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Abstract

The study of the infinite (countable) family of partial differential equations
known as the Kadomtzev - Petviashvili (KP) hierarchy has received much interest in
the mathematical and theoretical physics community for over forty years. Recently
there has been a renewed interest in its application to enumerative combinatorics
inspired by Witten’s conjecture (now Kontsevich’s theorem).

In this thesis we provide a detailed development of the KP hierarchy and some of
its applications with an emphasis on the combinatorics involved. Up until now, most
of the material pertaining to the KP hierarchy has been fragmented throughout the
physics literature and any complete accounts have been for purposes much different
than ours.

We begin by describing a family of related Lie algebras along with a module
on which they act. We then construct a realization of this module in terms of
polynomials and determine the corresponding Lie algebra actions. By doing this
we are able to describe one of the Lie group orbits as a family of polynomials and the
equations that define them as a family of partial differential equations. This then
becomes the KP hierarchy and its solutions. We then interpret the KP hierarchy
as a pair of operators on the ring of symmetric functions and describe their action
combinatorially. We then conclude the thesis with some combinatorial applications.
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Chapter 1

Introduction and Background

The study of the infinite (countable) family of partial differential equations known
as the Kadomtzev - Petviashvili (KP) hierarchy has received much interest in the
mathematical and theoretical physics community for over forty years. Recently
there has been a renewed interest in its application to enumerative combinatorics
inspired by Witten’s conjecture [32] (now Kontsevich’s theorem [19]).

The purpose of this thesis is to provide a detailed development of the KP hier-
archy and some of its applications with an emphasis on the combinatorics involved.
Up until now, most of the material pertaining to the KP hierarchy has been frag-
mented throughout the physics literature and any complete accounts have been for
purposes much different than ours.

In the remainder of this section we give a very brief account of the KP hier-
archy, culminating in an overview of Witten’s conjecture and some of the more
recent applications of the KP hierarchy to enumerative algebraic combinatorics.
For additional material on the KP hierarchy and related items see [24], [23].

1.1 A Historical Introduction

The history of the KP hierarchy begins with the search for a certain class of solu-
tions to a (1+1)-dimensional nonlinear wave equation called the Korteweg-de Vries
(KdV) equation (see [23], [12] or [13]). Here we use (1+1)-dimensional to denote a
partial differential equation in two variables, one of which represents time and the
other a spatial variable.

Explicitly, the KdV equation is the following partial differential equation for
some complex function u = u(x, t) where we use subscripts to denote partial differ-
entiation with respect to the given variables:

ut + 6uux + uxxx = 0. (1.1)

A particularly useful approach to solving nonlinear partial differential equations,
which is connected to the main topic of this thesis, is the Lax method. The idea is
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to construct a linear problem in which the compatibility relations between a pair
of linear differential operators gives rise to the original nonlinear problem.

Let L be a linear ordinary differential operator in the spatial variable x. We
allow L to have coefficients that are functions in the spatial variable x and a time
variable t. We are interested in the spectral problem for L. That is, we wish to
find an eigenfunction w = w(x, t) and the associated eigenvalue � = �(t) such that

Lw = �w. (1.2)

In general, � will depend on the time variable t. We will further restrict the problem
to the case where � has no time dependence (i.e. it is constant). We may write
this as

�t = 0. (1.3)

The problem described in (1.2) and (1.3) is often called the isospectral problem.

In what follows we will use the notation Lt to denote the linear ordinary differ-
ential operator obtained from L by differentiating each coefficient in L by t.

Equation (1.2) tells us something about how w behaves in the spatial coordinate,
but since �t = 0, it tells us nothing about the time evolution of w. We will assume
that w evolves in time with respect to a linear ordinary differential operator in the
spatial variable x called B. As in the case of L, we allow B to have coefficients that
are functions in both x and t. In other words, we assume that

wt = Bw. (1.4)

Differentiating (1.2) with respect to t gives

Ltw + Lwt = �tw + �wt.

Using (1.3) and (1.4), this becomes

Ltw + LBw = �Bw

= B�w

= BLw,

or in other words,
Ltw = [B,L]w, (1.5)

where here [B,L] = BL− LB is the standard commutator bracket.

It can also be shown that (1.5) implies

Lt = [B,L], (1.6)

and so we have an equality of linear ordinary differential operators in x. Taking
coefficients on each side gives a set of equations for the coefficients of the L and B
operators. If the original nonlinear partial differential equation appears as one of
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the equations for the coefficients of the L and B then we say that (1.6) is the Lax
form of the nonlinear partial differential equation.

For example, let

L =
∂2

∂x2
+ u (1.7)

be the Schrödinger operator with potential u where u is a function of x and t. By
a change of variable, we can always transform a linear differential operator of order
n to one that is monic and whose order (n− 1) component is zero.

The first case in which (1.6) is non-trivial for L given by (1.7) occurs when B
is a third order operator. In this case, for functions b1 and b0,

B =
∂3

∂x3
+ b1

∂

∂x
+ b0.

Then (1.6) gives us the following set of equations that must be satisfied:

b1 =
3

2
u,

b0 =
3

4
ux,

ut =
3

2
uux +

1

4
uxxx.

After scaling x and t, the condition on u is that it satisfies the KdV equation (1.1).

In fact, for each positive 2n + 1 there is an operator B2n+1 that satisfies (1.6)
and it turns out that each of these operators gives rise to an integral of motion for
the KdV equation. Under (1.6) these become the so-called “higher KdV equations”
[21].

It is also known that the KdV equation (among some other nonlinear partial
differential equations such as the KP equation discussed below) admits a family
of special solutions called soliton solutions. These are solutions that for t → ±∞
look like superpositions of solitary wave solutions. As t moves from +∞ to −∞
(or −∞ to +∞) the solitary waves come together and interact with the special
property that after the interaction occurs, the original solitary waves are preserved
up to a phase change. Since these solutions have properties that are unexpected
such as having a type of superposition principle there is much interest in finding
and constructing them.

In [11, 12], Hirota introduced a method to find these soliton solutions. Hirota’s
method involves constructing a bilinear form of the partial differential equation in
question in order to test various soliton equation ansätze. In particular, Hirota
discovered that if you make the change of variables

u(t, x) = −2
∂2

∂x2
ln f(t, x)

3



then the KdV equation becomes

ffxt − ftfx + fxxxxf − 4fxxxfx + 3f 2
xx = 0,

a homogeneous quadratic equation. A differential equation in this form is sometimes
called a bilinear differential equation. Hirota introduced a method that allowed
one to find exact solutions to bilinear differential equations using a perturbation
method. This allowed Hirota to construct N -soliton solutions for any N (these
solutions look like the superposition of N solitons).

After Hirota’s bilinear method was introduced there were a large number of
results published by a group of Japanese physicists at Kyoto University consisting
of M. Sato, T. Miwa, M. Jimbo, M. Kashiwara, E. Date and Y. Sato. This group
is sometimes referred to as the Sato school or the Kyoto school.

The Kyoto school found that not only are all the higher KdV equations part of
a single hierarchy of mutually commuting flows on a space of functions (the KdV
hierarchy) but that in fact they formed a sub-hierarchy of a family of equations
known as the KP hierarchy , so called because the simplest equation is the KP
equation

3

4

∂2u

∂y2
=

∂

∂x

(
∂u

∂t
− 3

2
u
∂u

∂x
− 1

4

∂3u

∂x3

)
. (1.8)

The method of constructing this hierarchy of related partial differential equa-
tions was found through the use of the Lax form applied to pseudo-differential
operators rather than just ordinary differential operators [5]. Also, it was discov-
ered that the Lax form was connected to Hirota’s bilinear form through the use of
a special function called the tau (or �) function [23]. Tau functions were originally
used in the context of holonomic quantum field theory [29]. Afterwards it was
discovered that in the context of integrable systems, the tau functions completely
encoded solutions of the KP hierarchy. In addition, there exists a bilinear form
that each of these tau functions satisfy and that completely characterizes the KP
hierarchy [16].

In studying solutions to the KP hierarchy, M. Sato found that Schur functions
appeared as tau functions. This led him to consider a linear group action on the
space of tau functions, and thus led to the description of the space of tau functions
for the KP hierarchy as a connected cell in a particular infinite dimensional Hilbert
space Grassmannian [28]. In fact, each point in this cell can be characterized by
a single function which can be easily transformed into a tau function for the KP
hierarchy. For a complete mathematical description see Segal and Wilson [30, 27].

While considering representation theory using vertex operators, Miwa, Jimbo,
Date and Kashiwara noticed that the bilinear form of the KP hierarchy consisted of
the vertex operator representation of the infinite Lie group GL∞ [4]. This prompted
them to construct the solutions to the KP hierarchy from a representation theory
point of view. This method is covered in their series of papers beginning with [16].
See also [23], [15] and [14]. In this thesis we will make use of the representation
theoretic description of the KP hierarchy through vertex operators.
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We now turn our attention to some combinatorial geometric applications of the
KP hierarchy. One such application which has renewed interest in the KP hierarchy
from a combinatorial geometric perspective was Witten’s conjecture concerning the
generating function for certain intersection numbers on the moduli space of marked
curves. Witten’s conjecture has since been proven in a few ways, the first of which
was by Kontsevich [19].

Letℳg,n be the Deligne-Mumford compactification of the moduli space of genus
g curves with n marked points. If we let X = (C, x1, x2, ⋅ ⋅ ⋅ , xn) be a point inℳg,n

where C is a genus g curve and x1, ⋅ ⋅ ⋅ , xn are the marked points then we can
associate with each marked point the line bundle ℒi on ℳg,n whose fiber at the
point X is the cotangent line to C at xi. Then we let  i be the first Chern class of
ℒi and we denote the intersection number by

⟨�m1 ⋅ ⋅ ⋅ �mn⟩ =

∫
Mg,n

 m1
1 ⋅ ⋅ ⋅ mnn .

For complete details see Lando and Zvonkin [20].

If we now construct the generating function of intersection numbers

F (t0, t1, ⋅ ⋅ ⋅ ) =

〈
exp

(∑
i

ti�i

)〉

then Witten’s conjecture says that exp(F ) is a tau function for the KdV hierarchy.

An alternate form of Witten’s conjecture says that

V =
∂2

∂t20
F

is the partition function for the universal one matrix model. This has combinatorial
interest since it is known (see [2]) that matrix models can be thought of as certain
weighted sums of maps (graphs embedded on surfaces). This is in fact the way in
which Kontsevich originally proved Witten’s conjecture, by showing that V could
be described as the evaluation of a certain operator over all metric fat-maps (see
[19]).

After Kontsevich proved Witten’s conjecture, T. Ekedahl, S. K. Lando, M.
Shapiro and A. Vainshtein published a formula known as the ELSV formula, which
related intersection numbers as described above and Hurwitz numbers. Briefly, Hur-
witz numbers enumerate ramified coverings of the sphere with arbitrary ramification
at a single point and simple ramification elsewhere. Combinatorially however, the
Hurwitz number H(k, �), for � ∈ Sn a permutation of n and k a positive integer,
is the number of ways of factoring � into a product of k transpositions where the
k transpositions generate a transitive subgroup of Sn.

Shortly afterwards, Okounkov showed that the generating function for Hurwitz
numbers satisfied the KP hierarchy and, using some additional theory involving
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matrix integrals and asymptotics, showed that this implied Witten’s conjecture [26].
More recently, Kazarian and Lando [18] have given a more direct proof of Witten’s
conjecture using only ELSV and the fact that the Hurwitz numbers satisfy the KP
hierarchy.

Since being a tau function for the KP hierarchy implies that the function sat-
isfies a family of partial differential equations, there is much interest in finding
other combinatorial generating functions which are also tau functions. Work in
this direction by Goulden and Jackson [9] has resulted in many interesting results
including an application (see Bender, Gao and Richmond [1]) to the asymptotics
of triangulations.

1.2 Partitions

In this section and the next we briefly review some facts about partitions and the
ring of symmetric functions. For the most part we follow Macdonald [22] and full
details and proofs can be found there or in Stanley [31].

A partition is any (finite or infinite) sequence

� = (�1, �2, ⋅ ⋅ ⋅ )

of non-negative integers in non-increasing order

�1 ≥ �2 ≥ ⋅ ⋅ ⋅

where at most finitely many �i are non-zero. The �i are called the parts of the
partition �. We use � to denote the empty partition that has all parts equal to
zero.

Throughout this thesis we will use alternate interpretations of the above defi-
nition, sometimes viewing partitions as consisting of only the non-zero parts and
other times viewing them as countable sequences with finitely many non-zero en-
tries. Both descriptions are equivalent and which version we are using will be clear
from the context.

Given a partition �, we say that the length of the partition, ℓ(�), is equal to the
number of non-zero parts and the size of the partition, ∣�∣, is the sum of the parts

∣�∣ = �1 + �2 + ⋅ ⋅ ⋅ .

If � is a partition of size n then we write � ⊢ n. Sometimes it is convenient to use
the following notation for a partition �:

� = (1m12m2 ⋅ ⋅ ⋅ ),

where mi = mi(�) is the number of times that i occurs as a part of � and is called
the multiplicity of i in �. We may also write a partition in this form with the size
of the parts in decreasing rather than increasing order, as in example 1.2.1 below.
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We sometimes represent a partition as a connected collection of unit squares on
the integer lattice. For a partition � = (�1, �2, ⋅ ⋅ ⋅ ) we say that its (Young) diagram
is a collection of unit squares in the integer lattice, left aligned such that the first
row consists of �1 squares, the second row consists of �2 squares, etc.

Figure 1.1: Young Diagram Example

Example 1.2.1. Consider the partition � = (3, 3, 2, 1, 1) = 12232 = 32212. This
partition has the Young diagram in Figure 1.1 and is such that ∣�∣ = 10, which is
the number of squares in Figure 1.1, and ℓ(�) = 5, which is the number of rows in
Figure 1.1.

We will often use � to denote both the partition and its diagram with the usage
clear from the context.

For a partition � we form its conjugate, denoted by �′, by taking the diagram
of � and reflecting in the main diagonal. The partition corresponding to this new
diagram is the conjugate. From this description it is easy to see that the parts of
�′ are the lengths of the columns of �, or in other words

�′i = ∣{j : �j ≥ i}∣.

For any two partitions �, � we say that � ⊆ � if the diagram of � fits inside the
diagram of �, or in other words �i ≥ �i for all i.

Let �, � be partitions such that � ⊆ �. If we draw the diagram for � and then
remove the squares corresponding to the diagram of �, what we are left with is
called the skew diagram �/�. If � = �/� is a skew diagram then �i = �i− �i is the
number of squares in the ith row of the skew diagram. We let �′ = �′/�′ be the
conjugate of the skew diagram � and as such �′i = �′i − �′i is the number of squares
in the ith row of the conjugate skew diagram �′ and hence the number of squares
in the ith column of the skew diagram �.

A skew diagram � = �/� is called a horizontal m-strip if ∣�∣ = m and �′i ≤ 1
for each i. In other words, � is a horizontal m-strip if it contains m squares and no
two squares are vertically adjacent. Similarly we say that � is a vertical m-strip if
∣�∣ = m and �i ≤ 1 for each i.

7



Figure 1.2: Skew Diagram Example

Example 1.2.2. Let � = 32212 and let � = 23. Then � ⊆ � and we can form the
skew diagram � = �/�. This can be seen in Figure 1.2 where the partition formed
by the black and white squares is �, the partition formed by just the black squares
is � and the skew diagram � is the set of squares that are white. Also, notice that
�/� is a vertical 4-strip.

1.3 Symmetric Functions

Let Sn be the group of permutations on n elements. The group Sn is also called the
symmetric group on n elements. Thus, Sn is the set of bijections from {1, ⋅ ⋅ ⋅ , n}
to itself with composition as the group operation. Let ℚ[x1, ⋅ ⋅ ⋅ , xn] be the ring of
polynomials in the n algebraically independent variables x1, ⋅ ⋅ ⋅ , xn with rational
coefficients. There is a natural action of Sn on ℚ[x1, ⋅ ⋅ ⋅ , xn] where � ∈ Sn takes
p(x1, ⋅ ⋅ ⋅ , xn) ∈ ℚ[x1, ⋅ ⋅ ⋅ , xn] to �p = p(x�(1), ⋅ ⋅ ⋅ , x�(n)). We say that a polynomial
p ∈ ℚ[x1, ⋅ ⋅ ⋅ , xn] is a symmetric polynomial if �p = p for all � ∈ Sn. We let Λn be
the ring of all symmetric polynomials in n variables.

The ring Λn is a graded ring,

Λn =
⊕
k≥0

Λk
n,

where Λk
n contains polynomials p ∈ Λn which are homogeneous of total degree k,

along with the zero polynomial.

For integers m,n such that m ≥ n, the homomorphism

ℚ[x1, ⋅ ⋅ ⋅ , xm]→ ℚ[x1, ⋅ ⋅ ⋅ , xn]

formed by taking xn+1, ⋅ ⋅ ⋅ , xm to zero and all other xi to themselves restricts to a
homomorphism

Λk
m → Λk

n

and so we may form the inverse limit

Λk = lim←−
n

Λk
n.

8



We call the ring

Λ =
⊕
k≥0

Λk

the ring of symmetric functions .

We will now describe four families of symmetric functions, each of which is a
basis for Λ and will be important later on.

Every symmetric function is a formal infinite sum of monomials in a countable
family of indeterminates. For ease of notation we will suppress these variables
when possible. Also, we will occasionally use an unadorned variable name to refer
to the vector consisting of all the variables. For example, we will write x to mean
x = (x1, x2, ⋅ ⋅ ⋅ ) so that we can write f(x) ∈ Λ when we wish to make clear which
family of indeterminates we are considering.

For each r ≥ 0 the rth elementary symmetric function er is defined by the
generating function

E(t) =
∑
r≥0

ert
r =

∏
i≥1

(1 + xit) (1.9)

where t is distinct from the xi.

Example 1.3.1. The first few elementary symmetric functions are

e0 = 1,

e1 =
∑
i

xi,

e2 =
∑
i<j

xixj,

e3 =
∑
i<j<k

xixjxk.

In general, the elementary symmetric functions have the form

en =
∑

i1<⋅⋅⋅<in

xi1 ⋅ ⋅ ⋅xin . (1.10)

Furthermore, for each partition � we define

e� = e�1e�2 ⋅ ⋅ ⋅ .

It is known that the er are algebraically independent and that they generate Λ.

For each r ≥ 0 the rth complete symmetric function ℎr is defined by the gener-
ating function

H(t) =
∑
r≥0

ℎrt
r =

∏
i≥1

1

1− xit
, (1.11)

and similarly to the elementary symmetric functions, we define

ℎ� = ℎ�1ℎ�2 ⋅ ⋅ ⋅ .
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Example 1.3.2. The first few complete symmetric functions are

ℎ0 = 1,

ℎ1 =
∑
i

xi = e1,

ℎ2 =
∑
i≤j

xixj,

ℎ3 =
∑
i≤j≤k

xixjxk.

In general, the complete symmetric functions have the form

ℎn =
∑

i1≤⋅⋅⋅≤in

xi1 ⋅ ⋅ ⋅xin . (1.12)

From the generating functions (1.9) and (1.11) we have

H(t)E(−t) = 1

or
n∑
r=0

(−1)rerℎn−r = 0 ∀n ≥ 1. (1.13)

Since the er are algebraically independent we may define a homomorphism of
graded rings

! : Λ→ Λ

by
!(er) = ℎr.

From (1.13) we see that ! is an involution and hence an automorphism of Λ and so
the ℎr are also an algebraically independent set of generators for Λ. This involution
is often called the fundamental involution.

For each r ≥ 1 the rth power sum symmetric function is

pr =
∑
i

xri

and p0 = 1. We can construct the corresponding generating function

P (t) =
∑
r≥1

prt
r−1

=
∑
i≥1

∑
r≥1

xri t
r−1

=
∑
i≥1

xi
1− xit

=
∑
i≥1

∂

∂t
log

1

1− xit
.
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From this we get

P (t) =
∂

∂t
log
∏
i≥1

1

1− xit

=
∂

∂t
logH(t) (1.14)

=
H ′(t)

H(t)

and likewise

P (−t) =
∂

∂t
logE(t) =

E ′(t)

E(t)
. (1.15)

From (1.14) and (1.15) we get

nℎn =
n∑
r=1

prℎn−r

nen =
n∑
r=1

(−1)r−1pren−r

and so we see that the pr are algebraically independent and generate Λ. Further-
more, for any partition � we define

p� = p�1p�2 ⋅ ⋅ ⋅

and all such p� form a linear basis for Λ.

Since ! changes er to ℎr it follows from (1.14) and (1.15) that

!(pn) = (−1)n−1pn

and hence for any partition �
!(p�) = ��p�

where
�� = (−1)∣�∣−ℓ(�).

In order to describe the elementary and complete symmetric functions in terms
of the power sum symmetric functions we let

z� =
∏
i≥1

imimi!

where mi = mi(�) is the number of parts of � equal to i. Then

H(t) = exp

(∑
r≥1

prt
r

r

)

E(t) = exp

(
−
∑
r≥1

(−1)rprt
r

r

)
=

1

H(−t)
,
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or equivalently,

ℎn =
∑
∣�∣=n

z−1
� p� (1.16)

en =
∑
∣�∣=n

��z
−1
� p�.

The last family of symmetric functions that we will make use of is the Schur
functions. For any partition � the Schur function s� is defined as

s� = det (ℎ�i−i+j)1≤i,j≤ℓ(�) (1.17)

= det
(
e�′i−i+j

)
1≤i,j≤ℓ(�′)

where the second equality is a relatively routine calculation which can be found in
Macdonald [22]. Here we use the convention that ℎi = 0 (or ei = 0) if i < 0.

From (1.17) we see that
!(s�) = s�′

and also that
s(n) = ℎn, s(1n) = en.

It is also the case that the Schur functions form a linear basis for Λ. Note that
since the fundamental involution acts on Schur functions by taking s� to s�′ we
sometimes use ! to mean the involution on the set of partitions of n that takes �
to �′.

At this point we would like to introduce a different way of describing Schur
functions which is common in the physics literature. Since Λ = ℚ[p1, p2, ⋅ ⋅ ⋅ ] and
each of the pr are algebraically independent we may construct the isomorphism

Φ : Λ→ ℚ[y1, y2, ⋅ ⋅ ⋅ ]
: pn 7→ nyn

where the yi form a distinct set of indeterminates.

Under Φ the resulting polynomials

S� = Φ(s�)

are called the Schur polynomials and in particular, for n a positive integer, the

Sn = S(n) = Φ(s(n)) = Φ(ℎn)

are called the elementary Schur polynomials and have the generating function

∑
n

Snt
n = exp

(∑
r

yrt
r

)
(1.18)
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which is simply the image of the generating function for the complete symmetric
functions under the isomorphism Φ. Since the s� form a basis for Λ, the S� form
a basis for ℚ[y] and so every polynomial can be written in terms of the Schur
polynomials (here we really do mean polynomials and not symmetric polynomials).
It will be useful for us to switch between these two points of view but it should be
clear from the context and language which point of view we are using.

Heading back to symmetric function theory, we define a bilinear form ⟨⋅, ⋅⟩ on
Λ by

⟨p�, p�⟩ = z���,� (1.19)

so that the power sum symmetric functions form an orthogonal basis for Λ. With
respect to this inner product, we have

⟨s�, s�⟩ = ��,�

so that the Schur functions are orthonormal. This inner product is symmetric and
positive definite and since !(p�) = ±p� we have

⟨!(p�), !(p�)⟩ = ⟨p�, p�⟩

so that ! is an isometry.

For any symmetric function f ∈ Λ we let f⊥ be the adjoint of multiplication by
f as a linear operator on Λ (i.e., so that ⟨f⊥g, ℎ⟩ = ⟨g, fℎ⟩ for f, g, ℎ ∈ Λ). In the
case of the power sum symmetric function pn we see that

⟨p⊥n p�, p�⟩ = ⟨p�, pnp�⟩

=

{
z� if � = � ∪ {n}
0 otherwise.

Hence p⊥n p� = z�z
−1
� p� if n is a part of � and � is obtained from � by removing a

part of size n. Since z�z
−1
� = nmn(�) where mn(�) is the number of parts of size n

in � we see that

p⊥n = n
∂

∂pn
.

Since each f ∈ Λ can be written as a polynomial in terms of power sums, f =
�(p1, p2, ⋅ ⋅ ⋅ ), we have

f⊥ = �

(
∂

∂p1

,
2∂

∂p2

,
3∂

∂p3

, ⋅ ⋅ ⋅
)
.

We now turn to the problem of writing the Schur and power sum symmetric
functions in terms of one another. In order to do this we will require a few basic
facts about the symmetric group. Complete details can be found in [22] or [31]. A
permutation � ∈ Sn has cycle type �, where � is a partition of n, if � is comprised of
distinct cycles of length �1, �2, ⋅ ⋅ ⋅ . We denote this by cyc(�) = �. The conjugacy
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classes in Sn are indexed by partitions of n so that the conjugacy class C�, where �
is a partition of n, corresponds to the set of permutations � ∈ Sn with cyc(�) = �.

It is well known that the irreducible characters of Sn are indexed by partitions
of n. If � and � are partitions of n, then we use ��� to denote the evaluation of the
irreducible character indexed by � at a permutation with cycle type �. It is also
well known that

��� = ⟨s�, p�⟩.
This allows us to write the Schur functions and the power sum symmetric functions
in terms of one another:

s� =
∑
�

z−1
� ���p�,

p� =
∑
�

���s�.

Example 1.3.3. We list a number of examples of Schur functions written in terms
of power sum symmetric functions which will be useful later.

s� = 1,

s(1) = p1,

s(12) =
1

2
p2

1 −
1

2
p2,

s(2) =
1

2
p2

1 +
1

2
p2,

s(13) =
1

6
p3

1 −
1

2
p1p2 +

1

3
p3,

s(2,1) =
1

3
p3

1 −
1

3
p3,

s(3) =
1

6
p3

1 +
1

2
p1p2 +

1

3
p3,

s(14) =
1

24
p4

1 −
1

4
p2

1p2 +
1

3
p1p3 +

1

8
p2

2 −
1

4
p4,

s(212) =
1

8
p4

1 −
1

4
p2

1p2 −
1

8
p2

2 +
1

4
p4,

s(22) =
1

12
p4

1 +
1

4
p2

2 −
1

3
p1p3,

s(31) =
1

8
p4

1 +
1

4
p2

1p2 −
1

8
p2

2 −
1

4
p4,

s(4) =
1

24
p4

1 +
1

4
p2

1p2 +
1

3
p1p3 +

1

8
p2

2 +
1

4
p4.

The final fact that we will need concerning symmetric functions is Pieri’s for-
mula, which says that

ℎrs� =
∑
�

s�, (1.20)
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where the sum is over all partitions � such that �/� is a horizontal r-strip. Using
! we get

ers� =
∑
�

s� (1.21)

where the sum is over all partitions � such that �/� is a vertical r-strip. By taking
adjoints we see that

ℎ⊥r s� =
∑
�

s� (1.22)

where the sum is over partitions � such that �/� is a horizontal r-strip and

e⊥r s� =
∑
�

s� (1.23)

where the sum is over partitions � such that �/� is a vertical r-strip.

1.4 Thesis Outline

The remainder of this thesis is organized as follows: in Chapter 2 we construct the
fermionic Fock space ℱ .We describe the basis of semi-infinite monomials in ℱ and
the related combinatorial objects called Maya diagrams. We then introduce the
Lie algebra gℓ∞ of linear operators, which can be written as infinite matrices that
have only a finite number of non-zero entries. We also look at the Lie group GL∞
corresponding to gℓ∞. In preparation for chapter three we construct the algebra
a∞ which comprises infinite matrices with a finite number of non-zero diagonals
and relate the action of a∞ on ℱ with the wedging and contracting operators on ℱ .
Lastly, we find an equation which characterizes the GL∞ orbit of a distinguished
element,  0 ∈ ℱ . This orbit will later become the set of solutions to the KP hierar-
chy and the equations which define it will become the family of partial differential
equations.

In Chapter 3 we begin by discussing representations of the oscillator algebra.
We show that under mild hypotheses there is a unique such representation, up
to isomorphism, which can be described in terms of differential and multiplicative
operators on the ring of polynomials. We use this to show that a subalgebra of
a∞ acting on ℱ is in fact a representation of the oscillator algebra. Using the
wedging and contracting operator description of a∞ on ℱ we then show that there
is an isomorphism of representations between ℱ and a direct sum of a countable
number of copies of the ring of polynomials. We use this isomorphism to describe
the equation characterizing one of the orbits of GL∞ on ℱ as a family of differential
equations and to describe the orbit itself as a family of functions. This family of
differential equations is called the KP hierarchy and the functions in the orbit are
the solutions to the hierarchy. We then finish off the chapter by writing out some
of the differential equations in the hierarchy.
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In Chapter 4 we describe a symmetric function approach to the KP hierarchy.
We do this by beginning with the family of differential equations constructed in
Chapter 3 which form the KP hierarchy. We show that this family of differential
equations can be written in terms of some combinatorial operators on symmetric
functions. We describe explicitly the action of these combinatorial operators on
Schur functions and use this to prove the well known result that solutions of the
KP hierarchy are exactly those whose coefficients, when expanded in terms of Schur
functions, satisfy the Plücker relations.

The final chapter is a brief account of some applications of the KP hierarchy to
combinatorial problems. We begin by describing the Hurwitz problem of enumer-
ating ramified coverings of the sphere. This leads naturally to the combinatorially
defined differential operator known as the Join-Cut operator. We show that the
Join-Cut operator acts as an element of GL∞ so that the generating function for
Hurwitz numbers is naturally a solution of the KP hierarchy. We then discuss a
related problem of Hodge integrals over the space of genus g curves with n marked
points. We show how the ELSV formula, which relates the Hurwitz numbers to
Hodge integrals, can be used to prove Witten’s conjecture concerning the gener-
ating function for Hodge integrals. Lastly, we show how the generating function
for the related problem of double Hurwitz numbers is also a solution of the KP
hierarchy.
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Chapter 2

Infinite Matrix Modules and the
Fermionic Fock Space

In this chapter we develop the fundamental objects involved in the representation
theoretic construction of the KP hierarchy and its solutions. To this end we in-
troduce a series of Lie algebras including and related to the infinite dimensional
analogue of the finite dimensional matrix algebras. We then describe the action
of these algebras on a subspace of the infinite wedge space. In doing so we also
describe the action of the infinite dimensional analogue of the general linear group,
GL∞, and we find a bilinear equation which characterizes one of the orbits of GL∞.
In the following chapter we will see how this bilinear equation can be interpreted
as a family of partial differential equations which comprise the KP hierarchy. The
elements in the orbit then correspond to the solutions of the KP hierarchy. For
the most part we follow [14] and a full description of the results which follow along
with many others can be found there (see also [15] and [23]).

2.1 Fermionic Fock Space

Let
V =

⊕
j∈ℤ

ℂvj = ℂ∞

be an infinite dimensional vector space over ℂ with a fixed basis {vj}j∈ℤ.We denote
by ∧ the exterior (or wedge) product which is an associative antisymmetric product,
so that vi ∧ vj = −vj ∧ vi.

We will mostly concern ourselves with a space constructed from V which is
sometimes called the (fermionic) Fock space and is denoted by F . This subspace
is constructed by taking formal linear combinations of one-way infinite exterior
products of elements from V that, using antisymmetry and associativity of the
wedge product, can be written in the form

 = vi0 ∧ vi−1 ∧ vi−2 ∧ ⋅ ⋅ ⋅
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where

(i) i0 > i−1 > i−2 > ⋅ ⋅ ⋅ ,

(ii) ik = k +m for some integer m and k sufficiently small.

These one-way infinite wedge products are called semi-infinite monomials (or simply
monomials if no confusion will arise) and the integer m is called the charge of the
semi-infinite monomial  .

From the description of the basis for F above, we can write the charge decom-
position

F =
⊕
m∈ℤ

F (m)

where F (m) is spanned by the semi-infinite monomials in F with charge m. The
subspaces F (m) are called the charge m (fermionic) Fock spaces . We will primarily
be interested in the charge zero Fock space, F (0), although for now we will continue
to use the full generality.

Each charge m Fock space has a distinguished semi-infinite monomial, denoted
 m, which is minimal with respect to condition (ii). By this we mean that

 m = vi0 ∧ vi−1 ∧ vi−2 ∧ ⋅ ⋅ ⋅

where ik = m+k. These distinguished semi-infinite monomials are called the charge
m vacuum vectors . By condition (ii) above, every monomial in F (m) differs in at
most a finite number of places from  m.

We can view any semi-infinite monomial  = vi0 ∧ vi−1 ∧ ⋅ ⋅ ⋅ as a two colouring
of the integers. We say that, with respect to a semi-infinite monomial  , an integer
n is black if vn appears in  and that it is white if vn does not appear in  . We
call such a colouring a Maya diagram and often refer to the coloured integers as
stones. For example, if n is white then we say that there is a white stone at n.

Example 2.1.1. The Maya diagram representing the monomial  = v3 ∧ v2 ∧ v0 ∧
v−2 ∧ v−3 ∧ v−5 ∧ ⋅ ⋅ ⋅ is shown in Figure 2.1.

Figure 2.1: Maya Diagram Example

Since we know that every monomial in F (m) differs from  m in at most a finite
number of places, this implies that the Maya diagram corresponding to a monomial
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in F (m) can only differ from the Maya diagram corresponding to  m by a finite
number of exchanges of black and white stones. By this we mean that one starts
with the Maya diagram corresponding to  m, and then chooses a white stone and
a black stone and swaps the two colours for each exchange.

We may view Maya diagrams as paths in the lower right quadrant of the integer
lattice where we interpret black stones as denoting ‘up’ steps and white stones as
denoting ‘right’ steps. Using this notation we see that  m represents the portion
of the y-axis below the point m on the x-axis and the portion of the x-axis to the
right of the y-axis.

Example 2.1.2. If we use the monomial from example 2.1.1 then we get the dia-
gram in Figure 2.2.

1  2  3  4  5

30

-1

-2

-3

-4

-5

-6

2

10

1-2

-3

-4

Figure 2.2: Semi-Infinite Monomial Example

In Figure 2.2 the solid black line represents  0 and the dashed line represents
the monomial from the previous example. Also, the steps in the diagram have been
labeled so that the labels corresponding to up steps appear to the left and the labels
corresponding to right steps have been placed below. Note that this configuration
outlines the Young diagram of the partition 32212.

In general, if we construct a diagram as in Example 2.1.2 by first drawing the
path corresponding to  m and superimposing the path corresponding to a semi-
infinite monomial  ∈ F (m) then it is easy to see that the region between the two
paths corresponds to the Young diagram of a partition. If we have some basis
element  in F (m) then we can write it as

 = vi0 ∧ vi−1 ∧ ⋅ ⋅ ⋅ ∧ vi−n+1 ∧ vm−n ∧ vm−n−1 ∧ ⋅ ⋅ ⋅
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where ik+1 < ik and we can relate it to the partition � formed above using the
formula

�k+1 = i−k + k −m
for k ≥ 0. It is easy to see that this formula gives us the same partition as was
described above since this measures the number of right steps that occur before the
i-th up step, which is the size of the i-th part of the associated partition.

We sometimes refer to the semi-infinite monomial  associated to the partition
� as v�, where

v� = vi0 ∧ vi−1 ∧ vi−n+1 ∧ vm−n ∧ vm−n−1 ∧ ⋅ ⋅ ⋅ ,

with i−k = �k+1− k+m. Note that there is some ambiguity in the notation for v�;
however this should not be an issue as the charge m of a semi-infinite monomial will
always be clear from the context. From this we see that if we define deg(v�) = ∣�∣
then for v� ∈ F (m)

deg(v�) =
∞∑
k=0

(i−k + k −m).

This gives us the decomposition

F (m) =
⊕
k≥0

F
(m)
k

where F
(m)
k is spanned by all semi-infinite monomials with charge m and degree k.

This decomposition is sometimes called the energy decomposition and the degree
is called energy . One last thing to note is that the comments above imply the
dimension of the subspace F

(m)
k is equal to the number of partitions of k.

2.2 The algebras gℓ∞ and a∞

We now describe two related associative algebras gℓ∞ and a∞. In the next section
we construct representations of gℓ∞ and a∞ on F together with the representation
of a central extension of a∞.

Since our underlying vector space V is ℂ∞ it is natural to consider the Lie
algebra analogous to the algebra of matrices on a finite dimensional vector space.
To that end we define

gℓ∞ = {(ai,j)i,j∈ℤ∣ all but a finite number of ai,j = 0}.

We view gℓ∞ as a Lie algebra with juxtaposition corresponding to standard matrix
multiplication,

(ab)i,j =
∑
k∈ℤ

ai,kbk,j,

for a, b ∈ gℓ∞, and the standard commutator bracket, [a, b] = ab− ba.
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Most of our computations will be done using a convenient linear basis of gℓ∞.
Let Ei,j be the element of gℓ∞ with a 1 in its (i, j) entry and 0 elsewhere. It is clear
that this forms a linear basis of gℓ∞.

By construction we see that

Ei,jvk = �j,kvi,

Ei,jEm,n = �j,mEi,n.

From this we see that

[Ei,j, Em,n] = �j,mEi,n − �n,iEm,j,

from which we can construct all other Lie brackets (by linearity).

Since gℓ∞ is a Lie algebra we can construct its associated group GL∞. This is
defined as

GL∞ = {A = (ai,j)i,j∈ℤ∣A is invertible and all but a finite number of ai,j−�i,j = 0},

where we take matrix multiplication as our group operation. In a moment we will
introduce the shift operators which will be important in the next chapter. Since the
shift operators are not members of gℓ∞ we will need to define a larger Lie algebra
of which gℓ∞ is a Lie subalgebra. We define the algebra

a∞ = {(ai,j)i,j∈ℤ∣ai,j = 0 for ∣i− j∣ ≫ 0}.

In other words, the infinite matrices in a∞ are those which have a finite number
of non-zero diagonals. It is easy to check that matrix products are well defined in
a∞, and that gℓ∞ is a Lie subalgebra of a∞.

Since we will need them later, we introduce the shift operators Λk. These are
defined as

Λkvj = vj−k.

From the description of the matrices Eij and their action on vj we see immediately
that

Λk =
∑
i∈ℤ

Ei,i+k.

In other words, Λk is the matrix with 1 in each entry of the k-th diagonal and 0
elsewhere (here we view the principal diagonal as the 0-th diagonal and positive
diagonals are above the 0-th diagonal, etc.).

From the definition of Λk we see that

[Λj,Λk] =
∑
m,n∈ℤ

[Em,m+j, En,n+k]

=
∑
m,n∈ℤ

(�m+j,jEm,n+k − �n+k,mEn,m+j)

= 0

and so the Λk form a commutative subalgebra of a∞.
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2.3 Representations of GL∞ and gℓ∞ in F

Using the action of gℓ∞ and GL∞ on V described in the previous section we can
construct representations R of GL∞ and r of gℓ∞ on F by

R(A)(vi1 ∧ vi2 ∧ ⋅ ⋅ ⋅ ) = Avi1 ∧ Avi2 ∧ ⋅ ⋅ ⋅ (2.1)

and

r(a)(vi1 ∧ vi2 ∧ vi3 ∧ ⋅ ⋅ ⋅ ) = avi1 ∧ vi2 ∧ vi3 ∧ ⋅ ⋅ ⋅+ vi1 ∧ avi2 ∧ vi3 ∧ ⋅ ⋅ ⋅+ ⋅ ⋅ ⋅ . (2.2)

Note that the sum above is finite since a has only a finite number of non-zero entries
(by definition), hence avi = 0 for all but finitely many vi.

Also, the representations r and R are related by

R(exp(a))v = exp(a)vi1 ∧ exp(a)vi2 ∧ ⋅ ⋅ ⋅

=

(
1 + a+

a2

2
+ ⋅ ⋅ ⋅

)
vi1 ∧

(
1 + a+

a2

2

)
vi2 ∧ ⋅ ⋅ ⋅

= v + (avi1 ∧ vi2 ∧ ⋅ ⋅ ⋅+ vi1 ∧ avi2 ∧ vi3 ∧ ⋅ ⋅ ⋅+) + ⋅ ⋅ ⋅

= v + r(a)v +
r2(a)

2
v + ⋅ ⋅ ⋅

= exp(r(a))v,

for a ∈ gℓ∞ and any semi-infinite monomial v ∈ F .

We see that

r(Ei,j)vi1 ∧ vi2 ∧ ⋅ ⋅ ⋅ =

{
0 if j ∕∈ {i1, i2, ⋅ ⋅ ⋅ },
vi1 ∧ ⋅ ⋅ ⋅ ∧ vik−1

∧ vi ∧ vik+1
∧ ⋅ ⋅ ⋅ if j = ik

.

It is clear that r(Ei,j)vi1 ∧ vi2 ∧ ⋅ ⋅ ⋅ = 0 if i ∈ {i1, i2, ⋅ ⋅ ⋅ } as well, using the anti-
symmetric property of the wedge product. It is also clear that r(Ei,j) maps F (m)

to itself for each m since its action is to replace one basis element in a semi-infinite
monomial with another.

In terms of Maya diagrams, the action of r(Ei,j) on some semi-infinite monomial
 is as follows: If j is black and i is white then switch the colours on i and j and
multiply by (−1)n where n is the number of black stones between i and j. Otherwise
the result is zero. Using this description it is again clear that r(Ei,j) does not change
the charge of a monomial.

Since each basis element  ∈ F (m) can be written as

 = vim ∧ ⋅ ⋅ ⋅ ∧ vim−k ∧ vm−k−1 ∧ ⋅ ⋅ ⋅

we can in fact write it as

 = r(Eim,m) ⋅ ⋅ ⋅ r(Eim−k,m−k) m. (2.3)

We think of ℱ (m) as being generated by  m since (2.3) allows us to describe any
charge m semi-infinite monomial as an element of the gℓ∞ orbit of  m.
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Definition 2.3.1. We say that ! is an anti-linear anti-involution if it is an ℝ-linear
involution on a complex Lie algebra A such that

!(�x) = �!(x)

for � ∈ ℂ and x ∈ A and such that

!([x, y]) = [!(y), !(x)]

for x, y ∈ A.

Definition 2.3.2. Let V be a representation space of a complex Lie algebra A and
let ⟨⋅∣⋅⟩ be a Hermitian form on V with an anti-linear anti-involution !. We say
that ⟨⋅∣⋅⟩ is contravariant if

⟨x(u)∣v⟩ = ⟨u∣!(x)(v)⟩

holds for all x ∈ A and u, v ∈ V .

If the Hermitian form in Definition 2.3.2 is non-degenerate then for any x ∈ A
there exists a Hermitian adjoint x∗ such that ⟨x(u)∣v⟩ = ⟨u∣x∗(v)⟩ for all u, v ∈ V .
This implies that the anti-linear anti-involution ! must in fact be the operator that
takes x to x∗. In what follows we will often have a non-degenerate Hermitian form
and when this is the case we use x∗ to denote !(x) as it is more descriptive.

Definition 2.3.3. We further say that the representation is unitary if the Hermi-
tian form is contravariant and

⟨v∣v⟩ > 0 for all v ∈ V, v ∕= 0.

We may define a Hermitian form ⟨⋅∣⋅⟩ on F by requiring that semi-infinite mono-
mials determine an orthonormal basis for F . If we let a∗ denote the transposed
conjugate of a matrix a then we can see very quickly (by considering the basis Ei,j)
that for any two semi-infinite monomials  ,  ′,

⟨r(a) ∣ ′⟩ = ⟨ ∣r(a∗) ′⟩.

This tells us that ⟨⋅∣⋅⟩ is contravariant and that the representation r of gℓ∞ on F
is unitary. In fact, we can say more.

Proposition 2.3.4. The representation r of gℓ∞ on F is a direct sum of irreducible
unitary representations rm, where rm is the restriction of r to F (m).

Proof. The fact that r is a direct sum of unitary representations rm in F (m) follows
from the fact that the charge decomposition is orthogonal with respect to the
Hermitian form ⟨⋅∣⋅⟩.
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To see that each rm is irreducible note that we have an energy decomposition
of each charge m Fock space as

F (m) =
∑
k≥0

F
(m)
k

and that this decomposition is also orthogonal.

Suppose U ⊂ F (m) is an invariant subspace with respect to rm. Then U must
also respect the energy decomposition (for details as to why this is true, see Lemma
1.1 in [14]),

U =
∑
k≥0

(U ∩ F (m)
k )

and so must its orthogonal complement U⊥. However, since  m spans all of F
(m)
0

it must be contained in only one of U or U⊥ and we may assume without loss of
generality that it is contained in U .

From our comment earlier that each basis element in F (m) can be written as the
image of  m under gℓ∞ we see that in fact each of the fixed energy subspaces of F (m)

must also be contained in U so that U⊥ = 0. Since this argument is independent
of m we see that each rm must in fact be irreducible.

Lastly, we record a formula for the action of R(A), A ∈ GL∞ on F (m) which will
be denoted Rm(A). This formula can be proved easily using the standard calculus
of exterior algebra.

We have that

Rm(A)(vim ∧ vim−1 ∧ ⋅ ⋅ ⋅ ) =
∑

jm>jm−1>⋅⋅⋅

(
detA

im,im−1,⋅⋅⋅
jm,jm−1,⋅⋅⋅

)
vjm ∧ vjm−1 ∧ ⋅ ⋅ ⋅ , (2.4)

where A
im,im−1,⋅⋅⋅
jm,jm−1,⋅⋅⋅ denotes the sub-matrix of the infinite matrix A with rows indexed

by jm, jm−1, ⋅ ⋅ ⋅ and columns indexed by im, im−1, ⋅ ⋅ ⋅ . Here we view the determi-
nant of an infinite matrix as the product of its eigenvalues. This is well defined
since, by definition, each matrix in question is block diagonalizable consisting of a
finite matrix and an infinite identity matrix.

2.4 Representations of a∞ in F

Let ak ∈ a∞ represent an infinite matrix of the form

ak =
∑
j∈ℤ

�jEj,j+k,

so that ak has non-zero entries (�j ∈ ℂ) only on its k-th diagonal. Then each
matrix in a∞ can be written as a finite sum of matrices of this form.
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Since we would like to construct a representation of a∞ on F similar to the gℓ∞
representation r that we discussed in the previous section, it would seem natural
to simply apply (2.2) for r to a∞.

For k ∕= 0 we see that r(ak) m is a finite linear combination of semi-infinite
monomials in F (m). Since r(Ei,i+k) m = 0 when i + k > m and when i ≤ m.
However, for k = 0 we see that

r(a0) m = (�m + �m−1 + ⋅ ⋅ ⋅ ) m,

which is potentially a divergent sum. Since each semi-infinite monomial in F (m) is
generated by  m via (2.3), the representation r is not well defined on a∞. In order
to fix this problem it will be easier to work with a slightly larger algebra than to
work with a∞ directly.

First, we define the 2-cocycle � on a∞ by

�(Ei,j, Em,n) =

⎧⎨⎩
1 if n = i ≤ 0 and m = j ≥ 1,

−1 if n = i ≥ 1 and m = j ≤ 0,

0 otherwise

and extend linearly.

Now, consider the central extension

a∞ = a∞ ⊕ ℂc

where c is some new central element. We define the Lie bracket on a∞ by

[a, b] = ab− ba+ �(a, b)c

where a, b ∈ a∞. We then extend linearly, keeping in mind that c is central. It is
easy to see that this is a well defined Lie algebra and that a∞ = a∞/ℂc.

We now define a representation of a∞ on F (m) which we denote by r̂m. We also
use r̂ to denote the direct sum of representations r̂m on F , as we do with r and rm.
Let

r̂m(Ei,j) =

{
rm(Ei,j) if i ∕= j or i = j > 0,

rm(Ei,j)− I if i = j ≤ 0.
,

and
r̂m(c) = 1.

Proposition 2.4.1. The map r̂m does in fact give a representation of a∞ on F (m).
Furthermore, if we declare that c∗ = c then r̂m is unitary and irreducible.

Proof. To see that r̂m gives a representation of a∞ on F (m) we need only check that
it satisfies the Lie bracket. In fact, it suffices to check that r̂m respects the Lie
bracket on the elementary matrices Ei,j. To make this easier to see, we can rewrite
the commutation relations of the Ei,j as a set of four relations as follows:
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(i) [Ei,j, Ek,l] = 0 for j ∕= k, l ∕= i,

(ii) [Ei,j, Ej,l] = Ei,l for l ∕= i,

(iii) [Ei,j, Ek,i] = −Ek,j for j ∕= k,

(iv) [Ei,j, Ej,i] = Ei,i − Ej,j + �(Ei,j, Ej,i)c.

For relations (i), (ii) and (iii) we see that

[r̂m(Ei,j), r̂m(Ek,l)] = [rm(Ei,j, rm(Ek,l)] for j ∕= k, l ∕= i,

[r̂m(Ei,j), r̂m(Ej,l)] = [rm(Ei,j, rm(Ej,l)] for l ∕= i,

[r̂m(Ei,j), r̂m(Ek,i)] = [rm(Ei,j, rm(Ek,i)] for j ∕= k,

since I commutes with everything. Also,

r̂m(0) = rm(0),

r̂m(Ei,l) = rm(Ei,l) if l ∕= i and

r̂m(−Ek,j) = rm(−Ek,j) if j ∕= k.

Since rm respects the Lie bracket on gℓ∞, we see that r̂m respects relations (i), (ii)
and (iii).

For relation (iv) we have

[r̂m(Ei,j), r̂m(Ej,i)] = r̂m(Ei,i)− r̂m(Ej,j) + �(Ei,j, Ej,i)I

and so we see immediately that r̂m respects relation (iv).

It is easy to see that when c∗ = c, r̂m is unitary and irreducibility follows in
much the same way as in Proposition 2.3.4.

Since a∞ is a central extension of a∞, r̂m is in fact a projective representation
of a∞ on F (m) arising from the 2-cocycle �.

2.5 Wedging and Contracting

Recall that
V =

⊕
j∈ℤ

ℂvj.

For each vj we can construct the linear functional v∗j on V by

v∗j (vi) = �i,j

for i, j ∈ ℤ. We then construct the restricted dual of V as

V ∗ =
⊕
j∈ℤ

ℂv∗j .
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Vectors in V and V ∗ define operators on F as follows. Each v ∈ V defines a wedging
operator v̂ on F by

v̂(vi1 ∧ vi2 ∧ ⋅ ⋅ ⋅ ) = v ∧ vi1 ∧ vi2 ∧ ⋅ ⋅ ⋅ .

Each f ∈ V ∗ defines a contraction operator f̌ on F by

f̌(vi1 ∧ vi2 ∧ ⋅ ⋅ ⋅ ) =
∑
k≥1

(−1)k+1f(vik)vi1 ∧ ⋅ ⋅ ⋅ ∧ vik−1
∧ vik+1

∧ ⋅ ⋅ ⋅ .

When describing the actions of wedging and contraction it suffices to look at only
the basis elements and their duals. In doing so we can construct a combinatorial
rule for the action of wedging and contraction on Maya diagrams.

For the wedging operator v̂j, we see that

v̂j(vi1 ∧ vi2 ∧ ⋅ ⋅ ⋅ ) = vj ∧ vi1 ∧ vi2 ∧ ⋅ ⋅ ⋅
= (−1)kvi1 ∧ ⋅ ⋅ ⋅ ∧ vik ∧ vj ∧ vik+1

∧ ⋅ ⋅ ⋅

if ik < j < ik+1 and is zero otherwise. In terms of Maya diagrams this corresponds
to looking at the stone at index j. If this stone is white then we change it to black
and multiply by (−1)k where k is the number of black stones to the left of j and
the result vanishes otherwise.

Example 2.5.1. If we start with the semi-infinite monomial  = v3 ∧ v2 ∧ v0 ∧
v−2 ∧ v−3 ∧ v−5 ∧ ⋅ ⋅ ⋅ from the earlier examples then we see that

' = v̂−1 = (−1)3v3 ∧ v2 ∧ v0 ∧ v−1 ∧ v−2 ∧ v−3 ∧ v−5 ∧ ⋅ ⋅ ⋅ .

We can represent this operation visually as in Figure 2.3.

Figure 2.3: Wedging Example

In Figure 2.3 we have drawn the labeled partition corresponding to  on the
left and the one for ' on the right. This operation can be viewed as changing the
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horizontal line labeled with −1 to a vertical line and multiplying by (−1)k where
k is the number of vertical lines with labels greater than −1 in  . Notice that the
label in the upper left corner has increased from 0 to 1 which represents the fact
that ' ∈ F (1) and  ∈ F (0).

Similarly, for the contraction operator v̌∗j , we see that

v̌∗j (vi1 ∧ vi2 ∧ ⋅ ⋅ ⋅ ) = v∗j (vi1)vi2 ∧ vi3 ∧ ⋅ ⋅ ⋅ − v∗j (vi2)vi1 ∧ vi3 ∧ ⋅ ⋅ ⋅+ ⋅ ⋅ ⋅
= (−1)kvi1 ∧ ⋅ ⋅ ⋅ ∧ vik ∧ vik+2

∧ ⋅ ⋅ ⋅

where ik+1 = j and is zero otherwise. In this case the interpretation on Maya
diagrams is that we look at index j and if it contains a black stone then we change
it into a white stone and multiply by (−1)k where k is the number of black stones
to the left of index j. If j does not contain a white stone then the result vanishes.

Example 2.5.2. If we start with the semi-infinite monomial  = v3 ∧ v2 ∧ v0 ∧
v−2 ∧ v−3 ∧ v−5 ∧ ⋅ ⋅ ⋅ from the earlier examples then we see that

' = v̌∗0 = (−1)2v3 ∧ v2 ∧ v−2 ∧ v−3 ∧ v−5 ∧ ⋅ ⋅ ⋅ .

We can represent this operation visually as in Figure 2.4.

Figure 2.4: Contracting Example

In Figure 2.4 we have drawn the labeled partition corresponding to  on the
left and the one for ' on the right. Similar to example 2.5.1, this operation can be
viewed as changing the vertical line labeled with 0 to a horizontal line and multiplying
by (−1)k where k is the number of vertical lines with labels greater than 0 in  .
Notice that in this case the label in the upper left corner has decreased from 0 to -1
which represents the fact that ' ∈ F (−1) and  ∈ F (0).

From the combinatorial description of v̂j and v̌∗j (or from their algebraic descrip-
tions) we see that they are adjoint with respect to the Hermitian form ⟨⋅∣⋅⟩. Also,
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any wedging operator maps F (m) to F (m+1) and any contraction operator maps
F (m+1) to F (m). We also see immediately that

r̂(Ei,j) =

{
v̂iv̌
∗
j if i ∕= j or i = j > 0,

v̂iv̌
∗
j − I if i = j ≤ 0.

Thus
r̂(Λk) =

∑
i∈ℤ

v̂iv̌
∗
i+k for k ∕= 0,

r̂(Λ0) =
∑
i>0

v̂iv̌
∗
i −

∑
i≤0

v̌∗i v̂i.

The expression for r̂(Λ0) follows from the fact that v̂iv̌
∗
i − I = −v̌∗i v̂i, which can be

seen immediately from the combinatorial description of the wedging and contracting
operators. In fact, this is just one of a family of relations that the wedging and
contracting operators satisfy.

Proposition 2.5.3. The algebra of wedging and contracting operators satisfy the
following anti-commutation relations (here [a, b]+ = ab+ ba is the anti-commutator
bracket).

[v̂i, v̂j]+ = 0, [v̌∗i , v̌
∗
j ]+ = 0, [v̂i, v̌

∗
j ]+ = �i,j. (2.5)

Proof. Let i and j be integers such that i < j and let  be a semi-infinite monomial.

For the first relation if either i or j are black with respect to  then v̂iv̂j =
v̂j v̂i = 0. If both i and j are white with respect to  then regardless of the order in
which we apply v̂i and v̂j we will arrive at the same Maya diagram. The only thing
that will change is the associated sign. Since applying v̂i increases the number of
black stones to the left of stone j by one we see easily that v̂j v̂i = −v̂iv̂j which
completes the proof of the first relation.

The analysis for the second relation is almost exactly the same as the first with
white stones exchanged for black stones.

For the final relation, the case when i ∕= j follows in the same manner as the
first two relations described above. The case when i = j is a little different so we
will now assume that this is the case. If the stone i is white then v̂iv̌

∗
i = 0. Also,

' = v̂i has stone i coloured black and has sign (−1)k times that of  where k is
the number of black stones to the left of stone i. Thus, it is easy to see that in this
case v̌∗i v̂i =  . The case when stone i is black follows by symmetry.

The algebra generated by the wedging and contracting operators is sometimes
referred to as a Clifford algebra.

Using the commutation relations in (2.5) we see that, for j ∕= 0,

[r̂(Λj), v̂k] =
∑
n∈ℤ

v̂nv̌
∗
n+j v̂k − v̂kv̂nv̌∗n+j.
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For k ∕= n+ j we have

v̂nv̌
∗
n+j v̂k = −v̂nv̂kv̌∗n+j = v̂kv̂nv̌

∗
n+j.

Also, for k = n+ j we have

v̂nv̌
∗
n+j v̂k = −v̂nv̂kv̌∗n+j + v̂n = v̂kv̂nv̌

∗
n+j + v̂n.

Putting these together we have

[r̂(Λj), v̂k] = v̂k−j,

and,
[r̂(Λj), v̌

∗
k] = −v̌∗k+j.

2.6 The orbit GL∞ 0

We will now describe the elements in the orbit GL∞ 0 which (as we shall see in the
following chapter) comprise the solutions of the KP hierarchy of partial differential
equations.

Theorem 2.6.1. If � ∈ GL∞ 0, then � is a solution of the equation∑
j∈ℤ

v̂j(�)⊗ v̌∗j (�) = 0. (2.6)

Conversely, if � ∈ F (0), � ∕= 0 and � satisfies (2.6), then � ∈ GL∞ 0.

Proof. v̂j( 0) = 0 for j ≤ 0 and v̌∗j ( 0) = 0 for j > 0 so that∑
j∈ℤ

v̂j( 0)⊗ v̌∗j ( 0) = 0. (2.7)

Suppose � ∈ GL∞ 0 is of the form

� = R0(A) 0,

where A ∈ GL∞.

Using the definition of the wedging and contracting operators along with the
definition of the representation R0 we see that

R0(A)v̂R0(A)−1 = ŵ, where w = Av, and

R0(A)f̌R0(A)−1 = ǧ, where g = (A−1)Tf.

Here AT is the transpose of A.
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We will denote the entries in A and A−1 with respect to the basis {vi} by ai,j
and ai,j respectively. Explicitly, we have that

Avj =
∑
i

aj,ivi, (2.8)

(A−1)Tv∗j =
∑
k

ak,jv
∗
k, (2.9)∑

j

ak,jaj,i = �k,i. (2.10)

If we apply the operator R0(A) to (2.7) and then use the fact that � = R0(A) 0

we get that ∑
j

R0(A)v̂jR0(A)−1(�)⊗R0(A)v̌∗jR0(A)−1(�) = 0.

Using the relations (2.8), (2.9) and (2.10) we see that this becomes∑
i,j,k

aj,iv̂i(�)⊗ ak,j v̌∗k(�) = 0,

which we can rewrite as∑
i,k

(∑
j

ak,jaj,i

)
v̂i(�)⊗ v̌∗k(�) = 0,

which is equal to (2.6) after applying (2.10).

To see the other direction, let � ∈ F (0), � ∕= 0 and � satisfy (2.6). We can write

� =
N∑
k=1

ck�k,

a linear combination with non-zero coefficients ck of some semi-infinite monomials
�k, such that �1 is one of the semi-infinite monomials with greatest charge; we
may assume that c1 = 1. If among the �i with i > 1 there exists a semi-infinite
monomial, say �2, of the form

r0(Ei,j)�1 with i < j, (2.11)

then
� ′ = R0(exp(−c2Ei,j))�

does not contain the semi-infinite monomial �2 and satisfies (2.6) since � ∈ GL∞ 0

and R0(exp(−c2Ei,j)) ∈ GL∞. We can continue this procedure a finite number of
times to arrive at an element of the form �1 + �, where none of the semi-infinite
monomials in � are of the form (2.11). The finiteness follows from the fact that

r0(Ei,j) 0 = 0 when i < j
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and (2.3).

Since �1 + � satisfies (2.6) we see that

0 =
∑
j∈ℤ

v̂j(�1 + �)⊗ v̌∗j (�1 + �) =
∑
j∈ℤ

v̂j(�1)⊗ v̌∗j (�)

+
∑
j∈ℤ

v̂j(�)⊗ v̌∗j (�1) (2.12)

+
∑
j∈ℤ

v̂j(�)⊗ v̌∗j (�).

We may rewrite the right hand side of (2.12) as∑
j∈ℤ

v̂j(�1)⊗v̌∗j (�)+
∑
j∈ℤ

v̂j(�)⊗v̌∗j (�1)+
∑
j∈ℤ

v̂j(�)⊗v̌∗j (�) =
∑
i∈ℤ

v̂i(�1)⊗Γi+
∑
j∈ℤ

j⊗Γ̃j

where the set {v̂i(�1), j}i,j∈ℤ is linearly independent and Γi, Γ̃j are elements in F .

Suppose v̂i(�1) ∕= 0 for some i ∈ ℤ. Since

v̂i(�1)⊗ Γi = 0

we know that Γi = 0. If Γi ∕= v̌∗i (�) then it follows from (2.12) that there must be
some semi-infinite monomial ' in � for which

v̂i(�1) = ±v̂j(').

Also, since ' has at most the same energy and is not equal to �1, we know that
i < j. We also see that

' = v̌∗j v̂j(')

= ±v̌∗j v̂i(�1)

= ∓v̂iv̌∗j (�1)

= ∓r0(Ei,j)�1,

where i < j. This is a contradiction and so it must be true that Γi = v̌∗i (�). This,
however, implies that v̌∗i (�) = 0 since v̂i(�1) ∕= 0. Since v̂i(�1) is non-zero for an
infinite number of positive integers, � must be zero (i.e., there are no semi-infinite
monomials � with the property that v̌∗i (�) = 0 for an infinite number of positive
integers).

Finally, since �1 is a semi-infinite monomial, by (2.3) �1 ∈ GL∞ 0, and so
� ∈ GL∞ 0.
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Chapter 3

Realizing The GL∞ 0 Orbit

The purpose of this chapter is to construct a realization of the Fock space described
in the previous chapter. That is, we will construct an isomorphism from F to some
polynomial algebra under which the representations r, R and r̂ map to differential
operators. This will allow us to describe the GL∞ 0 orbit as a family of polynomials
which simultaneously satisfy a family of partial differential equations. As in the
previous chapter, we will mostly be following [14] and more information can be
found in [15] and [23].

3.1 The Oscillator Algebra A

Let A be the complex Lie algebra with basis {an, n ∈ ℤ; ℏ} and commutation
relations

[ℏ, an] = 0 (n ∈ ℤ), (3.1)

[am, an] = m�m,−nℏ (m,n ∈ ℤ).

Note that [a0, an] = 0 for all n ∈ ℤ and so a0 is a central element in A. This algebra
is often called the oscillator or Heisenberg algebra.

Much as in the last chapter, where we introduced the fermionic Fock space F
for the purpose of constructing representations of the gℓ∞, a∞ and a∞ algebras,
we now introduce the (bosonic) Fock space B = ℂ[x1, x2, ⋅ ⋅ ⋅ ; z, z−1], the space of
polynomials in infinitely many variables x1, x2, ⋅ ⋅ ⋅ along with z and z−1.

We also define the charge m bosonic Fock space to be the subspace

B(m) = ℂ[x1, x2, ⋅ ⋅ ⋅ ]zm.

It is easy to see that each of the charge m bosonic Fock spaces are isomorphic.
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We construct the representation r̂Bm of A on B(m) for fixed m as follows. For all
n ≥ 1:

r̂Bm(an) = ∂/∂xn,

r̂Bm(a−n) = nxn, (3.2)

r̂Bm(a0) = mI,

r̂Bm(ℏ) = I,

where I is the identity operator on B(m).

Lemma 3.1.1. The representation (3.2) of A is irreducible.

Proof. Any polynomial in B(m) can be reduced to a multiple of zm by successive
application of the an with n > 0 (these are sometimes called annihilation operators).
Then successive application of the a−n with n > 0 can give any other monomial in
B(m) (this is why the a−n with n > 0 are sometimes called creation operators).

We call the constant polynomial v = zm the vacuum vector of B(m) and we see
immediately that it enjoys the following properties:

an(v) = 0 (n > 0),

a0(v) = mv, (3.3)

ℏ(v) = v.

Proposition 3.1.2. Let V be a representation of A which admits a non-zero vector
v such that equations (3.3) are satisfied. Then the monomials ak1−1 ⋅ ⋅ ⋅ akn−n(v) with
ki ∈ ℤ+ are linearly independent. If these monomials span V then V is equivalent
to the representation of A on B(m) given by (3.2), for any fixed charge m. In
particular, this is the case if V is irreducible.

Proof. We have a mapping � from B(m) to V defined by

�(P (⋅ ⋅ ⋅ , xn, ⋅ ⋅ ⋅ )zm) = P (⋅ ⋅ ⋅ , a−n
n
, ⋅ ⋅ ⋅ )v.

It is clear that if Pzm is an element of B(m), then an(�(Pzm)) = �(an(Pzm)) so
that � is an intertwining operator. Since B(m) is irreducible, ker � = 0 and so � is
an isomorphism if � is onto.

We may also define an anti-linear anti-involution on A by

!(an) = a−n, !(ℏ) = ℏ. (3.4)

34



Proposition 3.1.3. Let V be as in Proposition 3.1.2. Then V carries a unique
Hermitian form ⟨⋅∣⋅⟩ which is contravariant with respect to ! and such that ⟨v∣v⟩ = 1
for the vacuum vector v. The distinct monomials ak1−1 ⋅ ⋅ ⋅ akn−nv with ki ∈ ℤ+ form an
orthogonal basis with respect to the Hermitian form. These monomials have norms
given by

⟨ak1−1 ⋅ ⋅ ⋅ akn−nv∣a
k1
−1 ⋅ ⋅ ⋅ akn−nv⟩ =

n∏
j=1

kj!. (3.5)

Proof. If ⟨⋅∣⋅⟩ is a contravariant Hermitian form, then both the orthogonality and
(3.5) are proved by induction on k1 + ⋅ ⋅ ⋅ + kn, proving uniqueness. One checks
directly that the Hermitian form, for which monomials are orthogonal and have
norms given by (3.5), is contravariant, proving existence.

Corollary 3.1.4. The Hermitian form on V of Proposition 3.1.3 is positive defi-
nite.

Definition 3.1.5. Let Pzm be an arbitrary element in B(m). The vacuum expecta-
tion value of P , denoted by (P ), is defined as the constant term in P .

We can see very quickly that

(!(P )) = (P ).

Proposition 3.1.6. For P,Q ∈ B(m) the Hermitian form

⟨P ∣Q⟩ = (!(P )Q) = P

(
∂

∂x1

,
∂

2∂x2

,
∂

3∂x3

, ⋅ ⋅ ⋅
)
Q(x)

∣∣∣∣
x1=x2=⋅⋅⋅=0

(3.6)

is equivalent to the Hermitian form given by (3.5).

Proof. It is easily checked that this is a Hermitian form which is contravariant and
for which ⟨1∣1⟩ = 1. Hence, by Proposition 3.1.3, formulas (3.6) and (3.5) are
equivalent.

3.2 The Boson - Fermion Correspondence (I)

Recall from the previous chapter that the shift operators Λk generate a commutative
subalgebra of a∞. The subalgebra of a∞ generated by the shift operators and the
central element c can be identified with the oscillator algebra A. This can be seen
by noticing that in a∞,

[Λn,Λk] = �(Λn,Λk)c.

It is then straightforward to compute

�(Λn,Λk) = n�n,−k,
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so that
[Λn,Λk] = n�n,−kc.

Comparing this with (3.1), we see that this can indeed be identified with A. Note
that the anti-linear anti-involution ! of A is consistent with conjugate transpose
on a∞.

We will simultaneously view A as being the subalgebra of a∞ generated by the
shift operators and c, as well as the abstract algebra defined in (3.1). We will do
this by making use of the identification an ↔ Λn and ℏ↔ c.

Since r̂m is a unitary irreducible representation of a∞, the restriction to the
subalgebra generated by the shift operators and c gives us a representation of A
on F (m). Explicitly, this representation is given by r̂m(an) = r̂m(Λn) and r̂m(ℏ) =
r̂m(c).

Proposition 3.2.1. The representation r̂m of A on F (m) is irreducible and is iso-
morphic to the representation r̂Bm of A on B given by (3.2). This isomorphism is
denoted �m.

Proof. First, we see immediately that

r̂m(ak) m = r̂m(Λk) m = 0 for k > 0,

r̂m(a0) m = r̂m(Λ0) m = m m,

and that r̂m(ℏ) = r̂m(c) = 1.

If we consider all semi-infinite monomials in F (m) of the form

r̂m(Λ−ks) ⋅ ⋅ ⋅ r̂m(Λ−k1) m (0 < k1 ≤ k2 ≤ ⋅ ⋅ ⋅ ≤ ks) (3.7)

then by Proposition 3.1.2 these vectors are all linearly independent.

Since r̂m(Ei,j) replaces vj by vi or gives 0 we see that it changes the energy of a
semi-infinite monomial by j − i. Hence, each monomial of the form given in (3.7)

with
∑

i ki = k lie in F
(m)
k and they form a basis since there are exactly p(k) of

them, where p(k) is the number of partitions of size k. The rest now follows from
Proposition 3.1.2.

Explicitly, Proposition 3.2.1 tells us that

r̂Bm(Λk) =
∂

∂xk
,

r̂Bm(Λ−k) = kxk, (3.8)

r̂Bm(Λ0) = m.

To the energy decomposition of F (m) by subspaces F
(m)
k of energy k, there

corresponds the principal gradation of B(m):

B(m) =
⊕
k∈ℤ+

B
(m)
k ,
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defined by
deg(xj) = j.

Consider the contravariant Hermitian form on B(m) defined by

⟨P ∣Q⟩ = ⟨�−1
m P ∣�−1

m Q⟩

for P,Q ∈ B(m). It is easily seen that this Hermitian form has the properties

⟨1∣1⟩ = 1 and r̂Bm(Λk)
∗ = r̂Bm(Λ−k) = r̂Bm(Λ∗k),

following from (3.4) and the fact that �m is an isomorphism. Hence, by Proposi-
tion 3.1.6 and Proposition 3.1.3, we know that

⟨P ∣Q⟩ = P

(
∂

∂x1

,
∂

2∂x2

,
∂

3∂x3

, ⋅ ⋅ ⋅
)
Q(x)

∣∣∣∣
x1=x2=⋅⋅⋅=0

.

The remainder of this section will be concerned with determining the polyno-
mials in B(m) that correspond to the semi-infinite monomials vim ∧ vim−1 ∧ ⋅ ⋅ ⋅ of
F (m) under �m.

First, let

GL∞ = {A = (ai,j)∣i, j ∈ ℤ, A is invertible and all but a finite number

of the ai,j − �i,j with i ≥ j are 0}.

Thus matrices in GL∞ have only a finite number of nonzero elements above the
principal diagonal. It is easily seen that matrix multiplication in GL∞ is well
defined since the sums involved are finite. The Lie algebra of GL∞ is:

gℓ∞ = {(ai,j)∣i, j ∈ ℤ, all but a finite number of the ai,j with i ≥ j are 0}.

The group GL∞ and its Lie algebra gℓ∞ act not on V , but on a completion V of
V defined as

V =

{∑
j

cjvj∣cj = 0 for j ≫ 0

}
.

It is easy to see that the representations R and r extend to representations of GL∞
and gℓ∞ on the same space F constructed from V . In particular, the formulas for
rm and Rm hold as before. The exponential map is defined on the whole of gℓ∞
and we have

exp r(a) = R(exp a) for a ∈ gℓ∞. (3.9)

Theorem 3.2.2. For any m ∈ ℤ,

�m(vim ∧ vim−1 ∧ ⋅ ⋅ ⋅ ) = Sim−m,im−1−m+1,⋅⋅⋅(x),

where im > im−1 > ⋅ ⋅ ⋅ , im−k = m−k for k sufficiently large and Sim−m,im−1−m+1,⋅⋅⋅(x)
is the Schur polynomial corresponding to the partition (im −m, im−1 −m+ 1, ⋅ ⋅ ⋅ ).
This is the same partition obtained from the semi-infinite monomial via its Maya
diagram.
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Proof. We will prove this for m = 0 as the proof for arbitrary m is essentially the
same.

Let
P (x) = �0(vi0 ∧ vi−1 ∧ ⋅ ⋅ ⋅ ).

We will compute

RB
0 (exp(y1Λ1 + y2Λ2 + ⋅ ⋅ ⋅ ))P (x) = �0(R0(exp(y1Λ1 + y2Λ2 + ⋅ ⋅ ⋅ ))vi0 ∧ vi−1 ∧ ⋅ ⋅ ⋅ )

(3.10)
and then compare the coefficient of the vacuum on the two sides of (3.10).

First we compute the left hand side of (3.10). Notice that in the bosonic picture,
r0(Λk) is represented by ∂/∂xk for k > 0 so that

RB
0 (exp(y1Λ1 + y2Λ2 + ⋅ ⋅ ⋅ )) = exp

∑
j≥1

yj
∂

∂xj
.

Now, let F (y) denote the coefficient of 1 when this operator is applied to P (x).
Then

F (y) = exp

(∑
j≥1

yj
∂

∂xj

)
P (x)

∣∣∣∣∣
x=0

= P (x+ y)∣x=0 = P (y)

and so the coefficient of the vacuum on the left hand side of (3.10) is P (x).

We now compute the right hand side of (3.10). It is clear that if a = y1Λ1 +
y2Λ2 + ⋅ ⋅ ⋅ , then a ∈ gℓ∞ and exp a ∈ GL∞. Hence, from the discussion preceding
(3.9), it follows (see also equation (2.4)) that

Rm(A)(vim ∧ vim−1 ∧ ⋅ ⋅ ⋅ ) =
∑

jm>jm−1>⋅⋅⋅

(
detA

im,im−1,⋅⋅⋅
jm,jm−1,⋅⋅⋅

)
vjm ∧ vjm−1 ∧ ⋅ ⋅ ⋅ , (3.11)

where here A
im,im−1,⋅⋅⋅
jm,jm−1,⋅⋅⋅ denotes the sub-matrix of the infinite matrix A with rows

indexed by jm, jm−1, ⋅ ⋅ ⋅ and columns indexed by im, im−1, ⋅ ⋅ ⋅ . In particular, we
can apply the above formula to R(exp a).

Now, using (1.18),

exp

(∑
k≥1

Λkyk

)
= exp

(∑
k≥1

Λk
1yk

)
=
∑
k≥0

Λk
1Sk(y) (3.12)

=
∑
k≥0

ΛkSk(y)
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where the Sk(y) are the elementary Schur polynomials. The right hand side of
(3.12) can be viewed as a matrix A with matrix elements

Am,n = Sn−m(y), (m,n ∈ ℤ).

Since Sk(y) = 0 for k < 0 we see that A ∈ GL∞. Hence the right hand side of
(3.10) becomes

�0(R(A)(vi0 ∧ vi−1 ∧ ⋅ ⋅ ⋅ )).

Using (3.11) we then see that the required coefficient is

det
(
A
i0,i−1,i−2,⋅⋅⋅
0,−1,−2,⋅⋅⋅

)
.

From (1.17) we see that this is simply Si0,i−1+1,⋅⋅⋅(x) and so

P (x) = Si0,i−1+1,⋅⋅⋅(x),

as required.

Theorem 3.2.2 tells us that each semi-infinite monomial  ∈ F (m) is mapped,
under �m, to the Schur polynomial indexed by the partition corresponding to the
monomial, that is, the partition formed by comparing the Maya diagram of  with
the Maya diagram of  m.

Corollary 3.2.3.

RB
m(A)S� =

∑
�

det
(
A�1+m,�2+m−1,⋅⋅⋅
�1+m,�2+m−1,⋅⋅⋅

)
S�

where the sum is over partitions �.

Proof. This result is an immediate consequence of Theorem 3.2.2 applied to (3.11).

Corollary 3.2.4. The Schur polynomials form an orthonormal basis in B with
respect to the contravariant Hermitian form ⟨⋅∣⋅⟩, i.e.

⟨S�∣S�⟩ = ��,�.

Proof. This follows since �0 is an isomorphism and the corresponding semi-infinite
monomials are orthonormal.

Corollary 3.2.4 tells us that the Hermitian form on B coincides with the standard
inner product on Schur polynomials.
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3.3 The Boson-Fermion Correspondence (II)

In the previous section we looked at the isomorphism

�m : F (m) → B(m),

which gives us a representation of the subalgebra A of a∞ on B(m). We now extend
this representation to the whole Lie algebra a∞.

First, we prefer to work with F rather than each F (m) and so we define the
direct sum of maps

� =
⊕
m∈ℤ

�m,

so that
� : F =

⊕
m∈ℤ

F (m) → B =
⊕
m∈ℤ

B(m). (3.13)

Similar to the definition of r̂Bm, we define r̂B(a) = �r̂(a)�−1 for a ∈ a∞.

We now turn to the problem of describing explicitly the action of v̂j and v̌∗j on
B. First we introduce the generating functions

X(u) =
∑
j∈ℤ

uj v̂j, X∗(u) =
∑
j∈ℤ

u−j v̌∗j ,

where u is an indeterminate which can be thought of as a nonzero complex number.
It turns out that computing the transformation of both X and X∗ under � is easier
to do than computing each of the wedging and contracting operators individually.

Something to note, however, is that X(u) as an operator acting on F (m) does
not map into F (m+1) but rather into the formal completion F̂ (m+1) where formal
infinite sums of semi-infinite monomials are allowed Similarly, X∗(u) maps F (m)

into F̂ (m−1). We define
F̂ =

⊕
m∈ℤ

F̂ (m).

The transported operators �X(u)�−1 and �X∗(u)�−1 map B into B̂, where B̂ is
the space of formal power series in x1, x2, ⋅ ⋅ ⋅ with coefficients which are polynomial
in z, z−1.

Recall from the previous chapter that

[r̂(Λj), v̂k] = v̂k−j,

[r̂(Λj), v̌
∗
k] = −v̌∗k+j,

from which we obtain

[r̂(Λj), X(u)] = ujX(u), (3.14)

[r̂(Λj), X
∗(u)] = −ujX∗(u).
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These equations hold in F̂ and under the isomorphism � : F̂→̃B̂ they hold in B̂ as
well. We already know the transform of Λj. In particular, if j > 0, then

r̂B(Λj) = �r̂(Λj)�
−1 =

∂

∂xj
, (3.15)

r̂B(Λ−j) = �r̂(Λ−j)�
−1 = jxj.

We now define the operators Γ(u) and Γ∗(u) by

Γ(u) = �X(u)�−1, (3.16)

Γ∗(u) = �X∗(u)�−1,

so that our goal is now to determine an explicit description of the operators Γ(u)
and Γ∗(u). The operators Γ(u),Γ∗(u), X(u) and X∗(u) are sometimes called vertex
operators for reasons which will not be discussed here.

Using (3.14), (3.15) and (3.16) we see that

[∂/∂xj,Γ(u)] = ujΓ(u),

[xj,Γ(u)] =
u−j

j
Γ(u),

along with the related relations for Γ∗(u). These commutation relations are enough
to determine Γ(u) and Γ∗(u) as is shown in the following proposition.

Proposition 3.3.1. The operators Γ(u) and Γ∗(u) have the following form on B̂(m):

Γ(u)∣B̂(m) = um+1z exp

(∑
j≥1

ujxj

)
exp

(
−
∑
j≥1

u−j

j

∂

∂xj

)
,

Γ∗(u)∣B̂(m) = u−mz−1 exp

(
−
∑
j≥1

ujxj

)
exp

(∑
j≥1

u−j

j

∂

∂xj

)
.

Proof. We only prove the result for Γ(u) since the proof for Γ∗(u) is almost exactly
the same.

First notice that the z factor needs to be present on the right hand side since
Γ(u) maps B̂(m) into B̂(m+1). Let Tu be the operator on B̂ defined by

Tu = exp

(∑
j≥1

u−j

j

∂

∂xj

)
.

Using Taylor’s formula it can be seen that for any f ∈ B̂

(Tuf)(x1, x2, ⋅ ⋅ ⋅ ) = f

(
x1 + u−1, x2 +

u−2

2
, ⋅ ⋅ ⋅ , xj +

u−j

j
, ⋅ ⋅ ⋅

)
.
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Since

Tu(xjf) =

(
xj +

u−j

j

)
Tuf,

we see that

[xj, Tu] =
−u−j

j
Tu.

Using this and the relation

[xj,Γ(u)] =
u−j

j
Γ(u),

we see that

xjΓ(u)Tu = Γ(u)xjTu +
u−j

j
Γ(u)Tu

= Γ(u)Tuxj +
u−j

j
Γ(u)Tu −

u−j

j
Γ(u)Tu

= Γ(u)Tuxj,

and so
[xj,Γ(u)Tu] = 0.

From this we can conclude that Γ(u)Tu contains no differential operators and so is
a power series. This tells us that

Γ(u) = zf(x1, x2, ⋅ ⋅ ⋅ ) exp

(
−
∑
j≥1

u−j

j

∂

∂xj

)
,

where f(x1, x2, ⋅ ⋅ ⋅ ) still needs to be determined. Using the relations[
∂

∂xj
,Γ(u)

]
= ujΓ(u),[

∂

∂xj
, exp

(
−
∑
j≥1

ujxj

)]
= −uj exp

(
−
∑
j≥1

ujxj

)
,

we see that [
∂

∂xj
, exp

(
−
∑
j≥1

ujxj

)
Γ(u)

]
= 0,

from which we conclude that

Γ(u) = cm(u)z exp

(∑
j≥1

ujxj

)
exp

(
−
∑
j≥1

u−j

j

∂

∂xj

)
.

Lastly, to determine cm(u), we note that the coefficient of the vacuum vector
 m+1 of F̂ (m+1) in the expansion of X(u) m is um+1. This completes the proof.
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Definition 3.3.2. The operator R(u) : B̂ → B̂ is defined by

R(u)f(x; z) = uzf(x;uz).

We see that if f(x; z) = zmg(x1, x2, ⋅ ⋅ ⋅ ) then

R(u)f(x; z) = um+1zm+1g(x1, x2, ⋅ ⋅ ⋅ ).

Using this we can write down the general form of Γ(u) and Γ∗(u).

Theorem 3.3.3. We can write Γ(u) and Γ∗(u) as

Γ(u) = R(u) exp

(∑
j≥1

ujxj

)
exp

(
−
∑
j≥1

u−j

j

∂

∂xj

)
,

Γ∗(u) = R(u)−1 exp

(
−
∑
j≥1

ujxj

)
exp

(∑
j≥1

u−j

j

∂

∂xj

)
.

In the literature Theorem 3.2.2 and Theorem 3.3.3 together are referred to as
the Boson-Fermion correspondence.

3.4 Realizing the GL∞ 0 orbit

Recall that in Theorem 2.6.1 we characterized elements in F which are in the
GL∞ 0 orbit. Now we would like to make use of Theorem 2.6.1 to give a character-
ization of the elements in B(0) which correspond to elements in GL∞ 0. We do this
by making use of the Boson-Fermion correspondence developed in the first portion
of this chapter. The functions in B(0) which correspond to elements in GL∞ 0 are
called tau functions of the KP hierarchy.

Consider the expression
X(u)� ⊗X∗(u)�. (3.17)

Upon expanding (3.17) we get∑
i,j

ui−j v̂i(�)⊗ v̌∗j (�),

and it follows from Theorem 2.6.1 that � ∈ �0 (GL∞ 0) if and only if the term
independent of u in (3.17) vanishes.

The isomorphism
�0 : F (0)→̃ℂ[x1, x2, ⋅ ⋅ ⋅ ]
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extends to an isomorphism between F (0)⊗F (0) and ℂ[x′1, x
′
2, ⋅ ⋅ ⋅ ;x′′1, x

′′
2, ⋅ ⋅ ⋅ ], which

is the polynomial ring in two infinite sets of variables, x′1, x
′
2, ⋅ ⋅ ⋅ , and x′′1, x

′′
2, ⋅ ⋅ ⋅ .

We can transform (3.17) to the bosonic representation using the identification

X(u) 7→ Γ(u) = uz exp

(∑
j≥1

ujx′j

)
exp

(
−
∑
j≥1

u−j

j

∂

∂x′j

)
,

X∗(u) 7→ Γ∗(u) = z−1 exp

(
−
∑
j≥1

ujx′′j

)
exp

(∑
j≥1

u−j

j

∂

∂x′′j

)
.

So, (3.17) becomes

u exp

(∑
j≥1

uj(x′j − x′′j )

)
exp

(
−
∑
j≥1

u−j

j

(
∂

∂x′j
− ∂

∂x′′j

))
�(x′)�(x′′). (3.18)

Defining new variables xi, yi by

x′i = xi − yi, x′′i = xi + yi,

so that

x′i − x′′i = −2yi,
∂

∂x′i
− ∂

∂x′′i
= − ∂

∂yi
,

we deduce the following result from Theorem 2.6.1.

Proposition 3.4.1. A nonzero element � of ℂ[x1, x2, ⋅ ⋅ ⋅ ] is contained in �0 (GL∞ 0)
if and only if the coefficient of u0 vanishes in the expression

u exp

(
−
∑
j≥1

2ujyj

)
exp

(∑
j≥1

u−j

j

∂

∂yj

)
�(x− y)�(x+ y). (3.19)

It can be seen that the above formula gives rise to a countable number of partial
differential equations which must be satisfied by � . In the next section we will look
at this in detail and write out some of the equations that arise in this way.

3.5 Hirota’s bilinear equations

Definition 3.5.1. Given a polynomial P (x1, x2, ⋅ ⋅ ⋅ ) and two functions f and g,
we denote by Pf ⋅ g the expression

P

(
∂

∂u1

,
∂

∂u2

, ⋅ ⋅ ⋅
)

(f(x1 − u1, x2 − u2, ⋅ ⋅ ⋅ )g(x1 + u1, x2 + u2, ⋅ ⋅ ⋅ ))
∣∣∣∣
u=0

.

The equation Pf ⋅ g = 0 is called a Hirota bilinear equation.
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Example 3.5.2. Let P = x1. Then

Pf ⋅ g =
∂

∂u1

(f(x1 − u1)g(x1 + u1))

∣∣∣∣
u1=0

= −g(x1)
∂f

∂x1

+ f(x1)
∂g

∂x1

.

Example 3.5.3. Let P = xn1 . Then from Leibniz’s formula we get

Pf ⋅ g =
n∑
k=0

(−1)k
(
n

k

)
∂kf

∂xk1

∂n−kg

∂xn−k1

.

Note that Pf ⋅ f = 0 if P (x1, x2, ⋅ ⋅ ⋅ ) = −P (−x1,−x2, ⋅ ⋅ ⋅ ). In other words,
Pf ⋅ f = 0 if P is odd. Since the Hirota bilinear equations that arise in the KP
hierarchy are of the form Pf ⋅ f = 0 and are linear in P , this implies that we need
only consider the even terms in P .

Expanding (3.19) using the generating function for elementary Schur polynomi-
als we get

u

(∑
j≥0

ujSj(−2y)

)(∑
j≥0

u−jSj(∂̃y)

)
�(x− y)�(x+ y),

where

∂̃y =

(
∂

∂y1

,
∂

2∂y2

,
∂

3∂y3

, ⋅ ⋅ ⋅
)
.

Setting the term independent of u equal to zero, we get the following system of
equations: ∑

j≥0

Sj(−2y)Sj+1(∂̃y)�(x− y)�(x+ y) = 0.

Notice that

Sj+1(∂̃y)�(x− y)�(x+ y) = Sj+1(∂̃u)�(x− y − u)�(x+ y + u)
∣∣∣
u=0

= Sj+1(∂̃u) exp

(∑
s≥1

ys
∂

∂us

)
�(x− u)�(x+ u)

∣∣∣∣∣
u=0

,

using Taylor’s formula. However, the last part can be written as a family of Hirota
bilinear equations (each equation corresponding to a coefficient of some monomial
in the yi’s):

Sj+1(x̃) exp

(∑
s≥1

ysxs

)
�(x) ⋅ �(x),

where

x̃ =

(
x1,

1

2
x2,

1

3
x3, ⋅ ⋅ ⋅

)
.

Thus we get:
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Theorem 3.5.4. A nonzero polynomial � is contained in �0 (GL∞ 0) if and only
if � is a solution of the following system of Hirota bilinear equations:

∞∑
j=0

Sj(−2y)Sj+1(x̃) exp

(∑
s≥1

ysxs

)
�(x) ⋅ �(x) = 0, (3.20)

where y1, y2, ⋅ ⋅ ⋅ are free parameters.

We can now use Theorem 3.5.4 to construct a countable number of partial
differential equations which have the property that a polynomial satisfies them all
simultaneously if and only if the polynomial is contained in �0 (GL∞ 0). Each
of these partial differential equations is obtained by extracting the coefficient of
some monomial in the yi’s. As an example, we can construct the partial differential
equations related to the monomials yr for some small values of r.

Expanding the exponential in (3.20) in Theorem 3.5.4 we see that yr appears
exactly once with coefficient xr. In the expansion of the Sj(−2y), yr appears only
in Sr(−2y) with coefficient −2. Thus we get the Hirota bilinear equation

(xrx1 − 2Sr+1(x̃))� ⋅ � = 0.

Using the expansion of Sr for some small values of r (see Example 1.3.3) we see
that

x1x1 − 2S2(x̃) = −x2,

x2x1 − 2S3(x̃) = −x
3
1

3
− 2x3

3
,

x3x1 − 2S4(x̃) =
x1x3

3
− x4

2
− x2

2

4
− x4

1

12
− x2

1x2

2
.

Since we know that odd polynomials give us trivial Hirota equations, we see that
for r = 1, 2 the above equations are trivial and for r = 3 the even terms give us the
Hirota equation

(x4
1 + 3x2

2 − 4x1x3)� ⋅ � = 0.

This then becomes(
∂4

∂u4
1

+ 3
∂2

∂u2
2

− 4
∂2

∂u1∂u3

)
�(x+ u)�(x− u)

∣∣∣∣
u=0

= 0. (3.21)

If we then put x1 = x, x2 = y, x3 = t and introduce a new function

u(x, y, t) = 2
∂2

∂x2
(log �),

then equation (3.21) becomes

3

4

∂2u

∂y2
=

∂

∂x

(
∂u

∂t
− 3

2
u
∂u

∂x
− 1

4

∂3u

∂x3

)
. (3.22)

Equation (3.22) is classically known as the Kadomtzev - Petviashvili (KP) equation.
Since this is the simplest equation in the hierarchy of partial differential equations
given in Theorem 3.5.4 the entire hierarchy is called the Kadomtzev - Petviashvili
(or KP) hierarchy .
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Chapter 4

A Symmetric Function Approach

In this chapter we take an alternate approach to the bilinear form (3.18) of the KP
hierarchy by reinterpreting the equations in the context of symmetric functions.
For the most part we will be presenting a new combinatorial proof of a classical
result for the KP hierarchy which is described in [3].

4.1 Codes of partitions

Before we begin looking at the KP hierarchy in terms of symmetric functions we
need to describe an alternate way of encoding partitions which is based on the Maya
diagrams for semi-infinite monomials described in chapter two.

We can represent any semi-infinite monomial  as a two-colouring (white and
black) of the integers with the property that for some positive integer N all integers
k > N are white and all integers k < −N are black. When compared to a unique
vacuum vector  m, (where m is the charge of  ) we can represent this colouring
uniquely with a partition. In other words, semi-infinite monomials are completely
specified by a partition and a charge.

Since solutions of the KP hierarchy are elements in GL∞ 0, we need only con-
sider elements with charge 0, and every semi-infinite monomial of charge 0 is
uniquely specified by a partition. In terms of Maya diagrams, fixing the charge
corresponds to considering two-colourings of the integers up to arbitrary shifts.

Rather than viewing a partition in terms of its Maya diagram, we view it as
a two-way infinite binary string in two symbols, say U and R, where the string
is infinitely U to the left and infinitely R to the right. In this case we can view
the string as a set of instructions detailing how to reconstruct the partition. The
symbol U denotes moving one unit upwards and R denotes moving one unit to
the right. The resulting path then marks the outline of the Young diagram of the
partition in question. Note that this is different from the Maya diagram in that we
only view the two-colouring up to arbitrary shifts.
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If � is a partition and � is the binary string corresponding to � then we say that
� is the code of �. (see, e.g., [31, p. 467] for more on codes; in [31], the symbols in
the code are 0, 1, but we prefer U, R since they are more mnemonic.)

1  2  3  4  5

30

-1

-2

-3

-4

-5

-6

2

10

1-2

-3

-4

Figure 4.1: Semi-Infinite Monomials With Different Charges

Example 4.1.1. Consider the semi-infinite monomial  = v3∧v2∧v0∧v−2∧v−3∧
v−5 ∧ ⋅ ⋅ ⋅ . When we compare it to  0 we arrive at the diagram on the left in Fig-
ure 4.1. Likewise, the semi-infinite monomial  = v6∧v5∧v3∧v1∧v0∧v−2∧⋅ ⋅ ⋅ when
compared to  3 gives rise to the diagram on the right in Figure 4.1. Both of these
diagrams outline the same partition, 32212, the only difference being the charge (the
label on the up step in the upper left corner of the diagram). Since we only want to
record the shape of the partition we remove the integer labeling and simply record the
string of up and down steps that outline the partition. In the example of 32212 above
we are left with the two-way infinite binary string ⋅ ⋅ ⋅UUURUURURUURRR ⋅ ⋅ ⋅
which is shown in Figure 4.2.

Figure 4.2: The Code Of 32212
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Figure 4.3: 32212 and (32212)(2)

We let �(i), i ≥ 1, be the partition whose code is obtained from the code of the
partition � by switching the ith R (from the left) to U. If � = (�1, �2, ⋅ ⋅ ⋅ , �n), then
we immediately have

�(i) = (�1 − 1, ⋅ ⋅ ⋅�j − 1, i− 1, �j+1, ⋅ ⋅ ⋅ , �n), (4.1)

where j is chosen (uniquely) from 0, ⋅ ⋅ ⋅ , n so that �j ≥ i > �j+1 (with the conven-
tions that �n+1 = 0 and �0 =∞). Now, define ui(�) to be the number of up-steps
U that follow the ith right-step R from the left in the code of �. Then note that
ui(�) = j, and that we have ∣�(i)∣ = ∣�∣ − j + i− 1 from (4.1), so we can determine
ui(�) = j in terms of i via

ui(�) = ∣�∣ − ∣�(i)∣+ i− 1. (4.2)

Also note that ui(�) weakly decreases as i increases, so we also obtain

∣�∣ − l(�) = ∣�(1)∣ < ∣�(2)∣ < ⋅ ⋅ ⋅ , ∣�(i)∣ = ∣�∣+ i− 1, i > �1. (4.3)

Example 4.1.2. Consider the partition 32212 whose code is
⋅ ⋅ ⋅UURUURURUURR ⋅ ⋅ ⋅ (pictured on the left in Figure 4.3). Computing the
code corresponding to (32212)(2) we get ⋅ ⋅ ⋅UURUUUURUURR ⋅ ⋅ ⋅ which is pic-
tured on the right in Figure 4.3.

Alternatively, from equation (4.1), we see that (32212)(2) is constructed by adding
a part of size 1 and decreasing all parts larger than the new part. This tells us that
(32212)(2) = 2214 as we computed earlier and which is shown in Figure 4.3.

We also let �(−i), i ≥ 1, be the partition whose code is obtained from the code
of the partition � by switching the ith U (from the right) to R. If � = (�1, �2, ⋅ ⋅ ⋅ ),
with �1 ≥ �2 ≥ ⋅ ⋅ ⋅ ≥ 0 (i.e., � has finitely many positive parts and an infinite
number of trailing 0’s), then we immediately have

�(−i) = (�1 + 1, ⋅ ⋅ ⋅ , �i−1 + 1, �i+1, ⋅ ⋅ ⋅ ). (4.4)
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Figure 4.4: 32212 and (32212)(−3)

Thus we have ∣�(−i)∣ = ∣�∣ − �i + i− 1. Since �i weakly decreases as i increases, we
obtain

∣�∣ − �1 = ∣�(−1)∣ < ∣�(−2)∣ < ⋅ ⋅ ⋅ , ∣�(−i)∣ = ∣�∣+ i− 1, i > l(�). (4.5)

Example 4.1.3. As before we begin with the partition 32212 pictured on the left
in Figure 4.4 and which has the code ⋅ ⋅ ⋅UURUURURUURR ⋅ ⋅ ⋅ . We compute
(32212)(−3) which has the code ⋅ ⋅ ⋅UURUURRRUURR ⋅ ⋅ ⋅ , and is pictured on the
right in Figure 4.4.

Alternatively, from equation (4.4), we see that (32212)(−3) corresponds to remov-
ing the part of size 2 and increasing the size of each part above it. In other words,
(32212)(−3) = 4222, which is shown in Figure 4.4.

Recall that given a partition �, its conjugate �′ is formed by flipping its diagram
along the main diagonal. In terms of the code of � this corresponds to reversing
the order of the code and swapping the U’s and R’s. It is easy to see that

!(�(i)) = !(�)(−i)

where ! is the fundamental involution (with action !(�) = �′).

4.2 The Bernstein Operator

First, recall from (3.18) that the bilinear form of the KP hierarchy tells us that
a polynomial � is a solution to the KP hierarchy (or is a tau function of the KP
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hierarchy) if and only if

[u−1] exp

(∑
j≥1

ujx′j

)
exp

(
−
∑
j≥1

u−j

j

∂

∂x′j

)
�(x′)

exp

(
−
∑
j≥1

ujx′′j

)
exp

(∑
j≥1

u−j

j

∂

∂x′′j

)
�(x′′) = 0.

Equivalently, let

Φ(x′;u) = exp

(∑
j≥1

ujx′j

)
exp

(
−
∑
j≥1

u−j

j

∂

∂x′j

)
,

Φ⊥(x′′;u) = exp

(
−
∑
j≥1

ujx′′j

)
exp

(∑
j≥1

u−j

j

∂

∂x′′j

)
.

Then � is a solution to the KP hierarchy if and only if

[u−1](Φ(x′, u)�(x′))(Φ⊥(x′′, u)�(x′′)) = 0.

Recall that the power sum symmetric functions pk form a set of algebraically
independent generators for the ring of symmetric functions Λ. We can make the
change of variables

x′j 7→
pj
j
,

∂

∂x′j
7→ j

∂

∂pj
. (4.6)

In what follows we always write symmetric functions without specifying the vari-
ables in which they are written. Under this convention we assume that the sym-
metric functions written unadorned (i.e., ek, ℎk, s�, pk, etc.) are in terms of the
indeterminates x′i and that marked symmetric functions (êk, ℎ̂k, ŝ�, p̂k, etc.) are
written in terms of the indeterminates x′′i .

Under the change of variables (4.6), the operators Φ and Φ⊥ become

Φ(x′;u) 7→ B(p;u) = exp

(∑
j≥1

uj

j
pj

)
exp

(
−
∑
j≥1

u−j
∂

∂pj

)
,

Φ⊥(x′′;u) 7→ B⊥(p̂;u) = exp

(
−
∑
j≥1

uj

j
p̂j

)
exp

(∑
j≥1

u−j
∂

∂p̂j

)
.

The operator B(p;u) was originally introduced by Bernstein [33, p. 69] in the
study of modular representations of the symmetric group. See also Macdonald [22,
p. 95]. We call B(p;u) the Bernstein operator and B⊥(p̂;u) the adjoint Bernstein
operator for reasons given below.

Recall that∑
i≥0

ℎit
i = exp

∑
k≥1

pk
k
tk,

∑
i≥0

eit
i = exp

∑
k≥1

pk
k

(−1)k−1tk, (4.7)
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where the ℎi are the complete symmetric functions and the ei are the elementary
symmetric functions. Also recall that

p⊥k = k
∂

∂pk
, (4.8)

where p⊥k is the adjoint of multiplication by pk with respect to the standard inner
product. Using (4.7) and (4.8) we can rewrite the operators B and B⊥ as

B(p;u) =
∑
n∈ℤ

Bnu
n =

∑
k,m≥0

(−1)muk−mℎke
⊥
m, (4.9)

and,

B⊥(p̂;u) =
∑
n∈ℤ

B⊥n u
n =

∑
k,m≥0

(−1)mum−kêmℎ̂
⊥
k . (4.10)

This gives us immediately that B⊥n = (−1)n!B−n! and so B⊥(p;u) = !B(p;−u)!
where ! acts on a series in u by acting on its coefficients (which are symmetric
functions). Thus, for much of what follows we only consider B(p;u) since analogous
statements may be made for B⊥(p;u).

Our goal will be to understand the action of the operator B on Schur functions
and to this end we first look at the following set of combinatorial objects. For
partitions � and �, let ℛ�,� be the set of partitions � such that �− � is a vertical
strip, and �− � is a horizontal strip. Also, let

R�,� =
∑

�∈ℛ�,�

(−1)∣�∣−∣�∣, (4.11)

which is 0 when ℛ�,� is empty.

Proposition 4.2.1. For any partition �, we have

B(p;u)s� =
∑
�∈P

R�,�u
∣�∣−∣�∣s�,

where P is the set of partitions.

Proof. Recall that

ℎns� =
∑
�

s� (4.12)

where the sum is over partitions � such that �− � is a horizontal n-strip and

e⊥n s� =
∑
�

s� (4.13)

where the sum is over partitions � such that �− � is a vertical n-strip.

Putting formulas (4.12) and (4.13) together with the formula for the B(p;u)
operator (4.9) immediately gives us the result.
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We can view the operator B(p;u) as acting in two steps. The first is to apply
the operator e⊥m and the second is to multiply by ℎk. Since we wish to consider
the action of B(p;u) on the Schur function s� this corresponds to first removing
a vertical strip (of size m) and adding a horizontal strip (of size k) to the result.
The coefficient for some s� in the resulting series will contain uk−m, which has its
exponent equal to the net difference in size from � to �, and the sum over all possible
ways of getting to � from � in the way described weighted by (−1)m. From the
definition of ℛ�,� we see that R�,� is the appropriately weighted sum of partitions.

There are three classes of squares in the union of the diagrams for � and � that
we shall consider when ℛ�,� is nonempty:

∙ The squares of � that are not contained in �. These squares are necessarily
bottommost in their column of �. None of these is contained in any � in
ℛ�,�. Such squares are contained in the horizontal strip that is added in the
multiplication by an ℎk. In other words, these are squares which are added
by B(p;u) but which could not have first been removed.

∙ The squares of � that are not contained in �. These squares are necessarily
rightmost in their row of �. None of these squares is contained in any � in
ℛ�,�. Such squares are contained in the vertical strip that is deleted in the
application of e⊥m. In other words, these squares are removed by B(p;u) but
must not be added afterwards.

∙ The squares that are contained in both � and �, that are both rightmost
in their row of �, and bottommost in their column of �. Each of these is
contained in some of the � in ℛ�,�, but not others. Such squares may have
been contained in both a deleted vertical strip and an added horizontal strip
or neither. We call the squares in � with this property �-ambiguous .

Figure 4.5: The Partition 231 in ℛ32212,423

Example 4.2.2. The partition 231 in ℛ32212,423 is shown in Figure 4.5. The black
squares are those that have been removed and the grey squares are those that have
been added. Also, the leftmost partition is �, the rightmost partition is � and the
middle partition with the black squares removed is �.

We can write this sequence of operations in a slightly more compact way as in
Figure 4.6.
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Figure 4.6: The Partition 231 in ℛ32212,423 , Alternate Presentation

Here the squares with an X in them have been removed and the squares with
an O in them have been added. Note that squares which contain only an O are
of the first type above and those that contain only an X are of the second type.
The square which contains both an O and an X is a �-ambiguous square. Notice,
however, that �-ambiguous squares need not contain both an X and an O in this
type of presentation but could also contain no marking. An example of this is the
first square in the fourth row.

To make the notion of �-ambiguous more clear, consider the alternate sequence
of operations on 32212. In Figure 4.7 the square in the upper row which was added

Figure 4.7: The Partition 3221 in ℛ32212,423

and removed in the previous action has now been left untouched. The initial and
resulting partitions are still the same, however, which is why we say that such a
square is �-ambiguous. This corresponds to the following alternate presentation.
Note that Figure 4.8 has one fewer X than Figure 4.6 and so produces the opposite

Figure 4.8: The Partition 3221 in ℛ32212,423 , Alternate Presentation

sign in (4.11) for R�,�. The lemma that follows tells us that this sign change occurs
because of the �-ambiguous square.
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Lemma 4.2.3. If � has any �-ambiguous squares, then

R�,� = 0.

Proof. We will proceed by constructing a sign reversing involution on the set ℛ�,�

which depends on the �-ambiguous squares in �.

If � has any �-ambiguous squares then let c be the rightmost of these (there is
at most one �-ambiguous square in any column of �, since it can only occur as the
bottommost element of a column). Define the mapping

� : ℛ�,� → ℛ�,� : � 7→ � ′

as follows: if � contains c, then � ′ is obtained by removing c from �; if � does not
contain c, then � ′ is obtained by adding c to �.

We see that the mapping � is well-defined as follows. Since c is rightmost in its
row of � and bottommost in its column of �, every square of � in the same column
as c and below c must belong to the vertical strip � − � and no other squares in
this column can belong to this vertical strip, so � − � ′ is a vertical strip whether
� contains c or not. Also, every square of � in the same row as c and to the right
of c must belong to the horizontal strip �− � and no other squares in this row can
belong to this horizontal strip, so �− � ′ is a horizontal strip whether � contains c
or not.

Clearly � is an involution on ℛ�,�, so it is a bijection, and thus we have

R�,� =
∑

�∈ℛ�,�

(−1)∣�∣−∣�∣ = −
∑

�′∈ℛ�,�

(−1)∣�∣−∣�
′∣ = −R�,�, (4.14)

where, for the second equality, we have changed the summation variable to �(�) =
� ′. The result follows immediately.

If ℛ�,� is nonempty and � has no �-ambiguous squares, we call � a �-survivor .
In this case there is a unique � in ℛ�,� and so R�,� = ±1. The terminology is
chosen since � “survives” the involution in Lemma 4.2.3.

Proposition 4.2.4. In a �-survivor �:

(a) if the rightmost square of row i of � is not contained in �, then the rightmost
square of row i− 1 of � is not contained in �;

(b) if the bottommost square of column i of � is not contained in �, then the
bottommost square of column i− 1 of � is not contained in �.

Proof. For part (a), if the rightmost square of row i of � is not contained in � and
the rightmost square of row i − 1 of � is contained in �, then the latter must be
bottommost in its column of �. But that makes it a �-ambiguous square, impossible
in a �-survivor. For (b), if the bottommost square of column i of � is not contained
in � and the bottommost square of column i − 1 of � is contained in �, then the
latter is by definition a �-ambiguous square, impossible in a �-survivor.
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Now we are able to determine explicitly the action of B(p;u) on a single Schur
function s�.

Theorem 4.2.5. For any partition �, we have

B(p;u) s� =
∑
i≥1

(−1)∣�∣−∣�
(i)∣+i−1u∣�

(i)∣−∣�∣s�(i) .

Proof. From Proposition 4.2.1 and Lemma 4.2.3, we have

B(p;u) s� =
∑
�

R�,� u
∣�∣−∣�∣s�, (4.15)

where the summation is over all �-survivors �. Now we characterize the �-survivors.
Suppose � = (�1, . . . , �n), where �1 ≥ . . . ≥ �n ≥ 1, and we let �0 =∞, �n+1 = 0.
Then in a �-survivor �, from Proposition 4.2.4(a), the rightmost cells in rows
1, . . . , j of � are not contained in �, and the rightmost cells of rows j + 1, . . . , n
are contained in �, for some j = 0, . . . , n with �j > �j+1. But, in order to avoid
the bottommost cell of column �j+1 in � being �-ambiguous, then the bottom-
most cell of column �j+1 in � cannot be contained in �. Thus we conclude from
Proposition 4.2.4(b) that the bottommost cells in columns 1, . . . , �j+1 of � are not
contained in �. Also, the bottommost squares in columns �j+1, . . . , i − 1 of � are
not contained in � for some �j+1 < i ≤ �j. Finally, for each i ≥ 1, there exists a
choice of j = 0, . . . , n for which �j+1 < i ≤ �j, so the �-survivor � described above
exists for each i ≥ 1. This partition � is obtained from � by deleting the column
strip consisting of the rightmost squares in rows 1, . . . , j, and adding the horizontal
strip consisting of the bottommost cells in columns 1, . . . , i− 1. This gives

� = (�1 − 1, . . . , �j − 1, i− 1, �j+1, . . . , �n) = �(i),

where the last equality comes from the description of �(i) and where j = ui(�). But
we have R�,�(i) = (−1)j, and the result follows from the fact that

ui(�) = ∣�∣ − ∣�(i)∣+ i− 1

and (4.15).

Note that the right hand side of the above result is a Laurent series in u for
each �, with minimum power of u given by u∣�

(1)∣−∣�∣ = u−l(�).

The following pair of dual corollaries to Theorem 4.2.5 will be particularly con-
venient for dealing with the KP hierarchy.

Corollary 4.2.6. For scalars a�, � ∈ P where P is the set of partitions, we have

B(p;u)
∑
�∈P

a�s� =
∑
�∈P

s�
∑
k≥1

(−1)k−1u∣�∣−∣�
(−k)∣a�(−k) .
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Proof. From Theorem 4.2.5 and the equation for ui(�), we immediately obtain

B(p;u)
∑
�∈P

a�s� =
∑
�∈P

a�
∑
i≥1

(−1)ui(�)u∣�
(i)∣−∣�∣s�(i) . (4.16)

Now from the code description, it is immediate that � = �(i) is equivalent to
� = �(−k), where k = ui(�) + 1. The result follows immediately by changing
summation variables in (4.16) from � ∈ P , i ≥ 1 to � ∈ P , k ≥ 1.

Corollary 4.2.7. For scalars a�, � ∈ P, we have

B⊥(p;u)
∑
�∈P

a�s� =
∑
�∈P

s�
∑
m≥1

(−1)∣�∣−∣�
(m)∣+m−1u∣�∣−∣�

(m)∣a�(m) .

Proof. From Theorem 4.2.5 and the fact that

!(s�) = s�′ and B⊥(p;u) = !B(p;−u)!,

we obtain

B⊥(p;u)
∑
�∈P

a�s� =
∑
�∈P

a�!B(p;−u) s�′ =
∑
�∈P

a�
∑
i≥1

(−1)i−1u∣(�
′)(i)∣−∣�′∣s((�′)(i))′ .

But, from the code description, it is immediate that (�′)(i) = (�(−i))′. Since ∣�′∣ =
∣�∣ for any partition �, we can simplify the double summation above to obtain

B⊥(p;u)
∑
�∈P

a�s� =
∑
�∈P

a�
∑
i≥1

(−1)i−1u∣�
(−i)∣−∣�∣s�(−i) . (4.17)

As in the proof of Corollary 4.2.6, we have that � = �(−i) is equivalent to � = �(m),
where i = um(�) + 1. The result now follows immediately by changing summation
variables in (4.16) from � ∈ P , i ≥ 1 to � ∈ P , m ≥ 1, and applying

ui(�) = ∣�∣ − ∣�(i)∣+ i− 1

to evaluate um(�) (which is the exponent of (−1) when the summation is expressed
in terms of �, m).

Among the results in [22] and [33] for Bernstein’s operators is

B�1 ⋅ ⋅ ⋅B�n 1 = s�,

where � = (�1, . . . , �n). This result follows immediately from Theorem 4.2.5, to-
gether with the fact that ∣�(i)∣ ≤ ∣�(i+1)∣. To compose Bi when they are not ordered
as in this result, one simply uses the result that BiBj = −Bj−1Bi+1, which follows
routinely from Theorem 4.2.5 and considering what happens when two right-steps
are switched to up-steps in the two possible orders.
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4.3 Plücker Relations and Partition Codes

We consider a set aP = {a� : � ∈ P} of scalars indexed by the set P of partitions.
The Plücker relations for aP are the following system of simultaneous quadratic
equations: for all m ≥ 1 and � = (�1, . . . , �m−1), � = (�1, . . . , �m+1) ∈ P with
l(�) ≤ m− 1, l(�) ≤ m + 1 (which means that �i = 0 for i > l(�), and �i = 0 for
i > l(�)). We have

m∑
k=0

(−1)k−m+1+ℓa(�1−1,...,�ℓ−1,�k+1−k+ℓ+1,�ℓ+1,...,�m−1) ⋅ a(�1+1,...,�k+1,�k+2,...,�m+1) = 0,

(4.18)
where ⋅ denotes multiplication, ℓ = ℓ(k) is chosen so that 0 ≤ ℓ ≤ m− 1 and

�ℓ − 1 ≥ �k+1 − k + ℓ+ 1 ≥ �ℓ+1, (4.19)

with the convention that �0 = ∞, �m = −∞ and so that �k+1 − k + ℓ + 1 ≥ 0
(if there is no such choice of ℓ, then the term in the summation indexed by k is
identically 0). Note that, for each choice of k, ℓ (if it exists) is unique.

In this presentation, each equation is a quadratic alternating summation corre-
sponding to an ordered pair of partitions. Each term in the alternating summation
arises from removing a single part from the second partition, and inserting it into
the first partition, with some appropriate shift in the remaining parts of both par-
titions. In our next result we give a different presentation of the Plücker relations,
which is more symmetrical in its form, using the notation developed earlier for
codes of partitions.

Theorem 4.3.1. The Plücker relations for aP are given by the following system of
simultaneous quadratic equations: for all �, � ∈ P, we have∑

i,j≥1
∣�(i)∣+∣�(−j)∣=∣�∣+∣�∣+1

(−1)∣�∣−∣�
(i)∣+i+ja�(i) ⋅ a�(−j) = 0.

Proof. In the Plücker relations, equation (4.18) is satisfied for each (m,�, �) for
m ≥ 1 and �, � ∈ P with l(�) ≤ m − 1, l(�) ≤ m + 1. Now multiply (4.18)
by (−1)m−1 to get equation (4.18)’ and consider equation (4.18)’ for (m+ 1, �, �),
where we have �m = �m+2 = 0. Then, on the left hand side, the term indexed by
k = m+ 1 in the latter equation is identically 0 since there is no possible choice of
ℓ (to see this, we must have �k+1−k+ ℓ+ 1 ≥ 0, so ℓ ≥ m and since 0 ≤ ℓ ≤ m, we
must uniquely have ℓ = m; but then we have �ℓ − 1 = −1 < 0 = �k+1 − k + ℓ+ 1,
contradicting equation (4.19)).

Thus equation (4.18)’ for (m,�, �) is identical to equation (4.18)’ for (m +
1, �, �), so there is the following single equation for each � = (�1, �2, . . .), � =
(�1, �2, . . .) ∈ P (which means that �i = 0 for i > l(�), and �i = 0 for i > l(�)):∑

k≥0

(−1)k+ℓa(�1−1,...,�ℓ−1,�k+1−k+ℓ+1,�ℓ+1,...) ⋅ a(�1+1,...,�k+1,�k+2,...) = 0, (4.20)
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where ℓ = ℓ(k) is chosen so that

�ℓ − 1 ≥ �k+1 − k + ℓ+ 1 ≥ �ℓ+1,

with the convention that �0 =∞.But, from

�(i) = (�1 − 1, ⋅ ⋅ ⋅ , �j − 1, i− 1, �j+1, ⋅ ⋅ ⋅ , �n)

and
�(−i) = (�1 + 1, ⋅ ⋅ ⋅ , �i−1 + 1, �i+1, ⋅ ⋅ ⋅ ),

equation (4.20) becomes∑
k≥0

(−1)k+ℓa
�(�k+1−k+ℓ+2) ⋅ a�(−k−1) = 0.

Finally, note that

∣�(�k+1−k+ℓ+2)∣+ ∣�(−k−1)∣ = ∣�∣+ ∣�∣+ 1,

and the result follows from (4.2) for ui(�) and the fact that ∣�(i)∣ and ∣�(−i)∣ are
strictly increasing with i as shown in (4.3) and (4.5).

We now give a few examples of Plücker relations. These examples illustrate that
there are redundant equations in the Plücker relations.

Example 4.3.2. For � = � = (1), we obtain �(1) = ", �(2) = (1, 1), �(3) = (2, 1),
and �(−1) = ", �(−2) = (2), �(−3) = (2, 1), so the corresponding quadratic equation
is

−a" ⋅ a(2,1) + a(2,1) ⋅ a" = 0.

But the left hand side of this equation is identically 0, so the equation is redundant.

For � = ", � = (1, 1, 1), we obtain �(1) = ", �(2) = (1), �(3) = (2), �(4) = (3),
and �(−1) = (1, 1), �(−2) = (2, 1), �(−3) = (2, 2), so the corresponding quadratic
equation is

a" ⋅ a(2,2) − a(1) ⋅ a(2,1) + a(2) ⋅ a(1,1) = 0. (4.21)

For � = (2), � = (1), we obtain �(1) = (1), �(2) = (1, 1), �(3) = (2, 2), and
�(−1) = ", �(−2) = (2), �(−3) = (2, 1), so the corresponding quadratic equation is

−a(1) ⋅ a(2,1) + a(1,1) ⋅ a(2) + a(2,2) ⋅ a" = 0,

which is the same equation as (4.21).
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4.4 Plücker Relations and Tau Functions

Recall that a symmetric function � expressed in power sum symmetric functions is
a tau function of the KP hierarchy if and only if

[u−1] (B(p;u)�(p))
(
B⊥(p̂, u)�(p̂)

)
= 0. (4.22)

Using the results above concerning the combinatorial description of the action of
B and B⊥ on symmetric functions, we give a new proof of the connection between
the Schur function coefficients of � and Plücker relations. Our proof is immediate
from Corollaries 4.2.6 and 4.2.7.

Theorem 4.4.1. Let the coefficient of the Schur function of shape � in a power
series be given by a�, � ∈ P. Then the power series is a � -function for the KP
hierarchy if and only if aP = {a� : � ∈ P} satisfies the Plücker relations.

Proof. We are given �(p) =
∑

�∈P a�s� and �(p̂) =
∑

�∈P a�ŝ�. Then, from (4.22),
it is necessary and sufficient that aP satisfies S(p, p̂) = 0, where

S(p, p̂) = [u−1]

(
B(p;u)

∑
�∈P

a�s�

)
⋅
(
B⊥(p̂;u)

∑
�∈P

a�ŝ�

)
.

Now, from Corollaries 4.2.6 and 4.2.7, we immediately obtain

S(p, p̂) =
∑
�,�∈P

s� ŝ�
∑
m,k≥1

∣�(m)∣+∣�(−k)∣=∣�∣+∣�∣+1

(−1)∣�∣−∣�
(m)∣+m+ka�(m) ⋅ a�(−k) .

But S(p, p̂) = 0 if and only if [s� ŝ�]S(p, p̂) = 0 for all �, � ∈ P , since the Schur
functions form a basis for symmetric functions, and the result follows immediately
from Theorem 4.3.1.

Often the KP hierarchy is written as a system of simultaneous quadratic partial
differential equations for � . In the next result, we apply Theorem 4.4.1 and the
methods of symmetric functions to obtain such a system of partial differential equa-
tions, with one equation corresponding to each quadratic equation in the Plücker
relations. The result is well known, but we include a simple proof for completeness.

Theorem 4.4.2. The power series �(p) is a � -function for the KP hierarchy if
and only if the following partial differential equation is satisfied for each pair of
partitions � and �:∑

i,j≥1
∣�(i)∣+∣�(−j)∣=∣�∣+∣�∣+1

(−1)∣�∣−∣�
(i)∣+i+j (s�(i)(p⊥)�(p)

)
⋅
(
s�(−j)(p⊥)�(p)

)
= 0.

(Where, e.g., s�(p
⊥) is interpreted as the partial differential operator obtained by

substituting p⊥n for pn in s� for each n ≥ 1, and using the differential operator form
of p⊥n .)
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Proof. Let q = (q1, q2, ...), where the qi are independent from the pj and p̂k. We
begin the proof by proving that (I): � satisfies equation (4.22) if and only if (II): �
satisfies

[u−1]

(
B(p;u)�(p+ q)

)
⋅
(
B⊥(p̂, u)�(p̂+ q)

)
= 0, (4.23)

for all q.

It is easy to see that (II) implies (I), by setting qi = 0 for i ≥ 1.

To prove that (I) implies (II), define the operator Θ(p) = exp
(∑

k≥1 qk
∂
∂pk

)
.

Using the multivariate Taylor series expansion of an arbitrary formal power series
f(p), we see that

f(p+ q) = Θ(p)f(p). (4.24)

Also, define operators Γ(p) = exp
(∑

i≥1
ui

i
pi

)
and Υ(p) = exp

(
−
∑

j≥1 u
−j ∂

∂pj

)
,

so that B(p;u) = Γ(p)Υ(p). Then we have

B(p;u)�(p+ q) = Γ(p)Υ(p)Θ(p)�(p) = Γ(p)Θ(p)Υ(p)�(p),

from (4.24) and the trivial fact that Υ(p) commutes with Θ(p). Using (4.24) again,
we have the operator identity

Θ(p)Γ(p) = Γ(p+ q)Θ(p) = Γ(q)Γ(p)Θ(p).

Combining these expressions and the fact that Γ(q)−1 = Γ(−q) gives

B(p;u)�(p+ q) = Γ(−q)Θ(p)B(p;u)�(p).

Similarly, we have B⊥(p̂;u) = Γ(−p̂)Υ(−p̂), and so obtain

B⊥(p̂;u)�(p̂+ q) = Γ(q)Θ(p̂)B⊥(p̂;u)�(p̂).

Multiplying these two expressions together, we find that equation (4.23) becomes

Θ(p)Θ(p̂)[u−1]

(
B(p;u)�(p)

)
⋅
(
B⊥(p̂;u)�(p̂)

)
= 0,

since Γ(−q)Γ(q) = 1, and Θ(p), Θ(p̂) are independent of t. We conclude that (I)
implies (II).

Finally, in order to apply Theorem 4.4.1, we determine the coefficient of the
Schur function of shape �. This gives

[s�(p)]�(p+ q) = ⟨s�(p), �(p+ q)⟩
= ⟨1, s�(p⊥)�(p+ q)⟩
= s�(p

⊥)�(p+ q)
∣∣
p=0

= s�(q
⊥)�(q),

and the result then follows from Theorem 4.4.1, replacing q by p.
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As an example of Theorem 4.4.2, we now give one of the quadratic partial
differential equations for a � -function.

Example 4.4.3. Consider the Plücker equation (4.21). Now we have

s" = 1, s(1) = p1, s(2) = 1
2
(p2

1 + p2), s(1,1) = 1
2
(p2

1 − p2),

s(2,1) = 1
3
(p3

1 − p3), s(2,2) = 1
12

(p4
1 − 4p1p3 + 3p2

2),

so from Theorem 4.4.2, the partial differential equation for � that corresponds
to (4.21) is given by

1
12
� (�1111 − 12�13 + 12�22)− 1

3
�1 (�111 − 3�3) + 1

4
(�11 + 2�2) (�11 − 2�2) = 0, (4.25)

where we use �ijk to denote ∂
∂pi

∂
∂pj

∂
∂pk
� , etc.

Often, in the literature of integrable systems, the series F = log � is used instead
of � itself. This series F is often referred to as a solution to the KP hierarchy,
where the “KP hierarchy” in this context refers to a system of simultaneous partial
differential equations for F . Of course, the system of partial differential equations
for � given in Theorem 4.4.2 becomes an equivalent system of partial differential
equations for F by substituting � = expF into the equations of Theorem 4.4.2, and
then dividing the equation by the common factor exp (2F ). For example, when we
apply this to (4.25), we obtain the equation

1
12
F1111 − F13 + F22 + 1

2
F 2

11 = 0,

which is an alternate form of the KP equation (1.8).
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Chapter 5

Applications

In this final chapter we give a brief account of some combinatorial and geometric
applications of the KP hierarchy. Many of the technical details in this chapter have
been suppressed and we refer the reader to the literature cited for complete details.

5.1 The Hurwitz Problem

The first application of the KP hierarchy which we will examine is the problem of
enumerating equivalence classes of ramified coverings of the sphere with prescribed
branching data, also called the Hurwitz problem. We now briefly describe the
Hurwitz problem and refer to [20] for more details.

Let X be a genus g ≥ 0 Riemann surface and let f : X → S2 be a continuous
map from X to the sphere S2. Let {z1, ⋅ ⋅ ⋅ zk} ⊆ S2 be a finite set of points on S2

and suppose that for some fixed positive integer d and for any y ∈ S2∖{z1, ⋅ ⋅ ⋅ , zk}
there exists some neighborhood V such that f−1(V ) is homeomorphic to V × S
where S is a discrete set of size d. We say that f is a degree d ramified covering of
the sphere with branch points {z1, ⋅ ⋅ ⋅ zk}.

If f1 : X1 → S2 and f2 : X2 → S2 are degree d ramified coverings of S2 then we
say that they are equivalent if there exist homeomorphisms

� : X1 → X2,

� : S2 → S2

such that �f1 = f2�. The Hurwitz problem is then to enumerate the equivalence
classes of degree d ramified covers of S2, of which there are a finite number.

Suppose f : X → S2 is a degree d ramified cover of S2 with branch points
{z1, ⋅ ⋅ ⋅ , zk}. LetD be an open disc such that the branch points are on the boundary
of D. There are d connected components in f−1(D) which we label from 1 to d.
We call the connected components in the preimage the sheets of the cover and we
say that the sheet with the label i is the ith sheet of the cover. If we look at a small
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neighborhood of zi, beginning on sheet s and going around zi counter clockwise,
we will arrive at a point on another sheet, say �(i)(s). In doing so we construct
a permutation �(i) for each branch point. If the permutation corresponding to a
branch point is a transposition then we say that the branch point is simple.

If we begin at some point x ∈ S2∖{z1, ⋅ ⋅ ⋅ , zk} and walk around each branch
point as described above, then if we begin on a sheet s, we must end on sheet
s. This is because the corresponding loop on S2∖{z1, ⋅ ⋅ ⋅ , zk} is contractible to a
point. This means that

�(1) ⋅ ⋅ ⋅ �(k) = 1,

where 1 is the identity permutation. This is called the monodromy condition. Also,
since X is connected, we must be able to move from one sheet to any other and so
the subgroup generated by �(1), ⋅ ⋅ ⋅ , �(k) must act transitively. This is called the
transitivity condition.

A surprising fact about the Hurwitz enumeration problem is that the combina-
torial description above completely encodes the cover up to relabeling the sheets
(or in other words, up to conjugation of the permutations by a fixed permuta-
tion). We thus consider the combinatorial problem of computing the numbers
Covd(�

1, ⋅ ⋅ ⋅ , �k) where each �i is a partition of d corresponding to the conjugacy
class of �(i). We say that the partitions specify the branching data of the cover.

The number Covd(�
1, ⋅ ⋅ ⋅ , �k) is the number of k-tuples, (�1, ⋅ ⋅ ⋅ , �k) ∈ Skd , that

satisfy the following conditions:

1. �i ∈ C�i for all i,

2. �1 ⋅ ⋅ ⋅�k = 1 (the monodromy condition),

3. the subgroup generated by �1, ⋅ ⋅ ⋅ , �k is transitive.

We will focus on the special case of simple Hurwitz numbers where we allow
one of the permutations to be arbitrary and require that the other permutations
be transpositions.Note that the monodromy condition and transitivity condition
together imply that the transpositions generate a transitive subgroup. The simple
Hurwitz numbers are denoted

ℎk(�) = Covd(�, 21d−2, ⋅ ⋅ ⋅ , 21d−2)

where � ⊢ d and there are k copies of the partition 21d−2. We define the generating
function

H(z, p) = H(z, p1, p2, ⋅ ⋅ ⋅ ) =
∑
d≥1

1

d!

∞∑
k=1

∑
�⊢d

ℎk(�)
zk

k!
p�1p�2 ⋅ ⋅ ⋅ .

We also define the generating function

H̃ = eH
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which is the generating function for possibly disconnected covers. In other words, H̃
enumerates factorizations in which we don’t require that the transpositions generate
a transitive subgroup. Note that we don’t record the genus of the covering. At this
time we do not need this extra piece of information but, as is stated in (5.5), this
can be recovered if we need it.

5.2 Join-Cut and the KP Hierarchy

Since the transitivity condition is difficult to work with directly, we will focus on the
generating function H̃. In this case we are counting (k+1)−tuples, (�, �1, ⋅ ⋅ ⋅ , �k) ∈
Sk+1
d where ��1 ⋅ ⋅ ⋅ �k = 1, the �i are transpositions and � ∈ C� for some fixed
� ⊢ d. From the monodromy condition we see that �1 ⋅ ⋅ ⋅ �k = �−1, but since �−1

has the same cycle type as �, this problem is equivalent to counting factorizations
of a permutation in C� into transpositions. We now examine what happens to the
arbitrary permutation in the factorization problem when we remove a transposition.

Theorem 5.2.1. The generating function H̃ is the unique solution to the differen-
tial equation

∂H̃

∂z
= JH̃ (5.1)

where

J =
1

2

∞∑
i,j=1

(
(i+ j)pipj

∂

∂pi+j
+ ijpi+j

∂2

∂pi∂pj

)
,

with initial conditions
H̃(0, p) = ep1 .

Proof. We will sketch the proof here, for more details see [7] and [8].

The left hand side of (5.1) describes the action on H̃ of removing the first
transposition from the factorization. Since a transposition is an involution, we can
achieve this by multiplying both sides of the equation �1 ⋅ ⋅ ⋅ �k = � by �1 on the left.
This tells us that what results is a factorization of the permutation �1�. What we
now need to determine is how multiplying by a transposition affects the cycle type.

There are two cases to consider when multiplying a permutation with a trans-
position, (l m). The first is the case when l and m appear in the same cycle of �.
In this case, the action of multiplying by (l m) is to split the cycle that contains l
and m into two cycles, one of which contains l and the other of which contains m.
Given a cycle of length j in �, there are j choices for the transposition (l m) which
will split the cycle into two cycles, one of length i and the other of length j − i.
This is because once we choose l we know that m is the value at distance i from
l. Taking into account the fact that the order of the resulting i and j − i cycles
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doesn’t matter, we get (after re-indexing) the term

1

2

∞∑
i,j=0

(i+ j)pipj
∂

∂pi+j

in the operator J .

The second case is when l and m appear in different cycles of �. In this case the
action of multiplying by (l m) is to join the two cycles. If the two cycles had lengths
i and j then there are i positions in the first cycle and j positions in the second
cycle at which we can join the two cycles. In any case, the resulting cycle will have
length i+ j. Again, taking into account symmetry, this gives us the second term,

1

2

∞∑
i,j=0

ijpi+j
∂2

∂pi∂pj
,

in the operator J .

Lastly, to see that the initial conditions hold for the generating function H̃ we
need only notice that z = 0 implies that there are no transpositions and so the
permutation � must be the identity permutation.

The operator J in the theorem is often called the join-cut operator and equation
(5.1) is called the join-cut equation.

From the join-cut equation we see that H̃ can be written as

H̃ = ezJep1 . (5.2)

We will now show (following [17]) that (5.2) implies that H̃ is a tau function for
the KP hierarchy.

Consider the operator

Ĵ =
1

6

∞∑
i,j=−∞

: ΛiΛjΛ−(i+j) :

on the fermionic Fock space where : Λi1 ⋅ ⋅ ⋅Λik := Λ�(i1) ⋅ ⋅ ⋅Λ�(ik) and � is a per-
mutation of the indices such that �(i1) ≤ ⋅ ⋅ ⋅ ≤ �(ik). This is called the normal
ordering of the operators Λi1 , ⋅ ⋅ ⋅ ,Λik .

It is clear that the operator Ĵ is an element of the algebra gℓ∞ since the index
of the shift operator which acts first will always be positive and so will become the
zero operator for a large enough index. This implies that ezĴ acts as an operator
in GL∞. Similarly, Λ−1 ∈ gℓ∞ and so eΛ−1 ∈ GL∞. Notice that we are considering
operators in GL∞ rather than GL∞ which have been our focus up until now. The
results in Chapters 2 and 3 still hold only we end up with formal power series
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solutions to the KP hierarchy rather than polynomial solutions. We now know that
the function

Ĥ = ezĴeΛ−1 0

is in the GL∞ orbit of  0. Now, let � be the algebraic isomorphism in the Boson-
Fermion correspondence and let � be the algebraic isomorphism from the bosonic
Fock space to the ring of symmetric functions (via the change of basis (4.6) to the
scaled power sum symmetric functions). We see that

��(Ĵ) = �

(
1

2

∞∑
i,j=1

(
ijxixj

∂

∂xi+j
+ (i+ j)xi+j

∂2

∂xi∂xj

))
= J,

��(Λ−1) = �(x1) = p1,

��( 0) = �(1) = 1,

where we have used (4.6) and (3.15). This implies that

��(Ĥ) = H̃

so that H̃ is a tau function for the KP hierarchy in the variables pi/i.

5.3 ELSV and Hodge Integrals

We will now briefly describe Hodge integrals and how they can be related to the
Hurwitz problem discussed in the previous section. We are able to relate the com-
putation of Hodge integrals with the Hurwitz numbers by making use of a formula,
originally introduced by T. Ekadahl, S. Lando, M. Shapiro and A. Vainshtein, called
the ELSV formula. For more on Hodge integrals we refer to [6].

Letℳg,n be the Deligne-Mumford compactification of the moduli space of genus
g curves with n marked points. If we let X = (C, x1, x2, ⋅ ⋅ ⋅ , xn) be a point inℳg,n

where C is a genus g curve and x1, ⋅ ⋅ ⋅ , xn are the marked points then we can
associate with each marked point the line bundle ℒi whose fiber at the point X is
the cotangent line to C at xi. We let  i be the first Chern class of ℒi. Each ℳg,n

also admits a natural rank g vector bundle E, the Hodge bundle, whose fiber at X
corresponds to the space of global differentials on X. We let �k be the kth Chern
class of E and we let �0 = 1.

We denote the intersection numbers (also called Hodge integrals) by

⟨�k�m1 ⋅ ⋅ ⋅ �mn⟩ =

∫
ℳg,n

�k 
m1
1 ⋅ ⋅ ⋅ mnn .

Note that since the intersection numbers are independent of the order of the  
classes, we may write the intersection numbers using exponential notation so that
�mii denotes mi copies of �i.
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Following Kazarian [17], we define

G̃(u;T0, T1, ⋅ ⋅ ⋅ ) =
∑

j,k0,k1,⋅⋅⋅

(−1)j⟨�j� k00 � k11 ⋅ ⋅ ⋅ ⟩u2j T
k0
0

k0!

T k11

k1!
⋅ ⋅ ⋅ ,

and we denote by G(u; q1, q2, ⋅ ⋅ ⋅ ) the series obtained from G̃ by the linear substi-
tution of variables defined by the recursion

Tk+1 =
∑
m≥1

m(u2qm + 2uqm+1 + qm+2)
∂

∂qm
Tk (5.3)

with T0 = q1.

The ELSV formula states that

ℎk(�)

k!
=

ℓ(�)∏
i=1

��ii
�i!

∫
ℳg,n

1− �1 + �2 − ⋅ ⋅ ⋅ ± �g∏ℓ(�)
i=1 (1− �i i)

(5.4)

where the genus is given by the Riemann-Hurwitz formula:

k = 2g − 2 + ℓ(�) + ∣�∣. (5.5)

It can then be shown, using (5.4) (see [17]), that Hurwitz series H and the
generating function G are related by a change of variables. In particular, suppose
we have two variables, x and y, related by

x =
y

1 + zy
e−

zy
1+zy ,

y =
∑
b≥1

bb

b!
zb−1xb

where the indeterminate z is the same as that used in the generating function H.
Note that x and y are inverse to one another with respect to the Lagrange inversion
formula [10]. We now construct a change of variables from pb (used in H) to qk
(used in G) by

pb =
∑
k≥b

cbkz
k−bqk (5.6)

where the rational coefficients cbk are determined by the expansion

xb =
∑
k≥b

cbkz
k−byk.

Also, let

H1 =
∞∑
b=1

bb−2

b!
pbz

b−1,

H2 =
1

2

∞∑
b1,b2=1

bb11 b
b2
2

(b+ 1)b1!b2!
pb1pb2z

b1+b2 .
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Theorem 5.3.1. Under the change of variables (5.6), we have

(H −H1 −H2) = G(z1/3; z4/3q1, z
8/3q2, z

12/3q3, ⋅ ⋅ ⋅ ).

Proof. See Kazarian [17].

The reason for removing H1 and H2 is that the corresponding moduli spaces,
ℳ0,1 and ℳ0,2, do not exist.

It can also be shown that the change of basis (5.6) is an automorphism of the
KP hierarchy so that the following result is true:

Theorem 5.3.2. The generating function eG(u;q1,q2,⋅⋅⋅ ) is a tau function for the KP
hierarchy in the variables qi/i.

Proof. See Kazarian [17].

5.4 Witten’s Conjecture and the KdV Hierarchy

We now show how Witten’s conjecture follows from the results in the previous
section. Recall that Witten’s conjecture states that the generating function

F (t0, t1, ⋅ ⋅ ⋅ ) =

〈
exp

(∑
i

ti�i

)〉
is such that eF is a tau function for the KdV hierarchy.

The KdV hierarchy can be formed from the KP hierarchy by adding the con-
straint that the function is free of all even indexed parameters. In other words, �
is a tau function for the KdV hierarchy if and only if it is a tau function for the
KP hierarchy and

∂�

∂t2n
= 0, ∀n ≥ 1.

Example 5.4.1. We know that the simplest equation in the KP hierarchy is the
KP equation (1.8):

3

4

∂2u

∂y2
=

∂

∂x

(
∂u

∂t
− 3

2
u
∂u

∂x
− 1

4

∂3u

∂x3

)
,

where t = x1, y = x2 and x = x3. If we add the additional constraint that ∂u
∂y

= 0
then we are left with

∂

∂x

(
∂u

∂t
− 3

2
u
∂u

∂x
− 1

4

∂3u

∂x3

)
= 0

which, after integrating with respect to x once, gives us the KdV equation (1.1) :

∂u

∂t
− 3

2
u
∂u

∂x
− 1

4

∂3u

∂x3
= 0. (5.7)

Note that (5.7) is the same equation as (1.1) and that they are related by a rescaling
of the variables.
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Recall that the recursion for the variables Tk in G̃ is:

Tk+1 =
∑
m≥1

m(u2qm + 2uqm+1 + qm+2)
∂

∂qm
Tk,

so that
Tk∣u=0 = (2k − 1)!!q2k+1.

Here we have used the double factorial to mean (2k−1)!! = (2k−1)(2k−3) ⋅ ⋅ ⋅ (1).
Also,

G(0; q1, q2, ⋅ ⋅ ⋅ ) =
∑

k0,k1,⋅⋅⋅

⟨� k00 � k11 ⋅ ⋅ ⋅ ⟩
(T0∣u=0)k0

k0!

(T1∣u=0)k1

k1!
⋅ ⋅ ⋅ ,

so we see that

F (t0, t1, ⋅ ⋅ ⋅ ) = G(0; t0, 0, t1, 0,
t2
3!!
, 0,

t3
5!!
, 0, ⋅ ⋅ ⋅ )

where on the right hand side we have q2d+1 = td
(2d−1)!!

and q2d = 0. Then, since eG is

a tau function for the KP hierarchy, we get immediately that eF is a tau function
for the KdV hierarchy.

5.5 The Double Hurwitz Problem

We now turn to the problem of computing the double Hurwitz numbers. The double
Hurwitz numbers are similar to the Hurwitz numbers encountered previously except
we allow two permutations of arbitrary type. In particular, for �, � ⊢ d, we let

dk(�, �) = Covd(�, �, (21d−2), ⋅ ⋅ ⋅ , (21d−2))

be the double Hurwitz numbers where here there are k copies of the partition
(21d−2). We also let

D =
∑
d,k

�,�⊢d

1

d!

zk

k!
dk(�, �)p�q�,

D̃ = eD =
∑
d,k

�,�⊢d

1

d!

zk

k!
d̃k(�, �)p�q�

be the corresponding generating functions. Here we write p� for the power sum
symmetric function indexed by � and q� for the power sum symmetric function

indexed by � in variables distinct from those in p�. Note also that the d̃k(�, �)
are the disconnected double Hurwitz numbers, i.e., the number of solutions to the
equation

���1 ⋅ ⋅ ⋅ �k = 1
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where � ∈ C�, � ∈ C� and �i ∈ C21d−2 and there is no transitivity requirement.

One of the reasons for changing our point of view to that of the disconnected
Hurwitz numbers is that we can rewrite the question of computing the disconnected
double Hurwitz numbers as a question about the center of the group algebra ℂSd.
This means that we can construct the generating function D̃ using representation
theory.

Theorem 5.5.1 (Frobenius’ formula). The number of solutions to the equation

�1 ⋅ ⋅ ⋅ �k = 1

in Sd, where �i ∈ C�(i) with �(i) ⊢ d, is equal to

∣C�(1)∣ ⋅ ⋅ ⋅ ∣C�(k) ∣
∣Sd∣

∑
�⊢d

��
�(1)
⋅ ⋅ ⋅��

�(k)

(��
1d

)k−2
.

Proof. A proof can be found in the appendix of [20] in the more general context of
an arbitrary finite group.

In particular, we see that:

d̃k(�, �) =
∣C�∣∣C�∣∣C21d−2∣k

d!

∑
�⊢d

����
�
�(��

21d−2)
k

(��
1d

)k−2

=
∑
�⊢d

(dim�)2

d!
f�(�)f�(�)(f21d−2(�))k,

where dim� = ��
1d

, and

f�(�) = ∣C�∣
���

dim�
.

For convenience we will also write f2 = f21d−2 .

Using the fact that

s�(p) =
1

d!

∑
�⊢d

���∣C�∣p�

=
dim�

d!

∑
�⊢d

f�(�)p�,
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we can rewrite the generating function D̃ as

D̃ =
∑
d,k

�,�⊢d

1

d!

zk

k!
d̃k(�, �)p�q�

=
∑
d,k

�,�⊢d

1

d!

zk

k!
p�q�

∑
�⊢d

(dim�)2

d!
f�(�)f�(�)(f2(�))k

=
∑
d,k

�,�⊢d

zk

k!
(f2(�))k

(
dim�

d!

∑
�⊢d

f�(�)p�

)(
dim�

d!

∑
�⊢d

f�(�)q�

)

=
∑
d,�⊢d

s�(p)s�(q)

(∑
k

zk

k!
(f2(�))k

)
=
∑
�

s�(p)s�(q)e
zf2(�).

Our next step is to write this generating function as an element in the orbit
GL∞ 0.

First we mention that f2(�) can be expressed as a polynomial in the parts of �
(see [22]):

f2(�) =
1

2

∑
i

[
(�i − i+

1

2
)2 − (−i+

1

2
)2

]
=

∑
k∈S(�)+

k2

2
−

∑
k∈S(�)−

k2

2
,

where S(�) = {�i − i+ 1
2
, i ∈ ℤ}, S+ = S∖(ℤ≤0 − 1

2
) and S− = (ℤ≤0 − 1

2
)∖S.

Define the operator

F2 =
∑
k>1

(k − 1
2
)2

2
v̂iv̌
∗
i −

∑
k≤0

(k − 1
2
)2

2
v̌∗i v̂i.

We see immediately (using the combinatorial description of the wedging and con-
tracting operators) that

F2v� = f2(�)v�.

If we also define the operator

T = exp

(∑
n≥1

qn
n

Λ−n

)
then we find that (see the proof of theorem 3.2.2)

T 0 =
∑
�

s�(q)v�.
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Putting these two operators together we see that

ezF2T 0 =
∑
�

s�(q)e
zF2v�

=
∑
�

s�(q)e
zf2(�)v�,

so that
��
(
ezF2T 0

)
= D̃.

Now, since T and ezF2 are operators in GL∞, this tells us immediately that D̃ is a
tau function for the KP hierarchy.

This technique was originally used in [25] to prove the more general result that

D̃ is a tau function for the Toda hierarchy.
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complete symmetric function, 9
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contraction operator, 27
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ELSV formula, 68
energy decomposition, 20

Fock space
bosonic, 33
fermionic, 17

charge m, 18
fundamental involution, 10

Heisenberg algebra, 33
Hirota bilinear equation, 44
Hodge integrals, 67

irreducible character, 14

join-cut equation, 66
join-cut operator, 66

KdV equation, 1
KdV hierarchy, 4, 69
KP equation, 4, 46
KP hierarchy, 4, 46

Maya diagram, 18
monodromy condition, 64

normal ordering, 66

oscillator algebra, 33

partition, 6
ambiguous, 53
code, 48
conjugate, 7
diagram, 7
horizontal m-strip, 7
length, 6
multiplicity, 6
part, 6
size, 6
skew diagram, 7
survivor, 55
vertical m-strip, 7

Plücker relations, 58
power sum symmetric function, 10
principal gradation, 36

ramified covering, 63
branch point, 63
degree, 63
equivalent, 63

Riemann-Hurwitz formula, 68

Schur function, 12
Schur polynomial, 12
semi-infinite monomial

energy, 20
shift operator, 21
simple Hurwitz numbers, 64
soliton, 3
symmetric functions, 9
symmetric group, 8
symmetric polynomial, 8

tau function, 43, 69
transitivity condition, 64

74



vacuum vector, 18

wedging operator, 27
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