
Registering a Non-Rigid

Multi-Sensor Ensemble of Images

by

Hwa Young Kim

A thesis

presented to the University of Waterloo

in ful�llment of the

thesis requirement for the degree of

Master of Mathematics

in

Computer Science

Waterloo, Ontario, Canada, 2009

c© Hwa Young Kim 2009

I hereby declare that I am the sole author of this thesis. This is a true copy of the

thesis, including any required �nal revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Image registration is the task of aligning two or more images into the same

reference frame to compare or distinguish the images. The majority of registration

methods deal with registering only two images at a time. Recently, a clustering

method that concurrently registers more than two multi-sensor images was pro-

posed, dubbed ensemble clustering. In this thesis, we apply the ensemble clustering

method to deformable registration scenario for the �rst time. Non-rigid deforma-

tion is implemented by a FFD model based on B-splines. A regularization term is

added to the cost function of the method to limit the topology and degree of the

allowable deformations. However, the increased degrees of freedom in the transfor-

mations caused the Newton-type optimization process to become ill-conditioned.

This made the registration process unstable. We solved this problem by using the

matrix approximation a�orded by the singular value decomposition (SVD). Exper-

iments showed that the method is successfully applied to non-rigid multi-sensor

ensembles and overall yields better registration results than methods that register

only 2 images at a time. In addition, we parallelized the ensemble clustering method

to accelerate the performance of the method. The parallelization was implemented

on GPUs using CUDA (Compute Uni�ed Device Architecture) programming model.

The GPU implementation greatly reduced the running time of the method.

iii

Acknowledgements

I would like to express my sincere gratitude to my supervisor, Professor Je� Or-

chard, for his invaluable and helpful guidance during my research and study here

at the University of Waterloo. I feel very fortunate to have him as a supervisor. He

was always there to provide explanations to my questions with patience, motivation

and encouragement. His keen interest in my work has greatly motivated me and

has made this thesis possible.

I would also like to thank to my thesis committee members, Richard Mann

and Justin Wan, for their thoughtful comments and suggestions on this thesis. My

gratitude also goes to my colleagues in the Scienti�c Computing Laboratory for

their friendship and invaluable support. I also appreciate the support I received

from the Natural Sciences and Engineering Research Council of Canada.

Last but not the least, my deepest gratitude goes to my family for their endless

love and support during my study here in Canada. Most especially, I would like to

thank my dear husband, JungHoon, who always encouraged me as a friend although

my study here meant I will be away from him for two years. Without him, this

thesis would never have been completed.

iv

Dedication

This is dedicated to my parents, parents-in-law and husband.

v

Contents

List of Tables viii

List of Figures x

1 Introduction 1

2 Background 3

2.1 Multi-Sensor Registration . 3

2.2 Non-Rigid Registration . 5

2.3 Ensemble Registration . 6

2.3.1 Drawbacks of Pairwise Methods 6

2.3.2 Ensemble Registration for Multi-Sensor Images 8

2.3.3 Extension of the Ensemble Clustering Method 9

3 Multi-Sensor Ensemble Registration by Clustering 11

3.1 Cost Function . 11

3.2 Gaussian Mixture Model (GMM) 12

3.3 Two Processes . 13

3.3.1 Density Estimation . 13

3.3.2 Motion Adjustment . 14

4 Non-Rigid Multi-Sensor Ensemble Registration by Clustering Method 16

4.1 Deformation Model . 16

4.2 Regularization . 20

4.3 Cost Function . 20

4.4 Optimization . 21

4.4.1 Modi�ed Motion Adjustment Process 21

4.4.2 Ill-Conditioning and Newton's Method 23

4.4.3 Regularization versus Matrix Approximation 29

vi

4.5 Multi-Resolution Approaches . 32

4.6 Summary of Algorithm . 36

4.7 Experiments . 36

4.7.1 Measure of Accuracy . 37

4.7.2 Pairwise Method . 37

4.7.3 RIRE Data . 38

4.7.4 BrainWeb Data . 39

4.7.5 Face Image Data . 39

4.8 Results and Discussion . 40

4.8.1 RIRE Data . 40

4.8.2 BrainWeb Data . 40

4.8.3 Face Image Data . 44

5 Parallelization on GPU 51

5.1 GPGPU . 52

5.2 CUDA Programming Environment 53

5.3 CUDA Implementation of Ensemble Clustering 55

5.4 Experiments and Results . 58

6 Conclusions and Future Work 61

Bibliography 62

Appendices 66

A Displacement Errors 67

A.1 RIRE Data . 67

A.2 BrainWeb Data . 69

A.3 Face Image Data . 71

vii

List of Tables

4.1 Displacement Errors for RIRE Data 41

4.2 Displacement Errors for BrainWeb Data 45

4.3 Displacement Errors for Face Image Data 48

5.1 Execution Time for CPU and GPU implementation 60

viii

List of Figures

2.1 The Change of Dispersion in the JISP 4

2.2 Examples of Multi-Sensor Registration 7

3.1 Two Main Processes of Ensemble Clustering Method. 13

4.1 Con�guration of Control Point Grid (CPG) 18

4.2 Change of CPG . 19

4.3 Derivatives of Image Intensity according to Control points 25

4.4 The relationship between the singular values in Σ 28

4.5 Ill-Conditioning Problem - CT image 30

4.6 Ill-Conditioning Problem - PET image 31

4.7 The Image Grids according to the Change of Regularization Term . 33

4.8 The Image Grids according to the Change of Matrix Approximation

Term . 34

4.9 The Image Grids according to the Change of Regularization and

Matrix Approximation Terms . 35

4.10 Displacement Errors for RIRE Data 41

4.11 RIRE Data Test Set . 42

4.12 Registration Results of Ensemble Clustering Method for RIRE Data 42

4.13 Registration Results of Pairwise Clustering Method for RIRE Data 43

4.14 Registration Results of Pairwise NMI Method for RIRE Data 43

4.15 Displacement Errors for BrainWeb Data 45

4.16 BrainWeb Data Test Set. 46

4.17 Registration Results of Ensemble Clustering Method for BrainWeb

Data. 46

4.18 Registration Results of Pairwise Clustering Method for BrainWeb

Data. 47

4.19 Registration Results of Pairwise NMI Method for BrainWeb Data. . 47

4.20 Displacement Errors for Face Images 48

ix

4.21 Face Image Data Test Set. 49

4.22 Registration Results for Face Image Data 50

5.1 Performance of CPU and GPU . 54

5.2 CUDA Architecture . 56

5.3 Di�erent Implementation Approaches of A and b 59

x

Chapter 1

Introduction

Image registration is the process of �nding the transformation that aligns two or

more images of the same object, taken at di�erent times, from di�erent sensors

or from di�erent perspectives. Although the images are collected from di�erent

coordinate systems, the transformation maps the points in one image to their cor-

responding points in the other images. As a result of registration, we can compare

and distinguish the di�erences between images in the same coordinate system. Im-

age registration is a common and fundamental step in image analysis and is used in

various areas such as remote sensing, medical imaging, cartography, and computer

vision, to name a few. During the last decades, a broad range of methods for image

registration has been developed. However, the majority of methods are designed to

register only two images at a time in a pairwise fashion.

Some researchers have worked on registering multiple images at the same time

� called groupwise registration or ensemble registration. However, their methods

are applied only to mono-modality images for speci�c applications such as creating

an atlas in medical imaging. Recently, a clustering method that simultaneously

registers several multi-sensor images was proposed [1]. This ensemble clustering

method successfully performed the multi-sensor ensemble registration, and demon-

strated that the registration results are more robust and accurate than pairwise

methods.

The �rst objective of this thesis is to apply the ensemble clustering method to

non-rigid registration scenarios. Therefore, this thesis works on registering non-

rigid multi-sensor ensembles as an extension of the ensemble clustering method.

This problem is one of the most complicated and challenging problems, and to the

best of our knowledge, its solution has never been demonstrated in the literature.

Although the speed of computing has been continuously increasing, the need

1

for decreasing the computational time of registration methods still exists. The size,

resolution and dimensionality of image data are still growing, and the complexity

of registration methods is also increasing to achieve more robust and accurate reg-

istration. Thus, we consider a parallelization of the ensemble clustering method to

improve its speed. The second objective of this thesis is to implement the ensem-

ble clustering method for a Graphics Processing Unit (GPU). GPUs are a popular

parallelization tool for general computing applications and provide some high-level

programming languages. We use the CUDA (Compute Uni�ed Device Architecture)

programming model developed by NVIDIA to implement the method, and compare

the performance of the parallel implementation with the non-parallel version.

This thesis is organized as follows. In Chapter 2, we review several multi-sensor

and non-rigid registration approaches proposed in the literature. After discussing

some drawbacks of pairwise methods, we explore the ensemble registration. Chap-

ter 3 is a summary of the ensemble clustering method suggested by [1]. In Chapter

4, we present our non-rigid ensemble registration method and explain B-splines as

our deformation model, regularization for a smooth deformation, our cost func-

tion, and its optimization processes. We investigate an ill-conditioning problem

encountered when applying the ensemble clustering method to multi-sensor non-

rigid registration, and suggest a solution using the matrix approximation and the

singular value decomposition (SVD). To demonstrate our method and compare it

with pairwise methods, an experiment is performed with three synthetic datasets.

The registration results are given and discussed. In Chapter 5, General-Purpose

computing on the GPU (GPGPU) and the CUDA programming environment are

examined. We discuss our GPU implementation, experiments and their results.

Finally, we conclude and describe future work in Chapter 6.

2

Chapter 2

Background

2.1 Multi-Sensor Registration

Multi-sensor or multi-modality registration is the task of registering images of the

same scene acquired from the di�erent imaging devices or sensors. For example,

in medical imaging we can obtain images of a body part using di�erent modalities

such as magnetic resonance imaging (MRI), computed tomography (CT), positron

emission tomography (PET) and ultrasound. Other examples of multi-sensor im-

ages include satellite imagery acquired by di�erent sensors, and several images of

an object taken with di�erent illuminations.

Multi-sensor registration is a challenging problem. Because multi-modal images

have di�erent intensity characteristics, in order to register them, we cannot use

simple similarity measures such as sum of squared di�erence (SSD) or cross corre-

lation (CC) in image intensities. Nevertheless, some common characteristics in the

image intensities enable us to recognize that the images describe the same object

or scene. This consistent correspondence between image intensities is called the

intensity mapping. For instance, bones are rendered as white in CT, and black in

MRI. Although bones have a di�erent intensity composition in the two images, we

can �nd similarities between the two images based on global shape. This intensity

relationship between images can be visualized by the joint intensity scatter plot.

Consider registering two multi-modal images (CT and MRI) of an object. If the

CT image is overlaid on top of the MR image, each pixel on the overlaid images is

expressed as a 2-tuple point. Its �rst component is the intensity value of the pixel in

the CT image and the second component is the corresponding intensity value of the

same pixel in the MR image. A cloud of points is created by plotting these points

for all pixels in a 2-dimensional space, where each axis represents intensity values

3

T1
 In

te
ns

ity

T2 Intensity

C
T

 In
te

ns
ity

(a) Before Registration

T1
 In

te
ns

ity

T2 Intensity

C
T

 In
te

ns
ity

(b) After Registration

Figure 2.1: The change of dispersion in the JISP. The joint intensities of three images (T1-

MRI, T2-MRI and CT) are plotted. (a) is the JISP before registration and (b) is the JISP after

registration. The dispersion in the JISP is much decreased in (b).

from one of the images. We call this the Joint Intensity Scatter Plot (JISP). In the

JISP, the intensity mapping between images is expressed as several coherent clusters

or swaths of scatter points. A coherent cluster in the JISP often corresponds to an

object in the images. For example, bone, muscle, and fat can each be represented by

a cluster in the JISP of an MR/CT combination. The coherence of clusters in the

JISP is disturbed as two images are moved out of registration. As a result, pixels

belonging to di�erent clusters are mixed and the coherence of clusters is broken.

Therefore, reducing the dispersion of scatter points in the JISP, or increasing the

coherence of clusters in the JISP, means that two images are getting registered. The

more compact each cluster is, the more accurately the two images are registered.

The objective of most multi-modal registration methods is to reduce the dispersion

in the JISP. Figure 2.1 shows the change of dispersion in the JISP before and after

registration of three images. To quantify dispersion in the JISP, mutual information

(MI) [2][3], correlation ratio (CR) [4] and normalized mutual information (NMI) [5]

are often used as cost functions for multi-sensor registration. The methods using

MI and NMI assume that the relationship between image intensities is probabilistic,

and the correlation ratio methods assume that the corresponding intensities have

a functional relationship [6]. All of them are maximized at registration and work

well for both rigid and non-rigid registration.

4

2.2 Non-Rigid Registration

One of the basic classi�cations of registration methods is rigid versus non-rigid

registration. Rigid registration is a method that uses only combinations of lin-

ear transformations such as translation, rotation and sometimes scaling to register

images. While rigid registration takes account of only global transformations, non-

rigid registration involves a broader class of transformations that allows locally

deformed images (which cannot be registered only by global transformations). Fig-

ure 2.2 shows examples of rigid and non-rigid registration. Since many organs and

tissues are deformable and their images do not conform to a rigid or even an a�ne

approximation, non-rigid registration plays an important role in medical imaging.

Consider registering two brain images taken from di�erent individuals. In this inter-

subject case, the images to be registered have geometric di�erences that cannot be

matched only by rigid-body transformations. Moreover, even chest and abdomen

images taken from the same individual at di�erent times may involve non-linear

transformations, because they contain highly deformable tissues. Common appli-

cations of non-rigid registration are to compare anatomy between individuals, to

track changes due to growth, surgery or disease, to correct soft-tissue deformation

caused by surgery, and to correct imaging warp artifacts.

The non-rigid registration methods can be classi�ed by the transformation

model that de�nes how images are deformed [6]. A widely used transformation

model is the family of splines, including thin-plate splines (TPS) and B-splines.

The thin-plate spline was established as a mathematical interpolator and intro-

duced to the image analysis community by Goshtasby [7] and Bookstein [8]. The

thin-plate spline methods treat images as a �at metal sheet that is �xed at control

points in the image. Based on the location of these control points, a non-rigid

transformation for the entire image is computed using the thin-plate spline as the

interpolant. A drawback of the TPS is that it has a global in�uence on the trans-

formation; if a control point is disturbed, then all other points in the image change.

Moreover, as the number of control points increases, the computational cost rises

steeply. In contrast, B-splines have a local support; when a control point is per-

turbed, its in�uence only reaches the neighborhood of the control point. B-spline

based non-rigid registration techniques [9] are popular and widespread because of

the B-spline's good approximation properties, computational e�ciency and local

support.

Another transformation model for non-rigid registration is the elastic model [10].

5

Elastic registration views the deforming images as an elastic body and deforms the

images, using external forces to stretch the images, and internal forces to keep the

deformations smooth, until the forces reach equilibrium. The registration is accom-

plished at the minimum energy state. However, when the images have extensive

and highly localized deformations, it is hard to get good registration results with

this method. To overcome this disadvantage, a viscous �uid model has been pro-

posed [11]. Fluid registration models images as a thick �uid so that their internal

forces (stress) relax as the images deform over time. Unlike the elastic method, the

smoothness of the images in the �uid method does not proportionally increase as

the deformation increases. As a result, this method can handle severe and large

localized deformation of images.

The optical �ow based approaches that were originally developed in the com-

puter vision and arti�cial intelligence community try to estimate the motion be-

tween two successive frames in image sequences by using the optical �ow constraint

equation [12]. This method is based on the assumption that the intensity value at a

point in the image is uniform over small time increments. This �constant intensity�

assumption is invalid for multi-sensor image pairs so that optical �ow based meth-

ods have not been widely used for multi-sensor registration. For a more detailed

discussion of non-rigid registration, we refer the reader to [6, 13, 14, 15].

2.3 Ensemble Registration

In this subsection, we discuss �Ensemble Registration� [16, 1], the task of registering

more than two images simultaneously, rather than in a pairwise way. An ensemble

is a set of images that contains some common content. For instance, the �ve images

with the di�erent modalities in Fig. 2.2 form an ensemble, as do a set of satellite

images taken from di�erent sensors.

2.3.1 Drawbacks of Pairwise Methods

The most general approach for registering multiple images is applying some chosen

registration method to two images at a time and repeating it until all the images

can be brought into the same frame of reference. However, this pairwise approach

can lead to problems. The �rst one is selection dependency. The registration results

can be di�erent depending on which pairs of images are selected. For example, if

we try to register several multi-modal brain images (T1-MRI, T2-MRI, PD-MRI,

6

(a) Target Image

(b) Rotation (c) Scaling (d) Shearing (e) Translation (f) Non-Rigid

(g) Before Registration

(h) Registered Images

(i) After Registration

Figure 2.2: Examples of multi-sensor registration. (a) T1-MR image used for target image. (b) -

(f) Transformed Images. (g) Edges of each deformed images superimposed on target image before

registration. (h) Results of rigid and non-rigid registration. (i) Edges of each registered images

superimposed on target image after registration. T2-MRI, PD-MRI, CT, PET and PD-MRI

images (from the �rst colum of each row).

7

CT and PET) in a pairwise fashion, we need to choose which pairs of images to

register. In general, the registration among di�erent types of MR images gives good

results. One should avoid registering image pairs that share very little information

such as CT and PET.

Another drawback is that pairwise methods may yield a solution that lacks

internal consistency. For example, suppose we have registration results to register

image A to B, and B to C, and derive a transformation to register image A to C

by composing these two registration results. In this case, we cannot say that the

derived transformation for image A to C is exactly the same as the transformation

that we could get if we simply register image A to C. Which transformation is

correct? How do we reconcile these di�erences?

As a solution for these problems, a global strategy that registers all images

simultaneously was proposed [16, 1]. While pairwise methods can use only a fraction

of the available images at a time, the new method can use full information of all

images at the same time. As a result, there is no need to choose image pairs for

registration and we can use more information for registration so that the registration

results become more accurate and internally consistent. We call this approach

Ensemble Registration.

2.3.2 Ensemble Registration for Multi-Sensor Images

The �rst demonstration of ensemble registration was performed by Woods et al. in

1998 [17]. In order to get the complete internal consistency of the registration, they

use the sum of squared di�erences (SSD) as cost function, which is computed by

all possible pairwise SSDs. The resulting transformations are the completely inter-

nally consistent set of transformations, called �reconciled mean transformations�.

However, this method is only suitable for mono-sensor image registration due to

the use of the SSD.

Some groupwise registration methods [18, 19] have recently emerged in the lit-

erature, motivated by computational anatomy and computational morphometry.

These methods register collections of images in a population to a chosen reference

anatomy to create an average shape � called an atlas. These methods avoid the

need to choose a reference subject, and instead simultaneously register all subjects

to a group archetype image. As a result, the methods can overcome drawbacks

of pairwise registration and construct an unbiased atlas of the population. How-

ever, these methods have been demonstrated only on mono-modal images. Their

8

applicability to multi-sensor ensembles is unlikely.

For multi-modal ensemble registration, we can use the methods based on MI

and NMI, both popular similarity measures for multi-modal registration. However,

ensemble registration using MI and NMI is problematic because these methods

require the joint histogram. As the number of images to be registered increases,

the number of histogram bins increases exponentially. For example, for the case of

registering �ve images, if we use 256 (28) intensity bins per image the number of

histogram bins becomes 28∗5 = 240 (over 1 trillion). Therefore, the joint histogram

based methods are not suitable for multi-modal ensemble registration.

Recently, a clustering method for multi-sensor ensemble registration was pro-

posed by Orchard and Mann [1]. Without the need to form the joint histogram,

this method minimizes the dispersion in the JISP by two main processes, density

estimation and motion adjustment. First, the density of the scatter points in the

JISP is estimated and then, while holding the density estimation �xed, the scatter

points in the JISP are moved toward increasing the likelihood. The two processes

are performed iteratively until the movement of the scatter points is converged.

The experiments in [1] show that the results of this clustering method are robust

and more accurate than the pairwise methods. In this thesis, we call this method

the ensemble clustering method. The detail of this method is discussed in Chapter

3, because we use this method as our main tool to solve our problem, non-rigid

registration of a multi-sensor ensemble of images.

2.3.3 Extension of the Ensemble Clustering Method

Although image registration has a long history and many methods have been pro-

posed in the literature, many challenging problems still exist: �Registering of images

with complex non-linear and local distortion, multimodal registration, and regis-

tering N -D images (where N > 2) belong to the most challenging tasks at this

moment� [15]. The ensemble clustering method successfully deals with one of the

most challenging tasks at this moment, multi-sensor registration, even complicating

it by tacking ensembles of images, not just two at a time. Currently, we regard

the ensemble clustering method as the best solution for the general purpose multi-

sensor ensemble registration. This method can be used for mono- and multi-sensor

image registration and it works in both pairwise and groupwise modes. However,

this method is demonstrated only for rigid and a�ne transformations. Here, we

consider adding another challenging registration problem, non-linear registration,

9

to the ensemble clustering method. Namely, how does the ensemble clustering

method work with a large number of degrees of freedom in the transformation?

The combined problem is registering a non-rigid multi-sensor ensemble of images.

To solve this problem, this thesis works on registering non-rigid multi-sensor en-

sembles and it is an extension of the ensemble clustering method. This problem

is one of the most complicated and challenging problems and to the best of our

knowledge, its solution has never been demonstrated in the literature.

We give another quotation from [15]: �The major di�culty of N -D image regis-

tration resides in its computational complexity. Although the speed of computers

has been growing, the need to decrease the computational time of methods per-

sists. The complexity of methods as well as the size of data still grows (the higher

resolution, higher dimensionality, larger size of scanned areas).� This statement is

very true for registering non-rigid multi-sensor ensembles. The number of trans-

formation parameters is larger than the rigid-body registration, and the number of

images is also larger than the pairwise registration method. Therefore, we consider

the parallelization of the ensemble clustering method to reduce the computation

time.

In summary, this thesis extends the ensemble clustering method in two direc-

tions: non-rigid transformations, and parallelization.

10

Chapter 3

Multi-Sensor Ensemble Registration

by Clustering

This section mainly summarizes the ensemble clustering method [1]. Understand-

ing this method is an essential part because this thesis is an extension of it and

we use the theory and algorithm of it as our basis. In brief, the ensemble cluster-

ing method models the density of scatter points in the JISP, forming a probability

density function using a Gaussian Mixture Model. Generally speaking, one Gaus-

sian component is used to model each cluster in the JISP. When the scatter points

migrate toward the cluster centres, they move to a region of greater probability.

The process of registering the ensemble of images amounts to moving the scatter

points in an attempt to maximize their total probability, or likelihood. The en-

semble clustering method derives a density estimate of the JISP, and the motion

parameters, in tandem. These two separate, but coupled, processes are iterated

until convergence.

3.1 Cost Function

Consider registering three images by using the ensemble clustering method. Each

pixel corresponds to a point in the 3-D JISP, where each axis in the joint intensity

space represents intensity values from one of the images. A scatter point in the

JISP is expressed as a 3-tuple vector whose elements are intensity values of pixels

in each image. We denote this intensity vector for pixel x as Ix ∈ RD (D is the

number of images).

The ensemble clustering method uses a statistical approach to model these scat-

ter points in the JISP. We assume that there exists several clusters in the JISP.

11

Then each cluster has its own distribution and it can be expressed as a probability

density function (pdf). We denote these pdfs for each cluster as φ, that is the den-

sity estimation of the scatter points in the JISP. As the registration proceeds, the

scatter points move in the JISP as the images themselves undergo spatial transfor-

mations. The motion parameters that specify these transformations are stored in

θ. Then, if we assume that the pixels in the JISP are spatially independent, a cost

function can be written as a function of φ and θ,

L (φ, θ) =
∏
x

p
(
Iθx | φ

)
,

where p is a probability function and Iθx denotes the intensity vector for pixel x after

applying the spatial transformation with parameters θ. The expression L (φ, θ)

is the probability of observing the set of intensity vectors, given the distribution

speci�ed by φ. Thus, the goal of the method is to maximize the likelihood cost

function L (φ, θ) by appropriate choice of φ and θ. For the simplicity of calculation,

the method uses the logarithm of L so that the product over x turns into a sum,

logL (φ, θ) =
∑
x

log p
(
Iθx | φ

)
. (3.1)

To maximize logL (φ, θ), the ensemble clustering method iteratively performs two

processes until converging on values of φ and θ .

3.2 Gaussian Mixture Model (GMM)

The ensemble clustering method uses a Gaussian Mixture Model (GMM) [20] to

model the density of scatter points in the JISP. The GMM is a probabilistic model

for density estimation and consists of a mixture of a number of probability density

functions, usually Gaussian, with di�erent means and covariances. By applying

GMM to the JISP, the clusters in the JISP are modeled as a mixture of K Gaussian

components, each speci�ed by a mean, µk, and a covariance matrix, Σk. Therefore,

for a single pixel location x, the likelihood of observing the intensity vector Iθx is

p
(
Iθx | φ

)
=

K∑
k=1

πkN
(
Iθx;µk,Σk

)
(3.2)

where the kth Gaussian component is speci�ed by µk and Σk, and πk are the com-

ponent weights, with
∑

k πk = 1. The function N denotes the normal distribution,

12

In
te
n
s
it
y
 o
f
im
a
g
e
 2

Intensity of image 1

(a) Density Estimation

In
te
n
s
it
y
 o
f
im
a
g
e
 2

Intensity of image 1

(b) Motion Adjustment

Figure 3.1: Two main processes of Ensemble Clustering Method. In density estimation, the

motion parameters are held �xed while a better density estimate is computed by moving and

stretching the cluster density components, as shown (a). In motion adjustment, the density

estimate is held �xed and the optimal motion is determined using least-squares. As the images

move, the corresponding scatter points move toward the cluster centres (on average), as shown in

(b). This �gure is from [1].

N
(
Iθx;µ,Σ

)
=

exp
(
−1

2

(
Iθx − µ

)T
Σ−1

(
Iθx − µ

))√
(2π)D |Σ|

(3.3)

3.3 Two Processes

To maximize the log-likelihood cost function (3.1), the ensemble clustering method

alternately performs two optimization processes. The �rst process is density es-

timation that models the density of the scatter points in the JISP by optimizing

the cost function with respect to φ. The second process is motion adjustment that

moves the images to minimize the dispersion of the JISP by optimizing the same

cost function with respect to θ. Figure 3.1 describes the two processes pictorially.

3.3.1 Density Estimation

While holding the motion parameters θ �xed, this process iteratively attempts

to improve the density estimate φ by using the expectation-maximization (EM)

algorithm [20]. The EM algorithm has two steps; expectation and maximization.

13

The expectation step �nds the membership of each intensity vector in the JISP

among K clusters. The membership of pixel Iθx to cluster k is

τkx =
πkN

(
Iθx | φk

)∑
k πkN (Iθx | φk)

where
∑
k

τkx = 1 (3.4)

The maximization step re-estimates the cluster components, µk, Σk and πk. It

means each cluster is moved according to the optimal density estimate. The new

estimated cluster components are given by

µ′k =

∑
x τkxI

θ
x∑

x τkx
, (3.5)

Σ =

∑
x τkx

(
Iθx − µ′k

) (
Iθx − µ′k

)T∑
x τkx

, (3.6)

π′k =

∑
x τkx∑

k

∑
x τkx

. (3.7)

3.3.2 Motion Adjustment

While holding the density estimation φ �xed, this process �nds a motion increment

that moves all the scatter points toward increasing the log-likelihood cost function.

The ensemble clustering method uses a Newton-type method to optimize the cost

function. The following derivation outlines the process to �nd a small increment

to the motion parameters, θ̃ (called a nudge), at each iteration. It is done by

optimizing the cost function, logL (φ, θ) =
∑
x

log p
(
Iθx | φ

)
, with respect to the

parameters θ. To optimize the cost function, we set its gradient vector to zero.

∂

∂θ
logL (φ, θ) =

∂

∂θ

(∑
x

log p
(
Iθx | φ

))
=
∑
x

∂
∂θ
p
(
Iθx | φ

)
p (Iθx | φ)

= 0 (3.8)

The probability function p and the normal distribution N in the gradient vector of

logL are replaced by their de�nitions, (3.2) and (3.3) from the GMM. For notational

brevity, Nk

(
Iθx
)
is used instead of N

(
Iθx (x) ;µk,Σk

)
.

∂

∂θ
logL (φ, θ) =

∑
x

−1

p (Iθx | φ)

K∑
k=1

πkNk

(
Iθx
) ∂Iθx
∂θ

Σ−1
k

(
Iθx − µk

)
= 0 (3.9)

14

To compute a small increment of motion parameters, θ̃, Iθx is replaced with a linear

approximation of a nudged version of the images, i.e. Iθ+θ̃x
∼= Iθx + ∂Iθx

∂θ

T
θ̃.

∂

∂θ
logL (φ, θ) ∼=

∂

∂θ
logL

(
φ, θ + θ̃

)
=

∑
x

−1

p (Iθx | φ)

K∑
k=1

πkNk

(
Iθx
) ∂Iθx
∂θ

Σ−1
k

(
Iθx +

∂Iθx
∂θ

T

θ̃ − µk

)
= 0 (3.10)

As the �nal step, factoring out θ̃ and collecting the remaining terms from (3.10),

we get(∑
x

1

p (Iθx | φ)

K∑
k=1

πkNk

(
Iθx
) ∂Iθx
∂θ

Σ−1
k

∂Iθx
∂θ

T
)
θ̃

=

(∑
x

1

p (Iθx | φ)

K∑
k=1

πkNk

(
Iθx
) ∂Iθx
∂θ

Σ−1
k

(
Iθx − µk

))
(3.11)

or, more concisely,

Aθ̃ = b. (3.12)

Notice that if there are D images and each image had M motion parameters, then

the nudged version of motion parameters θ̃ in (3.12) has MD motion parameters.

The matrix A in (3.12) is theMD×MD system matrix and b in (3.12) is theMD×1

vector. For instance, if we register �ve images with three motion parameters per

image (D = 5 and M = 3), then the problem turns into solving 15 linear equations

containing 15 unknowns. The solution of the linear equations, θ̃, is the optimal

motion increment and it is used for adjusting the current estimate for θ.

15

Chapter 4

Non-Rigid Multi-Sensor Ensemble

Registration by Clustering Method

In this Chapter, we present a method to register concurrently non-rigid multi-

sensor ensembles based on the clustering method explained in Chapter 3. As an

extension of the clustering method [1], our method mostly follows the framework of

it, but a di�erent transformation model is used and supplementary parts required

for successful non-rigid registration are added. First, the deformation model and

the regularization for non-rigid transformations are described and a cost function

according to them is de�ned. We explain the problem that we encounter during the

optimization process and how it is solved. Some implementation issues and results

and discussion of experiments are given in this chapter.

4.1 Deformation Model

For the transformation model, we choose a free-form deformation (FFD) model

based on B-splines. The FFD was originally suggested by Sederberg and Parry as a

powerful tool for modeling 3-D deformable objects [21]. The FFD deforms an object

by manipulating a 3-D parallelpiped lattice in which the object is embedded. As the

lattice is deformed, the object is consistently deformed according to the deformation

of the lattice. Instead of using the Bernstein polynomials for the deformation

function, the bivariate cubic B-spline tensor product was used for the deformation

function of FFD [22, 23]. In contrast to thin-plate splines or elastic-body splines,

B-splines support local control that limits the e�ect of the deformation within

neighborhoods of control points. This property results in computational e�ciency

even for a large number of control points.

16

Combining FFD and B-splines, we consider a 2-D image overlaid on a con-

trol lattice. We can deform the image by manipulating the underlying mesh of

control points. By moving the control points independently of each other, the

space between them is deformed non-rigidly so that the image on the lattice is also

deformed according to the deformation of the control lattice. This deformation

produces smooth and C2 continuous transformations [22, 23].

Now, we de�ne our deformation model by following Rueckert et al.'s formulation

[9]. We denote the 2-D domain of our image as Ω = {(x, y) | 0 ≤ x < X, 0 ≤ y < Y }.
Let ci,j be the value of the ij

th control point on a control point grid (CPG) Ψ , a

lattice of uniformly spaced control points. The spacing between the control points

in x and y directions are denoted by δx and δy , respectively. Then at any position

x = (x, y) , the deformation D can be written as the 2-D tensor product of 1-D

cubic B-splines together with the control points

D(x) =
3∑
l=0

3∑
m=0

Bl(u)Bm(v)ci+l,j+m (4.1)

where i = bx/δxc − 1 , j = by/δyc − 1 , u = x/δx − bx/δxc , v = y/δy − by/δyc and
where Bl represents the l

th cubic B-spline basis function

B0(u) = (1− u3)/6

B1(u) = (3u3 − 6u2 + 4)/6

B2(u) = (−3u3 + 3u2 + 3u+ 1)/6

B3(u) = u3/6

where 0 ≤ u < 1 . The transformation D(x) in (4.1) de�nes displacement of the

point x = (x, y) after deformation. It is computed from the values of a 4 × 4

neighborhood of control points surrounding the point. In (4.1), i and j are the

starting index of the 4 × 4 neighborhood of control points for x = (x, y), and u

and v are the relative positions of x and y, respectively, within the control point

cell containing the point x = (x, y). Figure 4.1 shows these neighborhoods and the

con�guration of the CPG. We present some examples of FFD deformation in Fig.

4.2. They show the change of the control-point mesh before and after moving one

or several control points. As we can see, the results of moving control points are

local and smooth.

17

x

X X+1

Y+1

Y

-1
0

0

1

y

x = (x, y)

CPG ΨΨΨΨ

Image ΩΩΩΩ

. . .

. . .
C00

C0Y

CX0

δδδδx

δδδδy

CXY

x = (x, y)

Ci+1, j Ci+2, j Ci+3, j

Ci+3, j+3Ci+1, j+3 Ci+2, j+3

u

Ci, j+3

Ci, j

v

Figure 4.1: Con�guration of Control Point Grid (CPG)

18

(a) Single Position Change

(b) Multiple Position Change

Figure 4.2: Change of CPG

19

4.2 Regularization

The non-rigid registration problem using high degrees of freedom in deformation is

an ill-posed problem and can cause unrealistic results such as folding and tearing

images. A reasonable assumption for this problem is that a physically plausible de-

formation should be regular and smooth or it should preserve volume and topology

of images. Most applications add an additional regularization term to the cost func-

tion to achieve these goals. This term makes the problem well-posed and stabilizes

the algorithm.

Our regularization term is based on the mean elastic energy � computed using

four-neighborhoods of each control point. The energy Ep is de�ned by

Ep =
1

4

n∑
i=1

4∑
j=1

‖ci − cj‖2 (4.2)

where n is the total number of control points and j indexes the 4-neighborhood of

a control point ci (right, left, top and bottom). This regularization term is akin to

the elastic potential energy of each control point's connections to its four neighbors.

4.3 Cost Function

Our cost function consists of two terms; the �rst term is the log-likelihood cost

function of the ensemble clustering method (3.1), and the second term is the regu-

larization term to constrain the image deformation (4.2). The total cost function

is de�ned as

Etotal = El − λEr (4.3)

where El is the cost associated with the dispersion in the JISP and Er is the cost

associated with the severity of the deformation. A weighting factor λ controls the

in�uence of the regularization term. In this formula, the second term has a negative

sign, because the registration aims to maximize the log-likelihood El, whereas it is

intended to minimize the degree of deformation Er.

To de�ne the �rst term of the cost function, following the ensemble clustering

method [1], we denote a density estimation of the JISP as φ and a set of motion

parameters that specify the displacement of images as c. Here, the set of motion

parameters c corresponds to a set of deformation parameters that de�nes the dis-

placement of control points on the CPG. As the control points on the CPG are

20

moved, images are deformed and the scatter points in the JISP are moved. If the

JISP consists of D images, each point in the JISP is expressed as a D-tuple vector

whose elements are the intensity values of D images for a chosen pixel. We call

this vector an intensity vector and the intensity vector for pixel x is denoted as

Ix ∈ RD. Then, by assuming that the pixels in the JISP are spatially independent,

the log-likelihood cost function can be written as a function of φ and c,

El = logL(φ, c) =
∑
x

log p(Icx | φ) (4.4)

where p is a probability function and Icx denotes the intensity vector for pixel x

after applying the deformation parameterized by c. The expression L(φ, c) is the

probability of observing the set of intensity vectors, given the probability density

function (pdf) speci�ed by φ.

For the second term of the cost function, we use the regularization term de�ned

in (4.2). Since the range of the function El is (−∞, 0), to keep the same range

between the two terms of the cost function, we also take the logarithm of the

regularization term. Thus, the second term of the cost function is de�ned as

Er = logEp = log

(
1

4

n∑
i=1

4∑
j=1

‖ci − cj‖2
)

(4.5)

where n is the total number of control points and cj is the four-neighborhood of ci

(right, left, top and bottom).

4.4 Optimization

4.4.1 Modi�ed Motion Adjustment Process

The goal of our registration method is to maximize the total cost function (4.3) by

appropriate choice of a density estimation of the JISP, φ, and a set of deformation

parameters c. To do this, two optimization processes, density estimation and motion

adjustment, are alternated. The density estimation process is exactly the same as

the ensemble clustering method [1], but the motion adjustment process is modi�ed

due to the deformation model and the regularization term.

The motion adjustment process is to �nd a motion increment that moves all

images toward maximizing the total cost function (4.3). The process is the same

as that described in Chapter 3 except for the additional regularization term. To

21

optimize the total cost function (4.3) with respect to the parameters c, we set its

gradient vector to zero.

∂Etotal
∂c

=
∂El
∂c
− λ∂Er

∂c
= 0 (4.6)

First we only consider the �rst term in (4.6), the gradient of log-likelihood El. The

probability function p and the normal distribution N in the �rst term are replaced

by their de�nitions, (3.2) and (3.3) from the GMM.

∂El
∂c

=
∂

∂c
logL(φ, c) =

∑
x

−1

p (Icx | φ)

K∑
k=1

πkNk (Icx)
∂Icx
∂c

Σ−1
k (Icx − µk) (4.7)

To compute a small increment of deformation parameters, c̃ (called a nudge), Icx
is replaced with a linear approximation of a nudged version of the images, i.e.

Ic+c̃x
∼= Icx + ∂Icx

∂c

T
c̃.

∂El
∂c
∼=
∑
x

−1

p (Icx | φ)

K∑
k=1

πkNk (Icx)
∂Icx
∂c

Σ−1
k

(
Icx +

∂Icx
∂c

T

c̃− µk
)

(4.8)

Now we consider the second term in (4.6), the gradient of the regularization Er. It

corresponds to the gradient of log-elastic energy of the CPG (4.5).

∂Er
∂c

=
∂

∂c
logEp (4.9)

As with Icx, we replace the log-elastic energy with a nudged version of it according

to a linear approximation, i.e. logEc+c̃
p
∼= logEp + ∂ logEp

∂c
c̃. Thus,

∂Er
∂c

=
∂

∂c
logEp

∼=
∂

∂c

(
logEp +

∂ logEp
∂c

c̃

)
=

∂ logEp
∂c

+
∂2 logEp
∂c2

c̃

=
∂Er
∂c

+
∂2Er
∂c2

c̃, (4.10)

where ∂2 logEp
∂c2

is the Hessian matrix. Combining the two terms, (4.8) and (4.10),

22

the gradient of the total cost function (4.6) becomes

∂Etotal
∂c

∼=
∑
x

−1

p (Icx | φ)

K∑
k=1

πkNk (Icx)
∂Icx
∂c

Σ−1
k

(
Icx +

∂Icx
∂c

T

c̃− µk
)
− λ

(
∂Er
∂c

+
∂2Er
∂c2

c̃

)
= 0

After expanding the brackets and reorganizing the remaining terms, we get the

linear system.(∑
x

1

p (Icx | φ)

K∑
k=1

πkNk (Icx)
∂Icx
∂c

Σ−1
k

∂Icx
∂c

T

− λ∂
2Er
∂c2

)
c̃

=

(∑
x

1

p (Icx | φ)

K∑
k=1

πkNk (Icx)
∂Icx
∂c

Σ−1
k (Icx − µk)

)
+ λ

∂Er
∂c

(4.11)

or, more concisely,

(A− λG) c̃ = b+ λ
∂Er
∂c

Wc̃ = q (4.12)

where G = ∂2Er
∂c2

, A − λG = W and b + λ∂Er
∂c

= q. Solving the linear system for

c̃ gives the optimal increment of deformation parameters, according to the linear

approximations. The increment is used to adjust the current estimate for c.

4.4.2 Ill-Conditioning and Newton's Method

The objective of the second optimization process, motion adjustment, is to �nd the

optimal increment of deformation parameter, c̃ , by solving the linear system in

(4.12). If the number of images we register is D and the number of deformation

parameters per image isM , then the size of matrixW in (4.12) isMD×MD and q is

anMD×1 vector. SolvingMD linear equations gives us a set of motion parameters

c̃, an MD × 1 vector. The matrix W is largely composed of the derivatives of

the image intensities with respect to each deformation parameter. Thus, when

the derivatives of the image intensities are very small, the matrix becomes ill-

conditioned. We explain this problem with a small linear system example. We

want to solve the following linear system for x:

23

Ax = b

where

A =


0.4045 0.00001 3.2338 2.1708 1.1850

3.6088 0.00002 1.0560 0.3578 0.7074

3.8390 0.00001 2.6076 4.3746 3.9849

1.3853 0.00002 1.5130 3.8198 4.3767

2.5760 0.00001 3.8857 3.8976 3.5007

 , b =


0.1966

0.4986

0.4901

0.0233

0.2059

 .

This system is ill-conditioned because all the elements in the second column of the

matrix A are close to zero. After solving this system for x, we get

x =


0.1401

10989

−0.0911

0.3457

−0.3595

 .

The second element of x is extremely large compared with other elements. The same

problem occurs when we solve the linear system (4.12). For many situation, New-

ton's method can converge to the root of a function very rapidly. However, when

the derivative of the function is very small, the problem becomes ill-conditioned

resulting in extremely large Newton steps. We encounter this problem when regis-

tering a CT or PET image with other modality images. For the case of CT images,

the intensity values inside the brain are nearly homogeneous so that their deriva-

tives are very small. As a result, some nudge values become extremely large and

the control mesh is intensely distorted. Figure 4.3 shows the derivatives of three

images according to each control point. For the case of CT and PET images, several

very small derivative values are observed. The control points that give very small

derivatives are marked in Fig. 4.3 (a) and the corresponding positions of control

points are marked on the CT and PET image in Fig. 4.3 (b). The marks are

located at the inside of brain for CT and in the background for PET. These parts

of the images do not give enough information to �nd the direction for registering

images.

To resolve this problem, we reduce the matrix W in (4.12) by using the singular

value decomposition (SVD) [24]. The following theorem describes the SVD.

24

0 10 20 30 40 50 60 70 80 90
0

20

40

60

80

100

120

140

160

180

200

Control Points

||
dI

/d
c

||

MR−T1
CT
PET

(a) Derivatives of 3 Images

(b) CT and PET image marked with control points

Figure 4.3: Derivatives of Image Intensity according to Control points

25

Theorem 1. Any m× n matrix A of rank r, with m ≤ n, can be factored

A = UΣV T ,

where U = [u1 | · · · | um] is an m × m matrix, Σ is an m × n diagonal matrix of

singular values, and V = [v1 | · · · | vn] is an n×n matrix such that , UTU = UUT =

Im and V TV = V V T = In with the singular values arranged in decreasing order,

σ1 ≥ σ2 ≥ σ3 ≥ . . . ≥ σm ≥ 0.

The columns of U and V are called singular vectors and the diagonal elements

σi are called singular values. The next theorem explains how to approximate the

matrix A using the SVD in Theorem 1.

Theorem 2. Assume that the m×n matrix A has rank r. Its SVD is UΣV T (where

U,Σ and V follow Theorem 1). Let Z be an approximation of the matrix A and its

rank is k < r. Then the matrix approximation problem

min
rank(Z)=k

‖A− Z‖2

has the solution

Z = Ak := UkΣkV
T
k ,

where Uk = [u1 | · · · | uk] , Vk = [v1 | · · · | vk] , and the k × k diagonal matrix Σk is
σ1

σ2

. . .

σk

 .

In essence, the matrix approximation Ak can be found by re-multiplying UkΣkV
T
k .

Instead of trying to solve Ax = b when A is ill-conditioned, we solve a better-

conditioned nearby system, Akx = b. Applying the two theorems above to approx-

imately solve Ax = b, the solution x can be calculated by

x = VkΣ
−1
k UT

k b.

26

For our small example, the SVD of the matrix A is

U =


−0.2794 0.3062 0.7071 0.0750 −0.5680

−0.2046 −0.8447 0.0972 −0.3920 −0.2855

−0.5952 −0.2204 −0.2282 0.7382 −0.0126

−0.4664 0.3707 −0.5721 −0.4481 −0.3420

−0.5552 0.0820 0.3336 −0.3082 0.6919

 ,

Σ =


12.5200 0 0 0 0

0 3.3704 0 0 0

0 0 2.6210 0 0

0 0 0 0.4618 0

0 0 0 0 0.00001

 ,

V =


−0.4164 −0.9036 −0.0658 0.0760 0.000001

0 0 0 0 −1

−0.4421 0.1197 0.8488 −0.2642 0.000006

−0.5774 0.3365 −0.1197 0.7342 −0.00001

−0.5457 0.2364 −0.5108 −0.6208 0.00001

 .

To approximate the matrix A, we choose k = 4, because the last singular value of

Σ is relatively very small. The solution is

x = VkΣ
−1
k UT

k b

=


0.1523

−0.000005

−0.0144

0.1466

−0.1757


Now, the remaining problem is how many singular values should be removed

from Σ, namely, how to choose k. Here, we seek a balance between accuracy

and stability. Including more singular values increases the accuracy, but at the

risk of decreased stability. If the improvement in accuracy is too small, then the

risk of including another singular value is not worth it. Figure 4.4 describes this

relationship between the singular values. The following theorem gives a very useful

property of the SVD [24].

27

σ1

O

σ�

σσσσk

σσσσ������������

By excluding one more singular
value, we can increase the stability.

σσσσ������������

By adding one more singular value,
we can reduce the error.

ΣΣΣΣ

Figure 4.4: The relationship between the singular values in Σ

Theorem 3 let the SVD of A ∈ Rm×n be given by Theorem 1. If k < r = rank(A)

and

Ak =
k∑
i=1

σiuiv
T
i ,

then

‖A− Ak‖2 = σk+1

This theorem means that the di�erence between the original matrix A and the

estimated matrix Ak corresponds to the k+1th singular value. Each singular value,

σk, is the di�erence between the original matrix A and the estimated matrix Ak−1.

Therefore, we examine the change of this di�erence for all singular values, and

choose the singular value at the moment when the di�erence becomes small. If the

singular values are, σ1 ≥ σ2 ≥ . . . ≥ σm ≥ 0, then we search for the �rst singular

value σi that satis�es

σi − σi+1 < threshold

where i = 1, 2, 3, . . . ,m− 1. The value of threshold is chosen experimentally.

Figures 4.5 and 4.6 show the e�ect of this approach for CT and PET images.

To generate these �gures, we concurrently registered �ve images (MR-T1, MR-T2,

MR-PD, CT and PET) by using the clustering method. We used an 7× 6 control

point grid with 32 pixel spacing. Since the CPG has 2 degrees of freedom (x and

y axis), the number of deformation parameters per image is 7× 6× 2 = 84. Thus,

28

the size of the matrix W in (4.12) was 420× 420 (84× 5 images). To approximate

the matrix W , the value of threshold used was 0.001 and the reduced rank of the

matrix was k = 192. The �rst plot (a) of each �gure shows the norm of each column

in the matrix W . The second plot (b) shows the nudge values and the image grid

(sub-sampled for every 4 pixels) deformed by the nudges. The third plot (c) shows

the nudge values and the deformed image grid after reducing the matrix W . The

columns in the matrix W with small norm values produce extremely large nudges.

Clearly, after applying the matrix approximation, the magnitude of the nudges

decreases and the image grids become smoother.

4.4.3 Regularization versus Matrix Approximation

Here, we look into the in�uence of the regularization and the matrix approximation,

and their relationship. Both methods make the problem well-posed and stable.

While the regularization maintains the topology and limits the severity of the image

deformations, the matrix approximation avoids extreme deformations of the image

caused by low-de�nition regions of the image. In order to explore the in�uence of

each factor, and their relationship, we consider three cases; examining each term

separately, and combining them together. For this experiment, we simultaneously

registered �ve images (MRI-T1, MRI-T2, MRI-PD, CT and PET) by using our

ensemble clustering method. A 7 × 6 control-point grid with 32 pixel spacing was

used and the result images were taken at the 2nd iteration. First, we applied only

the regularization term to register the images without the matrix approximation.

The in�uence of the regularization depends on the constant λ in the cost function

(4.3). Thus, we varied the value of λ and observed the results. Figure 4.7 shows

the deformed image grids (sub-sampled for every 4 pixels) according to changes

of the constant λ. There is little change as we vary the value of λ. The extreme

deformation of CT and PET images are not avoided only by the regularization.

Second, we applied only the matrix approximation to the images without the

regularization term. Since the outcome of the matrix approximation varies depend-

ing on the threshold values, we look into the results by changing the threshold.

Note that a lower threshold increases the rank of the matrix approximation. In Fig.

4.8, as the threshold gets bigger, the displacement of the control points decreases.

Because many singular values are excluded for solving equation (4.12), there is little

movement of the control points on the CPG. To contrast, the small threshold makes

it possible to contain more singular values so that it produces more movements of

29

0 10 20 30 40 50 60 70 80 90
0

20

40

60

80

100

120

Columns of W for CT

||
W

(:
, C

ol
um

n)
 ||

(a) The norm of each column in matrix W

0 10 20 30 40 50 60 70 80 90
−1500

−1000

−500

0

500

1000

1500

Control Points

N
ud

ge
s

(b) Before applying matrix approximation

0 10 20 30 40 50 60 70 80 90
−1500

−1000

−500

0

500

1000

1500

Control Points

N
ud

ge
s

(c) After applying matrix approximation

Figure 4.5: Ill-Conditioning Problem - CT image

30

0 10 20 30 40 50 60 70 80 90
0

20

40

60

80

100

120

140

Columns of W for PET

||
W

(:
, C

ol
um

n)
 ||

(a) The norm of each column in matrix W

0 10 20 30 40 50 60 70 80 90
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

4

Control Points

N
ud

ge
s

(b) Before applying matrix approximation

0 10 20 30 40 50 60 70 80 90
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

4

Control Points

N
ud

ge
s

(c) After applying matrix approximation

Figure 4.6: Ill-Conditioning Problem - PET image

31

the control points on the CPG. From this result, the matrix approximation can be

considered as another regularization method.

Last, based on the above results, we chose a threshold value of 0.0001, because

it is the 1st value that removed the drastic discontinuities. To test the behaviour

of our regularization in conjunction with our matrix approximations, we �xed the

threshold of 0.0001 value and changed the value of λ for regularization. Figure 4.9

shows the results. The result of this case seems regular and well-behaved. While

the matrix approximation removes the excessive deformation, the regularization

adjusts the movement of the control points to economize based on elastic potential

energy. Therefore, we can conclude that combining the regularization with the

matrix approximation is the an appropriate choice for our method.

4.5 Multi-Resolution Approaches

To avoid local minima and to decrease computation time, a multi-resolution frame-

work is popularly used for image registration. The registration is �rst done for the

down-sampled images using Gaussian blurring, and then the results at the lower

resolution are used as the initial guess at the higher resolution. This procedure is

iterated until the highest resolution is reached.

In our optimization, the multi-resolution strategy is used in two ways. First,

the image resolution is changed into three di�erent scales: 20%, 50% and 100%.

Second, the resolution of the CPG is also changed by decreasing the spacing of the

CPG. While a large spacing of CPG allows global non-rigid deformation, a small

spacing allows highly-local non-rigid deformation. At the same time, the decreasing

of the spacing of CPG leads to an increase in the number of degrees of freedom and

computational complexity.

Combining two multi-resolution schemes, our algorithm uses four resolution

levels. For the image resolution, the scale of images is changed to 20%, 50%, 100%

and 100%. For the resolution of the CPG, the spacing of the CPG is changed to

64, 32, 32, and 16 pixels. These spacing numbers refer to the distance, in pixels,

between adjacent control points using the original resolution of the image, so that

the combination of 32 spacing and 50% resolution means the control points are 16

pixels apart in the down-sampled image. The registration starts with a 20% scaled

image with the CPG spaced 64 pixels, and it successively uses the higher resolution

images and the �ner CPGs. At the �nal level, the original scale of images with the

CPG spaced 16 pixels is registered. In order to get the �ner CPG at each level, we

32

(a) λ = 0

(b) λ = 0.1

(c) λ = 1

(d) λ = 10

Figure 4.7: The image grids according to the change of regularization term. From left to

right, MR-T2, MR-PD, CT and PET images grids.

33

(a) threshold = 0.00001, rank(W) = 357

(b) threshold = 0.0001, rank(W) = 314

(c) threshold = 0.001, rank(W) = 192

(d) threshold = 0.01, rank(W) = 96

Figure 4.8: The image grids according to the change of matrix approximation term.

Before applying the matrix approximation, rank(W) = 420. From left to right, MR-T2,

MR-PD, CT and PET images grids.

34

(a) threshold = 0.0001, λ = 0, rank(W) = 314

(b) threshold = 0.0001, λ = 0.1, rank(W) = 261

(c) threshold = 0.0001, λ = 1, rank(W) = 321

(d) threshold = 0.0001, λ = 10, rank(W) = 420

Figure 4.9: The image grids according to the change of regularization and matrix ap-

proximation terms. Before applying the matrix approximation, rank(W) = 420. From

left to right, MR-T2, MR-PD, CT and PET images grids.

35

halve the spacing of CPG and the value of new control points is calculated from

the control points at the previous level, using a B-spline subdivision algorithm [25].

4.6 Summary of Algorithm

Algorithm 1 shows the summary of our algorithm.

Algorithm 1 : Non-rigid Ensemble Clustering Registration

Input: initial ensemble I0

Input: initial deformation parameters C0

Input: initial GMM parameters φ

for each resolution level i do

Iscaled ←− scale ensemble I0

Ci ←− increase the resolution of CPG using Ci−1 if needed

I ←− apply deformation Ci to ensemble Iscaled

repeat

φ←−EM step � density estimation process

C̃ ←− motion adjustment process

Ci ←− Ci + C̃

I ←− apply deformation Ci to ensemble Iscaled

until converged (C̃ < tolerence)

end for

Output: I is registered ensemble at full scale

Output: Ci holds the optimal deformation parameters

Output: φ holds the GMM parameters

4.7 Experiments

The purpose of these experiments is to demonstrate that the ensemble clustering

method can be used for non-rigid registration, and to compare the registration

results with one of the pairwise methods. To achieve this, we used three di�erent

methods for non-rigid registration. The �rst method is our ensemble clustering

method that simultaneously registers multiple images. We chose one image from a

test ensemble as a reference and deformed the other images using the FFD model

36

based on B-splines described in section 4.1. Then, all the images in the same test

ensemble were registered concurrently.

The second and third methods are pairwise registration approaches. The second

is a Nelder-Mead optimization method [26] using the Normalized Mutual Informa-

tion (NMI) as a cost function. This method is a direct search method that does not

use numerical or analytic gradients. The NMI is one of the popular cost functions

for image registration. The details of this method will be explained in section 4.7.2.

The third method is using our ensemble method in a pairwise way. Namely, we

registered only two images at a time using the ensemble clustering method.

All three methods used the same multi-resolution approach described in section

4.5: [20%, 50%, 100%, 100%] for image scale and [64, 32, 32, 16] for spacing of the

CPG. The experiment used three di�erent image sets to generate registration tri-

als. The �rst dataset is the Retrospective Image Registration Evaluation (RIRE)

project's training set [27]. The second dataset is taken from the BrainWeb project at

the Montreal Neurological Institute (http://www.bic.mni.mcgill.ca/brainweb,

1997) [28]. The third dataset is a set of face images with variable illuminations

from the Extended Yale Face Database B [29]. The detail of the data processing

and the parameter settings are provided in later subsections.

4.7.1 Measure of Accuracy

To assess the quality of the registration, we compute the average pixel displacement

error de�ned as

Err =
1

r

r∑
i=1

‖xi − tr(tf (xi))‖2 (4.13)

where r is the number of pixels within the region of interest (ROI), and ‖·‖ is the
standard Euclidean norm. The forward transformation, tf , is a ground truth trans-

formation obtained when the test dataset is generated. The reverse transformation,

tr, is the estimated transformations obtained through the registration and should

(ideally) be the inverse of tf . Thus, Err measures the di�erence between the gold

standard transformation and the estimated transformation. A small displacement

error means better registration, with perfect registration indicated by Err = 0.

4.7.2 Pairwise Method

The Matlab function fminsearch attempts to �nd the minimum of a multivariable

function using a derivative-free method. It uses the Nelder-Mead simplex algo-

37

http://www.bic.mni.mcgill.ca/brainweb

rithm. We used a modi�ed version of this function taken from the Matlab File Ex-

change site (http://www.mathworks.com/matlabcentral/fileexchange/5157).

The regular fminsearch in Matlab initializes the �rst trials very close to each other,

whereas the modi�ed fminsearch allows initializing the step size by changing the

option values. The FFD model based on B-splines was used for the image trans-

formation. For the cost function, the negative NMI with 32 bins was employed as

a similarity measure and a mean elastic energy in�uenced by neighborhoods, Ep in

(4.2) was used as a regularization term. Thus, the total cost function is de�ned as

Etotal = ENMI + λEp (4.14)

where ENMI represents the cost associated with the image similarity measure and

Ep represents the cost associated with the smoothness of the deformation. The

fminsearch method gives the optimal motion parameters by minimizing the total

cost function. We used the same multi-resolution framework as with the ensemble

clustering method: [20%, 50%, 100%, 100%] for image scale and [64, 32, 32, 16] for

spacing of the CPG.

4.7.3 RIRE Data

The RIRE training set consists of �ve di�erent modality volumes: MR-T1 weighed,

MR-T2 weighed, MR-PD weighed, CT, and PET. To begin with, the �ve vol-

umes were registered using the true displacement parameters supplied by the RIRE

project and scaled down to 256 × 256 × 26 voxels. Then the same slice was taken

from each volume, and cropped to 161 × 193 pixels in size. A MR-T1 weighted

image was chosen as a reference and the other four images were deformed using a

FFD model based on B-splines. Deformation parameters were randomly generated

by a normal distribution with a standard deviation of 12 pixels and a 4 × 3 × 2

control point grid with 64 pixel spacing. Ten trial sets of images were generated and

registered to get reliable results. The ensemble clustering method was initialized

with six Gaussian components, while the pairwise clustering method was initialized

with four Gaussian components. For the parameter settings, the ensemble cluster-

ing method used 0.1 for λ in the regularization term and 0.09 for the threshold to

approximate the matrix. The pairwise clustering method used 1 for λ and 0.9 for

the threshold. The NMI pairwise method used 0.001 for λ. Figure 4.11 (a) and

(b) show the original image set and the two masks that we used. The masks were

used to identify the region of the images that were to be used in the registration

38

http://www.mathworks.com/matlabcentral/fileexchange/5157

process (to populate the JISP, for example). The �rst mask was used at the �rst

resolution level and the second mask was used at the other resolution levels and for

the evaluation of the error.

4.7.4 BrainWeb Data

The BrainWeb provides multi-modal MR volumes that are already registered: MR-

T1 weighed, MR-T2 weighed and MR-PD weighed. The 90th slice was extracted

from each volume without any manipulation. The size of each image is 181 × 217

pixels and a MR-T1 weighed image was used for a reference and the other images

were deformed using our deformation model. To generate ten trial cases, deforma-

tion parameters were randomly generated by a normal distribution with a standard

deviation of 12 pixels and a 4×3×2 control point grid with 64 pixel spacing. Both

the ensemble clustering and pairwise clustering methods were initialized with four

Gaussian components. For the parameter settings, the ensemble clustering method

used 0.1 for λ in the regularization term and 0.07 for the threshold to approximate

the matrix. The pairwise clustering method also used 0.1 for λ and 0.07 for the

threshold. The NMI pairwise method used 0.001 for λ. Figure 4.16 (a) and (b) show

the original image set and the two masks that we used. The �rst mask was used

at the �rst resolution level and the second mask was used at the other resolution

levels and for the evaluation of the error.

4.7.5 Face Image Data

This data is a set of images of the same face taken with �ve very di�erent illumina-

tions. The images were scaled down to 161×225 pixels in size and the backgrounds

of the images were removed using a mask so that only the face region of the images

remained. Figure 4.21 (b) shows the �ve face images. The registration for this

set of images is challenging, because the image F1 and F5 have few illuminated

features in common. The F1 image was used for a reference and the other four im-

ages were deformed by the deformation parameters generated by a random normal

distribution with a standard deviation of 12 pixels. The spacing of the CPG was 64

pixels and its dimension was 4×3×2 pixels. Also, ten trial sets were generated for

the experiments. The ensemble clustering method was initialized with six Gaussian

components, while the pairwise clustering method was initialized with four Gaus-

sian components. For the parameter settings, the ensemble clustering method used

0.1 for λ in the regularization term and 0.09 for the threshold to approximate the

39

matrix. The pairwise clustering method used 1 for λ and 0.9 for the threshold. The

NMI pairwise method used 0.001 for λ. Figure 4.21 (a) and (b) show the original

image set and the mask we used. The mask was used for the registration at all

resolution levels and also used for the evaluation of the error.

4.8 Results and Discussion

We provide registration results for the three methods for three synthetic datasets

as tables (4.1, 4.2 and 4.3). The values of each cell in the tables represent the

average errors over ten trial sets, and the standard deviations of the ten trial values

are given inside parentheses. We provide the entire results for the ten trials in

Appendix ??. The initial errors � the initial displacement errors � are given for the

purpose of comparison.

4.8.1 RIRE Data

We provide the registration results of the RIRE ensemble in Table 4.1 and in the

plot in Fig. 4.10. In Table 4.1, the mean errors indicate that the ensemble cluster-

ing method performed the registration better than two pairwise methods overall.

For the MR-T2 and MR-PD images, the ensemble clustering method clearly gives

better performance compared with the pairwise methods. However, the results

are inconclusive for the CT and PET images. We think this is because of the ill-

conditioning problems due to the small derivatives of image intensities, as explained

in Section 4.4.2. This problem is not perfectly remedied for CT and PET images.

For the case of the pairwise clustering method, we used the same parameters (λ

for regularization, and threshold for matrix approximation) for all pairs of images.

However, the optimal parameter values are likely di�erent for di�erent image pairs.

Thus the registration results might be improved if we tweaked the parameters for

each pair. Figure 4.11 (c) shows a deformed image set taken from the 10th test

set and Figure 4.12, 4.13 and 4.14 show the registration results of the ensemble

clustering, pairwise clustering and pairwise NMI methods, respectively.

4.8.2 BrainWeb Data

The registration results for the BrainWeb dataset are shown in Table 4.2, and

plotted in Fig. 4.15. The ensemble clustering method shows the best performance

results in the entire set of images. Since the BrainWeb data consists of three MR

40

T1-T2 T1-PD T1-CT T1-PET Mean

Initial Error 7.43 (1.51) 6.65 (1.28) 13.1 (2.66) 6.82 (2.16) 8.50 (0.96)

NMI 5.81 (1.59) 5.29 (1.66) 12.3 (3.63) 5.58 (1.97) 7.25 (1.09)

Cluster (Pairwise) 5.89 (2.36) 2.97 (0.79) 10.8 (3.87) 9.00 (3.91) 7.17 (1.52)

Cluster (Ensemble) 3.40 (0.93) 2.28 (0.43) 11.3 (1.90) 5.87 (1.66) 5.71 (0.54)

Table 4.1: Displacement Errors (standard deviation) for RIRE Data

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

T1-T2 T1-PD T1-CT T1-PET

D
is

pl
ac

em
en

ts
 (p

ix
el

s)

Initial Error NMI Cluster (pairwise) Cluster (ensemble)

Figure 4.10: Displacement Errors for RIRE Data

41

(a) Masks

(b) Source Images: MR-T1, MR-T2, MR-PD, CT, PET

(c) Deformed Images: MR-T1, MR-T2, MR-PD, CT, PET

Figure 4.11: RIRE Data Taken from the 10th Test Set.

(a) Registered Images: MR-T1, MR-T2, MR-PD, CT, PET

(b) Absolute Di�erence: MR-T1, MR-T2, MR-PD, CT, PET

Figure 4.12: Registration Results of Ensemble Clustering Method for RIRE Data Taken from

the 10th Test Set. (a) The registration results of the ensemble clustering method. (b) The absolute

di�erence between the source and registered images. Rendered with the intensity range [0− 255].

42

(a) Registered Images: MR-T1, MR-T2, MR-PD, CT, PET

(b) Absolute Di�erence: MR-T1, MR-T2, MR-PD, CT, PET

Figure 4.13: Registration Results of Pairwise Clustering Method for RIRE Data Taken from

the 10th Test Set. (a) The registration results of the pairwise clustering method. (b) The absolute

di�erence between the source and registered images. Rendered with the intensity range [0− 255].

(a) Registered Images: MR-T1, MR-T2, MR-PD, CT, PET

(b) Absolute Di�erence: MR-T1, MR-T2, MR-PD, CT, PET

Figure 4.14: Registration Results of Pairwise NMI Method for RIRE Data Taken from the 10th

Test Set. (a) The registration results of the pairwise NMI method. (b) The absolute di�erence

between the source and registered images. Rendered with the intensity range [0− 255].

43

images (T1, T2, and PD) and these MR images tend not to have large homogeneous

regions, the ill-conditioning problem seems to have less of an impact in this case.

Figure 4.16 (c) shows a deformed image set taken from the 3th test set and Figure

4.17, 4.18 and 4.19 show the registration results of the ensemble clustering, pairwise

clustering and pairwise NMI methods, respectively.

4.8.3 Face Image Data

The registration results for the face image data are shown in Table 4.3, and plotted

in Fig. 4.20. The ensemble clustering method performed the registration better

than both pairwise methods except the F1/F5 pair. The images F1 and F5 have

very di�erent illumination conditions so that we would expect the pairwise meth-

ods to have little success in registering these. However, the performance of the

NMI method was comparable to that of the ensemble clustering method. As it is

pointed out in [1], while common content between two images ultimately gives more

information for registration, extreme images (with largely disjoint content) actu-

ally yield a more compact joint histogram than images with partially overlapping

content. Thus, the pairwise NMI method used the disjoint nature of the F1/F5

combination to help in registration. Except for this case, both pairwise methods

show poor registration results and the fact that their errors are similar to the initial

errors suggests that these pairwise methods actually did almost nothing. Figure

4.21 (c) shows a deformed image set taken from the 10th test set and Figure 4.22

shows the registration results of the ensemble clustering, pairwise clustering and

pairwise NMI methods.

44

T1-T2 T1-PD Mean

Initial Error 6.21 (2.55) 6.09 (2.82) 6.15 (2.23)

NMI 4.41 (2.29) 4.13 (2.41) 4.27 (2.11)

Cluster (Pairwise) 2.34 (1.58) 2.33 (2.22) 2.34 (1.79)

Cluster (Ensemble) 1.88 (1.19) 2.00 (1.23) 1.94 (1.14)

Table 4.2: Displacement Errors (standard deviation) for BrainWeb Data

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

T1-T2 T1-PD

D
is

pl
ac

em
en

ts
 (

pi
xe

ls
)

Initial Error

NMI

Cluster (pairwise)

Cluster (ensemble)

Figure 4.15: Displacement Errors for BrainWeb Data

45

(a) Masks

(b) Source Images: MR-T1, MR-T2, MR-PD

(c) Deformed Images: MR-T1, MR-T2, MR-PD

Figure 4.16: BrainWeb Data Taken from the 3th Test Set.

(a) Registered Images: MR-T1, MR-T2, MR-PD

(b) Absolute Di�erence: MR-T1, MR-T2, MR-PD

Figure 4.17: Registration Results of Ensemble Clustering Method for BrainWeb Data Taken

from the 3th Test Set. (a) The registration results of the ensemble clustering method. (b) The

absolute di�erence between the source and registered images. Rendered with the intensity range

[0− 255].

46

(a) Registered Images: MR-T1, MR-T2, MR-PD

(b) Absolute Di�erence: MR-T1, MR-T2, MR-PD

Figure 4.18: Registration Results of Pairwise Clustering Method for BrainWeb Data Taken from

the 3th Test Set. (a) The registration results of the pairwise clustering method. (b) The absolute

di�erence between the source and registered images. Rendered with the intensity range [0− 255].

(a) Registered Images: MR-T1, MR-T2, MR-PD

(b) Absolute Di�erence: MR-T1, MR-T2, MR-PD

Figure 4.19: Registration Results of Pairwise NMI Method for BrainWeb Data Taken from the

3th Test Set. (a) The registration results of the pairwise NMI method. (b) The absolute di�erence

between the source and registered images. Rendered with the intensity range [0− 255].

47

F1-F2 F1-F3 F1-F4 F1-F5 Mean

Initial Error 7.62 (1.45) 7.07 (1.52) 13.6 (3.25) 6.88 (2.74) 8.80 (1.29)

NMI 6.93 (1.67) 6.93 (1.50) 13.5 (3.33) 5.51 (2.53) 8.22 (1.16)

Cluster (Pairwise) 6.93 (2.04) 7.09 (1.36) 13.3 (4.81) 7.85 (3.70) 8.80 (1.70)

Cluster (Ensemble) 5.35 (1.67) 3.39 (0.73) 6.41 (2.19) 5.43 (1.26) 5.15 (0.85)

Table 4.3: Displacement Errors (standard deviation) for Face Image Data

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

F1-F2 F1-F3 F1-F4 F1-F5

D
is

pl
ac

em
en

ts
 (p

ix
el

s)

Initial Error NMI Cluster (pairwise) Cluster (ensemble)

Figure 4.20: Displacement Errors for Face Images

48

(a) Mask

(b) Source Images: F1, F2, F3, F4, F5

(c) Deformed Images: F1, F2, F3, F4, F5

Figure 4.21: Face Image Data Taken from 10th Test Set.

49

(a) Registered Images by the Ensemble Clustering Method: F1, F2, F3, F4, F5

(b) Registered Images by the Pairwise Clustering Method: F1, F2, F3, F4, F5

(c) Registered Images by the Pairwise NMI Method: F1, F2, F3, F4, F5

Figure 4.22: Registration Results for Face Image Data Taken from 10th Test Set. (a) The

registration results of the ensemble clustering method. (b) The registration results of pairwise

clustering method. (c) The registration results of pairwise NMI method.

50

Chapter 5

Parallelization on GPU

Image registration usually requires a long computation time to search a multi-

dimensional parameter space to �nd an optimal transformation. Non-rigid regis-

tration needs to optimize over thousands of parameters to �nd the best transfor-

mation. For the case of our ensemble clustering method for non-rigid registration,

it usually took 3∼4 hours to register the RIRE ensemble dataset, a set of �ve 2-D

images. To reduce the running time of the registration, we consider a parallelization

of the algorithm.

Parallel computing is the simultaneous use of multiple processing elements to

solve a single problem. A large problem is divided into smaller ones so that each

processing element can execute parts of the problem concurrently. There are several

di�erent forms of parallelization. While task-level parallelization performs di�erent

calculations on the same or di�erent sets of data, data-level parallelization performs

the same calculation on the same or di�erent sets of data. For image registration,

data-level parallelization is the most popular approach since registration deals with

repeated computation on very large image data. Single instruction, multiple data

(SIMD) computers � consisting of multiple processing elements supervised by a

control unit � can be used for image registration. Because SIMD computers execute

the same instructions in parallel on all processing units, it is a good choice for image

processing applications. Graphics Processing Units (GPUs) are a type of SIMD

machine, originally optimized for 3-D graphics rendering. More recently the usage

of GPUs has been extended to computationally expensive tasks in a wide variety

of application domains other than 3-D graphics, called General-Purpose computing

on the GPU (GPGPU) or GPU Computing [30].

In this chapter, we explore some advantages of the GPU Computing, as well as

one of the GPU programming models, CUDA (Compute Uni�ed Device Architec-

51

ture) developed by NVIDIA. We also implement the ensemble clustering method

on GPUs using the CUDA platform and present its results.

5.1 GPGPU

Originally designed for computer graphics, GPUs have evolved into general-purpose

parallel processors for non-graphics applications. A broad range of applications

and tasks such as signal and image processing, physical modeling, computational

engineering, game physics, computational �nance and data mining have been im-

plemented on GPUs due to several advantages over other parallel processors. First,

GPUs have tremendous memory bandwidth and computational horsepower, as il-

lustrated by Fig. 5.1. In the �gure, the memory bandwidth and �oating-point

computation power of GPUs are nearly an order of magnitude greater than those

of the CPUs. The reason why the performance of GPUs increases more rapidly

than that of CPUs comes from the fundamental architectural di�erences. CPUs

are designed for high performance on sequential tasks with instruction-level par-

allelism so that it focuses more on �ow control and data caching. On the other

hand, GPUs are designed for compute-intensive and highly parallel computation

so that it has a lower requirement for sophisticated �ow control and is dedicated

more to data processing. This characteristic makes GPUs suitable for data-parallel

computations, i.e. the same program is executed on many data elements in par-

allel. Image processing applications in particular � including image registration �

are well suited to be implemented on this GPU architecture. Because the image

blocks and pixels can be mapped to the parallel processing threads, the repeated

computations for each pixel are performed in parallel on the mapped threads and it

leads to substantial speed-ups. In addition, the image processing applications can

bene�t from the visualization functionality of GPUs.

Another advantage of GPUs is the �exibility provided by the programming pro-

cessing units. Unlike the early GPUs, modern GPUs have fully programmable hard-

ware that supports vectorized �oating-point operations. Moreover, as the high level

languages for GPU programming (such as High-level Shading Language (HLSL), Cg

and OpenGL Shading Language (GLSL)) emerge, the programmability of GPUs

improves. However, these GPU programming languages are not easy to use for

those who are not familiar with the graphics APIs and graphics terms like �geomet-

ric primitives�,� textures�, �fragments� and �rendering passes�. Recently, NVIDIA

introduced the CUDA programming platform to provide easier access to GPGPU.

52

CUDA makes GPGPU programming possible without needing to understand GPU-

speci�c details. The details of CUDA will be explained in Section 5.2.

Despite their several advantages, GPUs are not suited for every application.

For example, word processing applications tend to be dominated by memory com-

munication and are di�cult to parallelize. Also, the GPU's lack of integers and

associated operations such as bit-shifting and bitwise logical operations make it

unsuitable for some applications like cryptography [31]. However, GPUs are con-

tinuously innovated and improved because of the demand of the fast-growing video

game industry. Above all, GPUs are relatively cheap and are widely available. Com-

pared with other parallel computers such as supercomputers or multi-node clusters,

GPUs are very competitive for many applications. Continually increasing computa-

tion power, �exible programmability, low cost and wide availability all make GPUs

an attractive parallelizing tool for general purpose computing applications.

5.2 CUDA Programming Environment

CUDA (Compute Uni�ed Device Architecture) is a parallel computing architec-

ture for general purpose GPU computing, developed by NVIDIA. CUDA enables

developers to focus on parallelization of their algorithm by hiding the underlying

mechanics of GPUs and graphics. Moreover, many developers can quickly adopt the

programming environment since the C/C++ language is basically used, providing

a small set of extensions to handle GPUs.

In CUDA, the parallel portions of an application are expressed as kernels, which

are executed many times in parallel by CUDA threads on GPUs. A kernel is a piece

of code executed repeatedly in many threads. A thread is the unit of parallelism in

CUDA, di�erent from a CPU thread in that it is extremely lightweight for creation

and switching.

For the programming model, a kernel is executed on a grid and a grid is an array

of blocks, and each block is an array of threads. Figure 5.2 (a) shows this hierarchy.

Threads within a block can cooperate through shared memory and synchronize, but

threads in di�erent blocks cannot cooperate.

For the execution model, a kernel launches a grid of thread blocks and one kernel

is executed on the device at a time, i.e. only one kernel is run on the graphics

hardware at a time. Thread blocks are executed on multiprocessors and they do

not migrate. Several concurrent thread blocks can reside on one multiprocessor

limited by the multiprocessor resources. Each thread is executed by a single thread

53

P
ea

k
G

F
L

O
P

/s

Jan Jun Apr Jun Mar Nov May Jun

2003 2004 2005 2006 2007 2008

NVIDIA GPU

Intel CPU

GT200 = GeForce GTX 280 G71 = GeForce 7900 GTX NV35 = GeForce FX 5950 Ultra

G92 = GeForce 9800 GTX G70 = GeForce 7800 GTX NV30 = GeForce FX 5800

G80 = GeForce 8800 GTX NV40 = GeForce 6800 Ultra

1000

750

500

250

0

G92

GT200

G80
Ultra

G80

G71

G70

NV35
NV30

3.2GHz
Harpertown3.0GHz

Core2 Duo

NV40

(a) Floating-Point Operations per Second for GPU and CPU (adapted from [32])

120

100

80

60

40

20

0

Bandwidth

GB/s

G80
Ultra

G80

2003 2004 2005 2006 2007

G71

NV40

NV30
Woodcrest

Prescott EE
Northwood

Harpertown

(b) Memory Bandwidth for the CPU and GPU (adapted from [32])

Figure 5.1: Performance of CPU and GPU

54

processor. The GPU hardware schedules thread blocks to run on multiprocessors to

keep the processors busy. Thus, thousands of threads can be executed concurrently

on GPUs.

For the memory model, Fig. 5.2 (b) shows the CUDA memory architecture.

Global memory is a main means of communication between CPU (host) and GPUs

(device). All threads can write and read data from the global memory. Texture

and constant memory are read-only for threads. The texture memory is used for

resampling images in image processing applications. Shared memory is shared

among threads in a single block. While the shared memory resides on-chip, the

global memory resides in device memory (DRAM). Thus, the global memory is

much slower than shared memory. One of the optimization strategies is to minimize

data accesses to the global memory and to maximize the use of the shared memory.

5.3 CUDA Implementation of Ensemble Clustering

Based on the above CUDA programming environment, we implemented the ensem-

ble clustering method for rigid registration [1]. In order to map an algorithm to the

CUDA programming environment, we �rst need to specify which portions of the al-

gorithm will be parallelized, and isolate them as CUDA kernels. Algorithm 2 shows

the algorithm of the ensemble clustering method for rigid registration. This is the

same as the non-rigid case (Algorithm 1) except that rigid-body motion parameters

(θ) are used instead of deformation parameters (c), and there is no need to handle

the control-point grid. We chose parts of the algorithm that can be parallelized

by GPUs and implemented them as kernels. The kernels are categorized into three

groups.

The �rst group contains tasks for image transformations such as scaling im-

ages for the multi-resolution approach, and image resampling after establishing

new motion parameters (lines 5, 6 and 11 of Algorithm 2). Fundamentally, these

interpolate image intensity values according to the transformed coordinates of each

pixel. Thus, the interpolation for new intensity values and the computation for

new coordinates should be repeated for every pixel in the images. For the interpo-

lation, we use GPU texture memory as well as some device functions, called texture

fetches, in CUDA. After copying images into the texture memory, a texture refer-

ence object is de�ned, and bound to some region of the texture memory where the

images are loaded. The texture reference has several attributes and one of them

is to specify the interpolation method (either nearest-neighbour or linear). Thus,

55

Host

Kernel
1

Kernel
2

Device

Grid 1

Block
(0, 0)

Block
(1, 0)

Block
(0, 1)

Block
(1, 1)

Grid 2

Courtesy: N

Block (1, 1)

Thread
(0,1,0)

Thread
(1,1,0)

Thread
(2,1,0)

Thread
(3,1,0)

Thread
(0,0,0)

Thread
(1,0,0)

Thread
(2,0,0)

Thread
(3,0,0)

(0,0,1) (1,0,1) (2,0,1) (3,0,1)

(a) CUDA - Grid of Thread Blocks (adapted from [33]).

(Device) Grid

Constant
Memory

Texture
Memory

Global
Memory

Block (0, 0)

Shared Memory

Local
Memory

Thread (0, 0)

Registers

Local
Memory

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Local
Memory

Thread (0, 0)

Registers

Local
Memory

Thread (1, 0)

Registers

Host

(b) CUDA Memory Model (adapted from [33]).

Figure 5.2: CUDA Architecture

56

we set attributes of the texture reference and call the texture device functions to

perform the interpolation. Inside the kernel, we compute new coordinates for each

pixel by applying the given transformations, and call the texture fetch functions to

get new image values. Compared with a serial processor, the processing time for

interpolation can be reduced hugely. This is a real bene�t from GPUs.

The second group of kernels computes the four parameters of the Gaussian

Mixture Model density estimation process of the ensemble clustering method (line

8 of Algorithm 2). The �rst parameter is the membership of each pixel to each

Gaussian component (or cluster), τ in (3.4). If the number of pixels in the region

of interest (ROI) is Ns and the number of clusters in the JISP is K, then the τ

is calculated in an Ns ×K matrix by (3.4). The other three parameters, mean µ,

covariance matrix Σ, and the Gaussian component weights π, are calculated in a

K × 1 matrix by (3.5), (3.6) and (3.7), respectively. These matrices are designed

to cooperate with the Ns × K matrix τ to re-estimate these three parameters.

Therefore, this work is a kind of matrix calculation. We reorganized some of the

matrices to allow e�cient parallelism on GPUs, and created several kernels for these

computations.

The last group of kernels computes the matrix A and the vector b in (3.12)

(line 9 of Algorithm 2). They are also used for solving linear equations to �nd the

motion increment, θ in (3.12). If the number of images is D, the number of motion

parameters is M , and the number of pixels in the ROI is Ns, then the matrix A is

an MD ×MD matrix and the vector b is a 1 ×MD vector. To calculate these,

we incrementally evaluate of A and b one pixel at a time. Figure 5.3 describes two

implementations to calculate the matrix A and the vector b in a sequential and

parallel way. For the sequential way, the MD ×MD matrix A and the 1 ×MD

vector b are calculated for each pixel inside a loop that loops over all the pixels in

the ROI. This looping for all pixels is the most time-consuming part in the whole

algorithm. Instead of looping, we reorganize the matrix to �t the parallel execution

on GPUs like Fig. 5.3 (b). Each row of Ap (and bp) contains the matrix A (or

b) for a given pixel. Hence Ap is Ns × (MD)2 and bp is Ns ×MD. Each kernel

simultaneously calculates each row of Ap and bp for each pixel in the ROI and then

adds all the rows together. This approach reduces the execution time remarkably.

However, the parallel method uses Ns times the amount of memory, so can cause

memory problems if Ns gets large or A gets large.

After scaling all images at each resolution level, all variables and the images

are transferred from CPU memory into GPU memory. The EM step and motion

57

adjustment are performed on the GPU. To calculate the motion increment θ̃, the

matrix A and the vector b are copied to CPU memory and the linear system in

(3.12) is solved on the CPU. This process is iterated until convergence.

Algorithm 2 : Ensemble Clustering Registration

1: Input: initial ensemble I0

2: Input: initial motion parameters θ

3: Input: initial GMM parameters φ

4: for each scale do

5: Iscaled ←− scale ensemble I0

6: I ←− apply motion (θ) to ensemble Iscaled

7: repeat

8: φ←−EM step � density estimation process

9: θ̃ ←− motion adjustment process

10: θ ←− θ + θ̃

11: I ←− apply motion (θ) to ensemble Iscaled

12: until converged (θ̃ is small)

13: end for

14: Output: I is registered ensemble at full scale

15: Output: θ holds the optimal motion parameters

16: Output: φ holds the GMM parameters

5.4 Experiments and Results

We demonstrate the e�ciency of the parallelized version of the ensemble clustering

method for rigid registration on GPUs and compare it with our CPU implementa-

tion. To do this, we measured the execution times to iterate through the outer-most

loop (line from 4 to 13 in Algorithm 2).

For the test data, we used two di�erent datasets. One was the Retrospective

Image Registration Evaluation (RIRE) project's training set. These �ve images

(T1-MR, T2-MR, PD-MR, CT and PET) are the same images used for non-rigid

registration in Chapter 4, but this time we used 3-D volumes. The original vol-

umes were brought into register using RIRE's given true parameters, after which

the registered volumes were subsampled to a size of 80×80×32 voxels. To cre-

ate synthetic data, 3-D rigid-body transformations were randomly generated by

58

…
…

A

…
…

b

MD

Ns

MD

MD1

Looping

Ns

Ns = the number of Pixels in ROI
M = the number of Motion Parameters

D = the number of Image

& Summation

(a) Serial Form of A and b

Ap bp

Ns

MD ×××× MD MD

…
…

…
…

Parallel
Processing

& Summation

(b) Parallel Form of A and b

Figure 5.3: Di�erent Implementation of A and b

59

uniformly choosing the three rotations and three translations from the range [-5,

5] (degrees or pixels). The second dataset is the face images (640×480) used for

non-rigid registration in Chapter 4. A synthetic dataset was generated by apply-

ing randomly generated rigid-body displacements, chosen uniformly from the range

[-10, 10] (pixels or degrees). For the comparison with the CPU, we used a Mat-

lab implementation of the registration method. Matlab is very e�cient for matrix

computations. The computer we used for these experiments was a Dell Dimension

5150 with a 3.20 GHz Intel Pentium 4 CPU running Windows XP SP2 with 3GB

memory. We used the NVIDIA Geforce 8600 GT as our GPU hardware platform.

The results of the experiment are shown in Table 5.1. The CUDA implemen-

tation accelerated the registration process by a factor of 7.5 for the RIRE dataset

and a factor of 17.3 for the face image dataset.

RIRE Data Face Images

80× 80× 32 640× 480

CPU runtime (sec) 260.6 168.1

GPU runtime (sec) 34.7 9.7

Table 5.1: Execution Time (seconds) for CPU and GPU implementation

60

Chapter 6

Conclusions and Future Work

This thesis applied the ensemble clustering method to simultaneously register multi-

sensor ensembles that include non-rigid deformations. Also, it provided a paral-

lelization of the algorithm on GPUs to accelerate the performance of the method.

For the non-rigid registration, we reformulated the cost function and the opti-

mization processes of the ensemble clustering method with a regularization term

based on mean elastic energy of B-spline deformed images. During the implementa-

tion process, we faced an ill-conditioning problem in the Newton-type optimization

process. The instability was largely overcome using a matrix approximation and

the SVD. We demonstrated that the ensemble clustering method performs better

than pairwise methods through all three synthetic datasets. Despite the fact that

the ill-conditioning problem still had an in�uence on some images, the experiments

showed that the ensemble clustering method was successfully applied to non-rigid

registration of multi-sensor ensembles. Moreover, our experiments showed that the

ensemble clustering registration method leveraged the concordance of all the given

images and yielded improved accuracy over pairwise methods.

We parallelized the algorithm of the ensemble clustering method, and imple-

mented it on GPUs using the CUDA programming environment. Our experiments

showed that the GPU implementation is much faster than the CPU implementa-

tion, 17 times faster for the 3-D RIRE dataset, and 7 times faster for the face image

dataset. While our GPU implementation was for rigid-body registration, we expect

the same speed-ups for non-rigid registration.

Therefore, the �rst future work will be the GPU implementation of the ensem-

ble clustering method for non-rigid registration. Since non-rigid registration needs

more extensive computations due to the increased degrees of freedom in the trans-

formations, the parallelization of the non-rigid registration method would be an

61

important advance.

Since we applied the non-rigid ensemble clustering method in 2-D, extending it

to 3-D is another direction for future work. While we expect the method to work,

we acknowledge that non-rigid transformations in 3-D have an order of magnitude

more parameters, and thus might yield a more challenging optimization process.

We used a regularization term based on mean elastic energy, whereas other reg-

ularization methods can be explored to improve the performance of the registration.

Investigation of alternative regularization methods might improve the capabilities

of the ensemble clustering method.

One of the main stumbling-blocks of the ensemble clustering method is the

ill-conditioning problem that arises when images contain homogeneous patches. In

order to avoid the ill-conditioning problem, we can apply other types of optimization

methods such as the gradient descent.

Lastly, we did not examine the behaviour of the ensemble clustering method with

respect to the number of Gaussian components. We used the same simple paradigm

for all of our experiments; we held the number of Gaussian components constant.

However, we could have increased the number of components as we ramped up the

resolution in our multi-resolution framework. The number of components could be

thought of as another element of the multi-resolution approach. Further investi-

gation is required to understand how the number of Gaussian components can be

manipulated to improve the performance of the ensemble clustering method.

62

Bibliography

[1] J. Orchard and R. Mann, �Registering a multi-sensor ensemble of images,�

IEEE Transactions on Image Processing (in press), 2009. 1, 2, 6, 8, 9, 11, 13,

16, 20, 21, 44, 55

[2] A. Collignon, F. Maes, D. Delaere, D. Vandermeulen, P. Suetens, and G. Mar-

chal, �Automated multi-modality image registration based on information the-

ory,� Information Processing in Medical Imaging, pp. 263�274, 1995. 4

[3] W. Wells, P. Viola, H. Atsumi, S. Nakajima, and R. Kikinis, �Multi-modal

volume registration by maximization of mutual information,� 1996. 4

[4] A. Roche, G. Malandain, X. Pennec, and N. Ayache, �The correlation ratio as

a new similarity measure for multimodal image registration.� Springer Verlag,

1998, pp. 1115�1124. 4

[5] C. Studholme, �An overlap invariant entropy measure of 3D medical image

alignment,� Pattern Recognition, vol. 32, no. 1, pp. 71�86, January 1999. 4

[6] W. R. Crum, T. Hartkens, and D. L. Hill, �Non-rigid image registration: theory

and practice.� The British Journal of Radiology, vol. 77 Spec No 2, 2004. 4, 5,

6

[7] A. Goshtasby, �Registration of images with geometric distortions,� IEEE

Transactions on Geoscience and Remote Sensing, vol. 26, no. 1, pp. 60�64,

Jan 1988. 5

[8] F. L. Bookstein, �Principal warps: thin-plate splines and the decomposition of

deformations,� IEEE Transactions on Pattern Analysis and Machine Intelli-

gence, vol. 11, no. 6, pp. 567�585, 1989. 5

[9] D. Rueckert, L. I. Sonoda, C. Hayes, D. L. G. Hill, M. O. Leach, and D. J.

Hawkes, �Nonrigid registration using free-form deformations: Application to

63

breast MR images,� IEEE Transactions on Medical Imaging, vol. 18, pp. 712�

721, 1999. 5, 17

[10] R. Bajcsy and S. Kovacic, �Multiresolution elastic matching,� Computer Vi-

sion, Graphics, and Image Processing, vol. 46, no. 1, pp. 1�21, April 1989.

5

[11] G. E. Christensen, R. D. Rabbitt, and M. I. Miller, �Deformable templates

using large deformation kinematics,� IEEE Transactions on Image Processing,

vol. 5, no. 10, pp. 1435�1447, 1996. 6

[12] B. K. P. Horn and B. G. Schunck, �Determining optical �ow,� Arti�cial Intel-

ligence, vol. 17, pp. 185�203, 1981. 6

[13] B. M. Dawant, �Non-rigid registration of medical images: purpose and meth-

ods, a short survey,� in Proceedings of 2002 IEEE International Symposium on

Biomedical Imaging, 2002, pp. 465�468. 6

[14] H. Lester and S. R. Arridge, �A survey of hierarchical non-linear medical image

registration,� Pattern Recognition, vol. 32, no. 1, pp. 129�149, January 1999.

6

[15] B. Zitová, �Image registration methods: a survey,� Image and Vision Comput-

ing, vol. 21, no. 11, pp. 977�1000, October 2003. 6, 9, 10

[16] J. Orchard and L. Jonchery, �Ensemble registration: aligning many multi-

sensor images simultaneously,� in Society of Photo-Optical Instrumentation

Engineers (SPIE) Conference Series, vol. 7245, Feb. 2009. 6, 8

[17] R. P. Woods, S. T. Grafton, C. J. Holmes, S. R. Cherry, and J. C. Mazz-

iotta, �Automated image registration: I. General methods and intrasub-

ject,intramodality validation,� Journal of Computer Assisted Tomography,

vol. 22, no. 1, pp. 139�152, JAN-FEB 1998. 8

[18] K. K. Bhatia, J. V. Hajnal, B. K. Puri, A. D. Edwards, and D. Rueckert,

�Consistent groupwise non-rigid registration for atlas construction,� in IEEE

International Symposium on Biomedical Imaging: Nano to Macro, vol. 1, April

2004, pp. 908�911. 8

[19] L. Zöllei, E. Learned-Miller, E. Grimson, and W. Wells, �E�cient population

registration of 3D data,� in ICCV, 2005, pp. 291�301. 8

64

[20] G. J. McLachlan and K. E. Basford, Mixture Models, Inference and Applica-

tions to Clustering. New York: Marcel Dekker, 1988. 12, 13

[21] T. W. Sederberg and S. R. Parry, �Free-form deformation of solid geometric

models,� in SIGGRAPH '86: Proceedings of the 13th annual conference on

Computer graphics and interactive techniques. ACM Press, 1986, pp. 151�

160. 16

[22] S. Lee, G. Woberg, K.-Y. Chwa, and S. Shin, �Image metamorphosis with scat-

tered feature constraints,� IEEE Transactions on Visualization and Computer

Graphics, vol. 2, no. 4, pp. 337�354, 1996. 16, 17

[23] S. Lee, G. Wolberg, and S. Shin, �Scattered data interpolation with multi-

level B-Splines,� IEEE Transactions on Visualization and Computer Graphics,

vol. 3, pp. 228�244, 1997. 16, 17

[24] G. H. Golub and C. F. Van Loan, Matrix Computation. Baltimore: The Johns

Hopkins University Press, 1996. 24, 27

[25] D. R. Forsey and R. H. Bartels, �Hierarchical B-spline re�nement,� in SIG-

GRAPH '88: Proceedings of the 15th annual conference on Computer graphics

and interactive techniques. ACM, 1988, pp. 205�212. 36

[26] J. C. Lagarias, J. A. Reeds, M. H. Wright, and P. E. Wright, �Convergence

properties of the Nelder�Mead simplex method in low dimensions,� SIAM

Journal of Optimization, vol. 9, pp. 112�147, 1998. 37

[27] J. West, J. M. Fitzpatrick, M. Y. Wang, B. M. Dawant, C. R. Maurer,

R. M. Kessler, R. J. Maciunas, C. Barillot, D. Lemoine, A. Collignon,

F. Maes, T. S. Sumanaweera, B. Harkhess, P. F. Hemler, D. L. G. Hill,

D. J. Hawkes, C. Studholme, J. B. A. Maintz, M. A. Viergever, G. Mal,

X. Pennec, M. E. Noz, G. Q. Maguire, M. Pollack, C. A. Pelizzari,

R. A. Robb, D. Hanson, and R. P. Woods, �Comparison and evaluation

of retrospective intermodality brain image registration techniques,� Journal

of Computer Assisted Tomography, vol. 21, pp. 554�566, 1998. [Online].

Available: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.19.3281

37

65

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.19.3281

[28] C. A. Cocosco, V. Kollokian, R. K.-S. Kwan, G. B. Pike, and A. C. Evans,

�Brainweb: Online interface to a 3D MRI simulated brain database,� NeuroIm-

age, vol. 5, p. 425, 1997. 37

[29] A. S. Georghiades, P. N. Belhumeur, and D. J. Kriegman, �From few

to many: illumination cone models for face recognition under variable

lighting and pose,� IEEE Transactions on Pattern Analysis and Machine

Intelligence, vol. 23, no. 6, pp. 643�660, 2001. [Online]. Available:

http://dx.doi.org/10.1109/34.927464 37

[30] GPGPU, �General Purpose Computation Using Graphics Hardware,� http:

//www.gpgpu.org. 51

[31] J. D. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Krüger, A. E. Lefohn,

and T. J. Purcell, �A survey of general-purpose computation on graphics hard-

ware,� Computer Graphics Forum, vol. 26, no. 1, pp. 80�113, March 2007.

53

[32] NVIDIA Compute Uni�ed Device Architecture Programming Guide Version

2.0, Jun 2008. [Online]. Available: http://www.nvidia.com/object/cuda_

develop.html 54

[33] NVIDIA CUDA Technical Training Volume I: Introduction to CUDA

Programming, 2008. [Online]. Available: http://www.nvidia.com/object/

cuda_education.html 56

66

http://dx.doi.org/10.1109/34.927464
http://www.gpgpu.org
http://www.gpgpu.org
http://www.nvidia.com/object/cuda_develop.html
http://www.nvidia.com/object/cuda_develop.html
http://www.nvidia.com/object/cuda_education.html
http://www.nvidia.com/object/cuda_education.html

Appendix A

Displacement Errors

A.1 RIRE Data

Trials Methods T1-T2 T1-PD T1-CT T1-PET Mean

1 Initial Error 7.71 6.21 13.1 6.20 8.31

NMI 7.03 5.52 11.8 5.99 7.60

Cluster (Pairwise) 7.23 2.18 9.10 6.12 6.16

Cluster (Ensemble) 3.99 1.99 11.7 4.94 5.66

2 Initial Error 8.88 9.43 11.7 4.91 8.73

NMI 5.74 8.93 8.05 4.35 6.77

Cluster (Pairwise) 7.66 4.43 6.90 9.63 7.16

Cluster (Ensemble) 4.95 3.24 10.1 4.77 5.77

3 Initial Error 5.28 4.68 12.4 12.2 8.66

NMI 3.68 3.67 11.9 11.0 7.59

Cluster (Pairwise) 1.87 2.28 8.90 15.3 7.03

Cluster (Ensemble) 2.73 2.18 10.7 4.85 5.11

4 Initial Error 8.84 7.33 10.4 7.40 8.50

NMI 8.93 4.43 10.0 5.81 7.30

Cluster (Pairwise) 7.42 2.67 10.1 16.9 9.27

Cluster (Ensemble) 4.12 2.37 10.9 4.86 5.56

5 Initial Error 8.75 6.31 13.7 5.39 8.54

NMI 6.23 3.99 14.8 4.27 7.33

Cluster (Pairwise) 5.80 3.10 10.6 5.51 6.25

Cluster (Ensemble) 2.99 2.10 10.3 6.53 5.49

67

Trials Methods T1-T2 T1-PD T1-CT T1-PET Mean

6 Initial Error 7.42 5.36 12.4 8.64 8.46

NMI 7.11 4.43 12.3 5.75 7.40

Cluster (Pairwise) 5.24 4.15 12.3 9.00 7.67

Cluster (Ensemble) 4.34 1.67 8.81 10.6 6.34

7 Initial Error 6.95 5.58 9.44 5.52 6.87

NMI 4.88 3.42 6.68 4.92 4.98

Cluster (Pairwise) 8.58 2.05 5.96 5.29 5.47

Cluster (Ensemble) 2.75 2.05 9.37 5.74 4.98

8 Initial Error 7.33 6.86 15.2 6.02 8.84

NMI 5.57 4.90 14.4 4.24 7.29

Cluster (Pairwise) 5.08 2.49 11.0 5.24 5.96

Cluster (Ensemble) 3.85 1.96 14.6 5.80 6.56

9 Initial Error 8.88 7.19 19.6 7.28 10.7

NMI 5.64 6.70 20.4 5.91 9.66

Cluster (Pairwise) 8.37 3.55 20.8 9.35 10.5

Cluster (Ensemble) 2.48 2.69 14.8 5.87 6.46

10 Initial Error 4.25 7.53 13.1 4.61 7.38

NMI 3.08 6.93 12.9 3.56 6.61

Cluster (Pairwise) 1.67 2.82 12.4 7.66 6.14

Cluster (Ensemble) 1.84 2.58 11.6 4.78 5.20

Average Initial Error 7.43 6.65 13.1 6.82 8.50

NMI 5.81 5.29 12.3 5.58 7.25

Cluster (Pairwise) 5.89 2.97 10.8 9.00 7.17

Cluster (Ensemble) 3.40 2.28 11.3 5.87 5.71

68

A.2 BrainWeb Data

Trials Methods T1-T2 T1-PD Mean

1 Initial Error 8.55 8.65 8.65

NMI 7.33 5.03 6.18

Cluster (Pairwise) 2.90 3.40 3.15

Cluster (Ensemble) 2.02 3.08 2.55

2 Initial Error 5.20 4.31 4.75

NMI 3.64 2.81 3.23

Cluster (Pairwise) 1.99 1.19 1.59

Cluster (Ensemble) 1.67 1.41 1.54

3 Initial Error 2.21 7.04 4.62

NMI 1.38 4.40 2.89

Cluster (Pairwise) 0.46 1.99 1.23

Cluster (Ensemble) 0.47 2.15 1.31

4 Initial Error 10.1 12.3 11.2

NMI 8.90 10.6 9.73

Cluster (Pairwise) 6.15 8.46 7.31

Cluster (Ensemble) 4.92 5.12 5.02

5 Initial Error 8.00 3.52 5.76

NMI 4.66 2.45 3.56

Cluster (Pairwise) 2.54 0.82 1.68

Cluster (Ensemble) 2.22 1.16 1.69

6 Initial Error 7.02 7.59 7.31

NMI 4.78 4.84 4.81

Cluster (Pairwise) 3.22 2.14 2.68

Cluster (Ensemble) 2.30 2.27 2.29

7 Initial Error 3.68 5.09 4.38

NMI 2.34 3.47 2.91

Cluster (Pairwise) 1.22 1.23 1.22

Cluster (Ensemble) 1.12 1.41 1.27

8 Initial Error 3.07 3.41 3.24

NMI 2.00 2.21 2.11

Cluster (Pairwise) 0.61 0.71 0.66

Cluster (Ensemble) 0.61 0.81 0.71

69

Trials Methods T1-T2 T1-PD Mean

9 Initial Error 5.51 6.34 5.92

NMI 3.18 4.02 3.60

Cluster (Pairwise) 1.35 2.79 2.07

Cluster (Ensemble) 1.31 1.61 1.46

10 Initial Error 8.74 2.53 5.63

NMI 5.86 1.54 3.70

Cluster (Pairwise) 2.93 0.60 1.77

Cluster (Ensemble) 2.19 0.95 1.57

Average Initial Error 6.21 6.09 6.15

NMI 4.41 4.13 4.27

Cluster (Pairwise) 2.34 2.33 2.34

Cluster (Ensemble) 1.88 2.00 1.94

70

A.3 Face Image Data

Trials Methods F1-F2 F1-F3 F1-F4 F1-F5 Mean

1 Initial Error 7.52 6.29 12.3 6.46 8.15

NMI 7.31 7.76 12.4 5.20 8.17

Cluster (Pairwise) 5.71 7.43 11.4 5.57 7.53

Cluster (Ensemble) 5.47 2.89 6.31 4.77 4.86

2 Initial Error 8.31 11.0 12.7 4.23 9.05

NMI 7.03 10.5 12.95 3.60 8.51

Cluster (Pairwise) 8.38 6.43 8.05 5.09 6.99

Cluster (Ensemble) 6.19 4.98 5.30 4.30 5.19

3 Initial Error 5.10 5.18 12.0 13.8 9.01

NMI 4.74 4.77 11.9 10.7 8.02

Cluster (Pairwise) 4.95 5.98 9.82 6.00 6.69

Cluster (Ensemble) 3.56 3.42 5.12 7.43 4.88

4 Initial Error 8.40 6.91 10.2 6.59 8.02

NMI 7.51 6.18 10.0 6.15 7.47

Cluster (Pairwise) 8.93 9.40 9.98 15.4 10.9

Cluster (Ensemble) 5.94 2.50 4.24 5.42 4.53

5 Initial Error 8.38 6.54 14.1 5.91 8.73

NMI 7.90 6.29 14.0 3.35 7.87

Cluster (Pairwise) 6.25 6.32 19.1 4.52 9.05

Cluster (Ensemble) 4.87 2.68 7.37 5.19 5.03

6 Initial Error 9.48 6.21 13.4 9.34 9.62

NMI 8.55 5.79 12.8 8.80 8.98

Cluster (Pairwise) 9.19 4.69 13.7 6.97 8.64

Cluster (Ensemble) 9.20 2.83 4.71 6.57 5.83

7 Initial Error 7.30 6.19 10.1 5.53 7.28

NMI 7.37 6.67 10.2 4.66 7.23

Cluster (Pairwise) 7.28 7.75 10.7 6.50 8.06

Cluster (Ensemble) 3.45 3.75 6.64 3.58 4.36

8 Initial Error 7.67 7.45 16.1 5.87 9.27

NMI 7.01 7.02 16.1 3.33 8.37

Cluster (Pairwise) 6.01 7.37 15.0 6.30 8.68

71

Trials Methods F1-F2 F1-F3 F1-F4 F1-F5 Mean

Cluster (Ensemble) 5.74 3.73 11.0 6.41 6.71

9 Initial Error 9.08 8.23 22.0 7.40 11.7

NMI 8.60 7.33 21.6 6.19 10.9

Cluster (Pairwise) 9.34 6.82 23.7 8.55 12.1

Cluster (Ensemble) 5.17 3.84 9.06 6.54 6.15

10 Initial Error 4.92 6.72 13.5 3.68 7.21

NMI 3.28 7.01 13.1 3.15 6.63

Cluster (Pairwise) 3.24 8.73 11.9 13.6 9.37

Cluster (Ensemble) 3.92 3.28 4.42 4.12 3.94

Average Initial Error 7.62 7.07 13.6 6.88 8.80

NMI 6.93 6.93 13.5 5.51 8.22

Cluster (Pairwise) 6.93 7.09 13.3 7.85 8.80

Cluster (Ensemble) 5.35 3.39 6.41 5.43 5.15

72

	List of Tables
	List of Figures
	Introduction
	Background
	Multi-Sensor Registration
	Non-Rigid Registration
	Ensemble Registration
	Drawbacks of Pairwise Methods
	Ensemble Registration for Multi-Sensor Images
	Extension of the Ensemble Clustering Method

	Multi-Sensor Ensemble Registration by Clustering
	Cost Function
	Gaussian Mixture Model (GMM)
	Two Processes
	Density Estimation
	Motion Adjustment

	Non-Rigid Multi-Sensor Ensemble Registration by Clustering Method
	Deformation Model
	Regularization
	Cost Function
	Optimization
	Modified Motion Adjustment Process
	Ill-Conditioning and Newton's Method
	Regularization versus Matrix Approximation

	Multi-Resolution Approaches
	Summary of Algorithm
	Experiments
	Measure of Accuracy
	Pairwise Method
	RIRE Data
	BrainWeb Data
	Face Image Data

	Results and Discussion
	RIRE Data
	BrainWeb Data
	Face Image Data

	Parallelization on GPU
	GPGPU
	CUDA Programming Environment
	CUDA Implementation of Ensemble Clustering
	Experiments and Results

	Conclusions and Future Work
	Bibliography
	Appendices
	Displacement Errors
	RIRE Data
	BrainWeb Data
	Face Image Data

