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Abstract

Dental records have been widely used as tools in forensic identification. With the

vast volume of cases that need to be investigated by forensic odontologists, a move

towards a computer-aided dental identification system is necessary. We propose a

computer-aided framework for efficient matching of dental x-rays for human iden-

tification purposes. Given a dental x-ray with a marked region of interest (ROI),

we search the database of x-rays (presumed to be taken from known individuals) to

retrieve a closest match. In this work we use a slightly extended Weighted Sum of

Squared Differences (SSD) cost function to express the degree of similarity/overlap

between two dental radiographs. Unlike other iterative Least Squares methods that

use local information for gradient-based optimization, our method finds the glob-

ally optimal translation. In 90% of the identification trials, our method ranked

the correct match in the top 10% using a database of 571 images. Experiments

indicate that matching dental records using the extended SSD cost function is a

viable method for human dental identification.

iii



Acknowledgments

I would like to extend my deepest gratitude to my supervisor, Professor Jeff

Orchard, for his expert guidance and mentorship. This work would not have been

possible without his encouragement, support and friendship. I would also like to

thank Professors Covvey and Wan for taking time out of their busy schedules to

be a part of my thesis committee.

Dr. Sweet of BOLD lab and Dr. Barlow of University of Toronto offered much-

appreciated advice and thought-provoking ideas at the beginning of my research.

I am thankful to Dr. Lam of University of Toronto for providing the radiographs

used in the experiments.

My sincere thanks to Professor Ioana Coman, who has inspired me to continue

my studies in the field of Computer Science. Her friendship and advice have been

invaluable.

I would like to extend my appreciation to my colleagues in the Scientific Com-

putation Group for providing a productive environment to work in. Special thanks

to my friends Alexei Ramotar, Igor Bogdanovic, Dragan Mirkovic, Sinisa Bjelica,

Jessica Socha and Omar Halabieh, for making my stay in Waterloo fun and enjoy-

able. Thank you for all the great memories. My sincere appreciation is extended

to Goran Bjedov for his genuine care, encouragement and support. I will always

treasure your positive influence on my life. I would also like to thank the Bog-

danovic family for giving me a home away from home. Their love and care are

greatly appreciated.

Finally, I am greatly indebted to my family for their continued love and support.

Thank you to my mother Dara and my brother Miran for always being there for me.

Without your love and support none of this would have been possible. Thank you

to my boyfriend David Browne for taking care of me and providing moral support

throughout my thesis work. Your companionship, love and encouragement have

been precious.

iv



Dedication

For my mother Darinka, my brother Miran and my late father Zlatko, whose

love nourishes my soul.

v



Contents

1 Introduction 1

1.1 Human Forensic Identification . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Forensic Odontology . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Current State of The Art . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 National Crime Information Center - United States . . . . . 4

1.2.2 WinID and CAPMI . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.3 Current Research . . . . . . . . . . . . . . . . . . . . . . . . 11

1.3 Thesis Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.4 Organization of the Thesis . . . . . . . . . . . . . . . . . . . . . . . 13

2 Image Matching 14

2.1 The Error Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1.1 Weighted Sum of Squared Differences . . . . . . . . . . . . . 17

2.1.2 Intensity-Remapped SSD . . . . . . . . . . . . . . . . . . . . 17

2.2 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.1 Discrete Fourier Transform . . . . . . . . . . . . . . . . . . . 19

2.2.2 Inverse Discrete Fourier Transform . . . . . . . . . . . . . . 20

2.2.3 2D Fourier Transform . . . . . . . . . . . . . . . . . . . . . 21

2.2.4 Convolution Theorem . . . . . . . . . . . . . . . . . . . . . . 21

vi



3 Method 23

3.1 Modeling Rotation . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2 Determining the minimum . . . . . . . . . . . . . . . . . . . . . . . 25

4 Experiments 27

5 Results 37

5.1 Single ROI and images approx. 225× 190 . . . . . . . . . . . . . . 37

5.2 Single ROI and images approx. 550× 380 . . . . . . . . . . . . . . 38

5.3 Comparison to mutual information . . . . . . . . . . . . . . . . . . 40

6 Conclusions and Future Work 43

6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

Bibliography 46

vii



List of Tables

5.1 Breakdown of the ranking of the top true match for images approx.

225× 190 with a single ROI . . . . . . . . . . . . . . . . . . . . . . 37

5.2 The number of identification cases that ranked the correct match in

the top ten for images approx. 225× 190 . . . . . . . . . . . . . . . 38

5.3 Breakdown of the ranking of the top true match for images approx.

550× 380 with a single ROI . . . . . . . . . . . . . . . . . . . . . . 38

5.4 The number of identification cases that ranked the correct match in

the top ten for images approx. 550× 380 . . . . . . . . . . . . . . . 40

viii



List of Figures

1.1 NCIC dental codes description and usage explanation . . . . . . . . 5

1.2 CAPMI dental codes . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 WinID dental codes - extensions of CAPMI dental codes . . . . . . 9

1.4 An example of the dental chart entry in an individual’s record . . . 10

4.1 Contents of the ROI for a single radiograph . . . . . . . . . . . . . 28

4.2 Illustration of an identification test run . . . . . . . . . . . . . . . . 30

4.3 Overview of the approach . . . . . . . . . . . . . . . . . . . . . . . 31

4.4 Results of a small identification trial on a database consisting of 25

x-rays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.5 Top three matches . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.6 Two sample images with the area of overlap outlined . . . . . . . . 34

4.7 Registration of the two images . . . . . . . . . . . . . . . . . . . . . 35

4.8 Difference image for the properly aligned x-rays . . . . . . . . . . . 36

5.1 Histogram of the top % true match ranking for images approx. 225×190 39

5.2 Histogram of the top % true match ranking for images approx. 550×380 41

5.3 Histogram of the ranking for both the SSD and mutual information 42

ix



Chapter 1

Introduction

July 17, 2006, a tsunami south of Java Island reportedly killed 600 people, leaving

150 still missing. August 28, 2005, hurricane Katrina was upgraded to a Category 5

storm. It was one of the five deadliest tropical storms in the United States claiming

1,836 lives. December 26, 2004, the Indian Ocean Tsunami killed an estimated

275,000 people with thousands still missing. August 17, 1999, an earthquake of

magnitude 7.4 on the Richter scale lasted 45 seconds and claimed over 17,000 lives

in northwestern Turkey. September 1, 2004, a terrorist attack on a Beslan school

in Russia killed 344 civilians, of which 186 were children. March 11, 2004 a coordi-

nated bombing of commuter trains in Madrid, Spain killed 191 people. September

11, 2001, terrorists crashed commercial airliners into the World Trade Center and

Pentagon killing 2,976 people.

Natural and man-made disasters of catastrophic magnitudes are unfortunately

not unfamiliar to any of us. As a result of these terrorist attacks and naturally-

occurring phenomena, cities around the world incurred substantial structural, finan-

cial and human losses. Bombings, hurricanes, earthquakes and tsunamis ravaged

our communities leaving behind complete devastation, dust, ruins and nameless

bodies. Regrettably, relief and recovery efforts too often require assistance from

the forensic identification task force. These forensic specialists attend at the disas-

ter sites with the primary objective of identifying the victims as soon as possible.
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Early identification is mostly done by fingerprinting and DNA analysis methods.

However, due to the severe weather conditions bodies are exposed to, fingerprints

are often unavailable and the DNA is simply too hard to collect. In those cases,

forensic scientists rely on teeth to establish the deceased individual’s identity.

Unfortunately, mass disasters are not the only occasion during which human

forensic identification based on dental remains is necessary. The following depicts

another scenario: a person walking on a path through the forest comes across hu-

man skeletal remains. The deceased individual has been exposed to the elements

to a point where no DNA is available. The teeth and bones hold the secret to

the individual’s identity. While it may sound like a scene from a TV show, it is

not a far cry from reality. Often, bodies of an unidentified individual has decom-

posed to a point where best available information pertaining to the individual’s

identity are his/her teeth.So it is not uncommon for dental records to be used by

law enforcement agencies in the process of human identification.

1.1 Human Forensic Identification

Forensic identification is a scientific profession focused on documenting, collecting

and analyzing criminal evidence to identify specific objects from the traces they

leave behind [1]. Human forensic identification ascertains the identity of a person

based on specific physical and other measurable characteristics unique to each in-

dividual. It can be carried out prior to death, commonly referred to as antemortem

(AM) identification, or after death, referred to as postmortem (PM) identification.

Individuals can be identified by fingerprints, earprints, handprints, retinal and

iris scanning, voiceprinting, DNA fingerprinting, bones, teeth and many other fea-

tures. These unique features specific to each individual, are called biometric iden-

tifiers. Biometric identifiers have been widely used by law enforcement agencies

as tools in forensic identification. Bones and teeth are considered to be excel-

lent biometric identifiers due to their ability to survive extreme conditions [2, 3].

Additionally, they are unaffected by early tissue decay that destroys most other
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biometrics.

Although physiological characteristics (e.g. fingerprints and DNA) can produce

an excellent match and significantly aid in the process of forensic identification,

these identifiers are not always suitable or appropriate for postmortem identifi-

cation. Temporal degradation is common for cases in which the identification is

attempted more than a couple of weeks after death. Furthermore, severe circum-

stances encountered in mass disaster situations (earthquakes, floods, plane crashes

etc.) tend to expedite tissue degradation leaving behind teeth as the key to unlock-

ing the door to establishing positive identity.

1.1.1 Forensic Odontology

Forensic odontology is the branch of forensic science that is concerned with identi-

fying human individuals based on their dental features [4]. Forensic odontologists

attempt to establish the identity of an individual based on her/his dental records,

which are usually kept as radiographic (x-ray) images. Both antemortem (AM)

radiographs, dental x-rays obtained prior to death, and postmortem (PM) radi-

ographs, dental x-rays obtained after death, are used in the process of matching.

In order to identify an individual, there must be a presumptive identity for the

deceased, so that PM dental records can be compared against specific AM records

[5]. Accurate dental forensic identification entails a point-by-point comparison of a

complete set of dental x-rays where“all points of comparison must match exactly,

or in which differences can be explainable” [6].

According to a Federal Bureau of Investigation (FBI) report, as of December

31, 2005, there were 1,383 active unidentified person records in the National Crime

Information Center (NCIC) database [7]. Along with that, there were 109,531

active missing person records. “It is estimated that at any point in time there

are over 100,000 unsolved (missing and unidentified person (MUP) cases) in the

National Crime Information Center, 60% of which have remained unsolved for 90

days or longer. Technically speaking, this large number of unsolved cases hinders

the capabilities of search techniques currently employed” [8].
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With the vast volume of cases that need to be investigated by forensic odontol-

ogists, a shift towards a computer aided dental identification system is inevitable.

Automating the process of PM forensic identification will speed up the process

of human identification and consequently save money. It will also provide emo-

tional and psychological benefits to the families of missing persons who will be able

to know the disposition of their family member without having to wait extended

periods of time.

1.2 Current State of The Art

1.2.1 National Crime Information Center - United States

The National Crime Information Center (NCIC) maintains the only nationwide

database containing dental records for both the missing and unidentified individu-

als. Before the individual’s record is entered into the database, a forensic odontol-

ogist or a dental expert examines the dental x-rays and charts the morphological

features for each individual tooth [9, 10]. Features and properties of the teeth such

as dental work, pathology and dental restorations, presence/absence of a tooth,

presence/absence of restorations, crown and root morphology, as well as periodon-

tal tissue and other anatomic features are all closely examined and recorded. Dental

charts are recorded according to the NCIC Dental Code Manual. An example of

the Code Manual is shown in Fig. 1.1.

Once the dental features have been recorded, the dental chart is entered into

the system along with the physical descriptors such as sex, age, height, weight, etc.

Law enforcement personnel are then able to search the missing and the unidentified

persons’ database in an effort to establish the identity of the deceased individual.

The process of comparing AM and PM records is carried out manually and both

dental charts and physical descriptors are considered (with the emphasis on the

latter). The NCIC computer searches the NCIC’s MUP databases calculating the

similarity score for each AM record. The score depends on the number of similar

characteristics the AM record shares with the PM record. A record whose similarity
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Figure 1.1: NCIC dental codes description and usage explanation
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score is above a chosen threshold is identified as a possible match. Depending

on the similarity between the AM and PM record, as well as their corresponding

radiographs, the forensic expert rejects or confirms the candidate identity.

There are several problems with the NCIC system. Often, reports are collected

by dentists or even personnel who are not necessarily trained in the field of forensic

dentistry who produce inaccurate, biased and flawed dental charts. Additionally,

NCIC Dental Code Manual forms tend to be complicated and subjective, leading to

additional errors. As Kamb [11] points out, the method of similarity scoring itself is

problematic. The similarity score is weighted heavily towards physical descriptors,

but characteristics such as age, height and weight are often only estimates if the

body was found in an advanced state of decomposition. Consequently, inaccurate

results are obtained. The NCIC computer proved to be highly unreliable and prone

to failure [11].

1.2.2 WinID and CAPMI

While NCIC’s database maintains nationwide MUP records, Maryland, Califor-

nia and Washington maintain their own statewide MUP database. California and

Washington use a Microsoft DOS-based Computer-Aided Postmortem Identifica-

tion system (CAPMI), while Maryland uses a Windows-based program (WinID).

Both of these systems exhibit better search capabilities than the FBI’s NCIC dental

search program [11].

Computer-Assisted Postmortem Identification System

The Computer-Assisted Postmortem Identification System was developed by the

U.S. Army Institute of Dental Research to facilitate the process of human forensic

dental identification. It is the first computer system of its kind. Although CAPMI

lists best possible matches, final positive identification is still carried out by a

forensic odontologist.

6



Figure 1.2: CAPMI dental codes

Similarly to the NCIC’s dental search program, CAPMI uses both physical and

dental descriptors in the process of human identification. Dental features are cap-

tured via predefined dental codes. The list of CAPMI codes is shown in Fig. 1.2.

As a quality assurance measure, two individuals are responsible for charting the

morphological features. Both the AM and PM charting involve an examiner and a

recorder. After an examiner makes a statement of findings, it is visually confirmed

and noted by the recorder. This redundancy aims at minimizing input errors.

Dental features considered by the observers are: missing teeth, restorations, pros-

thetics, unique anatomy and presence/absence of pathology. Additionally, either

exact physical descriptors (for AM charting) such as age, height, weight, gender,

age and race, or their estimates (for PM charting) are recorded. Both PM and

AM charting are accomplished using the CAPMI codes on AF Forms 1801 and
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1802 respectively. Once the records are completed and entered into the database,

the computer processes the information and compares ante/post mortem records

searching for possible matches. A record is listed as a possible match if a significant

level of similarity between the AM/PM pair is found.

WinID

WinID is dental software created by James McGivney, DMD, and it is offered as

freeware. It is intended to assist forensic odontologists in establishing and main-

taining a missing persons/unidentified bodies database [12]. WinID ranks potential

matches between unidentified bodies and missing persons through the use of both

dental and physical descriptors. Information regarding dental work, as well as

physical descriptors describing an individual, are stored in the Microsoft Access

Database. WinID uses MS Access’s sorting and filtering capability for matching

records. Similarly to NCIC’s dental search program and CAPMI, WinID records

dental features using a predefined set of dental codes. WinID dental codes, shown

in Fig. 1.3 are an extension of CAPMI codes. An example of the dental chart entry

in an individual’s record is shown in Fig. 1.4.

WinID supports BMP as well as GIF and JPEG formats allowing inclusion of

dental x-rays along with written information within an individual’s record. WinID

comes in 6 different supported languages, and easy switching between languages

enables an extensive user group. This program is mostly used by forensic dentists,

forensic odontologists, pathologists, coroners, medical examiners, forensic anthro-

pologists and those in the law enforcement and criminal justice systems. However,

as Dr. McGivney points out “the computer software does not make an identifica-

tion, but it points the dentists in the right direction” [13].

Limitations

A major limitation of WinID and CAPMI dental matching systems is that they only

capture artificial dental work. Characteristics inherent to teeth, such as crown and
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Figure 1.3: WinID dental codes - extensions of CAPMI dental codes

9



Figure 1.4: An example of the dental chart entry in an individual’s record

10



root contours are not charted. However, it is expected that future generations will

experience less dental decay, giving forensic odontologists very little information to

work with. Furthermore, modern dental material used for filings and restorations

produces poor quality radiographs, complicating the process of dental charting.

Consequently, a shift towards a comparison system based on morphology of crowns

and roots is necessary [14, 15, 8].

The coding, extraction and matching process for NCIC, WinID and CAPMI

are done manually. An obvious disadvantage of this approach is that it is error

prone and time consuming. A person preparing PM and AM records carefully

examines and documents morphology of each tooth present in a radiograph. Even a

single typographic mistake will lead to an erroneous record, possibly eliminating the

correct match. Additionally, relative interpretation of x-rays results in observational

findings that might not necessarily be agreed upon by all observers. Since the

interpretation of records is rather subjective, the strength of a match between a

PM and AM dental chart could be affected by the clinical experience level of the

forensic odontologist. Furthermore, the information contained within the image

itself, is never used in dental matching. The entire search and match process is

purely text-based.

1.2.3 Current Research

In the past few years, Michigan State University, West Virginia University and

the University of Miami jointly attempted to address the problem of developing an

automated system for postmortem identification using dental radiographs. The pro-

totype for the Automated Dental Identification System (ADIS) was first presented

in 2003 [8, 16]. Shortly after, Jain, Chen and Minut implemented a semi-automatic

method that extracts the shapes of teeth from AM and PM radiographs [5, 17, 18].

The proposed method involves radiograph segmentation, pixel classification and

contour matching. The teeth are matched by shape fitting, and scores are ranked

by the distance between the PM and AM shapes. The method was tested us-

ing 39 query images on a database of 130 images. For a total of 25 out of 39

11



queries, the correct AM images were ranked first. Zhou and Mottaleb aimed at en-

abling content-based retrieval of AM radiographs that have similar tooth contours

compared to a given PM radiograph [19, 20, 21]. Radiographs are classified by

their type (panoramic, periapical and bitewing), and teeth in bitewing images are

segmented and stored in the database. The method retrieves radiographs from the

AM database based on the Hausdorff distance measure between the tooth contours.

Mottaleb and Mahoor continued work on classification and numbering of teeth in

bitewing images [22], and reported a 90% accuracy of tooth classification. Jain and

Chen improved the originally- proposed tooth contour extraction method by using

directional snakes to discriminate boundaries between the adjacent teeth [23], and

since have moved towards using the human dental atlas for registration [24]. They

are currently working on using the indices of teeth to match two radiographs for

human identification. Most of the research involving radiographic registration for

identification purposes strongly focuses and relies on the automatic segmentation

of the tooth’s image.

1.3 Thesis Statement

The objective of this research is to propose a computer-aided framework for effi-

cient matching of dental radiographs for human identification purposes. Given a

PM radiograph with a marked region of interest (ROI), we search the database

of AM radiographs to retrieve a closest match with respect to the ROI. The key

contribution here is the application of the Weighted Sum of Squared Differences

(SSD) cost function as a similarity measure in this problem domain. The SSD

cost function was slightly modified to account for the possibility of radiographs

being acquired at different angles, as well as teeth shifting and rotating over time.

The operation of rotation is linearly approximated, and thus is valid over a limited

range of angles. Efficient evaluation of SSD using the Discrete Fourier Transform

(DFT) makes it feasible to simultaneously find the locally optimal rotation, and

globally optimal alignment, brightness and contrast adjustment between the two

radiographs. Experimental results indicate that matching dental records using SSD
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is a viable method for human identification purposes.

1.4 Organization of the Thesis

The remainder of the thesis is organized as follows. In Chapter 2 we outline er-

ror metrics used in image matching and provide the in-depth description of the

Weighted Sum of Squared Differences cost function. The optimization of the SSD

using the Discrete Fourier Transform is described. In Chapter 3 we describe how

we incorporated rotation into the SSD cost function to accurately reflect the nature

of the dental x-rays matching problem. Chapters 4 and 5 describe the process of

data acquisition, experiments and discuss obtained results. Chapter 6 presents the

conclusions and future work.
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Chapter 2

Image Matching

Image matching refers to a process of estimating an optimal transformation that

brings two images into spatial alignment. Images could be related through a non-

rigid or rigid-body transformation. A rigid-body transformation is a mapping that

preserves distances between points. Translation, rotation, and combinations thereof

are examples of rigid-body transformations. Non-rigid transformations, such as

shears, dilations and other more complex distortions, do not necessarily preserve

distances between points. In this thesis, we focus only on rigid-body transforma-

tions.

In order to match two images we need to define an appropriate similarity mea-

sure. A similarity measure is used to evaluate the spatial correspondence of images

and it should be suited to the optimization method used for the alignment (match-

ing).

2.1 The Error Metrics

When determining the appropriate error metric, we have to take into consideration

the method used for the alignment. Some methods perform image matching over

an entire image, while others use only a portion of an image, usually referred to as
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a region of interest (ROI). Within the scope of this thesis, only a part of the image

is used for matching. While the AM and PM dental x-rays may depict the same

tooth, or even several teeth, it is highly unlikely that they will be exactly the same.

Thus, matching over an entire image would not provide the desired results and we

have to consider an alignment over a specified ROI.

In image processing, several different methods are used for registration. A

common image similarity measure is Pearson’s cross-correlation coefficient [25]. The

cross-correlation coefficient is defined as

C(a) =

∫
f(x)g(x− a)dx√∫
f 2(x)dx

∫
g2(x)dx

. (2.1)

The measure of correlation between the functions f(x) and g(x − a) is given by

C(a). If g and f are equal, the C(a) achieves its maximum value when there is no

shift, meaning the corresponding value of a = 0.

The correlation coefficient cost function is commonly used for within-modality

image registration problems. However, this type of cost function is restricted in a

sense that, although it considers contrast changes, it cannot account for brightness

adjustments. It is unrealistic to expect that two x-rays will have the same brightness

and contrast properties. Consequently, we need to explore a possibility of a better

suited error metric that takes into account these properties while matching the

images.

Entropy-based similarity measures originating from information theory, such

as mutual information and normalized mutual information [26, 27, 28, 29, 30] are

common in both monomodal (same modality) and multimodal (different modalities)

registration scenarios. Mutual information is a quantity that measures the mutual

dependence of the two variables. Formally, mutual information is defined as

I(X; Y ) =
∑
y∈Y

∑
x∈X

p(x, y) log
p(x, y)

p(x)p(y)
(2.2)

where p(x) and p(y) are the marginal probability density functions of X and Y

respectively, while p(x, y) is the joint probability density function of X and Y . In
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the context of image registration, x is an intensity value from one image, while y

is an intensity value from the other. Then p(x) and p(y) can be estimated from

the intensity histograms of the images. Similarly, p(x, y) can be estimated from the

joint intensity histogram.

Mutual information can be equivalently expressed as a difference between the

marginal entropies contained in each image over the ROI and the joint entropy

contained in the overlayed images over the ROI,

I(X; Y ) = H(X) + H(Y )−H(X, Y ) . (2.3)

Quantities H(X) and H(Y ) represent marginal entropies of X and Y respectively,

while H(X, Y ) represents the joint entropy of X and Y . Image registration is

performed by maximizing the mutual information.

The advantage of mutual information methods is that they make no assumption

about the form of the intensity mapping between the two images; merely that

regions with matching intensities in one image are likely to have similar intensities

in the other image.

Mutual information has its drawbacks. Since there is no known way to effi-

ciently perform an exhaustive search over parameter space, registration problems

using mutual information are computationally expensive. Thus, implementations

rely heavily on optimization methods. Additionally, the process of estimating the

joint probability density function requires binning of pixels into discrete categories,

giving the cost function discontinuities. In [31] and [32] it was shown that mutual

information performs poorly when the initial misregistration is large compared to

the size of the ROI (which could be a case with dental x-rays). It is unrealis-

tic to assume that the chosen tooth in the PM image is nearly aligned with the

corresponding tooth in the AM image.

There are some methods that are capable of finding a global optimum for reg-

istration [33, 34, 35], but these methods typically must use the whole image, and

cannot work with an ROI. The fact that we are registering only within a small ROI

leads us to the Weighted Sum of Squared Differences (SSD) cost function.
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2.1.1 Weighted Sum of Squared Differences

The Weighted Sum of Squared Differences cost function allows us to find an optimal

shift for the alignment of image f to image g, while incorporating a weighting func-

tion w. The weighting function w, also commonly referred to as an ‘alpha channel’

[36] or ‘alpha map’ [37], is used to specify the ROI over which the matching of

two images f and g will take place. The common implementation of a weight-

ing function is a piecewise constant function with values 1 inside the ROI, and 0

elsewhere.

Given the M ×N images f , g and w, the weighted SSD cost function is

C =
M−1∑
m=0

N−1∑
n=0

[fm,n − gm,n]2 wm,n , (2.4)

where fm,n refers to the intensity of pixel (m, n) in the image f (likewise for gm,n

and wm,n). To match the translated image f to g, we have to find the parameters

a and b that minimize

C(a, b) =
M−1∑
m=0

N−1∑
n=0

[fm−a,n−b − gm,n]2 wm,n . (2.5)

2.1.2 Intensity-Remapped SSD

The SSD cost function given in (2.5) assumes that the intensity mappings for f

and g are the same. However, in the context of this research, we can not make

that assumption. Dental x-rays f and g could have come from different acquisi-

tion or rendering processes (i.e. digital vs. standard radiography) or could have

even been processed differently. Consequently, they could represent the same scene

using different greytones or intensities. To account for this, we extended (2.5) by

replacing f with s0 + s1f . In [38], it was shown that in conjunction to finding the

optimal translation, the globally optimal contrast and brightness adjustment can

be computed efficiently by finding values a, b, s0 and s1 that minimize

C(a, b, s0, s1) =
M−1∑
m=0

N−1∑
n=0

[(s0 + s1fm−a,n−b)− gm,n]2 wm,n . (2.6)
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Expanding the brackets in (2.6) we obtain

C(a, b, s0, s1) =
M−1∑
m=0

N−1∑
n=0

s2
0wm,n + 2

M−1∑
m=0

N−1∑
n=0

s0s1fm−a,n−bwm,n

+
M−1∑
m=0

N−1∑
n=0

s2
1f

2
m−a,n−bwm,n − 2

M−1∑
m=0

N−1∑
n=0

s0gm,nwm,n (2.7)

− 2
M−1∑
m=0

N−1∑
n=0

s1fm−a,n−bgm,nwm,n +
M−1∑
m=0

N−1∑
n=0

g2
m,nwm,n .

Since s0 and s1 are not functions of m and n, they can be factored out of the

summations in (2.7) leading to

C(a, b, s0, s1) = s2
0

M−1∑
m=0

N−1∑
n=0

wm,n + 2s0s1

M−1∑
m=0

N−1∑
n=0

fm−a,n−bwm,n

+ s2
1

M−1∑
m=0

N−1∑
n=0

f2
m−a,n−bwm,n − 2s0

M−1∑
m=0

N−1∑
n=0

gm,nwm,n (2.8)

+
M−1∑
m=0

N−1∑
n=0

g2
m,nwm,n − 2s1

M−1∑
m=0

N−1∑
n=0

fm−a,n−bgm,nwm,n .

The summations of the first, fourth and fifth terms in (2.8) are all constant with the

respect to a and b, and can easily be computed in linear (O(NM)) time. However,

direct evaluation of the remaining summation terms in (2.8) for all possible integer

shifts (a, b) is expensive and requires (O(N2M2)) floating point operations (flops).

2.2 Optimization

For the remainder of this thesis we make the assumption that the images are pe-

riodic; they repeat infinitely. Given an M × N image, we assume that fm,n =

fm+M,n = fm,n+N .

Consider the second summation term in (2.8),

M−1∑
m=0

N−1∑
n=0

fm−a,n−bwm,n . (2.9)
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It can be reformulated into a convolution,

M−1∑
m=0

N−1∑
n=0

f̄a−m,b−nwm,n = (f̄ ? w)a,b , (2.10)

where f̄ is a reflected version of f , such that f̄i,j = f−i,−j. It was shown by [38, 39]

that evaluating (2.10) in the frequency domain reduces the computational time

complexity from O(N2M2) to O(MN log(MN)) flops. Convolution in the image

(spatial) domain is equivalent to element-wise multiplication in the frequency do-

main and can be evaluated efficiently using the Fast Fourier Transform (FFT).

Details on how this is done are described in the following section.

2.2.1 Discrete Fourier Transform

The Fourier Transform is an important image processing tool. The essence of the

FT is to represent a function (‘signal’) in the frequency domain. In other words,

the Fourier Transform decomposes the signal into the weighted sum of sinusoids of

different frequencies [40]. The main benefit of this transform is the intuitive inter-

pretation of weights as a frequency decomposition of the input signal. Each weight,

called a Fourier coefficient, corresponds to a phase, frequency and amplitude of a

sinusoid. The collection of Fourier coefficients is the frequency domain representa-

tion of the signal, containing the same information as the original signal, differing

from it only in the manner of the representation of the information. Adding up all

sinusoids for all the Fourier coefficients reconstructs the original signal.

The version of FT that operates on discrete (sampled) data is called a Discrete

Fourier Transform (DFT). The DFT is an invertible transformation that converts

a sequence of N complex numbers {fn | n = 0, ..., N − 1}, into another sequence of

N complex numbers {Fk | k = 0, ..., N − 1}. In this context, we refer to f as the

spatial domain signal, and F as the frequency domain signal. Additionally, we refer

to Fk as a Fourier coefficient. Since we are working with images, we will assume

for the duration of this thesis that f is a real-valued signal (i.e. the imaginary part

is zero). Since the DFT is invertible, we can convert between fn and Fk without

loss of information.

19



As mentioned, the Fourier Transform works by decomposing a signal into its

sine and cosine components, where each point in the frequency domain represents

a particular frequency contained in the spatial domain signal. Since these trigono-

metric components form an orthonormal basis, finding the Fourier coefficients of f

is simply a matter of computing

ak =
1

N

N−1∑
n=0

fn cos(ktn) (2.11)

bk =
1

N

N−1∑
n=0

fn sin(ktn) (2.12)

for k = 0, ..., N − 1, where the points tn = n2π
N

are evenly spaced on an interval

[0, 2π).

If we combine ak and bk into a single complex number Fk = ak + ibk then the

DFT can be written

Fk =
1

N

N−1∑
n=0

fn[cos(ktn) + i sin(ktn)] . (2.13)

Using Euler’s formula relating the trigonometric and exponential functions for com-

plex values

eix = cos(x) + i sin(x) (2.14)

the Fourier coefficient Fk can be defined as

Fk =
1

N

N−1∑
n=0

fne
−2πink

N (2.15)

giving us the definition of the Discrete Fourier Transform.

2.2.2 Inverse Discrete Fourier Transform

The Inverse Discrete Fourier Transform (IDFT) is defined as

fn =
N−1∑
n=0

Fke
2πink

N . (2.16)
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This inverse transformation allows us to determine the spatial domain function

from its Fourier coefficients. If the ‘signals’ or ‘sequences’ Fk and fn are related by

equations (2.15) and (2.16) then they are termed a Fourier Transform pair .

2.2.3 2D Fourier Transform

Since we are utilizing the Fourier Transform for image processing, we need to pro-

vide a definition of the DFT and IDFT for a two-dimensional (2D) signal. The

DFT of a 2D function fm,n is another 2D function defined as

Fj,k =
M−1∑
j=0

N−1∑
k=0

fm,ne
−2πi(j m

M
+k n

N
) (2.17)

j ∈ [0, ...,M − 1], k ∈ [0, ..., N − 1] . (2.18)

The IDFT of a 2D function Fj,k is defined as

fm,n =
1

MN

M−1∑
m=0

N−1∑
n=0

Fj,ke
2πi(j m

M
+k n

N
) (2.19)

m ∈ [0, ...,M − 1], n ∈ [0, ..., N − 1] . (2.20)

2.2.4 Convolution Theorem

The Fourier Transform’s treatment of convolution is considered a fundamental tool

in image processing. In a discrete 2D space, convolution of two discrete signals fm,n

and gm,n, where m = 0, ...,M − 1 and n = 0, ..., N − 1, is defined as

(f ? g)a,b =
M−1∑
m=0

N−1∑
n=0

fm,nga−m,b−n . (2.21)

a ∈ [0, ...,M − 1], b ∈ [0, ..., N − 1] , (2.22)

where the ranges of a and b reflect the fact that f and g are assumed to be periodic.

It is well known that the convolution in the spatial (image) domain is equivalent

to element-wise multiplication in the frequency domain [40]
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DFT (f ? g)j,k = Fj,kGj,k . (2.23)

Due to this property, the evaluation of (2.10) in the frequency domain reduces the

computational time complexity from O(N2M2) to O(MN log(MN)) flops.
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Chapter 3

Method

It was shown by Orchard [38] that in addition to finding the optimal match over

all possible integer shifts, we can also efficiently find an optimal match over all

linear intensity remappings. When matching two dental radiographs, we are looking

for both the shift that best aligns the two radiographs over the given region of

interest (ROI), as well as the best contrast and brightness adjustment that makes

the corresponding parts of the two radiographs as similar as possible. As shown in

Chapter 2, optimal alignment and intensity remapping is given by parameters a, b,

s0 and s1 that minimize

C(m, n, s0, s1) =
M−1∑
m=0

N−1∑
n=0

[s0 + s1fm−a,n−b − gm,n]2 wm,n . (3.1)

However, (3.1) does not account for rotations. Since teeth naturally shift and

rotate over time, the cost function needs to be extended to incorporate this as-

pect. Furthermore, radiographs can be obtained at different angles of acquisition,

resulting in slightly rotated depictions of the same tooth.
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3.1 Modeling Rotation

To extend (3.1), we model rotation using a linear approximation

R(f , θ) ≈ f + Jθ , (3.2)

where J holds the derivatives of f with respect to rotation parameters. Substituting

(3.2) into (3.1) yields

C(a, b, s0, s1) =
M−1∑
m=0

N−1∑
n=0

[s0 + s1R(f , θ)m−a,n−b − gm,n]2 wm,n

=
M−1∑
m=0

N−1∑
n=0

[s0 + s1(fm−a,n−b + Jm−a,n−bθ)− gm,n]2 wm,n (3.3)

=
M−1∑
m=0

N−1∑
n=0

[s0 + s1fm−a,n−b + s2Jm−a,n−b − gm,n]2 wm,n

where s2 = s1θ. To simplify the notation, let

F = fm−a,n−b (3.4)

G = gm,n (3.5)

W = wm,n (3.6)

J = Jm−a,n−b . (3.7)

Then (3.3) can be written

C(a, b, s0, s1, s2) =
M−1∑
m=0

N−1∑
n=0

(s0 + s1F + s2J−G)2W . (3.8)

Multiplying out the terms and expanding the brackets results in

C(a, b, s0, s1, s2) =
M−1∑
m=0

N−1∑
n=0

(
s2
0W + 2s0s1FW + s2

1F
2W + 2s0s2JW

−2s0GW + 2s1s2FJW − 2s1FGW (3.9)

+s2
2J

2W − 2s2JGW + G2W
)

.
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Simplifying our notation further, and defining

e1 =
M−1∑
m=0

N−1∑
n=0

wm,n (3.10)

e2 =
M−1∑
m=0

N−1∑
n=0

fm−a,n−bwm,n (3.11)

e3 =
M−1∑
m=0

N−1∑
n=0

f2
m−a,n−bwm,n (3.12)

e4 =
M−1∑
m=0

N−1∑
n=0

Jm−a,n−bwm,n (3.13)

e5 =
M−1∑
m=0

N−1∑
n=0

gm,nwm,n (3.14)

e6 =
M−1∑
m=0

N−1∑
n=0

fm−a,n−bJm−a,n−bwm,n (3.15)

e7 =
M−1∑
m=0

N−1∑
n=0

fm−a,n−bgm,nwm,n (3.16)

e8 =
M−1∑
m=0

N−1∑
n=0

J2
m−a,n−bwm,n (3.17)

e9 =
M−1∑
m=0

N−1∑
n=0

Jm−a,n−bgm,nwm,n (3.18)

e10 =
M−1∑
m=0

N−1∑
n=0

g2
m,nwm,n (3.19)

the right-hand side of the equation (3.9) becomes

s2
0e1 +2s0s1e2 + s2

1e3 +2s0s2e4−2s0e5 +2s1s2e6−2s1e7 + s2
2e8−2s2e9 +e10 . (3.20)

3.2 Determining the minimum

While it is not explicitly stated, the coefficients s0, s1 and s2 are functions of the

shift, a and b. That is, we can compute a different optimal set of coefficients for
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each candidate shift. As such, our strategy for optimizing (3.20) is to efficiently

compute the optimal coefficients for all possible shifts. In the previous section, we

described how the summations could efficiently be computed for all possible shifts.

In this section, we describe how, for a given shift, to find the optimal coefficients, s0,

s1, and s2. The minimum value of (3.20) can be determined by taking the partial

derivatives of (3.20) with respect to s0, s1 and s2 and setting them to 0,

2s0e1 + 2s1e2 + 2s2e4 − 2e5 = 0

2s0e2 + 2s1e3 + 2s2e6 − 2e7 = 0 (3.21)

2s0e4 + 2s1e6 + 2s2e8 − 2e9 = 0

which leads to a simple 3× 3 system of linear equations.

Solving (3.21) yields the following values for s0, s1 and s2

s0 =
e2e6e9 − e2e7e8 − e4e3e9 + e4e6e7 + e3e5e8 − e5e

2
6

2e2e4e6 + e1e3e8 − e1e2
6 − e2

2e8 − e3e2
4

(3.22)

s1 =
e1e7e8 + e2e4e9 − e1e6e9 + e4e5e6 − e2e5e8 − e7e

2
4

2e2e4e6 + e1e3e8 − e1e2
6 − e2

2e8 − e3e2
4

(3.23)

s2 =
e2e4e7 + e2e5e6 + e1e3e9 − e3e4e5 − e1e6e7 − e9e

2
2

2e2e4e6 + e1e3e8 − e1e2
6 − e2

2e8 − e3e2
4

. (3.24)
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Chapter 4

Experiments

The method was implemented in MATLAB (MathWorks Inc., Natick, Massa-

chusetts) and tested on a database of 571 dental radiographs belonging to 41 dis-

tinct individuals (also referred to as ‘subjects’). Each subject had a dental record

consisting of two or more radiographs. Here, we define a dental record as a set

of radiographs collected during a single session (visit to the dentist). Exactly 21

subjects had multiple dental records obtained at different times, i.e. one record

obtained in a 1982 session, and a subsequent record obtained in 1984.

All radiographs were scanned using a backlit scanner at a resolution of 800

dpi, and saved in a JPEG format with a quality factor of 100. To address privacy

issues associated with this type of data, all individuals were assigned a unique

patient number ranging from 1 to 41. Each scanned image was then identified

using the patient number, followed by the session number and the image number.

For example, the image ‘P25 S02 05.jpg’ would identify a 5th dental radiograph

belonging to the patient number 25, obtained in the 2nd session. The AM database

consisted of these scanned images.

A total of 125 of the most recent dental radiographs belonging to subjects with

multiple sessions were treated as PM images. For each of the PM radiographs, an

ROI was defined by roughly encompassing a tooth over which we wanted to perform

a matching process. Pixels of interest were given a weight of 1, while all other pixels
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Figure 4.1: Contents of the ROI for a single radiograph

were assigned a weight of 0. Small regions surrounding the tooth (whether it be a

neighboring tooth or a dark portion of the radiograph), were also included in the

ROI. Figure 4.1 shows the contents of the ROI for a single radiograph. For some

radiographs, more than one ROI was defined resulting in a total of 150 test cases.

Given a PM radiograph with an ROI, our goal is to determine the identity of

the person by retrieving the closest match from the AM database. Note, however,

that PM radiographs were not permanently removed from the database, but rather

excluded for the appropriate test case. Figure 4.2 illustrates the process. If we were

to remove the PM radiographs, the size of the database would be reduced from 571

to 446 radiographs. Maintaining the size of the database was important as it allowed

us to have more AM to PM/ROI matching pairs. Thus, each identification trial

then consisted of removing one of the PM sessions from the database and matching
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one of its images (with an associated ROI) to all the remaining images in the AM

database.

Using our method, the PM/ROI image is matched pixel by pixel against all

the remaining images in the database. For all possible shifts, the best intensity

remapping (and hence, the best small rotation) is computed, and the minimum

parameters, along with the associated error (cost), are recorded. An overview of

the approach is shown in Fig. 4.3. The radiographs in the database are then ranked

according to the error, with the smallest error indicating the best match.

For example, matching a PM/ROI pair depicted in Figure 4.1, to a small data-

base consisting of 25 AM radiographs produces results shown in Fig. 4.4. As can be

seen in Fig. 4.5, the top ranked match was the correct one. Our method works by

finding the best shift, brightness and contrast adjustment as well as small rotation

that minimize the cost function and consequently bring two radiographs into align-

ment. The process is illustrated by two sample images depicted in Fig. 4.6. The

area of overlap between the two images is outlined in red. Translating the image on

the left by [x, y], and rotating it by θ, where x,y, and θ parameters are determined

by our method, we achieve an overlap depicted in Fig. 4.7. The difference image

shown in Fig. 4.8 illustrates the quality of the registration.

In the scope of this work, two separate scenarios are considered, each consisting

of 150 test cases, for a total of 300 tests. Both scenarios use a single ROI in

the process of matching. One scenario was tested on a database of radiographs

approximately sized at 550× 380, and another on radiographs approximately sized

at 225× 190.
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Figure 4.2: Illustration of an identification test run
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Figure 4.3: Overview of the approach
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Figure 4.4: Results of a small identification trial on a database consisting of 25

x-rays
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Figure 4.5: Top three matches

33



Figure 4.6: Two sample images with the area of overlap outlined
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Figure 4.7: Registration of the two images
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Figure 4.8: Difference image for the properly aligned x-rays
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Chapter 5

Results

5.1 Single ROI and images approx. 225× 190

Matching was performed over a single ROI, encompassing a single tooth with a

part of its surrounding. All 150 of the PM/ROI pairs were used, constituting 150

identification scenarios. In 93 out of 150 cases (62% of trials), the correct match

was in the top 1%. The correct match occurred in the top 10% and top 15% in

90% and 97% of the trials, respectively. Table 5.1 summarizes the test results. The

count identifies the total number of cases for which the correct match was located

in a given top %.

1 % 2% 3 % 4 % 5% 10% 15%

count 93 100 106 112 117 134 145

% of trials 62 67 71 75 78 90 97

Table 5.1: Breakdown of the ranking of the top true match for images approx.

225× 190 with a single ROI

In 56 out of the 150 cases, the correct match was the top-ranked match. In a

real-life scenario, this means that 37% of the time the first radiograph the forensic

odontologist looks at will be the only radiograph he/she needs to consider to es-

tablish the identity of the individual. The correct match was in the top ten in 64%
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of the identification test cases. Table 5.2 shows the distribution of the top correct

matches over all 150 trials.

rank 1 2 3 4 5 6 7 8 9 10

count 56 8 11 6 3 4 3 2 0 2

Table 5.2: The number of identification cases that ranked the correct match in the

top ten for images approx. 225× 190

Our methods performance in registering 150 PM/ROI images to correct AM

images is displayed in Fig. 5.1 as a histogram of the top % true match ranking for

images approx. sized at 225× 190.

5.2 Single ROI and images approx. 550× 380

Again, matching was performed over a single ROI, encompassing a single tooth

with a part of its surrounding. All 150 of the PM/ROI pairs were used, accounting

for a total 150 identification scenarios. The obtained results were almost identical

to the ones obtained for the smaller images. In 93 out of 150 cases, the correct

match was in the top 1% (again, 62% of the trials). The correct match occurred

in the top 10% and top 15% in 90% and 97% of the tests respectively. Similarly to

above, Table 5.3 summarizes all these test results.

1 % 2% 3 % 4 % 5% 10% 15%

count 93 101 106 113 117 134 145

% of trials 62 67 71 75 78 90 97

Table 5.3: Breakdown of the ranking of the top true match for images approx.

550× 380 with a single ROI

In 55 of 150 identification cases, or 36% of the trials, the correct match was the

top-ranked match. The correct match was ranked in the top ten 64% of the time.

Table 5.4 shows the distribution of the top correct matches over all 150 trials.
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Figure 5.1: Histogram of the top % true match ranking for images approx. 225×190

39



rank 1 2 3 4 5 6 7 8 9 10

count 55 9 10 6 5 1 5 2 2 0

Table 5.4: The number of identification cases that ranked the correct match in the

top ten for images approx. 550× 380

Our methods performance in registering 150 PM/ROI images to correct AM

images is displayed in Fig. 5.2 as a histogram of the top % true match ranking for

images approx. sized at 550× 380.

5.3 Comparison to mutual information

Using mutual information, a subset of 30 PM/ROI pairs is matched to the AM

database consisting of 571 radiographs. We use FLIRT’s implementation of mutual

information [41] with 64 bins and tri-linear interpolation. A custom schedule file

was created that was geared towards small angles (< 10◦). This improved mutual

information’s chances of finding the globally optimal registration.

Mutual information returned the correct match as the top-ranked match 10 out

of 30 identification trials (33% of the time), compared to our method’s 18 out of

30 times (60% of the time). In 21 out of 30 cases (70% of the time), our method

ranked the correct match in the top 1%. Mutual information ranked the correct

match in the top 1% in 15 out of 30 cases (50% of the time). Direct comparison

between the two methods is displayed in Figure 5.3 as a histogram showing the

ranking of the correct match.

Mutual information does a good job at determining the correct match. How-

ever, the results show that the SSD method described here outperforms mutual

information in the given problem domain. Figure 5.3 suggests that the SSD cost

function is a more appropriate choice of an error metric for matching of dental

x-rays.
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Figure 5.2: Histogram of the top % true match ranking for images approx. 550×380
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Figure 5.3: Histogram of the ranking for both the SSD and mutual information
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

The thesis proposed a computer-aided framework for efficient matching of dental

radiographs for human identification purposes. Given a postmortem radiograph

with a marked ROI, we search the database of antemortem radiographs in order to

retrieve a closest match with respect to the ROI. The Weighted Sum of Squared

Differences (SSD) cost function is used to express the degree of similarity between

the two images. Unlike other iterative Least Squares methods that use local infor-

mation for gradient descent, our method finds the globally optimal translation. The

SSD cost function is slightly modified to account for the possibility of radiographs

being acquired at different angles, as well as teeth shifting and rotating over time.

The operation of rotation is linearly approximated. As mentioned, our method is

global in terms of determining an optimal translation, but it is local in terms of

determining an optimal angle.

The method was tested on a database consisting of 571 images. A total of 150

PM/ROI pairs were defined as identification scenarios. The ROI/PM pairs were

matched to the database consisting of images sized at 225 × 190 and 550 × 380,

resulting in 300 identification trials. For each identification trial, all possible shifts

and linear intensity remappings are checked and recorded along with the associated
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error (cost). The radiographs are ranked according to the error, with the smallest

error indicating the best (top) match. For 37% of the trials, the correct match was

the top-ranked match. In 64% of the trials, the correct match was ranked in the

top ten. For 97% of the identification cases, the top match was located in the top

15%. The results depicted in Fig. 5.1 and Fig. 5.3 indicate that the increase in size

of dental radiographs does not produce significant change in the effectiveness of our

method. Other than some minor differences, the results are practically the same for

both the images approximately sized at 550 × 380, and the images approximately

half that size. Thus, reducing the size of radiographs, and consequently reducing

the storage requirements needed to maintain the database, can be done without

sacrificing the effectiveness of the matching method. The database storage require-

ments might not be of such importance in disaster situations where the number

of unidentified individuals is relatively small, but they are, however, an important

factor to consider in mass disaster situations and while maintaining Missing and

Unidentified Person (MUP) databases. The MUP database can contain more than

100,000 people. If each person in the database had on average 15 dental radiographs

approx. 150KB in size, then it would take ≈ 215GB to store the images alone. For

radiographs approx. 40KB in size, the storage requirement drops down to 57GB.

Our experiments show that matching dental records using SSD is a viable

method for human identification purposes. Note, however, that accurate dental

forensic identification can only be made by a forensic odontologist through a point-

by-point comparison of a complete set of mouth x-rays. The work shown here is

intended to aid the forensic odontologists in the process possible match identifi-

cation, while the positive dental identification still needs to be done by a forensic

dental specialist.

6.2 Future Work

The matching within the scope of this thesis was done over a single tooth (in a single

ROI). One possible avenue for future work involves using two or more ROI’s in the

matching process. One option is to do matching over a single ROI encompassing two
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or more teeth. Another option involves using two separate ROI’s in the process of

matching and then combining the results. We anticipate that using multiple ROI’s

would give us even more accurate results. The PM/ROI image is matched to every

image in the database regardless of to whom the image belongs. Thus, it is possible

to have he top three ranked radiographs belonging to, e.g. patient 25, followed by

the correct match ranked at 4. In reality, the correct match would be considered as

a 2nd rank since the forensic odontologist would look at the radiographs belonging

to patient 25 only once, despite the fact they are ranked 1, 2 and 3. Filtering of

results (removing multiple occurrences of the same patient) is definitely a possible

future work direction.

Storing metadata along with dental images will most likely result in improved

matching capabilities of our method. Metadata would enable filtering capabilities

prior to the actual matching process, consequently reducing the running time of

the identification. Filtering of the data (e.g. based on the individual’s sex) would

reduce the size of the search domain, and with it, reduce the chances of a incorrect

match getting a higher score than the true match.

Increasing the size of the database is the logical next step in this research. To

truly test the effectiveness of this method, more radiographs need to be considered in

matching. As shown by the current research in this field [5, 8],[16]-[24], the increase

in the size of the database tends to hinder the effectiveness and the searching

capabilities of the matching methods employed. The effects that an increase in the

size of the database would have on our method still need to be investigated in more

depth.

Incorporating rotation and translation with higher order intensity remappings

is another direction for future work. We believe that the estimated rotation and

translation parameters obtained with the higher order intensity remapping would

result in an even higher percent of success. Furthermore, spatial scaling is not part

of the transformation we are currently considering. Incorporating scaling into the

SSD cost function is a next possible step in this research.
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