.13 shows radiographs of the very early phases of a spherical explosion, from the

experiments of Zhang et al. [226]. As discussed in Section 1.4, the dense-to-dilute transition

occurs within a dispersal and expansion distance of one charge radius. Assuming a

uniform distribution of particles within the expanding cloud, one charge radius of dispersal

corresponds to a solid volume fraction change from 0.62 to 0.08. However, the dispersed

volume of particles is not uniform, rather the particles are most significantly accelerated

by the rarefaction wave travelling inwards beginning at the outer edge of the charge.

2.5 Regimes for detonation interaction with particles

The remainder of this chapter focuses on the acceleration and heating within the detonation

regime. The main features of the detonation interaction regimes are discussed in terms of

the characteristic length scales. The detonation interaction is considered during a shock

interaction timescale, defined as the time required for the leading shock front to cross a

37



Figure 2.13: Radiographs of early particle dispersal from an 11.8 cm spherical charge: (left)

t = 0 µs, φp = 0.62; (centre) t = 43 µs, φp = 0.41; and, (right) t = 102 µs, φp = 0.25.

Figure from Zhang et al. [226], used with permission from Defence R&D Canada – Suffield,

courtesy of Dr. Fan Zhang.

particle: τS = dp/D0. Three interaction classes can be identified according to the ratio of

the characteristic particle size, dp, to the detonation reaction-zone thickness, LR, illustrated

schematically in Figure 2.14.

2.5.1 Case 1: small particle limit (dp/LR ≪ 1)

At the limit of δ = dp/LR → 0, the detonation front is considered inert (i.e., the von

Neumann shock) during the early interaction, which can then be represented by a Heaviside

step function. Within the shock interaction time, the detonation reaction-zone length is no

longer a parameter and the response is represented by a single length scale of the particle

diameter. For an inert planar shock crossing a particle, the dynamic response of the particle

and the surrounding fluid at any given time can be scaled by the particle diameter using

geometric similarity when employing inviscid governing equations and rate-independent

material models (see Zhang et al. [229]). Thus, the computational results for a system of

liquid explosive containing particles of a given size can be scaled to systems of the same

liquid explosive with any diameter particles within the small particle limit. This means

that only a single particle diameter needs to be computed in numerical experiments.
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Figure 2.14: Schematic of a ZND-type detonation superimposed on particle matrices to

illustrate the relative length scales.

Chemical equilibrium analyses, such as those performed in the Cheetah code (see

Fried et al. [68]), assume the small particle limit where the particles are represented as

individual molecules (dp → 0). In this limit, mechanical and thermal equilibrium are

assumed throughout the inert shock and reacting expansion flow up to the CJ point.

2.5.2 Case 2: large particle limit (dp/LR ≫ 1)

For δ = dp/LR → ∞, the reaction-zone length becomes negligibly small and the detonation

wave can therefore be considered as a discontinuity of the Chapman-Jouguet (CJ) front,

separating the fresh explosive from its detonation products. The interaction consists of

diffraction of a thin CJ detonation front dictated by the curved boundary of the particle,

followed by unsteady expanding products flow controlled by the rear boundary. The

particle acceleration and heating are then characterized by the single length scale of the

particle diameter, similar to the small particle limit (dp/LR ≪ 1).

Detonation shock dynamics (DSD) (see Stewart and Bdzil [190], and Bdzil and Stewart

[22]) has been applied to the large particle regime by assuming LR → 0. Frost et al. [70]

used 2D cylinders to measure the detonation velocity deficit in a model slurry explosive

by studying the propagation path length. Recently, Stewart and Bdzil [191] used 3D DSD

simulations of packed matrices of spheres, representative of a heterogeneous explosive.

These approaches do not consider the shock inside the particle, but qualitatively reproduce

a detonation velocity deficit.
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In the classical detonation theory for the CJ condition, the steady reaction zone

following the shock wave is terminated at the sonic point. For two-phase flow, there are

two characteristic sound speeds (i.e., one for the fluid and one for the particle), creating

the potential for multiple points. For δ ≫ 1, the particle length exceeds the reaction-zone

length. Transmitted shock waves traveling inside the particles can propagate past the

CJ point in the explosive, if the solid sound speed exceeds the detonation speed, thereby

extending the steady zone behind the detonation wave. For δ ≫ 1, the resulting steady

zone is then proportional to the particle size. This was observed by Milne [144] for the case

of close-packed aluminum particles in nitromethane, where the steady zone was shown to

be up to 10dp long.

2.5.3 Case 3: intermediate regime (dp/LR ∼ 1)

The case of dp/LR ∼ 1 lies between the above two limits and is therefore most complex

due to two characteristic length scales. The detonation reaction-zone length is similar to

the particle size and both length scales play a role in the acceleration and heating. In this

regime, the particle interacts with both the VN shock and the expanding reacting flow in

the detonation reaction zone that terminates at the CJ point. Locally, the reaction zone is

affected by the particle presence, resulting in a decreased reaction-zone length at hot spots

and an increased reaction-zone length in the expansion flow around the particle.

2.6 Transmission factors for shock and detonation

In order to describe the effect of the acceleration of solid particles in shock and detonation

of a condensed explosive, a velocity transmission factor, α, is defined as the ratio of the

particle mass-averaged velocity, up, after an interaction time, τ , over the shocked fluid

velocity, uf1:

α = up(τ)/uf1 (2.19)

In general, the velocity transmission factor varies between 0 for perfect reflection at a

rigid body to 1 for perfect transmission into a particle with the same material properties

as the fluid. Similarly, a temperature transmission factor, β, is defined as the ratio of the

particle mass-averaged temperature, Tp, after an interaction time, τ , over the shocked fluid

temperature, Tf1:

40



β = Tp(τ)/Tf1 (2.20)

where 0 ≤ β ≤ 1. In both cases, the f1 state represents the post-shock fluid condition.

The particle velocity and temperature are measured following the shock interaction time

defined as follows.

In Equations (2.19) and (2.20), τ = O(τS) with τS = dp/D0. The characteristic

shock interaction time, τS, is used for a single particle in condensed matter. For

a dense solid particle-fluid system, transmission factors are measured after τ = 2τS

such that the immediate effect of wave reflections both within particles and in the

voids between neighbouring particles is included. This comprises the majority of

the acceleration and heating due to primary shock transmission, while subsequent

internal waves further influence the final velocity and temperature achieved during shock

compression. This timeframe also accounts for the influence of transverse wave reflections

and upstream/downstream particle reflections in a densely-packed matrix. The factors

affecting particle acceleration and heating are examined in the next chapter to understand

the velocity and temperature transmission factors defined in Equations (2.19) and (2.20).

41



Chapter 3

Factors affecting particle acceleration

and heating

In this chapter, the factors affecting particle acceleration and heating are investigated

using a formal dimensional analysis. Dimensional reasoning was suggested by Euler (1765),

Fourier (1822), and Rayleigh (1877); their ideas have provided the foundation for scaling

laws and similarly conditions (White [217]). Similarity principles have been used more

recognizably, for instance, in wind tunnel scale models, where geometrically-similar bodies

and flow streamlines can be obtained with different fluids, flow velocity or dimensions.

According to Reynolds’ principle of similarity, dynamic similarity occurs between systems

displaying the same Reynolds and Mach numbers (Schlichting [181]). Dimensional analysis

has been used by scientists and engineers to reduce the number of physical parameters

describing a system by defining dimensionless parameter groups. For the same wind tunnel

example, lift, drag, and pressure coefficients form the dimensionless groups. Similarly, heat

transfer analysis is founded on the dimensionless groups of Prandtl, Grashoff and Eckert

(White [216]). Heat transfer data are traditionally further correlated into the dimensionless

Nusselt number (Incropera and DeWitt [98]).

In the field of explosives, dimensional analysis has been used in both detonation and

air blast. Sedov (1946) [182], Taylor (1950) [200], and von Neumann (1963) [210] applied

similarity solutions to estimate the explosive energy release from pressure measurements.

Air-blast scaling was originally proposed by Hopkinson (1915) and Sachs (1944) [177]

(as discussed by Baker [12], Baker et al. [13], and Kinney and Graham [110]). Later,

Oppenheim et al. (1972) [152] included the CJ detonation in the blast wave scaling.

Recently, Stewart (2004) [189] investigated the miniaturization of explosives using scaling
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considerations.

Mesoscale numerical experiments are necessary to determine the physical models for ac-

celeration and heating of particles in condensed explosive detonation. To reduce the number

of parameters that need to be varied in the numerical experiments, dimensional analysis of

the drag force and heat transfer rate is conducted. Further, non-dimensionalization of the

equations of motion is employed here to determine the importance of the factors affecting

particle acceleration and heating. The physical parameters are reviewed using a literature

survey; the range and significance of the resulting parameter groups are analyzed in this

section.

3.1 Dimensional analysis using the Pi Theorem

The Buckingham Pi Theorem [31] is one method of determining a minimum set of

dimensionless groups. The pi theorem makes use of Fourier’s principle of dimensional

homogeneity, which states “all the terms of a physical equation must have the same

dimensions, or that every correct physical equation is dimensionally homogeneous” [66].

Therefore, physical laws are independent of the form of the units, and acceptable laws

are homogeneous in all dimensions [31]. For a problem containing i physical variables

defined by j primary dimensions, the equation relating all the variables will have k = i− j

dimensionless groups. Application of the pi theorem is described in general fluids textbooks

(e.g., Schlichting [181] and White [216]).

Table 3.1 summarizes the physical variables and dimensions relevant to heterogeneous

detonation, where M is the mass, L is the length, T is the time, and θ is the temperature.

In the subsequent sections, the pi theorem is applied to physical laws for drag force and

heat transfer rate to a particle in dense fluid-solid flow.

3.1.1 Drag force

Considering detonation of a liquid explosive containing dense solid particles, the drag force

acting on a particle (Fd) is assumed to be a function of the relevant dimensional parameters:

Fd = f(dp, D0, ρf0, ρs0, φs0, p0, µf0, LR) (3.1)

where dp is the particle diameter, D0 is the detonation velocity, ρf0 is the initial fluid

density, ρs0 is the particle material density, φs0 is the solid volume fraction, p0 is the
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Table 3.1: Physical variables and dimensions used in dimensional analysis.

Symbol SI Units Physical Dimensions Description of Quantity

Fd N MLT−2 Drag force

Qc W ML2T−3 Heat transfer rate

dp m L Particle diameter

D0 m/s LT−1 Detonation velocity

ρf0 kg/m3 ML−3 Fluid density

ρs0 kg/m3 ML−3 Solid density

φs0 - - Solid volume fraction

µf0 N-s/m2 ML−1T−1 Fluid viscosity

kf0 W/m-K MLT−3θ−1 Fluid thermal conductivity

cp J/kg-K L2T−2θ−1 Fluid heat capacity

p0 N/m2 ML−1T−2 Reference pressure

T0 K θ Reference temperature

LR m L Detonation reaction-zone length

ambient pressure, µf0 is the molecular viscosity of the fluid, and LR is the detonation

reaction-zone length.

The proposed function in Equation (3.1) has nine variables, therefore i = 9. The

definition and dimensions for each variable are given in Table 3.1. The number of primary

dimensions contained in the variables is three (i.e., M,L, T ) so that j ≤ 3. There are at

least three variables that cannot be combined into a dimensionless Π group (e.g., dp, D0,

and ρf0); therefore, j = 3. The pi theorem requires that there will be exactly k = i− j = 6

dimensionless groups. One of these is φs0 which is already dimensionless:

Π6 = φs0 (3.2)

Assuming dp, D0, and ρf0 are independent variables among the nine parameters in the

force expression (Equation 3.1), they are chosen for the repeating variables in the Π groups,

which are determined as follows:

Π1 = Fdρ
a
f0D

b
0d

c
p = (MLT−2)(ML−3)a(LT−1)b(L)c = M0L0T 0 (3.3)

a = −1, b = −2, c = −2 (3.4)
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Π1 =
Fd

ρf0D2
0d

2
p

= Cd (3.5)

Π2 = µ−1
f0 ρ

a
f0D

b
0d

c
p = (ML−1T−1)−1(ML−3)a(LT−1)b(L)c = M0L0T 0 (3.6)

a = 1, b = 1, c = 1 (3.7)

Π2 =
ρf0D0dp

µf0

= Re (3.8)

Π3 = p−1
0 ρaf0D

b
0d

c
p = (ML−1T−2)−1(ML−3)a(LT−1)b(L)c = M0L0T 0 (3.9)

a = 1, b = 2, c = 0 (3.10)

Assuming a20 = γp0/ρf0, where a0 is the sound speed and γ = cp/cv is the ratio of

specific heats, then

Π3 =
ρf0D

2
0

p0
=

γD2
0

a20
= γM2

0 (3.11)

Π4 = ρ−1
s0 ρ

a
f0D

b
0d

c
p = (ML−3)−1(ML−3)a(LT−1)b(L)c = M0L0T 0 (3.12)

a = 1, b = 0, c = 0 (3.13)

Π4 =
ρf0
ρs0

(3.14)

Π5 = L−1
R ρaf0D

b
0d

c
p = (L)−1(ML−3)a(LT−1)b(L)c = M0L0T 0 (3.15)

a = 0, b = 0, c = 1 (3.16)

45



Π5 =
dp
LR

= δ (3.17)

The final equation relating all the parameters describing Fd is of the form Π1 =

f(Π2,Π3,Π4,Π5,Π6):

Cd = f

(

Re,M0,
ρf0
ρs0

,
dp
LR

, φs0

)

(3.18)

Therefore, the drag force for particles in a detonation flow can be entirely described by

an “effective” drag coefficient, Cd, where Re is the Reynolds number and M0 is the Mach

number of the detonation shock. Note that the flow compressibility is represented by the

shock Mach number, instead of the flow Mach number commonly used. Equation (3.18)

also includes the density ratio of explosive to solid particles, ρf0/ρs0, the ratio of particle

diameter to detonation reaction-zone length, dp/LR, and the solid volume fraction, φs0.

3.1.2 Heat transfer rate

The heat transfer rate to a particle (Qc) during detonation in a solid particles-explosive

system is assumed to be:

Qc = f(dp, D0, ρf0, ρs0, φs0, T0, µf0, kf0, cp, LR) (3.19)

where T0 is the ambient temperature, kf0 is the thermal conductivity of the explosive, and

cp is the explosive fluid heat capacity. This function has eleven variables (i = 11); the

definitions and dimensions for each variable are given in Table 3.1. The number of primary

dimensions contained in the variables is four (i.e., M,L, T, θ) so that j ≤ 4. There are at

least four variables that cannot be combined into a dimensionless Π group (e.g., dp, D0, ρf0,

and T0); therefore, j = 4. The pi theorem requires that there will be exactly k = i− j = 7

dimensionless groups. One of these is φs0 which is already dimensionless:

Π7 = φs0 (3.20)

Using the four independent variables that do not form a dimensionless group (dp, D0, ρf0

and T0) for the repeating variables in the Π groups, the dimensionless groups are found as

follows:
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Π1 = µ−1
f0 ρ

a
f0D

b
0d

c
pT

d
0 = (ML−1T−1)−1(ML−3)a(LT−1)b(L)c(θ)d = M0L0T 0θ0 (3.21)

a = 1, b = 1, c = 1, d = 0 (3.22)

Π1 =
ρf0D0dp

µf0
= Re (3.23)

Π2 = c−1
p ρaf0D

b
0d

c
pT

d
0 = (L2T−2θ−1)−1(ML−3)a(LT−1)b(L)c(θ)d = M0L0T 0θ0 (3.24)

a = 0, b = 2, c = 0, d = −1 (3.25)

Noting that for an ideal gas cp = γR/(γ − 1) and a20 = γRT0, where R is the gas

constant, then

Π2 =
D2

0

cpT0

=
D2

0(γ − 1)

γRT0

= M2
0 (γ − 1) (3.26)

Π3 = k−1
f0 ρ

a
f0D

b
0d

c
pT

d
0 = (MLT−3θ−1)−1(ML−3)a(LT−1)b(L)c(θ)d = M0L0T 0θ0 (3.27)

a = 1, b = 3, c = 1, d = −1 (3.28)

Π3 =
ρf0D

3
0dp

kf0T0

=
ρf0γRD3

0dp
kf0a2f0

=
ρf0cpM

2
0 (γ − 1)D0dp
kf0

=
Prρf0D0dpM

2
0 (γ − 1)

µf0

= PrReM2
0 (γ − 1)

= PrΠ1Π2 (3.29)
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where the Prandtl number, Pr = µf0cp/kf0, has been introduced.

Π4 = Qcρ
a
f0D

b
0d

c
pT

d
0 = (ML2T−3)(ML−3)a(LT−1)b(L)c(θ)d = M0L0T 0θ0 (3.30)

a = −1, b = −3, c = −2, d = 0 (3.31)

Π4 =
Qc

ρf0D3
0d

2
p

=
Qc

µf0ReD2
0dp

=
Qccp

kf0PrReD2
0dp

=
Qc

kf0PrReM2
0T0(γ − 1)dp

=
Nu

PrReM2
0 (γ − 1)

=
Nu

Π3

(3.32)

where the Nusselt number, Nu = Qc/kf0T0dp, has been introduced.

Π5 = ρ−1
s0 ρ

a
f0D

b
0d

c
pT

d
0 = (ML−3)−1(ML−3)a(LT−1)b(L)c(θ)d = M0L0T 0θ0 (3.33)

a = 1, b = 0, c = 0, d = 0 (3.34)

Π5 =
ρf0
ρs0

(3.35)

Π6 = L−1
R ρaf0D

b
0d

c
pT

d
0 = (L)−1(ML−3)a(LT−1)b(L)c(θ)d = M0L0T 0θ0 (3.36)

a = 0, b = 0, c = 1, d = 0 (3.37)
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Π6 =
dp
LR

= δ (3.38)

The final equation relating all the parameters describing Qc is of the form Π1 =

f(Π2,Π3,Π4,Π5,Π6,Π7). Rearranging the Π terms shows that the heat transfer rate can

be entirely described by an “effective” Nusselt number, Nu:

Nu = f

(

Re ,M0,Pr ,
ρf0
ρs0

,
dp
LR

, φs0

)

(3.39)

The resulting dimensionless groups for Re, Pr , M0 are standard parameter groups in fluid

mechanics. The additional groups for φs0, ρf0/ρs0 and dp/LR represent physical properties

of the slurry explosive mixture. For dilute particles-gas flow (φs0 ≪ 1; ρf0/ρs0 ≪ 1), with

a small particle limiting scale (dp/LR ≪ 1), the drag coefficient function (Equation 3.18)

and Nusselt number function (Equation 3.39) approach the well established classic forms

of Cd = f(Re,M0) and Nu = f(Re,Pr ,M0).

In general, the dimensionless groups obtained using the pi theorem are not unique and

their physical meaning depends on the choice of dimensionless parameters. Furthermore,

the pi theorem does not indicate the relative importance of each parameter.

3.2 Non-dimensionalization of the governing equations

The dimensionless parameters are further investigated using non-dimensionalization of

the flow equations. The basic equations that govern the flow are considered first. The

conservation equations for a compressible material in the Eulerian frame are given in tensor

notation as follows:

Conservation of mass:

∂ρ

∂t
+

∂ρui

∂xi

= J (3.40)

Conservation of momentum:

ρ
∂ui

∂t
+ ρuj

∂ui

∂xj
− ∂τij

∂xj
= Bi (3.41)
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Conservation of energy:

ρ
∂E

∂t
+ ρuj

∂E

∂xj

− τij
∂ui

∂xj

− ∂qi
∂xi

= Q (3.42)

where ρ is the density, ui is the velocity vector, E is the total specific energy, τij is the stress

tensor, qi is the conductive heat transfer vector, xi is the Cartesian coordinate vector, and

t is the time. The right-hand side of the governing equations contains volumetric source

terms, where J is a mass source, Bi is a body force vector, and Q represents energy sources.

In the continuum theory for granular flows, the solid flow mass concentration and

pressure, σp and pp, respectively, are assumed to be equal to the solid material density and

pressure, ρs and ps, respectively, times the solid volume fraction, φs (Baer and Nunziato

[10] and Powers et al. [160]):

σp = ρsφs (3.43)

pp = psφs (3.44)

Similarly, the fluid volume fraction is used to define the mass concentration for the fluid

phase:

σf = ρfφf (3.45)

where the saturation constraint (i.e., conservation of volume) is: φs + φf = 1.

Non-dimensionalization of the governing equations can also be used to obtain the di-

mensionless parameter groups controlling the flow in addition to indicating the importance

of each parameter. Without losing generality, 2D conservations equations are examined in

the non-dimensional analysis. Each physical variable (both dependent and independent)

needs to be made dimensionless by dividing them by constant reference properties, and

then substituting into the governing equations (Equations 3.40 – 3.42). Reference length

and time scales are chosen that are appropriate to the relevant problem physics. The

characteristic length dimension is the particle diameter, dp, and the characteristic velocity

is the detonation velocity, D0. Dimensionless variables are denoted by an asterisk, which

are defined as follows:
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x∗ =
x

dp
y∗ =

y

dp
u∗ =

u

D0

v∗ =
v

D0

t∗ =
tD0

dp
ρ∗f =

ρf
ρf0

ρ∗s =
ρs
ρs0

p∗f =
pf
p0

(3.46)

φ∗
s =

φs

φs0

3.2.1 Conservation of mass

The 2D mass conservation equations for two-phase fluid-solid flow, where Jp is the mass

transfer from the solid to the fluid, are:

∂σf

∂t
+

∂σfuf

∂x
+

∂σfvf
∂y

= −Jp (3.47)

∂σp

∂t
+

∂σpup

∂x
+

∂σpvp
∂y

= Jp (3.48)

Summing Equations (3.47) and (3.48) gives the phase-conservative continuity equation,

in which the mass transfer source term has been eliminated:

∂ [φfρf + φsρs]

∂t
+

∂ [φfρfuf + φsρsus]

∂x
+

∂ [φfρfvf + φsρsvs]

∂y
= 0 (3.49)

Substituting the saturation constraint, φf = 1− φs, gives:

∂ [(1− φs)ρf + φsρs]

∂t
+

∂ [(1− φs)ρfuf + φsρsus]

∂x
+

∂ [(1− φs)ρfvf + φsρsvs]

∂y
= 0 (3.50)

Substituting the dimensionless groups from Equation (3.46) gives:

ρf0D0

dp

∂ρ∗f
∂t∗

− ρf0φs0D0

dp

∂ρ∗fφ
∗
s

∂t∗
+

ρs0φs0D0

dp

∂ρ∗sφ
∗
s

∂t∗

+
ρf0D0

dp

∂ρ∗fu
∗
f

∂x∗
− ρf0φs0D0

dp

∂ρ∗fφ
∗
su

∗
f

∂x∗
+

ρs0φs0D0

dp

∂ρ∗sφ
∗
su

∗
s

∂x∗

+
ρf0D0

dp

∂ρ∗fv
∗
f

∂y∗
− ρf0φs0D0

dp

∂ρ∗fφ
∗
sv

∗
f

∂y∗
+

ρs0φs0D0

dp

∂ρ∗sφ
∗
sv

∗
s

∂y∗
= 0 (3.51)
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Dividing by ρf0D0/dp, the following non-dimensional equation is obtained:

∂ρ∗f
∂t∗

+
∂ρ∗fu

∗
f

∂x∗
+

∂ρ∗fv
∗
f

∂y∗
− φs0

︸︷︷︸

I

(
∂ρ∗fφ

∗
s

∂t∗
+

∂ρ∗fφ
∗
su

∗
f

∂x∗
+

∂ρ∗fφ
∗
sv

∗
f

∂y∗

)

+ φs0
ρs0
ρf0
︸︷︷︸

II

(
∂ρ∗sφ

∗
s

∂t∗
+

∂ρ∗sφ
∗
su

∗
s

∂x∗
+

∂ρ∗sφ
∗
sv

∗
s

∂y∗

)

= 0 (3.52)

Terms I and II represent the dimensionless groups φs0 and ρs0/ρf0, respectively. Note

that Term II is the inverse of Π4 in Equation (3.14) for the ratio of explosive to solid

particles.

3.2.2 Conservation of momentum

The conservation of linear momentum equations for two-dimensional flow are as follows:

x-direction:

∂σfuf

∂t
+

∂(σfu
2
f + pfφf)

∂x
+

∂σfufvf
∂y

+
∂

∂x

[

−4

3
µf

∂uf

∂x
+

2

3
µf

∂vf
∂y

]

+
∂

∂y

[

µf

(
∂uf

∂y
+

∂vf
∂x

)]

= −Jpup − Fpx (3.53a)

y-direction:

∂σfvf
∂t

+
∂σfufvf

∂x
+

∂(σfv
2
f + pfφf)

∂y

+
∂

∂x

[

µf

(
∂vf
∂x

+
∂uf

∂y

)]

+
∂

∂y

[

−4

3
µf

∂vf
∂y

+
2

3
µf

∂uf

∂x

]

= −Jpvp − Fpy (3.53b)

where Fpx and Fpy are the phase interaction force components in the x- and y-directions,

respectively. For non-dimensionalization of the two-dimensional flow equations, the

conservation of linear momentum is analyzed in the x-direction for the fluid phase. Analysis

of the y-direction momentum equation follows a similar procedure and yields the same

dimensionless groups, hence the y-direction has been omitted in the remainder of this

section.
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Applying the the saturation constraint to Equation (3.53a) gives:

∂ρf (1− φs)uf

∂t
+

∂ρf (1− φs)u
2
f

∂x
+

∂pf (1− φs)

∂x
+

∂ρf (1− φs)ufvf
∂y

+
∂

∂x

[
2

3
µf

∂vf
∂y

− 4

3
µf

∂uf

∂x

]

+
∂

∂y

[

µf

(
∂uf

∂y
+

∂vf
∂x

)]

= Fpx (3.54)

Additional dimensionless groups in addition to Equation (3.46) are:

µ∗
f =

µf

µf0

F ∗
px =

Fpxd
3
p

F0

F ∗
py =

Fpyd
3
p

F0

(3.55)

where µf0 is a reference viscosity and F0 is a reference force in Newtons. Note that Fpx

and Fpy are volumetric forces with units of N/m3.

Substituting the dimensionless groups from Equations (3.46) and (3.55) gives:

ρf0D
2
0

dp

∂ρ∗fu
∗
f

∂t∗
+

ρf0D
2
0

dp

∂ρ∗fu
∗
f
2

∂x∗
+

p0
dp

∂p∗f
∂x∗

+
ρf0D

2
0

dp

∂ρ∗fu
∗
fv

∗
f

∂y∗

− ρf0φs0D
2
0

dp

∂ρ∗fφ
∗
su

∗
f

∂t∗
− ρf0φs0D

2
0

dp

∂ρ∗fφ
∗
su

∗
f
2

∂x∗
− p0φs0

dp

∂p∗fφ
∗
s

∂x∗
− ρf0φs0D

2
0

dp

∂ρ∗fφ
∗
su

∗
fv

∗
f

∂y∗

+
µf0D0

d2p

∂

∂x∗

[
2

3
µ∗

∂v∗f
∂y∗

− 4

3
µ∗

∂u∗
f

∂x∗

]

+
µf0D0

d2p

∂

∂y∗

[

µ∗

(
∂u∗

f

∂y∗
+

∂v∗f
∂x∗

)]

=
F0

d3p
F ∗
px (3.56)

Dividing by ρf0D
2
0/dp, the following is obtained:

∂ρ∗fu
∗
f

∂t∗
+

∂ρ∗fu
∗
f
2

∂x∗
+

∂ρ∗fu
∗
fv

∗
f

∂y∗
+

p0
ρf0D

2
0

︸ ︷︷ ︸

I

∂p∗f
∂x∗

− φs0
︸︷︷︸

II

{

∂ρ∗fφ
∗
su

∗
f

∂t∗
+

∂ρ∗fφ
∗
su

∗
f
2

∂x∗
+

∂ρ∗fφ
∗
su

∗
fv

∗
f

∂y∗

}

− φs0
p0

ρf0D2
0

︸ ︷︷ ︸

III

∂p∗fφ
∗
s

∂x∗

+
µf0

dpρf0D0
︸ ︷︷ ︸

IV

{
∂

∂x∗

[
2

3
µ∗

∂v∗f
∂y∗

− 4

3
µ∗

∂u∗
f

∂x∗

]

+
∂

∂y∗

[

µ∗

(
∂u∗

f

∂y∗
+

∂v∗f
∂x∗

)]}

=
F0

ρf0d2pD
2
0

︸ ︷︷ ︸

V

F ∗
px (3.57)
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The dimensionless groups in the momentum conservation equation are summarized as

follows:

Term I can be simplified using the ideal gas law:

p0
ρf0D2

0

=
a20
γD2

0

=
1

γM2
0

(3.58)

Term II is the solid volume fraction, φs0. Term III is the product of Terms I and II.

Term IV is the inverse Reynolds number:

µf0

dpρf0D0

=
1

Re
(3.59)

Term V is the definition of drag coefficient:

F0

ρf0d2pD
2
0

= Cd (3.60)

3.2.3 Conservation of energy

The momentum conservation equation confirmed four of the dimensionless groups: Cd,

φs0, Re, and M0. The energy equation for viscous chemically-reacting flow is analyzed to

determine the remaining dimensionless groups. The two-dimensional energy equation is:

∂ρfφfEf

∂t
+

∂ρfφfufEf

∂x
+

∂φfpfuf

∂x
+

∂

∂x
(ufτ

′
xx + vfτxy + qx)

+
∂φfpfvf

∂y
+

∂

∂y

(
ufτyx + vfτ

′
yy + qy

)

= Fpxup + Fpyvp +Qp +Qr

(3.61)

The stress tensor components, which have been used to keep the equations more compact,

are defined as follows (prime denotes hydrostatic pressure removed from normal stress

component):

τ ′xx =
4

3
µ
∂u

∂x
− 2

3
µ
∂v

∂y
(3.62a)

τxy = µ

(
∂u

∂y
+

∂v

∂x

)

(3.62b)

τyx = µ

(
∂v

∂x
+

∂u

∂y

)

(3.62c)

τ ′yy =
4

3
µ
∂v

∂y
− 2

3
µ
∂u

∂x
(3.62d)
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The conduction heat flux components are defined as follows:

qx = −k
∂T

∂x
(3.63a)

qy = −k
∂T

∂y
(3.63b)

where T is the temperature. The source terms Qp and Qr on the RHS of Equation (3.61)

represent the particle heat transfer and fluid chemical reaction, respectively. They are

defined as follows:

Qp = πd2pnph (Tf − Tp) (3.64)

Qr = ρfω∆Hdet (3.65)

Additional dimensionless variables need to be defined in order to complete the non-

dimensionalization of the energy equation:

E∗ =
E

D2
0

∆H∗ =
∆H

D2
0

ω∗ = ω
LR

D0

k∗ =
k

kf0
T ∗ =

T

T0

h∗ =
h

h0

(3.66)

τ ∗ =
τdp

µf0D0

q∗ =
qdp
kf0T0

n∗
p = npd

3
p

Substituting dimensionless groups (Equations 3.46, 3.55, and 3.66) and φf = 1 − φs

into Equation (3.61), and re-arranging the terms, gives:
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(3.67)

Dividing by ρf0D
3/dp, the following is obtained:

∂ρ∗fE
∗
f

∂t∗
+

∂ρ∗fu
∗
fE

∗
f

∂x∗
+

∂ρ∗fv
∗
fE

∗
f

∂y∗
+

p0
ρf0D2

0
︸ ︷︷ ︸

I

(
∂p∗fu

∗
f

∂x∗
+

∂p∗fv
∗
f

∂y∗

)

− φs0
︸︷︷︸

II

(
∂ρ∗fφ

∗
sE

∗
f

∂t∗
+

∂ρ∗fφ
∗
su

∗
fE

∗
f

∂x∗
+

∂ρ∗fφ
∗
sv

∗
fE

∗
f

∂y∗

)

− φs0
p0

ρf0D2
0

︸ ︷︷ ︸

III

(
∂p∗fφ

∗
su

∗
f

∂x∗
+

∂p∗fφ
∗
sv

∗
f

∂y∗

)

+
µf0

ρf0D0dp
︸ ︷︷ ︸

IV

(
∂

∂x∗

[
u∗
fτ

′
xx

∗
+ v∗fτxy

∗
]
+

∂

∂y∗
[
u∗
fτyx

∗ + v∗fτ
′
yy

∗]
)

− kf0T0

ρf0dpD3
0

︸ ︷︷ ︸

V

(
∂q∗x
∂x∗

+
∂q∗y
∂y∗

)

=
F0

ρf0D
2
0d

2
p

︸ ︷︷ ︸

VI

(
F ∗
pxu

∗
p + F ∗

pyv
∗
y

)
+

h0T0

ρf0D
3
0

︸ ︷︷ ︸

VII

πd∗p
2n∗

ph
∗
(
T ∗
f − T ∗

p

)
+

dp
LR
︸︷︷︸

VIII

ρ∗fω
∗∆H∗

det (3.68)

The dimensionless groups in the energy conservation equation are summarized as

follows. Term I is the inverse square of Mach number:

p0
ρf0D2

0

=
1

γM2
0

(3.69)

Term II is the solid volume fraction, φs0. Term III is the product of Terms I and II.

Term IV is the inverse Reynolds number:

µf0

ρf0dpD0

=
1

Re
(3.70)
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Term V is the inverse of Π3 in Equation (3.29):

kf0T0

ρf0dpD3
0

=
1

PrReM2
0 (γ − 1)

(3.71)

Term VI is the definition of drag coefficient, which identical to Π1 in Equation (3.5):

F0

ρf0D2
0d

2
p

= Cd (3.72)

Term VII is equivalent to Π4 in Equation (3.32):

h0T0

ρf0D3
0

=
Nu

PrReM2
0 (γ − 1)

(3.73)

Term VIII is the ratio of particle size to detonation reaction-zone length, as found in Π6

in Equation (3.38):
dp
LR

= δ (3.74)

The energy equation provides additional dimensionless groups: Nu , Pr , and δ. The

final form of the non-dimensional energy equation is as follows:
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(3.75)

Thus, Equations (3.52), (3.57), and (3.75) provide the dimensionless parameters of Re,

Pr , M0, φs0, ρf0/ρs0, δ, Cd, and Nu. The same result can be obtained by an analysis of

the 3D momentum and energy equations.

In both the non-dimensional analysis and the pi theorem, the dimensionless group

γ = cp/cv was introduced in an equation of state, or so-called closure relationship, to
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arrive at the sound speed, a0, used in the Mach number. In the pi theorem, this could

be avoided by simply assuming a0 is a dimensional parameter in Equations (3.1) and

(3.19). However, employing a0 as the characteristic velocity in the non-dimensional analysis

(Equations 3.46, 3.55, and 3.66) results in the flow Mach number, rather than the shock

Mach number, for the dimensionless group representing compressibility. Since the shock

Mach number is traditionally used to characterize the explosive detonation velocity, the

additional dimensionless group for γ was retained. Therefore, the ratio of specific heats

was used in both the non-dimensional analysis and the pi theorem for consistency.

Whereas the pi theorem did not provide the relative importance of each parameter

group, the non-dimensionalization of the governing equations shows an inverse relationship

for Re and Pr , and an inverse-squared dependence on M0. Therefore, for high Reynolds

numbers, the flow is momentum dominated and viscous effects become less important. For

high Mach numbers, the flow is convectively dominated, as opposed to low Mach numbers

where the flow becomes pressure dominated.

Further inspection of the non-dimensional form of the governing equations can be used

to evaluate the properties of the particles-explosive system. For high solid volume fractions

(φs0 > 0), the fluid phase is diluted with a corresponding reduction in momentum and

energy. For an increasing density ratio of explosive to solid particles (ρf0/ρs0 → 1),

the individual phase conservation and fluxes of mass, momentum, and energy become

apportioned by the volume fraction. For small particles or explosives with a long reaction-

zone length (dp/LR → 0), the initial chemical heat release becomes negligible and the flow

can be assumed to be inert within the length scale of a particle diameter.
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3.3 Analysis of the dimensionless parameter groups

The dimensionless parameters found in Sections 3.1 and 3.2, used to determine the force

that accelerates the particles and heat transfer rate that increases the particle temperature

(Equations 3.18 and 3.39), are summarized as follows:

a. Mach number, M0

b. ratio of specific heats, γ = cp/cv

c. Reynolds number, Re

d. Prandtl number, Pr

e. volume fraction of solid particles, φs0

f. density ratio of explosive fluid to solid particle, ρf0/ρs0

g. ratio of particle diameter to detonation reaction-zone length, δ = dp/LR

3.3.1 Mach number

The detonation performance of explosives is considered here to explore the range of

detonation shock velocity and pressure. The detonation velocity depends on the initial

density, temperature, and charge diameter. The values tabulated in Table 3.2 have been

extrapolated for large charges (infinite diameter assumption). Pure high explosives have a

detonation pressure range typically from 10 to 40 GPa; detonation pressures up to 50 GPa

are possible for some specialty high explosives. In general, the range of detonation velocity

for high explosives is from 6 to 9 mm/µs.

The detonation shock Mach number is defined by M0 = D0/a0. Typically the

detonation Mach number in condensed matter is less than that for gas detonation due to

the higher solid/liquid sound speed. The sound speed in condensed matter has the added

complexity of longitudinal and transverse components even in isotropic materials. The

bulk sound speed, aB, in isotropic materials (see Marsh [139], and Dobratz and Crawford

[47]) is defined as:

aB =

√

a2L − 4

3
a2T (3.76)
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Table 3.2: Performance of pure high explosives in large charges (from Dobratz and Crawford

[47]).

Explosive Density, ρf0 (g/cc) Velocity, D0 (mm/µs) Pressure, PCJ (GPa)

NM 1.13 6.35 12.5

TNM 1.6 6.4 14.4

TNT 1.59 6.95 21.0

NG 1.59 7.65 25.3

PETN 1.79 8.26 33.5

RDX 1.77 8.7 33.8

HMX 1.89 9.11 39.0

where aL is the longitudinal sound velocity and aT is the transverse shear wave speed.

For homogeneous materials such as liquids, only a bulk sound velocity is reported from

experiments. Table 3.3 summarizes the calculated detonation shock Mach number using

the bulk sound speed (i.e., a0 = aB).

The detonation shock Mach number of solid and liquid explosives at their theoretical

maximum density has a narrow range of 2.5 < M0 < 4 in general. Shock velocity and

pressure effects were investigated in a previous work (see Zhang et al. [229]) by varying

the inert shock pressure from 5 to 20 GPa. While the resulting momentum transfer to

the particles remained proportional to the shocked fluid velocity, the variation in velocity

transmission after the shock interaction was less than 10% for the resulting shock velocity

range of 4 – 9 mm/µs for metal particles in RDX explosives.

3.3.2 Ratio of specific heats

The ratio of specific heats depends on the gas composition and the temperature. The ratio

of specific heats of the gaseous detonation products at the CJ plane can be obtained using

the thermochemical equilibrium code, Cheetah (Fried et al. [68]). Table 3.4 summarizes

the CJ flow conditions including the ratio of specific heats. The CJ flow Mach number is

also calculated in the fixed (laboratory) frame of reference.

In the frame of reference attached to the detonation shock, the detonation products

flow at the CJ plane is sonic, where M0 = (D0 − uCJ)/aCJ = 1. Considering that particles

are frozen – that is, not moving within the shock – they are subject to subsonic flow

behind the detonation shock. The range of flow Mach number is remarkably narrow for
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Table 3.3: Shock Mach number calculated using detonation shock velocity and sound speed

for pure explosives at their theoretical maximum density.

Explosive
Density, Detonation Velocity, Sound Speed, Shock Mach,

ρf0 (g/cc) D0 (mm/µs) a0 (mm/µs) M0

HMX 1.90 9.15 3.07 (a) 2.97

HMX (PBX-9501) 1.891 9.11 2.97 (b) 3.08

NM 1.128 6.612 1.648 (c) 4.01

NQ 1.81 8.74 3.54 (a) 2.47

PETN 1.78 8.59 2.98 (a) 2.88

RDX 1.80 8.75 3.095 (c) 2.83

RDX 1.77 8.7 2.65 (b) 3.28

TATB 1.94 8.00 2.00 (b) 4.00

TNT (crystal) 1.654 6.97 2.20 (b) 3.17

TNT (molten) 1.47 6.48 2.1 (a) 3.09

TNT (liquid) 1.472 6.52 2.14 (a) 3.05

TNT (liquid) 1.447 6.58 2.00 (c) 3.29

AN 1.722 6.765 2.5 (c) 2.706
(a)Marsh [139], (b)Dobratz and Crawford [47], (c)Mader [133].

a wide range of explosives and in particular for liquid explosives. For frozen particles

encountering the CJ flow conditions, the Mach number is typically less than 0.4, indicating

subsonic flow conditions for frozen particles. This is the maximum relative Mach number

that the particles are subjected to within the detonation zone. When considering particles

accelerated during the shock interaction time, the post-shock velocity difference between

the particle and flow will be even smaller, and the flow quickly becomes incompressible as

the relative Mach number diminishes.

3.3.3 Reynolds number

An order-of-magnitude analysis can be used to estimate the Reynolds number range for

particles in a detonation flow. The CJ condition can be used to estimate the frozen particles

Reynolds number. Table 3.4 indicates that the CJ density ranges from 1 to 4 g/cc with a

streaming flow velocity between 1 and 2 mm/µs for a wide range of condensed explosives.

Aside from flow density and velocity, the Reynolds number depends on the host fluid

viscosity and the particle size. In general, the molecular viscosity, µ = f(T, p), has high

uncertainty in shock-compressed states and in the hot detonation products. Assuming the
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Table 3.4: CJ flow Mach number for liquid and solid explosives calculated using the Cheetah

BKWS library.

Explosive * ρCJ (g/cc) uCJ (mm/µs) aCJ (mm/µs) γCJ MCJ = uCJ/aCJ

Liquid Explosives

DEGN (1.39) 1.865 1.836 5.374 1.328 0.342

IPN (1.036) 1.443 1.502 4.356 1.227 0.345

NG (1.594) 3.362 1.950 6.040 1.299 0.323

NM (1.128) 1.736 1.764 4.847 1.379 0.364

TNM (1.638) 2.128 1.252 4.192 1.300 0.299

TNT (1.447) 1.927 1.623 4.880 1.262 0.333

Solid Explosives

HMX (1.905) 2.460 2.125 7.290 1.171 0.291

NQ (1.77) 2.244 1.796 6.712 1.265 0.268

PETN (1.778) 2.324 2.058 6.703 1.155 0.307

RDX (1.806) 2.348 2.078 6.922 1.175 0.300

TATB (1.937) 2.499 1.894 6.529 1.177 0.290

TNT (1.654) 2.175 1.734 5.502 1.155 0.315

* initial density in g/cc given in parenthesis.

viscosity for high temperature gases (but at standard pressure) is representative of the

detonation products, the viscosity can be estimated for the dominant gas species present

in the products of detonation. The CJ temperature for typical explosives ranges from

2500 to 4000 K, where the molecular viscosity of N2, O2, CO2 and H2O are in a narrow

range of 10−5 – 10−4 kg/m-s, which may be verified using Sutherland’s law. A weaker

detonation strength corresponds to a lower CJ temperature and consequently a small

molecular viscosity; similarly, a stronger detonation has a higher viscosity in its product

gases. These two limits both result in a Reynolds number dependence of Re = dp × 1011,

where dp is in metres. Therefore, as typical examples, a 1 µm particle has Re = O(105)

and a 1 mm particle has Re = O(108).

The boundary layer thickness is important to consider as it defines the region where

frictional effects are important. Outside the boundary layer, flow is dominated by inertia

and it can often be represented as inviscid (frictionless). The ratio of laminar boundary

layer thickness to particle diameter is: ∆/dp = 2.12Re0.5d . Choosing a typical Re in the

laminar regime for CJ flow, the boundary layer thickness is 77 times smaller than the

particle diameter for a 1 µm particle and 240 times smaller than a 10 µm particle. For

larger particles, the boundary layer thickens and becomes turbulent; however, it is still
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many times smaller than the particle size. For the particle size and flow conditions in a

detonation, the flow may be represented as inviscid.

3.3.4 Prandtl number

The Prandtl number is the ratio of thermal diffusivity to momentum diffusivity. The

thermal boundary layer thickness is directly related to the velocity boundary layer thickness

by the Prantdl number (Pr = a/ν, where a = k/ρcp is the thermal diffusivity and ν = µ/ρ

is the kinematic viscosity). As a typical example, for particles subjected to the VN shock

in NM, Pr = 5.22 and hence the thermal boundary layer is five times smaller than the

velocity boundary layer. Conversely, for particles heated in the CJ flow of NM detonation

products, Pr = 0.758 and the thermal boundary layer is 30% larger than the velocity

boundary layer. In both cases, the velocity and thermal boundary layers are of the same

order of magnitude. The thermal boundary layer can therefore be neglected, similar to

the velocity boundary layer, since they are much smaller than the particle length scale as

demonstrated in the previous section.

The foregoing discussion of velocity and thermal boundary layers in terms of Re

and Pr did not include the effects of compressibility. In general, compressible flow has

increased thermal and velocity gradients confined within thinner boundary layers. Highly

compressible flow, in general, is treated as an inviscid and non-heat-conducting fluid flow

(Bertin [25] and Anderson [1]).

3.3.5 Density ratio of explosive to solid particle

Table 3.5 summarizes the density ratio for common explosive mixtures used in experiments.

The table has been sorted from largest to smallest density ratio of explosive to solid

particle. Slight variations are expected depending on the initial density of the explosive

and solid metal particles. For the range of experiments surveyed, the density ratio is

typically ρf0/ρs0 < 1. For liquid explosives in particular, an order of magnitude variation

in the metal density changes the resulting explosive to solid density ratio by an order

of magnitude. For example, for particles saturated with nitromethane, the density ratio

ranges from ρf0/ρs0 = 0.748 for silica to ρf0/ρs0 = 0.058 for tungsten.

For a step shock wave passing a spherical metal particle in condensed matter, Zhang et

al. [229] studied the velocity transmission factor, α, for a particle of magnesium, beryllium,
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Table 3.5: Density ratio of explosive to solid from various sources.

Mixture Explosive Density, Solid Density, Density Ratio,

(Explosive/Particle) ρf0 (g/cc) ρs0 (g/cc) ρf0/ρs0

NM/Glass (Lee et al. [127]) 1.160 ∼ 1.550 0.748

TNT/Al (Zhang and Wilson [232]) 1.654 2.700 0.613

RDX/Al (Gonthier and Rumchik [86]) 1.650 2.785 0.593

IPN/Mg (Frost et al. [77]) 1.036 1.780 0.582

NM/Al (†) 1.128 – 1.160 2.700 – 2.785 0.405 – 0.430

NM/Al2O3 (Kuralingala [118]) 1.128 3.9 – 4.1 0.289 – 0.275

NM/Ti (Frost et al. [71, 72]) 1.128 4.528 0.250

NM/Zr (Frost et al. [71]) 1.128 6.520 0.173

RDX/Pb (Mader [133]) 1.800 11.34 0.159

NM/Fe (Zhang et al. [226]; Frost et al. [75]) 1.128 7.860 0.144

NM/Cu (Kato et al. [107, 105]) 1.128 9.920 0.114

HMX/W (Richards et al. [161]) 1.900 19.25 0.099

RDX/W (Gonthier and Rumchik [86]) 1.806 19.30 0.094

PBX/W (Kato et al. [104]) 1.700 19.25 0.088

NM/W (‡) 1.128 19.30 0.058

†Kurangalina [118], Baudin et al. [18], Gogulya et al. [85], Haskins et al. [94], Frost et al. [74], and

Kato et al. [107, 105, 106].

‡Kurangalina [118]; Frost et al. [75], and Kato et al. [104].
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aluminum, nickel, uranium and tungsten subjected to a shock of 5 – 20 GPa in liquid NM

and various solid RDX densities. The particle velocity after the shock interaction time, τS,

was found to strongly depend on the initial density ratio of explosive to metal and can be

expressed by:

α =
1

a+ b

(

a+ b
ρf0
ρs0

)
ρf0
ρs0

(3.77)

where a and b are constants independent of the particle and explosive matter. The light-

metal particle velocity for aluminum, beryllium, and magnesium achieved 60 – 100% of

the shocked explosive velocity after the shock interaction time.

The density ratio also appears in the material impedance ratios. The acoustic

impedance is defined as ZA = ρfaf/ρsas and the shock impedance is defined as ZS =

ρfDf/ρsDs. Investigation by Zhang et al. [229] showed that the acoustic impedance and

shock impedance do not significantly influence the velocity transmission within the shock

Mach number range of condensed explosives.

3.3.6 Volume fraction of particles

The solid volume fraction is already a dimensionless parameter. It describes the volume

occupied by the solid relative to the total volume of the mixture: φs0 = Vs0/(Vs0 + Vf0).

The solid volume fraction has a range of 0 ≤ φs0 ≤ 1. Ordered packing of same-size spheres

in lattice arrangements (simple cubic, body-centred cubic, and face-centred cubic packing)

have solid volume fractions ranging from 0.52 to 0.74. Random packing of poly-disperse

particles results in volume fraction ranges from 0.58 to 0.62. Loose powders typically have

a volume fraction of 0.5. Table 3.6 summarizes the bulk density, solid mass fraction, and

solid volume fraction range from a survey of experiments. Variations in the mixtures are

a result of particle size distribution, particle shape and, occasionally, trapped gas pockets.

In general, the solid volume fraction ranges from 0.35 to 0.65.

Slurry explosives employed for fundamental scientific investigations usually contain

a high solid volume fraction near the maximum packing value due to the difficulty of

uniformly suspending lower concentrations of particles in a liquid. In practice, the amount

of metal particle additive is usually chosen to balance the overall explosive stoichiometry

and fuel richness in explosives, and is often less than in the slurry explosives reviewed

in Table 3.6. Mixtures of metal powders with solid explosives in widespread use have a

volume fraction range from 0 to 0.25. For example, Tritonal (80/20 wt% TNT/Al) and
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Table 3.6: Typical volume fractions calculated for experimental configurations with dense

and packed particle beds saturated with nitromethane (ρf0 = 1.093 – 1.16 g/cc).

Mixture Bulk Density, Solid Mass Solid Volume

(Explosive/Metal) ρmix (g/cc) Fraction, Ys0 Fraction, φs0

NM/Al (Frost et al. [74]) 2.09 – 2.16 0.77 – 0.79 0.58 – 0.62

NM/Al (Kurangalina [118]) 2.00 0.75 0.556

NM/Al (Kato et al. [107]) 1.72 – 2.04 0.57 – 0.75 0.35 – 0.55

NM/Mg (Kato et al. [107]) 1.42 – 1.48 0.57 – 0.70 0.46 – 0.60

NM/Cu (Kato et al. [107]) 5.44 – 5.49 0.91 – 0.92 0.57 – 0.59

NM/Fe (Zhang et al. [226]; Frost et al. [75]) 5.11 – 5.54 0.92 ± 0.01 0.61 ± 0.01

NM/Zr (Frost et al. [71]) 2.97 – 3.04 0.755 ± 0.005 0.342 – 0.354

NM/Ti (Frost et al. [71, 72]) 3.32 – 3.36 0.881 ± 0.003 0.641 – 0.654

NM/Al2O3 (Kurangalina [118]) 2.24 0.70 0.40

NM/W (Frost et al. [75]) 8.40 0.92 0.40

H-6 (45/30/20/5 wt% RDX/TNT/Al/wax) [132] are standard military formulations that

have a metal volume fraction of 0.13. Aluminized ANFO for the mining industry typically

contains 7 – 10% Al by weight, and potentially up to a maximum of 15% by weight

(Kennedy [108]); this corresponds to a metal volume fraction range of 0.03 – 0.06.

3.3.7 Ratio of particle diameter to reaction-zone length

The smallest commercially-available particles are less than one micron in diameter, and

are termed ultrafine or nanometric particles. Nanometric particle sizes of 20 – 200 nm

are available from Argonide Corp [2] and their use in explosives is reviewed by Brousseau

and Anderson [30]. Similarly, 50 nm particles from Technanogy and 100 nm particles

from Nanotechnologies were studied by Gonthier and Rumchik [86]. Particles above

one micron are more commonly used in scientific investigations. The most widely used

micrometric aluminum particles are from Valimet Inc. [206]. Particle size distributions

with designations Valimet H-2 (3± 1.5 µm) to H-95 (114± 40 µm) were used by Zhang et

al. [234], Frost et al. [74], and Kato et al. [107, 105]; Valimet type X-81 (typ. 20 µm) has

been used by Gonthier and Rumchik [86].

Other spherical beads used in fundamental studies are summarized here: Kurangalina

[118] used alumina, aluminum, and tungsten in a size range of 1 - 50 µm; Frost et al. [75]

used 149 µm tungsten particles; Frost et al. [71, 72] used 40 – 254 µm titanium particles;
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Kato et al. [107, 105] used 9 – 350 µm copper particles; Frost et al. [77] used 60 – 520 µm

magnesium particles; Zhang et al. [226] and Frost et al. [75] used 100 – 925 µm steel

particles; and, Lee et al. [126, 127] used 66 µm – 2.4 mm spherical glass beads. Each

particle size introduces an additional characteristic length scale making mesoscale study

of all particle sizes, or particle sizes covering a wide distribution, prohibitive. From the

above survey, an order of magnitude range for particle size is then 10−8 < dp < 10−3 m.

In 1947, Eyring et al. [61] determined the reaction-zone length for high explosives to

be about 1 mm long. Later, Engelke and Bdzil [59] remarked that condensed detonation

reaction zones are typically 0.1 mm long. Dobratz and Crawford [47] surveyed the reaction-

zone length of pure explosives from various sources and found it to be about 0.1 mm, but

suggested it could vary by several orders of magnitude, depending on the high explosive.

The detonation reaction zone can be as small as 0.01 mm for some sensitive explosives

(Bdzil et al. [20]).

Table 3.7 summarizes the approximate reaction-zone length and product equilibrium

times for liquid explosives. The reaction timescale is defined as: τdet = LR/D0, and is

estimated using velocity-time or pressure-time histories in combination with observation

of the detonation velocity. Large variations are expected due to the differences in

the experimental configuration (charge diameter, casing material, and casing thickness).

Furthermore, a variety of diagnostic techniques have evolved with improved resolution:

embedded gauges (both pressure and particle velocity); electrical conductivity probes [95];

particle velocity using laser interferometry techniques such as VISAR [185] and Fabry-

Perot [199]; laser Doppler velocimetry [27]; and, mass spectroscopy [26]. Reaction-zone

lengths for a variety of condensed explosives are tabulated in a report of the Department

of the Army [46], Dobratz and Crawford [47], and Cooper [41].

Nitromethane has been widely studied in a number of scientific experiments, where the

reported reaction-zone length ranges from 0.03 to 1.6 mm, as demonstrated in Table 3.7.

The reaction zone of NM can be reduced by the addition of diethylenetriamine (DETA)

[211] or using triethylene amine (TEA). The reaction zone of NM can be increased by

diluting it with acetone, which is miscible in any proportion [52, 53], or by dilution with

nitroethane [157].

Without losing generality for the reaction-zone length in condensed explosives, solid

explosives are also considered: HMX has a reaction-zone length of 0.5 – 0.7 mm [198];

RDX has a reported reaction-zone length of 0.826 mm [61] and 1.82 – 2.9 mm [47]; solid

TNT has a reaction-zone length of 2.0 mm [119]; and, TATB has a reaction-zone length

of 2.5 – 3 mm [198]. Ammonium perchlorate is a granular solid explosive with a reaction-
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Table 3.7: Approximate reaction-zone length and reaction time for liquid explosives.

Explosive
Reaction-Zone Reaction Time

Reference
Length, LR (mm) Scale, τdet (ns)

NG 0.21 26.3* Eyring et al. (1947) [61]

NM 0.03 – 0.036 5 – 6 Engleke (1979) [58]; Engelke and Bdzil (1983) [59]

Sensitized NM 0.05 7 Blais et al. (1997) [26]

NM 0.13 * 20 Hayes (1965) [95]

NM 0.12 – 0.16 * 19 – 25 Mallory (1976) [137]

NM 0.08 – 0.27 13 – 43 * Campbell et al. (1955) [34]

NM 0.3 50 Sheffield et al. (2002) [185]

NM 0.3 – 0.6 50 – 100 * Nahmani and Manheimer (1956) [149]

NM 0.6 – 0.9 100 – 150 Bouyer et al. (2009) [27]

NM/acetone 75/25 0.8 – 1.6 127 – 254 * Dobratz and Crawford (1985) [47]

TNT liquid (at 100◦C) 0.9 – 1.1 138 * Igel and Seely (1955) [97]

TNT liquid 0.63 * 100 Hayes (1965) [95]

IPN 1.0 171 * Zhang et al. (2002) [234]

TNM 1.6 250 Mochalova et al. (2009) [147]

TNM 2 500 Dremin et al. (1970) [54]

* Estimated using the CJ velocity
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zone length of 6.3 – 10 mm [47]. Thus, the physical length scale describing the detonation

reaction zone is 10−6 < LR < 10−2 m for condensed explosives.

The above physical parameters can be combined to evaluate the ratio of the particle

size to detonation reaction-zone length. As a typical example, 10 – 100 µm particles in

an explosive with a 10 – 1000 µm reaction-zone length gives a ratio of 10−2 < δ < 101.

However, the full range of particle diameter to detonation reaction-zone length needs to

consider the particle size ranges discussed above and the explosive reaction-zone lengths

summarized in Table 3.7. Therefore, a potential range of 10−6 < δ < 103 can be obtained

assuming 10−6 < LR < 10−2 m and 10−8 < dp < 10−3 m as justified above.

3.4 Summary

The factors affecting particle acceleration and heating were established using dimensionless

analysis approaches. Subsequently, the range and significance of each parameter were

evaluated using data from the literature. For particles within the condensed matter

detonation wave, the Reynolds number is sufficiently large that inviscid flow can be assumed

and the Reynolds number, therefore, is not considered as a dominant parameter. Although

the results are expected to depend on Mach number, the condensed detonation shock Mach

number has a limited range and, therefore, does not need to be varied parametrically.

Similarly, the specific heat ratio has a limited range and does not require further study.

With regards to the particle heating, the Prandtl number is of an order of magnitude of

one and is therefore be assumed not to be a dominant parameter.

The most important parameters influencing the particle acceleration and heating within

a condensed matter detonation wave are the material density ratio of explosive to particle,

the particle volume fraction, and the ratio of particle diameter to detonation reaction-

zone length. While the material density ratio of explosive to particle has been studied

previously (see Zhang et al. [229]), the effect of the volume fraction of solid particles,

packing configuration in 3D, and the ratio of particle diameter to detonation reaction

length are further investigated using a mesoscale modeling approach.
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Chapter 4

Approach for shock and detonation

interaction with particles

Computational modeling of shock compression physics was founded at the mesoscale, where

details of the mechanics and chemistry can be resolved. Recently, mesoscale simulation

has gained wide-spread use due to increases in computing power; it has been used to

develop constitutive models, and to design and interpret experiments. Furthermore, it

has been used to study dispersive waves (Baer and Trott [11]) and compaction wave

profiles (Menikoff [143]) from impact in granular explosives, shock initiation of granular

explosives (Mulford and Swift [148]), and characterization of the formation and propagation

of detonation waves (Plaskin et al. [159]). The particular computational approach for a

given application must be matched with the chemical and physical processes at hand, while

maintaining sufficient numerical resolution to capture the essential features of the problem.

The approach may be simplified by making a number of reasonable assumptions.

For shock and detonation interaction with metal particles in a condensed explosive,

multiple materials describing reactive and inert components are required, where hydrody-

namic wave transmission occurs between materials. For dense heterogenous detonation,

representing the three-dimensional arrangement of packed beds of particles and spacing

between particles is important. This work is focused on examining the mechanical and

thermal interaction, rather than details of chemical reaction. This chapter presents the

approach for studying shock and detonation interaction with particles.
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4.1 Assumptions and justifications

Considerations that help simplify the modeling approach are made based on a survey of

experimental evidence. The following assumptions are elaborated on in this subsection:

a. Shock compression temperature is based on specific volume change

b. Phase change of particles does not occur during shock compression

c. Particles are not mechanically broken by shock compression during shock and

detonation interaction

d. Material strength can be neglected during shock interaction

e. Particles are inert within the detonation reaction zone

f. Particles are spherically shaped

g. Particles are mono-sized

h. Infinite charge diameter with a planar detonation front

4.1.1 Shock compression of metals

Unlike static compression measurements (e.g., Bridgman [28]), which are performed

isothermally, shock wave compression tests employ high explosives to generate high pressure

in the test specimens, where the resulting loading follows the Hugoniot curve. Walsh

and Christian [212] transformed the pressure compression data for aluminum, zinc, and

copper into compression temperature for shocks from 15 to 50 GPa using the conservation

equations. The database was expanded by Walsh et al. [213] to include twenty-seven

metals for shock compressions up to 60 GPa. McQueen and Marsh [142] further extended

the pressure range up to 200 GPa for nineteen metals. The Hugoniot data from over 5000

experiments conducted at Los Alamos National Laboratories were compiled by Marsh [139].

Fitting to the various temperature data obtained using the Walsh and Christian

technique results in a fourth-order polynomial of log specific volume [132]:

TH = FS +GS(lnν) +HS(lnν)
2 + IS(lnν)

3 + JS(lnν)
4 (4.1)

The results from Equation (4.1) combined with the shock Hugoniot (Equation 2.18b) are

plotted for common metals in Figure 4.1.

71



Pressure (GPa)

T
em

pe
ra

tu
re

(K
)

0 20 40 60 80 100
0

500

1000

1500

2000

2500
Aluminum
Magnesium
Beryllium
Copper
Tungsten
Titanium
Steel

Figure 4.1: Shock compression temperature for several metals based on Walsh and Christian

temperature fitting and using coefficients of Mader [133].

4.1.2 Melting temperature and phase change

The phase change temperature can be compared to the shock compression pressure on the

temperature Hugoniots in Figure 4.1 to determine if melting or evaporation may occur. The

phase change temperatures under ambient conditions are summarized in Table 4.1, where

TM is the melting temperature and TV is the vaporization temperature. Magnesium and

aluminum have nearly the same TM ; however, from the temperature Hugoniots, magnesium

reaches the melting temperature at 23 GPa, while Al reaches it at 40 GPa. Inspection of the

temperature Hugoniots and phase change temperature indicates that beryllium, copper,

tungsten, and titanium are unlikely to melt under detonation pressure conditions. The

low melting and vaporization temperatures of lead, tin, zinc, and phosphorus may lead to

potential phase change under shock and detonation conditions. The latent heat necessary

for phase change, and high-pressure effects on the phase change temperature, affect whether

phase change occurs. Davydov et al. [45] used the formula of Johnson, which is strictly

valid for low pressures, to estimate an unrealistically high melting temperature of 8000 K

for aluminum at 10 GPa.
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Table 4.1: Phase change temperatures at STP for various materials commonly used in

fundamental explosive experiments.

Material Solid Density, Phase Change Temperature

ρs0 (g/cc) TM (K) [4] TV (K)

Inert Metals

Copper 8.96 1358 2835

Beryllium 1.85 1563 3243

Gold 19.3 1337 3080

Lead 11.34 600 2013

Tin 7.29 505 2543

Tungsten 19.25 3683 5705

Zinc 7.14 693 1180

Reactive Materials

Aluminum 2.70 933 2740

Magnesium 1.74 923 1380

Phosphorus 1.83 317 550

Titanium 4.54 1941 3536

Zirconium 6.49 2125 4650

Gover [90] measured shock heating effects by studying the process of shock compression

followed by adiabatic expansion. For aluminum with a melting temperature of 933 K,

incipient melting (material reaching melting point) begins at a compression of 60 GPa and

complete melting can be caused by pressure of 90 GPa. Similarly for other metals such

as copper, gold, nickel, and titanium, the shock compression required for incipient melting

is above 100 GPa. These pressures are unlikely to be achieved or sustained using liquid

explosives and, therefore, phase change via detonation shock compression is not considered

for slurry explosives.

4.1.3 Particle damage

Depending on the particle morphology, strong shocks and detonation pressure may

significantly alter the metal particle during interaction [109]. It has been shown in

experiments by Yoshinaka et al. [222] and in mesoscale simulations by Cooper et al. [40]

that aluminum flakes are readily shattered during shock interaction. However, spherical

particles may remain intact due to their high solid volume to surface area ratio. Some

evidence is reviewed below.

73



Yoshinaka et al. [222] investigated Valimet H-30 spherical aluminum particles (36 µm

mean diameter by mass) saturated with an inert oxygen-free liquid (i.e., heptane), which

was shocked up to 29.3 GPa using a flyer plate impact test. Recovered specimens showed

that the average particle size was not changed significantly, although the initial spherical

shape became geodesic with evidence that the faceted surface was caused by shear.

Fragmentation of the smaller particles was observed with probable removal of the oxide

coating from the larger particles, but the majority of the particles remained intact. There

was clearly no evidence of melting of either the oxide coating or the exposed aluminum

core, indicating that the temperature achieved during shock compression was less than

933 K, and there was also no evidence of agglomeration.

Richards et al. [161] embedded spherical tungsten particles (37 µm mean size by mass)

in castable HMX, and collected the resulting deformed particles after being subjected to

a detonation wave (24.3 GPa CJ pressure and 4.8 mm/µs shock velocity). The post-

detonation condition of the particles was heavily deformed (plastic deformation) and

agglomerated by shock welding during particle-particle impacts. The relative softness

of tungsten and the crystalline structure of HMX may have increased the particle damage.

Using the particle image velocimetry experiment described in Jenkins et al. [99], intact

spherical aluminum particles were photographed in the dispersed particle flow, which

indicated minimal damage during shock acceleration. However, these particles were loosely

packed outside of an RDX-based explosive, rather than being mixed in an explosive

matrix. Even for spherical glass particles in liquid nitromethane, post-detonation recovery

of the dispersed beads showed intact spheres, although internal fracturing was observed

[69]. Therefore, spherical particles can deform but are assumed to remain intact during

detonation interaction.

4.1.4 Hydrodynamic assumption

Materials exhibit plastic stress-strain behaviour, like a fluid, if the shock pressure is above

ten times the elastic limit (yield strength) [41]. In these cases, the material response

can be assumed to be hydrodynamic, which is justified as follows. The incident shock

pressures encountered in the detonation of condensed explosives are typically 10 – 50 GPa

(see Table 3.2), which far exceed the yield strength of many pure metals. For example,

aluminum particles from Valimet Inc. are 99.7% pure (Valimet [206]); the yield strength of

99% commercially pure Al is 0.035 GPa (Callister [32]). Therefore, Al is likely to behave

plastically when shocked above 0.3 GPa.
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The particle strength was addressed previously (see Zhang et al. [229] and Ripley

et al. [168]) where it was shown that mesoscale modeling results without a constitutive

strength model were in agreement with results computed using a finite element model

for the spherical particle. In the current work, material strength has been neglected by

assuming that only volumetric strain occurs in the particles during the shock interaction

time.

4.1.5 Particle reactivity

For pure metal particles, oxidizing gas species are required for particle burning. The

explosive decomposition occurs behind the leading shock and throughout the detonation

reaction zone, producing oxidizing gas species. Small particles may react within the

detonation reaction zone if they are heated, melted, and ignited before the CJ plane.

Baudin et al. [18] showed that even 100 nm aluminum particles do not react in the NM

detonation zone. In condensed heterogeneous explosives, shattering of the oxide coating

or particle fragmentation may promote earlier reaction.

Shock compression heating alone is insufficient to reach the aluminum melting

temperature; heating behind the shock is further responsible for bringing the particle to

the required ignition temperature and overcoming the delay time. Whether or not particle

ignition occurs also depends on a competition between particle heating in the detonation

products and expansion cooling, which is dictated by the lateral confinement condition.

Cylindrical explosive tests provide an indication of the ignition delay time behind the

detonation front for micrometric particles. Under thick steel tube confinement, Kato et al.

[107] observed that the reaction of 8 µm spherical particles takes place at approximately

2.5 µs after the leading shock. For light casing confinement in thin-walled steel and

aluminum tubes, Zhang et al. [233] showed the apparent ignition delay to be 13 – 18 µs

for 13 µm particles and 26 – 63 µs for 54 µm particles. For low confinement in glass tubes,

Haskins et al. [94] showed an ignition delay of 10 µs for 10.5 µm spherical particles and

Frost et al. [74] showed the ignition delay for 63±21 µm particles to be about 50 µs. Milne

et al. [146] used numerical simulation to calibrate aluminum burn times to experimental

cylindrical expansion (cylex) test data and showed that 5 – 10.5 µm particles have a burn

time of 50 – 220 µs. In explosive dispersal, Grégoire et al. [91] showed aluminum ignition

delay times greater than 100 µs.

For aluminum, the ignition delay for 1 – 100 µm particles is 1 – 100 µs (see Kato et al.

[107], Zhang et al. [233], Haskins et al. [94], Frost et al. [74], Milne et al. [146], Grégoire
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Figure 4.2: Micrographs of spherical aluminum particles: Argonide 100 nm Alex (left),

Valimet H-2 (3 ± 1.5 µm) (centre), and Valimet H-30 (36 ± 14 µm) (right) from Zhang et

al. [227].

et al. [91]), which is much greater than the shock interaction timescale (τs ≪ 1 µs). More

importantly, for a detonation velocity of 6 – 9 mm/µs, the ignition delay is much greater

than the reaction-zone length scale. Therefore, micrometric particles can be treated as inert

within the shock interaction timescale and throughout most of the detonation reaction-zone

length.

4.1.6 Particle shape and size distribution

In previous studies, the particle diameter has typically been adjusted parametrically to

study various effects. Actual particle sizes span a wide range depending on the material

and manufacturing technique. The exploding wire method produces nanometric particles

with a narrow size distribution. For aluminum, 50 and 100 nm sizes are available from the

Argonide Corp. [2]. Metal particles formed using the atomization process generally have a

micrometric size range. Atomized aluminum particles are available from Valimet Inc. [206]

in sizes from H-2 (3.0± 1.5 µm) to H-95 (114± 40 µm). The Valimet aluminum particles

have been used extensively (e.g., [74, 228, 107, 105]). As shown in Figure 4.2, these types

of aluminum particles are generally spherical.

Many other particles are non-spherical, including crystalline, flaked, fragmented,

and agglomerated morphologies. Spherical particles are assumed in this work to avoid

additional geometric length scales in describing the particles and their orientation. Further,

spherical particles do not require strength and damage models as explained in Section 4.1.3.

The characteristic dimension is therefore represented by the spherical diameter.

Each particle diameter introduces a new set of characteristic timescales (shock

interaction, acceleration, heating, and reaction). The size of particles formed in a variety
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of processes follow a natural, or log-normal, distribution. Typical atomized particle

distributions span two orders of magnitude in size. These may be sieved for experiments

requiring narrower diameter range representative of mono-sized particles. Nanometic

particles more closely approximate monodisperse (single-sized), and millimeter-scale beads

have a controlled narrow size distribution. Using monodisperse particles allows scaling of

results based on the particle diameter. The monodisperse size assumption avoids dense

collisions and frictional effects since all particles are subjected to the same wave interaction

and resulting acceleration processes. A monodisperse size distribution of spherical particles

is assumed for all calculations herein.

4.1.7 Infinite diameter assumption

At the macroscale, the detonation front in practical cylindrical or planar explosive charges

has curvature. Increasing the charge diameter reduces the detonation front curvature;

in the limit of an infinite diameter charge, the detonation front becomes planar. When

considering a small but representative volume of the explosive for the mesoscale modeling

domain, a region of the explosive near the centre of a charge is not influenced by the edge

expansion (see Figure 4.3) within the timescale analyzed. Further, the mesoscale domain

is approximately 3 – 4 orders of magnitude smaller than a typical charge diameter; hence,

the flow divergence is assumed to be negligible. Similarly, the detonation front curvature

is much greater than the particle size, and can therefore be assumed to be planar within

the mesoscale domain. The resulting model is thus representative of the infinite diameter

condition, and detonation failure due to edge expansion is not considered.

4.2 Prototype heterogeneous system

A prototype heterogeneous system, consisting of metal particles saturated with liquid

explosive, is studied in this work. Nitromethane (NM), CH3NO2, is considered for the

condensed matter as it is a uniform, low-viscosity, liquid explosive and is assumed to

follow the ZND detonation theory. Spherical aluminum particles are used for the solid

phase. Nitromethane/aluminum mixtures form the prototype heterogeneous condensed

explosive used in this work, since both NM and NM/Al mixtures have been intensively

studied in experiments (e.g., [118, 18, 85, 94, 234, 74, 107, 105, 106]) that help gain physical

insights and formulate models. This section discusses the thermophysical and detonation
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Figure 4.3: Schematic of mesoscale modeling domain relative to an explosive charge (cross

section shown; not to scale).

properties of the constituents, develops parameters for the equations of state needed for

modeling, and analyzes the timescales for shock interaction.

4.2.1 Thermophysical properties of nitromethane and aluminum

Pure liquid nitromethane is considered. The theoretical maximum density (TMD) of NM

is 1.16 g/cc; however, standard temperature and pressure (STP) conditions give a density

of 1.128 g/cc, representing 97.24% TMD. Pure aluminum has a solid density of 2.699 g/cc

[4] to 2.703 g/cc [98]. The natural oxide coating on aluminum particles has significantly

different properties, but it is only a few nanometers thick (Gertsman and Kwok [78], and

Gonthier and Rumchik [86]). For micrometric aluminum particles, the oxide coating has a

small influence on the thermophysical properties of the bulk material. For such passivated

aluminum particles, the accepted nominal solid density is 2.785 g/cc. In some cases,

properties of aluminum alloys (ρ = 2.700 – 2.828 g/cc [139]) are employed in the modeling.

Selected thermophysical properties of the nitromethane/aluminum slurry constituents are

tabulated in Table 4.2.

4.2.2 Linear Hugoniots of nitromethane and aluminum

The shock Hugoniot relating the shock velocity, D, to the material velocity, uf1, is

commonly expressed as a linear function, D = C+Suf1, with the exception of phase change
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Table 4.2: Thermophysical properties of the components of the prototype explosive system.

Property Nitromethane Aluminum

Density, ρ0 (g/cc) 1.128 2.785

Molecular weight, W (g/mol) 61.04 26.98

Heat of formation, ∆Hf0 (kJ/mol) -112.59 [116] 0

Heat capacity, c (J/kg-K) 1741 (298 K) [214] 883 [98]

Thermal conductivity, k (W/m-K) 0.203 (300 K) [208] 238 [4]

Viscosity, µ (Pa-s) 6.2× 10−4 (298 K) [214] n/a

or microstructure change. The fitting coefficients C and S are experimentally determined;

they can be found for common materials in Cooper [41] and Drumheller [55], and for

unreacted explosives in Marsh [139], Gibbs and Popolato [79], Dobratz and Crawford [47],

and Mader [133].

There is some variation in the C and S fitting coefficients in the literature. For

nitromethane, Marsh [139] and Mader [133] cite D = 1.647 + 1.637uf1 mm/µs for a wide

range of shocks in unreacted liquid nitromethane. The data of Marsh and Mader are used

in the present work to facilitate comparison to published numerical results. Figure 4.4

shows the shock Hugoniots for aluminum and nitromethane.

4.2.3 VN shock condition of nitromethane

The Rankine-Hugoniot relations (Equation 2.18) are used to calculate the von Neumann

(VN) condition of the pure explosive. Using the linear Hugoniot for nitromethane, the

shocked fluid velocity can be calculated for a given shock velocity. For D = 6.612 mm/µs

from Cheetah, the resulting shocked fluid velocity is: uf1 = 3.033 mm/µs. For

ρ0 = 1.128 g/cc, and applying the continuity equation (Equation 2.18a) across a

shock, u1 = D(1− ν1/ν0), gives the post-shock density as ρ1 = 2.084 g/cc or specific

volume of ν1 = 0.4798 cc/g. Inserting the linear Hugoniot into the continuity and

momentum equations (Equations 2.18a and 2.18b), and neglecting the p0 term, yields

p1 = ρ0(Cu1 + Su2
1), which gives the VN pressure: pVN = 22.62 GPa. The temperature

is calculated using ν1 = 0.4798 cc/g in the Walsh-Christian equation (Equation 4.1) with

temperature fitting parameters for NM from [133]. Table 4.3 summarizes the von Neumann

state and provides a comparison to numerical results with good agreement. Note that at

the von Neumann shock, the NM is assumed to be inert.
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Figure 4.4: Experimental shock Hugoniot data points and fitting curves. Data points and

fitting coefficients from Marsh [139].
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Table 4.3: The von Neumann shock condition in nitromethane calculated using the Rankine-

Hugoniot relations with comparison to numerical results.

Shock Parameter Analytical Numerical [170]

Pressure (GPa) 22.62 22.80

Specific volume (cc/g) 0.4798 0.4796

Density (g/cc) 2.084 2.085

Temperature (K) 2768 2790

Shock velocity (mm/µs) 6.612 6.690

Particle velocity (mm/µs) 3.033 3.046

4.2.4 CJ equilibrium condition of nitromethane

In the detonation of liquid nitromethane, the monopropellant is presumed to decompose

into a set of gaseous species, as follows:

CH3NO2 → H2O+ CO2 + CO +N2 + CH4 +H2 + . . . (4.2)

The decomposition begins after the leading shock, and chemical equilibrium is assumed

as the flow reaches the CJ point. The reaction products of NM can be estimated using

Chemkin [130], CEA [87], or Cheetah [68].

An equation of state (EOS) for the detonation products is required to determine the

CJ condition. For instance, the Becker-Kistiakowski-Wilson (BKW) equation of state

(Kistiakowsky and Wilson [112]) is commonly used for detonation products. It is a based

on a repulsive potential applied to the virial EOS (Mader [132]):

pν

nRT
= 1 + xexp(bx), x =

k

ν
(T + θ)a, k = κΣn

i=1Xiki (4.3)

where a, b, κ, and θ are adjustable parameters in the EOS; Xi and ki are the mole fractions

and co-volumes of species i, respectively. Parameters for the BKW EOS for high explosives

are given by Cowan and Fickett [43] and Mader [132]. For NM in the present analysis, the

BKW parameters are: a = 0.5, b = 0.298, θ = 6620 and κ = 10.5.

The particular species sets considered in the BKW EOS have been chosen based on

performance comparison to experimental detonation results. In the Cheetah code, the

BKWC library generally provides the best results for a wide range of explosives; however,

it has only been tested for C-, H-, N-, O-, and F-based explosives [68]. The BKWS library
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Table 4.4: The CJ condition for nitromethane detonation computed using Cheetah with

various libraries and initial densities (in g/cc).

CJ State Parameter BKWC BKWC BKWS BKWS

(ρf0 = 1.16) (ρf0 = 1.128) (ρf0 = 1.16) (ρf0 = 1.128)

Pressure (GPa) 11.89 11.34 13.85 13.16

Specific volume (cc/g) 0.628 0.644 0.634 0.650

Density (g/cc) 1.591 1.553 1.576 1.539

Energy (kJ/cc-explosive) 1.61 1.55 1.83 1.76

Temperature (K) 3669 3664 3621 3628

Shock velocity (mm/µs) 6.149 6.059 6.724 6.612

Particle velocity (mm/µs) 1.667 1.659 1.775 1.764

Speed of sound (mm/µs) 4.483 4.399 4.949 4.847

Gamma 2.690 2.651 2.788 2.748

contains an increased number of species (see Hobbs and Baer [96]) and is more appropriate

for aluminized explosives.

The species list (in order of decreasing concentration) for NM decomposition using the

BKWC library includes: H2O, CO, N2, CO2, CH4, H2, C2H4, H3N, CH2O2 CH3OH, CH2O,

C2H6, CH3, NO, O2, NO2, and C. The BKWS calculation resulted in detonation products

containing 61 gas species. The CJ condition from Cheetah using the two libraries is shown

in Table 4.4. The initial state for nitromethane is compared to the theoretical maximum

density (ρf0 = 1.16 g/cc). The largest differences are in the CJ pressure and shock velocity

when comparing the two libraries.

The CJ condition is based on a one-dimensional detonation wave and, as such,

represents the infinite diameter detonation parameters. The accepted nominal detonation

velocity and pressure for nitromethane are 6.35 mm/µs and 12.5 GPa, respectively (Dobratz

and Crawford [47]), which falls in between the results using the two libraries. The BKWS

library was selected since the detonation velocity more closely matches the numerical

results of Mader [132] (D = 6.46− 6.75 mm/µs) and the experimental results for pressure

p = 14.1 GPa given in Mader [132].

4.2.5 Equilibrium detonation of the prototype system

The prototype system consists of aluminum particles saturated with liquid nitromethane

explosive. The Cheetah chemical equilibrium analysis code (see Fried et al. [68]) is used
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to investigate the detonation velocity deficit and CJ flow temperature by including the

presence of aluminum in the explosive mixture. Cheetah assumes a composition mixture

at the molecular level and, therefore, the finite metal particle size is not considered. Full

mechanical and thermal equilibrium are enforced in addition to the chemical equilibrium.

The metal acts as a considerable momentum loss and heat sink for thermal energy.

Aluminum is considered inert as justified in Section 4.1.5. In the limit of small particles,

where molecular mixing can be assumed, the inert aluminum also acts as an explosive

dilutant. Figure 4.5 illustrates the CJ flow velocity, temperature, pressure, density, sound

speed, and detonation velocity for equilibrium conditions. As the mass fraction of Al

increases, the detonation velocity and pressure decrease monotonically.

The equilibrium detonation represents the lower limit for detonation velocity, while an

upper limit can be expressed by the neat NM detonation, where one can consider the phase

interactions (mechanical and thermal exchanges) between the particles and NM reacting

products as frozen. In reality, the detonation parameters in a heterogeneous system are

higher than equilibrium predictions due to non-equilibrium phase interaction processes.

The actual heterogeneous detonation lies in between the frozen and equilibrium interaction

limits. Numerical modeling is ultimately required to fully resolve the non-equilibrium

process of the two-phase flow between explosive and particles.

4.2.6 Analysis of the timescales

Various timescales can be evaluated based on the particle diameter alone by assuming

all other flow parameters. A similar comparison was performed by Milne et al. [145].

Considering spherical aluminum particles in a nitromethane detonation, these timescales

are evaluated at the CJ detonation shocked flow condition and the VN shocked flow

condition by assuming frozen phase interaction within the shock. Both the CJ equilibrium

detonation and VN shock state refer to neat nitromethane without aluminum particles.

The shock interaction timescale is defined as the time for the leading detonation shock

to cross the particle diameter, τS = dp/D0. Similarly, the detonation reaction timescale

is defined using the reaction-zone length and the detonation velocity, τD = LR/D0. The

timescale for viscous relaxation, thermal relaxation and radiation heat transfer, duplicated

from Section 2.1, are summarized here:

τV =
4ρsdp

3ρfCd|uf − up|
, τT =

ρsd
2
pcs

6kfNu
, τR =

ρsdpcs|Tf − Tp|
6εsσB(T 4

f − T 4
p )

(4.4)
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Figure 4.5: Effect of inert aluminum concentration in NM on the equilibrium CJ detonation

condition.
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Except for the shock interaction process, the timescales above represent the time to

reach about 63% of the equilibrium value, since these are exponential processes with

asymptotic behaviour.

For this post-shock flow analysis, empirical correlations are required for Cd = f(M ,Re)

and Nu = f(M ,Re,Pr). For simplicity, dilute conditions (φs0 → 0) are assumed and

correlations for steady incompressible flow (M < 0.3) are chosen among numerous available

options. For drag, the correlation of Gilbert et al. [80] was used:

Cd(Re) = 0.48 + (Re)−0.85 (4.5)

For heat transfer, the Nusselt number correlation of Knudsen and Katz [113] was used:

Nu(Re,Pr) = 2 + 0.6Re1/2Pr 1/3, Re < 2× 105 (4.6)

The Reynolds number and Nusselt number for frozen particles in the VN shocked flow

and the CJ detonation shocked flow are plotted in Figure 4.6. In the calculations, the

thermodynamic properties for the VN shock use the values in Table 4.2. The Prandtl

number of the VN state is then Pr = µfcpf/kf = 5.22. For a spherical particle suddenly

immersed in the CJ shocked flow, the conditions up0 = 0 mm/µs, uf1 = uCJ and ρf1 = ρCJ

are assumed. The Cheetah calculation gives cpf,CJ = 3.7 kJ/kg-K and kf0 = 0.486 W/m-K

for gaseous detonation products dominantly with H2O, N2 and CO2 (TCJ = 3628 K). There

is an order of magnitude range in the molecular viscosity suggested in the literature (cf.

Kopyshev et al. [114], Bastea [16], and Gordon and McBride [87]). A conservative estimate

of the molecular viscosity of µf = 0.0001 N-s/m2 is selected for the analysis. The resulting

CJ Prandtl number is then Pr = 0.758. Both the Re and Nu numbers in Figure 4.6 feature

an increasing trend for increasing particle diameter. In both cases, there is less than an

order of magnitude difference in the results between the CJ and VN shocked flows.

The burning time for particles is assumed to follow the diffusion-limited d2 law following

liquid-droplet combustion theory (Glassman [81]). In this case, infinite chemical kinetics

are assumed for the gas-solid reaction, and the burn time is proportional to the initial

surface area provided that the surface of the particle has melted:

τB =
κd2p0
Y a
oxi

(4.7)
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where κ is a metal-dependent constant, a is dependent on the oxidizing gas type, and Yoxi

is the mass fraction of oxidizing gases (see Zhang et al. [227] for additional details).

Figure 4.7 shows the timescales as a function of particle diameter for the CJ and VN

conditions. The shock interaction time, defined as the characteristic time for the leading

shock to cross the particle, is directly proportional to the particle diameter. The timescales

may be compared assuming LR = 40 µm and D = 6.6 mm/µs for neat NM. For a particle

size of 40 µm, the shock interaction timescale is the same as the reaction-zone timescale.

Below dp = 40 µm, the shock interaction timescale is less than the detonation reaction-zone

timescale. Therefore, for particles dp ≪ 40 µm, the particle-detonation interaction falls into

the small particle limit (dp/LR ≪ 1) as defined in Chapter 2. For particles dp ≫ 40 µm,

the particle-detonation interaction becomes in the large particle limit (dp/LR ≫ 1). For

particles in between (about 20 – 100 µm for 0.5 < τS/τD < 2.5), the particles interact with

the detonation in the intermediate regime (dp/LR ∼ 1).

For very small particle diameters, the timescales for momentum and heating are

proportional to d2p, due to low Reynolds numbers in the Cd and Nu correlations (Equations

4.5 and 4.6). Assuming the d-squared rate law for burning, the timescale is proportional

to d2p for all particle sizes. Employing empirical laws for drag and convection heating, and

including Reynolds number in each, the characteristic timescales deviate from diameter

squared, depending on the correlation used. For momentum, the timescale is proportional

to dp for particle sizes above 0.1 µm. For convection heat transfer, the timescale is

proportional to d1.5p .

The radiation heat transfer timescale is proportional to dp for all particle sizes. Using a

surface emissivity of ε = 0.33 [98] for aluminum and the CJ temperature for nitromethane

detonation, the radiative heat transfer timescale is about six orders of magnitude greater

than the shock interaction timescale, and can therefore be safely neglected. The burn time

can be used to determine if the particles behave as inert within the detonation interaction

timescale. Even if ignition occurs within the explosive reaction zone, the particle burn

time is several orders of magnitude greater than the reaction timescale. It is clear from

Figure 4.7 that the timescale for burning is considerably longer than the shock interaction

time, even when neglecting heating and melting time before burning starts.

The foregoing assumes the limiting case of no shock transmission into particles, where

the particles are suddenly immersed in the VN or CJ shocked flow conditions with large

impulsive velocity and temperature differences between the flow and particles. Assuming

frozen particle/shock interaction (i.e., up1 = 0 mm/µs and Tp1 = 300 K), the ratio of shock

interaction time to viscous interaction time is:
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τS
τV

=
3µfCdRe

4dpρsD
=

(
3

4

)(
ρf
ρs

)(uf

D

)

Cd (4.8)

Similarly, the ratio of shock interaction time to thermal heating time is:

τS
τT

=
6kfNu

dpcsρsD
=

(
6

Re

)(
cp
cs

)(
ρf
ρs

)(uf

D

)

Nu (4.9)

Inspection of the rearranged equations show all the bracketed terms are typically less

than unity. The flow velocity behind a shock must be less than the shock speed. In

general, the fluid density is less than the solid density for the range of materials considered.

For particles larger than 0.1 µm, the drag coefficient assuming laminar flow approaches

Newton’s value (Cd = 0.44). Table 4.5 summarizes the calculated ratio of shock interaction

time to viscous interaction time for aluminum particles in nitromethane.

Table 4.5: Ratio of shock interaction time to velocity and thermal relaxation times for

aluminum particles (ρs = 2.7 g/cc).

Shock Condition ρf1 (g/cc) uf1 (mm/µs) D0 (mm/µs) τS/τV τS/τT

10 GPa inert shock in NM 1.875 1.884 4.769 0.09 0.011

VN shock in NM detonation 2.085 3.046 6.612 0.12 0.014

CJ flow in NM detonation 1.538 1.742 6.612 0.05 0.019

For the nitromethane/aluminum system in particular, the shock interaction time is

approximately one order of magnitude less than the viscous interaction time and two

orders less than the thermal relaxation time. For denser particles, the viscous and

thermal interaction timescale increase, further supporting the above conclusion. In lieu

of a sensitivity study on the thermophysical properties, caution should be taken due to

uncertainty in the thermophysical properties.

For all particle diameters of interest, the characteristic timescale for momentum and

thermal exchange are greater than the shock interaction timescale (i.e., τS ≪ τV and

τS ≪ τT ). Therefore, viscous and thermal relaxation effects can be neglected during the

shock interaction timescale and the shock compression process is the dominant mechanism

for the particle acceleration and heating. Viscosity and Reynolds number are not significant

during the timescale for the leading shock to pass the particle diameter. Similarly, heat

transfer by conduction and convection are negligible during the shock interaction process.

Therefore, the prototype NM/Al system satisfies the assumptions of inviscid and non-heat-

conducting flow during the shock interaction timescale.
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4.3 Numerical model at the mesoscale

4.3.1 Governing equations for continuum modeling

Continuum modeling of the aluminum particles-liquid explosive media is conducted at the

mesoscale, where the individual constituents occupy large uniform regions of the mesh to

represent the packed particle beds. The aluminum material strength has been neglected,

assuming that only volumetric strain occurs in the particles. Hence, neglecting viscosity

and thermal conductivity as justified earlier, the hydrodynamic response of both the liquid

nitromethane and solid aluminum particles can be computed using the three-dimensional

inviscid Euler equations, given here in vector notation:

∂

∂t
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(4.10)

where u, v, and w are the Cartesian velocity components in the x, y and z directions

respectively, E is the total energy, Y is the material mass fraction, ω is the mass-specific

reaction rate, and ∆Hdet is the chemical heat of NM detonation. In Equation (4.10) there

are three material mass fractions denoted by F (fuel) for the liquid NM explosive, P
(products) for the gaseous NM detonation products, and I (inert) for the solid Al particles

treated as inert. Equations of state (EOS) for each material are described below.
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4.3.2 Mixture theory for multiple materials

The mixture of unreacted explosive and detonation products within the detonation zone

and the material boundaries at the metal particle surface are treated using continuum

mixture theory rather than interface tracking. Assuming pressure equilibrium following

Benson [24], the mixture density ρf in the governing equations (4.10) is expressed by

ρf =
∑

ρjφj, where each material j (j = F , P, I) has a material density and volume

fraction. Mass fractions represent the relative amount of each material: Yj = ρjφj/ρf .

Pressure equilibrium is assumed at any mesh point where more than one material is present,

which is obtained iteratively by varying ρj and φj subject to the saturation constraint,

Σφj = 1, and mass conservation, ρjφj = ρfYj. Equations of state (described below) are

used to solve for pj = fEOS(ρj , Ej). Once a converged mixture pressure is obtained, the

mixture sound speed can be determined using:

af =

(
∑

j

ρfφj

ρja2j

)− 1

2

, aj =

(
∂pj
∂ρj

+
pj
ρ2j

∂pj
∂ej

) 1

2

(4.11)

4.3.3 Equations of state

Two equations of state are used in this work: one to represent the condensed matter (solid

particles and liquid explosive), and another for the gaseous detonation products.

Condensed Matter EOS

The unreacted nitromethane and the aluminum particles are modeled using the Mie-

Grüneisen (M-G) EOS (see Mader [133]), which gives the expansion solution near the

shock Hugoniot. Each material has a Grüneisen parameter, ΓS, which is the negative of

the log slope along an isentrope:

ΓS = −
(
∂ ln p

∂ ln ν

)

S

= −ν

p

(
∂p

∂ν

)

S

(4.12)

For materials under compression, the Mie-Grüneisen EOS for pressure and temperature is:

p =
ΓS

ν
(e− eH) + pH , T =

(e− eH)

cv
+ TH (4.13)
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where ν is the specific volume and e is the specific internal energy. The Hugoniot states

(subscript H) are determined using the pressure relation:

pH =

(
C

ν0 − S(ν0 − ν)

)2

(ν0 − ν) (4.14)

The temperature Hugoniot was modeled using Equation (4.1) with fitting to the data

of Walsh and Christian [212], as explained in Section 4.1.1. The temperature fitting

coefficients (FS, GS, HS, IS, JS) and the Hugoniot parameters used for nitromethane

and aluminum are summarized in Table 4.6, which were selected from those available for

several common materials (see Mader [133]). The shock Hugoniot parameters (C, S and

ΓS) are also available in Drumheller [55] for other metals and in Marsh [139], Gibbs and

Popolato [79], and Dobratz and Crawford [47] for unreacted explosives.

Table 4.6: Material and shock Hugoniot parameters selected from Mader [133] for the Mie-

Grüneisen EOS with Walsh and Christian temperature fitting.

Parameter Nitromethane Aluminum

ρ0 (g/cc) 1.128 2.785

C (mm/µs) 1.647 5.350

S 1.637 1.350

ΓS 0.6805 1.7

cv (kJ/kg-K) 1.7334 0.9205

FS 5.41 -14.24

GS -2.73 -95.75

HS -3.22 -155.2

IS -3.91 -102.9

JS 2.39 -23.53

Gaseous detonation products EOS

Although the BKW EOS (see Section 4.2.4) is a proven EOS for detonation products, its

power lies in the calculation of state points. Tracking the time evolution and spatial

distribution of 61 species required for the BKW EOS is computationally prohibitive,

particularly in 3D. Alternatively, a fitting EOS approach is used to represent the isentropic

expansion of detonation products.

The expansion of the gaseous detonation products is represented by the Jones-Wilkins-

Lee (JWL) EOS (see Lee et al. [124]),
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p = A exp(−R1V ) +B exp(−R2V ) + C(V )−ω−1 (4.15)

where V = ν/ν0 is the volume of detonation products relative to that of the unreacted

explosive. In Equation (4.15), A, B, and C are linear fitting coefficients; R1, R2, and

ω are nonlinear fitting coefficients. The fitting coefficients for many common explosives

are tabulated in Dobratz and Crawford [47]. Alternatively, the fitting coefficients can be

determined using the Cheetah thermochemical code (see Fried et al. [68]). Lee et al. [123]

also published JWL parameters for nitromethane. Table 4.7 compares the Cheetah JWL

parameters to the data of Lee et al., and demonstrates significant differences in the JWL

coefficients. The JWL coefficients from Cheetah were used in this work.

Table 4.7: JWL parameters for nitromethane detonation products from Lee et al. [123]

compared to Cheetah calculations (BKWS library with ρ0 = 1.128 g/cc and Tfreeze = 2145 K).

JWL Coefficient Lee et al. [123] Cheetah

A 209.2 277.2

B 5.689 4.934

C 0.770 1.223

R1 4.4 4.617

R2 1.2 1.073

ω 0.30 0.379

4.3.4 Reaction model for nitromethane

The NM detonation model follows the approach of Mader [132] who simulated reaction-zone

lengths ranging from 0.24 to 70.5 µm using a single-step Arrhenius reaction law. Other

more sophisticated reaction schemes are proposed in the literature, including: two-step

Arrhenius (see Korobeinikov et al. [115], Nunziato et al. [151], Kipp and Nunziato [111],

and Oran and Boris [153]), and three-step Arrhenius (see Cook et al. [39]); Ignition and

Growth (see Lee and Tarver [125]); and, Forest Fire (see Mader and Forrest [134]) models.

Simpler models, such as the constant reaction time (CRT) model [38], are insufficient

as they are not dependent on temperature and, therefore, will not capture the hot-spot

mechanism or detonation failure. Since the goal of this work is to study the mechanical and

thermal interaction between the particles and the shock and detonation flow, a single-step

Arrhenius reaction model is adequate.
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The sensitivity of the nitromethane has been downplayed and it is presumed to react

in an ideal manner. A single-step Arrhenius reaction model [3] was employed for the NM

detonation:

ωf = ρfYFAexp

(−Ea

RTf

)

(4.16)

Mader [132, 133] used A = 1.27 × 1012 s−1 and Ea = 1.672 × 105 J/mol-K for a 7.75

µm long reaction zone. Milne [144] used a pre-exponential factor of A = 6.9×1010 s−1 and

an activation temperature Tf = 14400 K from the data of Hardesty [92] for NM; however,

this resulted in only five computational cells describing a reaction-zone length of about

10 µm. In the present work, the reaction-zone length is a parameter used in the ratio

δ = dp/LR, and a target reaction-zone length of 1.0 µm was sought for convenience in

the nondimensional analysis. Mader’s parameters were adjusted to shorten the reaction

zone, using a pre-exponentional factor of A = 8.0 × 1012 s−1 while retaining the original

activation energy, Ea = 1.672 × 105 J/mol-K, which gives LR = 2.2 µm. Similarly, by

lowering the activation energy with the Arrhenius parameters A = 2.0 × 1012 s−1 and

Ea = 1.4644 × 105 J/mol-K, the target reaction zone was shortened to 1.8 µm. The

reaction-zone length is measured from the leading edge of the VN spike to the sonic point

(location where D = uf −af ), and is dependent on the mesh resolution. In this model, the

reaction is 99.99% complete at the CJ point. A heat of detonation of ∆Hdet = 5.725 kJ/cc

was determined using Cheetah [68]. Validation of this detonation reaction model, including

the effect of mesh resolution and timestep sensitivity, is presented in Section 4.4.4.

4.4 Model validation

The above governing equations and models are implemented in the Chinook CFD code

[140] (Martec Limited). The code is a fully explicit, second-order accurate, compressible

flow code founded on a three-dimensional, unstructured mesh, adaptive grid, and parallel

computing framework. Chinook employs AUSM [129] and HLLC [17, 203] approximate

Riemann solvers, which are flux-vector splitting techniques among various Godunov-type

methods (Godunov [84]). Unstructured three-dimensional Green-Gauss and Least-Squares

gradients (Ottosen and Petersson [156]) are used in conjunction with multidimensional

slope limiters, such as MinMod [207], van Leer [207], and Barth and Jesperson [15]. The

above numerical methods, applicable to unstructured meshes, are reviewed in detail in

[162].
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In the present work, the unstructured mesh and adaptive grid technologies were not

utilized in favour of regular uniform structured meshes (quadrilateral and hexahedral),

which were used exclusively. The HLLC flux solver was used for all calculations since it is

better at handling dense fluids with high sound speeds. This section provides a series of

validation tests for multidimensional shock interaction and the detonation reaction model,

in comparison to benchmark data. The effect of mesh resolution and solver settings are

evaluated for each test case.

4.4.1 One-dimensional multi-component test

Mader [132] compares numerical results of the SIN Lagrangian code to the 2DE Eulerian

code for a one-dimensional multi-component problem. These results are used as a validation

test case for the present numerical framework, equations of state, and mixture model. The

test problem consists of an 8.5 GPa shock in 0.04 cm of nitromethane interacting with a

0.016 cm thick slab of aluminum backed by 0.016 cm of air. The aluminum and air are

initially at a pressure of one atmosphere. There are 40 cells across the aluminum slab. The

spatial distribution of density is shown in Figure 4.8 at three different times. The pressure,

specific volume, temperature, and velocity are compared to the benchmark solutions at the

state locations indicated in Figure 4.8. The comparison is summarized in Table 4.8 with

excellent agreement.

4.4.2 Solver order of accuracy

The numerical methods are implemented in a second-order TVD framework [93]. Slope

limiters are employed to prevent oscillations in the reconstructed solution. Figure 4.9

illustrates the effect of solver order (compression factor) and solver type. The first-order

solution is compared to second-order implementations of the MinMod limiter [207] (most

dissipative) and Barth-Jesperson (B-J) limiter [15] (most aggressive). The results of the

compression factor are compared between the range of c = 0 for piecewise constant and

c = 2 for a piecewise linear solution. Although full compression (c = 2) represents a fully

second-order solution on uniform meshes, the results in Figure 4.9(a) show undesirable

‘overshoot’ in the density solution and ‘staircasing’ in the pressure solution. Reducing

the compression to c = 1 sharpens the discontinuities and material interfaces without

significant numerical instability.
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Table 4.8: Comparison of the present numerical results using Chinook to numerical results

of the 2DE and SIN codes of Mader [132].

Parameter 2DE Code SIN Code Chinook

(Eulerian) (Lagrangian) (Eulerian)

Nitromethane Shock (State 0)

Pressure (GPa) 8.58 8.57 8.58

Specific Volume (cc/g) 0.5455 0.5455 0.5456

Temperature (K) 1146.2 1181.9 1180.6

Velocity (mm/µs) 1.710 1.710 1.710

Reflected Shock in Nitromethane (State 1)

Pressure (GPa) 17.8 17.87 17.90

Specific Volume (cc/g) 0.4686 0.4858 0.4856

Temperature (K) 1365.5 1436.1 1434.4

Velocity (mm/µs) 0.967 0.964 0.963

Aluminum Shock (State 2)

Pressure (GPa) 17.85 17.86 17.90

Specific Volume (cc/g) 0.3071 0.3070 0.3070

Temperature (K) 511.0 518.3 519

Velocity (mm/µs) 0.964 0.964 0.965

Aluminum Rarefaction (State 3)

Pressure (GPa) 0.8 0.04 0.14

Specific Volume (cc/g) 0.3561 0.3603 0.3601

Temperature (K) 380.0 355.5 371

Velocity (mm/µs) 1.873 1.932 1.929
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Figure 4.8: One-dimensional results for the multi-component validation problem of Mader

[132]. States denoted in the plot: 0 is the nitromethane shock, 1 is the reflected shock in

nitromethane, 2 is the transmitted shock in aluminum, and 3 is the rarefaction in aluminum.

4.4.3 Grid convergence study

A grid convergence study was performed using an inert nitromethane shock interacting

with an aluminum particle, with results given in Figure 4.10. The results show that

the first-order solution has greater error than the second-order methods, and that the

higher compression had the smallest error. For velocity, the grid convergence is asymptotic

for resolutions above 20 cells per particle diameter. The order of the scheme in the

asymptotic convergence region based on velocity was 0.59, 0.93, and 1.70 for c = 0, 1,

and 2, respectively. For temperature, the grid convergence is asymptotic for resolutions

above 40 cells per particle diameter, where the order of the schemes was 0.88, 1.69, and

1.86 for c = 0, 1, and 2, respectively. Although the order of the schemes was less for

velocity, the magnitude of error was lower for velocity. It should be noted that an error

of 10−2 in velocity corresponds to a deviation in velocity transmission factor, α, of 0.006;

an error of 10−2 in temperature corresponds to a deviation in temperature transmission

factor, β, of 0.004.
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(b) Second-order compression factor of c = 1.

Figure 4.9: Solver comparison using various second-order compression factors for a 10.1 GPa

inert nitromethane shock interaction with a 10 µm aluminum slab. Results are shown at

three different times (t2 > t1 > t0).
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(b) Mesh convergence study for temperature.

Figure 4.10: Convergence of particle velocity and temperature during shock transmission

resulting from interaction of a 10.1 GPa nitromethane shock with an aluminum particle.
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4.4.4 Nitromethane detonation

Before the reaction model for nitromethane detonation can be validated, numerical stability

and grid convergence are required. Sufficient numerical resolution is required to capture

the detonation shock and reaction zone. Comparison to a thermochemical equilibrium

calculation is conducted after investigating the grid convergence and timestep sensitivity.

Figure 4.11 shows the detonation shock and reaction zone for a sequence of increasing

mesh resolutions with cell sizes ranging from 160 to 5 nm. Using finer resolutions

increases the peak shock pressure and reduces the reaction-zone length due to the higher

temperatures. Table 4.9 summarizes the detonation velocity, shock pressure, CJ flow

pressure, reaction-zone length measured at the sonic point (uf = D0 − af), and the

corresponding number of cells in the detonation reaction zone, NR. Mesh resolutions

with a computational cell size of 160 ≥ ∆x ≥ 5 nm (625 to 20,000 cells on a 100 µm

long one-dimensional domain) correspond to the pressure wave profiles in Figure 4.11. A

resolution of 10 nm, with 202 cells in the detonation reaction zone, was selected for the 3D

mesoscale calculations.
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Figure 4.11: Effect of mesh resolution on the 1D nitromethane detonation reaction zone.

Profiles plotted at arbitrary distance location for clarity.

The timestep stability is investigated by varying the Courant number. For inviscid flow,

the Courant criterion [42] defines the maximum timestep, ∆t = CFL∆x
|u|+a

, where CFL is the

Courant-Friedrich-Lewy number, or simply Courant number. Typically, for simple flows in

one dimension, a Courant number of CFL = 0.5 is used. However, the multiple equations

of state in combination with a reaction model generally require a smaller Courant number.
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Table 4.9: Effect of mesh resolution on the nitromethane detonation reaction zone after a

running distance of 100 µm.

∆x (nm) D0 (mm/µs) PVN (GPa) PCJ (GPa) LR (µm) NR

160 6.640 19.89 13.45 3.76 24

80 6.665 21.36 13.66 2.88 36

40 6.680 22.33 13.71 2.12 53

20 6.690 22.85 13.77 2.05 102

10 6.695 23.06 13.80 2.02 202

5 6.700 23.22 13.84 1.99 398

Figure 4.12 highlights the effect of increasing the Courant number. For CFL = 0.3, small

oscillations begin in the Taylor expansion. For larger Courant numbers of CFL = 0.5

and 0.7, oscillations enter the reaction zone which affects the shock velocity and peak

pressure causing instability in the detonation front. Small Courant numbers result in

longer simulation times and, therefore, should remain as large as practical. A Courant

number of CFL = 0.25 was chosen for stability in the calculations involving reactive flow.

Inert shock calculations employed CFL = 0.4.

Behind the sonic point (i.e., the CJ point), the solution is unsteady with a self-similar

Taylor expansion wave. Inside the detonation zone, the flow is subsonic and steady in

the shock frame of reference. Formation of a stable reaction zone occurs over a running

distance of at least 10 reaction-zone lengths [132]. Figure 4.13 illustrates the detonation

wave profiles after running a distance of 100 reaction-zone lengths.

Figure 4.14 illustrates the p − ν process for the detonation wave. Beginning at State

0, the shocked liquid nitromethane follows a path along the reactants Hugoniot to the von

Neumann pressure at which point the chemical reaction begins. In reality, the reaction

path taken is along the Rayleigh line; however, in the numerical model the shock process

occurs over a few computational cells, each containing an intermediate state that must

satisfy the Mie-Grüniesen EOS (see Ripley et al. [163]). During the Arrhenius reaction,

the M-G reactants are transformed into the JWL products, which expand from the CJ

point to State 1 at the tail of the Taylor wave.

Table 4.10 compares the CJ state calculated using Cheetah to the results of the

numerical model. The CJ state in the numerical model was measured where uf = D− af .

The agreement is deemed acceptable.
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Figure 4.12: Effect of Courant number on the stability of the nitromethane detonation

solution.
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Figure 4.13: Pressure wave pressure profiles with a closed boundary at x = 0. For dp = 1 µm,

the one-dimensional resolution corresponds to 100 cells/dp with a total of 20,000 cells in the

1D domain.
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Figure 4.14: Detonation process (numerical p − ν history) overlaid on the model equations

of state and key state points.
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Table 4.10: Comparison of the Chapman-Jouguet state from the numerical model to Cheetah

(BKWS library).

CJ State Parameter Cheetah Numerical

Detonation Velocity (mm/µs) 6.612 6.690

Density (g/cc) 1.538 1.551

Pressure (GPa) 13.16 13.80

Temperature (K) 3628 3657

Gas Velocity (mm/µs) 1.742 1.827

Sound Speed (mm/µs) 4.847 4.867

4.5 Problem configuration

4.5.1 Initial particle packing configurations

Ordered matrices of spherical aluminum particles saturated with liquid nitromethane are

simulated at the mesoscale for various particle spacings covering an order-of-magnitude

range of volume fractions from 0.065 ≤ φs0 ≤ 0.740. Three packing configurations were

considered, as illustrated in Figure 4.15. The close-packed configuration (face-centered

cubic lattice arrangement) was selected for most of the calculations since it provides the

densest loading conditions. Table 4.11 compares the solid volume fraction for the various

packing configurations. The dilute limit (φs0 → 0) is simulated using a 2D axi-symmetric

model of a single spherical particle, while the dense limit (φs0 → 1) is simulated using a

1D model of a semi-infinite solid slab.

Figure 4.15: Geometric arrangements of packed spherical particles: simple cubic (SC);

φpacked = 0.52 (left); body-centred (BC), φpacked = 0.68 (centre); and, close packed (CP),

φpacked = 0.74 (right).
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Table 4.11: Theoretical and experimental volume fractions of packed particle beds.

Packing Configuration Volume Fraction, φpacked

Theoretical Approximate

Simple cubic (SC) π/6 0.52

Body-centred cubic (BC)
√
3π/8 0.68

Close-packed (CP), also called
√
2π/6 0.74

face-centred cubic packing

Random packing - 0.58 - 0.62

Loose powder - 0.5 (typ.)

Table 4.12: Volume fraction as a function of particle spacing in various matrix configurations

from Ripley et al. [168].

Inter-particle Face-Centred Body-Centred Simple-Cubic

Spacing, s (Close Packed) Packing Packing

0 0.740 0.680 0.520

0.1dp 0.556 0.511 0.391

0.2dp 0.428 0.394 0.301

0.4dp 0.270 0.248 0.190

0.8dp 0.127 0.117 0.089

∞ 0.000 0.000 0.000

4.5.2 Particle spacing and volume fraction

The spacing between the surfaces of two spheres (i and j) positioned at (xi, yi, zi) and

(xj , yj, zj) is defined as:

sij =
√

(xi − xj)2 + (yi − yj)2 + (zi − zj)2 −
di + dj

2
(4.17)

The matrix volume fraction for mono-sized spheres with spacing, s, is:

φmatrix = φpacked

(
dp

dp + s

)3

(4.18)

Table 4.12 summarizes the volume fractions for various inter-particle spacing distances and

particle packing configurations, which are independent of material type.

The solid mass fraction is more commonly used in experiments since it can be measured

directly. The relationship between volume and mass fraction is Yj = ρjφj/ρmix, where
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the bulk mixture density is ρmix =
∑

j ρjφj . Table 4.13 summarizes the volume

fraction, mass fraction, and bulk mixture density for various particle spacings in a

nitromethane/aluminum matrix.

Table 4.13: Solid fraction and bulk density for close-packed particle matrices of aluminum

particles saturated with nitromethane.

Inter-particle Volume Mass Bulk Density

Spacing, s Fraction, φs0 Fraction, Ys0 ρmix (g/cc)

0 0.740 0.875 2.354

dp/20 0.639 0.814 2.187

dp/10 0.556 0.756 2.049

dp/5 0.428 0.649 1.837

dp/2 0.219 0.409 1.491

dp 0.093 0.202 1.282

4.6 Computational domain

The primary computational domains for the mesoscale calculations employ 3D Cartesian

grids that contain the packed particle beds. The mesh is uniform in the vicinity of the

shock and the particles; geometrically-expanding meshes are used to extend the domain

upstream and downstream of the region of interest. The limiting case of a single particle

utilizes a 2D axi-symmetric mesh, and the solid limit involves a 1D planar domain – both

employ the same mesh resolution and expanding mesh away from the region of interest.

This section describes the computational domain, boundary conditions, initial conditions,

mesh resolutions, and mesh decomposition for parallel computing used in this work.

4.6.1 Representative volume element

Mesoscale domains are typically very small (1 µm – 1 cm) and contain O(100) grains or

particles. For the model results to be representative of the larger heterogeneous material,

Markov [138] introduced the concept of a representative volume element (RVE). The

mesoscale domain must describe a small but representative region of material that is

sufficiently large to capture the statistical response. For realistic heterogenous matter,

Baer [7] suggests at least four grains (particles) across the width of a domain. However,
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Mesoscale Domain

Figure 4.16: Minimum mesoscale domain size in a regular geometric arrangement of particles

with symmetric shock interaction. Two dimensions shown for simplicity.

since the particles in the present work are mono-sized and arranged in a regular geometric

pattern, the solution is periodic in the transverse direction. Therefore, a significantly

smaller domain can be investigated, as illustrated in Figure 4.16. Prescribing reflective

boundary conditions to the mesoscale domain enforces symmetry and provides a periodic

solution.

In three dimensions, the mesoscale domain boundaries cut through the spherical

particles. The particles are one-quarter sphere segments aligned on orthogonal symmetry

planes, representative of spherical particles in a semi-infinite matrix. A total of 20 – 40

spherical particles are included. The dimensions of the domain are therefore proportional

to the particle diameter and inter-particle spacing. For 1 µm particles with a 1 µm spacing

in a close-packed matrix, the domain dimensions are 15.0× 1.41× 1.41 µm.

4.6.2 Initial conditions

Various initial conditions are required to evaluate the different detonation interaction

regimes (see Section 2.5). These include inert Heaviside shocks for the small particle

limit, reactive Heaviside shocks in the large particle limit, and detonation wave profiles

for the intermediate regime. The limiting interaction regimes are established using jump

conditions applied to a region ahead of the particle bed, as shown in Figure 4.17. An inflow

boundary condition upstream of the particles provides the piston effect that supports the

rear shocked flow. This is different from the initial conditions normally used in shock tubes,

107



Shocked Flow Particle Matrix

D = D0 p0 = 0.101 MPa
u0 = 0 mm/ s
T0 = 300 K

p = p1

u = uf1
T = Tf1

Piston
uBC = uf1

Figure 4.17: Typical problem setup for the limiting interaction regimes.

since both the shock and post-shock flow are initialized with their respective velocities.

Furthermore, since the CJ shock also features a material interface, the reaction model

is used but with an infinite reaction rate to provide an instantaneous conversion from

reactants to products within the shock front. Table 4.14 summarizes the jump conditions

for the four initial discontinuities that utilize the Heaviside shock conditions.

Table 4.14: Jump conditions for initial Heaviside discontinuities in nitromethane.

Property 8.58 GPa Shock 10.1 GPa Shock CJ Shock VN Shock

D0 (mm/µs) 4.454 4.769 6.690 6.690

ρf1 (g/cc) 1.833 1.875 1.538 2.085

p1 (GPa) 8.58 10.1 13.8 22.8

uf1 (mm/µs) 1.710 1.884 1.758 3.046

Tf1 (K) 1181 1336 3592 2790

Shocked material Liquid Liquid Gas Liquid

For the cases involving detonation interaction with the particle matrices, a detonation

wave profile is first computed in 1D and then mapped onto the 3D domain. Prior to the

detonation wave entering the packed particle matrix, the detonation is run out to a distance

of 1.0 mm. This was done to reduce the gas expansion rate in the Taylor wave during the

interaction with metal particles, as shown in Figure 4.18.

With the Taylor expansion effect minimized, a 1D spatial wave distribution is selected

to initialize 3D meshes of the same resolution containing the particle bed. The resulting

initial condition on the 3D mesh contains the same detonation wave profile from the 1D

mesh. Therefore, the 3D detonation wave is initially perfectly planar. This initialization

method is fully conservative since the meshes have identical resolutions. Figure 4.19 shows

the detonation wave profile (from t = 970τ in Figure 4.18) applied to a three-dimensional

mesh as the initial conditions for studying the detonation wave interaction with the particle

matrix.

108



Figure 4.18: Effect of detonation running distance on reducing the Taylor wave expansion.

One-dimensional profiles obtained using 100,000 cells over a 1 mm long mesh. Profiles plotted

at arbitrary x locations for clarity (dp = 1 µm).

Figure 4.19: Initialized 3D mesoscale domain for detonation conditions and close-packed

particle arrangement. Colour contours represent material density. Black lines show the

elements of the hexahedral mesh (mesh resolution of 80 cells / particle diameter).
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Table 4.15: Computational mesh details for 80 cells per particle diameter employed in Ripley

et al. [169].

Inter-particle Volume Number of Cells per Total Number Number

Spacing, s Fraction, φs0 Direction (X × Y × Z) of Cells of CPU

0 0.74 869× 56× 56 2,725,184 16

0 0.74 1669× 56× 56 5,233,984 32

0.2dp 0.428 1069× 68× 68 4,943,056 32

0.5dp 0.219 1069× 85× 85 7,723,525 16

dp 0.093 1269× 113× 113 16,203,861 16

Table 4.16: Computational mesh details for 100 cells per particle diameter employed in

Ripley et al. [170].

Inter-particle Volume Number of Cells per Total Number Number

Spacing, s Fraction, φs0 Direction (X × Y × Z) of Cells of CPU

0 0.74 1075× 71× 71 5,419,075 100

0.2dp 0.428 1269× 85× 85 9,168,525 100

0.5dp 0.219 1319× 106× 106 14,820,284 100

dp 0.093 1569× 142× 142 31,637,316 100

4.6.3 Resolution and domain decomposition

The early work of Mader [132] used only five mesh points across particle inclusions. In 2D

calculations, Zhang et al. [229] used 20 cells and Milne [144] used 50 cells across the particle

diameter. Here, resolutions of 40, 80 and 100 cells per particle diameter were considered for

both 2D and 3D calculations. As shown in §4.4.3, these resolutions are in the asymptotic

grid convergence region with an acceptable error magnitude. The resulting high-resolution

3D meshes contained up to 32 million cells, which required the use of parallel computing

on a distributed memory network. The Message Passing Interface (MPI) was used for

up to 100 CPU. Tables 4.15 and 4.16 summarize the computational mesh details. Figure

4.20 shows a typical example of the parallel domain decomposition obtained using simple

geometric division. Each partition contains between 50,000 and 300,000 computational

cells.
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Figure 4.20: Parallel partitioning of the 3D mesoscale domain: 25 × 2 × 2 partitions

configured for 100 CPU parallel computation. Partition boundaries shown by white lines.

4.7 Diagnostics

The large data size generated using the 3D meshes prevented frequent output of the

volumetric data. Numerical gauges were embedded in the flow to report the local conditions

at a high frequency. Gauge data were output at every numerical timestep, which is very

small. Further, on-the-fly analysis of a candidate particle was performed and the reduced

data were recorded. This analysis has an associated computational cost; therefore, it was

only conducted at a lower frequency, typically at 10 – 20 times per shock interaction time.

Candidate particles were studied 6 – 8 layers into the matrix, where the interaction

became quasi-steady in the absence of starting and end effects [169]. Figure 4.21 shows a

typical particle matrix with the location of numerical gauges and highlights the candidate

particle. The gauges provide pressure, temperature, and flow velocity output. The wave

propagation velocity through the matrix can be measured using the time of arrival between

consecutive gauges. Additional gauges were located at the mass-centre, side edge, leading

edge, and trailing edge of the particles, but were only used for limited scoping studies.

4.7.1 Particle acceleration and heating

Results from mesoscale calculations were used to observe the behaviour of each particle

under shock and detonation conditions, and in various particle packing densities and

configurations. The theoretical mass of an individual particle is: mp = ρs
π
6
d3p. For
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(a) Gauges at the particle leading edges.

(b) Gauges located in voids between particles.

Figure 4.21: Diagnostics in the mesoscale model: location of gauges embedded in the particle

matrices and candidate particle highlighted.

deforming particles in the mesoscale calculation, where the mass distribution within

the particle varies during shock compression, the time-dependent local particle mass is

calculated by integrating over the cells (i = 0 . . . N) in the mesoscale mesh; each cell has a

volume dV = ∆x∆y∆z.

The specific candidate particle (see Figure 4.21) is uniquely initialized with a passively-

advected scalar, Yp, such that its mass, velocity, and temperature could be measured

independently of other particles. For the mass integration:

mp(t) =

∫∫∫

V

ρYpdV =
N∑

i

ρiYi∆x∆y∆z (4.19)

The time-dependent, mass-averaged velocity and temperature were examined by integrat-

ing in discrete form:

up(t) =
1

mp

∫∫∫

V

ρpupYpdV =
1

mp

N∑

i

(ρpupYp)i∆x∆y∆z (4.20a)

Tp(t) =
1

mp

∫∫∫

V

ρpTpYpdV =
1

mp

N∑

i

(ρpTpYp)i∆x∆y∆z (4.20b)

Figures 4.22 and 4.23 show a comparison of local velocity and temperature measure-

ments to the mass-averaged values. The velocity and temperature measurements at the
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Figure 4.22: Comparison of mass-averaged particle velocity (left) and temperature (right)

with local measurement points in a single slab particle (dp = 10 µm). Gauges located at the

leading edge, mass centre, and trailing edge.

leading, trailing, and side edges demonstrate the significant influence of the complex wave

interactions at the edge of the particle. The mass-averaged velocity and temperature

are representative of a composite measurement of the various locations including the mass-

centre gauge. The mass-averaged quantity integrated over the entire volume of the particle

tends to smooth the discontinuities (internal shocks and expansions) and provide a bulk

response for the mesoscale behaviour.

4.8 Summary of modeling approach

In this chapter, the modeling assumptions and simplifications were justified using

evidence from the literature. This includes using inert, spherical, mono-sized particles

that are not melted or damaged within the detonation interaction timescale. The

prototype heterogeneous explosive, consisting of aluminum particles saturated with liquid

nitromethane, was analyzed both at the individual constituent level, and together as

an explosive system. The behaviour and timescales present in the prototype explosive

system were further used to confirm the assumptions. The numerical model for mesoscale

simulation was presented; this included the governing equations, equations of state, and

detonation reaction model. Validation of the method was performed using a benchmark

test case, followed by a grid convergence study and evaluation of the order of accuracy, and
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Figure 4.23: Comparison of mass-averaged particle velocity (left) and temperature (right)

with local measurement points in a single spherical particle (dp = 30 µm). Gauges at the

leading edge, side edge, mass centre, and trailing edge.

the effect of mesh resolution and timestep sensitivity on the detonation reaction model.

The computational domain for the mesoscale simulations was presented, including the

geometric arrangement and spacing between the particles, mesh resolution requirements,

initial and boundary conditions, and domain decomposition for parallel computing. Finally,

the diagnostic methods were explained along with a comparison of measurement locations

and techniques.
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Chapter 5

Results of continuum modeling of

particles at the mesoscale

This chapter investigates and quantifies the velocity and temperature transmission factors

during shock compression using continuum modeling. Mesoscale simulations of single

particles and matrices of packed particles are conducted to determine the particle

acceleration and heating during shock and detonation interaction. The effect of impedance

ratio is investigated using inert shocks in simple slab models. The effect of the explosive-

to-solid density ratio, previously identified by Zhang et al. [229], is reproduced using inert

shock interaction with single particles of magnesium, aluminum, copper, titanium, and

tungsten. The remaining calculations focus exclusively on the nitromethane/aluminum

system, including reactive shock and detonation wave interaction. The full range of

volume fraction is studied by varying the spacing between particles, and considering the

limiting cases of a single particle (dilute limit, φs0 → 0) and wave transmission into a

semi-infinite slab (dense limit, φs0 → 1). The full range of the ratio of particle diameter

to detonation reaction-zone length, δ = dp/LR, is also studied by considering the small

particle limit using inert shock interaction, and the large particle limit using CJ shock

interaction. The intermediate regime of δ is investigated by varying the particle diameter

for a fixed detonation reaction-zone length. At the end of this chapter, velocity and

temperature transmission factors are compiled and presented in terms of the volume

fraction and the ratio of particle diameter to detonation reaction-zone length. Finally,

the free-edge condition is investigated as a boundary condition using two-dimensional

cylindrical particles.
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5.1 Results for planar slab particles

Shock and detonation interaction with semi-infinite slabs, single slab particles, and layers

of slab particles provide a clear illustration of the fundamental physics without the

complexities of packed matrices by removing three-dimensional and curvature effects. Slab

calculations are performed using one-dimensional domains of comparable mesh resolution

to the primary 3D models. The slab models demonstrate shock transmission and reflection,

and the resulting single particle acceleration and heating. The effect of impedance ratio

is illustrated using characteristic wave diagrams and records of particle velocity and

temperature. The interactions between slab particles and arrays of slab particles highlight

the multiple particle/wave interactions that occur in more complicated three-dimensional

matrices.

5.1.1 Shock interaction with a single slab

Liquid shock interaction with a single particle slab illustrates and quantifies the important

wave physics. The incident shock transmits into the particle and reflects from the leading

edge. Velocity and pressure are continuous at this interface (as in the Riemann solution

[203, 128]). Once the transmitted shock reaches the trailing edge, the shock is further

transmitted into the liquid downstream of the particle, and reflected within the particle

towards the leading edge, thereby affecting the particle velocity and temperature. At later

times, successive compressions and expansions reverberate within the particle, and interact

with the material interfaces at the leading and trailing edges.

Figure 5.1 shows the shock interaction with a single aluminum slab particle (dp = 10 µm)

surrounded by liquid nitromethane. The spatial distribution of density, velocity, pressure,

temperature, sound speed, and mass fraction are given at three key times: before, during,

and after the primary shock interaction at the material interface. The resulting transmitted

and reflected wave states are summarized in Table 5.1 for three cases: an inert 10.1 GPa

shock, an inert 22.8 GPa von Neumann shock, and a 13.8 GPa reactive CJ shock. The

results clearly demonstrate that the transmitted shock properties depend mainly on the

incident shock pressure, but not on the incident shock temperature.
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Figure 5.1: One-dimensional shock-particle interaction results using 100 cells / particle

diameter (1000 cells total). Spatial distributions shown at three different times: t0 - thin line,

t1 - thick line, t2 - dashed line (t0 < t1 < t2). Initial particle location for 45 ≤ x ≤ 55 µm.
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Table 5.1: One-dimensional wave transmission results calculated numerically.

Incident (NM) Reflected (NM) Transmitted (Al)

10.1 GPa Inert Shock Interaction (D0 = 4.769 mm/µs)

Pressure (GPa) 10.1 20.9 20.9

Velocity (mm/µs) 1.884 1.094 1.098

Temperature (K) 1336 1619 524

Density (g/cc) 1.874 2.100 3.320

von Neumann Interaction (D0 = 6.690 mm/µs)

Pressure (GPa) 22.8 46.0 46.0

Velocity (mm/µs) 3.046 2.032 2.038

Temperature (K) 2790 3233 1112

Density (g/cc) 2.085 2.298 3.722

CJ Shock Interaction (D0 = 6.690 mm/µs)

Pressure (GPa) 13.3 19.4 19.4

Velocity (mm/µs) 1.756 1.018 1.034

Temperature (K) 3591 4357 503

Density (g/cc) 1.530 1.773 3.289

5.1.2 Detonation interaction with a semi-infinite slab

Figure 5.2 illustrates a NM detonation wave interacting with a semi-infinite slab of

aluminum, where the material interface is initially located at x/dp = 1. The initial

response is similar to the inert shock result, where the incident wave is both transmitted

and reflected from the material interface boundary. However, in the case of a detonation

wave, the expansion in the reaction zone also interacts with the material interface, and both

the transmitted and reflected wave strengths decay behind the leading shock fronts. Since

the Taylor wave expansion length scale is much greater than the detonation reaction-zone

length, the transmitted shock attenuation is limited, and at later times, shows a sustained

shock traveling in the semi-infinite slab of aluminum.

5.1.3 Effect of shock impedance

The shock impedance is defined as Z = ρD. If the impedances are matched for two

materials in contact, an incident shock wave is transmitted perfectly across the interface

and there is no reflected shock. In general, this is not the case (i.e., Zp 6= Zf), and a

reflected wave component exists. Courant and Friedrichs [42] reviewed the various shock

interaction cases. If a shock wave enters a higher impedance medium, the reflected wave
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Figure 5.2: One-dimensional NM detonation interaction with a semi-infinite aluminum slab.

Spatial distributions shown at three different times: t0 - thin line, t1 - thick line, t2 - dashed

line (t0 < t1 < t2). Initial slab interface is at x/dp = 1.
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is a shock wave. Conversely, if a shock wave enters a lower impedance medium, the

reflected wave is a rarefaction. The interaction physics are illustrated on characteristic

wave diagrams in Figure 5.3. The main features of the shock interaction with a metal

particle are illustrated, including: transmission and reflection of the incident shock at

the leading edge; retransmission and reflection of the shock at the trailing edge; and,

wave reverberation within the particle. Several states are identified in Figure 5.3 for later

discussion of a quantitative example.

Typical one-dimensional model results for a 10.1 GPa inert shock pressure are

considered as quantitative examples of the effect of impedance ratio. Figure 5.4 shows

the high-impedance-ratio case (Zp > Zf) of a nitromethane shock interacting with an

aluminum slab particle; Figure 5.5 illustrates the low-impedance-ratio condition (Zp < Zf)

by considering an aluminum shock interacting with a nitromethane slug. In both cases,

the particle size is 10 µm. The transmitted shock states for both cases are summarized in

Table 5.2.

In the case of a 10.1 GPa NM shock interacting with an Al particle, the transmitted

wave speed in the metal is greater than the incident shock; state p1 represents the 1D wave

transmission. At the trailing edge on the far side of the particle, the transmitted shock is

subsequently retransmitted into the liquid explosive and a rarefaction forms that travels

upstream in the metal particle. Following the shock interaction time, τS, the mass centre

of the particle is in state p2, where the velocity is 90.0% of the shocked fluid velocity

in state f1. After two or three shock interaction times, during which additional wave

reverberations occur inside the metal particle, the mass-centre velocity reaches state p5,

which is 98.8% of the shocked fluid velocity.

For comparison, the low-impedance-ratio example has a 10.1 GPa shock in aluminum

interacting with a slug of nitromethane. In this case, the transmitted shock is much slower

than the incident shock. Similar to the high-impedance-ratio condition, after a few internal

wave reverberations the mass-centre particle velocity approaches the shocked fluid velocity.

Whereas the high-impedance case shows a monotonic increasing particle velocity during

successive reverberations (Figure 5.4), the low-impedance case demonstrates a damped

oscillation of the particle velocity (Figure 5.5). Further, the transmitted temperature

ratio of the low-impedance case is reversed to that of the high-impedance condition; that

is, the transmitted temperature into a nitromethane slug was greater than the shocked

temperature of the host aluminum material (see Table 5.2). Note that Tf1,NM = 1336 K,

whereas Tf1,Al = 379 K.
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Figure 5.3: Characteristic wave diagrams for one-dimensional shock-particle interaction in

the x − t plane: Zp > Zf (upper) and Zp < Zf (lower). The shaded region indicates the

particle location with the material interface identified using a dashed line; thin lines denote

streamlines.
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Figure 5.4: Velocity and temperature history of a high-impedance aluminum slab particle

resulting from a 10.1 GPa incident shock in nitromethane (Zp > Zf ).
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Figure 5.5: Velocity and temperature history of a low-impedance nitromethane particle slug

resulting from a 10.1 GPa incident shock in aluminum (Zp < Zf).
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Table 5.2: Transmitted velocity and temperature ratios during internal shock reflections for

two shock impedance ratios.

State
Case 1: NM-Al-NM Case 2: Al-NM-Al

(Zp > Zf ) (Zp < Zf )

up/uf1 Tp/Tf1 up/uf1 Tp/Tf1

p1 0.582 0.393 1.625 1.792

p2 0.900 0.333 0.746 2.202

p3 0.963 0.347 1.078 2.340

p4 0.983 0.340 0.978 2.382

p5 0.988 0.344 1.007 2.394

p6 0.990 0.343 0.998 2.397

5.1.4 Effect of edge condition

Based on wave transmission physics, the downstream particle interface affects the particle

acceleration and heating, comparable to the incident wave effect. The material downstream

of an aluminum particle (called the backing material) is varied using three conditions, one of

which is nitromethane as demonstrated above. The case of perfect impedance matching is

considered by backing the particle with aluminum. A free-edge interface is also considered

by backing the particle with gas (ρgas = 0.0012 g/cc, assuming air at 300 K).

Figure 5.6 compares the resulting velocity and temperature recorded in the aluminum

particle from an incident 8.5 GPa nitromethane shock. For the aluminum backing

condition with perfect impedance matching, there is no rarefaction wave generated at

the trailing edge. The nitromethane backing features an expansion wave at the trailing

edge as previously discussed. The air backing introduces a very large density ratio at

the trailing edge (ρAl/ρgas ≈ 2300) and results in a very strong expansion wave and weak

transmission into the gas. The upstream traveling expansion wave accelerates the particle

to a high velocity while significantly reducing its temperature. These extreme conditions

are expected to occur at the edge of an explosive charge.

5.1.5 Effect of neighbouring particles

Particles located upstream or downstream of a candidate particle introduce additional

material interfaces that both transmit and reflect shocks. Figure 5.7 plots the complex

interaction between a pair of slab aluminum particles in liquid nitromethane subjected to
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Figure 5.6: Effect of backing material on the edge rarefaction wave and resulting particle

acceleration and heating.

an incident 10.1 GPa shock. Two different separation distances are shown to highlight

the effect of the gap spacing. Considering a pair of slab particles, the incident shock

transmitted through the upstream particle is subsequently re-transmitted into the liquid

between the particles. Following shock traversal across the gap between the particles, the

shock is both reflected and transmitted at the leading edge of the downstream particle.

The reflected shock travels upstream and interacts with the first particle which reduces

the upstream particle velocity. The transmitted shock in the second particle reflects as an

expansion wave at trailing edge; this expansion travels upstream and transmits through

the gap space and into the leading particle, thereby accelerating the first particle later in

time.

The main influence of the gap size is on the arrival time of the upstream traveling

reflected shock, which decreases the upstream particle velocity. For small gap spacings,

the upstream traveling shock arrives coincident with the upstream traveling rarefaction,

further reducing the particle velocity. For larger gap spacings, the upstream traveling

shock may collide with the wave reverberating inside the particle, thus competing with the

shocked particle velocity.
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Figure 5.7: Effect of gap space size on shock interaction between a pair of slab particles:

s = 0.5dp (upper) and s = 1dp (lower). Colour contours: density; and, black lines: isobars

(pressure from 105 – 1010 Pa shown in log scale).
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5.1.6 Array of slab particles

The neighbouring particle analysis is extended further by studying a semi-infinite array

of slab particles separated by gaps filled with liquid explosive, as shown schematically in

Figure 5.8. The gap spacing, s, is varied parametrically for a fixed particle diameter, dp.

As shown for a pair of slab particles, the spacing between particles affects the arrival of

the reflected shock from the downstream particle. The upstream traveling shock returns

to the particle and reduces its velocity. This process is repeated in both the upstream and

downstream directions for an array of slab particles.

s dp

Shock Wave Array of Slab Particles

Figure 5.8: One-dimensional model to study the effect of particle spacing with liquid

explosive filling the gaps.

Each layer of slab particles influences the other particles, although the effect of distant

particles is greatly attenuated. The influence of the immediate upstream and downstream

particles occurs when shock and expansion waves are transmitted or reflected from material

interfaces. The timing of subsequent shock interactions depends on the gap size and particle

diameter. The gap size is related to the volume fraction using φs0 = dp/(dp + s) for slab

particles.

Figure 5.9 presents the results recorded in the first particle in an array of slab aluminum

particles subjected to a shock of 10.1 GPa in liquid nitromethane. For the first particle

of an array, the maximum particle velocity was observed for infinite spacing (dilute flow,

φs0 → 0), which behaves essentially as a single particle. The lowest particle velocity

occurred for s = 0, representative of a semi-infinite slab (dense volume fraction limit,

φs0 → 1). The particle velocity for the various gap spacings (0 ≤ s ≤ 1) are bound

by these two limits. In the absence of a downstream particle (e.g., infinite spacing), the

particle velocity increases with time until equilibrium is reached since there are no waves

traveling upstream.

In the next example, the second particle in the semi-infinite array is considered, for
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which the gap spacing has two influences on the downstream particles. First, the shock

strength arriving at the leading edge of the second particle depends on the gap space

upstream. For small upstream gap spacings, the shock reverberates within the gap in a

timescale less than the shock transmission through the particle. For larger upstream gap

spacings, the shocks transmitted from the upstream particle coalesce and strengthen before

entering the downstream particle. Figure 5.10 shows the results recorded in the second

particle in the array of slab particles.

The second effect is coherent wave transmission. Compared to the upstream particle,

the peak velocity of the downstream particle is no longer bound by the dilute and dense

limits. When considering the downstream particle, the local particle velocity extends below

the dense limit and above the dilute limit. Figure 5.10 shows that for volume fractions

less than 0.5, the peak velocity exceeds the single particle value. The maximum velocity

occurred for φs0 = 0.25. The lowest peak transmitted velocity into the downstream particle

occurred for the limit of no gaps (φs0 → 1). In this case, perfect transmission occurs and

the downstream particle velocity is the same as for the upstream particle.

The particle velocity achieved in the downstream particle exhibits a slight inverted U-

shaped functional dependence based on the volume fraction, whereas the upstream particle

velocity is a monotonic decreasing function of volume fraction. The results of maximum

particle velocity in an array of slab particles are summarized in Figure 5.11.

5.2 Single spherical particle results

The one-dimensional slab particle analogues have indicated the primary shock interaction

physics, particularly wave transmission and reflection at the particle interface. The

canonical system involving spherical particles is inherently three dimensional with curved

interfaces along the particles. Shock and detonation interaction with a single spherical

particle is considered here, and is representative of the dilute limit (φs0 → 0). Simulation

of the single particle is performed using a two-dimensional axisymmetric model (see Figure

5.12) of comparable resolution to the final 3D packed particle matrices.

5.2.1 Inert shock interaction with a single particle

Now that the shock impedance effect and spacing between particles has been analyzed, the

effect of density ratio is evaluated. The effect of density ratio is investigated in the small
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Figure 5.13: Single particle velocity during a 10.1 GPa inert shock interaction: (left) metal

particles in NM explosive (ρf0 = 1.128 g/cc); and (right) metal particles in RDX explosive

(ρf0 = 1.8 g/cc).

particle limit for a shock pressure of 10.1 GPa, following the work of Zhang et al. [229].

Table 5.3 summarizes the solid density for particles of magnesium, aluminum, titanium,

copper, and tungsten, along with the corresponding density ratio when saturated in RDX

and NM explosives, that are used to study the particle acceleration.

Table 5.3: Density ratio of explosive to solid for various metal particles and explosive matter.

Metal
Solid Density, Density Ratio, ρf0/ρs0

ρs0 (g/cc) NM (ρf0 = 1.128 g/cc) RDX (ρf0 = 1.8 g/cc)

Magnesium 1.780 0.6337 1.0112

Aluminum 2.875 0.3923 0.6261

Titanium 4.528 0.2491 0.3975

Copper 9.920 0.1137 0.1815

Tungsten 19.30 0.0585 0.0933

The resulting particle velocity during the shock interaction is recorded for a single

particle of different metals, listed in Table 5.3, subjected to an inert shock. Figure 5.13 plots

the mass-averaged particle velocity history during several shock interaction times. The

measurement frequency indicated by the data points is coarse in these early calculations;

subsequent computations employed an output frequency at least ten times greater.
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Figure 5.14: Single particle velocity transmission factors measured at 1τS for various density

ratios. Solid symbols indicate data from Zhang et al. [229]. Open symbols are the present

results using a similar 10.1 GPa incident shock.

The shock-compressed particle velocity is measured after one shock interaction time, τS,

and then it is used to define the velocity transmission factor, α = up(τS)/uf1 (for neat NM,

ρf0 = 1.128 g/cc and uf1 = 1.884 mm/µs; for pure RDX, ρf0 = 1.8 g/cc and uf1 = 1.170

mm/µs). Figure 5.14 summarizes the velocity transmission factor to quantify the shock

compression acceleration of single particles. The results are plotted against the initial

density ratio of explosive to solid particle, ρf0/ρs0, and compared to the numerical results

and curve fit of Zhang et al. [229], who used particles of magnesium, beryllium, aluminum,

nickel, uranium, and tungsten. The agreement is very good, and reinforces the fact that

the density ratio is one of the most significant factors affecting particle acceleration.

5.2.2 Detonation interaction with a single particle

Computation of diffraction of a detonation wave over a single particle in a 2D mesh (Figure

5.15) shows that the shock is both transmitted into the metal at the particle leading edge,

and also reflected back into the reaction zone thereby increasing the reaction rate. A Mach

stem forms as the shock in the explosive diffracts over the particle. Depending on the

impedance ratio, the shock inside the metal particle may travel ahead of the incident shock,
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transmitting an oblique shock into fresh explosive ahead of the detonation front. Behind

the diffracting detonation shock, expansion of the flow on the backside of the particle

causes the local reaction-zone length to increase. At the particle trailing edge, either the

diffracted shock arrives first or the converging shock inside the particle is retransmitted

into the fresh explosive behind the trailing edge. This can initiate the explosive locally

ahead of the detonation shock. Subsequently, a strong rarefaction forms within the metal

particle contributing to both a large acceleration and a decrease in temperature.

Interaction of a nitromethane detonation wave with single aluminum particles of various

diameters (i.e., various δ = dp/LR) are computed. The mass-averaged particle velocity

history achieved during detonation interaction with a single particle is illustrated in Figure

5.16. Since a fixed numerical mesh resolution was maintained (100 cells/µm), such that

the number of cells in the ideal detonation reaction zone (NR = 200) was unchanged,

the number of cells across the particle diameter increased with δ and the corresponding

computational effort increased exponentially. Thus for large δ, limited duration particle

velocity histories are available. For δ < 0.5 the peak particle velocity exceeds the CJ

value, illustrating a significant influence of the VN spike on the particle acceleration. For

t/τS ≫ 1 the particle velocity equilibrates below the CJ value (uCJ = 1.827 mm/µs, see

Table 4.10) due to the influence of the Taylor expansion.

Figure 5.16 shows the mass-averaged shock compression temperature for a single

particle for various δ. Smaller particles achieve higher temperatures, although the

maximum temperature during shock interaction is much less than the CJ flow temperature

(TCJ = 3657 K). Oscillations in the temperature histories are caused by successive

compressions and expansions due to wave reverberation inside the particle. Note that

the temperature calculations in this work address the shock compression heating within a

timescale on the order of one shock interaction time, the long time temperature equilibrium

between the particle and detonation products will rely on other heat transfer mechanisms

such as convective heating behind the detonation shock.

5.3 Matrix particle results

5.3.1 Results for the small particle limit (dp/LR ≪ 1)

Figure 5.17 illustrates the particle deformation in a 3D particle matrix (dp = 10 µm,

dp/LR → 0) resulting from a 10.1 GPa inert Heaviside step shock traveling from left
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a) t0

b) t1

c) t2

Figure 5.15: Temperature field during detonation wave interaction with a deformable metal

particle (δ = 0.5). Solid line is the particle-explosive interface; dotted line denotes the

initially undeformed particle boundary.
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Figure 5.16: Particle velocity and temperature during nitromethane detonation interaction

with a single aluminum particle computed for various δ = dp/LR.

to right. The deformed particles resemble a saddle shape and, due to the inviscid

hydrodynamics, are strongly influenced by the complex shock reflections from neighbouring

particles. The deformation of the first layer is different because the reflected shock wave is

not subsequently re-reflected from upstream particles. The severe deformation in the rear

flow indicates that the aluminum particles will likely be damaged or fragmented if material

shear stress and failure are considered.

Figure 5.18 (left) shows the pressure histories at the leading edges of the first eight layers

of packed particles. The peak pressure reaches the perfect reflection value of 45.4 GPa

and rapidly expands to less than half this value. The reverberating pressure oscillates

with a period of 0.5τS corresponding to the wave transit time within the interstitial pores

contained between packed particles. There is a sustained quasi-steady pressure plateau

centred below the 1D wave transmission value of 20.9 GPa.

Figure 5.18 (right) shows the mass-averaged particle velocity for three packing

configurations. Within 1τS, the velocity in all three matrices exceeds the 1D wave

transmission value of 1.094 mm/µs (see Table 5.1) due to the internal rarefaction as the

wave exits the trailing edge of the particle. Subsequent shock reflection and interaction

with neighbouring particles causes velocity fluctuations proportional to the particle spacing

that vary with packing configuration. A timescale of 2τS is sufficient to capture one full

interaction cycle that includes the internal wave reverberation, and successive expansions

and compressions from upstream, downstream, and neighbouring particles. The severe
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Figure 5.17: Inert shock interaction in a close-packed matrix of aluminum particles: resulting

deformation and temperature distribution with φs0 = 0.428. Matrix viewed on the [100]

plane (upper) and matrix viewed on the [110] plane (lower).
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Figure 5.18: Results in the small particle limit: particle leading edge pressure histories for a

close-packed matrix (left) and mass-averaged particle velocity for various matrices of packed

spherical particles (right).
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particle deformation observed in Figure 5.17 occurs after 2τS. Since the severe particle

deformation occurs after the shock interaction timescale in the rear flow, it does not

influence the evaluation of the velocity and temperature transmission factors within the

shock interaction time.

Figure 5.19 illustrates the effect of particle spacing in a face-centred cubic matrix on the

mass-averaged particle velocity. For large distances between particles (φs0 → 0) the particle

response appears as a step shock interacting with a single particle monotonically increasing

towards the limit of the shocked fluid velocity. As the volume fraction increases, the velocity

rise time (acceleration) decreases. For close spacing between particles, the reflections from

neighbouring particles influence the particle response, which is exhibited as an oscillation

in the shocked particle velocity. The oscillation frequency increases as the spacing between

particles is reduced. This indicates that the reverberation period is proportional to the

spacing between particles, which is characterized by shocks transiting the gaps between

particles. Unlike the monotonic velocity increase in the case of single particle interaction,

as the solid volume fraction increases in the particle matrix, the velocity profile after the

initial acceleration within 1τs approaches a plateau with smaller oscillations.

Figure 5.20 provides a summary of the velocity and temperature transmission results

(α and β, respectively) for the small particle limit using a 10.1 GPa inert shock. The

transmission factors are evaluated at an interaction time of 2τS to include expansion

from the particle tailing edge and wave interactions from neighboring particles. A mean

transmission value measured at 2τS is obtained using slope fitting to smooth the oscillation

effect. One can also choose an average over a period of oscillation after the initial rise within

1τS, but the difference to the 2τS values are not essential, particularly as the solid volume

fraction increases, as demonstrated in Figure 5.19.

The results in Figure 5.20 were recorded in the fourth particle layer, as discussed in

Ripley et al. [168]. Comparison of the packing configurations shows that the transmission

factors for the simple cubic packing were considerably different. This is primarily due to

this particular packing matrix that provides two propagation channels: one through the

linear array of stacked particles, and the other uninhibited through the column of liquid

in the void space. The simple cubic packing is an unrealistic configuration in practice, and

is not given further consideration. The present 3D results are compared to 2D cylindrical

results of Zhang et al. [229]. The agreement is improved for a lower number of 2D cylinders,

despite the fact that a higher number of 2D cylinders better approximates an infinite array

of particles as in the 3D configuration.

Both the velocity and temperature transmission factors for the close-packed and body-
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Figure 5.19: Mass-averaged velocity history for an aluminum particle in a 10.1 GPa inert

nitromethane shock for face-centred cubic particle matrices with various volume fractions.
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Figure 5.20: Velocity, α (left), and temperature, β (right), transmission factors for a

10.1 GPa inert shock interaction with packed particle matrices. Cylinder results (solid

symbols) are from Zhang et al. [229].

centred matrices follow an inverted U-shaped function that follows a cubic curve fitting.

The maximum transmission factors occurred for 0.25 . φs0 . 0.40, while the minimum

transmission factors resulted at the dilute limit (φs0 → 0) and high volume fraction limit

(φs0 → 1). In between the volume fraction limits, the spacing of the particles affects the

arrival time and magnitude of reflected waves from upstream, downstream, and lateral

particles, in addition to affecting the local flow diffraction. The maximum transmission

factors are a result of superposition of transmitted shock waves that act in a coherent

manner.

The remainder of the mesoscale results focus exclusively on the close-packed (face-

centred cubic lattice arrangement) configurations. Figure 5.21 shows the results for von

Neumann shock interaction with packed particle matrices. The shock interaction consists

of a 22.8 GPa inert shock in nitromethane. The response is similar to the results above,

except that the magnitude of the particle velocity is increased significantly.

The temperature field shown in Figure 5.22 indicates localized hot spots in the

interstitial fluid sites between particles in the matrix. In other calculations [166], the

peak fluid temperature found at the particle leading edge is 3828 K in the close-packed

configuration, while it reaches only 2383 K for the simple cubic packing. The hot spots

persist for a few shock interaction time scales. For reactive host matter, this behaviour

will significantly affect the detonation process.
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Figure 5.21: Mass-averaged particle velocity in a 22.8 GPa VN shock in nitromethane for

different volume fractions.
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Figure 5.22: Inert shock interaction illustrating hot spots at the particle leading edges for a

10.1 GPa shock in nitromethane. Shock wave traveling from left to right.
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5.3.2 Results for the large particle limit (dp/LR ≫ 1)

In the dp/LR ≫ 1 case, early simulation results (see Ripley et al. [166]) for the detonation

wave over a single aluminum particle indicated that the particle velocity is first increased

as the detonation front crosses the particle and is then reduced, subject to the Taylor

expansion flow conditions. The Taylor expansion after the thin detonation front reduces

the detonation flow velocity, thus changing the direction of the drag and reversing the

momentum transfer direction from the particles to the detonation expansion flow. The

large particle limit was studied preliminarily using dp = 30 µm (see Ripley et al. [169]),

which corresponds to dp/LR = 15. The unsteady Taylor expansion effect was minimized by

running the detonation sufficiently far from the initiation location. For large detonation

running distances, applicable to large explosive charges, the Taylor expansion effect is

insignificant relative to the particle size.

For dp/LR ≫ 1, the VN shock can be neglected and the detonation interaction with

particle matrices can be better represented by a CJ shock. The jump condition in the

host liquid does not follow the Hugoniot because the shock is reactive; that is, the

chemical reaction rate is essentially infinite and the post-shock flow contains hot expansion

products. Figure 5.23 illustrates a CJ shock (D0 = 6.69 mm/µs, PCJ = 13.8 GPa,

uf1,CJ = 1.827 mm/µs and ρf1,CJ = 1.551 g/cc) traveling through an NM/Al matrix. For

a particle spacing of 1dp, the volume fraction is φs0 = 0.093 and the CJ shock front profile

tends to approach that of a planar wave prior to arrival at successive particle leading edges;

this leads to a flattening of the particles during deformation.

The particle velocity and temperature histories are shown in Figure 5.24. Within 2τS

both the incident shock and internal rarefaction accelerate the particle, while an increase in

particle temperature due to shock compression is followed by a decrease from the rarefaction

expansion before lateral compression continues the particle heating. Figure 5.24 (upper)

illustrates a decrease in particle velocity over 3 – 4 τS as a result of a reflected wave

returning from the downstream particles. Further particle acceleration must be influenced

by viscous drag which is beyond the scope of the present work. Similarly, the particle

heating is only affected by shock compression in the non-heat-conducting assumption,

which is valid within the timeframe considered, although the NM detonation products are

hot (Tf1,CJ = 3657 K).
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Figure 5.23: Fluid and particle density distribution and particle deformation for CJ shock

propagation through a particle matrix: φs0 = 0.520 (upper) and φs0 = 0.093 (lower).
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Figure 5.24: Mass-averaged particle velocity and temperature for CJ shock interaction at

the large particle limit: φs0 = 0.093 (upper) and φs0 = 0.740 (lower).
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5.3.3 Results for the intermediate regime (dp/LR ∼ 1)

Detonation interaction in the intermediate regime was shown for single particles (φs0 → 0)

in §5.2.2. For packed particle matrices, the situation is more complex with reverberating

waves and lateral expansions that further influence the particle and surrounding flow.

Figure 5.25 illustrates the irregular propagation pattern of the detonation front in an

NM/Al matrix (dp = 1 µm, dp/LR = 0.5), where the detonation travels within the

explosive contained in the voids and narrow channels between particles in addition to shock

propagation within the metal. In close-packed matrices, transmission of the shock through

the particle can subsequently pre-compress and initiate detonation in the fresh explosive on

the far side of the particle prior to the diffracted shock arrival (hot-spot mechanism). For

the conditions depicted in Figure 5.25, the NM behind the particle trailing edge reaches

800 K due to shock transmission and prior to reaction.

Figure 5.25: Pressure distribution and particle deformation for detonation (dp/LR = 0.5)

through a packed particle matrix (φs0 = 0.428).

Figure 5.26 shows numerical pressure gauge results for detonation in a close-packed

matrix, with the peak reflected VN shock pressure followed by oscillations at a frequency

proportional to particle diameter and later by the Taylor wave expansion. Figure 5.26 (left)

shows a precursor shock with magnitude of about 10 GPa (temperature approximately

1300 K) that was transmitted through the particle trailing edge into the void prior to

arrival of the diffracted VN shock. Figure 5.26 (right) shows a smaller precursor shock

exiting the trailing edge and a larger peak pressure due to collision of the diffracted shocks

behind the particle trailing edge.

Figure 5.27 shows the particle velocity and temperature histories in a packed particle

matrix for dp/LR = 0.2 where the detonation reaction zone is larger than the particle size.
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Figure 5.26: Gauge histories from nitromethane detonation (dp/LR = 0.5) in a close-packed

matrix (φs0 = 0.74) with 20 layers of aluminum particles: pressure at particle leading edge

(left) and pressure in voids behind trailing edges (right). Each curve presents successive

results from the 1st, 5th, 9th, 13th and 17th layers.

This is evident in the particle velocity history result, where the velocity first increases

during interaction with the VN shock, and then decreases mainly over 5τS during the

expansion inside the reaction zone. The 2τS assumption (§2.6) is especially justified by the

temperature history where the first peak is reached between 1τS and 2τS.

5.3.4 Additional detonation phenomena

Figure 5.28 (left) shows the detonation velocity through the packed particle matrices

saturated with liquid explosive. The bulk shock propagation velocity was measured using

wave time of arrival between consecutive numerical gauge stations located in an array

perpendicular to the averaged detonation wave front. Under the detonation conditions

studied here (i.e., aluminum particles in nitromethane), shock waves reflected from the

leading edge of the particles cause an increase in the local NM density and pressure,

thereby increasing the detonation velocity. Furthermore, waves traveling within the metal

particle are transmitted into the fresh liquid explosive ahead of the detonation wave

diffracting around the curved particle surface, thereby pre-compressing the explosive and

increasing the local detonation velocity. Both of these local hot-spot factors contribute to

bulk propagation speeds in excess of the CJ value in neat NM. In the present numerical
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Figure 5.27: Particle velocity and temperature histories for nitromethane detonation in a

dense matrix of aluminum particles with dp/LR = 0.2 and φs0 = 0.74.

calculations, the greatest bulk propagation velocities (up to 7.4 mm/µs) were observed

for the highest metal mass fraction condition in combination with the smallest particle

diameter (or longest reaction zone) within the region of the first particle layer. Afterwards,

the momentum and energy transferred into the particles within the detonation zone

compete with the local hot-spot factors, resulting in a quasi-steady propagation velocity

with a deficit. The velocity deficit increases with an increase in solid volume fraction and a

decrease in particle diameter. The maximum velocity deficit corresponds to a wave speed

of 5.3 mm/µs and occurs for the small particle limit.

Figure 5.28 (left) shows increasing instability in the detonation front velocity for higher

solid volume fractions, which is an expected feature due to high momentum and heat

loss. The initially transient shock velocity becomes quasi-steady after traveling a distance

of 6dp into the matrix. Figure 5.28 (right) illustrates the quasi-steady detonation shock

velocity as a function of increasing metal mass fraction. In comparison to Cheetah chemical

equilibrium predictions using inert aluminum, where velocity and temperature equilibrium

are assumed for all phases (see Fried et al. [68]), the mesoscale results for detonation

shock velocity are consistently higher since the relative velocity of the solid phase remains

below the flow velocity following the shock interaction. Similarly, the Cheetah equilibrium

temperature is also lower than the mesoscale detonation results due to the same phase-

non-equilibrium nature.
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Figure 5.28: Detonation velocity through packed particle matrices (dp = 1 µm; LR = 2 µm):

unsteady propagation velocity through several layers of aluminum particles with distance

measured from the first layer (left) and quasi-steady propagation velocity for various

aluminum mass fractions (right).

5.4 Shock compression transmission factors

The velocity and temperature transmission factors, α and β, were defined in Equations

(2.19) and (2.20). For inert shocks, the effect of density ratio of explosive to solid particle

on velocity transmission was presented in §5.2.1; the effect of packing configuration was

evaluated in §5.3.1. The remaining influences of the volume fraction and detonation

reaction-zone length on the velocity and temperature transmission factor are summarized

in this section. They are evaluated for both a single particle and a matrix of particles.

5.4.1 Particle acceleration

Figure 5.29 shows the mesoscale results of the single particle velocity and corresponding

transmission factor as a function of δ = dp/LR. Both the velocity and the velocity

transmission factor decrease from VN to CJ mainly over the interval from 0.1 ≤ δ ≤ 1.

The single particle acceleration results are bound by the small particle limit (δ → 0) and

the large particle limit (δ → ∞). The resulting velocity transmission factor was fit to the

sigmoidal function:
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Figure 5.29: Shock compression acceleration of a single particle (φs0 → 0) in a detonation

flow: mass-averaged velocity for various particle diameters (left) and velocity transmission

factor versus δ (right).

α = αCJ +
αVN − αCJ

1 + exp

[− log(δ/δ0)

w

] (5.1)

The fitting function is plotted in Figure 5.29, where δ0 = 0.38 and w = 0.25. In Equation

(5.1), αCJ = α(δ → ∞) = 0.351 and αVN = α(δ → 0) = 0.669.

Figure 5.30 summarizes the particle velocity and velocity transmission factors for the

nitromethane/aluminum matrix. The results are plotted as a function of volume fraction,

where φs0 = 0 represents the single particle results and φs0 = 1 represents the semi-infinite

slab results. The remaining points are taken from the mesoscale results that employed

close-packed spheres; the volume fraction was adjusted by changing the inter-particle

spacing. For the various δ = dp/LR considered, there is weak similarity in the results,

which are bound by limiting cases of δ → 0 for VN shock interaction and δ → ∞ for CJ

shocked flow conditions. The velocity and velocity transmission factor exhibit an inverted

U-shaped dependence on volume fraction for the various δ considered. From Figure 5.30,

the maximum α generally occurs at φs0 = 0.219 (s = 0.5dp), above which the transmission

decreases linearly for increasing φs0. The regime of primary interest for dense granular flow

in condensed explosives is from 0.2 . φs0 . 0.6.
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Figure 5.30: Shock compression acceleration results in a particle matrix: range of transmitted

velocity between the interaction limits (left) and the corresponding velocity transmission

factors (right).

The velocity transmission factor results were fit to a function of volume fraction and

detonation reaction-zone length: α = α(φs0, δ). The volume fraction effect was represented

by a second-order polynomial function of φs0. The reaction-zone-length influence is

exhibited as a shift in the velocity transmission factor, which was represented using an

exponential function of δ and a fixed offset. The resulting function contains five fitting

constants, as follows:

α = c1φ
2
s0 + c2φs0 + c3 exp(−c4δ) + c5 (5.2)

where c1 = 0.2, c2 = 0.1, c3 = 0.4, c4 = 3.3 and c5 = 0.36. Physically, two of the coefficients

are interpreted as follows:

c3 = (αVN − αCJ)max = α(φs0 = 0.25, δ → 0)− α(φs0 = 0.25, δ → ∞)

c5 = (αCJ)max = α(φs0 = 0.25, δ → ∞)

A comparison of the fitting function to the mesoscale results is given in Figure 5.31. The

agreement is reasonable for δ < 1. The largest differences occurred for high volume fractions

in the large particle limit.
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Figure 5.31: Multi-variable fitting for velocity transmission factor.

5.4.2 Particle heating

Figure 5.32 shows the mesoscale results of the single particle temperature and corre-

sponding transmission factors, β, which are monotonic decreasing functions for increasing

δ = dp/LR. Both the temperature and the temperature transmission factor decrease from

the VN to CJ limiting values mainly over the interval from 0.1 ≤ δ ≤ 10. Similar to the

velocity transmission factor, the temperature transmission factor for a single particle is fit

to the sigmoidal function:

β = βCJ +
βVN − βCJ

1 + exp

[− log(δ/δ0)

w

] (5.3)

The fitting function is plotted in Figure 5.32, where δ0 = 0.70, w = 0.45, βCJ = 0.170, and

βVN = 0.337.

Figure 5.33 shows the particle temperature and corresponding β transmission factors

in the nitromethane/aluminum matrix as a function of volume fraction. The results are

bound by the small particle limit (δ → 0) and large particle limit (δ → ∞). For a given

volume fraction, β increases with the reaction-zone length (decreasing δ). Furthermore, the
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Figure 5.32: Shock compression heating of a single particle (φs0 → 0) in detonation

flow: mass-averaged temperature of single particles of various diameters (left) and the

corresponding temperature transmission factors (right).

peak β value occurs at higher solid volume fractions as the reaction-zone length increases

(decreasing δ). Although the temperature transmission factor exhibits an inverted U-

shaped functional dependance on volume fraction in general, there is insufficient similarity

in the solution for a fitting function to be determined.

5.4.3 Correlation of the transmission factors

The detonation reaction-zone length has a significant influence on the velocity and

temperature transmission factors. Physical interpretation of the interaction of the particle

with the detonation flow is briefly considered in this section, in an attempt to reduce the

range of α and β between the interaction limits.

In the intermediate regime, the particle diameter and detonation reaction zone have

comparable length scales. However, particles of different diameters are subjected to local

detonation flow conditions ranging from the VN to CJ states with various degrees of

reaction in between. As illustrated in Figures 5.22, 5.23, 5.25, and 5.26, the in situ wave

is unsteady and multi-dimensional. Therefore, the reference shocked fluid state for the

velocity and temperature transmission factors, α and β, in Equations (2.19) and (2.20) will

be re-defined here. This is achieved by integrating the material velocity and temperature

profile over an ideal 1D ZND detonation structure from the leading shock to a distance
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Figure 5.33: Shock compression heating results in a particle matrix: range of transmitted

particle temperature between the interaction limits (left) and corresponding temperature

transmission factors (right).

corresponding to the particle diameter, and then dividing it by the particle diameter:

uf =
1

dp

∫ dp

0

uf(ℓ)dℓ, Tf =
1

dp

∫ dp

0

Tf (ℓ)dℓ, (5.4)

where ℓ is the position along the integration length. For the inert Heaviside step shock

in the small particle limit (δ = dp/LR ≪ 1), uf(ℓ) = uf1 = constant and Tf(ℓ) = Tf1 =

constant; thus, Equation (5.4) results in uf = uf1 and Tf = Tf1. For δ = 1, the resulting

integrated fluid velocity of uf = 2.006 mm/µs is between the VN and CJ flow speeds, while

the integrated temperature of Tf = 3740 K is above both the VN and CJ temperatures.

As shown by Mader [133], the Grüneisen parameter for the condensed explosive affects the

reaction-zone length and can result in maximum temperatures within the reaction zone

that are above the CJ value.

Single particle results

When using a constant shocked fluid velocity, uVN = 3.046 mm/µs, as the reference,

the velocity transmission factor decreases from VN to CJ mainly over the interval from

0.1 ≤ δ ≤ 1, as shown in Figure 5.34(left). Changing the reference velocity to uf , the

velocity transmission values are less dependent on δ. The resulting range of α for a single

particle is reduced to 0.61 – 0.72.
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Figure 5.34: Shock compression acceleration and heating of a single particle (φs0 → 0) in

a detonation flow: velocity transmission factors (left) and temperature transmission factors

(right) versus δ for various scaling methods.

Figure 5.34(right) illustrates that the temperature transmission factors scaled using

TVN are greater than those obtained using Tf . This is an expected result since the shocked

fluid is unreacted at the VN point. For δ → 0, Tf → TVN and the transmission factors for

both scalings become identical. Using Tf as the reference temperature reduced the range

of β in the intermediate regime (δ ∼ 1). The temperature transmission factor with respect

to the integrated reference value Tf decreases exponentially with an increase in δ, as shown

by the linear trend when plotted on log scale.

Matrix particle results

Figure 5.35 shows that the velocity transmission factors collapse into a band approximately

0.14 wide when using the integrated shocked fluid velocity scaling. The results displayed

in Figure 5.20 are included, as indicated by the line of δ → 0 (Inert Shock), which further

demonstrates the collapsing of the velocity transmission factor. The remaining scatter may

also be related to the other factors, such as shock strength and particle deformation. The

change in fluid material due to reaction may also provide an additional effect. Further,

the reference velocity was based on the ideal steady detonation wave in the absence of a

particle bed and velocity deficit caused by momentum and heat transfer to the particles;

therefore, local changes to reaction-zone length due to hot spots may also play a role.
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Figure 5.35: Shock compression acceleration and heating results in a particle matrix:

reduction of the velocity transmission factor and temperature transmission factor when

using integrated velocity, uf (left), and temperature, Tf (right).

Figure 5.35 shows the particle temperature and corresponding β transmission factors

in the nitromethane/aluminum matrix as a function of volume fraction. The temperature

transmission factors are scaled using the integrated fluid temperature Tf . Similar to particle

acceleration, the particle heating is bound between the small particle and large particle

limiting cases, and the effect of solid volume fraction on β is reduced for larger particles

(δ → ∞). For volume fractions relevant to dense granular flow in condensed explosives (i.e.,

0.2 < φs0 < 0.6), the range of β is limited to 0.25 – 0.35 across two orders of magnitude

for the ratio of δ = dp/LR (i.e., for 0.2 ≤ δ ≤ 15).

5.5 Free-edge condition

The preceding results were inertially confined, assuming infinite-diameter conditions.

When the detonation reaches the edge of the charge, the explosive products break-out,

expanding and driving a shock into the surrounding environment, while an expansion wave

travels back into the charge. The free-edge provides a boundary condition at which the

flow begins to transition from the detonation regime to the dense dispersal regime.

Considering a small but representative piece of the free edge of the charge, the

explosive/air interface is assumed to be planar at the mesoscale. The free-edge was
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preliminarily investigated using a 1D slab particle in Section 5.1.4. The edge condition is

further investigated in 2D using cylindrical ‘particles’, as shown in Figure 5.36. Considering

a reactive shock propagating into a NM/Al charge, the full inviscid model results in a flow

similarity in which the flow field for any diameter of particles is scaled to the flow field

at a given diameter of particles (see Sections 2.5.1 and 2.5.2). A 5 mm particle diameter

is therefore chosen to facilitate the simulation. An inter-particle spacing of 1 mm in a

hexagonal packing configuration results in a solid volume fraction of 0.63. The conditions

for the reactive shock in NM are: p = 13.3 GPa and D0 = 6.690 mm/µs. The particles are

numbered in terms of layers, beginning at the outer edge of the charge. Layer 1 is closest

to the free surface; Layer 5 is furthest from the edge of the charge (see Figure 5.36).

Figure 5.36: Two-dimensional mesoscale configuration for an inert shock interacting with a

particle matrix at the free edge of the charge.

Figure 5.37 shows a slice (cut through the centre of Layers 2 and 4) of the spatial

pressure distribution during shock interaction with particles at the free edge of the charge.

The interaction of the shock with the particles has a two-dimensional structure with

transverse waves, which is represented by the oscillating pressure in the matrix. When

the shock reaches the edge of the charge, a strong rarefaction wave travels back into the

mixture of NM detonation products and aluminum particles.

The mass-centre particle velocity results show a transmitted shock with a material

velocity of 1.2 mm/µs as shown in Figure 5.38, followed by acceleration to above 2.5 mm/µs

in the rarefaction expansion. Reflection of the shock from the upstream and downstream

particles causes fluctuations in the particle velocity before the edge rarefaction takes over.

Layer 1 does not have a downstream particle or condensed matter backing, and is therefore

subject to a much stronger rarefaction which accelerates the particle, as explained in

Section 5.1.4. The edge rarefaction travels upstream, accelerating the particles layer by

layer. The greatest particle velocity occurred in the outermost layer due to the free-edge

condition.
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Figure 5.37: Pressure-distance profiles during free-edge expansion.
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Figure 5.38: Mass-centred particle velocity near the free edge of the charge.

5.6 Summary of mesoscale results

Continuum modeling of particles at the mesoscale provided the key results for shock

and detonation conditions. One-, two- and three-dimensional mesoscale simulations were

employed to study interactions across the full range of volume fraction and various particle

packing configurations. Shock physics were demonstrated using pressure, velocity, and

temperature measurements in the explosive and solid particles. Detonation in matrices

of packed aluminum particles saturated with nitromethane was studied, where the shock

interaction timescale was resolved. The three-dimensional structure of detonation including

hot spots and transverse waves were observed and related to detonation instability and

velocity deficit. The resulting momentum and heat transfer to the particles were quantified

in terms of the relevant parameter groups. Particle acceleration and heating within

the shock and detonation zone are expressed in terms of shock compression velocity

transmission factors α = up1/uf1 and temperature transmission factors β = Tp1/Tf1. In

addition to the Mach number, the transmission factors are a function of the solid volume

fraction, the density ratio of explosive to solid particle, and the ratio of particle diameter

to detonation reaction zone length.
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Chapter 6

Application to macroscopic modeling

Detonation of multiphase or slurry explosives involves rapid acceleration and heating of

solid particles due to shock compression. The resulting momentum and energy exchange

affects the detonation performance of the explosive, and also the dispersal and subsequent

reaction of metal particles. Physical models are therefore formulated to represent the

effects of the microscopic interaction of the detonation shock with the particles. They are

applicable to an engineering modeling scale so that this acceleration and heating mechanism

can be realized in practical problems.

In this chapter, the shock transmission factors from the mesoscale calculations are

applied to formulate macroscopic functions for drag force and heat transfer rate. The

macroscopic framework is first explained, which is suitable for implementation of the new

models as source terms. The resulting new shock compression models are formulated as

a drag coefficient and Nusselt number, which are then explored analytically. The shock

compression acceleration and heating correlations are applied to two sets of challenging

tests: first, heterogeneous detonation is considered for aluminum particles saturated with

liquid nitromethane; and second, inert particle dispersal is studied using a spherical charge

containing steel beads saturated with nitromethane.

6.1 Macroscale framework

The macroscale framework given below describes the conservation laws for a generalized

two-phase flow, which is representative of a dense flow of particles in condensed explosives.

At the macroscale, continuum theory is assumed for the particle phase where the number
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density is above 1010 m−3 for a dense flow of particles smaller than 100 µm. The basic

two-phase governing equations (Equations 3.40 – 3.42) can be re-written by employing

some of the assumptions and simplifications from Chapters 3 and 4. In particular, the

viscous and conduction terms are removed for high-Reynolds-number flow (i.e., Re → ∞).

The resulting set of governing equations, therefore, describes an inviscid and non-heat-

conducting fluid flow. Exchange of mass, momentum, and energy occur through the

multiphase source terms. An explicit dynamic compaction source term has been omitted

(see Baer and Nunziato [10]); the compaction effect on the solid volume fraction is included

in the shock compression momentum and heat transfer coefficients obtained from the

mesoscale calculations. The macroscopic two-phase equations are summarized as follows:

Fluid Phase:

∂(σf )

∂t
+

1

rn
∂

∂r
(rnσfuf) +

∂

∂y
(σfvf ) = −Jp

∂

∂t
(σfuf) +

1

rn
∂

∂r

[
rn(σfu

2
f + pfφf)

]
+

∂

∂y
(σfufvf ) = −Jpup − Fpr

∂

∂t
(σfvf) +

1

rn
∂

∂r
(rnσfufvf) +

∂

∂y
(σfv

2
f + pfφf) = −Jpvp − Fpy

∂

∂t
(σfEf ) +

1

rn
∂

∂r
[rn(σfufEf + pfφfuf)] +

∂

∂y
(σfvfEf + pfφfvf ) = −Jp(Ep +Qp)

−Fprup − Fpyvp +QR

∂σfYfj

∂t
+

1

rn
∂

∂r
(rnσfufYfj) +

∂

∂y
(σfvfYfj) = −ωj (6.1)

Particle Phase:

∂(σp)

∂t
+

1

rn
∂

∂r
(rnσpup) +

∂

∂y
(σpvp) = Jp

∂

∂t
(σpup) +

1

rn
∂

∂r
(rnσpu

2
p) +

∂

∂y
(σpupvp) = Jpup + Fpr

∂

∂t
(σpvp) +

1

rn
∂

∂r
(rnσpupvp) +

∂

∂y
(σpv

2
p) = Jpvp + Fpy

∂

∂t
(σpEp) +

1

rn
∂

∂r
(rnσpupEp) +

∂

∂y
(σpvpEp) = Jp(Ep +Qp) + Fprup + Fpyvp

∂np

∂t
+

1

rn
∂

∂r
(rnnpup) +

∂

∂y
(npvp) = Np (6.2)

The macroscale equations are presented for a generalized two-dimensional framework,

although they can be directly extended to three dimensions. For 2D flow, the radial
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symmetry coordinate system is planar for n = 0 and cylindrical for n = 1. For spherical

problems modeled in 1D, n = 2; the details on radial symmetry can be found in [62] and

[128].

In the governing equations, Jp is the mass transfer source term (Jp = 0 is assumed for

inert particles without evaporation phase change), Fp is the momentum transfer force, and

Qp is the rate of heat transfer between phases. For the fluid phase, QR is a chemical reaction

source term and ωj are the reaction rates. The source term Np represents the rate of

change in the number of particles (Np = 0 is assumed for no agglomeration/fragmentation).

Particle acceleration and heating are, therefore, the dominant interaction exchange terms

considered in this work. Using the standard definition for drag force on a spherical particle,

and multiplying by the number of particles (np) within a macroscale control volume, the

momentum source term is:

Fp =
πd2p
8

npρf |uf − up|(uf − up)Cd (6.3)

where Cd is the drag coefficient. The traditional convective heat transfer equation,

multiplied by the number of particles, is used for the macroscopic model of the energy

source term:

Qp = πdpnpkf(Tf − Tp)Nu (6.4)

where kf is the thermal conductivity of the fluid and Nu is the Nusselt number. Equations

of state are required to close the system of equations (Equations 6.1 and 6.2). In addition,

the monodisperse particle size assumption is used to relate the particle diameter to the

number density: np = 6φp/πd
3
p.

This type of multiphase model framework is based on the two-phase fluid-dynamic

model of Kuo et al. [117] (see Kuo [116]). The model has been extended by Oran and

Boris [153] for deflagration-to-detonation transition (DDT) in propellants, and by Baer

and Nunziato [10] and Zhang et al. [226, 231] to model detonation in porous media and

later particle dispersal.

6.2 Macroscopic model formulation

As discussed in Chapter 2 and 3, the traditional drag coefficient and Nusselt number

correlations are not applicable in the shock compression regime in condensed matter.
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Models for the acceleration and heating during the timescale for the detonation shock

crossing the particle are required. As shown in Equations (3.18) and (3.39), these models

are a function of the solid volume fraction of particles, density ratio of explosive to solid

particles, ratio of particle size to detonation reaction-zone length, and Mach number. These

functions have been quantitatively studied in the mesoscale simulations; the development

of the macroscopic model is based primarily on the mesoscale shock compression results

from Chapter 5. Additional details may be found in Ripley et al. [171].

6.2.1 Shock compression acceleration

The particle acceleration during the shock interaction can be obtained by differentiating

the particle velocity with respect to time. The mesoscale results showed that the mass-

averaged particle velocity was approximately linear during the shock interaction timescale

(see Figures 5.19, 5.21, and 5.24). Figure 6.1 reproduces a typical mesoscale particle

velocity history, superimposed with four options for representing the particle acceleration

at the macroscale. The options, labeled Models a – d, are presented in Equations (6.5) –

(6.8).

Model a:

up(t) = up0 + (up1 − up0)
t− t0
2τS

, for t0 ≤ t ≤ t0 + 2τS, (6.5)

Model b:

up(t) =







up0 + [up(τS)− up0]
t−t0
τS

t0 ≤ t ≤ t0 + τS

up(τS) + [up1 − up(τS)]
t−t0−τS

τS
t0 + τs ≤ t ≤ t0 + 2τS

(6.6)

Model c:

up(t) =







up0 + [up1 − up0]
t−t0
τS

t0 ≤ t ≤ t0 + τS

up1 t0 + τs ≤ t ≤ t0 + 2τS
(6.7)

Model d:

up(t) = up1, for t0 ≤ t ≤ t0 + 2τS, (6.8)
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Figure 6.1: Macroscopic model options for particle acceleration compared to mesoscale

particle velocity history.

where t0 is the shock arrival time at the particle leading edge, and τS is the shock interaction

time.

In Models a – d, τS = dp0/D0 = constant, up(τS) = constant, and up1 = up(2τS) =

constant, as determined from the mesoscale results. Note also that up(t) = up0 for t < t0.

With the exception of Model b, a simple acceleration can therefore be assumed as follows:

up(t) = up0 + (up1 − up0)
t− t0
τ

, for t0 ≤ t ≤ t0 + τ, (6.9)

where τ is the macroscale interaction time. For Model a, τ = 2τS; for Model c, τ = τS; and,

for Model d, τ → 0, which may be represented by a Heaviside function. For the remainder of

the model development, Model c is chosen since it best represents the mesoscale behaviour.

Employing the generalized particle velocity function in Equation (6.9) with τ = τS, the

acceleration process can then be approximated assuming a constant acceleration over the

interval as follows:

dup

dt
≈ ∆up

∆t
=

up1 − up0

τS
(6.10)
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Since up1 = αuf1 and up0 = 0, the particle acceleration is then:

dup

dt
=

αuf1

τS
(6.11)

Newton’s law relating the force to the acceleration, written for a collection of np

particles,

Fp = np

πd3p0ρs0

6

dup

dt
(6.12)

is combined with Equation (6.3) for the standard definition for drag force on spherical

particles, which gives the drag coefficient in terms of particle acceleration:

Cd =
4ρs0dp0

3ρf |uf − up|(uf − up)

dup

dt
(6.13)

Substituting Equations (6.9) and (6.11) into Equation (6.13), while assuming uf ≈ uf1,

uf1 > up(t) for t ≤ τS, and ρf ≈ ρf1, an “effective” drag coefficient is obtained for the

shock compression interaction:

Cd(t) =
4ρs0dp0
3ρf1

αuf1

τS

(

uf1 − t−t0
τS

up1

)2 (6.14)

Finally, substituting τS = dp0/D0 and up1 = αuf1, the “effective” drag coefficient

becomes:

Cd(t) =
4ρs0D0

3ρf1uf1

α
(

1− t−t0
τS

α
)2 , for t0 ≤ t ≤ t0 + τS. (6.15)

where α = f (φs0, ρf0/ρs0, dp/LR,M0) can be obtained from the mesoscale simulations

described in Chapter 5.

In a general sense for physical parameters, Cd may be a function of other physical

parameters that are time-dependent, but preferably should not show an explicit time-

dependence itself. In Equation (6.15), the explicit time dependence is caused by

the assumption of Equation (6.10) in a convenient way to facilitate the numerical

implementation.
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Figure 6.2: Shock compression effective drag coefficients for aluminum particles (ρs0 = 2.700

g/cc) in a CJ shock in nitromethane (ρf1 = 1.538 g/cc, D0 = 6.612 mm/µs, uf1 = 1.742

mm/µs, using Cheetah with BKWS library and ρf0 = 1.128 g/cc, Tfreeze = 2145 K).

The resulting drag coefficient can be plotted for various velocity transmission factors,

0 ≤ α ≤ 1, during the shock interaction time, where t0 = 0 for simplicity. Figure 6.2

shows the effective drag coefficient calculated from Equation (6.15) for aluminum particles

in a CJ nitromethane shock flow. The effective drag coefficient model in Equation (6.15)

is applicable to other condensed explosives containing metal particles.

For α = 0, there is no shock compression acceleration and therefore Cd(t) = 0. As the

value of α increases, there is a greater variation in Cd over the shock interaction time. For

α = 1, Cd(t) → ∞ since up1 → uf1 as t → τS.

6.2.2 Shock compression heating

Applying the same procedure to the particle heating, the Nusselt number for shock

compression can be obtained. Similar to the acceleration, the particle heating rate in

the mesoscale results is considered constant (see Figures 5.24 and 5.27) and, therefore, can

be approximated by a linear function:

164



Tp(t) = Tp0 + (Tp1 − Tp0)
t− t0
τS

(6.16)

where t0 is the shock arrival time at the particle leading edge. The heating process can

then be approximated assuming a constant temperature rise over the interval as follows:

dTp

dt
≈ ∆Tp

∆t
=

Tp1 − Tp0

τS
(6.17)

Since Tp1 = βTf1 and Tp0 6= 0, the particle heating rate is then:

dTp

dt
=

βTf1 − Tp0

τS
(6.18)

Combining the standard definition for convective heat transfer on spherical particles in

Equation (6.4) with the heat transfer rate expression,

Qp = npcs
πd3p0ρs0

6

dTp

dt
(6.19)

gives the Nusselt number in terms of particle heating rate:

Nu =
csρs0d

2
p0

6kf0(Tf − Tp)

dTp

dt
(6.20)

Substituting Equations (6.16) and (6.18) into Equation (6.20) and assuming Tf ≈ Tf1,

an “effective” Nusselt number is obtained for the shock compression interaction:

Nu(t) =
csρs0d

2
p0

6kf0

βTf1 − Tp0

τS [Tf1 − Tp(t)]
(6.21)

Finally substituting τS = dp0/D0 and Tp1 = βTf1, the “effective” Nusselt number is

then:

Nu(t) =
csρs0dp0D0

6kf0

βTf1 − Tp0
(

1− t−t0
τS

β
)

Tf1 −
(

1− t−t0
τS

)

Tp0

, for t0 ≤ t ≤ t0 + τS. (6.22)

Figure 6.3 plots the resulting Nusselt number for various temperature transmission

factors during one shock interaction time, where t0 = 0 for simplicity. The Nusselt
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Figure 6.3: Shock compression effective Nusselt number (dp = 10 µm) for aluminum particles

(ρs = 2.700 g/cc, cs = 883 J/kg-K) in a CJ shock in nitromethane (ρf1 = 1.538 g/cc,

Tf1 = 3628 K, D0 = 6.612 mm/µs, uf1 = 1.742 mm/µs, using Cheetah with BKWS library

and ρf0 = 1.128 g/cc, Tfreeze = 2145 K).

number results plotted in Figure 6.3 are specific to aluminum particles in a constant

CJ nitromethane detonation shocked flow, but can be recomputed for mixtures of other

explosive and metal particles using Equation (6.22).

Since Tp0 = 300 K, there is no shock compression heating for β = Tp0/Tf1 (i.e., Nu(t) =

0 when Tp0 = βTf1). In the above example, Nu = 0 for β = 0.0827. For β < Tp0/Tf1,

Nu(t) < 0; therefore, β = Tp0/Tf1 sets a lower bound. For β = 1, Nu(t) → ∞ since

Tp1 → Tf1 as t → τS .

6.3 Verification of the shock compression model

Since the particle heating and acceleration were approximated as constant-rate processes

during the shock compression, simple analytical and numerical evaluation of their

implementation can be performed. The one-dimensional equation of motion and energy

conservation can be readily discretized and integrated numerically:
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up(t+∆t) = up(t) + ∆t

[
3ρf
4ρsdp

|uf1 − up(t)|(uf1 − up(t))Cd(t)

]

(6.23)

Tp(t+∆t) = Tp(t) + ∆t

[
6kf

ρscsd2p
(Tf1 − Tp(t))Nu(t)

]

(6.24)

The shock compression drag coefficient and Nusselt number correlations are applied

only during two shock interaction timescales:

Cd(t) =







0 t < t0

Cd

(
ρf0
ρs0

, φs0, δ, t
)

t0 ≤ t ≤ t0 + 2τS

Cd(Re,M0,Pr , φs0) t > t0 + 2τS

(6.25)

and

Nu(t) =







0 t < t0

Nu
(

ρf0
ρs0

, φs0, δ, t
)

t0 ≤ t ≤ t0 + 2τS

Nu(Re,M0,Pr , φs0) t > t0 + 2τS

(6.26)

In Equations (6.25) and (6.26), the Cd and Nu models use Equations (6.15) and (6.22)

for t0 ≤ t ≤ t0+ τS, respectively; for t > t0+2τS, correlations for Cd and Nu applicable for

φs0 > 0 are used (e.g., the Smirnov correlation examined in Section 2.2). For t ≫ τS the

flow may become dilute if φs0 → 0. In this regime, Equations (6.25) and (6.26) are replaced

with traditional dilute correlations applicable to single spherical particles in steady flow.

Dilute correlations provide an informative comparison to the shock compression models

used in Equations (6.15) and (6.22). Representative dilute correlations are chosen among

many available in the literature. For drag, the correlation of Gilbert et al. [80] was used:

Cd(Re) = 0.48 + (Re)−0.85 (6.27)

For heat transfer, the Nusselt number correlation of Knudsen and Katz [113] was used:

Nu(Re,Pr) = 2 + 0.6Re1/2Pr 1/3 (6.28)

In Equations (6.27) and (6.28), the Reynolds number and Mach number are defined using

the relative velocity between the phases:
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Figure 6.4: Response of the shock compression acceleration model (α = 0.7, τ = τS) for

particle velocity compared to dilute model: (left) zoom of shock interaction timescale; and,

(right) late-time behaviour. Results for an aluminum particle (ρs0 = 2.700 g/cc, dp = 10 µm)

in a CJ nitromethane shock (D0 = 6.612 mm/µs, uf1 = 1.742 mm/µs, ρf1 = 1.538 g/cc).

Re =
ρf |uf − up|dp

µf
, M =

|uf − up|
af

(6.29)

Figures 6.4 and 6.5 illustrate the resulting shock compression acceleration and heating

for an aluminum particle in a constant CJ nitromethane detonation shocked flow. For

this analysis, shock compression in a typical system with φs0 = 0.25 and dp/LR = 0.1,

results in α = 0.7 and β = 0.2 from the mesoscale results in Chapter 5. The shock

compression models are compared to the standard dilute correlations (Equations 6.27

and 6.28). Using only the standard dilute drag, the particle velocity reaches the shock

compression value after 40τS. Similarly for temperature, the shock compression particle

temperature is reached after 20τS using dilute heating. This example clearly demonstrates

that the standard drag models fail to predict the acceleration and heating of particles in

condensed matter subjected to a shock or detonation wave.

6.4 Application of shock compression models

This section provides a few examples of the application of the macroscopic shock

compression models for effective drag coefficient and Nusselt number to practical problems
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Figure 6.5: Response of the shock compression heating model (β = 0.2, τ = τS) for particle

temperature compared to dilute model: (left) zoom of shock interaction timescale; and,

(right) late-time behaviour. Results for an aluminum particle (ρs0 = 2.700 g/cc, dp = 10 µm,

cs = 883 J/kg-K) in a CJ nitromethane shock (D0 = 6.612 mm/µs, Tf1 = 3628 K, ρf1 =

1.538 g/cc).

involving multiphase explosives. First, heterogeneous detonation of a cylindrical slurry

explosive with metal particles is modeled for infinite diameter and finite diameter

conditions. Second, dispersal of particles into air is demonstrated from detonation of a

spherical charge of explosive and metal particles. In all the examples, the modeling results

are compared with well-established experiments.

6.4.1 Heterogeneous detonation

Kato and Murata [105, 106] studied heterogeneous detonation of neat nitromethane

saturating beds of metal particles in a sufficiently large cylindrical steel tube (with an inner

diameter of 31 mm and a wall thickness of 3.5 mm). Detonation pressure was recorded

using PVDF gauge measurements at a 1 ns time resolution. For aluminum, they showed

increased detonation pressure for small particles, and decreased detonation pressure for

large particles (see Figure 1.5). For all particle sizes tested, the reaction-zone length was

longer than that of neat nitromethane, and the detonation propagated with a velocity

deficit. For a range of intermediate particle sizes, there are secondary pressure waves

behind the leading shock, indicating the reaction of aluminum particles.

Evaluation of the experimental data of Kato and Murata [105, 106] is given in Table
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Table 6.1: Experimental configuration for detonation of nitromethane saturating beds of

aluminum particles from Kato and Murata [105, 106], and corresponding velocity and

temperature transmission factors selected from mesoscale calculations.

Experimental Configuration Physical Interpretation

dp (µm) φs0 δ α β τS (ns)

3 0.35 0.01 0.77 0.44 0.5

5 0.38 0.02 0.76 0.45 0.8

8 0.46 0.03 0.74 0.46 1.3

14 0.53 0.05 0.70 0.48 2.2

35 0.44 0.12 0.65 0.32 5.5

108 0.51 0.36 0.45 0.27 17

350 0.44 1.17 0.40 0.21 55

6.1 where the particle diameter and volume fraction are from their experiments. Applying

LR = 300 µm for neat nitromethane from the high-resolution experiments of Sheffield et

al. [185], δ = dp/LR can be calculated using the particle diameter. The curves in Figures

5.30 and 5.33 were used to select α and β, as summarized in Table 6.1. The microscopic

interaction ranges from the small particle limit (δ ≪ 1), which involves essentially frozen

von Neumann (VN) shock interaction with the particles, to the intermediate regime (δ ∼ 1)

where LR is comparable to dp providing two characteristic length scales. The interaction

time, τS, is estimated using the neat detonation velocity, D0 = 6.4 mm/µs, from the

experiments.

The shock compression models (Equations 6.15 and 6.22) are applied in the source terms

of the macroscopic two-phase continuum model in Equations (6.1) and (6.2), to simulate

heterogeneous detonation. A single-step Arrhenius rate law is used for the NM detonation,

since the present focus is on the momentum and heat transfer models. The particles are

modeled as an inert solid flow continuum in the Eulerian frame, where the particle number

density is solved such that the size of particles relative to the mesh size only influences

the source term rates. Since the individual particle response has been homogenized at the

macroscopic level, the fluctuating pressure and localized hot spots due to shock interaction

in interstitial pores are exhibited as increased bulk temperature and enhanced pressure, in

agreement with observations using the current transducer resolutions of Kato and Murata

[105, 106].

For these experiments with sufficiently large tubes providing heavy confinement, an

infinite charge diameter is assumed in the modeling, and then the detonation can be
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Figure 6.6: Infinite-diameter detonation pressure profiles for various particle sizes using a

one-dimensional model. Detonation shocks located at arbitrary times for clarity.

considered using 1D calculations. Figure 6.6 shows the pressure histories for several particle

sizes along with a baseline NM detonation, which are consistent with the results of Kato

and Murata [105, 106] (reproduced in Figure 1.5). For 3 to 35 µm particles, both the

peak shock and detonation flow pressure increase relative to the neat NM detonation. Also

evident in Figure 6.6 is the increased steady zone behind the shock, which is consistent

with Kato’s observations of increased reaction-zone length in heterogeneous explosives.

The rear unsteady flow differs from the experiment mainly due to lateral expansion effects

and the inert particle assumption limiting reaction.

Table 6.2 summarizes the infinite-diameter numerical results using the macroscale

model. The local shock propagation velocity in the particle bed appears as a reduced

bulk detonation velocity when averaged at the macroscale. The detonation velocity deficit

with respect to the neat NM detonation results from momentum and heat losses to the

particles in the reaction zone. Variations are expected due to the solid volume fraction

range of 0.35 – 0.53 used in the experiments (see Table 6.1).

The detonation velocity is less than the results of Kato and Murata [105, 106]

despite showing good agreement in pressure. The experiment includes particles with a

size distribution where the smallest particles may react in the detonation zone thereby

supporting the shock velocity. As previously stated, the reaction of particles was not

considered in the modeling. Furthermore, it is not known whether the detonation velocity
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Table 6.2: Summary of numerical results for infinite-diameter heterogeneous detonation.

dp (µm) D0 (mm/µs) pCJ (GPa) pVN (GPa) up1 (mm/µs) Tp1 (K)

NM 6.430 13.3 17.7 - -

3 4.800 14.6 20.7 1.299 597

5 4.690 15.5 20.1 1.181 522

8 4.480 18.6 22.6 1.041 475

14 4.240 19.3 22.4 0.928 428

35 4.450 17.6 19.7 0.942 443

108 4.510 12.8 15.3 0.719 473

measured in the experiment reached a steady propagation velocity. The cylindrical

explosive was only 150 mm long, and was initiated by solid explosive which typically

overdrives the detonation.

Although equilibrium is not applicable to the two-phase flow, Cheetah calculations for

nitromethane with inert aluminum showDCJ = 5.284 mm/µs, pCJ = 7.12 GPa, uCJ = 0.727

mm/µs and TCJ = 1883 K, which demonstrates the limiting case for small particles.

6.4.2 Detonation failure diameter

Detonation failure for NM/Al in light cylindrical casing has been studied experimentally.

Frost et al. [74] used Al particles saturated with sensitized NM contained in thin glass tubes;

Kato and Murata [105, 106] studied Al particles saturated with neat NM contained in thin

PVC tubes. Figure 6.7 shows the experimental relationship between charge diameter and

particle diameter for detonation failure in lightly-cased cylindrical explosives. For both

glass and PVC casing, the detonation failure curve for aluminum is U-shaped, where the

critical diameter increases in both the small particle limit and large particle limit. The

small difference between the two curves indicates that the reactivity of the liquid explosive

(sensitized or neat NM) may play a less important role than the particle interactions on

detonation failure. Particles result in hot spots that promote detonation ignition, as well

as momentum and heat losses that desensitizes detonation.

Detonation failure was investigated for lightly-cased cylinders using a 2D axisymmetric

model. The casing was modeled using a hydrodynamic model; the casing material was

PVC (ρ = 1.2 g/cc) and was 3.5 mm thick. A numerical mesh resolution of 10 µm was

used with the Arrhenius rate law, as in the infinite diameter calculations. Figure 6.8

illustrates the cylindrical charge detonation results for a 20 mm ID tube, with 1000 mesh
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Figure 6.7: U-shaped detonation failure diameter curves: numerical results using shock

compression models compared to experimental data in Frost et al. [74] and Kato and Murata

[105, 106].

points in the charge radius and another 350 through the casing thickness. The detonation

front curvature and detonation reaction zone are resolved. For 35 µm particles, steady

detonation propagation is achieved, whereas for 8 µm particles the shock compression

losses in the lengthening reaction zone lead to detonation failure beginning at the inner

casing wall.

The present numerical results for 20 mm diameter charges are included in Figure 6.7

showing that the critical diameter for detonation failure in the small particle regime is

consistent with experimental data. It should be noted that the overall computational

mesh contained over 30 million computational points and required several days of

parallel computing effort; therefore, only limited configurations were tested. Additional

calculations should be conducted to complete the failure diameter curve. The reaction

model should also be tested for its ability to predict the failure diameter of the pure

explosive. A more sophisticated reaction model may be required, such as two- or three-

step ignition and growth type models (see discussion in §4.3.4).
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Figure 6.8: Heterogeneous detonation of 20 mm diameter cylindrical NM/Al charges in

3.5 mm thick PVC casing: 35 µm particles with detonation propagation (left) and 8 µm

particles with detonation failure (right). Detonation shock propagation is from bottom to

top.

6.4.3 Explosive dispersal of particles

The experimental configuration for explosive dispersal of particles is described in detail by

Zhang et al. [226] and Frost et al. [75]. The relevant configuration details are summarized

here. The spherical charge, contained in a thin glass casing, consists of a packed bed of

inert particles saturated with liquid nitromethane sensitized by 10% triethylamine (TEA).

Spherical steel beads from Draiswerke Inc. [49] were sieved to a size distribution of 463±38

µm (ρs0 = 7.850 g/cc and cs = 460 J/kg-K). The charge size was 11.8 cm in diameter and

was centrally initiated by 7 g of solid explosive. The heterogeneous mixture consisted of

434 g NM with 10% TEA plus 4400 g of steel beads [226, 75]. The initial steel mass fraction

of 0.92 corresponds to a solid volume fraction of 0.62. In the macroscale simulation, the

particles were modeled as monodisperse (dp = 463 µm), the thin glass casing was not

included, and the booster explosive was replaced by nitromethane.

Before considering multiphase dispersal, the numerical method was first validated for

the pure explosive. As in the experiments of Zhang et al. [226], an 11.8 cm diameter

homogeneous charge of nitromethane was simulated as a baseline. The explosive contained

1080 g of NM with 10% TEA by mass. The results are shown in Figure 6.9 with excellent

agreement to both experiments and calculation results of Zhang et al. [226].

Figure 6.10 gives some exploratory results for the heterogeneous charge of nitromethane
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Figure 6.9: Validation of the homogeneous explosion model without particle additives for

shock velocity and blast pressure resulting from an 11.8 cm spherical explosive containing

NM/TEA (present numerical results compared to the experiment and calculation results

from Zhang et al. [226]).

with steel beads. First, the inert particle dispersal was simulated using the standard dilute

drag (Equation 6.25), which shows an overprediction of the shock speed with a severely

delayed particle front velocity. This can be compensated for by using an ad hoc momentum

enhancement factor. The numerical results of Zhang et al. [226] employed a momentum

enhancement factor of 6 for the first 0.4 ms. In a similar attempt, the second simulation

shows the particle dispersal for a momentum enhancement factor of 10 applied over the

first 0.2 ms, with good agreement to the experiment.

In order to replace these ad hoc corrections with physics-based models, the above

simulation is reconsidered using the macroscopic shock compression acceleration and

heating models (Equations 6.15 and 6.22 described in Section 6.2). The present

configuration of large steel particles in sensitized nitromethane falls in the large particle

regime (dp/LR ≫ 1). Therefore, the transmission factors required for Equations (6.15) and

(6.22) must be generated for steel particles. The single steel particle results from Figure

5.14 in Section 5.2.1, gives up1 = 0.488 mm/µs and α = 0.28 for an initial density ratio

of explosive to solid particles of ρf0/ρs0 = 0.144. However, this result is for the small

particle limit which demonstrated the highest transmission factors. Additional mesoscale

calculations were necessary for the large particle limit. To obtain simple yet representative

results, 2D mesoscale calculations were conducted for steel beads in nitromethane. Further,
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Figure 6.10: Effect of drag model on inert particle dispersal trajectory and shock velocity

from an 11.8 cm diameter spherical explosive containing steel beads saturated with

nitromethane. Comparison of standard dilute drag (left) to ad hoc enhanced drag with

a factor of 10 applied for 0.2 ms (right) from Ripley et al. [165].

the free-edge of the charge was also included to investigate the particle acceleration during

the edge expansion. The 2D configuration employing cylindrical ‘particles’ was discussed

in Section 5.5, where the setup was shown in Figure 5.36. Here, a resolution of 100

cells/diameter was used. Figure 6.11 illustrates the results for steel particles undergoing

shock compression followed by edge expansion.

Due to the low density ratio of the liquid explosive to steel particles, minimal

acceleration and heating occur as the detonation shock passes. Figure 6.11 shows that

an initial velocity of approximately 0.150 mm/µs is transmitted into the particle by the

detonation shock, corresponding to a trivial shock compression factor of α = 0.08. In

contrast, during the edge expansion, a significant acceleration of the particles is achieved.

In the outer layers of particles, the particle velocity exceeds 1.0 mm/µs after a few

shock interaction timescales. Therefore, at the outer edge of the charge (i.e., between

0.95R0 ≤ R ≤ R0), a velocity transmission factor of α = 0.60 was applied for 5τS, which

corresponds to the values in the mesoscale observations.

From the 2D mesoscale calculations of shock interaction with packed steel particles

saturated with sensitized NM, the shocked particle temperature was Tp1 = 388 K for a

CJ shock representative of the large particle limit; this gives β = 0.107. The subsequent

rarefaction in the particle reduces the transmitted temperature, followed by edge expansion
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Figure 6.11: Mesoscale particle velocity and trajectory for ‘cylindrical’ steel beads at the

charge edge (arbitrary zero time and distance).

further reducing the particle temperature at the edge of the explosive. Overall, the shock

compression heating effect is insignificant for the system of steel particles in nitromethane.

Figure 6.12 provides the macroscale results for detonation and dense dispersal using the

macroscopic shock compression model (Equation 6.15). During the detonation stage, only

very little particle velocity (up1 ∼ 0.100 mm/µs) is achieved due to the high solid particle

density as explained above. Due to the rapid and significant momentum transfer required

for the heavy particle acceleration, the detonation products gas velocity is substantially

retarded behind the reaction zone. As the detonation shock transmits into the air at

the charge edge, the enhanced drag (Equation 2.17) during the edge expansion rapidly

accelerates the particles. For a particle front solid concentration of 1 mg/m3, the particle

velocity achieved is 1.540 mm/µs at a radius of 7.5 cm. This is consistent with the mesoscale

particle velocity measured in the outer layers at the edge of the charge (see Figure 6.11).

The particle velocity profile contains a kink at 0.525 mm/µs, which corresponds to a solid

concentration of 1 kg/m3 and defines the boundary between the spall layer and dense

particle flow lagging behind.

The solution in Figure 6.12 is used to initialize a larger domain to study the later-time

particle dispersal. The Smirnov drag correlation (Equation 2.17) was used, although the

flow quickly becomes dilute. Figure 6.13 shows the subsequent dispersal process using

spatial velocity distributions. The particle velocity is compared to the gas velocity for

several instances in time. Although initially the gas velocity is very high, it quickly decays
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Figure 6.12: Macroscale particle and gas velocity during detonation at t = 10 µs (left) and

early dense dispersal at t = 19 µs (right) of an 11.8 cm spherical explosive containing steel

beads saturated with nitromethane. Results using a mesh resolution of 0.03 mm.

in the spherical expansion. The large dense particles are inertially dominated at later times

and overtake the gas shock.

Figure 6.14 gives a comparison of the present numerical results for the shock, fireball,

and particle dispersal trajectories against published experimental and calculation data

[226]. The benchmark data points forming the particle trajectory are a composite of

several experimental trials. In the early time, the particle trajectory was measured using

radiographs of three separate trials [69]. In the later dispersal, the particle position was

measured from high-speed cinematography. Air-blast overpressure was measured outside

the fireball which provided the time of arrival of the primary shock front. The fireball

trajectory was calculated using modeling approaches reported in Zhang et al. [226]. Overall,

the results displayed in Figure 6.14 demonstrate excellent agreement between the present

model and the experimental data.

6.5 Validation of particle heating

Diagnostic techniques for determining particle temperature in condensed matter detonation

remain a challenge for experimentalists. Direct measurements are impractical; therefore,

non-evasive methods have typically been used. In situ measurements of particle tem-
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Figure 6.13: Distribution of particle and gas velocity for macroscale inert particle dispersal

from an 11.8 cm spherical explosive containing steel beads saturated with nitromethane.

Results shown at four different times (mesh resolution of 1 mm).
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Figure 6.14: Explosive dispersal of inert particles from an 11.8 cm spherical explosive

containing steel beads saturated with nitromethane: shock velocity (left) and blast pressure

(right). Comparison of present numerical results to published data. Symbols (experimental

and calculation results) are from Zhang et al. [226].

perature during detonation are not currently possible. For post-detonation observations,

approaches include thermocouple, optical pyrometry, and high-speed spectroscopy.

Goroshin et al. [88, 89] and Frost et al. [73] fielded optical pyrometry to measure

the temperature of a multiphase fireball. Particle temperature during inert dispersal is

preferable for validation of the shock compression heating. However, for the dispersal

to effectively be inert, large particles are required. Trials involving dispersal of 114 µm

aluminum particles [74] featured delayed reaction with the potential to provide suitable

information for the dispersed particle temperature. Unfortunately, Frost [69] indicated that

temperature data for these trials was not viable because the inert particle emission was

below the lower threshold, since the signal levels were set for reacting particles (T ∼ 3400 K,

the adiabatic flame temperature of Al in air). Similarly, Carney et al. [36] and Grégoire et

al. [91] investigated spectroscopy with the goal of measuring reacting particle signatures.

Since detecting particle combustion is usually the focus of spectroscopy, emission of the

AlO and Al2O3 bands was measured, rather than atomic Al emission which is indicative

of particle temperature. Again, particle temperature prior to ignition and reaction is not

available due to weak signals [35].

Since experimental data on particle temperature due to shock compression and dense

dispersal are not directly available, anecdotal evidence may be inferred from particle
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burning. Thermocouple measurements [73] of the air temperature in the multiphase flow

field may provide some information. Limitations include a stationary gauge, measurement

of the shock-heated air and combustion gases, and lagged thermal response. Unfortunately,

the thermal lag of even the smallest thermocouples limits the particle temperature data,

and this method may only be applicable to reactive particles.

Reactive particle dispersal test cases feature a critical charge diameter for particle

ignition [77, 74], where there is competition between particle heating in the hot detonation

products and gas expansion cooling. For charge diameters above the critical diameter,

particle reaction indicates that particle heating from shock compression and dense dispersal

was sufficient to reach the ignition. Therefore, an ignition delay time could be used to infer

particle heating rates. Unfortunately, there is considerable uncertainty in the chemical

kinetics of particle ignition and reaction (see Zhang et al. [227]). Even for aluminum,

which is perhaps the most commonly studied reactive metal, the particle temperature for

ignition is the subject of wide debate [109], and ranges from the melting temperature of

pure aluminum (933 K) up to the melting temperature of the aluminum oxide (Al2O3)

coating (2150 K) [204].

Modeling of spherical reactive particle dispersal [122] and cylindrical reactive particle

dispersal [164] demonstrated that the particle size distribution, particle reaction mech-

anism, and casing influence are among the uncertainties that prevent these test cases

from being used to verify the shock compression heating models in a rigorous manner.

Future work may provide a consistent and independent method of validation for the particle

temperature in condensed matter subjected to shock and detonation waves.

6.6 Discussion of macroscale application

Macroscopic models for shock compression drag and heating were developed and im-

plemented into a macroscopic framework via two-phase source terms. They were

developed as effective drag coefficients and Nusselt numbers applied during the shock

interaction timescale. The macroscopic models employed the velocity and temperature

transmission factors that were determined from the mesoscale simulations in Chapter 5.

The resulting new models for shock compression were applied to macroscale test cases

involving heterogeneous detonation and explosive dispersal of particles. Comparison to

available experimental data showed comparable results for detonation velocity deficit,

enhanced detonation flow pressure, extended steady zone, and detonation failure diameter.
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Momentum and heat loss in the detonation reaction zone were determined to the detonation

and edge expansion regimes showed excellent agreement for particle front trajectory and

blast pressure, as compared to experimental data. Validation of the particle temperature

remains a challenge due to the lack of experimental data.
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Chapter 7

Conclusions

Condensed explosives containing metal particles provide a fundamental system for

investigating detonation and explosion physics. In particular, shock and detonation

interaction with metal particles are responsible for several multi-scale phenomena that

are related to momentum loss and heat transfer. The objective of this thesis was to

develop novel physical models for acceleration and heating of metal particles in condensed

explosive detonation. A quantitative description of the resultant momentum and heat

transfer was determined, and the principal shock interaction mechanisms were interpreted.

These physics-based models were employed to explore and understand the mechanisms

responsible for the slurry detonation and explosive particle dispersal phenomena observed

in experiments.

Dimensional analysis showed that the particle acceleration and heat transfer during

detonation shock compression in a dense solid particles-condensed explosive system are a

function of the material density ratio of explosive to particle, ρf0/ρs0, the volume fraction,

φs0, and the ratio of particle diameter to detonation zone length, δ = dp/LR, which

are distinct from Reynolds number, Re , Prandtl number, Pr , and Mach number, M0.

While viscosity and heat conduction are important later in the detonation and explosion

process, they can be neglected when compared with the other parameters during the

shock compression time scale. Thus, the acceleration force and heat transfer can be

described by an effective drag coefficient, Cd = f(ρf0/ρs0, φs0, dp/LR,M0), and the heat

transfer is represented by an effective Nusselt number, Nu = f(ρf0/ρs0, φs0, dp/LR,M0).

Mesoscale simulations of spherical aluminum particles saturated with liquid nitromethane

were conducted by varying φs0 and δ = dp/LR at a givenM0 and ρf0/ρs0, which were known

important parameters. The full range of φs0 and δ were studied, where δ ranged between
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the small particle limit, with essentially inert shock interaction, to the large particle limit,

with infinitely thin detonation front diffraction followed by detonation products expansion

flow.

Features of heterogeneous detonation were explored including: detonation instability

and velocity deficit; pressure front fluctuations with peaks up to four times the CJ

detonation pressure and periods proportional to the particle size; and, transverse waves and

hot spots characteristic of locally enhanced pressure and temperature fronts. These physics

are consistent with macroscopic phenomena observed in published experiments. Detonation

failure was not considered in the mesoscale study since these calculations assumed infinite

diameter conditions (no charge edge effects). From the mesoscale simulations, a shock

compression velocity transmission factor, α = f(ρf0/ρs0, φs0, dp/LR,M0), and temperature

transmission factor, β = f(ρf0/ρs0, φs0, dp/LR,M0), were obtained to summarize the

acceleration and heating behaviour within a detonation shock interaction time. The

maximum particle acceleration occurred at φs0 = 0.25; whereas the maximum shock

compression heating occurred over a wider range of solid volume fraction, within φs0 =

0.4 – 0.74. The acceleration and heating rates of 1 – 10 µm particles were measured to be

O(1012 – 1013) m/s2 and O(1012 – 1013) K/s, respectively, and occurred within the shock

interaction timescale O(10−10 – 10−9) s.

Scaling of the velocity and temperature transmission factors using the post-shock (von

Neumann) state appears to be the most convenient since it is easily obtained from analytical

shock relationships; however, this scaling showed a strong dependence on the ratio of

particle diameter to reaction-zone length. Shock compression transmission factors, scaled

with the ideal ZND detonation wave fluid velocity integrated over the particle diameter,

indicated a weak dependence on the ratio of particle diameter to detonation reaction-zone

length for momentum, and an exponentially decreasing dependence for temperature. For a

matrix of aluminum particles saturated with nitromethane, 36 – 78% of the shocked fluid

velocity and 18 – 50 % of the shocked fluid temperature were achieved by the particles,

depending on the ratio of particle diameter to detonation reaction-zone length.

Overall, velocity and temperature transmission factors can be simplified using an

appropriate choice of scaling value; reduction of α and β in this fashion allows a practical

model to be implemented without a priori knowledge of the reaction-zone length or the in

situ detonation wave profile. As an example, the results were applied to formulate functions

for macroscopic momentum and energy transfer between the two phases during detonation

shock compression. These functions can then be used as the inter-phase exchange source

terms applied to macroscopic continuum modeling of practical problems such as detonation
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of a multiphase explosive or shock propagation in a dense particle-fluid system.

7.1 Practical considerations

Without losing generality for the outcome in condensed matter, a prototype system of liquid

nitromethane explosive saturating solid aluminum particles was studied. A monodisperse

distribution and ordered packing of spherical particles was considered as a simplification

of the problem. Real slurry explosives contain a particle size distribution spanning two

orders of magnitude in size, a random packing structure, non-spherical particle shapes,

and some particles have an oxide coating. Three-dimensional mesoscale approaches, such

as those employed in the present work, are capable of describing this type of system;

however, increased resolution would be required to capture smaller particle diameters

in the distribution and the thin oxide coatings. A larger representative volume element

(mesoscale domain size) would also be needed to describe a random packing in a statistically

representative manner. Both requirements significantly increase the computational effort.

In the present calculations, the high resolutions and long runtimes reached the limit of

available computational resources. During the course of this project, a ten-fold increase

in computer resources was developed (presently 160 CPU), indicating that more detailed

calculations may be realizable in the near future. The largest mesoscale calculations by

Baer have currently reached 20,000 CPU [8].

The present study, considering monodisperse particles, demonstrated the effect of

particle size on acceleration and heating throughout the range of δ = dp/LR considered.

When a polydisperse particle size distribution is included, the relative acceleration of the

particles will ultimately lead to particle/particle collisions in the detonation flow, resulting

in additional forces acting between particles. This external surface force would necessitate

the use of collision/contact algorithms (e.g., [29]). The multiple particle size distribution

and random packing configuration would decrease the ordered structure to the matrices

and effectively dampen the resonant fluctuations of pressure in the system. Non-spherical

particles add the complexity of additional contact points, increased shear, and rigid-body

rotation. Baer [6] simulated randomly oriented cubical crystals, and showed reduced

pressure fluctuations and increased material deformation.

Establishing the initial packing configuration for such slurry explosive systems with

polydisperse size distributions and non-spherical particle shapes is also a challenge.

Arbitrary distributions may be achieved using filling methods that use gravitational
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settling with rigid-body collision and frictional contact to establish the initial packing.

Baer employed a statistical-mechanical method based on Monte Carlo and molecular

dynamics with a densification algorithm to generate an ensemble of packed particles [6].

Computerized topography [215, 179] has been used to digitally initialize the 3D domains.

Similarly, it is possible to use the micrographs of metal particles to describe the initial size,

shape, orientation, and packing of the metal particles in a real slurry explosive system.

In the present mesoscale simulations, the single-step reaction model did not resolve

the induction-zone length in the detonation wave. The effect of including the induction

zone would increase the length of the von Neumann pressure plateau following the leading

detonation shock. This would tend to shift the velocity and transmission factors toward

the small particle limit since the particles would interact with an extended shock region

before entering the expanding flow in the reaction zone. Sheffield et al. [185] measured

the nitromethane induction zone as 1 – 3 ns in duration, in agreement with calculations

of Tarver [196]. This represents an induction-zone length of about 6.3 – 19 µm, compared

to the measured overall reaction-zone length of 300 µm. For nitromethane with a short

induction zone, the resulting shift in δ = dp/LR would be small. The increased effort of

high resolutions and additional reaction mechanisms do not warrant such an investigation

for the liquid nitromethane explosive used in the present study. Other explosives, with

elongated induction zones, may necessitate this type of analysis.

7.2 Future work

Extension of the present calculations to include the later-time viscous flow following

shock compression calls for interface improvements and the addition of particle strength

models. Interface resolution may be improved using adaptive mesh refinement (AMR)

techniques; however, the complex shock reflections and fluctuating pressure fields would

result in excessive refinements effectively giving a uniform mesh of a higher resolution.

Lagrangian interface trackers used in ALE codes offer an alternative – these methods were

not adopted for this study, since shock compression temperature and detailed detonation

reaction models were not available. Material interface trackers are recommended and

consist of two aspects: front tracking and interface reconstruction. Front tracking is

achieved using the level set method (see Sethian [183], Osher and Sethian [155], and Glimm

[83]). Three-dimensional interface reconstruction methods include first-order schemes, such

as SLIC (Simple Line Interface Calculation) [150], and second-order methods like SMYRA

(Sandia Modified Young’s Reconstruction Method) [23]. For the flow regime following
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shock compression, immersed boundary methods (IBM) are already in use for mesoscale

studies of the viscous flow and wake interactions of dense particles (see Xu et al. [221, 220]).

Non-spherical particles and a particle size distribution with increased shear, rotation,

and collision will require strength models for the solid. Application to thin particle flakes,

such as in the experiments of Yoshinaka et al. [222] and mesoscale simulations of Cooper et

al. [40], further warrants failure models for particle damage, break-up, and fragmentation.

The Johnson-Cook [101] strength model has been widely adopted in the literature.

7.3 Closing remarks

Acceleration and heating of metal particles in condensed matter detonation were studied

using a theoretical and numerical investigation. The range of parameters examined

was influenced by experimental observations from the literature. The present study

demonstrated the importance of the relative size of particles to the detonation reaction-

zone length, particle packing configuration, and volume fraction of particles. This was

achieved using mesoscale modeling of a prototype system of spherical aluminum particles

saturated with liquid nitromethane, the results of which may be extended to other slurry

explosives. The mesoscale results generated a tremendous volume of data and are rich in

physics. Highly fluctuating pressure fields, transverse waves, extended steady zone, hot

spots, detonation instability, and detonation velocity deficit are among the key detonation

physics observed in the mesoscale results. It is hoped that future mesoscale studies may

include shock initiation, detonation failure, reactive particles, and solid heterogeneous

explosives.

Results for particle acceleration and heating were correlated into fitting functions of

the relevant parameters to facilitate their use. Implementation into a macroscopic model

framework required developing shock compression source term models for drag force and

heat transfer rate during the shock interaction time. Application of the macroscopic

models to slurry detonation and explosive particle dispersal demonstrated not only the

utility of approach, but correctly represented the physical interactions from the underlying

mesoscale. Detonation velocity deficit, enhanced detonation flow pressure, extended steady

zone, and detonation failure diameter were achieved using macroscopic modeling with the

newly-developed shock compression models. Momentum and heat loss in the detonation

reaction zone are the mechanisms responsible for the observed detonation phenomena.

Furthermore, shock compression acceleration applied to explosive dispersal of solid particles
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displayed physically-accurate particle front trajectory and blast pressure, as compared to

experimental data. Further work is recommended to employ the shock compression models

in cylindrical explosive dispersal, and investigation of critical diameter for particle ignition.
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Permissions

Figure 1.2 was reprinted from Thermochimica Acta, Volume 384, M. R. Baer, “Modeling

heterogeneous energetic materials at the mesoscale”, Page 355, Copyright (2002), with

permission from Elsevier.

Figure 1.4(left) was reprinted with permission from AIP Conference Proceedings, Shock

Compression of Condensed Matter, “The effect of additives on the detonation charac-

teristics of a liquid explosive” by Haskins, Cook, and Briggs, Copyright 2002, American

Institute of Physics.

Figure 2.4 was reproduced with kind permission from Springer Science+Business Media:

Shock Waves an International Journal, “Experimental and numerical investigation of the

shock-induced fluidization of a particles bed”, Volume 8, 1998, Page 35, Figure 9, by Rogue,

Rodriguez, Haas, and Saurel.

Figures 1.6, 1.7, 1.8 and 2.13 are property of the Government of Canada, and were used

with permission from Defence R&D Canada – Suffield.
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