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Abstract

The Guaranteed Minimum Withdrawal Benefits (GMWBs) are optional riders provided

by insurance companies in variable annuities. They guarantee the policyholders’ abil-

ity to get the initial investment back by making periodic withdrawals regardless of the

impact of poor market performance. With GMWBs attached, variable annuities be-

come more attractive. This type of guarantee can be challenging to price and hedge.

We employ two approaches to price GMWBs. Under the constant static withdrawal

assumption, the first approach is to decompose the GMWB and the variable annuity

into an arithmetic average strike Asian call option and an annuity certain. The second

approach is to treat the GMWB alone as a put option whose maturity and payoff are

random.

Hedging helps insurers specify and manage the risks of writing GMWBs, as well

as find their fair prices. We propose semi-static hedging strategies that offer several

advantages over dynamic hedging. The idea is to construct a portfolio of European

options that replicate the conditional expected GMWB liability in a short time period,

and update the portfolio after the options expire. This strategy requires fewer portfolio

adjustments, and outperforms the dynamic strategy when there are random jumps in

the underlying price. We also extend the semi-static hedging strategies to the Heston

stochastic volatility model.

iii



Acknowledgements

I deeply thank my supervisors, Phelim Boyle and Adam Kolkiewicz, for their support,

guidance, encouragement and patience. Professor Phelim Boyle kindly led me into this

interesting and challenging research topic. Professor Adam Kolkiewicz is always more

than willing to help me with all kinds of questions and problems. Their generosity to

share encyclopedic knowledge and smart ideas as well as to provide financial support

makes my Ph.D. study a extremely valuable experience.

I would like to express my grateful thanks to my thesis committee: Carol Bernard,

Samuel Cox, Ken Seng Tan, Ken Vetzal, for carefully reading my thesis and providing

insightful comments and advices.

iv



Contents

List of Figures vi

List of Tables xii

1 Introduction 1

1.1 The Variable Annuity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 The Guaranteed Minimum Withdrawal Benefit . . . . . . . . . . . . . . . 6

1.3 Motivation and Outline of the Thesis . . . . . . . . . . . . . . . . . . . . 13

2 Pricing a Plain Vanilla GMWB 17

2.1 Notation and Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2 Pricing the GMWB in Terms of a Call Option . . . . . . . . . . . . . . . 22

2.2.1 The Evolution of the Annuity Account . . . . . . . . . . . . . . . 24

2.2.2 The Control Variate Technique . . . . . . . . . . . . . . . . . . . 28

2.2.3 Numerical Examples . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.2.4 Comparison with work by Milevsky and Salisbury . . . . . . . . . 33

2.3 Pricing the GMWB as a Put Option . . . . . . . . . . . . . . . . . . . . 36

2.4 Consistency between the two Pricing Approaches . . . . . . . . . . . . . 40

2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3 Semi-static Hedging for GMWBs 45

3.1 Implementation of the Semi-static Hedging Strategy . . . . . . . . . . . . 47

v



3.1.1 Conditional paths of the fund value . . . . . . . . . . . . . . . . . 52

3.1.2 The Account Values . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.1.3 The Expected GMWB net liability Conditional on the Index Value 58

3.1.4 The Optimal Hedging Portfolio . . . . . . . . . . . . . . . . . . . 70

3.1.5 Possible Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . 81

3.2 The Effectiveness of the Semi-static Hedging Strategies . . . . . . . . . . 91

3.2.1 Comparison of the Semi-static Hedging with Dynamic Hedging

under the Black-Scholes Model . . . . . . . . . . . . . . . . . . . 92

3.2.2 Comparison of the Semi-static Hedging with Dynamic Hedging

under the Jump-Diffusion Model . . . . . . . . . . . . . . . . . . 102

3.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4 Hedging GMWBs Under the Heston Model 111

4.1 The Heston Stochastic Volatility Model . . . . . . . . . . . . . . . . . . . 113

4.1.1 Pricing European Options Under the Heston Model . . . . . . . . 115

4.1.2 Numerical Implementation . . . . . . . . . . . . . . . . . . . . . . 117

4.1.3 The Simulation Method . . . . . . . . . . . . . . . . . . . . . . . 119

4.2 Semi-static Hedging of European Put Options under the Heston Model . 122

4.2.1 The Two Semi-static Hedging Strategies . . . . . . . . . . . . . . 124

4.2.2 Comparison with Dynamic Hedging . . . . . . . . . . . . . . . . . 133

4.3 Semi-static Hedging for GMWBs Under the Heston Model . . . . . . . . 138

4.3.1 Pricing GMWBs under the Heston model . . . . . . . . . . . . . . 139

4.3.2 Simulating conditional paths of the variance process . . . . . . . . 140

4.3.3 Simulating conditional paths of the fund value process . . . . . . 146

4.3.4 The two semi-static hedging strategies for the GMWB . . . . . . 147

4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

5 Summary and Future Research 157

Bibliography 161

vi



List of Figures

1.1 A sample path of the annuity account value process . . . . . . . . . . . . 9

2.1 The arithmetic mean strike Asian call option price . . . . . . . . . . . . . 32

2.2 GMWB benefit and charge values . . . . . . . . . . . . . . . . . . . . . . 40

3.1 Illustration of different account values conditional on a particular index

value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.2 Sample paths of the fund value given that both the initial and end fund

values are 100. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.3 The histogram of 10,000 account values at time 1 . . . . . . . . . . . . . 66

3.4 The conditional expectation of the account values at time 1 . . . . . . . . 67

3.5 The standard deviation of the account values conditional on the index

value at time 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.6 The histogram of 10,000 simulated GMWB net liabilities given the index

value of 100 at time 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.7 The conditional expected GMWB net liability L(I1) is a convex decreas-

ing function of the index value at time 1. . . . . . . . . . . . . . . . . . . 69

3.8 The probability density functions of the index value at time 1 and 0.5 . . 69

3.9 The replicating portfolio payoff and the hedging target . . . . . . . . . . 76

3.10 The replicating error under Least Squares with constraint . . . . . . . . . 76

3.11 The replicating error under Weighted Least Squares with constraint . . . 76

3.12 Illustration of the over and under hedging strategies . . . . . . . . . . . 77

3.13 The under-hedging portfolio replicating error vs. the index value at time 1 80

vii



3.14 The over-hedging portfolio replicating error vs. the index value at time 1 80

3.15 Quantiles of the expected net liability l at time 1 . . . . . . . . . . . . . 84

3.16 Quantiles of the expected net liability l at time 0.5 . . . . . . . . . . . . 84

3.17 The standard deviation of the expected net liability l . . . . . . . . . . . 85

3.18 The replicating errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

3.19 Estimated probability densities of profit/loss in one year . . . . . . . . . 100

3.20 Estimated probability densities of profit/loss in one year . . . . . . . . . 100

3.21 Sample paths of delta-hedging errors under the Kou’s jump diffusion

model in the partial hedge case . . . . . . . . . . . . . . . . . . . . . . . 106

3.22 Sample paths of delta-hedging errors under the Kou’s jump diffusion

model in the full hedge case . . . . . . . . . . . . . . . . . . . . . . . . . 106

3.23 Sample paths of delta-gamma hedging errors under the Kou’s jump dif-

fusion model in the partial hedge case . . . . . . . . . . . . . . . . . . . . 106

3.24 Sample paths of delta-gamma hedging errors under the Kou’s jump dif-

fusion model in the full hedge case . . . . . . . . . . . . . . . . . . . . . 106

3.25 Estimated probability densities of the profit/loss at time 1 in the presence

of random jumps. The hedging target is the loss part of the GMWB net

liability. withdrawals occur quarterly. The dynamic hedging position is

updated weekly. The semi-static replicating portfolio consists of six puts

and is obtained by the Least Squares. . . . . . . . . . . . . . . . . . . . . 107

3.26 Estimated probability densities of the profit/loss at time 1 in the presence

of random jumps. The hedging target is the GMWB net value, that is,

both the profit and the loss. Assume withdrawals occur quarterly. The

dynamic hedging position is updated weekly. The semi-static replicating

portfolio consists of eight puts and one call. . . . . . . . . . . . . . . . . 108

4.1 Histogram of the underlying values and variances under the Heston model128

4.2 Target option values at a future time conditional on the underlying and

the variance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

4.3 The replicating portfolio values at a future time conditional on the un-

derlying and the variance . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

viii



4.4 The replicating errors for the first strategy using WLS approach . . . . . 131

4.5 The replicating errors for the first strategy using LS approach . . . . . . 131

4.6 The replicating errors for the second strategy using WLS approach . . . . 132

4.7 The estimated probability densities of hedging errors under the Heston

model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

4.8 Comparison of the delta hedge and MV hedge . . . . . . . . . . . . . . . 137

4.9 The density ratio function with σν = 0.39 . . . . . . . . . . . . . . . . . . 145

4.10 The density ratio function with σν = 0.2476557 . . . . . . . . . . . . . . 145

4.11 The expected GMWB loss under the Heston model . . . . . . . . . . . . 150

4.12 Paths of average fund values given the index value and the variance at

the end of the year . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

4.13 The replicating errors using the first semi-static strategy for the GMWB 153

4.14 The replicating errors using the second semi-static strategy for the GMWB153

4.15 Estimated probability density of profit/loss after hedging the GMWB in

one year under the Heston model . . . . . . . . . . . . . . . . . . . . . . 154

ix





List of Tables

1.1 Sales of Annuities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 GMWB example 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3 GMWB example 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1 Prices of the GMWB by the call option approach . . . . . . . . . . . . . 33

2.2 Compare the prices with Milevsky-Salisbury’s results . . . . . . . . . . . 35

2.3 Approximating the continuous price . . . . . . . . . . . . . . . . . . . . . 36

2.4 Prices of the GMWB by put option approach . . . . . . . . . . . . . . . 42

3.1 Semi-static hedging portfolios . . . . . . . . . . . . . . . . . . . . . . . . 75

3.2 Over and Under hedging portfolios . . . . . . . . . . . . . . . . . . . . . 79

3.3 Some statistics of the replicating errors . . . . . . . . . . . . . . . . . . . 80

3.4 Comparison of hedging frequencies . . . . . . . . . . . . . . . . . . . . . 85

3.5 The full-replicating portfolios . . . . . . . . . . . . . . . . . . . . . . . . 90

3.6 Comparison of Greeks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

3.7 Simulated hedge performance comparison (partial hedge) . . . . . . . . . 101

3.8 Simulated hedge performance comparison (full hedge) . . . . . . . . . . . 101

3.9 Hedging comparison when there are random jumps (partial hedge) . . . . 108

3.10 Hedging comparison when there are random jumps (full hedge) . . . . . . 109

4.1 Semi-static replicating portfolio for a European put option under the

Heston model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

4.2 Comparison of replicating errors under the Heston model . . . . . . . . . 132

xi



4.3 Comparison of dynamic and static hedging strategies under the Heston

model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

4.4 Prices of the GMWB under the Heston model . . . . . . . . . . . . . . . 140

4.5 Semi-static replicating portfolios for the GMWB under the Heston model 152

xii



Chapter 1

Introduction

This thesis investigates pricing and hedging issues of Guaranteed Minimum Withdrawal

Benefits (GMWBs). A GMWB is a type of option or rider that can be added to a

variable annuity. It provides protection against downside market risk by allowing the

annuitant to withdraw a maximum percentage of their initial investment each year

without penalty for a fixed term or for life. It is hoped that some of the techniques

developed here will be applicable to other types of products.

A variable annuity is a retirement savings vehicle in which the benefits depend

on the performance of the investment options selected by the owner of the contract.

Typically variable annuities have a significant common stock or equity component. Since

equity returns are volatile this market uncertainty creates investor demand for floors

on returns. To meet this demand, insurers provide specific guaranteed benefits based

on the occurrence of various events such as death, annuitization, and maturity. These

guarantees protect the policyholder against both financial and mortality risk over a long

period of time. They serve to make the basic variable annuities more attractive.
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GMWBs are one of the most recent innovations in this suite of guarantees. Under

this kind of rider, the policyholder has the option to begin withdrawing a certain amount

from the account, and continue to make withdrawals no matter how poor the investment

performance of the account. The guarantee could last 10-40 years. The withdrawal

decision is made by the policyholder, and is undoubtedly influenced by the investment

performance of the fund. That being said, however, there is not enough experience to

establish accurately the determinants of this decision.

This thesis focuses on the methods of pricing and hedging, and assumes that with-

drawals are taken statically from the first year at the maximum allowed amount without

penalty. The layout of the rest of this chapter is as follows:

- Section 1 provides background information on variable annuities and the various

types of guaranteed benefits;

- Section 2 describes GMWBs in more detail;

- Section 3 discusses the research motivation, provides a brief literature review, and

outlines the structure of the thesis.

1.1 The Variable Annuity

Variable annuities can be purchased either by a single payment or a series of payments.

In this thesis, we assume the initial deposit is the only payment. Under a deferred1

variable annuity there is an accumulation period during which the account value changes

in line with the investment performance of the assets in account. There is often some

type of guarantee on the deposit (e.g., return of premiums based on some event), but

the investment performance is not guaranteed. The investment options (sub-accounts)

1We will normally omit the word deferred in the sequel.
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Introduction

offered by the insurance companies are typically mutual funds of stocks, bonds, and

money market instruments or some combination of the three.

Compared with fixed annuities, variable annuities are designed to protect against

effect of inflation on fixed incomes over the long run. Sales of variable annuities tend

to grow in a rising stock market. Sales of fixed annuities tend to move in the opposite

direction. Table 1.12 shows individual annuity sales in the last few years in the US.

Variable annuity sales rose by an average of 6.3% per annum over six years from 2001

to 2007, while fixed annuity sales grew by only 0.9% per year on average. In 2008,

variable annuity sales decreased 15.4%, but fixed annuity sales increased 50.3%.

Variable percent Fixed percent Total percent

Year Annuity change Annuity change Sales change

2001 $ 111.0 $ 74.3 $ 185.3

2002 116.6 5% 103.3 39% 219.9 18.7%

2003 129.4 11% 89.4 -13.5% 218.8 -0.5%

2004 132.9 2.7% 87.9 -1.7% 220.8 0.9%

2005 137.6 3.5% 78.9 -10% 216.5 -1.9%

2006 160.4 16.6% 78.3 -0.8% 238.7 10.3%

2007 184.0 14.7% 72.8 -7.0% 256.8 7.6%

2008 155.6 -15.4% 109.4 50.3% 265.0 3.2%

Table 1.1: Sales of total individual annuities in the US, 2001-2008 ($ billions)

Policyholders can choose what date the payout phase begins. The retirement date

is often recommended as being a good time to annuitize. Although policyholders can

annuitize later than this, insurers usually specify a maximum annuitization date. For

example, it could be the later of the policyholder’s 90th birthday or the end of the 10th

2Source: http://www.iii.org/media/facts/statsbyissue/annuities/.
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contract year. Upon annuitization, policyholders can choose to receive a lump-sum

payment or a series of monthly annuity payments. There are a number of choices of

how long the annuity payments will last. These are:

1. the lifetime of the policyholder;

2. the lifetime of the named beneficiary;

3. a specified period such as 20 years;

4. the longer of the policyholder’s lifetime or a certain period.

During the payout phase, the periodic payments may be fixed or vary based on the

performance of fund investment.

Variable annuities typically provide a guaranteed minimum death benefit (GMDB)

if the policyholder dies before receiving any income. The death benefit often equals

the greater of the account value and total premiums paid less any withdrawals. For

example, a person had paid premiums totaling $100,000, and had made withdrawals

equaling $15,000. The account value stands at $80,000 because of these withdrawals

and investment losses. If he were to die, his beneficiary would receive $85,000.

Some variable annuities have optional death benefits such as roll-up or annual ratchet

with extra charges. The roll-up feature provides a death benefit that equals the pre-

mium accumulated at a fixed interest rate. The annual ratchet feature allows for the

guaranteed minimum to be reset to the account value as of a specified date if the under-

lying funds have performed well. Using the same example, if the current account value

is $95,000, then the death benefit will be set to $95,000. The purpose of a stepped-up

death benefit is to lock in the current high investment return and protect the death

benefit against a subsequent decline in the value of the account.

Until a few years ago, the GMDB was the most popular rider for people buying

4



Introduction

variable annuities. In recent years Guaranteed Living Benefits (GLBs) have become

more popular. Insurance companies added them to attract more customers. The major

types of guaranteed benefits are: 3

1. Guaranteed Minimum Income Benefit (GMIB)

The GMIB guarantees a minimum compounding rate and a minimum level of

annuity income payment. This benefit is only applicable if the policyholder an-

nuitizes the contract.

2. Guaranteed Minimum Accumulation Benefit (GMAB)

The GMAB guarantees a minimum account value at the end of a specified period.

The policyholder has the right to renew the contract at a new guaranteed level at

that time.

3. Guaranteed Minimum Withdrawal Benefit (GMWB)

The GMWB guarantees the policyholder’s ability to get the premium back by

making periodic withdrawals regardless of the impact of poor market performance

on the account value. There is a maximum annual withdrawal amount usually

defined as 7% of premium, so the benefit period could last up to 15 years or more.

Among these benefits, the GMWB is the newest feature having been first introduced

by Hartford Life Insurance Company in 2002. It has become the most popular benefit

in the variable annuity market. More enhanced versions of GMWBs have subsequently

come into the market in the last few years. For example, the GMWB for life (or lifetime

GMWB) guarantees that the policyholder can withdraw a percentage (e.g. 5%) of the

premium from age 65 for the rest of his or her life. The joint life GMWB guarantees

benefit payments to the surviving spouse. The next section will describe the GMWB

3See Hardy (2003) for more information on some of these guarantees.
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in greater detail.

Variable annuities have many types of charges which reduce the account value, most

of which are deducted periodically from the account itself. Types of charges include:

mortality and expense risk; administrative; sub-account fees; optional guaranteed bene-

fits (e.g., GMIB, GMAB, GMWB, and ratchet GMDB). Other charges, such as surren-

der charges and fund-transferring charges, are based on specific transactions that the

policyholders make.

The surrender charge is assessed when the policyholder withdraws money from the

contract within a certain period after a purchase. This typically occurs within six to

eight years, but may even do so within ten years. Generally, the surrender charge is

a percentage of the amount withdrawn, and declines gradually over the period. For

example, a 7% charge might apply in the first year after a purchase, 6% in the second

year, 5% in the third year, and so on until the eighth year, when the surrender charge

no longer applies. A withdrawal amount below a certain level each year is often free of

charge (e.g., 10% of the account value).

1.2 The Guaranteed Minimum Withdrawal Benefit

By providing the policyholder with downside income protection from investment risk

and flexible withdrawals, the GMWB has become the most attractive optional benefit in

the variable annuity market. Two companies (AmerUs Group and American National)

even added similar lifetime income benefits on their fixed indexed annuities in 2006.

Although variable annuities are suitable saving instruments for retirement, they involve

investment risk. In addition, the policyholders face uncertainties about future income

6



Introduction

needs. The GMWB helps to reduce these uncertainties. The GMWB buyers have the

flexibility to start or stop withdrawing, and keep the contract value growing in the

sub-accounts at the same time. Variable annuities may increase income to keep up

with inflation if their returns exceed the inflation rate. However, the GMWB does not

protect against decreasing purchasing power due to inflation.

To describe the benefit features of the GMWB clearly, we define two terms: Guaran-

teed Withdrawal Balance (GWB) and Maximum Annual Withdrawal Amount (MAWA).

GWB is the total benefit amount that the policyholder can withdraw from the contract.

The initial GWB equals the single premium if the GMWB is elected at issuance of the

variable annuity. Some companies may provide a benefit amount more than the initial

investment. For example, Phoenix Life and Annuity Company offers a benefit amount

percentage of 105%. GWB will be adjusted upon additional premium payments and

withdrawals. If the GMWB is elected later, GWB equals the greater of the contract

value and the premiums paid. MAWA equals a percentage (normally 5-12%, and 7% is

common) of the initial GWB, and remains constant if no adjustments are made. The

minimum guaranteed benefit period is the initial GWB divided by the MAWA. Both

the GWB and the contract value are reduced by the amount of withdrawal when the

amount is no more than the MAWA. The policyholder can withdraw a larger amount

than the MAWA, which may reduce the GWB by more than the amount of the with-

drawal. The excess withdrawal amount will be subject to applicable surrender charges.

The MAWA may also be reduced based on the new account value.

It is helpful to use a numerical example to illustrate the calculation of the GMWB

benefit. Assume a GMWB guarantees a maximum annual withdrawal amount at 7%

of premiums paid, and the variable annuity is a single premium deferred annuity. A

7



policyholder elects the GMWB at the beginning of the contract with an initial invest-

ment of $ 100,000. The GWB is $100,000, and the MAWA is $7,000. We assume the

policyholder withdraws $7,000 at the end of each year. Hence, the total guaranteed

payments last for a period of 15 years. In Table 1.2, we have assumed one set of annual

net investment returns to highlight the structure of the GMWB. Figure 1.1 shows how

the account value and the GWB change every year. In reality, there could be thousands

of different scenarios.

Contract Investment Fund before Annual Fund after Remaining
year return withdrawal withdrawal withdrawal benefit(GWB)

1 5% 105,000 7,000 98,000 93,000
2 5% 102,900 7,000 95,900 86,000
3 10% 105,490 7,000 98,490 79,000
4 5% 103,415 7,000 96,415 72,000
5 10% 106,056 7,000 99,056 65,000
6 -20% 79,245 7,000 72,245 58,000
7 -10% 65,020 7,000 58,020 51,000
8 -10% 52,218 7,000 45,218 44,000
9 5% 47,479 7,000 40,479 37,000
10 -20% 32,383 7,000 25,383 30,000
11 -10% 22,845 7,000 15,845 23,000
12 -20% 12,676 7,000 5,676 16,000
13 5% 5,960 7,000 0 9,000
14 5% 0 7,000 0 2,000
15 5% 0 2,000 0 0

Table 1.2: Example of the GMWB, full utilization, hypothetical returns

The market’s performance affects the policyholder differently under the GMWB. If

the market performs strongly, the policyholder can end up with positive account value

and GWB. The GMWB put option has no payoff in this case. If the market performs

poorly, the policyholder can get the guaranteed withdrawal benefit even though the

total investment return is negative. The insurer is responsible for the shortfall, that

8
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Figure 1.1: A sample path of the annuity account value process

is, the payoff of the GMWB option. The GMWB protects policyholders’ investments

in a long drawn-out bear market. The above example shows the latter of the two

scenarios. After the first year net return of 5%, the fund grows to $105,000, then the

policyholder withdraws $7,000. The account value is reduced to $98,000 by the amount

of withdrawal, and the GWB is reduced to $93,000. The next year the fund grows from

$98,000 to $102,900. We assume very poor returns in some later years, and the account

value becomes zero at the end of year 13, then the variable annuity contract terminates

and the policyholder continues to receive the remaining guaranteed withdrawal benefits

for 2 years. The GMWB starts paying off from contract year 13. In the real world, the

payoff time of the GMWB is random. It could be any contract year before annuitization.

To encourage policyholders to defer taking advantage of the GMWB, insurers some-

times offer bonuses to policyholders who make no withdrawals during the first five years.

For example, if the policyholder waits for three years before making a withdrawal, then
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a 5% simple interest per annum will be credited to the GWB, which increases the GWB

from $100,000 to $115,000. In this case, the maximum annual withdrawal amount

increases to $8,050 per year. If he waits for five years, then the GWB increases to

$125,000, and he can withdraw $8,750 per year after year five.

Another contract feature, known as the step-up option, enables the policyholder

to reset the guaranteed withdrawal balance to the current higher account value when

investment performance is strong. By choosing to step up, the policyholder is able to

increase the total benefit amount and the maximum annual withdrawal amount. Ac-

cordingly, the period of time over which withdrawals can be taken is extended. Insurance

companies may have different rules about the time of exercising the step-up option. For

example, the policyholder can only choose to step up the benefit amount every five years

with a possible 30-day window. The option may reduce the inflation effect on incomes

when the account value goes up and the step-up option is available. The charge will

increase upon step-up election by 20 to 40 basis points. Assume the step-up option is

available every five years. At the end of year five, the account value after withdrawal

totaling $99,056 exceeds the GWB $65,000, so the policyholder chooses to step up. The

GWB is reset to the account value $99,056, and the MAWA remains at $7,000. It is not

optimal to step up after that. Hence, the policyholder keeps withdrawing $7,000 every

year till the benefit is depleted in year 20. Table 1.3 shows the cash flows for this case.

The fee structure has an impact on the GMWB price. The GMWB charge is de-

ducted from the contract value periodically. It could be a percentage of the current

account value. It could also be a percentage of the initial premium or a percentage

of the remaining guaranteed benefit amount, or the greater of these two. The annual

charge ranges from 20 to 75 basis points depending on the nature of the benefit. Typ-
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Introduction

Contract Investment Fund before Annual Fund after Remaining
year return withdrawal withdrawal withdrawal benefit(GWB)

1 5% 105,000 7,000 98,000 93,000
2 5% 102,900 7,000 95,900 86,000
3 10% 105,490 7,000 98,490 79,000
4 5% 103,415 7,000 96,415 72,000
5 10% 106,056 7,000 99,056 99,056
6 -20% 79,245 7,000 72,245 92,056
7 -10% 65,020 7,000 58,020 85,056
8 -10% 52,218 7,000 45,218 78,056
9 5% 47,479 7,000 40,479 71,056
10 -20% 32,383 7,000 25,383 64,056
11 -10% 22,845 7,000 15,845 57,056
12 -20% 12,676 7,000 5,676 50,056
13 5% 5,960 7,000 0 43,056
14 r% 0 7,000 0 36,056
15 r% 0 7,000 0 29,056
16 r% 0 7,000 0 22,056
17 r% 0 7,000 0 15,056
18 r% 0 7,000 0 8,056
19 r% 0 7,000 0 1,056
20 r% 0 1,056 0 0

Table 1.3: Example of the GMWB with step-up feature

ically, the price in basis points based on the account value is lower than the price in

basis points based on guaranteed benefit if there is no step-up option. With the step-up

feature, the relationship would be reversed. The charge is subtracted from each sub-

account in the same proportion as the sub-account investment to the account value. If

the charge is based on the account value, insurers typically deduct it on a daily basis.

Some do so on an annual basis of the average daily net asset value of sub-accounts. If

the charge is based on the GWB, insurers deduct it quarterly or yearly since the GWB

is less volatile than the account value.

The newly-introduced lifetime GMWBs provide guaranteed annual income until
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death. The policyholders are also able to access potentially increased account val-

ues and control the asset allocation in ways that the traditional variable annuitization

normally does not allow. Consequently, variable annuities with lifetime GMWBs are

becoming very popular. The lifetime GMWBs usually have two options: single life or

joint spousal life. For the single life option, the benefit payments end at the death of

the person covered. For the joint spousal life option, the benefit payments end when

the remaining spouse dies. The charges for the lifetime GMWBs are usually based on

the benefit balance or the greater of account value and benefit balance. The fee rate

for the single life option ranges from 40 to 75 basis points, while the spousal life option

tends to be 10-20 basis points higher.

For the single life option, a spouse continuation option is available upon the first

death with the same charge, but the account value and the benefit amount may be

adjusted. For the joint spousal life, there will be no recalculation of the benefit amount

when the first death occurs. The annual benefit payment amount is a percentage of

the initial guaranteed benefit amount. Although normally ranging from 4% to 7%, it

often lies at 5%. Many companies vary the percentage with the policyholders’ age when

they take the first withdrawal. The older the policyholder is, the larger the withdrawals

will be. For example, the MAWA is 5% if the attained age is 60 upon first withdrawal,

and 6% if the attained age is 70. The lifetime GMWB could also include a GMDB.

For example, the Hartford Insurance Company offers these riders. The lifetime GMWB

may include an automatic annual step-up option to provide inflation protection. But

for some contracts, step-up option has to be elected.

To limit the risks undertaken, the insurers impose several limits on the rider: max-

imum/minimum issue age limits (e.g., 80/50), required annuitization age limits (90),
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Introduction

and policy size limits (5, 000 ∼ 1 million).

1.3 Motivation and Outline of the Thesis

The motivation for this thesis is that GMWBs give rise to many interesting problems.

Basically, a GMWB is a specialized long-term put option sold by insurance companies.

The payoff is triggered when the account value is not enough to pay the withdrawal

amount. The payoff is the remaining guaranteed benefit which is distributed in equal

periodic payments at the maximum withdrawal amount without penalty. The payoff

time depends on the path of the fund value and the withdrawal pattern. On the other

hand, the total value of the GMWB charges also depends on the path of the account

value. The GMWB charge rate affects the total charge value, the account value, and the

GMWB benefit payoff. The fair price is the charge rate that makes the expected benefit

value equal to the expected charge value. Since both the expected value of the GMWB

benefit and charges are path-dependent, hedging GMWBs is a complex problem.

There has been little academic research analyzing this product. Milevsky and Sal-

isbury (2006) price the GMWB under both the deterministic withdrawal assumption

and the dynamic lapse assumption. They claim that the true value of the GMWB

lies somewhere between the two prices based on the two assumptions. The prices they

calculate are much higher than the prevalent rates in the market. We use the same

static assumptions and a similar decomposition approach, and obtain prices that are

close to the market prices. This discrepancy motivates us to study the product more

thoroughly. Bauer et al. (2008) present a general framework to value several types of

guarantees in variable annuities. They take mortality and surrender into consideration

and give numerical examples with several withdrawal patterns. Their assumptions are
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different than ours, and the calculated guarantee fees are lower than the market prices.

They claim that the guarantee fee would be much higher with an optimal withdrawal

strategy, but they did not describe the optimal strategy. Dai et al. (2008) construct

singular stochastic control models for pricing GMWBs under both continuous and dis-

crete frameworks. They analyze the impact of various model parameters on the GMWB

fee and the optimal withdrawal behaviors of the policyholders who either withdraw a

discrete amount or withdraw at the guaranteed rate continuously. Chen et al. (2008)

have studied the effect of mutual fund fees and sub-optimal withdrawal behavior on the

value of the GMWB, and the effects of various modeling assumptions on the optimal

withdrawal strategy. Their conclusions are that only if several unrealistic modeling

assumptions are made is it possible to obtain GMWB fees in the same range as is

normally charged. In all other cases, typical fees are not enough to cover the cost of

hedging these guarantees. Peng et al. (2009) have developed model formulations of the

price function and ruin probability, and derived analytic approximation solutions to the

pricing formulations, with interest rate risk.

In this thesis, we focus on hedging strategies for GMWBs as well as pricing methods.

More specifically, we propose semi-static strategies that are not affected by price jumps

and are robust to model misspecification risk. The idea of static hedging has been

discussed by Carr and Wu (2004) for European options, but very little work has been

done for the case of path-dependent options. GMWBs have some path dependence so

it is more challenging.

The stock market was very volatile in October 2008. The realized daily volatility

of the S&P500 index over that month was 78%, and the interest rates fell to historic

lows. Turnbull (2008) shows that the delta-hedging strategy for GMWBs could incur
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Introduction

a big hedging loss in this short time period, which is equivalent to several years of

the anticipated profit from the variable annuities. The semi-static hedging strategies

can overcome the limitations of the delta-hedging strategy. In addition, we propose

two semi-static hedging strategies under the Heston model. There is evidence showing

that stock price volatilities change over time,4 but there are few publications on static

hedging under a stochastic volatility model.

The remaining balance of the thesis is organized as follows:

In Chapter 2, we explore two approaches to price the GMWB under the Black-

Scholes model. The first approach decomposes the variable annuity and the GMWB

into an annuity certain and a floating-strike Asian call option. The call option value is a

function of the GMWB charge rate. The price of the GMWB is obtained by solving the

decomposition equation numerically. The second approach treats the GMWB as a put

option with a random payoff time. Both the benefit put option value and the GMWB

charge value depend on the GMWB charge rate. The price is the charge rate that makes

the two values equal. Prices that we get from the two approaches are consistent with

those in the market.

In Chapter 3, we propose a semi-static hedging strategy which provides protection

against random jumps in the fund value. The idea is to replicate the expected GMWB

loss with standard options in a short time period. We assume the underlying fund can be

4See Hull (2006, Ch. 15), Hardy (2003, Ch. 2). This can also be seen from a stock market volatility
index (VIX). VIX is the expected return volatility of the S&P 500 index over the next 30 days. It is
implied from the prices of S&P 500 index options. The following table quotes the VIX values in 2007
and 2008. The current VIX values are high, but historically they have not been persistently high.

2008 Dec Nov Oct Sep Aug Jul Jun May Apr Mar Feb Jan
Value of VIX 40.0 55.3 59.9 39.3 20.7 22.9 24.0 17.8 20.8 25.6 26.5 26.2

2007 Dec Nov Oct Sep Aug Jul Jun May Apr Mar Feb Jan
Value of VIX 22.5 22.9 18.5 18.0 23.4 23.5 16.2 13.1 14.2 14.6 15.4 10.4
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modeled by an index. We explain how to simulate the expected GMWB loss conditional

on the index value at a future time, and how to obtain the optimal portfolio weights.

At the beginning of the hedging period, we set up this replicating portfolio. Within the

hedging horizon, there is no need to rebalance the portfolio. At the end of the hedging

period, we construct a new replicating portfolio based on the new account value. Our

studies show that the semi-static hedging strategy is comparable with delta hedging

under the Black-Scholes model, and outperforms delta hedging under a jump-diffusion

model.

In Chapter 4, we implement two semi-static hedging strategies under the Heston

stochastic volatility model. The first strategy utilizes a replicating portfolio with a

maturity that is longer than the hedging period but shorter than the target maturity.

The second strategy uses a replicating portfolio that will expire at the end of the hedging

period. Under strategy one, the volatility risk is mitigated to some extent because the

portfolio value changes with the volatility at the end of the hedging period. The values

of the hedging target and the replicating portfolio are computed conditional on the

index value and the volatility at the end of the hedging period. Under strategy two, the

portfolio payoff depends on the index value only. The expected GMWB loss is computed

based on the index value and the mean variance conditional on the index value at the

end of the hedging period. For European options, semi-analytical formulas exist under

the Heston model. For GMWBs, we apply an efficient simulation method to estimate

the hedging target at the end of the hedging period. Our conclusion is that semi-static

hedging strategies perform well under the Heston model.

We end with suggested topics for future research in Chapter 5.
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Chapter 2

Pricing a Plain Vanilla GMWB

This chapter sets up a basic framework to price a plain vanilla GMWB, the simplest

version of GMWBs. As described in Chapter 1, most insurance companies charge for

the GMWB rider by deducting an ongoing fee as a percentage of invested assets instead

of an up-front fee. Both the GMWB benefit value and the total amount of fee change

with the asset value and many other factors. We start with simple assumptions to

identify factors that influence the price of the GMWB and analyze their relationship.

Pricing a plain vanilla GMWB helps us understand the structure in a simple setting,

and provide a benchmark for future analysis. The plain vanilla GMWB has no bonus

or step-up feature. This contract is designed for an individual annuitant, and the total

dollar amount that can be withdrawn is fixed at inception. In addition, we make the

following assumptions in this chapter:

• No lapses or mortality decrements considered here.

• The underlying reference portfolio has a lognormal distribution.

• Interest rates are constant.
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• The amount withdrawn each period is equal to the maximum amount permitted

under the contract that does not attract any surrender penalty.

• The maturity of the contract is determined as the time when the guaranteed total

benefit amount is withdrawn.

Under these assumptions, we can price the GMWB in terms of a call option. A

variable annuity with a GMWB can be viewed as a term certain annuity, plus a call

option on the positiveness in the account value at maturity. Since we assume that all

policyholders fully utilize the GMWB from the first contract year until the end, and

that there are no surrenders or deaths, the call option has a fixed exercise time at

maturity, which makes it easier to value. In addition, we are able to use the control

variate technique to improve simulation efficiency based on the assumption of constant

withdrawals. The cash flows from the term certain annuity are fixed, making its present

value easily calculable.

More generally, the GMWB is a put option on the variable annuity account with a

random exercise time. When the current account value is higher than the forthcoming

withdrawal amount, the amount withdrawn is from the policyholder’s account itself. In

other words, the insurer has no payoff liability under the GMWB at this time. But

once the account value is not sufficient, it will be set to zero after the withdrawal. The

contract is then closed, and the remaining guaranteed payments will be paid by the

insurance company. The payoff of the GMWB is the present value of those remaining

guaranteed payments when the account value becomes zero. This put option approach

allows for dynamic withdrawals, but we can not use the control variate technique any

more.

This chapter is organized as follows: We begin with notation and assumptions in
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Section 2.1. In Section 2.2, we explain the call option approach to price the plain

vanilla GMWB. The call option price can be simulated efficiently using a control variate

method. In Section 2.3, we describe the put option approach to price the GMWB. This

approach is straightforward, and can be used to check the call option approach. In

Section 2.4, we examine the consistency between these two pricing approaches with

numerical examples. We end this chapter with a brief summary in Section 2.5.

2.1 Notation and Assumptions

Let us first define notation and make assumptions. Denote the issuance time of the

annuity contract as time 0. We assume the initial investment is the only premium

payment. The account value is denoted by At at time t. The initial value of the account

balance is A0. The initial deposit is assumed to be invested in a fund whose value at

time t is St. We ignore any up-front charges. The initial account value can be expressed

as α units of the fund, A0 = αS0. For simplicity, we let α = 1 from now on.

We use the assumptions of the Black-Scholes model. Under the real-world probabil-

ity measure P , the fund value process {St} is assumed to satisfy the following stochastic

differential equation

dSt = (µ− q)Stdt + σStdWt, (2.1)

where µ is the instantaneous expected return, q is the charge rate of the GMWB, σ is

the volatility, and {Wt} is a standard Brownian motion with mean 0 and variance t.

It is appropriate to price the GMWB under the risk-neutral measure because it gives

a unique arbitrage-free price in a complete market. The drift term of the stochastic

differential equation is then changed to risk-free interest rate minus the GMWB fee
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rate, (r − q), under the risk-neutral measure Q.

We assume the GMWB option is elected at time 0. The GMWB guaranteed with-

drawal rate is denoted by g, and the guaranteed MAWA is denoted by w = g ∗A0. The

actual annual withdrawal amount is assumed to be equal to w and the withdrawals last

for T years from time 0,

T =
A0

w
=

1

g
. (2.2)

We assume that GMWB charges are continuously deducted from the account value.

Since all the withdrawal amounts are assumed not to exceed w, there will be no with-

drawal penalty or surrender charge. We assume that policyholders make a withdrawal

at the end of each time period, and that there are no surrenders or deaths during the

term of the contract. If we use quarterly time steps, then the length of a single period

is h = 1
4
. Each withdrawal amount is equal to w · h, and the total number of time steps

is

N =
[ T

h

]
.

Note that the account value is reduced by each withdrawal, but it can never fall

below zero. Once withdrawals deplete the annuity account, the account value will be

set to zero and remain zero for the rest of the term. To price the GMWB, it is helpful to

introduce a so called shadow account Bt which keeps track of the fund performance until

the maturity regardless of whether the actual account has terminated or not. When

the actual account value At is larger than zero, the shadow account has the same value

as the actual account. The shadow account value becomes negative when the actual

account value At is set to zero. This will make it easy to recognize the liability after
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the annuity account value reaches zero. Their relation can be expressed as:

At = max(Bt, 0). (2.3)

For both pricing approaches, the fair charge rate of the GMWB will satisfy an

equation of the form

f(q∗) = 0. (2.4)

For the call option approach, the function f is equal to the initial contract value minus

the present value of the decomposed annuity certain and the price of the Asian call

option. For the put option approach, the function is the difference between the expected

present values of the benefit payoff and charges. The explicit forms of f are given by

equations (2.14) and (2.32) respectively.

There is no analytic solution for the pricing equation, but we can use numerical

methods to solve for the price. For example, the bisection method is simple and will

not fail. If the function f is monotone and approximately linear around the true price,

we can use the interpolation method. As shown in Sections 2.2 and 2.3, the pricing

functions do have these features. We first pick two charge rates q1 and q2 that satisfy

f(q1)f(q2) < 0.

We then search for the fair value of the charge q∗ by linear interpolation between q1 and

q2.
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2.2 Pricing the GMWB in Terms of a Call Option

In this section, we use a call option decomposition approach to price the GMWB. A

similar decomposition was also used by Milevsky and Salisbury (2006). In Section 2.2.1,

we show how to decompose the contract into a call option, plus an annuity certain, and

how to price the call option. In Section 2.2.2, we introduce a control variate technique

to compute the price of a floating strike Asian call option. Section 2.2.3 provides

numerical examples, and compares our results with those obtained by Milevsky and

Salisbury (2006).

The variable annuity and the GMWB together are equivalent to an annuity certain,

plus a call option. We assume the policyholder withdraws wh at the end of each time

step if the account value is positive. When the account value becomes zero, the poli-

cyholder will continue to receive wh at the end of each time step for N times in total.

This series of N payments is equivalent to the cash flows from a T -year annuity certain

with a periodical payment of wh. At maturity, the policyholder may have a positive

account balance

AT = max (BT , 0) . (2.5)

The balance can be seen as a call option payoff.

The account value A behaves differently from a normal equity investment. To under-

stand this, suppose that the initial account value is invested in a non-dividend-paying

stock S (S0 = A0). A European call option on this stock with a strike price of zero

has the same payoff as max(ST , 0) at maturity T , which is equal to ST . Therefore, this

call option should have a market value that is equal to the initial stock price S0 and

the initial account value A0. But for the call option that we are interested in, this is

not the case. The market value of the option is certainly less than the initial account
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value A0. This is because the annuity account has fees and withdrawals deducted peri-

odically. The fee rate q is similar to a continuous dividend rate on an equity portfolio.

But withdrawals are taken by the policyholder at a fixed amount that does not change

with the account value.

The present value of the annuity certain is equal to

wa
(1/h)

N
=

N∑
i=1

wh e−rih = wh
1− e−rT

erh − 1
. (2.6)

Note that this annuity certain does not depend on the account value. Under the risk-

neutral measure Q, the market value of the call option at time zero is given by

VC = EQ

[
e−rT max(BT , 0)

]
. (2.7)

All the cash flows from the annuity certain and the call option are financed by the

initial premium. From the no-arbitrage pricing theory, the present value of the annuity

certain, plus the expected present value of the option payoff, should be equal to the

initial account value. We have the following equation:

wa
(1/h)

N
+ EQ

[
e−rT max(BT , 0)

]
= A0. (2.8)

The charge rate q affects the account value At, so the expected present value of the

call option VC is a function of q. The fair value of charge q∗ must satisfy the following

equation:

wa
(1/h)

N
+ VC(q∗)− A0 = 0. (2.9)
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2.2.1 The Evolution of the Annuity Account

In this subsection, we model the evolution of the account value to explain the call option

decomposition. We will show how to simplify some aspects of the call option formula

by using the fact that the returns in each period are assumed to be independently and

identically distributed.

Let the accumulation factor on the fund during time interval
[
(i− 1)h, ih

)
be Xi,

Xi =
Si

Si−1

, i = 1, 2, . . . , N.

We first ignore the GMWB fee and consider the guaranteed withdrawal payments only.

The fee can be deducted continuously by modifying the drift term of the fund process.

If the insurer deducts the fee with different frequencies, then the account value needs to

be modified accordingly. When the policyholder withdraws, the insurer sells some units

of the fund to make the payment. The total value of funds sold is equal to the amount

withdrawn. The annuity account balance right after each withdrawal is expressed as:

Ai = max (Ai−1Xi − wh, 0) , i = 1, 2, . . . , N. (2.10)

where wh = A0

N
= S0

N
.

The shadow account value has a close relationship with the actual account value

as stated in equation (2.5). For the purpose of pricing, it is convenient for us to deal

with the shadow account process B. The shadow account value after each withdrawal

is given by

Bi = Bi−1Xi − wh = Bi−1Xi − A0

N
, i = 1, 2, . . . , N. (2.11)
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Note that the shadow account can be negative. For example, if the withdrawal amount is

$1,000 and the current account balance is $ 600, then the account value after withdrawal

will be set to zero while the insurance company has a liability of $400. This example

can be expressed by the following notation:

wh = 1000,

Ai−1Xi = Bi−1Xi = 600,

Ai = 0,

Bi = −400.

The shadow account balance at maturity can be written as:

BN = BN−1XN − A0

N

=
(
BN−2XN−1 − A0

N

)
XN − A0

N
...

= A0

N∏
i=1

Xi − A0

N
(1 + XN + XNXN−1 + · · ·+

N∏
i=2

Xi)

= S0

N∏
i=1

Xi − S0

N
(1 + XN + XNXN−1 + · · ·+

N∏
i=2

Xi). (2.12)

The first term on the right-hand side corresponds to the maturity value of the underlying

fund. The second term has the form of an arithmetic average of the fund values, but

the random variables are not in the usual order. This order causes no difficulty if we

just want to simulate the payoff using Monte Carlo. However, we now show how to

replace this expression with a similar one that will be more convenient for use with a

control variate. We now define a new vector of independent random variables Y whose
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elements have the same values as X except with reverse order:

Y1 = XN ,

Y2 = XN−1,

...

YN = X1.

That is, random variables Y and X have the same distribution. Then we can treat the

random vector Y as another set of accumulation factors on the fund over all the time

steps

Y1 =
S1

S0

,

Y2 =
S2

S1

,

...

YN =
SN

SN−1

.

Furthermore, the product
M−1∏

k=1

XM−k

is equal in distribution to the product

M−1∏

k=1

Yk, for 2 ≤ M ≤ N + 1.

The second term of equation (2.12) can be rewritten as an average of the fund unit

values from time zero to time T − h. Thus, the option we are interested in becomes a
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floating strike price Asian call option. The strike price is the arithmetic average of N

fund values from time zero to time (N − 1)h. The call option is easier to value in terms

of this form:

EQ

[
max(BN , 0)

]

= EQ

[
max

(
S0

N∏
i=1

Yi − S0

N
(1 + Y1 + Y1Y2 + · · ·+

N−1∏
i=1

Yi), 0
)]

= EQ

[
max(SN − 1

N

N−1∑
i=0

Si, 0).
]

(2.13)

Note that the account value is reduced by the GMWB charge. If we assume the

charge is deducted continuously, then we can modify the return of the fund, and the

above derivation still applies. To obtain the fair price of the GMWB, we only need to

solve the following pricing equation:

A0 − wa
(1/h)

N
− e−rT EQ

[
max(SN − S̄A, 0)

]
= 0, (2.14)

where S̄A =
1

N

N−1∑
i=0

Si.

The first two terms in equation (2.14) are constant; the call option price changes with

the charge rate q. As the charge rate increases, the account value will be lower, so the

call option value will decrease. Suppose that the return on the underlying fund follows

a log normal distribution

ln
ST

S0

∼ N
(
µT, σ

√
T

)
,

where µ and σ are constant parameters. Under the risk-neutral measure Q, we have

µ = r−q− 1
2
σ2. As far as we know, there is no closed-form formula to compute the price
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of this call option. We will use a simulation approach to approximate it. Moreover, we

can reduce the simulation error by using the control variate method.

2.2.2 The Control Variate Technique

In this subsection, we explain how to compute the call option price using the control

variate technique. As one of the variance reduction techniques in Monte Carlo sim-

ulation method, this technique has been discussed in many books, for example, Hull

(2006); Glasserman (2003).

To price the GMWB, we estimate the price of the floating strike arithmetic Asian

option using Monte Carlo simulation. Kemna and Vorst (1990) first proposed to price

Asian options based on the geometric average price. Boyle et al. (1997) compared

the performances of several variance reduction methods (the antithetic variate, the

control variate and the moment matching methods) to that of the traditional Monte

Carlo method. They showed by simulation that the control variate method is the most

efficient for valuing an Asian call option.

Boyle (1993) explicitly gave the pricing formula for continuous average Asian option.

For our problem, the geometric mean strike Asian call option has a payoff at maturity

T given by

max
(
SN − S̄G, 0

)
,

where S̄G =
∏N−1

i=0 S
1
N
i . The GMWB fee can be incorporated in the Black-Scholes

formula as a continuous dividend. That is, we can deduct the charge rate q from the

expected return of the underlying fund. Then the pricing formula for the floating strike
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geometric Asian call is given by

CG = S0e
−qT N(d1)−KN(d2) (2.15)

where (2.16)

d1 =
ln S0

K
+ (−q +

σ2
3

2
)T

σ3

√
T

,

d2 = d1 − σ3

√
T ,

The formula is based on the moments of the underlying price and the moments of the

geometric average of the asset price. The inputs to the formula are calculated as

K = S0e
−rT µ2,

σ3 =
√

Σ2
1 + Σ2

2 − 2ρΣ1Σ2 = σ
((N + 1)(2N + 1)

6N2

) 1
2
,

where Σ1 = σ,

Σ2
2 =

1

T
ln

(
1 +

σ2
2

µ2
2

)
= σ2 (N − 1)(2N − 1)

6N2
,

ρ =
1

TΣ1Σ2

ln

(
1 +

Cov12

µ1µ2

)
,

Cov12 = µ1µ2

(
exp

{σ2

2
(N − 1)h

}− 1
)
,

µ1 = E
[ST

S0

]
= eT (r−q),

σ2
1 = V ar

[ST

S0

]
= µ2

1

(
eTσ2 − 1

)
,

µ2 = E

[(N−1∏
i=1

Yi

)1/N
]

= exp
{(N − 1)

2
µh +

σ2

2

(N − 1)(2N − 1)

6N
h
}

,

σ2
2 = V ar

[(N−1∏
i=1

Yi

)1/N
]

= µ2
2

(
exp

{
σ2 (N − 1)(2N − 1)

6N
h
}
− 1

)
,

µ = r − q − σ2

2
.
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For a given value of the GMWB charge rate, we calculate the formula value of the

geometric mean strike call option. The second step is to simulate the present values

of the geometric mean strike call option ĈG and the arithmetic mean strike call option

ĈA. Suppose we generate M scenarios of fund returns over T years. The value of the

arithmetic mean strike call option simulated using Control Variate technique is denoted

by C∗
A,

C∗
A = ĈA + β(CG − ĈG), (2.17)

where β can be estimated from the first M1(M1 ¿ M) simulated option values. We

then use the estimated β̂ and the remaining (M −M1) simulated option values to get

C∗
A. The standard error of C∗

A is much lower than that of ĈA.

We are now ready to solve the pricing equation for q:

A0 − w a
(1/h)

N
− C∗

A(q) = 0. (2.18)

Note that A0 and w a
(1/h)

N
are constant, the shape of the left hand side of the pricing

equation (2.18) is determined by C∗
A(q). From no arbitrage considerations, the price

of the floating strike arithmetic Asian option is a decreasing function of the fee rate

q. Hence, we should be able to find a unique solution for equation (2.18). There is no

explicit expression for the solution q∗ since the option value is calculated by simulation

and it depends on q. The bisection method and interpolation method can be used.

The Monte Carlo simulation method is accurate but time-consuming. Levy (1992)

uses a moment-matching approach to approximate the sum of lognormal random vari-

ables with a log-normal random variable. By assuming the average strike price S̄A is

a lognormal random variable, we can use the pricing formula (2.16) to obtain a quick
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approximation. The inputs are given as follows

K = S0e
−rT µ2, (2.19)

σ2
3 = Σ2

1 + Σ2
2 − 2ρΣ1Σ2, (2.20)

µ2 = E
[ S̄A

S0

]
=

1

N

N−1∑
i=0

e(r−q)ih =
1− e(r−q)T

N(1− e(r−q)h)
,

Σ2
2 =

1

T
ln E

[
(
S̄A

S0

)2
]
− 2

T
ln µ2,

E
[
(
S̄A

S0

)2
]

=
1

N2

N−1∑
i=0

N−1∑
j=0

exp
{
(r − q)(i + j)h + σ2(i ∧ j)h

}
,

ρΣ1Σ2 =
1

T
ln E

[SN S̄A

S2
0

]
− 1

T
ln(µ1µ2),

E
[SN S̄A

S2
0

]
=

µ1

N

N−1∑
i=0

exp
{
(µ +

σ2

2
)ih + σ2ih

}
.

2.2.3 Numerical Examples

This section applies the method that has been discussed to some simple GMWB exam-

ples. The following assumptions are made:

Initial premium A0 = S0 = 100,

Risk-free interest rate r = 5%,

Volatility of fund return σ = 20%,

Guaranteed annual withdrawal rate g = 5%, 6.666̇%, 10%,

Maturity T = 20, 15, 10,

Length of time interval h = 1, 1/4, 1/12.
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For more frequent withdrawals, we divide the maximum annual withdrawal amount into

equal amounts according to the length of time interval, then deduct that amount from

the account value at the end of each time interval.

The arithmetic mean strike Asian call option is a monotone decreasing function of

the GMWB fee rate q. For example, Figure 2.1 shows their relationship for the ten-

year contract with monthly withdrawals. The fair price can be solved numerically by a

standard function such as fsolve in Matlab.
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Figure 2.1: The arithmetic mean strike Asian call option price C∗
A vs. the GMWB fee

rate q. (S0 = 100, T = 10, w = 10, h = 1/12, r = 5%, σ = 20%)

Table 2.1 gives the charge rates for each GMWB computed from Monte Carlo simula-

tion (MC Simu) method and the lognormal approximation (LN Appr) method. The log-

normal approximation method is used to get estimates because the simulation method

is very time-consuming. As the guaranteed withdrawal rate g rises, the GMWB benefit

value increases, and therefore the charge q goes up too. As we can see, the charge rate

becomes a little higher as the frequency increases. This is because the present value of

the guaranteed withdrawal benefit becomes larger as more values are withdrawn ear-
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lier. The standard deviation of the charge rate q, reported in parentheses, is obtained

from a sample of q by repeating the pricing process for several times (e.g., 1000). The

lognormal approximation method overestimates the left tail of the distribution of the

sum of lognormal variables. Therefore, the arithmetic average floating strike Asian call

option is overpriced by the lognormal approximation method, and the GMWB fee is

underestimated. The error for a 15-year quarterly withdrawal GMWB is about 10 basis

points. The error goes up as the maturity T and withdrawal frequency h increase.

GMWB Maturity Computing the Length of the Time Step

rate Approach h = 1 h = 1/4 h = 1/12

g T (yrs) aN q (bps) a
(4)

N
q (bps) a

(12)

N
q (bps)

5% 20 MC Simu 61.64 27.65 62.82 28.33 63.08 28.49

(0.05) (0.05) (0.05)

LN Appr 19.95 19.85 19.83

6.666̇% 15 MC Simu 68.61 47.52 69.91 48.89 70.20 49.21

(0.05) (0.05) (0.05)

LN Appr 38.72 38.95 39.01

10% 10 MC Simu 76.74 92.41 78.20 95.80 78.53 96.63

(0.06) (0.06) (0.06)

LN Appr 83.15 84.83 85.24

Table 2.1: The fair charge q of the GMWB solved by the call option approach. “MC
Simu” represents the Monte Carlo simulation method with control variate technique.
We use 106 scenarios. The lognormal approximation method is denoted by “LN Appr”.
(r = 5%, A0 = 100, σ = 0.2)

2.2.4 Comparison with work by Milevsky and Salisbury

Milevsky and Salisbury (2006) provide a similar static pricing approach. One of their
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assumptions is different from ours. They assume that withdrawals are continuous at

rate w = A0

T
. Their pricing equation is:

e−rT EQ

[
max

(
0, ST − S0

T

∫ T

0

ST

St

dt
)]

+
w

r
(1− e−rT ) = S0. (2.21)

We assume discrete withdrawals, so our pricing equation is:

e−rT EQ

[
max

(
0, SN − 1

N

N−1∑
i=0

Si

)]
+

w(1− e−rT )
erh−1

h

= S0. (2.22)

In continuous time, our pricing equation becomes:

e−rT EQ

[
max

(
0, ST − 1

T

∫ T

0

Stdt
)]

+
w

r
(1− e−rT ) = S0. (2.23)

The only difference between expressions (2.21) and (2.23) is the second term in the

big square bracket. We can show that they are equal. Under the risk-neutral measure

Q, we can write:

ST

St

= exp{−(r − σ2

2
)(T − t) + σ(WT −Wt)}. (2.24)

Using the independence property of Brownian motion we have:

S0

T

∫ T

0

ST

St

dt =
S0

T

∫ T

0

exp{−(r − σ2

2
)(T − t) + σWT−t}dt,

=
1

T

∫ T

0

S0 exp{−(r − σ2

2
)u + σWu}du, let u = T − t,

=
1

T

∫ T

0

Sudu. (2.25)
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Hence, our continuous pricing equation is the same as that used by Milevsky and Sal-

isbury (2006). The solutions of the equations should also be the same.

In Table 2.2, we compare our pricing results, qY , with those obtained by Milevsky

and Salisbury (2006), qMS. Under the same interest rate and volatility assumptions,

we simulate in discrete time with monthly time steps. This should be very close to

the continuous case. However, our numerical results are significantly lower than those

obtained by Milevsky and Salisbury (2006). For a 5% GMWB with a 20% volatility,

our price is 28.5 basis points, and their price is 37 basis points. They argue that the

current market price, between 30 and 50 basis points, for a typical 7% GMWB is not

sufficient to cover the hedging cost.

GMWB Maturity Annuity Annuity Fund Volatility

MAWA Certain Certain σ = 20% σ = 30%

g T (yrs) discrete continuous qY qMS qY qMS

5% 20 63.08 63.21 28.51 37 76.54 90

6% 16.66̇ 67.71 67.85 40.61 54 103.68 123

7% 14.28 71.34 71.46 53.78 73 132.25 158

10% 10 78.53 78.69 96.65 140 221.2 271

Table 2.2: Comparison of the GMWB charge rates q with Milevsky-
Salisbury’s results (static full withdrawal utilization) ( r = 5%, A0 =
100, h = 1/12)

To further investigate the problem, we examine how the price changes with the

length of time step. Increasing the number of time steps per annum will approximate

the continuous case. Table 2.1 shows that the price will move up a little bit when the

length of time step is shortened. For example, Table 2.3 gives the convergence pattern

of the price for the 10% GMWB with a 20% volatility. As we increase the number of
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Steps per annum Charge rate Annuity

1
h

q a

12 96.6501 78.5300

100 97.0496 78.6742

2000 97.1693 78.6929

4000 97.2781 78.6934

Table 2.3: Approximating the price for continuous withdrawal ( r = 5%, A0 =
100, σ = 0.2, w = 10%, T = 10)

steps, the price rises very slowly. Based on these results, we can say that the price

under the continuous withdrawal assumption will not reach the 140 basis points that

is given by Milevsky and Salisbury (2006). This difference indicates inconsistency. On

this basis, we conclude that the numbers obtained by Milevsky and Salisbury (2006)

are on average 28% too high. We will use a different approach to value the GMWB

rider in the next section, and we find that under this approach we obtain the same

prices as we did in this section. Recently, Blamont and Sagoo (2009) use the same

decomposition approach and give the fair prices that are close to our results under the

same assumptions.

2.3 Pricing the GMWB as a Put Option

In this section, we present an alternative pricing approach for the GMWB. We will use

it to check the previous call option approach. The GMWB resembles a put option in

providing downside protection. Different from the standard option, the GMWB has a

random payoff time and a price that is deducted from the account continuously. We
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will explain how to compute the benefit payoff value and the charge value by Monte

Carlo simulation. The advantage of this put approach over the call option approach is

its flexibility to deal with any withdrawal strategy, including dynamic withdrawals and

lapses. On the other hand, we are not able to employ the control variate technique to

simulate so efficiently as we did with the call option approach.

Denote the maturity of the annuity contract by T . The maturity is usually the

annuitization date. It is often different from the length of the payment period of the

GMWB. Suppose the policyholder makes equal withdrawals wh at the end of each time

step. Note that the annuity account value will not reach zero unless withdrawals are

made, so this only occurs at the end of a time step. For simplicity, we use the number

of time step as the subscript to denote the account value at the end of that time step.

Define a random variable k∗ as the time step at the end of which the GMWB payoff is

triggered:

k∗ =
{k, if Ak−1 > 0, Ak = 0, 0 < k ≤ N

N, if AN > 0.
(2.26)

The shadow account value B, defined in Section 2.1, is equal to the actual account

value A when A is positive. But B can be negative when A changes to zero. This is

because we continue to deduct withdrawals from B, but A will not change once it is set

to zero. Let G denote the present value of the remaining guaranteed benefit amount.

Initially, there are N = T
h

guaranteed benefit payments of wh. At time zero, we have:

G0 =
N∑

i=1

whe−rhi. (2.27)

At the end of each time step, the guaranteed benefit amount is reduced by the with-
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drawal amount wh,

Gi = wh

N−i∑
j=1

e−rjh, i = 1, · · · , N − 1, (2.28)

GN = 0.

Then, at the end of time step k∗,

Gk∗ = wh

N−k∗∑
i=1

e−rih. (2.29)

The payoff of the GMWB option at time k∗h can be expressed as:

max
(
0, Gk∗ −Bk∗

)
.

If the policyholder delays annuitization, the account value at maturity may be larger

than the withdrawal amount and there is guaranteed benefit remaining, and then the

payoff is:

max(0, GN − AN).

Under the risk-neutral measure Q, we can calculate the present value of the GMWB

benefit as:

VB(q) = EQ

[
e−rk∗h max(0, Gk∗ −Bk∗)1{0<k∗≤N}

]

+EQ

[
e−rT max(0, GN −BN)1{GN>0,BN>0}

]
. (2.30)

Since the charge rate q affects the account value, VB is a function of q.

We now discuss how to obtain the charge value. Recall that the charges are levied at
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a rate q on the account value as long as it is positive. For a stock S paying a continuous

dividend at rate q, we know that the expected present value of future dividends is equal

to (S0 − S0e
−qT ). But for the annuity account, the present value of the continuous

charges cannot be calculated using this formula since there are discrete withdrawals

deducted over time. Assume withdrawals are deducted at the end of each time period.

Then the account value behaves the same as the stock price with dividends within each

unit period. The present value at time (i − 1)h of the expected charges in the period
[
(i−1)h, ih

)
is equal to Ai−1(1−e−qh). The expected present value of the total charges

is expressed as:

VC(q) = EQ

[ k∗∑
i=1

e−r(i−1)hAi−1(1− e−qh)
]
. (2.31)

The fair charge rate q∗ should be set at a level such that the total charges can exactly

cover the payoff of the GMWB. The charge rate has a direct impact on the total value

of charges. The GMWB benefit value is affected by the charge rate because the account

value is reduced by the charges. Hence, we have the following pricing equation:

VC(q∗)− VB(q∗) = 0. (2.32)

The total value of charges, VC , is an increasing function of the charge rate q. A higher

fee rate results in a lower account value, which makes the GMWB more valuable. Thus,

the value of the GMWB benefit VB increases as q increases. The total value of charges

VC is more sensitive to the fee rate q than the value of benefit. Based on our simulation

results, VB goes up slower than VC does as shown in Figure 2.2.

To find the fair price, we use numerical methods, such as the bisection method or

interpolation method. Pick a fee rate q1 that satisfies VB(q1) > VC(q1), and a higher
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Figure 2.2: The expected present values of GMWB benefit and charges vs. the GMWB
fee rate q. (S0 = 100, T = 15, w = 6.6667, h = 1/4, r = 5%, σ = 20%)

value q2 that satisfies VB(q2) < VC(q2). It is important to use the same random numbers

in these simulations. This will increase the correlation between VC and VB, and thus re-

duce the variance of the (VC−VB). Assuming an approximately linear relation between

the present values and the fee rates within a small interval, we can estimate the fair

price q∗ by interpolating the two rates. Let VB1 = VB(q1), VB2 = VB(q2), VC1 = VC(q1),

and VC2 = VC(q2), then we have

q∗ = q1 +
(VB1 − VC1)(q2 − q1)

VB1 − VC1 + VC2 − VB2

(2.33)

2.4 Consistency between the two Pricing Ap-

proaches

In the variable annuity contract with the GMWB, we are interested in four values:
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1. VC , the expected present value under the risk-neutral measure Q of the total

GMWB charges;

2. VB, the expected present value under the risk-neutral measure Q of the GMWB

put option benefit;

3. VW , the expected present value under the risk-neutral measure Q of the withdrawal

amount taken by the policyholder before the account value becomes zero;

4. EQ[e−rT AT ], the expected present value under the risk-neutral measure Q of the

account balance at maturity.

The insurance company charges an ongoing fee for the GMWB, and pays the GMWB

put option benefit out. The net present value to the insurance company is equal to the

expected present value under the risk-neutral measure Q of the cash inflows minus that

of cash outflows.

NPVins = VC − VB

The only cash outflow for the policyholder is the initial investment S0. The policy-

holder takes withdrawals before the account value is set to zero. If the account balance

becomes zero, the policyholder is guaranteed to receive the remaining GMWB benefit

payments. The policyholder also gets the account balance at maturity if it is positive.

These are cash inflows for the policyholder. The net present value to the policyholder

is

NPVpol = VB + VW + EQ

[
e−rT AT

]− S0

Note that the charges have been reflected in the account values. If the policyholder

starts to withdraw the maximum annual withdrawal amount from the first year (i.e.

full utilization), then the withdrawal value, plus the GMWB put benefit, VB + VW , is
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equal to the annuity certain defined in Section 2.2.

Under the equilibrium condition, both the net present values to the insurer and the

policyholder should be equal to zero. The call option pricing approach ensures the net

value to the policyholder is zero. The put option pricing approach lets the net value to

the insurer be zero. Hence, they should give the same price.

In theory, the put option approach and the call option approach should give the

same results under the same assumptions. Through comparing the results under static

withdrawal assumption, we are able to cross check the two approaches. We recalculate

the GMWB examples given in Section 2.2.3 using the put option approach. Table

2.4 lists the fair charge rates for all the GMWB examples. The results are the same

as those in Table 2.1 which are solved by the call option approach except for minor

random errors.

GMWB Term Time step

rate h = 1 h = 1/4 h = 1/12

g T (yrs) q (bps) Put q (bps) Put q (bps) Put

5% 20 27.65 3.55 28.32 3.53 28.49 3.53

(0.02) (0.02) (0.02)

6.666̇% 15 47.51 4.41 48.90 4.36 49.20 4.34

(0.04) (0.04) (0.04)

10% 10 92.44 5.50 95.85 5.37 96.65 5.34

(0.07) (0.08) (0.08)

Table 2.4: The GMWB Fee Rates q solved by the put option approach ( r =
5%, σ = 20%, A0 = 100).
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2.5 Summary

Milevsky and Salisbury (2006) argued that insurers underprice GMWBs in variable

annuities. We employ a similar decomposition approach to price the GMWB. In the

discrete time, the variable annuity with the GMWB is equivalent to an annuity certain,

plus a floating strike arithmetic Asian call option. The price of the Asian call option

can be computed efficiently by using the control variate technique. The control variate

is the price of the corresponding geometric Asian call option which has a closed-form

solution. The GMWB prices we obtained are comparable to the prices in the market.

The GMWB can also be priced as a put option with a random expiration date. The

payoff time is the time when the account value is not sufficient to pay the withdrawal

amount or the guaranteed benefit is depleted. The payoff is equal to the present value of

the remaining future guaranteed benefit payments. We simulated the expected present

values of the GMWB benefit and charges, and searched for the price that makes the

benefit equal to the charge. Our numerical results show consistency between the two

pricing approaches.
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Chapter 3

Semi-static Hedging for GMWBs

In this chapter, we propose a semi-static approach to hedge GMWBs. The net liability

of a GMWB at a future time can be replicated by a portfolio of short-term European

put options. In this chapter, we assume the portfolio weights are static over the life of

the replicating options. That is, we only rebalance the portfolio when the short-term

options expire. But we will relax this assumption later in Chapter 4.

This semi-static approach offers several advantages over a dynamic hedging strat-

egy. Dynamic hedging here is referred to as a technique to hedge delta, gamma or vega

exposures of a financial derivative (see Hull 2006). A dynamic strategy is based on the

assumed ability to trade continuously. However, it is impossible to rebalance the port-

folio continuously. In practice, a dynamic hedging strategy has to balance transaction

cost and quality of the hedge.1 In times of high volatility, dynamic hedging is expensive.

If there are random jumps in the underlying price, then the market is incomplete and

dynamic hedges often result in large errors. In contrast, the semi-static strategy we are

1Several hedging techniques have been developed, such as Risk-Minimizing hedging (see Møller
1998), Mean-Variance hedging (see Föllmer and Sondermann 1986; Föllmer and Schweizer 1991; Duffie
and Richardson 1991; Schweizer 1992, 2001), and Quantile hedging (see Föllmer and Leukert 1999).
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proposing requires fewer portfolio adjustments, and random jumps in the underlying

price will not affect its performance. Semi-static hedging also reduces the risk of severe

liquidity events. Execution errors and operational risk can also be mitigated.

In the limit, as the length of the hedging interval for semi-static hedging decreases to

zero, semi-static hedging will converge to dynamic hedging. For longer time intervals,

the two hedging strategies behave differently. Based on our implementation, the hedging

errors from semi-static hedging can be small even for time intervals as long as one year.

In contrast, dynamic hedging requires more frequent position adjustments to avoid

large discrepancies. For other models or instruments, the rebalancing intervals must be

determined using numerical experiments, but this is also true for dynamic hedging.

Most literature on static hedging focuses on European options or barrier options.

Derman et al. (1994) introduces a static replicating approach to hedge barrier options

in a binomial tree model using standard options with varying maturities. Bowie and

Carr (1995), Carr and Chou (1997), and Carr et al. (1998) develop static hedges for

barrier options in the Black-Scholes model using options with the same maturity, but

with multiple strikes. The method relies on a relationship between European puts and

calls with different strike prices. Carr and Wu (2004) propose a static hedging strategy

for European options. It is based on a spanning relation between the value of a given

option and the values of a continuum of short-term options. They show that static

hedging is robust to model misspecification. Allen and Padovani (2002) extend the

Derman-Ergener-Kani approach to achieve greater model independency. The algorithm

searches for a portfolio of vanilla options which minimize hedging errors under scenarios

of the future stock prices and volatilities. Andersen et al. (2002), Fink (2003), Nalholm

and Poulsen (2006), and Giese and Maruhn (2007) extend static hedging for barrier
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options to general asset dynamics with jumps and stochastic volatilities. Cassano (2001)

considers how close one can get to a perfect hedge using just a small number of options.

He shows that under standard assumptions, it only takes a handful of different options

to achieve quite good replication.

Given the long-term feature of GMWBs, a perfect static hedging strategy is not

available or can be too expensive. The current standard approach in the industry is

dynamic hedging with daily rebalancing intervals. As discussed above, the semi-static

hedging strategy would be a very good alternative. GMWBs give rise to mild path

dependency. Any type of path dependency complicates the application of semi-static

hedging. In this chapter, we suggest a way to handle this path dependency in semi-

static hedging. Its implementation is based on Monte Carlo simulations, so it can be

applied to other path-dependent options too. In Section 3.1, we show step by step how

to compute the hedging target and how to construct the hedging portfolio. In Section

3.2, we compare the performance of semi-static hedging and dynamic hedging under

both the Black-Scholes model and the Kou’s jump-diffusion model.

3.1 Implementation of the Semi-static Hedging

Strategy

We develop the semi-static hedging strategy step by step in this section. First of all, let

us clarify what needs to be hedged in GMWBs. If the GMWB fee rate is fairly set, the

GMWB put option and the total charges should have the same market value at issuance.

As time goes by, the two values may be different. For example, when the fund performs

well during time interval (0, t), the insurer receives higher charges without incurring
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the GMWB option payoff. The expected value of future charges becomes larger than

the GMWB put option value at time t. That is, the insurer will have a profit. On the

other hand, if the fund performs poorly, the expected value of all future charges would

be less than the GMWB option value. To prevent a loss, insurers need to hedge the

GMWB option value that exceeds the charge value. We call it the expected GMWB

net liability.

The idea of semi-static hedging is to set up a portfolio of standard options at time

zero to replicate the expected GMWB in a short time period, and then update the

hedging portfolio for another period. It involves the following steps:

1. Model the underlying funds using market indexes. Each underlying fund

can be mapped to several equity and bond indices using regression. For simplicity,

we assume an equity index can successfully mimic the fund unit value, and the

fund return is equal to the index return minus the GMWB fee rate. That is, we

assume that the GMWB fee is deducted from the fund, and the fund return is

actually the net return (ignoring all other charges). For a particular trajectory of

index returns within the hedging horizon, we can calculate the annuity account

values assuming deterministic withdrawal amounts and times.

2. Obtain the expectation of future GMWB net liability conditional on

the index value at a future time, such as in one year. For a given future

index value, there will be different possible annuity account values, because the

account value is path-dependent due to withdrawals. For example, assume the

initial index value is I0 = 100. Denote the fund value by S and the account value

by A. After one year, the index value is assumed to be I1 = 100. Let us consider

two possible index values in the middle of the year, 120 and 80. Suppose the
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GMWB fee, q, is 50 basis points deducted continuously. Assume the policyholder

withdraws 10 from the account in half a year. The fund values and account values

are given by

S 1
2

= I 1
2
e−

q
2 , S1 = I1e

−q = 99.50,

A 1
2

= S 1
2
− 10, A1 = A 1

2

S1

S 1
2

.

The two paths will lead to two different account values as illustrated in Figure

3.1. The expected future GMWB net liability at time 1 will have two different

A1/2=69.8

A1=90.96

A1=86.8

A1/2=109.7

A0=100

I1/2=80

S1/2=79.8

I1=100

S1=99.5

I1/2=120

S1/2=119.7

I
0
=100

S0
=100

Figure 3.1: Illustration of different account values conditional on a particular index
value. Assume the policyholder withdraws 10 from the account in the middle of the
year. We have assumed that the GMWB fee is 50 basis points deducted continuously.

values given the two account values. This path-dependent feature cannot be per-

fectly replicated with standard options. However, if we approximate the expected

future GMWB net liability with a variable that is not path-dependent, then repli-

cating the approximation is feasible. As we demonstrate below, an approximation

is provided by the conditional mean of the expected GMWB net liability given

the index value at the end of the hedging period. That is, we are hedging the
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conditional expectation of the expected GMWB net liability as a function of the

index value at the end of the hedging period. In fact, the approximation error is

quite small for a hedging period of one year. To simplify the exposition, later in

the text we shall refer to the conditional expectation of the expected GMWB net

liability as the conditional expected GMWB net liability.

3. Search for a portfolio of put options on the index to replicate the ex-

pected GMWB net liability. Because GMWBs are put options, the conditional

expected GMWB net liability is a convex function of the index value and can be

replicated by a linear combination of several European put option payoff func-

tions. These put options have different strike prices. The optimal weights are

obtained by minimizing an appropriate risk measure with some constraints. For

example, we can minimize the sum of squared differences between the portfolio

payoff and the conditional expected GMWB net liability, subject to the condition

that the cost of the replicating portfolio is not larger than the present value of the

expected GMWB net liability.

4. When the replicating portfolio expires, repeat Steps 2-3 based on the

new index value and account value to set up another replicating portfolio.

GMWBs typically last more than 10 years. At the end of the first hedging period,

the replicating portfolio may generate payoffs, and there may be GMWB claims.

The balance is kept in a bank account. Based on the updated index value and

account value, we will purchase a new portfolio of put options whose weights are

determined by the procedures described in Steps 2 and 3.

We will first illustrate the concept of semi-static hedging using the same set of

assumptions as in Chapter 2. That is, the interest rate is assumed to be constant;
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the fund value follows a univariate lognormal distribution with a constant volatility;

the withdrawal amount per annum is equal to the maximum allowed amount without

penalty; and there are no lapse or mortality decrements.

In Step 2, the expected GMWB net liability is calculated under the risk-neutral

measure. For a given value of the index at the end of the hedging period, the conditional

expected GMWB net liability is not affected by a change of measure. This is because

the drift of the conditional path of the fund value is determined by the fixed terminal

value rather than the risk-neutral rate of return. Therefore, it is not necessary to use the

real-world measure for our semi-static hedging strategy as long as we choose a suitably

large range of possible index values at the end of the hedging period. The size of this

range can be determined such that the real-world probability that the future index value

falls in the range is close to one.

In Step 3, the replicating portfolio can be obtained using the Least Squares method,

where the sum of squared replicating errors at selected future index values is minimized.

If the distribution of future index values under the real-world measure is known, we

could also use Weighted Least Squares method. However, we do not know the true

distribution in the real world. The risk-neutral measure usually assigns more weights to

lower index values than the real world measure does. A lower index value typically leads

to a higher expected GMWB net liability. Hence, we will use the risk-neutral measure

to obtain a conservative hedging portfolio for a plain vanilla GMWB. Note that using

the risk-neutral measure is not conservative for GMWBs with a step-up option. In order

to be conservative in this case, we may over-estimate the index rate of return and put

more weight on higher index values.

To compute efficiently the conditional expected GMWB net liability in Step 2, in
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Section 3.1.1, we use a mathematical model called the Brownian bridge. By definition,

a Brownian bridge is a Brownian motion conditioned on its end value. Because of our

assumption that a geometric Brownian motion provides an adequate description of the

dynamics of the index value, a Brownian bridge is the right model for the conditioned

process and will allow us to find the conditional expected GMWB net liability. In

particular, by constructing Brownian bridges, we can easily generate a desired number

of paths of the fund value conditional on the same index value at the end of the hedging

period.

In the following sections we provide more detailed description of the proposed

method. In particular, in Section 3.1.3, we derive the replicating target, which is equal

to the conditional expected GMWB net liability. Step 3 of the proposed method is

discussed in Section 3.1.4, where we list four approaches to obtain a replicating portfo-

lio. In Section 3.1.5, we discuss how to implement the semi-static hedging strategy in

multiple periods and how to modify the strategy by using put options whose maturities

are shorter or longer than the hedging period.

3.1.1 Conditional paths of the fund value

In Step 2 of the proposed hedging method, we are facing the problem of generating

paths of fund values given prescribed values at the beginning and end of a time period.

The fund value process is assumed to solve the following stochastic differential equation

under the risk-neutral measure:

dSt = (r − q)Stdt + σStdWt, (3.1)
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where {Wt} is a standard Brownian motion. The problem is to simulate Ss, conditional

on S0 and St, where s ∈ (0, t). The problem is not difficult if the joint distribution of Ss

and St is explicitly known. Under the Black-Scholes model, the problem can be solved

by constructing a Brownian bridge, which is also called a tied down Brownian motion

(see Karlin and Taylor 1981; Glasserman 2003; Shreve 2004). In the next chapter,

we assume the volatility of the fund value to be stochastic. In this case, the joint

distribution is not known, so the simple Brownian bridge method will not work. We

will use a simulation method that is based on a recently developed acceptance-rejection

sampling method for diffusion processes.

Brownian Bridge

The Brownian bridge is a useful tool in parameter estimation of diffusions and imple-

mentation of variance reduction techniques (see Glasserman 2003). By definition, a

Brownian bridge is a standard Brownian motion conditioned on the initial state and

the end state of the process. The conditional distribution of the Brownian motion is

known to be a normal distribution. Note that the increments of this process are no

longer independent. A brownian bridge can also be characterized as the solution of the

following stochastic differential equation (Karlin and Taylor 1981):

dYt = −Yt − y

1− t
dt + dWt, 0 ≤ t < 1. (3.2)

Shreve (2004, p. 175-8) provides another representation of the Brownian bridge

Yt = (1− t)

∫ t

0

dWs

1− s
+ ty, 0 ≤ t < 1. (3.3)
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Simulating a Brownian bridge in discrete time amounts to filling in the intermediate

values when the endpoints are known. Given the values of a Brownian motion at time

t and t + ∆, the value at times t + λ∆, 0 < λ < 1, is normally distributed with mean

(Glasserman 2003, p. 83)

E
[
Yt+λ∆ | Yt, Yt+∆

]
= λYt+∆ + (1− λ)Yt, (3.4)

and variance

∆λ(1− λ). (3.5)

Therefore, the following sample can be simulated from this conditional distribution:

Yt+λ∆ = λYt+∆ + (1− λ)Yt +
√

∆λ(1− λ) z, (3.6)

where z ∼ N(0, 1), and z is independent of Yt and Yt+∆.

Monte Carlo simulation of conditional paths of the fund value

We now explain how the Brownian bridge construction can be used to simulate condi-

tional paths of the fund value for the purpose of finding a static hedging portfolio. In

this chapter, we assume withdrawals are taken quarterly, so it is convenient to use a

quarterly time step to simulate Brownian bridge paths. Denote the length of the time

step by h = 1
4
. Let I and S denote the index value and the fund value, respectively.

We assume that under the risk neutral measure the index value follows a geometric

Brownian motion with drift r, volatility σ, and the initial value I0. Assume the hedging

horizon is one year, Th = 1. Therefore, the index values on a path conditional on the
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terminal value I1 are given by

Iih = I0 exp
{
σYih + (r − σ2

2
)ih

}
, i = 1, 2, 3. (3.7)

A conditional path of the index value can be constructed using a path of Brownian

bridge Yt. For a given index value in one year, I1, the end value of the Brownian motion,

Y1, is fixed at

Y1 =
1

σ

(
ln

I1

I0

− (r − σ2

2
)
)
. (3.8)

Once we have determined Y1, we may sample the components of (Yh, Y2h, Y3h) in any

order. The first intermediate value is sampled by conditioning on Y1 and Y0 = 0.

The rest of the points are sampled by conditioning on the two closest points already

sampled. In our implementation, we sample (Yh, Y2h, Y3h) in the order of time. First,

we generate three independent standard normal random variables z1, z2, z3. Then, we

set t = 0, ∆ = 4h, λ = h
∆

= 1
4

and plug them into equation (3.6) to obtain

Yh = λY1 +
√

(1− λ)hz1

=
1

4
Y1 +

√
3h

2
z1. (3.9)

Conditioning on Yh and Y1, we sample Y2h by updating t = h, ∆ = 3h, λ = 1
3
.

Y2h =
1

3
Y1 +

2

3
Yh +

√
6h

3
z2

=
1

2
Y1 +

√
3h

3
z1 +

√
6h

3
z2. (3.10)

Similarly, Y3h is sampled by conditioning on Y2h and Y1. We plug in t = 2h, ∆ = 2h, λ =
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1
2

to get

Y3h =
1

2
Y1 +

1

2
Y2h +

√
2h

2
z3

=
3

4
Y1 +

√
3h

6
z1 +

√
6h

6
z2 +

√
2h

2
z3. (3.11)

The fund return is assumed to be equal to the index return less the GMWB fee rate.

From equation (3.7), we can express the fund values in terms of the simulated Brownian

bridge Y :

S0 = I0,

Sih = Iihe
−qih (3.12)

= S0e
(µ−q−σ2

2
)ih+σYih , i = 1, 2, 3. (3.13)

3.1.2 The Account Values

In Section 3.1.1, we have explained how to generate paths of fund values with the same

end index value by constructing Brownian bridges. The account value is dependent on

the path of the fund value. In this subsection, we calculate the account values based

on the simulated paths given that the end value of the index is fixed. Based on the

account value at a given index value, in Section 3.1.3, we will compute the conditional

expected GMWB net liability.

Assume the maximum annual withdrawal amount is w, w = A0

T
. An amount of wh is

withdrawn from the account at the end of each time step. We assume that the account

is initially invested in one unit of the fund, that is, A0 = S0. After the first withdrawal

at time h, wh
Sh

units of fund are sold, and there are (1 − wh
Sh

) units of fund remaining

56



Semi-static Hedging for GMWBs

in the account. Similarly, at time ih, i = 2, 3, 4, wh
Sih

units of fund will be deducted

from the account. The shadow account value immediately after the withdrawal can be

expressed in terms of the fund values:

Bh = Sh

(
1− wh

Sh

)
,

B2h = S2h

(
1− wh

Sh

− wh

S2h

)
,

B3h = S3h

(
1− wh

Sh

− wh

S2h

− wh

S3h

)
,

B1 = S1

(
1− wh

Sh

− wh

S2h

− wh

S3h

− wh

S1

)
. (3.14)

The account values immediately after withdrawals are given by

Aih = max
(
0, Bih

)
, i = 1, 2, 3, 4. (3.15)

During the first policy year, the account value is unlikely to reach zero because the

withdrawal amount is very small compared with the account value.

The account value is positively correlated with the intermediate fund values. Given

the same index value at the end of the hedging horizon, a higher end account value

corresponds to a concave-shaped path where the intermediate fund values sit above the

straight line that connects the initial and the end fund values; and a lower end account

value comes from a convex-shaped path where the intermediate fund values lie below

the line. (see Figure 3.2) This is because fewer units of the fund need to be sold when

the fund value is high at the time of withdrawal.
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Figure 3.2: Sample paths of the fund value given that both the initial and end fund
values are 100.

3.1.3 The Expected GMWB net liability Conditional on the

Index Value

Our semi-static hedging strategy is to search for a portfolio of standard put options

whose payoff closely replicates the expected GMWB net liability. We denote the ex-

pected GMWB net liability by l. At a future time Th, l depends both on the future

fund value and on the path arriving at that value. But the payoff of a standard put op-

tion is not path-dependent. In order to obtain the optimal portfolio weights, we choose

to replicate the conditional expected GMWB net liability. In this section, we discuss

methods of calculating this value.

We have explained how to compute the GMWB benefit and charges in Section 2.3.

From equations (2.30) and (2.31), the values of the GMWB benefit and charges at the

end of the hedging horizon (i.e. time Th) under a risk neutral measure are given by

b = EQ
Th

[(wh(1− e−r(T−k∗h))

erh − 1
−Bk∗h

)
er(Th−k∗h)

]
, (3.16)

c = EQ
Th

[ k∗∑
u=0

Auh(1− e−qh)er(Th−uh)
]
, (3.17)
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where k∗ is the time step corresponding to the GMWB payoff, and is defined by the

equation (2.26). For a specific path that is associated with a given index value, the

GMWB put payoff may be incurred within the hedging horizon. This is very unlikely

during the first policy year, but it may happen during a future hedging period. If this

occurs, we will accumulate the values of benefit and charges to the end of the hedging

period. The expected GMWB net liability at the end of hedging period is defined as

the difference of the two values:

l = b− c. (3.18)

Initially, the fee rate of the GMWB, q, is set to satisfy

l = 0, if Th = 0.

For a given index value ITh
at time Th, the expected net liability l depends on the

path of account values. The account values are determined by the current and previous

fund values. Thus, we can express l as a function of the path of fund values and the

index value at time Th, (Sh, S2h, · · · , STh−h, ITh
). Denote it by l(ITh

, D), where D is the

discrete path, D = (Sh, S2h, · · · , STh−h).

The hedging instruments we are going to use are standard put options, whose payoffs

depend on the index value at time Th only. For the purpose of the semi-static hedging,

we would like to approximate l(ITh
, D) by a function of ITh

only. It is well known, that

the conditional expectation of l(ITh
, D) given ITh

,

L(ITh
) = E

[
l(ITh

, D) | ITh

]
, (3.19)

is the best approximation of l(ITh
, D) by a function of ITh

in the L2-sense. It has the
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following property:

E
[(

l(ITh
, D)− L(ITh

)
)2

]
≤ E

[(
l(ITh

, D)− f(ITh
)
)2

]
, (3.20)

for any measurable function f of ITh
.

The conditional expected GMWB net liability L(ITh
) can be replicated by payoffs

of standard put options. Formally this can be justified by the fact that any continuous

function could be uniformly closely approximated by linear splines (see Hammerlin and

Hoffmann 1991, Ch. 6). In this subsection, we discuss methods of computing L(ITh
)

and analyze some properties of this conditional expectation. In our proposed semi-static

hedging strategy, we construct a portfolio whose payoff at time Th matches L(ITh
). Some

extension of this approach will be discussed in Section 3.1.5.

There is no analytic expression for L(ITh
). However, using Monte Carlo simulation

techniques we are able to evaluate it at an arbitrary number of values of ITh
. The more

end points we investigate, the easier it is to reconstruct L by interpolation.

The region of possible index values is determined based on the assumed distribution

of the index value at time Th. We consider two methods of selecting the end points

of the index. These methods will be used to search for the optimal hedging portfolio

in the next subsection. The first method is to choose m equally-spaced points in a

chosen interval. If we believe that each point is equally important, then the optimal

portfolio weights can be solved using the Least Squares method. That is, we minimize

the sum of squared differences between the target function L(ITh
) and the replicating

portfolio at these index values. The second method is to determine the index values

from their inverse cumulative distribution function. Using these points for the Least

Squares method is equivalent to using the probability function as the weight function for
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the Weighted Least Squares method. In this chapter, we assume the index value follows

a lognormal distribution. As a result of this approach, more points will be selected in

an interval associated with a higher probability. To implement the method, we choose

m equally spaced points in the interval (0, 1) and then use the inverse function to get

the index values. We recommend using this sampling method in cases where points

with higher probability densities are considered to be more important, and we want to

ensure that the replicating errors at these points are small.

To obtain a value of L(ITh
) by simulation, we first generate paths of index values

within the hedging horizon, and then evaluate l(ITh
, D) for each path D. We use the

average of these l-values as an estimate of L(ITh
). Note that if the account value reaches

zero within the hedging period, we will accumulate the GMWB net liability to the end

of the hedging period. In summary, numerical computation of L(ITh
) may go as follows:

1. Choose a set of m index values at time Th, (ITh,1, · · · , ITh,m);

2. Simulate a path of the fund value conditional on the index value ITh,i, i = 1, and

calculate the end value of the account ATh,j, j = 1;

3. Based on the account value ATh,j, compute lj by equation (3.18);

4. Repeat step (2) to (3) for j = 2, · · · ,M ; take L̂(ITh,i) = 1
M

∑M
j=1 lj;

5. Repeat step (2) to (4) for i = 2, · · · , m.

The above procedure involves simulating Mm scenarios over 15 years, which is time-

consuming. We use two approaches to speed up the process. The first approach is to

compute l using a Control Variate technique. The second approach is to approximate

L(ITh
) using the Taylor expansion of l about the average account value at time Th. They

are explained in the following two subsections. In step (3) above, we replace equation

(3.18) with equation (3.21). In step (4), L is estimated by equation (3.25), which only
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requires three values of l instead of M . The total number of scenarios needed reduces

from Mm to 3m.

A Control Variate technique

To improve the simulation efficiency, we propose to use the control variate technique to

compute l. As discussed in Section 2.4, a policyholder’s gain is an insurer’s net liability.

We can write l as

l = CTh
+ wh

N−Th/h∑
i=1

e−rih − ATh
− c, (3.21)

where

CTh
= EQ

Th

[
e−r(T−Th)AT | ATh

]
, (3.22)

c =
3∑

u=0

Auh(1− e−qh)er(Th−uh).

Here CTh
represents the time-Th value of the account value at maturity, and c is the

accumulated value of GMWB charges in the first year. On the left hand side of equation

(3.21), ATh
is known at time Th, and the annuity certain is constant. For the rest of

this subsection, we assume Th = 1, h = 1/4. To compute CTh
, we rewrite the account

value at maturity in the same way as in equation (2.12):

AT = max(0, BT ),

= max
(
0, A1

N∏
i=5

Xih − S0

N
(1 + XT + · · ·+

N∏
i=6

Xih)
)
,

=
N−4

N
max

(
0,

N

N−4
A1

N∏
i=5

Xih − S0

N−4
(1 +XT + · · ·+

N∏
i=6

Xih)
)
,
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where Xih represents the fund return during the i-th time step. Reverse the order of

the returns, and let

(xh, · · · , xT ) = (XT , · · · , Xh).

We get another expression that is equal to the above expression in probability:

N−4

N
max

(
0,

N

N−4
A1

N−4∏
i=1

xih − S0

N−4
(1 +xh+ · · ·+

N−5∏
i=1

xih)
)

=
N−4

N
max

(
0,

NA1

(N−4)S0

s(N−4)h − 1

N − 4

N−5∑
i=0

sih

)
,

where sih, i ≤ N − 4, represents the fund value corresponding to (xh, · · · , xih) indepen-

dent of A1. Equation (3.22) is equal to the price of an arithmetic Asian call option at

time 1

EQ
1

[
e−r(T−Th)AT | A1

]

=
N−4

N
EQ

1

[
e−r(T−Th) max

(
0,

NA1

(N−4)S0

sT−1 − 1

N − 4

N−5∑
i=0

sih

) ∣∣ A1

]

The control variate that we use is the geometric Asian option whose price CG has a

Black-Scholes type formula:

CG =
N−4

N

(
NA1

N−4
e−q(T−Th)N(d1)−KN(d2)

)
, (3.23)

where,

d1 =
ln NA1

(N−4)K
+ (−q +

σ2
3

2
)(T − Th)

σ3

√
T − Th

,

d2 = d1 − σ3

√
T − Th,

K = S0e
−r(T−Th)µ2,

σ3 = σ
[(N − 3)

(
2(N − 4) + 1

)

6(N − 4)2

] 1
2
,
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µ2 = exp
{(N − 5)

2
(r − q − σ2

2
)h +

σ2

2

(N − 5)
(
2(N − 4)− 1

)

6(N − 4)
h
}

.

It is similar to equation (2.16) except that we replace N with N − 4, and replace S0

with NA1

N−4
. The other steps of simulation are the same as in Section 2.2.2.

Additional way to improve efficiency

Another way to improve simulation efficiency is to approximate the conditional expected

GMWB net liability L(I1) with only three values of l for each given index value. If we

treat the path-dependent expected GMWB net liability l(I1, D) as a function of the end

value of the account A1, then we can approximate the expectation of l conditional on

I1 by the Taylor expansion of l at the mean value of A1. Two additional l values are

needed to estimate the first and second order differentials of l. Thus, the number of l

values needed to compute L is reduced from Mm to 3m.

Equation (3.23) tells us that the option value is dependent on A1, so the expected

net liability l is a function of A1 given I1. We write it as l(AI
1) for the purpose of

explaining the approximation idea. Denote the conditional expectation of the account

values given the index value at time 1 by ĀI
1 = E(A1 | I1). The variance of the account

values is very small for a given index value. Thus, l(AI
1) is well approximated by its

Taylor series evaluated at ĀI
1 for all AI

1 values that are sufficiently close to ĀI
1. The

Taylor expansion of l(AI
1) about ĀI

1 is given by

l(AI
1) = l(ĀI

1) +
∂l(ĀI

1)

∂A
(AI

1 − ĀI
1) +

∂2l(ĀI
1)

2∂A2
(AI

1 − ĀI
1)

2 + · · · . (3.24)

L(I1) can be approximated by taking expectations of both sides of equation (3.24)
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L(I1) = E
[
l(AI

1) | I1

]

≈ l(ĀI
1) +

∂l(ĀI
1)

∂A
E(AI

1 − ĀI
1) +

∂2l(ĀI
1)

2∂A2
E(AI

1 − ĀI
1)

2

= l(ĀI
1) +

∂2l(ĀI
1)

2∂A2
V ar(AI

1). (3.25)

The variance of l(I1, A
I
1) can be approximated by

V ar
[
l(AI

1) | I1

]

= V ar(AI
1)

(∂l(ĀI
1)

∂A

)2

+
1

4

(
E[(AI

1 − ĀI
1)

4]− [V ar(AI
1)]

2
)(∂2l(ĀI

1)

∂A2

)2

≈ V ar(AI
1)

(∂l(ĀI
1)

∂A

)2

. (3.26)

The derivatives of l at ĀI
1 can be computed using the finite difference method. If we

use equation (3.21), then L(I1) can be approximated as follows:

L(I1) = E
[
l(AI

1) | I1

]
,

= E[CA | I1] + wh

N−4∑
i=1

e−rih − ĀI
1 − E[c | I1],

= CA(ĀI
1) + wh

N−4∑
i=1

e−rih − ĀI
1 − E[c | I1] +

∂2CA(ĀI
1)

2∂A2
V ar(AI

1) (3.27)

Discussion of the results

Let us consider an example. For a 15-year contract, assume the policyholder withdraws

quarterly. The following assumptions about the market and the contract are used:
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r = 5%, σ = 20%,

A0 = S0 = 100, w = 6.666̇,

T = 15, N = 60, q = 0.0048886.

The fair charge q of this GMWB has been calculated in Chapter 2. Given that the

index value at time 1 is equal to 100, I1 = 100, we simulate a set of paths of the fund

value, and calculate the account values at the end of the year. Figure 3.3 depicts the

histogram of 10,000 simulated account values at time 1. The variation of the account

values is small because the index value is fixed at the end of the year. The left tail is

slightly heavier than the right one. Lower account values at a given time imply higher

values of the expected GMWB net liability in the future. We expect a heavier right tail

for the expected GMWB net liability.
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Figure 3.3: The histogram of 10,000 account values at time 1 conditional on I0 = 100.
The withdrawal amount is 1.6667 per quarter. (I0 = 100, I1 = 100, r = 5%, σ = 20%)

The conditional expectation of the account values has an approximately linear rela-

tionship with the index value at time 1, as shown in Figure 3.4. Figure 3.5 shows that
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Figure 3.4: The conditional expectation
of the account values has an approx-
imately linear relation with the index
value at time 1.
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Figure 3.5: At time 1, the standard de-
viation of the account value, conditional
on the index value, increases slowly with
the average account value.

the standard deviation of the account value increases slowly with the mean account

value at time 1.

Conditional on the index value of I1 = 100, we have

ĀI
1 = 92.3870, V ar(AI

1) = 0.1398, E(c | I1) = 0.4923.

CA(ĀI
1) + wh

N−4∑
i=1

e−rih − ĀI
1 − E[c | I1] = 0.0213.

The “delta” and “gamma” are estimated as follows:

∂l(ĀI
1)

∂A
=

l(ĀI
1 + ε)− l(ĀI

1 − ε)

2ε
= −0.2940, ε = 0.1,

∂2CA(ĀI
1)

∂A2
=

CA(ĀI
1 + ε) + CA(ĀI

1 − ε)− 2CA(ĀI
1)

ε2
= 0.0061.

Based on equation (3.27), the expected net liability for I1 = 100 is estimated as

L(100) = 0.0213 + 0.1398 ∗ 0.0061/2 = 0.0217.
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The variance of l is estimated as

V ar(l | I1 = 100) = 0.1398 ∗ 0.29402 = 0.0121.

Using direct simulation approach, we have

L(100) = 0.0216, V ar(l | I1 = 100) = 0.0126.

The approximations are very close to the simulation results. Figure 3.6 shows the

histogram of the simulated l-values conditional on the index value of 100 at time 1.
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Figure 3.6: The histogram of 10,000 simulated expected GMWB net liabilities l given
the index value of 100 at time 1. (r = 5%, σ = 20%, I0 = 100, w = 6.6667, h = 1/4.)

For any other value of I1, the conditional expected GMWB net liability L(I1) can be

obtained by the same methods. Figure 3.8 shows that, under the risk neutral measure

Q, the index values after one year fall in the interval of [40, 200] with probability close to

one. We uniformly choose m = 1800 values from this interval, and simulate M = 10, 000

paths for each index value.
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Figure 3.7 plots the curves of the expected GMWB benefit, charges and net liability

with respect to I1. The benefit decreases to zero as the index value increases. The

value of charge is nearly proportional to the index value. The expected net liability falls

below zero when the index value becomes larger than 100.18. The positive part of the

solid curve represents the expected GMWB net liability to insurers, and that is what

we would like to hedge. This part of the curve corresponds to low index values after

one year. If the expected GMWB net liability is negative, it means that the insurer

will gain profit at a high future index value. Therefore, there is no need to hedge the

negative part of the net liability curve. The negatively-sloped convex curve indicates

that standard put options on the index could be used as hedging instruments for the

GMWB.
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Figure 3.7: The conditional expected
GMWB net liability L(I1) is a convex de-
creasing function of the index value at
time 1.
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Figure 3.8: The probability density func-
tions of the index value at time 1 and
time 0.5 ( S0 = 100, r = 5%, σ = 20%)
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3.1.4 The Optimal Hedging Portfolio

The main step of the semi-static hedging strategy is to construct a portfolio whose payoff

replicates the conditional expected net liability L at the end of the hedging period Th.

Figure 3.7 shows that L is a convex function of the index value at time Th = 1. The

payoff of a European index put option is a piece-wise linear convex function of the index

value at time 1. It is possible to fit the conditional expected GMWB net liability curve

using piece-wise linear segments.

In a model that is complete and arbitrage free, there exists a perfect replicating

portfolio that has the same value and sensitivities as the expected GMWB net liability.

The perfect replicating portfolio includes an infinite number of standard options. How-

ever, for our problem, we can achieve adequate replication using only a small number of

options. If there are a few fixed strikes available, we can find an optimal weight for each

strike. If options with many different strikes are available in the market, then there are

methods to choose both the optimal strike prices and the optimal weight under each

strike. In this section, we first describe methods to search for the optimal weights given

the strikes, and then explain methods to obtain optimal strikes.

In the context of European contracts, a similar static replication idea has been

given by Carr and Madan (2001). They show that for any fixed value S∗, any twice

differentiable function of the terminal stock price S can be replicated by a unique initial

position of
[
f(S∗) − f ′(S∗)S∗

]
unit discount bonds, f ′(S∗) shares, and f ′′(K)dK out-

of-the-money options of all strikes K:

f(S) =
[
f(S∗)−f ′(S∗)S∗

]
+f ′(S∗)S+

∫ S∗

0

f ′′(K)(K−S)+dK+

∫ ∞

S∗
f ′′(K)(S−K)+dK

(3.28)
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The positions in the bond and the stock create a tangent to the payoff at a stock price

S∗. The positions in the options are used to bend the tangent line so as to match the

payoff at all price levels. For S∗ →∞, if the terms on the right hand side are all finite,

then we can replicate using only bonds, stocks, and puts. Equation (3.28) may be used

to replicate the conditional expected GMWB net liability.

Our hedging approach is to numerically search for the optimal replicating portfolio

given a set of strike prices. In the previous subsection, we have calculated the expected

GMWB net liability L(I1) at m index values at time 1. Denote by m∗ the number of the

sampled index values at which the expected GMWB net liability is above zero at time

1. We will use the values of the expected net liability at these m∗ index points to search

for the replicating portfolio. Suppose we are able to buy one-year index put options

with n different strike prices. In this section, the value of n is assumed to be fixed. As

the number of puts with different strikes increases, the accuracy of the replication will

increase. Based on our numeric experiments on four, five, and six option strikes, we

believe that the replicating errors, using only six options, are small enough for many

practical applications. We will use a n × 1 vector K to denote the strike prices. The

payoff functions of these put options are

F (I1,i, Kj) = max(0, Kj − I1,i), i = 1, · · · ,m∗, j = 1, · · · , n. (3.29)

The quantities of these puts needed are denoted by a n × 1 vector θ. If n = m∗,

then there is a θ that make the portfolio payoff and the expected net liability equal. We

usually have n < m∗, and θ is obtained by minimizing the difference between F (I1, K)θ

and L(I1). Denote the differences between the portfolio payoff and the expected net

liability by a vector g whose elements are given by
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gi = L(I1,i)−
n∑

j=1

θjF (I1,i, Kj), i = 1, · · · ,m∗. (3.30)

The purpose is to make these differences as small as possible. There are many

different criteria that may be used to judge whether g is small. We consider four

approaches to determine the portfolio weights:

• Least Squares (LS),

• Weighted Least Squares (WLS),

• Optimal over-replicating,

• Optimal under-replicating.

The objective of the Least Squares method is to minimize the sum of squared

errors. This approach treats each point equally, trying to limit large fitting discrepancy

at any point. When we do not know exactly the distribution of the future index values,

it is better to use the LS approach rather than the WLS approach. However, we still

need to identify the range of possible values.

Using the Least Squares approach, the problem may be written as follows:

min
θ>0

m∗∑
i=1

g2
i = min

θ>0

m∗∑
i=1

(
L(I1,i)−

n∑
j=1

θjF (I1,i, Kj)
)2

. (3.31)

We can add another constraint that the initial cost of the hedging portfolio is less than

or equal to the time 0 value of the pure net liability V . Denote by a 1× n vector P the

price of the n put options. Define V as

V = EQ
0

[
e−rThL(I1)1{L(I1)>0}

]
(3.32)
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Then the constraint is written as Pθ ≤ V, θ > 0.

The Weighted Least Squares approach also minimizes the mean squared error,

but it allows a weighting function to determine the contribution of each point to the

final variable determination. The index value at time 1 is not uniformly distributed,

so it makes sense to assign more weights to points with high probabilities of occurring.

As a result, the fit is tighter in the relevant area. The disadvantage of this approach is

that it is based on the assumption that the weights are known exactly. This is almost

never the case in real applications, so estimated weights must be used instead. For

our problem, the weights should be given by the probability density function of the

underlying fund values under the physical probability measure P . If this cannot be

estimated accurately, we can use the density under the risk neutral measure Q as an

approximation. Since the risk-free rates are typically lower than the real average fund

returns, using the density under Q measure will give conservative results.

Assume (I1,1, · · · , I1,m∗) is a sample of index values at time 1 in increasing order.

We define the probability pi at point I1,i under the risk-neutral measure Q as

p1 =
1

2
Prob(I1 ≤ I1,1),

pi =
1

2
Prob(I1,i−1 ≤ I1 ≤ I1,i+1), i = 2, · · · ,m∗ − 1, (3.33)

pm∗ =
1

2
Prob(I1 ≥ I1,m∗−1).

The optimization problem can be expressed as follows:

min
θ

m∗∑
i=1

g2
i pi = min

θ

m∗∑
i=1

(
L(I1,i)−

n∑
j=1

θjF (I1,i, Kj)
)2

pi,

subject to Pθ ≤ V, θ > 0.
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In the previous subsection, we introduced two approaches to get a sample of index

values. The equally spaced index values can be used for both optimization approaches.

The probability inverted index values can be used for the WLS approach directly, yield-

ing accurate approximation. In this case, the mean squared error is the arithmetic

average of the squared errors valued at chosen points.

Consider the same GMWB example as in Section 3.1.2. Assume the hedging instru-

ments are chosen to be one-year put options with six different strike prices.

K = (50; 60; 70; 80; 90; 100)

The maximum strike price is slightly less than the index value of 100.1835 at which the

expected GMWB net liability is zero. Ideally, the maximum strike price in the portfolio

should be equal to 100.1835. We choose 100 with the understanding that the error will

not be significant. The more option strikes we use, the better the replicating effect. For

a given a number of strikes, the optimal portfolio weights will tell us which strikes are

important.

Table 3.1 summarizes the optimization results for Least Squares and Weighted Least

Squares approach with and without constraints. The at-the-money put option domi-

nates the hedging portfolio. This is a desirable result since these options are very

liquid in the market. This is another sign showing that the semi-static hedging strategy

is practical. The WLS gives more weights to the at-the-money put option. The ex-

pected present value of the net liability V under the risk-neutral measure is estimated

as V = 1.6391. The costs of the replicating portfolios are slightly higher when we do not

add any constraints. Portfolio weights with constraints are very close to those without

any. The cost constraint does not have too much impact on the replicating results.
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Least Squares Weighted Least Squares

Strike Put price θLS
c θLS θW LS

c θW LS

50 0.0003 0.1931 0.1931 0.1440 0.1440

60 0.0113 0.1343 0.1343 0.1559 0.1559

70 0.1262 0.1437 0.1437 0.1373 0.1372

80 0.6872 0.1054 0.1054 0.1068 0.1069

90 2.3101 0.0802 0.0800 0.0798 0.0796

100 5.5735 0.2443 0.2445 0.2444 0.2446

Cost 1.6391 1.6394 1.6391 1.6395

Table 3.1: Semi-static hedging portfolios (of one-year puts) at time 0 solved by Least
Squares and Weighted Least Squares approach. We denote the optimal weights under
constraints by θLS

c and θWLS
c . The other two columns are obtained without constraints.

( r = 5%, σ = 0.2, A0 = 100, h = 1/4, w = 6.666̇%, Th = 1.)

We can see from Figure 3.9 that obtained portfolios from the LS and WLS approaches

replicate the expected GMWB net liability very well. Figure 3.10 and 3.11 show the

replicating errors g at different index values. The cusps in the figure correspond to

the turning points of the portfolio payoff function. The turning points are lower than

the hedging target where the index values are equal to the strikes. A positive hedging

error indicates that the target is under-hedged. The LS approach tries to minimize the

replicating errors at all index values. The errors from the WLS approach are higher at

index values with small probabilities, and lower at index values with high probabilities.

The method recognizes that the high loss events are less likely to happen, and it allows

bigger under-fitting at lower index values. For index values that are close to 100, the

replicating errors are smaller than those obtained from the LS method. The difference

between these results are not significant because the approximation is based on a large

number ( m∗ = 1800 ) of index values in the interval. If we use fewer points, the
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difference will be larger. If we include enough put options in the replicating portfolio, the

initial cost of this portfolio will approach the value of the replicating target. Hence, the

constraint Pθ ≤ V will have quite minimal effect on the construction of the replicating

portfolio as seen in Table 3.1.
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Figure 3.9: The replicating portfolio payoff and the hedging target
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Figure 3.10: The replicating error g using
Least Squares with constraint vs. Index
value I1 at time 1
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Figure 3.11: The replicating error g using
Weighted Least Squares with constraint
vs. Index value I1 at time 1
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Least Squares and Weighted Least Squares generate both positive and negative off-

sets. In contrast, over-replicating and under-replicating aim to approximate the GMWB

net liability from the above and from the below respectively. Hence, the costs of the two

hedging strategies are higher and lower than the LS and WLS approaches, respectively.

We are interested in finding over-hedging and under-hedging portfolios whose payoffs

are as close to the net liability curve as possible. The payoff functions of the portfolios

are piece-wise linear. The net liability curve is convex as shown in Figure 3.7. For

the over-replicating portfolio, the turning points of its payoff should lie on the GMWB

net liability curve. For the under-replicating portfolio, each linear piece of the payoff

should be tangent to the net liability curve, and the turning points lie below the curve.

These turning points are determined by the strike prices of the put options. Figure

3.12 illustrates how the payoffs of the two hedging portfolios replicate the GMWB net

liability curve.

K1 K2 K3

Super-hedging

Under-hedging

0

Figure 3.12: Illustration of the over and under hedging strategies

The quantity of each put option can be easily solved from the slope of each payoff
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segment. Remember that the portfolio includes put options with n different strike

prices. Denote by a n × 1 vector θo the over-replicating portfolio weights. The strike

prices, in increasing order, are denoted by Ki, i = 1, · · · , n. The maximum strike Kn is

set such that L(Kn) = 0. If such a strike price is not available, we choose the minimum

strike available that is larger than the ideal strike for the over-hedging portfolio. For

the under-hedging portfolio, the maximum strike price Kn is set to be the maximum

strike available that is less than the ideal strike price. We work from the put option

with the highest strike price back to the lowest. It is easy to verify that the weights can

be calculated as follows:

θo
n =

L(Kn−1)

Kn −Kn−1

, (3.34)

θo
i =

L(Ki−1)− L(Ki)

Ki −Ki−1

−
n∑

j=i+1

θo
j , i = n− 1, · · · , 2. (3.35)

θo
1 =

L(I1,1)− L(K1)

K1 − I1,1

−
n∑

j=2

θo
j . (3.36)

Denote by θu the under-replicating portfolio weights. To solve for θu, we need to find

the tangent point for each linear payoff segment. The method is to seek for a point on

the net liability curve that gives the minimum slope from the turning point at a higher

strike. Again, it is easy to verify the following formulas:

θu
n = min

I1,i>Kn−1

I1,i<Kn

L(I1,i)

Kn − I1,i

, (3.37)

θu
j = min

I1,i>Kj−1

I1,i<Kj

L(I1,i)−
∑n

k=j+1 θu
k(Kk −Kj)

Kj − I1,i

−
n∑

k=j+1

θu
k , j =n−1, · · · , 2. (3.38)

θu
1 = min

I1,i>K1

I1,i<I1,1

L(I1,i)−
∑n

k=2 θu
k(Kk −K1)

K1 − I1,i

−
n∑

k=2

θu
k . (3.39)
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We apply the above formulas to the previous example, and compare the replicating

effect. When evaluating the results, we keep the following point in mind. The maximum

strike price in the portfolio, 100, is less than the price where L = 0. This will cause

the over-hedging portfolio slightly under-hedges the GMWB for index values close to

the strike 100. Table 3.2 gives weights of the under- and over-hedging portfolios for

the GMWB example. The portfolio costs from LS/WLS, as shown in Table 3.1, are

in between the costs of the under- and over-hedging portfolios. The at-the-money put

option has again the highest weight.

Under-hedging Over-hedging

Strike Put price Quantity Cost Quantity Cost

50 0.0003 0.1573 0.0001 0.1767 0.0001

60 0.0113 0.1412 0.0016 0.1535 0.0017

70 0.1262 0.1541 0.0194 0.1368 0.0173

80 0.6872 0.0920 0.0632 0.1074 0.0738

90 2.3101 0.0926 0.2138 0.0751 0.1735

100 5.5735 0.2375 1.3239 0.2512 1.4002

Cost $1.6220 $1.6666

Table 3.2: Optimal over and under semi-static hedging portfolios at time 0 ( r =
5%, σ = 0.2, A0 = 100, h = 1/4, g = 6.666̇%.)

Figure 3.13 and 3.14 show the replicating errors as a function of the index values

at time 1. For the under-hedging portfolio, the hedging error reduces to zero when the

portfolio payoff is tangent to the target curve, otherwise, it is positive. For the over-

hedging portfolio, the hedging error becomes zero where the index values are equal to

the strikes.
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Figure 3.13: The under-hedging portfolio
replicating error vs. the index value at
time 1
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Figure 3.14: The over-hedging portfolio
replicating error vs. the index value at
time 1

In Table 3.3, we summarize the maximum absolute error and mean absolute error

for the four approaches. The LS and WLS approaches provide better fit. The maximum

absolute error is larger under the WLS approach, but the probability weighted mean

absolute error is lower than that under the LS approach. The over-hedging portfolio

offers the security that the expected net liability will be covered on average. The under-

hedging portfolio reduces the initial cost while trying to replicate the expected net

liability.

Optimization |gi∗| = maxi |gi| |gi∗|/L(I1,i∗) (1) = 1
m∗

∑m∗
i=1 |gi| (1)/V (2) =

∑m∗
i=1 |gi|pi (2)/V

LS w. const. 0.2554 1.1% 0.0619 3.8% 0.0127 0.8%

WLS w. const. 0.8229 1.9% 0.0936 5.7% 0.0126 0.8%

Over-hedging 0.4193 1.4% 0.1460 8.9% 0.0300 1.8%

Under-hedging 0.7714 1.8% 0.1038 6.3% 0.0180 1.1%

Table 3.3: Comparison of the semi-static hedging errors from four portfolio construction
approaches. gi is the replicating error at index value I1,i. L(I1,i) is the conditional
expected GMWB net liability at I1,i. V is defined by equation (3.32). ( r = 5%, σ =
0.2, A0 = 100, h = 1/4, w = 6.666̇, Th = 1.)
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Given the strikes, the optimal portfolio weights can be uniquely determined. If there

are many strikes available in the market, the optimal strikes can be found by a random

search method. Once we set the number of different strikes to use, we can search

for the optimal strikes. They are determined as the set of strikes that minimize the

conditional mean squared error with optimal portfolio weights. There are some efficient

minimization methods that can be used to solve this problem, such as the accelerated

random search method. More specifically, the process involves the following steps:

1. Generate many sets of candidate strikes from a uniform distribution.

2. For each set of strikes, solve for the optimal weights by the approaches described

above.

3. Search for the optimal strikes by minimizing the conditional mean squared repli-

cating errors over all sets of strikes.

3.1.5 Possible Extensions

Semi-static hedging in multiple periods

As the maturities of GMWBs are usually more than 10 years, the semi-static hedging

portfolio needs to be rolled over for multiple periods. At the end of the first hedging

period, if the fund value goes down, the initial hedging portfolio will generate a payoff

to cover the expected GMWB net liability. But the expected net liability may not be

realized at this time. If the fund value goes high, there is no option payoff. Based on the

new account value and index value, a new portfolio is constructed to hedge the future

GMWB net liability in the second period. The possible positive option payoff may be

used to pay the cost of the new hedging portfolio. This hedging process continues until
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maturity. All cash flows will be accumulated to the end, where we can then analyze the

profit or loss.

We assume the maturity of the GMWB is T , and the length of the unit hedging

period is d = T
N

. The replicating portfolio is rebalanced at the end of each hedging

period. The optimal portfolio can be constructed with d-year put options using the

methods described in the Section 3.1.4. We denote the price of the put portfolio at the

beginning of each period by Vk, k = 1, · · · , T
d
. The portfolio payoff at the end of each

period is denoted by Fk, k = 1, · · · , T
d
. The portfolio should be self-financed, so we

need to invest in or borrow from a bank account. Denote the bank account balance at

kd by Bkd.

To hedge the T -year GMWB over N time interval of d = T
N

, we purchase a portfolio

of d-year European put options at inception, and then purchase a new portfolio at the

beginning of each future period. The semi-static hedging strategy takes the following

steps to implement:

1. At time kd, sample a set of future index values {Is
(k+1)d,j}m

j=1 based on the current

value Ikd, k = 0. The superscript s represents that they are not the realized

index values but the sampled index values to be used for constructing the hedging

portfolio.

2. Simulate the expected GMWB net liability L(Is
(k+1)d) conditional on each of the

sampled index value Is
(k+1)d.

3. Solve for the optimal portfolio weights θk by minimizing the difference between

the portfolio payoff and the expected GMWB net liability obtained in step (2).

4. Borrow from the bank an amount of θkVk which is the portfolio cost at time kd.

5. At time (k+1)d, the portfolio payoff θkFk+1 is added to the bank account balance.

6. Repeat step (1) to (5) for k = 1, · · · , N − 1.
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The bank account balance evolves as follows:

B0 = −θ0V0, (3.40)

Bkd = B(k−1)de
rd + θk−1Fk − θkVk, k = 1, 2, · · · , N. (3.41)

From the insurer’s point of view, the entire hedged position at time kd has a value of

Hk which is given by

Hk = B(k−1)de
rd + θk−1Fk − lkd, (3.42)

= Bkd + θkVk − lkd, (3.43)

where lkd is the real expected GMWB net liability at time kd. Equation (3.42) is the

value before rebalancing, and equation (3.43) is the value after rebalancing.

For a specific index value at the end of one hedging period, the variation of the

expected GMWB net liability l is smaller if the length of the period d is shorter. In

the previous section, we let d = 1. Figure 3.15 shows 1% and 99% quantiles of l(I1, D)

conditional on the index value at time 1. They are very close to the conditional mean

value L(I1). This means that the hedging error would be small with a replicating

portfolio that exactly replicates L. If we hedge more frequently, the discrepancy becomes

even smaller. For example, Figure 3.16 shows the 1% and 99% quantiles of l(I0.5, D)

conditional on the index value in six months. The standard deviations of l for one year

hedging horizon are within the range of (0.07, 0.25). If we reduce the hedging horizon

to 6 months, the standard deviations fall in the range of (0.02, 0.07). These are shown

in Figure 3.17. When L is positive, the standard deviation of l comes mainly from the

uncertainty of the GMWB benefit. As the index value increases, the standard deviation

of l decreases because the value of L drops. When L becomes negative, the standard
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deviation is from the randomness of the GMWB fee. Comparing Figure 3.15 and 3.16,

we see that the relation between L(I0.5) and I0.5 in 6 months is almost the same as that

in one year. But the distributions of I0.5 and I1 are different as shown in Figure 3.8.

The index value in 6 months is less widely spread. Thus, by shortening the hedging

step we can avoid including some deep out-of-the-money options in the portfolio.
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Figure 3.15: Quantiles of the expected net
liability l at time 1
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Figure 3.16: Quantiles of the expected net
liability l at time 0.5

The strikes of the portfolio are determined based on the curvature of the expected

GMWB net liability after d years. If d is shorter than one year, then fewer strikes will

be needed. This is because the variation of fund values after d years is smaller as shown

in Figure 3.8. For example, based on the estimated payoff function as shown in Figure

3.16 where d = 1
2
, we assume that the hedging portfolio is composed of put options with

strikes of (60, 70, 80, 90, 100).

As an example, we semi-statically hedge the GMWB quarterly for one year, and

compare the hedging results with those from hedging only once a year. In Table 3.4,

our simulation results indicate that when we hedge the GMWB quarterly, the aver-
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Figure 3.17: The standard deviation of the expected net liability l

Profit/Loss Hedge Yearly (d = 1) Hedge Quarterly (d = 1
4
)

mean 0.6576 1.1881

standard deviation 2.3252 2.6075

Table 3.4: Comparison of hedging errors in one year with yearly and quarterly fre-
quencies. (Assume risk-free rate r = 0.05; real world expected rate rp = 0.1; contract
maturity T = 15; quarterly withdrawal frequency h = 1/4; fund volatility σ = 0.2; ini-
tial account value S0 = 100; the Guaranteed annual withdrawal rate g = 1/T ; GMWB
charge q = 48.886bps; portfolio strikes K = (60, 70, 80, 90, 100).)
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age profit/loss after one year improves significantly, but the standard deviation only

increases a little. This is because the standard deviation of the expected GMWB net

liability has two sources: the hedging period and the period beyond the hedging horizon.

When we increase the hedging frequency, the standard deviation from the first source

is reduced. However, the standard deviation from the second source is increased more

because the second period is much longer than the first period. The overall standard

deviation rises when we increase hedging frequency in the first year. We only hedge the

conditional expected net liability, so the hedging errors have a larger mean value.

In practice, the insurer has thousands of contracts to hedge at the same time. These

contracts were issued at different points in time, and may have different account values

and time to maturity. We can search for a replicating portfolio for each individual

contract as explained previously. Then these portfolios can be combined and managed

together.

Hedging with additional shorter maturity options

In Section 3.1.3, we use the conditional expectation, L(I1), to approximate the true net

liability, and the replicating portfolio has a maturity of one year. A better approximation

is a function of index values at two or more time points within the hedging horizon.

The replicating portfolio would include options with different maturities.

For example, the new function could be the conditional expectation of l(I1, D) given

index values at time 1
2

and 1, namely I1 and I0.5:

L(I1, I0.5) = E1

[
l(I1, D) | I1, I0.5

]
, (3.44)

Instead of a net liability curve, we have a surface to be replicated. The replicating
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portfolio is composed by a set of 6-month puts and a set of one-year puts. Denote the

strike prices for each set by a n1 × 1 vector K1 and a n2 × 1 vector K2. The option

weights are denoted by θ1 and θ2. The payoffs of two sets of options are

F (I0.5,i, K
1
j ) = max(0, K1

j − I0.5,i), i = 1, · · · ,m, j = 1, · · · , n1. (3.45)

F (I1,i, K
2
j ) = max(0, K2

j − I1,i), i = 1, · · · ,m, j = 1, · · · , n2. (3.46)

Denote the differences between the portfolio payoff and the simulated expected net

liability by g. At a given index value I1,i, the difference is

gi = L(I1,i, I0.5,i)−
n1∑

j=1

θ1
jF (I0.5,i, K

1
j )−

n2∑
j=1

θ2
jF (I1,i, K

2
j ), i = 1, · · · ,m. (3.47)

The optimization methods described in Section 3.1.4 may be used to solve for θ1 and

θ2.

Hedging with longer maturity options

The previous strategies use options with maturities that are equal or less than the

hedging horizon. We now consider strategies that use options with longer maturities

than the hedging horizon. For example, we may use two-year put options to construct

a one-year semi-static hedging portfolio. The strategy is to match the future value of

the portfolio with the expected GMWB net liability at time 1.

The advantage of the previous strategies is that the replicating instruments have

known payoff functions at the end of the hedging period. The disadvantage is that we

need options with many different strikes to well approximate the expected GMWB net

liability curve because the portfolio payoff is a piece-wise linear function.
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Options with longer maturities have values at the end of the hedging period that

are smooth functions of the index value. Therefore, we may be able to achieve good

approximation with a smaller number of different strikes. The drawback of this kind of

strategy is that the replicating effect relies on future volatility. If the volatility diverges

from the assumption, the future value of the option may become a different function of

the index value.

Full replication of the GMWB net liability

The cost of hedging can sometimes make risk managers reluctant to hedge. But the cost

has to be compared to the potential loss the company will suffer if the market moves

in an unfavorable direction. For our proposed semi-static hedging strategy, there are

initial costs of buying put options in exchange for protection against the potential loss.

In this subsection, we show an alternative replicating strategy that has no immediate

costs but the implicit cost of giving up potential profits if equity prices move upwards.

This strategy indicates a pessimistic and conservative view of the market.

To reduce the initial cost, we replicate both the positive and negative parts of the

GMWB net liability. That is, both the expected GMWB charge and the expected

GMWB liability are completely hedged. The expected present value of the GMWB net

liability is zero at the beginning, and the cost of the replicating portfolio is also zero.

The replicating portfolio for the positive part of the net liability includes put options

only. To replicate the negative part, we take a short position on a call option. This

call option will cancel out the expected GMWB charge when the index value increases.

The expected GMWB liability can be replicated by a set of put options as explained in

Section 3.1.4.
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The strike price and quantity of the call option are obtained by linear regression for

the expected GMWB charges conditional on the end index values where the expected

GMWB liabilities are close to zero. For the example in Section 3.1.3, the estimated

strike is 36.3, and the quantity of the call option is calculated as -0.0658. If this strike

is not available, we can choose the closest price available and recalculate the quantity.

The expected GMWB net liability, deducted by the call option payoff, is replicated by

put options with strikes of (50; 60; 70; 80; 90; 100; 110; 150). Based on the expected

GMWB liability curve, we first chose 11 strikes (50; 60; · · · ; 150). The portfolio weights

for strikes (120; 130; 140) are very small, so we eliminate these three strikes.

Table 3.5 shows the portfolio weights θ solved by the Least Squares method and

Weighted Least Squares method. The theoretical present value of expected net liability

at time 0 is zero, but the estimated net liability based on simulation is 0.0129. The

initial cost of the full-replicating portfolio is comparable with that number.

Figure 3.18 plots the replicating errors with respect to index values at time 1. For

index values with high probabilities, the replicating errors are small. This feature is

more prominent for the results following the Weighted Least Squares method.
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Strike Price θLS θW LS

Call 36.3 65.4556 -0.0658 -0.0658

Put 50 0.0003 0.2861 0.1444

Put 60 0.0113 0.0829 0.1560

Put 70 0.1262 0.1565 0.1363

Put 80 0.6872 0.1027 0.1073

Put 90 2.3101 0.0789 0.0794

Put 100 5.5735 0.0583 0.0513

Put 110 10.6753 0.0482 0.0551

Put 150 43.0440 0.0740 0.0728

Portfolio Cost -0.0105 -0.0224

Table 3.5: The full-replicating portfolios at time 0 solved by the Least Squares method
and Weighted Least Squares method. ( r = 5%, σ = 0.2, A0 = 100, h = 1/4, g =
6.666̇%, Th = 1.)
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Figure 3.18: The replicating errors at time 1 from the full-replicating portfolios.
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3.2 The Effectiveness of the Semi-static Hedging

Strategies

In this section, we examine the effectiveness of the semi-static hedging strategies through

simulation. Under the constant interest rate and volatility assumptions, the delta and

delta-gamma hedging strategies would be good representations of dynamic hedging

strategies. We compare the semi-static hedging strategy with these dynamic hedging

strategies in two cases: the hedging target is the loss part of the expected GMWB net

liability and the hedging target is the expected GMWB net value (positive or negative).

The hedging error is defined as the difference between the value of the hedging portfolio

and the value of the target being hedged at the end of the hedging period. By simulating

a large number of paths of the index prices, we estimate the distributional characteristics

of the hedging errors.

In our simulation studies we have found that the performance of the proposed semi-

static strategy is comparable to delta hedging under the Black-Scholes model. However,

when there are random jumps in the index value process, the semi-static strategy out-

performs delta hedging strategy. In the real world, random price jumps do happen,

especially in a volatile market where hedging is more important. Delta hedging may

lead to a possible large loss when random price jumps can occur. This cannot be elim-

inated or mitigated by increasing the rebalancing frequency (see Naik and Lee 1990).

The delta-gamma hedging strategy can not hedge the jump risk either. In contrast, the

semi-static strategy can still perform well in the appearance of price jumps.
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3.2.1 Comparison of the Semi-static Hedging with Dynamic

Hedging under the Black-Scholes Model

Consider the problem faced by the insurer who wrote a GMWB on a certain variable

annuity. The insurer would like to ensure that the expected GMWB liability be covered

in the following one year. During the year, there are liquid exchange traded assets such

as the underlying stocks, futures and options on the index, which can be used to hedge

the GMWB. Below we compare three strategies:

• a semi-static hedging using one-year European put options,

• a dynamic delta-hedging strategy with the underlying index (stocks),

• a delta-gamma hedging strategy with the underlying index (stocks) and one-year

put options.2

The semi-static strategy is based on the Least Squares approach that is described in

Section 3.1.4. The dynamic strategies have been discretized by rebalancing the under-

lying position weekly. In practice, direct trading in the hundreds of stocks comprising

the index is not employed. Practically all delta-hedging is done using the liquid index

futures. However, we choose to use the index directly for simplicity. Given our assump-

tion of constant interest rates and GMWB fee rate, the simulated performances of the

delta hedges based on the index or its futures are very close.3 Hence, this choice does

not affect our results.

2When the time-to-maturity of the one-year put decreases to two months, we switch to four-month
put options so that the gamma of the put will not be close to zero.

3The required position in the futures, HF , has a deterministic relation with the required position
in the underlying, HI . HF = e−(r−q)(Th−t)HI .
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We assume that under the real-world measure P the price of the underlying fund

follows the stochastic differential equation

dSt = (µ− q)Stdt + σStdWt. (3.48)

To price the GMWB and to compute the delta, we use the dynamics under the respective

risk-neutral measure Q:

dSt = (r − q)Stdt + σStdW ∗
t , (3.49)

where {W ∗
t } is a standard Brownian motion under the measure Q.

Our simulation results are based on the example that we presented in Section 3.1.4

with the following assumptions:

real return µ = 0.10, risk-free rate r = 0.05,

volatility σ = 20%, initial fund value S0 = 100,

annual withdrawal w = 6.667, withdrawal time step h =
1

4
,

GMWB fee rate q = 0.0048886.

Suppose the hedging horizon is one year, Th = 1, and the hedging frequency is

once a week, h′ = 1
52

, Nh = Th

h′ = 52. We generate each trajectory of weekly fund

prices based on the process (3.48). The expected GMWB net liability (net contract

value) is computed using weekly fund prices and the risk-neutral dynamics. The delta

of the GMWB is the sensitivity of the expected GMWB net liability to the change

of the index value, that is, its partial derivative.4 The delta is approximated by a

4The underlying fund return is a bit lower than the index return because of the GMWB fee. This
causes a small basis risk for hedging.
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finite difference method. At a time step u, u = 0, · · · , Nh − 1, the delta, denoted

by ∆u, is numerically calculated through changing the index value up and down by

a small percentage ε, and dividing the change of the expected GMWB net liability,

l(Iuh′ , D), D = (I0, · · · , I(u−1)h′), by the change of the index value:

∆u =
l
(
(1 + ε)Iuh′ , D

)− l
(
(1− ε)Iuh′ , D

)

2εIuh′
, ε > 0. (3.50)

The delta represents the amount of the index that we should hold at each time step.

The GMWB has put option feature, so the delta is negative. Negative delta means

to short the index, and deposit the income in a bank account. The discrete hedged

position, HD, consists of three components:

• a short GMWB position, that is, the expected GMWB net liability at time step

u, given by −l(Iuh′ , D);

• a short position in the index, ∆uIuh′ ;

• a risk-free bank account balance, Buh′ . The balance includes the income from

writing the GMWB, less the cost of initiating and rebalancing the hedge portfolio.

Initially, the hedged position is

HD
0 = −l(I0) + ∆0I0 + B0 = 0, (3.51)

B0 = l(I0)−∆0I0. (3.52)

At the time step u, u = 1, · · · , Nh − 1, the hedge is updated by adding (∆u −∆u−1)

units of the index. This requires us to borrow an amount of (∆u −∆u−1)Iuh′ from the
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bank, so the bank balance becomes

Buh′ = B(u−1)h′e
rh′ − (∆u −∆u−1)Iuh′ . (3.53)

After the rebalancing, the portfolio value is

HD
u = −l(Iuh′ , D) + ∆uIuh′ + Buh′ , u = 1, · · · , Nh − 1. (3.54)

= −l(Iuh′ , D) + ∆u−1Iuh′ + B(u−1)h′e
rh′ . (3.55)

At the end of the hedging period, we will not update the hedge

HD
Nh

= −l(I1, D) + ∆Nh−1I1 + B1−h′e
rh′ . (3.56)

The portfolio value HD determines the hedging error (profit or loss after hedging), which

is defined as the difference between the value of the hedge portfolio and the value of

the target option being hedged. In addition to this final step hedging error, we are also

interested in the discounted hedging error:

HED
u = e−ruh′HD

u , u = 1, · · · , Nh.

For the semi-static hedging strategy, there is a cash outflow related to purchasing

the replicating portfolio V0θ at time zero. Hence, the initial bank balance B0 is negative.

No rebalancing is needed after that. At the end of the hedging period, the portfolio

may generate positive payoff. Since we use a finite number of options to approximate

the expected GMWB net liability, the portfolio payoff is not guaranteed to be equal

to the expected GMWB net liability. In addition, due to its static nature, the hedge
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typically will not be delta neutral all the time. The hedging error can be computed as

follows:

B0 = l(I0)− V0θ, (3.57)

HS
u = −l(Iuh′ , D) + Vuθ + B0e

ruh′ , u = 1, · · · , Nh − 1, (3.58)

HS
Nh

= −l(I1, D) + Fθ + B0e
rTh . (3.59)

Note that the hedging error for the static strategy, HS
u , u < Nh, is equal to unrealized

profit or loss, because there is no trading activity until maturity.

The delta in equation (3.50) is computed based on the expected GMWB net liability

l which could be negative. The semi-static hedging strategy that we first proposed only

replicates the loss part of the net liability. To be consistent, we compare the dynamic

hedging and semi-static hedging in two cases: full hedge and partial hedge. In the first

case, we use the semi-static hedge portfolio constructed in Table 3.5. In the second

case, we compute the delta based on the loss part of the GMWB net liability l+, which

is defined as

l+(Iuh′ , D) = EQ[e−r(t∗−uh′)(Gt∗ − Ct∗)
+|Iuh′ , D], (3.60)

where t∗ is the first time that the account values reaches zero after withdrawal,

t∗ =
{ t, if At−h > 0, At = 0, 0 < t ≤ T,

T, if AT > 0,
(3.61)

Gt∗ is the value of the remaining guaranteed benefits at time t∗, and Ct∗ is the value of

the GMWB charges at time t∗. Then, the delta ∆+
u at time uh′ is computed as

∆+
u =

l+
(
(1 + ε)Iuh′ , D

)− l+
(
(1− ε)Iuh′ , D

)

2εIuh′
, ε > 0. (3.62)
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The semi-static hedging strategy uses put options as replicating instrument, but

delta hedging strategy does not. To examine the difference, we also implement a delta-

gamma strategy by adding a second put option to the dynamic hedging portfolio. The

strike price is equal to the initial account value. The maturity of the put option is

equal to the current hedging horizon (e.g. one year). Denote the put price by P , the

long position of the put by DP , and the number of shares of the underlying by DS. By

matching the gamma and delta of the portfolio with that of the GMWB net liability,

we obtain the following results:

DP =
∂2l

∂S2

/∂2P

∂S2
, (3.63)

DS =
∂l

∂S
− ∂P

∂S
DP . (3.64)

There is a problem with this hedging strategy using the one-year put option. Under

the downward scenarios, the hedging errors are extremely large. This is caused by the

near-zero gamma value of the put and the high value of the put as the time approaches

the end of the hedging period. It makes the strategy incomparable with the other

hedging strategies. We modify the strategy by replacing the one-year put with another

put whose maturity is four months when the time-to-maturity decreases to two months.

Then, the delta-gamma hedging strategy will give a better hedging result.

Using the previous GMWB example, we compare the three hedging strategies based

on 2,000 simulations. Table 3.6 lists the simulated delta, gamma and vega values of

the GMWB and the replicating portfolio at time zero. The absolute delta value in

the full hedge case is larger than that in the partial hedge case. But the gamma and

vega values are lower than those in the partial hedge case. The semi-static replicating

portfolio does not have the exact same Greek values as the GMWB does. Their delta
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and gamma values are close, but the replicating portfolio has a much lower vega than

the GMWB.

Delta Gamma Vega

GMWB Static Port GMWB Static Port GMWB Static Port

Loss only -0.1332 -0.1142 0.0056 0.0067 29.7907 13.4572

Full hedge -0.2141 -0.2091 0.0047 0.0045 23.2607 9.0590

Table 3.6: Greeks comparison of the GMWB net liability and the Semi-static portfolio
at time zero. The hedging target is l for the full hedge. To hedge the loss part only, it
is l+ defined in equation (3.60).

Figure 3.19 and 3.20 show the estimated probability densities of the discounted

profit/loss at the end of hedging period in the partial and full hedge cases respectively.

These densities are estimated by the kernel smoothing method. The distribution of the

profit/loss before hedging has a large variance and a longer left tail. The mean value is

0.9086, which represents a profit. This is because we assume a 10% drift term for the

index value process.

In the partial hedge case, the left tails of the profit/loss distributions are substantially

shortened after hedging. For the semi-static hedging, the variation is largely reduced

on the loss (left) side. The initial replicating portfolio cost is 1.6394 (see Table 3.1).

The left side would be truncated at 1.6394 if the payoff from the hedging portfolio had

completely offset the expected GMWB net liability. The tail on the left side of 1.6394 is

caused by the randomness from the fund performance and the replicating errors between

the hedging portfolio payoff and the conditional expected GMWB net liability. Since

we do not hedge the expected GMWB profit, the distribution of the hedging errors has

a fat right tail. Under the delta-neutral strategy, the variation of the hedging errors

is slightly smaller than that under the semi-static strategy. However, the left tail is
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fatter than that after the semi-static hedging. The estimated density function under

the delta-gamma hedging is very close to that under delta hedging. This indicates that

the gamma-neutral strategy does not improve significantly the delta hedging result in

this case. We conclude that the semi-static strategy performs as well we the dynamic

hedging strategies in the partial hedge case.

In the full hedge case, the variation of the hedging errors is substantially reduced.

The semi-static strategy and delta hedging produce similar profit/loss distributions.

The difference is that the density function under the semi-static strategy has a higher

peak and a slightly longer left tail. The delta-gamma hedging strategy outperforms

the other two strategies. Note that this is based on the modification of switching to a

longer-maturity put option near the end of the hedging period.

Table 3.7 and 3.8 report the summary statistics of the last step hedging errors in the

partial and full hedge cases respectively. The statistics include mean, median, standard

deviation, maximum, minimum, quantiles 1%, 10%, skewness, and kurtosis. When we

only hedge the loss part of the GMWB net value, the average hedging errors are positive,

and small losses are still possible. In the full hedge case, the mean hedging errors are

close to zero, and the standard deviations are much smaller than those in the first case.

The statistics indicate that the semi-static hedging strategy performs as well as the

dynamic strategy under the Black-Scholes model.
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Figure 3.19: Estimated probability densities of profit/loss in one year. The hedging
target is the loss part of the GMWB net liability. Assume withdrawals occur quarterly.
The dynamic hedging position is updated weekly. The semi-static replicating portfolio
consists of six puts and is obtained by Least Squares. (A0 = 100, µ = 10%, r =
5%, σ = 20%, 2,000 scenarios)
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Figure 3.20: Estimated probability densities of profit/loss in one year. The hedging tar-
get is the GMWB net value, that is, both the profit and the loss. Assume withdrawals
occur quarterly. The dynamic hedging position is updated weekly. The semi-static
replicating portfolio consists of eight puts and one call. The portfolio weights are ob-
tained by the Least Squares method. (A0 = 100, µ = 10%, r = 5%, σ = 20%, 2,000
scenarios)

100



Semi-static Hedging for GMWBs

Profit/loss No hedging Delta-hedging Delta-gamma hedging Semi-static hedging

mean 0.9086 0.2853 0.3464 0.4586

median 1.4463 0.1699 0.1702 -0.2639

standard deviation 4.2609 1.6064 1.6071 2.2772

maximum 10.6167 6.2780 6.4719 8.4592

minimum -16.8649 -3.3558 -3.0969 -2.2297

quantile 1% -11.3618 -2.7814 -2.6150 -1.9299

quantile 10% -5.1458 -1.7400 -1.6784 -1.7224

skewness -0.8051 0.4328 0.4981 0.839

kurtosis 3.8322 2.9927 3.0382 2.6994

Table 3.7: Simulated hedge performance comparison of the semi-static and dynamic
strategies in the first year. The hedging target is the loss part of the GMWB net
liability. Assume withdrawals occur quarterly. The semi-static replicating portfolio
consists of six puts. The dynamic hedging position is updated weekly. (µ = 10%, r =
5%, σ = 0.2, A0 = 100, w = 6.666̇, h = 1/4.)

Profit/loss No hedging Delta-hedging Delta-gamma hedging Semi-static hedging

mean 0.9086 -0.0252 0.0077 -0.0336

median 1.4463 -0.0123 0.0063 0.0151

standard deviation 4.2609 0.1850 0.0358 0.2070

maximum 10.6167 0.4885 0.4003 0.4163

minimum -16.8649 -0.7368 -0.1829 -0.7967

quantile 1% -11.3618 -0.5199 -0.0848 -0.6965

quantile 10% -5.1458 -0.2664 -0.0299 -0.3038

skewness -0.8051 -0.4662 0.7064 -1.3556

kurtosis 3.8322 3.3905 14.031 4.8622

Table 3.8: Simulated hedge performance comparison of the semi-static and dynamic
strategies in the first year. The hedging target is the GMWB net value, that is, both
the profit and the loss. Assume withdrawals occur quarterly. The semi-static replicating
portfolio consists of eight puts and one call. The dynamic hedging position is updated
weekly. (µ = 10%, r = 5%, σ = 0.2, A0 = 100, w = 6.666̇, h = 1/4.)
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3.2.2 Comparison of the Semi-static Hedging with Dynamic

Hedging under the Jump-Diffusion Model

It is known that in the real world equity prices exhibit jumps. In this subsection, we

compare the semi-static and delta hedging strategies under a jump-diffusion model. For

long-dated options, jumps tend to get averaged out so that the implied equity price

distribution when there are jumps is almost indistinguishable from the one obtained

when there are no jumps (see Hull 2006, p. 379). We assume that jumps are not priced

because we are interested in the effect they have on the costs of hedging of different

hedging strategies that have the same initial costs. At the same time, we know that

there is evidence that jumps constitute nondiversifiable risk. For example, Chen et al.

(2008) show that jumps do affect the fair price of the GMWB.

In comparison with the Merton’s normal jump-diffusion model (Merton 1976), Kou’s

double exponential jump diffusion model offers better fit to the real market data (Kou

2002). We choose to use Kou’s model to compare the hedging performance of the two

hedging strategies. The simulation results show that the semi-static hedging strategy

outperform delta hedging strategy when there are jumps in the fund values.

Kou’s jump-diffusion model

Under the double exponential jump diffusion model, the dynamics of the fund value St

under the physical measure P is given by

d
St

St−
= (µ− q)dt + σdWt + d

( Nt∑
i=1

(Vi − 1)
)
, (3.65)
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where {Wt} is a standard Brownian motion, and {Nt} is the number of jumps until

time t. {Nt} is assumed to be a Poisson process with rate λ, and Vi is the size of the

i-th jump in the form of percentage of St−. We assume that Vi’s are independent and

identically distributed (i.i.d.) non-negative random variables such that Y = ln(V ) has

a mixed exponential distribution with the density:

fY (y) = pη1e
−η1yI(y≥0) + (1− p)η2e

η2yI(y<0), 0 < p < 1, η1 > 1, η2 > 0, (3.66)

where p and 1−p are probabilities of jump up and down respectively, and 1
η1

, 1
η2

represent

mean jump sizes in percentage form. Wt, Nt and Y are assumed to be independent.

There is no unique risk-neutral probability measure in the presence of random jumps.

Kou (2002) shows that a particular risk-neutral measure Q can be obtained using the

rational expectations argument with a HARA-type utility function.5 The equilibrium

price of an option is given by the expectation under this risk-neutral measure of the

discounted option payoff. Under this risk-neutral probability measure, St still follows a

double exponential jump diffusion process, but of the form

d
St

St−
= (r − q − λ∗ζ∗)dt + σdW ∗

t + d
( N∗

t∑
i=1

(V ∗
i − 1)

)
, (3.67)

ln(
St

S0

) = (r − q − σ2

2
− λ∗ζ∗)t + σW ∗

t +

N∗
t∑

i=1

Y ∗
i , (3.68)

ζ∗ = EQ[V ∗]− 1 =
p∗η∗1

η∗1 − 1
+

(1− p)∗η∗2
η∗2 + 1

− 1, (3.69)

5The utility functions have Hyperbolic Absolute Risk Aversion.

U(c, t) =

{
e−θt cα

α , 0 < α < 1, θ > 0;
e−θt ln(c), α = 0, θ > 0.
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where {W ∗
t } is a standard Brownian motion under Q, and {N∗

t } is a Poisson process

with intensity λ∗. The log jump size Y ∗ = ln(V ∗) follows a new double exponential

distribution with parameters (p∗, η∗1, η∗2) that satisfy the same conditions as before.

They all depend on the utility function.

We choose to use the parameter values given by Kou (2002), who argues that they

are reasonable for the U.S. stock market:

λ = λ∗ = 10, p = p∗ = 0.3, η1 = η∗1 = 50, η2 = η∗2 = 25.

The average number of jumps per annum is 10. The probability of an upward jump is

0.3, and the probability of jumping down is 0.7. The average size of an upward jump

is 2%, and the average size of a downward jump is 4%. With these parameters, the

average jump size is −2.2%, and the standard deviation of jump sizes is 4.47%.

These jumps will change the fund value and account value. We still use the previous

method to calculate the delta, and assume that there are no jumps when determining

the GMWB future liability and charges. The fund value after a small time period h′ is

simulated as follows:

St+h′ = St exp
{

(µ− q − σ2

2
)h′ + σ

√
h′z +

Nt+h′∑
Nt+1

Yi

}
. (3.70)

Hedging comparison under the jump-diffusion model

Merton (1976) explains that an option writer will lose money if a jump occurs regardless

of the size and direction of the change. Naik and Lee (1990) show that the Black-Scholes

hedging techniques fail to be self-financing in the presence of random price jumps. Jump

risk in the jump-diffusion model with an infinite number of possible jump sizes can only
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be eliminated by an infinite number of hedging instruments. With a finite number

of instruments, there is no perfect hedge even in the theoretical case of continuous

rebalancing.6 Hence, we do not specifically hedge jump risk.

Our simulation results agree with the theory. The dynamic hedging allows for large

potential losses because of random price jumps. Figures 3.21 and 3.22 depict paths of

the discounted delta-hedging errors over the hedging period. We can see that there

are sudden large losses because of random jumps in the underlying prices. As the fund

value rises or falls, the value of delta hedging portfolio is always below the contract value

because of the option convexity feature of the contract. For the delta-gamma hedging

(Figure 3.23 and 3.24), there are both positive and negative hedging error changes. In

contrast, the semi-static hedging is much less sensitive to price jumps. The semi-static

hedging portfolio can generate a payoff that covers the expected GMWB net liability.

Figure 3.25 and 3.26 show the estimated probability densities of the discounted

profit/loss at the end of the hedging period using kernel smoothing method. Under

the jump-diffusion model, it is clear that the semi-static hedging outperforms the delta

and delta-gamma hedging. In both the partial hedge and the full hedge cases, the

distributions of the profit/loss under the delta and delta-gamma hedging exhibit a

longer left tail than the semi-static hedging. The semi-static hedging is able to prevent

disastrous losses that the delta and delta-gamma hedging cannot do. In the partial

hedge case, the distribution from the semi-static hedging has a relatively longer right

tail. But the distribution from delta hedging does not show this feature. The delta-

gamma hedging result is very sensitive to gamma of the put option. The large hedging

6He et al. (2006) develop a dynamic hedging strategy to minimize a measure of the jump risk,
and show through simulation that both this strategy and a semi-static strategy can sharply reduce the
standard deviation of the profit or loss.
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Figure 3.21: Sample paths of delta-
hedging errors under the Kou’s jump dif-
fusion model in the partial hedge case.
(A0 = 100, µ = 10%, σ = 0.2, 1,000 sce-
narios)
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Figure 3.22: Sample paths of delta-
hedging errors under the Kou’s jump dif-
fusion model in the full hedge case. (A0 =
100, µ = 10%, σ = 0.2, 1,000 scenarios)
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Figure 3.23: Sample paths of delta-gamma
hedging errors under the Kou’s jump dif-
fusion model in the partial hedge case.
(A0 = 100, µ = 10%, σ = 0.2, 1,000 sce-
narios)
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Figure 3.24: Sample paths of delta-gamma
hedging errors under the Kou’s jump dif-
fusion model in the full hedge case. (A0 =
100, µ = 10%, σ = 0.2, 1,000 scenarios)
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errors are associated with scenarios where the gamma of the put option becomes near

zero. If a put option with a longer maturity is used, the delta-gamma hedging result

may be improved.
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Figure 3.25: Estimated probability densities of the profit/loss at time 1 in the presence
of random jumps. The hedging target is the loss part of the GMWB net liability.
withdrawals occur quarterly. The dynamic hedging position is updated weekly. The
semi-static replicating portfolio consists of six puts and is obtained by the Least Squares.

Table 3.9 and 3.10 show the statistics of the hedging errors under the Kou’s jump-

diffusion model in partial hedge and full hedge cases respectively. The average loss

before hedging is 4.24 under the jump-diffusion model. After the semi-static hedging,

the standard deviation of the hedging errors, in the partial hedge case, is smaller than

that under the Black-Scholes model. In the full hedge case, the standard deviation

increases from 0.21 to 0.23. In contrast, the performance of delta hedging deteriorates

under the jump-diffusion model, and all the statistics become worse. Both the average

loss and the standard deviation are larger than those after the semi-static hedging. The

maximum loss and quantile measures show that the chance of a large loss after delta

hedging is higher than that after the semi-static hedging. The kurtosis value for the
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Figure 3.26: Estimated probability densities of the profit/loss at time 1 in the presence
of random jumps. The hedging target is the GMWB net value, that is, both the profit
and the loss. Assume withdrawals occur quarterly. The dynamic hedging position is
updated weekly. The semi-static replicating portfolio consists of eight puts and one call.

Profit/loss No hedging Delta-hedging Delta-gamma hedging Semi-static hedging

mean -4.2412 -1.6404 -1.0665 -0.7664

median -2.8820 -1.5961 -0.7126 -1.5201

standard deviation 7.2487 2.0936 7.1680 1.6438

maximum 9.7954 5.9302 138.7238 7.6780

minimum -32.2215 -9.4061 -82.2782 -2.5595

quantile 1% -25.8274 -6.8227 -15.3967 -2.2193

quantile 10% -14.1513 -4.2241 -5.4706 -1.8544

skewness -2.4675 -0.1301 4.6295 1.9814

kurtosis 12.0982 3.4625 179.7347 6.5983

Table 3.9: Simulated hedge performance comparisons of static and dynamic strategies
when there are random jumps under Kou’s model. The hedging target is the loss part
of the GMWB net liability. ( r = 5%, σ = 0.2, A0 = 100, g = 6.666̇%.)
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Profit/loss No hedging Delta-hedging Delta-gamma hedging Semi-static hedging

mean -4.2412 -0.6586 -0.1831 0.0107

median -2.8820 -0.4207 -0.0112 0.0390

standard deviation 7.2487 0.7859 6.7454 0.2252

maximum 9.7954 0.4038 123.6294 0.9194

minimum -32.2215 -5.8923 -104.2825 -1.1619

quantile 1% -25.8274 -3.7803 -15.0800 -0.6831

quantile 10% -14.1513 -1.5548 -4.1943 -0.2602

skewness -0.9681 -2.4675 2.5062 -0.7249

kurtosis 3.8120 12.0982 174.3477 5.1412

Table 3.10: Simulated hedge performance comparisons of static and dynamic strategies
when there are random jumps under Kou’s model. The hedging target is the GMWB net
value, that is, both the profit and the loss. ( r = 5%, σ = 0.2, A0 = 100, g = 6.666̇%.)

delta-gamma hedging errors becomes very large. A high kurtosis means that infrequent

extreme deviations are unavoidable.

3.3 Summary

GMWBs are long-term path-dependent put options. The dynamic hedging strategy

requires frequent and intensive simulation of future cash flows over a large number of

scenarios. It can be very expensive when the market is very volatile. In addition, the

dynamic strategy fails to hedge the risk that arises from random price jumps. The

semi-static hedging strategy we propose can guard the insurer from the jump risk. The

replicating portfolio only needs to be rebalanced a few times a year, so computing time

is largely reduced.

We assume that the underlying fund can be mimicked by an index for simplicity,

and that the withdrawal amount is constant at the maximum level without incurring
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penalty. Under the Black-Scholes model, we set the hedging target as the positive

expected GMWB net liability conditional on the index value at the end of the hedging

period. Then we search for a portfolio of put options on the index whose payoff replicates

the hedging target. One optimization criteria is to minimize the sum of the squared

differences between the portfolio payoff and the hedging target. When the portfolio

expires, we construct a new portfolio based on the current account value. If we set the

hedging target as the conditional expectation of the future GMWB net value, then the

initial cost of the replicating portfolio will be reduced. The full-replicating portfolio

includes several put options and one call option. Our simulation results show that

the semi-static hedging strategy is comparable with the delta and delta-gamma hedging

strategies under the Black-Scholes model. When the index value follows a jump-diffusion

process, the replicating portfolio obtained under the Black-Scholes model still works

well. But the delta and delta-gamma hedging strategies leave large losses behind.
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Chapter 4

Hedging GMWBs Under the

Heston Model

In the previous chapters, we have modeled the fund value process using a geometric

Brownian motion with a constant volatility. However, it is known that this model

typically does not provide a satisfactory fit for long-term fund returns. The empirical

distribution of equity returns is highly peaked and fat-tailed relative to the normal

distribution. This feature indicates that the empirical distribution is a mixture of

distributions with different variances. The phenomenon that large moves follow large

moves and small moves follow small moves is called volatility clustering. It implies that

volatilities over different time periods are not independent because of market inefficiency.

By assuming that the volatility of the equity price is a stochastic process, derivatives

can be valued more accurately. Traders use the Black-Sholes formula to price options by

allowing the implied volatilities to vary with respect to strikes and time to maturities.

Stochastic volatility (SV) models can explain the volatility smile and the term structure
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in a self-consistent way (see Gatheral 2005). In this chapter, we assume the volatility of

the fund returns follows the Heston SV model, and we explain how to hedge GMWBs

semi-statically under this assumption.

The following SV models have been proposed in the literature: Hull and White

(1987) derive a series-form option valuation formula if the asset prices and volatilities

are uncorrelated. They assume that the volatility risk can be diversified. Scott (1987)

points out that the option price depends on the risk premium related to the random

volatility, and use simulation to compute option prices. Wiggins (1987) derives statisti-

cal estimators for volatility process parameters, and numerically prices the call option.

Stein and Stein (1991) model the volatility as an OrnsteinUhlenbeck process. They

assume that the volatility is uncorrelated with the asset price, and derive an option

pricing formula conditional on the path of volatility. Heston (1993) develops a closed

form solution for options based on characteristic functions. The model allows arbitrary

correlation between volatility and asset returns. Stochastic interest rates can also be

introduced into the model. These attractive features make the Heston model the most

popular SV model.

This chapter is organized as follows:

In Section 4.1, we briefly introduce the Heston model, European option pricing

formulas under the model, and some numerical implementation issues.

In Section 4.2, we propose two semi-static hedging strategies under the Heston model

for European put options. As far as we know, there is only one paper (Takahashi

and Yamazaki 2008) on static hedging of European options under the Heston model.

Our simulation results indicate that our proposed semi-static strategies outperform the

minimum-variance hedging strategy.
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In Section 4.3, we apply the semi-static hedging strategies to GMWBs. The future

value of the GMWB is dependent on the path of the fund value. To simulate the fund

value process conditioned on the end value under the Heston model, we use a recently

proposed acceptance-rejection sampling method and a time-changed Brownian motion.

4.1 The Heston Stochastic Volatility Model

For a stochastic volatility model, the constant volatility σ in the Black-Scholes model

is replaced with a square root of variance νt that is stochastic,

dSt = µSt dt +
√

νtSt dWt. (4.1)

It is convenient to write it in terms of the logarithm of the price x = ln(S)

dxt = (µ− νt

2
)dt +

√
νtdWt. (4.2)

The form of νt is specified by a particular diffusion process. In the Heston model, the

stochastic differential equation for variance takes the form of the square root mean-

reverting process:

dνt = κ(θ − νt)dt + σν

√
νt dW v

t , (4.3)

where

• θ is the mean long-term variance,

• κ is the rate at which the variance reverts toward its long-term mean, (The larger

κ, the more rapidly the variance converges to θ.)

• σν is the volatility of the variance process,
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• {W v
t } is a standard Brownian motion with dWtdW v

t = ρdt. Typically, ρ is nega-

tive, which indicates that a down-move in the equity price is correlated with an

up-move in the variance.

It is known that for any t > 0, the random variable νt is non-centrally chi-square

distributed and the volatility process
√

νt is Rayleigh distributed (see Miller et al. 1958).

When volatility becomes random and there are no traded assets on volatility, the

market is not complete. Scott (1987) shows that the option value must satisfy a partial

differential equation whose solution depends on an unspecified parameter called the

market price of volatility risk. Heston (1993) specifies a volatility risk premium that is

proportional to the variance ν. Once the market price of volatility risk is determined,

a certain risk-neutral measure Q can be derived uniquely, and the price of the option is

equal to the expected value of the discounted future payoffs under the measure Q. The

fund value and the volatility processes that we are going to use in this chapter become

dSt = rSt dt +
√

νtSt

[√
1− ρ2dW1t + ρdW2t

]
(4.4)

dνt = κ∗(θ∗ − νt)dt + σν

√
νt dW2t (4.5)

κ∗ = κ + λ

θ∗ =
κθ

κ + λ
(4.6)

where {W1t} and {W2t} are independent standard Brownian motions under the measure

Q, and ρ is the instantaneous correlation coefficient between S and ν. To simplify the

exposition, we will still use κ and θ to represent κ∗ and θ∗ under the measure Q. The

parameters can be estimated using market prices of options on the same underlying S.

(see Bakshi et al. 1997)

114



Hedging GMWBs Under the Heston Model

4.1.1 Pricing European Options Under the Heston Model

Heston (1993) shows that the price at time t of a European call option with a maturity

of T − t and a strike of K is given by

C(St, νt, t) = StP1 −Ke−r(T−t)P2, (4.7)

Pj

(
x, ν, T, t; ln(K)

)
=

1

2
+

1

π

∫ ∞

0

Re

[
e−iφ ln(K)fj(x, ν, T, t; φ)

iφ

]
dφ, j = 1, 2, (4.8)

fj(x, ν, T, t; φ) = eCj(T,φ)+Dj(T,φ)ν+iφx, j = 1, 2, (4.9)

Cj(T, t, φ) = rφi(T − t) +
a

σ2
ν

{
(bj − ρσνφi + d)(T − t)− 2 ln

[1− ged(T−t)

1− g

]}
,(4.10)

Dj(T, t, φ) =
bj − ρσνφi + d

σ2
ν

[ 1− ed(T−t)

1− ged(T−t)

]
, (4.11)

g =
bj − ρσνφi + d

bj − ρσνφi− d
,

d =
√

(bj − ρσνφi)2 − σ2
ν(2ujφi− φ2),

a = κθ, u1 =
1

2
, u2 = −1

2
, b1 = κ− ρσν , b2 = κ.

where Re[ ] denotes the real part of a complex variable. The corresponding put option

price is given by

P (St, νt, t) = Ke−r(T−t)(1− P2)− St(1− P1). (4.12)

An alternative equivalent formula for the characteristic function is used in Bakshi

et al. (1997); Duffie et al. (2000); Gatheral (2005), where the authors assume the form

(4.9) with

Cj(T, t, φ) = rφi(T − t) +
a

σ2
ν

{
(bj − ρσνφi− d)(T − t)− 2 ln

[1− 1
g
e−d(T−t)

1− 1
g

]}
,(4.13)
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Dj(T, t, φ) =
bj − ρσνφi− d

σ2
ν

[ 1− e−d(T−t)

1− 1
g
e−d(T−t)

]
. (4.14)

This different representation of the characteristic function leads to procedures that

avoid some numerical problems that may occur when using the previous formula. In

the next subsection, we explain the problem in detail.

Fourier inversion methods can be applied in different ways to get closed-form formu-

las for European call and put prices. Sepp (2003) proposes an option pricing formula

that only involves one integral, so the price can be computed very efficiently. Under

this approach, we first get the analytic expression of the forward Fourier transform of

the payoff function, and then invert the transform using the characteristic function of

xT to obtain the option prices. The prices of the European call and put options are

given by

C(St, νt, t) = St − EQ
t [e−r(T−t) min(ST , K)], (4.15)

P (St, νt, t) = Ke−r(T−t) − EQ
t [e−r(T−t) min(ST , K)], (4.16)

where EQ
t [e−r(T−t) min(ST , K)] has the following representation:

EQ
t [e−r(T−t) min(ST , K)] = Ke−r(T−t) 1

π

∫ ∞

0

Re
[O(X, νt, T ; φ)

φ2 + 1/4

]
dφ, (4.17)

O(X, νt, T ; φ) = e(−iφ+0.5)X+A(φ,T )+B(φ,T )νt ,

X = ln(St/K) + r(T − t),

A(φ, T ) =
κθ

σ2
νt

[
c1(T − t) + 2 ln

(c2 + c1e
−d(T−t)

2d

)]
,

B(φ, T ) = −(φ2 +
1

4
)

1− e−d(T−t)

c2 + c1e−d(T−t)
.

c1 = −u− ρσνφi + d, c2 = u + ρσνφi + d,
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d =

√
φ2σ2

ν(1− ρ2) + 2iφρσνu + u2 +
σ2

ν

4
,

u = κ− ρσν

2
.

It can be shown that the integrals are uniformly convergent, so the partial derivatives

of the option price with respect to S and ν can be obtained by differentiating the

integrand. In Section 4.2, we will use this approach to value European put options.

4.1.2 Numerical Implementation

The integrals in the pricing formulas (4.8) and (4.17) have to be evaluated numerically

with great precision for a wide range of parameters. Adaptive Simpson and adap-

tive Gauss-Lobatto quadrature have been suggested in the literature. Kahl and Jackel

(2005) point out that there are numerical problems when using characteristic function

with equation (4.10), whereas using equation (4.13) always seemed to lead to a stable

procedure. Equation (4.16) also gives stable results. The problem with equation (4.10)

is due to the fact that the integrand involves multi-valued functions such as the complex

logarithm and square root. The complex square root d has two values with opposite

signs. The value with positive sign is the principal branch. The complex logarithm of

z = reiϕ is given by

ln z = ln r + i(ϕ + 2nπ), where n is an integer.

The principal branch is obtained by limiting ϕ ∈ [−π, π] and setting n = 0. Most

software packages use the principal branch of the function. Then the characteristic

function can become discontinuous, which results in wrong option prices. For options
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with short or middle term maturities, the pricing error is not noticeable. But long-term

options can be mispriced significantly. Albrecher et al. (2007) show that for nearly any

choice of parameters in the Heston model, these instabilities occur for large enough

maturity. They also prove that these problems do not occur at all when using (4.13)

under the full dimensional and unrestricted parameter space. Lord and Kahl (2008)

also investigate the problem and prove the stability of the equation (4.13) with certain

parameter constraints. By formulating the characteristic function properly like in (4.13),

we can get the correct price using the principal branch.

Carr and Madan (1999) have developed an efficient method based on Fast Fourier

Transform to compute option prices for a range of strikes. The basic idea is to derive

an analytic expression for the Fourier transform of the option price, and then to get

the price by Fourier inversion. The Fourier transform and its inversion work for square-

integrable functions (see Rudin 1991, Plancherel’s theorem). However, the call option

price function ∫ ∞

k

e−rT (es − ek)pT (s)ds

is not square integrable, where k = ln(K) and pT (s) is the risk-neutral density of

sT = ln(ST ).1 Carr and Madan (1999) suggest to multiply the price function by a factor

eαk with a suitable α > 0. Cont and Tankov (2004) propose an alternative approach

by subtracting an intrinsic value from the option price. This approach does not require

choosing an appropriate value for α. But for short maturities and strikes near the

spot price, this approach overprices the options. It is because the intrinsic value of an

option is not differentiable at the spot price. Another approach is to subtract the Black-

Scholes price with appropriate volatility from the option price instead of subtracting

1The call price goes to S0 when k approaches −∞.
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the intrinsic value. This approach is used in Takahashi and Yamazaki (2008).

4.1.3 The Simulation Method

The simulation-based approach under the Heston model is useful for path-dependent

products. We use the following representation and a discretization scheme proposed by

Andersen (2007) to value options and the GMWB:

ln(
St

S0

) = rt−
∫ t

0
νsds

2
+

ρ

σν

[
νt − ν0 − κ(tθ −

∫ t

0

νsds)
]
+

√
1− ρ2

∫ t

0

√
νsdW1s (4.18)

Kolkiewicz and Tan (2006) have used equation (4.18) in valuing unit-linked life insurance

products. The distribution of ln St

S0
conditional on νt and

∫ t

0
νsds is normal with mean

µ̃t and variance σ̃2
t , where

µ̃t =
(
rt−

∫ t

0
νsds

2

)
+

ρ

σν

[
νt − ν0 − κ(tθ −

∫ t

0

νsds)
]

(4.19)

σ̃2
t = (1− ρ2)

∫ t

0

νsds (4.20)

This allows us to price the put option by

P (S0, K, ν, T ) = E
[
e−rT max(0, K − ST ) | (νt)0≤t≤T

]

= e−rT KΦ(−d2)− S0e
µ̃T−rT+

σ̃2
T
2 Φ(−d1), (4.21)

d1 =
ln S0

K
+ µ̃T + σ̃2

T

σ̃T

,

d2 = d1 − σ̃T .

There are many discretization schemes for the Heston model (4.4)∼(4.5) in the
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literature. We do not need to simulate both processes but rather the end value νT

and the integral
∫ T

0
νsds. Broadie and Kaya (2006) develop a scheme to simulate the

variance process from the exact distribution based on an acceptance-rejection method.

The integrated variance process is generated from numerical Fourier inversion of its

conditional characteristic function, which is time-consuming and complex. Lord et al.

(2008) consider an Euler scheme with a full truncation rule to deal with negative variance

values in a direct discretization. The authors show that the computational efficiency of

the scheme exceeds that of the more complicated schemes in Broadie and Kaya (2006).

However, the scheme is largely heuristic and uses none of the known analytical results

for the Heston model. To obtain a reasonably low discretization bias, the grid has to

be very small. Smith (2008) approximates the Fourier inversions required to simulate

the integrated variance process. Andersen (2007) develops two schemes for the variance

process based on moment-matching technique, and uses drift interpolation, instead

of Fourier inversion, to approximate the integrated variance process. Both schemes

outperform all other schemes in terms of computational efficiency, and the Quadratic-

Exponential scheme is the best. The algorithm approximates the new variance which

follows a non-central chi-square distribution by a squared normal random variable if the

current variance is large. If the current variance is close to zero, use a random variable

from a modified exponential distribution to approximate the new variance. We will use

this scheme to price and hedge GMWBs later in this chapter.

The algorithm proposed by Andersen (2007) can be formulated as follows: Assume

we use N equally-spaced time steps, and the step length is h. We first simulate νi+1

given νi, i = 0, · · · , N − 1. Then Si+1 can be simulated from equation (4.18), (4.19),

and (4.20). Knowing νi, we can simulate the next value, νi+1, in the following way:
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1. Select an arbitrary level Ψc ∈ [1, 2], e.g. Ψc = 1.5.

2. Given νi, compute x and s2,

x = θ + (νi − θ)e−κh, (4.22)

s2 =
νiσ

2
νe
−κh

κ
(1− e−κh) +

θσ2
ν

2κ
(1− e−κh)2. (4.23)

3. Compute Ψ = s2

x2 .

4. If Ψ ≤ Ψc :

(a) Compute a and b,

b2 = 2Ψ−1 − 1 +
√

2Ψ−1(2Ψ−1 − 1), (4.24)

a =
x

1 + b2
. (4.25)

(b) Set νi+1 = a(b + zi)
2, where zi is a standard normal random number.

5. If Ψ > Ψc:

(a) Compute β and p,

p =
Ψ− 1

Ψ + 1
, (4.26)

β =
2

x(Ψ + 1)
. (4.27)

(b) Draw a uniform random number U .

(c) Set νi+1 =

{
0, 0 ≤ U ≤ p

β−1 ln 1−p
1−U

, p < U ≤ 1.

Conditional on νi and
∫ (i+1)h

ih
νsds, ln(Si+1

Si
) follows a normal distribution with mean
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µ̃i+1 and variance σ̃2
i+1, where

µ̃i+1 =
(
rh−

∫ (i+1)h

ih
νsds

2

)
+

ρ

σν

[
νi+1 − νi − κ(hθ −

∫ (i+1)h

ih

νsds)
]
, (4.28)

σ̃2
i+1 = (1− ρ2)

∫ (i+1)h

ih

νsds. (4.29)

For a small time step h, we can approximate
∫ (i+1)h

ih
νsds with (νi + νi+1)h/2. Then,

Si+1 can be simulated using the above results and a standard normal random number.

4.2 Semi-static Hedging of European Put Options

under the Heston Model

The guarantees provided by insurers in variable annuity products embed complicated

put options. It is beneficial and interesting to study the static hedging problem of the

standard European options before we deal with GMWBs. In Section 4.2.1, we will

explore semi-static hedging strategies for a long-term European put option on an index

whose volatility follows the Heston model. We will also compare the semi-static hedging

strategies with the minimum-variance hedging strategy in Section 4.2.2.

Suppose our hedging target is a T -year European put option with a strike price of

K. At time 0, we want to set up a hedging portfolio such that by time t, 0 < t < T ,

the portfolio can replicate the time-t value of the T -year put option. That is, our initial

hedging horizon is t years. Assuming the strike prices of the portfolio are fixed, we aim

to search for the optimal portfolio weights that make time-t-values of the portfolio and

the T -year put as close as possible. After t years, we will rebalance the portfolio based

on the new underlying price. In this section, we propose two approaches to hedge the
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T -year put semi-statically.

• The first strategy is to replicate the time-t-value of the target T -year put option

using a portfolio of put options with a shorter maturity Tp ∈ (t, T ) in the initial

hedging period. The purpose of choosing Tp > t is to take advantage of the fact

that the time-t-value of the portfolio is also a function of the volatility at time

t. Thus, the volatility risk of the T -year put is mitigated to some extent. In

fact, the replicating effect becomes better as Tp gets closer to T . We compute the

time-t values of the T -year put and the Tp-year puts conditional on each pair of

the underlying price and volatility (St,
√

νt). The portfolio weights are solved by

minimizing the mean squared difference between the target option value and the

portfolio value at time t.

• The second strategy is to replicate the target option using a portfolio of puts that

will expire at the end of the initial hedging period. We observe that the time-t

value of a put option with maturity T varies largely with the underlying price

at time t, but not that significantly with the volatility at time t. Thus, we can

value the put options at the points (St,
√

ν̄t) where ν̄t = E( νt | St). That is, the

conditional mean value of the volatility at time t is used as a representative of

all volatilities associated with a given underlying price at time t. The problem

is reduced to one dimension. The portfolio weights are obtained by minimizing

the sum of squared differences between the target option value and the portfolio

payoff weighted by the estimated marginal probability density of St. This method

reduces the amount of computation at the cost of accuracy.

In their recent paper, Takahashi and Yamazaki (2008) propose a static hedging strategy

for European options under a SV model by transforming it into a local volatility model.
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They obtain the local volatility from the option price computed under the SV model,

which is based on the result developed by Dupire (1994). Then they approximate the

original asset price with a shadow asset price that follows the local volatility model.

The static hedging approach proposed by Carr and Madan (2001) is then applied to

the shadow asset price. Using a numerical example under the Heston model, the au-

thors demonstrate that this static strategy outperforms the minimum-variance hedging

strategy. The efficiency of this method relies on the existence of closed-form solution

of the option price. Thus, it is difficult to apply their method to path-dependent con-

tracts. As far as we know, this thesis is the first work that applies semi-static hedging

to path-dependent contracts like GMWBs. In fact, the approaches that we propose in

this section are suitable for both path-independent and path-dependent options.

4.2.1 The Two Semi-static Hedging Strategies

The idea of semi-static hedging is to replicate the intermediate value of the long-term

T -year put option with a portfolio of short-term put options. In this subsection, we

introduce two approaches to construct the semi-static hedging portfolio.

Strategy One: Two-dimension

The value of the put option at a future time before the maturity depends on the future

underlying price and volatility. Denote the time-t value of the target put option by

V T (νt, St). The replicating portfolio consists of Tp-year put options, Tp ∈ (t, T ), with k

different strikes. We denote the time-t values of these Tp-year put options by a 1 × k

vector-valued function of two arguments V T
p (νt, St), and denote the portfolio weights by

a k×1 vector θ. We also assume the interest rate is constant at r. The vector of optimal

portfolio weights is obtained by minimizing the average squared difference between the
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time-t values of the hedging portfolio and the T -year put option. The joint probability

density of the underlying price and variance at time t, p(νt, St), is used as the weight in

the Least Squares method. Then our optimization problem can be represented as

min
θ

Et‖V T − V T
p θ‖2 = min

θ

∫ ∞

0

∫ ∞

0

[
V T (νt, St)− V T

p (νt, St)θ
]2

p(νt, St)dStdνt. (4.30)

The joint distribution of the underlying price and variance can be derived from the

joint characteristic function in the same way as in Heston (1993). The characteristic

function can be obtained from a partial differential equation, and then the density

function can be represented in terms of the characteristic function by the inversion

theorem. However, numerical integration is computationally demanding. Zhylyevskyy

(2005) uses Fast Fourier Transform with kernel smoothing to approximate the integral.

Since the densities are used as weights only, they do not have to be very accurate. We

use the simulation and histogram method to estimate the probability densities.

The implementation of this semi-static hedging strategy takes the following steps:

1. Choosing a set of underlying prices at time t, St,j, j = 1, · · · , ns, and a set of

variances νt,i, i = 1, · · · , nv. The range of the values can be determined from

simulation.

2. Estimating the joint probability densities at the chosen points by an empirical

distribution obtained through simulations, p(νt,i, St,j).

3. Calculating the time-t value of the T -year put option using equation (4.12) or

(4.16) at each point (νt,i, St,j).

4. Determining the time-t values of the Tp-year put options at points (νt,i, St,j).

5. Obtaining the portfolio weights by Weighted Least Squares, i.e. minimizing the

weighted squared difference between the value of the portfolio and the T -year put.
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Strategy Two: One-dimension

The replicating portfolio expires at time t. Denote the portfolio payoff at time t by

F (St). The time-t value of the target put option is also dependent on the variance at

time t. To replicate the option that depends on volatility with the ones that do not, we

value all the options using the conditional mean of the variance ν̄t = E[νt | St]. The

squared differences between the payoff of the hedging portfolio and the value of the

target put option are weighted by the marginal probability densities of the underlying

price, p∗(St). The optimization problem becomes

min
θ

∫ ∞

0

[
V T (ν̄t, St)− F (St)θ

]2

p∗(St)dSt. (4.31)

For the second strategy, the implementation procedure is similar. The option value

at (ν̄t,j, St,j) is simulated in the same way as before. The optimal portfolio is obtained

as in Section 3.1.4 by following the steps:

1. Choosing a set of underlying prices at time t, St,j, j = 1, · · · , ns, and estimating

the mean of the variance conditional on the price, ν̄t,j = E[νt | St,j].

2. Estimating the marginal probability densities at the chosen points by the empirical

distribution obtained through simulations, p∗(St,j).

3. Calculating the time-t value of the T -year put option using equation (4.12) or

(4.16) at each point (ν̄t,i, St,j).

4. Determining the payoff of the t-year put portfolio.

5. Solving the portfolio weights by Weighted Least Squares.
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A numerical example

We use the parameters as given by Bakshi et al. (1997) who estimated them from the

S&P500 index:

κ = 1.15, θ = 0.04, σν = 0.39, ρ = −0.64.

The parameters represent the mean reversion speed, the long-run variance, the volatility

of the variance process, and the correlation between the underlying return changes and

volatility changes.

In addition, we have the following assumptions:

• The hedging horizon is one year, t = 1;

• The initial underlying value is S0 = 100;

• The risk-free interest rate is r = 0.05;

• The strike of the target put option is K = 100;

• The maturity of the target put option is T = 10;

• The hedging portfolio for the first strategy has a maturity of Tp = 2.

Figure 4.1 shows the joint probability density of the underlying values and variances

at time t. The conditional distribution of the underlying value is lognormal. The

underlying value and the variance are negatively correlated.

The value of the 10-year put option at time t = 1 is a convex decreasing function

of the underlying price conditional on a specific variance at time 1. This is the same

as that under a constant volatility assumption. Under the Heston model, when we fix

the underlying price at time 1, then the value of the 10-year put is a slowly increasing

function of the variance at time 1. Overall, the put value does not change with the

variance as significantly as with the underlying price. Figure 4.2 shows the surface of
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Figure 4.1: Histogram of the underlying values and variances at time t=1 under the
Heston model (S0 = 100, r = 0.05, κ = 1.15, θ = 0.04, σν = 0.39, ρ = −0.64)
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the 10-year put values. In Figure 4.3, the value of the 2-year at-the-money put option

has a similar shape. If the strike price is higher, the surface bends up starting from a

higher underlying price.

50
100

150 0

0.1

0.2

0

20

40

variance at t

the  underlying price at t

tim
e−

t v
al

ue
 o

f t
he

 ta
rg

et
 p

ut

Figure 4.2: The time-t value of the target
put option, V T

t , conditional on the under-
lying price and variance under the Heston
model (S0 = 100, r = 0.05, t = 1, T =
10, K = 100, κ = 1.15, θ = 0.04, σν =
0.39, ρ = −0.64)
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Figure 4.3: The time-t value of the 2-year
at-the-money put conditional on the un-
derlying price and variance under the He-
ston model (S0 = 100, r = 0.05, t =
1, T = 10, K = 100, κ = 1.15, θ =
0.04, σν = 0.39, ρ = −0.64)

The strikes of the puts in the replicating portfolio are assumed to be 50, 60, 70, 80,

90, 100, 110, 120, 130, 140, and 150. To get a better fit, we also need to borrow from a

bank account. We limit our position on the puts to be long only. That is, the minimum

weights for the put options are set to zero. This constraint could be relaxed in practice.

It would reduce hedging effectiveness, but also reduce up-front costs. Table 4.1 lists the

optimal portfolio weights for the two hedging strategies obtained by solving equations

(4.30) and (4.31) respectively. For the first strategy, we also compute the weights of

the replicating portfolio using the Least Squares approach to compare with that using

Weighted Least Squares approach. For this, options with strikes of 100, 130 and 140 are

not used. The in-the-money option struck at 150 is expensive, and it costs more than
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other options in the portfolio. For the second strategy, we only calculate the portfolio

weights under the WLS approach. The weights are more uniformly spread.

Strategy One Strategy Two

Strikes Price WLS LS Price WLS

Cash 0.9512 2.7015 2.8401 0.9512 2.8665

50 0.2655 0.3192 0.4680 0.0640 0.1802

60 0.6052 0.0942 0 0.2081 0.1061

70 1.2196 0.1109 0.0968 0.5578 0.0840

80 2.2486 0.0667 0.1311 1.3010 0.0685

90 3.8754 0.0734 0 2.7334 0.0497

100 6.3283 0 0 5.2974 0.0432

110 9.8630 0.0627 0.0159 9.5801 0.0320

120 14.6999 0.0093 0.0932 16.0211 0.0241

130 20.9058 0 0 24.2532 0.0146

140 28.2927 0 0 33.3529 0.0019

150 36.4873 0.0618 0.0419 42.7415 0.0450

Cost 6.2927 6.2927 6.2927

Table 4.1: Semi-static replicating portfolio for a European put option under the Heston
model ( r = 5%, S0 = 100, t = 1, T = 10, K = 100, κ = 1.15, θ = 0.04, σν =
0.39, ρ = −0.64)

Figure 4.4 and 4.5 predict the replicating errors for the first strategy at time t as a

function of the underlying price and the variance. The surfaces are relatively flat and

close to zero. The maximum of absolute errors under the LS approach are smaller, but

the mean absolute error is larger than that under the WLS approach. Figure 4.6 shows

that the replicating errors under the second strategy are very large at some underlying

prices and variances at time t. Those points tend to have low probability densities.

Overall, the first strategy gives a closer replication than the second strategy.
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Figure 4.4: The replicating errors at time t = 1 for the first strategy using WLS
approach(S0 = 100, r = 0.05, κ = 1.15, θ = 0.04, σν = 0.39, ρ = −0.64, Tp = 2)
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Figure 4.5: The replicating errors at time t = 1 for the first strategy using LS approach
(S0 = 100, r = 0.05, κ = 1.15, θ = 0.04, σν = 0.39, ρ = −0.64, Tp = 2)
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Figure 4.6: The replicating errors at time t = 1 with one-year puts for the second
strategy using WLS approach(S0 = 100, r = 0.05, κ = 1.15, θ = 0.04, σν = 0.39, ρ =
−0.64, Tp = 1)

Table 4.2 summarizes three statistics of replicating errors: the maximum absolute

error, the sum of absolute errors and the mean absolute error. Note that the joint

probability density is estimated based on a histogram method. It is only an approxi-

mation, but it is proportional to the true value and can be used for comparison of the

two strategies. Thus, the mean absolute errors in the table are not comparable to the

maximum absolute errors.

Strategy One Strategy Two

WLS LS WLS

max abs err 0.9841 0.6221 2.4958

sum abs err 1199.4 1008.8 4449.7

mean abs err 22.9854 28.7494 83.9413

Table 4.2: Comparison of replicating errors under the Heston model
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4.2.2 Comparison with Dynamic Hedging

In this subsection, we compare our semi-static hedging strategies with two types of

dynamic hedging strategy: the minimum-variance (MV) and delta hedging strategy.

The MV hedging strategy uses the underlying as the only hedging instrument. Under

the stochastic volatility model, the market is incomplete, so there is no perfect hedge

by trading only the underlying.2 But this strategy is more practical in the presence of

untraded risks or model misspecifications and transaction costs. If the hedging instru-

ments are not limited to the underlying, we can take a position in another put option

to achieve a complete delta-neutral hedge under the stochastic volatility model.

The minimum-variance delta ∆mv is computed as the amount of the underlying asset

that minimizes the instantaneous variance of a delta-hedged portfolio. For a put option,

it solves the optimization problem

min
∆

Var(∆dS − dP ) = min
∆

[
∆2Var(dS)− 2Cov(dS, dP )∆ + Var(dP )

]
. (4.32)

The solution of this problem is given by the ratio of the instantaneous covariance be-

tween increments in the option price and the underlying price and the instantaneous

variance of the increments in the underlying price. Under the Heston model (4.3), the

MV delta is obtained as follows:

∆mv =
Cov(dS, dP )

Var(dS)
=

Cov(dS, ∂P
∂S

dS + ∂P
∂ν

dν)

Var(dS)
(4.33)

=
∂P

∂S
+

∂P

∂ν

Cov(dS, dν)

Var(dS)
(4.34)

2Schweizer (1991) proposes to use locally risk-minimizing hedges, which aim at minimizing the
variance of the cost process of non-self-financing hedges. Bakshi et al. (1997), Frey (1997) and others
have applied this MV hedging method to the stochastic volatility model.
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=
∂P

∂S
+

ρσν

S

∂P

∂ν
. (4.35)

In the Black-Scholes model, the MV delta is the same as the standard delta. When the

volatility is correlated with the asset price, the MV delta is equal to the standard delta

plus an additional term. The volatility risk is partially hedged through the correlation

between the underlying price and the volatility.

Delta hedging strategy involves another put option P2 with a short maturity. In the

hedging portfolio, the amount of the underlying is denoted by DS and the amount of

the put option is denoted by DP . They are determined by the following equations

DP =
∂P
∂ν
∂P2

∂ν

, (4.36)

DS =
∂P

∂S
− ∂P2

∂S
DP . (4.37)

To continue with the previous example, we would like to hedge the 10-year put

option with a one-year horizon. Assume the return of the underlying asset under the

physical measure is rp = 10%. The dynamic hedging position is adjusted at a time step

of h = 1
100

. We compare the two semi-static hedging strategies with the MV strategy

based on 10,000 simulations.

Figure 4.7 depicts the estimated probability densities of the hedging errors at the end

of the hedging period. It shows that both of the semi-static strategies outperform the

MV strategy, and that the delta-neutral strategy gives the best result. The distribution

of hedging errors from the MV strategy has a much longer left tail. The variations

of hedging errors from both semi-static strategies are smaller than that from the MV

hedging. The second semi-static strategy does not explicitly hedge over volatilities, so
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the distribution of hedging errors still has a longer left tail. The first semi-static hedging

portfolio is obtained from two-dimension optimization, and the distribution of hedging

errors is almost symmetric.
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Figure 4.7: The estimated probability densities of hedging errors in one year under
the Heston model. The drift term of the underlying price under the physical measure
is assumed to be rp = 10%. The MV and delta hedging portfolios are rebalanced at
each time interval h = 1/100. The static portfolios for both strategies are obtained by
WLS approach. (S0 = 100, r = 0.05, rp = 0.1, κ = 1.15, θ = 0.04, σν = 0.39, ρ =
−0.64, t = 1)
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Table 4.3 summarizes the statistics of the hedging errors based on the simulation.

Based on the simulated mean and standard deviation of the hedging errors, we test

whether the true mean of the hedging errors is zero. Only the delta-neutral hedging

strategy gives zero mean hedging error. The other three strategies result in small

losses, and both the semi-static strategies give smaller losses than the MV strategy.

The negative skewness measures for the MV and Semi-static hedging strategies indicate

heavier left tails of the distributions. The minimum loss, 1% 10% quantiles and mean

shortfalls show that the distribution from the MV strategy has the heaviest left tail.

The kurtosis of the hedging errors from the delta-neutral strategy is larger than that

from all the other strategies. This means that the distribution of hedging errors from

the delta strategy is more likely to have outliers.

MV Hedging Delta Hedging Static Strategy 1 Static Strategy 2

mean -0.1655 -0.0004 -0.0089 -0.0644

standard deviation 0.8489 0.0703 0.1498 0.5203

maximum 2.1029 0.8427 0.9787 1.9085

minimum -7.9127 -0.7101 -2.1271 -4.4599

quantile 1% -3.0851 -0.2271 -0.4855 -1.8701

quantile 10% -1.2323 -0.0555 -0.1904 -0.7094

mean shortfall -0.7748 -0.0390 -0.1309 -0.4809

skewness -1.5557 0.1352 -0.9727 -1.5354

kurtosis 7.5715 17.5193 11.6744 8.8088

Table 4.3: Comparison of dynamic and static hedging strategies under the Heston model
(S0 = 100, r = 0.05, rp = 0.1, κ = 1.15, θ = 0.04, σν = 0.39, ρ = −0.64, t = 1, h =
1

100
)

Despite the fact that the delta-neutral hedging strategy produces the most desirable

result, there are practical issues with this strategy in the downward equity scenario.

For example, we can see from Figure 4.8 that the delta strategy requires to buy a huge
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amount of the 2-year put option and the underlying equity when the underlying price

drops intensely. The cost of the hedging portfolio becomes very high. The problem is

that there may not be enough put options available or the funding resources may be

very limited. The third graph in Figure 4.8 shows that the MV hedging strategy does

not have this issue. The semi-static strategies require no transaction during the hedging

period, and the cost of the replicating portfolio is limited to the expected present value

of the GMWB net liability. Hence, the semi-static strategies are more practical to adopt

in unfavorable scenarios.
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Figure 4.8: A downward scenario of the underlying and the corresponding hedge posi-
tions for the delta-neutral strategy and the MV strategy. In the first graph, the two
lines overlap. The length of rebalancing time step is h = 1

100
. (S0 = 100, r = 0.05, rp =

0.1, κ = 1.15, θ = 0.04, σν = 0.39, ρ = −0.64, t = 1)
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4.3 Semi-static Hedging for GMWBs Under the He-

ston Model

In this section, we demonstrate that the proposed in Section 4.2 static hedging strategies

can also be applied to path dependent options when the volatility of the underlying index

is stochastic. In particular, we apply the two static strategies to GMWBs. The idea

is similar, that is, to use a portfolio of standard put options to replicate the expected

GMWB loss in a short time period. But hedging GMWBs is more complicated than

hedging European put options because of their path-dependent feature.

Before discussing the hedging strategies, in Section 4.3.1, we compute the fair prices

of GMWBs under the Heston model. The parameters of the Heston model that we

use are based on those estimated by Bakshi et al. (1997). There is no semi-analytical

formula to value GMWBs because of their path-dependent feature. We rely on the

simulation method described in Subsection 4.1.3 to estimate the future GMWB benefit

and charges. Then we will discuss the semi-static hedging by assuming the price is

given.

When we allow the volatility to be stochastic, the fund value is impacted by the path

of volatilities, and the expected GMWB loss depends on the path of the fund values

over time. Under the Heston model, the expected GMWB loss can be approximated by

the expectation of the GMWB loss conditional on the index value and the volatility at

the end of the hedging period. We can also approximate it with the expectation of the

GMWB loss conditional on the index value only. Both approaches require generating

the conditional paths of the fund value given the end value of the fund. This can only

be done by simulation. Fortunately, there is a method to do this.
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In Section 4.3.2, we use the acceptance-rejection sampling method to simulate paths

of the variance process conditional on the end value. This method is an efficient sim-

ulation method recently proposed by Beskos et al. (2006) and applied to the pricing

problem by DiCesare and Mcleish (2008). In Section 4.3.3, we use time-changed Brow-

nian motion method to construct conditional paths of the fund value process. Finally,

we explain the two semi-static hedging strategies in Section 4.3.4. The semi-static

replicating portfolio can be obtained by solving an optimization problem on two dimen-

sions (index values and variances) or one dimension (index values with corresponding

conditional mean variances).

4.3.1 Pricing GMWBs under the Heston model

To price the GMWB under the Heston model, we first simulate the fund value process

using the Quadratic-Exponential method that is explained in Section 4.1.3. Then we

estimate the expected present value of the GMWB benefit based on equation (2.30),

and the expected present value of the GMWB charge by equation (2.31). The fair price

that makes the two values equal can be obtained numerically in the same way as in

Section 2.3.

Using the parameters specified in Subsection 4.2.1, we have computed the prices of

the GMWB with quarterly withdrawals under the Heston model (Table 4.4). We have

also computed the prices with a reduced volatility of the variance process. This value

of σν will be used in Sections from 4.3.2 to 4.3.4, and we will explain how this value is

determined in Section 4.3.2. We can see that changes in this parameter do not affect

the price too much. When the volatility of the variance becomes smaller, the GMWB

price drops a little bit.
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GMWB rate Maturity Price q (bps)

g T σν = 0.39 σν = 0.2476557

10% 10 97.5336 96.4967

6.667% 15 54.0684 53.3282

5% 20 33.3235 32.3959

Table 4.4: The GMWB prices under the Heston model. Assume static quarterly
withdrawals. The standard deviation is obtained from 1000 repeated simulations.
(S0 = 100, r = 0.05, κ = 1.15, θ = 0.04, ρ = −0.64, h = 1

4
)

4.3.2 Simulating conditional paths of the variance process

In order to estimate the expected GMWB loss conditional on the index value at the

end of the hedging period, we need to simulate or sample the terminal index value in

some region and subsequently bridge the initial value to this terminal value at the time

points of interest which affect the account value. Formally this means that we have

to find the dynamic of the fund value conditional on the terminal values of the fund

and the volatility. Under the Black-Scholes model, the Brownian bridge can be easily

simulated as explained in Section 3.1.1. Under the Heston model, the previous technique

is not applicable to the mean-reverting square root process. A direct method where we

simulate paths in a forward manner and then bundle them according to their terminal

values, would lead to an algorithm that is prone to a significant approximation error.

However, an efficient imputation method for general processes, based on acceptance-

rejection sampling, has recently been proposed by Beskos et al. (2006). The advantage

of this method over Euler approximation is that it produces exact simulations of a

diffusion process. The algorithm generates a bridge path at a finite number of points.

If the path is accepted, extra points can be filled in at arbitrary time points using only
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Brownian bridge interpolation. Below we briefly explain this method and apply it to

the Heston model.

Suppose that we wish to generate a path of the variance process given the values

ν0 = x0 and νT = xT . A well-known transformation reduces the variance process (4.5)

to a process Yt with unit diffusion term. Let

Yt =

∫ νt

0

1

σν
√

νs

dνs =
2

σν

√
νt. (4.38)

By Itô’s formula, the process Yt satisfies the diffusion equation

dYt = a(Yt)dt + dW2t, (4.39)

where,

a(Yt) =
κ(θ − σ2

ν

4
Y 2

t )
σ2

ν

2
Yt

− 1

2
Y −1

t

=
(2κθ

σ2
ν

− 1

2

)
Y −1

t − κ

2
Yt. (4.40)

Therefore, to generate a path of the variance process, it is sufficient to generate a path

of Yt conditional on the values Y0 = y0 = 2
σν

√
x0 and YT = yT = 2

σν

√
xT .

Before describing the method, we introduce the following notation. Denote by

{Y (y0,yT )
t } the conditional process of {Yt} given the endpoints y0 and yT , and by

{Z(y0,yT )
t } the conditional process of a standard Brownian motion {Zt} given the values

Z0 = y0 and ZT = yT . The probability space C[0, T ] is defined as the space of real-

valued continuous functions over the interval [0, T ], together with B the corresponding

Borel sigma algebra. Let PY denote the probability measure induced by the process
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{Yt} on C[0, T ]. Denote by pY (y0, yT ) the transition probability density function of

the process {Yt}. Assuming the basic conditions of Girsanov Theorem are satisfied,

DiCesare and Mcleish (2008) proved that the Radon-Nikodym derivative of the induced

measures for the tied-down processes on C[0, T ] is given by

dPY (y0,yT )

dPZ(y0,yT )

(Z) =
pZ(y0, yT )

pY (y0, yT )
exp

[∫ yT

y0

a(y)dy − 1

2

∫ T

0

[a2(Zt) + a′(Zt)]dt

]
. (4.41)

The transition density of the Brownian motion {Zt} is the standard normal proba-

bility density, but we do not know the transition density of {Yt}. However, we only need

to know the Radon-Nikodym derivative up to a constant of proportionality to perform

the acceptance-rejection sampling, as long as it is bounded. This is because we are

usually interested in a weighted average, in which case the weights are normalized, and

knowing the proportional weights is sufficient. We can write

dPY (y0,yT )

dPZ(y0,yT )

(Z) ∝ exp

[
−1

2

∫ T

0

[a2(Zt) + a′(Zt)]dt

]
(4.42)

Suppose there exists c > 0 such that a2 + a′ + c > 0. Then we have

dPY (y0,yT )

dPZ(y0,yT )

(Z) ∝ exp

[
−1

2

∫ T

0

[a2(Zt) + a′(Zt) + c]dt

]
≤ 1. (4.43)

The acceptance-rejection method is to simulate a continuous path according to a

Brownian bridge process, Zt ∼ PZ(y0,yT ) , and accept it with probability (4.43). But

we can only sample a path at discrete times. Beskos et al. (2006) have proposed an

algorithm that only requires finite information about the path. If we accept a path on

the basis of finite information about it, then any path from a Brownian bridge agreeing
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with the accepted points can also be accepted. The algorithm also requires that the

integrand a2 + a′ is bounded above, that is,

d

2
> a2 + a′ + c > 0, d > 0, c > 0.

Denote the integrand by

h(Zt) = a2(Zt) + a′(Zt) + c,

where Zt represents a path drawn from PZ(y0,yT ) . For a Poisson process {Nt} with

intensity 1
2
h(Zt), the probability that no event occurs is equal to the sampling ratio

(4.43). That is,

P [NT = 0] = exp

[
−

∫ T

0

1

2
h(Zt)dt

]
= exp

[
−1

2

∫ T

0

[
a2(Zt) + a′(Zt) + c

]
dt

]
.

If, using only finite information about a path, we determine that the event {NT = 0}
has occurred, then we can accept the path. A realization of {Nt} can be produced

by thinning a homogeneous Poisson process {N∗
t } with constant intensity 1

2
d. We first

generate a path of {N∗
t }, and accept the points on the path that occur at times τ1 <

· · · < τn with respective probabilities h(τ1)/d, ..., h(τn)/d.

The algorithm goes as follows:

1. Simulate a path of N∗ over the time interval [0,T]. Denote the arrival times by

τ1 < τ2 < · · · < τn.

2. Simulate a standard Brownian bridge at arrival times, Zτj
, j = 1, · · · , n, condi-

tional on y0, yT .

3. Generate n independent uniform random numbers uj, j = 1, · · · , n. If uj >
h(Zτj )

d
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for all j = 1, · · · , n, we reject that the arrival times τj, j = 1, · · · , n are the

arrival times for process N , and determine that NT = 0. In this case, we accept

the simulated skeleton path of Z as a path of Y conditional on y0, yT . Otherwise,

we reject the simulated path and return to step 1 if any uj ≤ h(Zτj )

d
.

4. Simulate Brownian bridges at desired time points conditional on the accepted

skeleton path y0, yT , Zτj
, j = 1, · · · , n.

5. Convert the Brownian bridges of yt into conditional paths of the variance by

νt =
σ2

νy2
t

4
.

In some cases, a2 + a′ is unbounded, where a is defined in equation (4.40). Then we

may truncate it over an appropriate low probability region for the underlying Brownian

bridge. The constants c and d are estimated by finding the minimum and maximum

values of the function a2 +a′ over a region in which the process resides with probability

close to 1. The transition distribution of the variance process {νt} is known to be non-

central chi-square. Let ε = 10−10, we can solve for the quantiles (yε, y1−ε) at probability

ε and 1− ε. Then, set

d = sup
Ys∈[yε,y1−ε]

[
a2(Ys) + a′(Ys)

]
, 0 < s < T. (4.44)

c = − inf
Ys∈[yε,y1−ε]

[
a2(Ys) + a′(Ys)

]
, 0 < s < T. (4.45)

The shape of the function a2 + a′ varies dramatically with parameters κ, θ, σν . For

example, Figures 4.9 and 4.10 depict the function with different values of σν . Figure

4.9 corresponds to the parameters that are estimated by Bakshi et al. (1997),

(κ, θ, σν) = (1.15, 0.04, 0.39).
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With these parameters, the function a2 + a′ is unbounded at zero. The simulation

method is not guaranteed to work in this case, and to use it we need to truncate the

function a2 +a′ with a larger ε. This increases the number of pathes being rejected, and

reduces the simulation efficiency. Thus, we have decided to reduce σν so that 2κθ > σ2
ν

and the variance is above zero for sure under the Heston model. In Figure 4.9, the

parameter σν = 0.2476557 is chosen such that

2κθ

σ2
ν

=
3

2
(4.46)

a2(y) + a′(y) = 0y−2 + 0.3306y2 − 1.7250. (4.47)

Using this parameter value, we can obtain reasonable bounds for the function a2 + a′.

Assume the time period is one year, T = 1. The quantiles of the variance at time T

are νT,ε = 0.0000 and νT,1−ε = 0.5583, ε = 10−10. The corresponding YT values are

yε = 0.0007 and y1−ε = 6.0340. We truncate the function a2 + a′ at these points, and

set the bounds to be c = 1.7250 and d = 10.3130 accordingly.
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Figure 4.9: The density ratio function
a2(y) + a′(y) (κ = 1.15, θ = 0.04, σν =
0.39, ρ = −0.64)
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Figure 4.10: The density ratio function
a2(y) + a′(y) (κ = 1.15, θ = 0.04, σν =
0.25, ρ = −0.64)
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4.3.3 Simulating conditional paths of the fund value process

Based on the simulated conditional paths of the variance process, we can use equation

(4.18) and time-changed Brownian motion to construct paths of the fund value con-

ditional on the end fund value and the path of the variance. In equation (4.18), the

fund value, conditional on the variance path, involves one stochastic integral, which we

denote by Xt:

Xt =

∫ t

0

√
νsdW1s. (4.48)

Define a time change process

βt =

∫ t

0

νsds. (4.49)

If νs > 0, then βt is strictly increasing. It is known that there is a Brownian motion

{B} such that

Xt = Bβt (4.50)

in distribution (see Oksendal 1998, p. 146).

Given the end values of X0 = x0 and XT = xT , we can generate the bridge at time

t, X
(x0,xT )
t , using the standard Brownian bridge interpolation at time change βt:

X
(x0,xT )
t = B

(x0,xT )
βt

, Bβ0 = x0, BβT
= xT , 0 < t < T. (4.51)

The fund value conditional on the end points can be obtained by the following equation:

S
(S0,ST )
t = S0 exp

{
(r−q)t− 1

2

∫ t

0

νsds+
ρ

σν

[
vt−v0−κ(θt−

∫ t

0

νsds)
]
+

√
1− ρ2X

(x0,xT )
t

}
.

(4.52)

We may compute the integral
∫ t

0
νsds numerically from the simulated variances at a
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large number of equally spaced time points.

4.3.4 The two semi-static hedging strategies for the GMWB

Suppose that we want to hedge the GMWB in the time period of [0, t]. We will modify

the two semi-static strategies that are introduced in Section 4.2.1 for the European put

option. In Section 4.2.1, we have estimated the joint probability density of the index

value and the variance at time t under the Heston model. Then we can choose a grid

of index values and variances that cover most of the region with positive densities. The

expected GMWB loss conditional on a specific index value and a variance at time t is

simulated by constructing conditional paths of the variance process and the fund value

process. The first semi-static strategy uses all the points on the grid, while the second

strategy uses the conditional mean of the variance paired with each index value. The

replicating portfolio is obtained by minimizing the weighted squared difference between

the expected GMWB loss and the value of the portfolio.

Strategy One: Two-dimensional Optimization

Within a short time period, such as one year, the GMWB can be hedged by a portfolio

of put options with an intermediate maturity Tp, such as two years. This strategy takes

the following steps:

1. Choosing a set of underlying prices at time t, St,j, j = 1, · · · , ns, and a set of

variances νt,i, i = 1, · · · , nv. The range of the values can be determined from

simulation.

2. Estimating the joint probability densities at the chosen points, p(νt,i, St,j).

3. Simulating conditional paths of the variance process that end at the same value

νt,i using the acceptance-rejection method.
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4. Simulating conditional paths of the index value process that end at (νt,i, St,j)

using equation (4.52).

5. Calculating the annuity account value at t for each path of the index value, and

compute the average account value corresponding to (νt,i, St,j).

6. Approximating the conditional expected GMWB net liability using a Taylor ex-

pansion as explained in Section 3.1.3.

7. Calculating the time-t values of the Tp-year put options using equation (4.12) or

(4.16) at each point (νt,i, St,j).

8. Solving the portfolio weights by Weighted Least Squares, i.e. minimizing the

weighted squared difference between the value of the portfolio and the expected

GMWB loss.

Strategy Two: One-dimensional Optimization

The expected GMWB loss does not change with the index variance as significantly as

with the index value. For each index value at time t, we can estimate the conditional

mean of variances. The problem is then simplified to one dimension if we replicate the

expected GMWB loss at the index values paired with the conditional mean variances.

The maturity of the replicating portfolio is equal to the length of the hedging period.

The strategy can be implemented by the following steps:

1. Choosing a set of underlying prices at time t, St,j, j = 1, · · · , ns, and estimating

the conditional mean of the variances ν̄t,j from simulation.

2. Estimating the marginal probability densities at the chosen points, p∗(St,j).

3. Simulating conditional paths of the variance process that end at ν̄t,j using the

acceptance-rejection method.

4. Simulating conditional paths of the index value process that end at (ν̄t,j, St,j)
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using equation (4.52).

5. Calculating the annuity account value at t for each conditional path of the index

value, and compute the average account value corresponding to (ν̄t,j, St,j).

6. Approximating the conditional expected GMWB net liability using a Taylor ex-

pansion as explained in Section 3.1.3.

7. Calculating the payoff of the replicating portfolio that includes several t-year put

options.

8. Solving the portfolio weights by Weighted Least Squares, i.e. minimizing the

weighted squared difference between the payoff of the portfolio and the expected

GMWB loss.

Below we present a numerical example. Suppose that we want to hedge a 15-year

6.6667% GMWB in the first contract year. Assume withdrawals are taken quarterly.

We use the following parameters:

r = 5%, κ = 1.15, θ = 0.04, σν = 0.2477, ρ = −0.64,

S0 = 100, w = 6.6667, h = 1/4, T = 15, t = 1, Tp = 2.

The first step is to select a set of index values and variances in one year.

We choose 81 index values of (35, 36, 37, · · · , 115), and 22 variance values of

(0.001, 0.011, 0.021, · · · , 0.211). Then we proceed with Step 2 to 4, and obtain the

risk-neutral probabilities, paths of variances and index values for all the pairs of cho-

sen index values and variances. Based on the path of the index values, we calculate

the account value as described in Section 3.1.2. Conditional on the account value

and variance at time one, we simulate the future variances and account values using
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Quadratic-Exponential scheme that is explained in Section 4.1.3. The expected GMWB

loss can be obtained by approaches that are introduced in Section 3.1.3.

Figure 4.11 shows the surface of the expected GMWB loss. The GMWB loss is

high when the index value is low. This is similar to the European put option. But

the GMWB loss has a different relationship with the index variance. If we increase

the variance for a low index value, the GMWB loss first decreases and then increases

slightly. However, for a high index value, the GMWB loss goes up as the variance

increases. The reason is that the GMWB value is path-dependent.
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Figure 4.11: The expected GMWB loss after one year under the Heston model (r =
5%, κ = 1.15, θ = 0.04, σν = 0.2476557, ρ = −0.64, S0 = 100, w = 6.6667, h =
1/4, T = 15, t = 1)

To explain this phenomenon, we examine paths of the fund value in the hedging

period. We pick three end fund values of (40, 90, 140), and three end fund variances

of (0.01, 0.05, 0.15). Conditional on each pair of the end values, we construct several

conditional paths of the fund value, and then average the paths to obtain one path of

fund values for each pair of the end fund value and variance. Figure 4.12 shows the
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Figure 4.12: The paths of average fund values given the index value and the variance
at the end of the year. The dotted lines correspond to a variance of 0.01 at time 1. The
solid lines correspond to a variance of 0.05 at time 1. The dashed lines correspond to a
variance of 0.15 at time 1.

paths of the average fund values in the first year. The dotted lines correspond to a

variance of 0.01 at time 1. The solid lines correspond to a variance of 0.05 at time 1.

The dashed lines correspond to a variance of 0.15 at time 1. For a low index value at

time 1, the path of the average fund values that corresponds to the low variance, is

convex shaped; the path corresponding to the high variance is concave shaped. But

the difference becomes smaller as the variance continuously increases. Therefore, for a

low index value at time 1, the average account value increases with the variance at a

decreasing speed. The GMWB loss is negatively related to the account value, so this

effect mitigates the increasing trend of the expected future GMWB loss (like a put

option) as we increase the variance at time 1. For a higher index value at time 1, the

paths with different end variances are close, so the average account values do not vary

largely, and the expected GMWB loss constantly increases with the variance.

The expected GMWB loss in Figure 4.11 decreases with the index value. When the
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index value is larger than 110, the expected loss becomes negative, that is, an expected

profit. Only the real GMWB loss needs to be hedged, so we replicate the part of the

expected GMWB loss that corresponds to the index values smaller than 110. The

strikes of the put options in the hedging portfolio are chosen to be 50, 60, 70, 80, 90,

100, and 110. Table 4.5 shows that optimal portfolio weights obtained by (Weighted)

Least Squares. The options used by the first strategy are struck at 60, 70 and 110 only.

The second strategy uses options with all the strikes. The first strategy costs less than

the second strategy.

Put Strategy One Strategy Two

Strikes Price LS WLS Price WLS

Cash 0.9512 -3.7190 -3.7791 0.9512 -1.9779

50 0.1529 0 0 0.0252 0.1293

60 0.4309 0.4815 0.1370 0.1160 0.1593

70 1.1039 0.1583 0.4163 0.4019 0.1207

80 2.0871 0 0 1.1260 0.1142

90 3.8689 0 0 2.6696 0.0639

100 6.5832 0 0 5.5102 0.0701

110 10.4144 0.3483 0.3333 10.0795 0.1888

Initial Cost 0.4573 0.3575 0.7778

Table 4.5: Semi-static replicating portfolios for the GMWB under the Heston model.
The initial cost of the replicating portfolio is the sum of the prices of put options and
the cash value. ( r = 5%, S0 = 100, t = 1, T = 15, h = 1/4, w = 6.6667, κ =
1.15, θ = 0.04, σν = 0.2476557, ρ = −0.64)

Figures 4.13 and 4.14 depict the replicating errors of the two replicating strategies.

They suggest that for path-dependent contracts, the two methods are also applicable.

The second semi-static strategy uses less information, and thus produces relatively larger

errors than the first strategy.
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Figure 4.13: The replicating errors using the first semi-static strategy for the
GMWB(κ = 1.15, θ = 0.04, σν = 0.2476557, ρ = −0.64)
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Figure 4.14: The replicating errors using the second semi-static strategy(κ = 1.15, θ =
0.04, σν = 0.2476557, ρ = −0.64)
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Figure 4.15: Estimated probability density of profit/loss after hedging the GMWB in
one year under the Heston model. The drift term of the index value under the real
world measure is assumed to be rp = 0.10. The replicating portfolio weights are given in
Table 4.5. (S0 = 100, κ = 1.15, θ = 0.04, σν = 0.2476557, ρ = −0.64, ν0 = 0.04, t =
1, r = 0.05)

We now simulate the fund value scenarios under the real world measure by assuming

a drift term of rp = 10%. Then we compute the expected GMWB net liabilities in one

year over these scenarios. Employing the two semi-static hedging strategies respectively,

we compare the simulated profits or losses. Figure 4.15 depicts the estimated probability

density functions of the profit/loss after the two hedging strategies. The distribution

before hedging has a very long left tail, which indicates that large losses are likely to

happen. The 5% quantile of the profit/loss is -6.68. After applying the two strategies,

the left tails of the distributions become very small. With Strategy One, the 5% quantile

increases to -0.72. With Strategy Two, the 5% quantile increases to -1.39. The standard

deviation of the profit/loss is 4.21 before hedging. It decreases to 0.99 after hedging

under Strategy One, and drops to 1.52 after hedging under Strategy Two. By and

large, the two semi-static hedging strategies work well under the Heston model, though
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Strategy One provides better risk-protection than Strategy Two. Note that there are

still some residual errors over time after hedging. They can be managed by setting a

reserve.

4.4 Summary

The idea of semi-static hedging can be extended to the stochastic volatility case. We

choose the Heston model to illustrate this because many researchers have developed

results on option pricing and discretization for simulation under this model. Takahashi

and Yamazaki (2008) propose an approach to implement static hedging for European

call options under the Heston model. But the efficiency of their approach relies on

the existence of a closed-form solution of the option price. We propose two semi-static

hedging strategies that work well for both European options and path-dependent options

such as GMWBs.

The semi-static hedging idea is to set up a portfolio of standard put options to

replicate the expected GMWB loss in a short time period, and then update the portfolio

for another period. The expected GMWB loss, conditional on a specific index value and

a variance at the end of the current hedging period, is our hedging target. To compute

the hedging target, we construct conditional paths of the variance process using the

acceptance-rejection sampling method, and obtain conditional paths of the fund value

process by time changed Brownian motion method. The first strategy uses a portfolio

whose maturity is a little longer than the hedging horizon. This will help to partially

hedge the volatility risk. The value of the portfolio and the hedging target at the end of

the hedging period depend on the end values of the index and the variance. The portfolio

weights are solved by minimizing the mean squared difference between the two values.
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The second strategy uses a portfolio that expires at the end of the hedging period, so

the replicating portfolio payoff only varies with the end value of the index. We compute

the hedging target based on the end value of the index and the mean of the variance

conditional on the index value. The portfolio weights are obtained similarly. Although

our simulation results show that both strategies can reduce the expected GMWB loss

significantly, the first strategy does perform better than the second one.
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Chapter 5

Summary and Future Research

GMWBs are becoming popular in the variable annuity market worldwide. This product

is basically an embedded put option with random payoff and random maturity. Pricing

and hedging of the GMWB is not an easy task for either practitioners or academics.

Under the static continuous withdrawal assumption, Milevsky and Salisbury (2006)

decompose the product into a quanto Asian put option and an annuity certain. In this

thesis, we assume static discrete withdrawal, and decompose the GMWB with a variable

annuity into an arithmetic average strike Asian call option and an annuity certain. The

prices for a popular GMWB given by Milevsky and Salisbury (2006) range from 73 to

160 basis points. In contrast, the products in the market are charging 30 to 50 basis

points. The price we obtain is about 54 basis points. To confirm our pricing results, we

treat the GMWB as a put option and get almost the same price using direct simulation.

Hedging is often more important than pricing. The popular hedging strategies are

dynamic hedging. The performance of dynamic strategies is restricted by transaction

costs and market liquidity. What is more, dynamic strategies perform poorly in volatile
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periods when large price jumps occur frequently. We propose a semi-static hedging

strategy that can overcome these drawbacks. A portfolio of short-term put options is

used to hedge the long-term GMWB statically within a short time period. The portfolio

is then updated when the options expire or before they expire. We illustrate this idea

using a simple setting. The withdrawal amounts over the life of the contract are assumed

to be fixed. Our simulation results show that the semi-static hedging performs well both

under the Black-Scholes model and under a jump diffusion model.

Finally, we extend the semi-static hedging to the Heston model. We propose two

hedging strategies that can be applied to both European options and path-dependent

options like GMWBs. The first strategy is to construct a portfolio with a maturity

longer than the hedging horizon, but shorter than the GMWB maturity. The second

strategy is to use a portfolio that expires at the end of the hedging period. The first

strategy performs better than the second, but computations for the second strategy

is less time-consuming. Both strategies work reasonably well based on the simulation

results.

The following future work can be considered:

• Include barrier options in the semi-static hedging portfolio.

Barrier options can be replicated by standard European options, and they are

traded in the market. It is possible to add them into the replicating portfolio for

GMWBs. For example, the down-and-in put options can be used to prevent large

losses at a low cost.

• Study the lifetime GMWBs where interest rate and mortality become important

factors.

The lifetime GMWBs serve as an alternative to annuitization, and become an
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Summary and Future Research

important option in the retirement income system. The policyholders are able to

enjoy the growth of the fund and a guaranteed constant income which mitigates

the longevity risk. The value of this benefit is largely affected by the interest rates

and mortality rates because the maturity is life-dependent and can be very long

(e.g., over 30 years). The valuation of this product will be based on simulation.

Mortality levels at older ages cannot be projected accurately because of fewer ob-

servations. Even if the life expectancy can be calculated correctly, it’s only good

for overall population and very large groups. Unlike immediate annuities, the

lifetime GMWBs cannot diversify mortality risk after the policyholders’ account

values are depleted. In single premium immediate annuities, the unused account

value of deceased policyholders can subsidize living policyholders’ income pay-

ments. With the lifetime GMWBs, after the account values go to zero, mortality

risk cannot be diversified among those policyholders. What is more, mortality

improvement is another random factor and very hard to predict. Death rates for

adults and seniors show a decreasing pattern, so the survival time of policyhold-

ers may be longer than the insurers’ assumptions. Uncertainty about the extent

of future mortality improvement forces insurers to accept the risk of higher than

expected guaranteed benefit payments.

• Pricing and hedging with dynamic utilization.

Policyholder behavior brings significant uncertainty to product profitability and

hedging cost. During the life of the contract, policyholders may surrender to exit

the position in the contract. They may take any amount of partial withdrawals

anytime under the GMWB. Transferring fund between different types of assets

will change the volatility of the fund return, which directly affects the GMWB
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put option value. The prospective policyholders are heterogeneous, but the insurer

cannot completely determine which class they belong to at issuance, so every pol-

icyholder is charged the same rate. To fairly price and hedge the GMWB, certain

assumptions are needed. Assumptions on policyholder behavior are subjective and

need a long time period to be validated. Factors affecting decisions may include

economic variables (such as GDP, inflation, unemployment), in-the-moneyness of

the benefit (the value of the remaining guaranteed benefit relative to the contract

value), personal situations (age, other income etc.), and product features (pol-

icy duration, benefit features). For example, if the account value falls below the

remaining guaranteed benefit amount, then the policyholders who contemplate

to surrendering may change their mind and opt for the withdrawal benefit. On

the other hand, the policyholders tend to surrender when the market performs

strongly. With enough data, multi-state model and logistic regression model can

be used to model these behaviors and quantify their effects on the GMWB net

value.
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