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Abstract

The discovery of Carbon Nanotubes and their ability to produce X-rays can

usher in a new era in Computed Tomography (CT) technology. These devices

will be lightweight, flexible and portable. The proposed device, currently under

development, is envisioned as a flexible sheet of tiny X-ray emitters and detectors.

The device is wrapped around an appendage to acquire X-ray projections and

reconstruct a CT image. However, current CT reconstruction algorithms can only

be used if the geometry of the CT device is regular (usually circular). We present

an efficient and accurate reconstruction technique that is unconstrained by the

geometry of the CT device. Indeed the geometry can be both regular and highly

irregular. To evaluate the feasibility of reconstructing a CT image from such a

device, a simulation test bed was built to generate simulated CT ray sums of an

image. This data was then used in our reconstruction method. The reconstruction

method consists of resampling the irregular X-ray projection onto a regular grid,

whereupon the Filtered Backprojection method can be used. Our method depends

on the ability to know the locations of the X-ray emitters and detectors; we foresee

integrating a shape-tracking device into the CT-scanner. In anticipation that a

real-world implementation of such a device will have to be robust to measurement

errors, we have conducted tests to analyze how our reconstructions behave in the

presence of errors. Observations of reconstructions, as well as quantitative results,

suggest that this simple method is efficient and accurate.
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Chapter 1

Introduction

With the discovery of Carbon Nanotubes (CNT) in 1991 by the Japanese physi-

cist Sumio Iijima [1], followed by the discovery of Nanotubes as field emitters in

1995 [2] scientists at the University of North Carolina were able to produce X-rays

in 2001 [3]. Researchers have therefore been able to miniaturize X-ray emitters. In

this thesis we envision a device where X-ray emitters and detectors are attached

to some flexible fabric that can be placed around an appendage or a body and

a Computed Tomography (CT) scan obtained. Current reconstruction algorithms

are based on the device having a circular geometry. However, the envisioned device

will create geometries that are highly irregular.

This thesis, while anticipating a CNT technology that can effectively create X-

ray beams powerful enough to penetrate layers of tissue, is focused on developing

a reconstruction algorithm that does not rely on the geometry of the scanner.

1.1 Carbon Nanotubes

Like diamond, and graphite, CNT’s are a pure molecular configuration of carbon

atoms, known as carbon allotropes. Carbon Nanotube molecules are cylindrical and,

together with their synthesis process, result in unique properties. These include
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impressive strength and high electric and thermal conductivity. There are two

types of nanotubes; Single Walled Nanotubes (SWNT) and Multi-walled Nanotubes

(MWNT). Single Walled Nanotubes are formed by taking a single sheet of graphite,

one atom thick, and rolling it up, like a sheet of paper, to form a cylinder. Multi-

walled Nanotubes are formed by rolling up several sheets. Because of the fact

that SWNTs are used to create X-rays, we will focus on SWNTs. Further reading

including synthesis can be found in [4, 5, 6, 7].

In the following sections we give short descriptions of the major properties of

CNTs (see [4, 5, 6, 7] for more detail).

1.1.1 Strength of CNT

Carbon Nanotubules are incredibly strong primarily due to their structure and the

fact that the carbon bonds in graphite are some of the strongest chemical bonds

known. As a matter of fact, CNTs are currently the strongest known fibers. This

strength is manifest both interms, tensile strength (the force required to pull it

apart to breaking point), and modulus of elasticity (the force necessary to cause

deformation). However, its structure also contributes to its weakness under com-

pression. Because the molecule is hollow, under a compressive force it will buckle.

1.1.2 Electric Conductivity

The electric property of a CNT depends on its structure. All armchair structures

(Fig 1.1) result in metallic fibers, while others like chiral have both semiconductor

and metallic characteristics. In metallic CNTs the conductivity can be better than

copper. Superconductivity has also been observed in CNTs [9]. This is due to the

crystalline structure of the CNT, where electrons flow through the material without

collisions, called Ballistic conduction. Bending and twisting of CNTs produces

various electric properties.

2



Figure 1.1: The different ways a graphite sheet can be rolled up. The integers a1

and a2 in a) represent unit vectors, n and m are integers and T is the tube axis. b)

shows a zig-zag configuration c) a chiral and d) an armchair configuration. These

configuration results in the wide difference in observed properties. For example,

all armchair configurations result in a metallic nanotube while others result in a

semiconductors [8].
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1.1.3 Thermal Conductivity

As in the case of Electric Conductivity, thermal conductivity depends on the con-

figuration and ballistic conduction. Like graphite and diamond, CNTs have high

thermal conductivity. However, the structure also affects conductivity with chiral

configured molecules having higher conductivity [10, 11].

1.2 Carbon Nanotubues in Diagnostic Imaging

In traditional X-ray generation the cathode is heated causing the electrons on the

surface to break free of their bonds, a process known as thermionic emission [12, 13].

An electric potential is then applied that causes these electrons to accelerate, hit

a piece of metal, usually tungsten, and release X-rays. This process is described

in the following chapter. Unfortunately this process requires a lot of energy and

the intense heat, in excess of 2000◦C, quickly degrades the cathode tube. However,

a quantum process called field emission releases electrons from a surface, in the

presence of a high electric field, at room temperature. Field emission is dependent

on the type of material and shape, such that materials with a high aspect ratio

create a larger current. Carbon Nanotubes are perfect candidates for field emission

as they can be very good conductors and their tops are capped. With synthesis this

cap can be made more pointy and thereby generate a higher current. The current

obtained from field emission follows the Fowler-Nordheim relation

I(V ) =
1.56× A× 10−6 × V 2

$
exp

(
−6.83× 107 ×$1.5

V

)
, (1.1)

where V is the applied voltage, A emitting surface area, and $ the work function.

In 2002 researchers at the University of North Carolina were able to use CNTs

to generate X-rays and obtain the images of a fish and a hand shown in Fig 1.2 [3].
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Figure 1.2: X-ray images obtained from a CNT device using 14kV at a distance of

30cm from the objects. a) a fish, b) fingers [3].
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1.3 Current CT technology

The first commercially available CT-scanner was developed by Godfrey Hounsfield

in 1972. The first clinical scanner was installed in 1974 and only performed head

scans. However, by 1976 full body scanners were available. Hounsfield’s first scan-

ner used arithemetic reconstruction techniques to reconstruct the image. This tech-

nique took hours to reconstruct a single slice and days to obtain volumes. Below

we provide a quick overview of the evolution of CT scanners.

1.3.1 First Generation

These CT scanners used a thin beam of radiation directed at one or two detectors. A

slice of an object was acquired by a method where the X-ray source and the detector

are in a fixed relative position and move across the patient followed by a rotation of

the gantry by one degree, and another set of translations. In Houndsfield’s original

scanner, called the EMI-Scanner, a pair of images was acquired in about 4 minutes

with the gantry rotating a total of 180 degrees.

1.3.2 Second Generation

In this design the number of emitters and detectors on the gantry was increased.

This allowed the use of a fan beam to cover larger areas and decrease imaging

time. Rotation of the gantry was increased from 1 to 30 degrees. Otherwise the

mechanism remained similar to first generation machines.

1.3.3 Third Generation

Third generation increased the coverage of the fan beam. Also the detectors were

fixed, thus allowing for scanning of a larger area and eliminating the need for the

gantry to translate and rotate. Now it only needed to rotate. This dramatically

decreased scanning time and for the first time allowed the imaging of the lungs and

other vacilatting organs (Fig. 1.3).
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1.3.4 Fourth Generation

Fourth Generation scanners have detectors 360◦ around the gantry and only the

emitter moves. Although imaging time did not improve, the ring artifact problem

was solved. The ring artifact is due to faulty calibration of a detector resulting in

erroneous reading at each angular position. This results in a circular artifact in the

reconstructed image.
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Figure 1.3: Third generation scanner. A group of detecors and an emitter source

are mounted on a gantry. Using fanbeam projection, the data is collected. The

gantry is then rotated by a certain amount and another projection taken. Going

through a 180◦ or 360◦ circle gives one slice of the abdomen. The smaller the

degree of rotation the better quality the image, however it takes a longer time to

obtain [14].
8



Chapter 2

Theory of CT Reconstruction

2.1 Physics of X-rays

In this chapter we go through some of the very basics of X-ray physics with the

primary aim in deriving the equation

I = I0e
µL. (2.1)

This equation is the fundamental equation in CT mathematics that is used to derive

the Radon Transform [15]. The Radon Transform (in particular its inverse) is the

means by which image reconstruction is obtained.

X-rays are electromagnetic radiation similar to microwaves, visible light, ultra-

violet light and radio waves. However, X-rays (along with γ rays) are the only form

of electromagnetic radiatation that have the potential of liberating electrons from

their atomic bonds [16]. The wavelength of X-rays ranges from a few picometers

(10−9 meters) to nanometers (10−6 meters) [16]. The energy contained in an X-ray

photon is given by [17]

E = hv =
hc

λ
, (2.2)
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where h is Planck’s constant (≈ 6.63× 10−34Js) [17], and c is the speed of light (≈
2.997925x108m/s). This equation shows that the energy of an X-ray is inversely

proportional to its wavelength λ. That is, the longer the wavelength the lower the

energy of the X-ray photons. In a CT scan, the operation of the X-ray tube, and

the energy of the ejected photons, is measured in units kilo-Volts potential (kVp).

Therefore a tube operating at 1Vp produces an X-ray photon of 1eV (1.602×10−19J)

accelerated across an electrical potential of 1V. Diagnostic X-rays operate in the

range of 12.4kVp to 140kVp corresponding to X-rays of wavelengths between 0.1nm

to 0.01nm [16, 18]. Longer wavelength X-rays, called soft X-rays, do not have the

necessary energy to penetrate deep into materials, while shorter wavelengths too

easily penetrate materials resulting in very little contrast between materials and

are therefore not used.

X-ray photons can be produced several different ways; however, most radiology

departments use the X-ray tube. The X-rays are produced when a substance,

usually tungsten, is bombarded by high speed electrons resulting in different types

of interactions occuring. The two major types of X-rays produced by an X-ray tube

are the Bremsstrahlung radiation and Characteristic X-rays. It is worthy to note

that 99% of the input energy in an X-ray tube is converted to heat. This is because

the majority of the encounters are the transfer of energy from the incident electron

to the target atom’s electron. These types of encounters give rise to only heat and

no X-ray photons.

2.1.1 Bremsstrahlung Radiation

Bremsstrahlung radiation, shown in Fig. 2.1, is produced when the incident elec-

trons intereact with the nuclei of an atom. This interaction occurs in one of two

ways as shown in the diagram. When an incident electron passes close to the nu-

cleus of an atom the difference in charges causes the electron to decelerate. This

rapid deceleration of the electron gives rise to the Bremsstrahlung radiation. The

intensity of this radiation is also dependent on how close to the nucleus, specifi-

cally how deep within the coulomb field, the electron passes. The further away, the

10



Figure 2.1: Bremsstrahlung Radiation

lower the energy of Bremsstrahlung radiation [19, 20]. The total intensity of the

Bremsstrahlung radiation is proportional to Ze, the charge of the target nuclei that

comes into contact with an incident particle of charge ze and mass m. Here Z is the

atomic number of the target nuclei, z is the atomic number of the incident particle

and e is the elementary charge which is a constant of value ≈ 1.602× 10−19C [17].

Note that for an electron this value is negative.

I ∝ Z2z4e6

m2
. (2.3)

Equation 2.3 [16] indicates why electrons, and not protons or alpha particles, are

used to create the radiation. The mass of an electron makes it 3 million times more

efficient. Equation 2.3 also indicates that Bremsstrahlung production increases as

the atomic number of the target increases.

Bremsstrahlung radiation is also produced when an incident electron hits the

nuclei of a target atom. In this interaction, the entire energy of the incident electron

is transferred into bremsstrahlung radiation. This interaction represents the upper

part of the energy spectrum as shown in Fig. 2.2. However, as shown in Fig. 2.2,
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Figure 2.2: X-ray spectra produced by 100keV electrons incident on tungsten.

Characteristic X-rays appear as spikes while the remainder is Bremsstrahlung ra-

diation.

there are not many incidents of this nature.

2.1.2 Characteristic X-rays

In Fig. 2.3 we show the classical Bohr model of an atom, where electrons occupy

an orbit around the nuclei. Each orbiting electron is in a specific ’shell’, with the

innermost shell called the K shell. As we proceed to each shell away from the

nucleus we increment alphabetically thus having L, M, N and so on. Each electron

in the shell has a binding energy. In tungsten for example, the binding energy of

the K, L, M, and N shells are 70 keV, 11 keV, 3 keV, and 0.5keV, respectively.

See [16] for more details on the structure of an atom.

When atoms are bombarded with incident electrons, some incident electrons will

collide with the electrons orbiting the atoms. If, for example, an incident electron

is able to knock out an electron from an inner shell, like the K shell, two things

occur. First an X-ray photon called the characteristic radiation is produced, and

secondly an electron from the next outer shell, in this case an L shell, falls into the

hole created. This in turn creates another X-ray photon and a domino like effect

12



Figure 2.3: The Bohr model of an atom, with a proton-neutron nucleus surrounded

by electrons.

occurs. The energy of this characteristic X-ray is equal to the difference between

the binding energies of the K and L, L and M and so on. Therefore in the case that

an electron from the K shell of a tungsten atom is ejected by an incident electron,

the energy of the X-ray photon produced is equal to 70 keV - 11 keV = 59keV. It

should be noted that each element in the periodic table has its own unique shell

binding energies and thus the energies of the X-ray photons are unique for each

atom, hence the name characteristic X-rays. It should also be noted that the low

level X-rays produced by the domino effect are absorbed within the X-ray tube.

This process is called X-ray filtration (see [16, 21] for details).

So far we have looked at the two types of X-rays produced in a cathode tube.

In the following sections we will look at the interactions that occur within atoms

as a result of incident X-rays.
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Figure 2.4: A graphical view of the photoelectric effect.

2.1.3 X-Ray Interactions

Medical CT machines use X-rays that typically have photon energies between

12.4keV and 140keV. In this range there are three ways in which X-rays interact

with matter: 1) The Photoelectric Effect, 2) Rayleigh scattering and 3) Compton

effect.

The photoelectric effect first described by Albert Einstein in 1905 states that an

electron can be ejected from its orbit around an atom if the incident electromagnetic

radiation is equal to or greater than the binding energy of the atomic shell of that

specific electron, the X-ray photon energy is absorbed by the electron [22, 23, 24]. In

our case the incident electromagnetic radiation is the X-ray photon. As explained

in the above section the loss of an electron will cause a domino effect creating

characteristic X-rays. However, unlike an X-ray tube where tungsten is used, the

constituent parts of the human body have relatively small atomic numbers. While

tungsten’s atomic number is 74, that of calcium (the major constituent in bone) is

only 20. Thus the characteristic X-rays produced by the photoelectric effect have

very low energies (that of bone is 4keV) resulting in quick absorption within the

14



body. Typically an X-ray of 1eV is absorbed by about 2.7µm of tissue. Figure. 2.4

shows this process.

The photoelectric effect, however, plays an important role in obtaining contrast

between different tissues. The probability of photoelectric interaction is propor-

tional to the cube of the atomic number Z,

Pphotoelectric ∝ Z3. (2.4)

Therefore tissues with small differences in atomic numbers result in greater differ-

ences in the probability of the photoelectric effect occuring, resulting in different

absorption of X-ray photons.

The second type of interaction is called the Rayleigh scattering [16]. It occurs

when the incident photon does not have enough energy to cause the photoelectric

effect and there is no transfer of energy. Rayleigh scattering does, however, alter

the trajectory of the photon, thus broadening the swath of the X-ray beam. This

suggests that higher energy X-rays should produce a lot less scattering than lower

energies, which is indeed the case (see [16, 23]). Although traditionally Rayleigh

scattering has only been considered a nuisance in CT imaging, research at Robarts

Research Institute (London, Ontario) is trying to use the effects of scattering to

create material-specific maps of tissues such as bones [25, 26].

The third type of interaction, Compton scattering [16], involves the collision of

an X-ray photon with an electron from the outer shell of the atom. In this type

of collision the photon retains most of its energy while some is transferred to the

electron, thus freeing it from its bond. Figure 2.5 shows Compton scattering. The

incident X-ray photon is scattered over an angle θ ∈ [0◦, 180◦]. Low energy incident

photons are usually being back scattered (scatter > 90◦). Unlike the photoelectric

effect, the probability of Compton scattering depends on the electron density in the

material, and since many body tissues tend to have similar electron densities, this

type of interaction offers little contrast information. Therefore Compton scattering

is also regarded as a nuisance and medical CT devices try to minimize its impact

in various ways [16, 26].
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Figure 2.5: A graphical view of Compton scattering.

A fourth kind of interaction called Pair and Triplet production also occurs.

However, it is only feasible at levels above 1.02MeV, well above the energies used

in CT devices [16].

2.1.4 Attenuation

The interaction mechanisms mentioned above all combine to change the strength of

the X-rays as they pass through the body. The photoelectric effect dominates the

lower energy levels up to 50 keV, while the Compton effect dominates above 90 keV;

between these extremes they are both important. These effects cause attenutation,

the removal of X-ray photons from a beam by absorbtion or scattering. To show

the effects of attenuation let us imagine a piece of uniform material with thickness

dx. For a given chemical environment there is a probability associated with each

interaction, called the attenuation coefficient. Let κ, σ and σr be the attenuation

coefficients of the photoelectric, Compton and Rayleigh scattering in the material.

The sum of these interactions is

µ = κ + σ + σr. (2.5)
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Thus µ is the probability that an incident photon will be attenuated (removed)

from the beam while traversing one unit of thickness of the material. Let I be a

beam of X-ray photons incident on our material. Then as the beam penetrates the

material the change in its intensity, dI, can be written as

dI = −µIdx. (2.6)

Letting dx → 0, and integrating this differential equation leads to

∫ I

I0

dI/I = −µ

∫ x

0

dx, (2.7)

which gives us the Beer-Lambert law

I = I0e
−µx, (2.8)

where I0 is the intensity of the incident beam. Thus we have the intensity of the

X-ray exiting a material is a function of the material thickness and the attenuation

coefficients1. From this equation we see that the higher the µ value, the smaller

I and therefore higher the attenuation. However, the body is not composed of

uniform material so we will consider the case for nonuniform materials. We can

take this nonuniform material and divide it into thin slices of thickness ∆x, and

assume that each slice is uniform. Applying the Beer-Lambert law gives

I = I0e
−µ1∆xe−µ2∆x...e−µn∆x = I0e

PN
n=1 µn∆x, (2.9)

which in turn gives us

− ln

(
I

I0

)
=

N∑
n=1

µn∆x =⇒
∫

L

µ(x)dx (2.10)

as ∆x approaches 0. This equation states that taking the logarithm of the ratio of

the output intensity over the input is equal to the line integral of the attenuation

coefficients in the path. This brings us to the Radon Transform. In mathematics

1This is assuming that the input X-ray photons are monoenergetic.

17



r (xo,yo)

Figure 2.6: The parameters r and t used to specify the position of the beam (line).

the Radon Transform in two dimensions is the integral of a function over a set of

lines. As it relates to our work the a line can be viewed as an X-ray beam path.

2.2 CT geometry

Before we begin discussion on the Radon Transform it is good to understand the

geometry in which X-rays in a CT machine operate.

In Fig. 2.6, (x, y) are arbitrary points on the photon beam(the line). Using

polar coordinates we see that

x0 = r cos θ , y0 = r sin θ. (2.11)

The length ` is given by

` =
x− x0

sin θ
, ` =

y − y0

cos θ
. (2.12)

Using (2.11) and (2.12) we get,

x = r cos θ + ` sin θ, y = r sin θ + ` cos θ. (2.13)
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These are simultaneous equations and we can therefore easily change (2.13) to

obtain

r = x cos θ + y sin θ = (x, y) · (cos θ, sin θ), (2.14)

and

` = −x sin θ + y cos θ = (x, y) · (− sin θ, cos θ). (2.15)

2.3 Radon Transform

The Radon Transform is a mathematical analog to the X-ray projection obtained

from a CT-scnaeer. In this section we will define the Radon Transform, and show its

relationship to the Fourier Transform [27, 15]. We will, however, go into more detail

on this relationship in the next section. In Fig. 2.6 the line represents an incident

ray passing through an object. The Radon Transform in computed tommography

can be simply defined as the collection of line integrals (X-ray beam projections)

of the attenuation coefficients of an object. In the 2D case, we represent each line

integral as p(r, θ),

p(r, θ) =

∫ ∞

−∞
f(x, y)d`, (2.16)

where r = (x, y) · (cos θ, sin θ), (2.17)

and the attenuation coefficient of the object at the point (x, y) is denoted by f(x, y).

To simplify the problem, we use the Dirac δ function, also called the impulse

function,

δ(y − y0) =

{
0 if y 6= y0

undefined for y = y0.

The Dirac δ function has an important property; for any function f(y) that is

continuous at y = y0,

∫ b

a

f(y)δ(y − y0)dy =

{
f(y0) if a < y0 < b

0 otherwise.
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Figure 2.7: A slice of the pelvis and its associated Radon Transform

The equation of the line given by (2.14) and (2.15), together with the above property

of the Dirac δ function, gives us

p(r, θ) =

∫∫ ∞

−∞
f(x, y)δ(r − (x, y) · (cos θ, sin θ))dxdy. (2.18)

Equation (2.18) gives the Radon Transform. As the the source beams are rotated

about the object a collection of these integrals will result as seen in Fig. 2.7.

In Chapter 3 we simulate a CT scanner using a ray tracing method to compute

the Radon Transform [28].

2.4 Fourier Transform

The Fourier Transform is used to convert an image from the Spatial domain to its

Frequency domain. The spatial domain of an image is the image space where a

change in position on the image represents a change in position of the object being
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imaged. The frequency domain represents the decomposition of a signal into its

frequency components. Each Fourier coefficient in the frequency domain specifies

the amplitude and phase of the corresponding wave. For example, let 20 be the

value represented at a frequency of 0.1. This means that in the image the intensity

values vary from dark to light to dark over a period of 10 pixels (the reciprocal of

the frequency), and the contrast between darkest and lightest is 2× 20 grey levels.

Mathematically the one-dimensional Fourier Transform of f(x) is given by

F (u) =

∫ ∞

−∞
f(x)e−i2πuxdx, (2.19)

where u is the frequency, and i =
√
−1. To obtain an image from the frequency

domain, the inverse Fourier Transform is used,

f(x) =

∫ ∞

−∞
F (u)ei2πuxdu. (2.20)

If, however, the original image (f(x, y)) is two-dimensional then we can extend

the Fourier Transform to two dimensions. Mathematically this is given by,

F (u, v) =

∫∫ ∞

−∞
f(x, y)e−i2π(ux+vy)dxdy, (2.21)

while the inverse is given by

f(x, y) =

∫∫ ∞

−∞
F (u, v)ei2π(ux+vy)dudv, (2.22)

where u and v are the horizontal and vertical frequencies.

Discrete versions of the Fourier Transform exist, and can be used on sampled

data such as images. The two-dimensional discrete Fourier Transform (DFT) is

F (u, v) =
1

N2

N−1∑
x=0

N−1∑
y=0

f(x, y)e
−2πi(ux+vy)

N , u, v ∈ [0, N − 1], (2.23)

and its inverse is

f(x, y) =
1

N2

N−1∑
x=0

N−1∑
y=0

F (u, v)e
2πi(ux+vy)

N , x, y ∈ [0, N − 1]. (2.24)
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Figure 2.8: Parallel Beam projection at angle θ = 0

2.5 Fourier Slice Theorem

The Fourier Slice Theorem (also called the Central Slice Theorem) [15] in its sim-

plest form states that the one-dimensional Fourier Transform of a Radon projection

at an angle θ is equal to a slice through the two-dimensional Fourier Transform of

the object. Let p(x, 0) be the Radon Transform of a slice of an object f(x, y) taken

at an angle θ = 0. Figure. 2.8 shows a parallel beam projection taken at θ = 0.

The Radon Transform is therefore given by,

p(x, 0) =

∫ ∞

−∞
f(x, y)dy. (2.25)

The one-dimensional Fourier Transform with respect to x of the Radon projec-

tion is:
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∫ ∞

−∞
p(x, 0)e−i2πuxdx =

∫∫ ∞

−∞
f(x, y)e−i2πuxdydx. (2.26)

The two-dimensional Fourier Transform of the slice f(x, y) evaluated at v = 0 can

be given as

∫∫ ∞

−∞
f(x, y)e−i2π(ux+vy)dydx

∣∣∣
v=0

=

∫∫ ∞

−∞
f(x, y)e−i2uxπdydx. (2.27)

The right hand side of equations (2.26) and (2.27) are identical. Thus we have the

Fourier Transform of the projection, taken at an angle θ = 0, equal to the two-

dimensional Fourier Transform of a slice, at v = 0. Because the coordinate system

is arbitrarily selected the above is valid for any rotated coordinate system [27].

Therefore, reconstruction of an image essentially amounts to an inverse of the two-

dimensional Fourier Transform. The one-dimension Fourier Transform of all the

projections are assembled together in the frequency domain, each projection taking

its position as a line through the origin. All These projections together constitute

the two-dimensional Fourier Transform of the desired image. hence, an inverse

tow-dimensional Fourier Transform reconstructs the image.

2.6 Arithmetic Reconstruction Techniques

Despite the above reletionship between the Fourier Transform and CT reconstruc-

tion, the first methods used to reconstruct image slices from CT data used Arithemetic

Reconstruction Techniques (ART) [16]. These techniques have now been replaced

by the Fourier method described in the previous section. However, it still holds in-

terest for us because it provides a simple explanation of CT reconstruction, as well

as for its historical reference. In Fig. 2.9 we show a simple slice of an object divided

into 4 pixels: A, B, C, and D represent the unknown attenuation coefficients.

There are two main methods of solving this problem, the first by solving the

simultaneous equations as shown in Fig. 2.10 and the second by the iterative re-

construction technique.
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Figure 2.9: A 2x2 pixel slice of an object with unknown attenuation coefficients

A,B,C, and D.

Figure 2.10: Simultaneous equations can be obtained and solved.
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Simultaneous equations

As shown in Fig. 2.10 we are able to obtain five simultaneous equations for four un-

knowns. Elementary algebra tells us that if we have an equal number of unknowns

and linear independent equations for the unknowns then it is quite easy to find

the values of the unknowns. Therefore for an N ×N pixel image we will need N2

measurements and therefore that number of equations. The very first CT-machine,

in 1967, employed direct matrix inversion to solve 28,000 simultaneous equations.

As the need for better spatial resolution increased, there was a corresponding in-

crease in the number of pixels and therefore the number of equations to be solved.

Even by today’s computing standards this would require an enormous amount of

computer power. Furthermore to ensure enough independent equations are formed

we often have to take more than N2 equations. In Fig. 2.9 we see that B + D = 8

is not linearly independent:

B + D = (A + B) + (C + D)− (A + C). (2.28)

In the event that we collect more measurements than we have variables, we can

still obtain a solution using optimization methods such as least squares.

Iterative Reconstruction Technique

There are iterative methods for approximating the solution of the linear systemes

outlined in the previous section. Here, we give an example. In Fig. 2.11 we have

a simple pictorial explanation of iterative reconstruction. Again we will consider

a 2 × 2 slice of an object. Taking the horizontal measurements first (we could

alternatively have taken the vertical measurements) we first evenly distribute the

sum of the projections (3+7 = 10 ⇒ 10/4 = 2.5). Each pixel is given that average.

We then calculate the horizontal line integrals of our initial estimate giving 5, we

then compare these line integral values to those obtained from the original object

projections. We see that our estimates result in the values of 5 (instead of 3) and

again 5 (instead of 7). We observe that the top row is off by 2 and the bottom is
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Figure 2.11: Simple example of iterative reconstruction. The average of the sum of

all horizontal projections (7 + 3 = 10) is first equally distributed about each pixel.

Then the average along a row is compared to the projection data, in the case of

the top row we have, difference = (2.5 + 2.5) − 3 = 2, and for the bottom row it

is (2.5 + 2.5) − 7 = −2. The value difference
no. of pixels in row

is then subtracted from each

pixel in its particular row. We do the same thing for all the rows and then for each

column. The matrix will have to be modified each time we go through the iterative

process resultin in a O(N2) updates being performed.

off by -2. The difference for each row is split evenly among the pixels in that row:
difference

number of pixels in row
= 1, giving 1, and -1 respectively. This process is repeated for

projections in the vertical direction. For further reading see [29].

Like the previous method, the calculations of 2N equations and N2 updates is

still computationally intensive. Together with the fact that modern CT scanners

can acquire a complete projection data set in fractions of seconds and hundreds of

images are required for examination, usage of ART is not feasible. However, the

fact that they exist provided the pioneers with the knowlege that it is a practically

solvable problem.
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2.7 Filtered Backprojection

The Filtered Backprojection algorithm is used to reconstruct an image from pro-

jections [27]. The Fourier Slice Theorem provides a mathematically straighforward

solution to the reconstruction method. From the theorem we see that the Fourier

Transformation of a projection is a straight line going through the origin in two-

dimensional frequency space. This results in samples from the projection falling on

a polar coordinate grid. To perform the two-dimension Inverse Fast Fourier Trans-

form the samples will have to be interpolated to a Cartesian coordinate system.

However, the data in the frequency domain is typically non-smooth, therefore re-

sampling can introduce substantial inaccuracies. A gridding method to perform this

process is presented in [30], however the reconstructions produced by this method

is not of the quality as that produced by Filtered Backprojection [30].

To get around the issue of interpolating in the frequency domain, we again

look at the Fourier Slice Theorem and find an alternative implementation. This

alternative is called Filtered Backprojection. The mathematics behind this theorem

is described below.

Mathematical Formulation

We will first write down some of the equations given in previous sections.

r = x cos θ + y sin θ (2.29)

` = −x sin θ + y cos θ. (2.30)

Using equation (2.29) we can express the projection in terms of the rotated

coordinate system r and `

p(r, θ) =

∫ ∞

−∞
fθ(r, `)d`, (2.31)

for each θ. Therfore by the Fourier Slice Theorem we first obtain the one-dimensional

Fourier Transform of equation (2.31),

P (ω, θ) =

∫∫ ∞

−∞
fθ(r, `)d`e−i2πωrdr, (2.32)
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where ω (the spatial frequency) is measured in radians, for each θ. Using (2.29),

(2.32) can be written as

P (ω, θ) =

∫∫ ∞

−∞
f(x, y)e−i2πω(x cos θ+y sin θ)dxdy. (2.33)

So far we have just found the Fourier Transform of the projections. As the

Fourier Slice Theorem states, we now have to find the two-dimensional Inverse

Fourier Transformation. In general the two-dimensional Inverse Fourier Transform

is given by

f(x, y) =

∫∫ ∞

−∞
F (u, v)ei2π(ux+vy)dudv. (2.34)

So we have

f(x, y) =

∫∫ ∞

−∞
P (ω, θ)ei2π(ux+vy)dudv. (2.35)

The values u and v represents the spacial frequencies of x and y respectively in

the frequency domain. We can express u and v in polar coordinates as

u = ω cos θ, v = ω sin θ. (2.36)

Now we do a change of variable from uv to the polar coordinates ωθ giving us

dudv =

∣∣∣∣∣ δu
δω

δu
δθ

δv
δω

δv
δθ

∣∣∣∣∣ dωdθ = ωdωdθ. (2.37)

The Jacobian is evaluated to ω. Substituting (2.37) and (2.36) into (2.35) we get

f(x, y) =

∫ 2π

0

∫ ∞

0

ωP (ω, θ)ei2πω(x cos θ+y sin θ)dωdθ. (2.38)

We now use (2.29) and obtain

f(x, y) =

∫ 2π

0

∫ ∞

0

P (ω, θ)ei2πωrωdωdθ. (2.39)

As stated in an earlier section, the sampling geometry is symmetric giving

p(r, θ + π) = p(−r, θ). The properties of the Fourier Transformation result in
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this symmetry being transferred to the frequency domain such that P (ω, θ + π) =

P (−ω, θ). Applying this symmetry to equation (2.39) results in

f(x, y) =

∫ π

0

∫ ∞

−∞
P (ω, θ)ei2πωr | ω | dωdθ. (2.40)

This is the mathematics for the reconstruction of an image given a one-dimensional

Fourier Transform of its projection, P (ω, θ). In the following section we will explain

how Filtered Backprojection is implimented.

Filtered Backprojection Implementation

As the name suggests there are two parts to implementing this algorithm: first we

filter the the projection and then backproject the result. The filter is given by the

inner integral of equation (2.40),

g(r, θ) =

∫ ∞

−∞
P (ω, θ)ei2πωr | ω | dω. (2.41)

A popular filter in use is the Ramachandran and Lakshminarayanan (Ram-Lak)

filter [27]. This filter emphasizes noise but other filters such as the Hamming,

Hanning and Shepp-Logan ([27]), reduce this effect. The Ram-Lak filter is shown

in Fig. 2.12.

The ideal filter can not be practically implemented since the gain on this filter

is infinite at an infinite frequency. However, ωmax is the highest spatial frequency

in the projection and therefore we can truncate the function at ωmax resulting in

the Ram-Lak filter as shown in Fig. 2.12. Therefore the integral, can be written as

g(r, θ) =

∫ ωmax

−ωmax

P (ω, θ)ei2πωr | ω | dω. (2.42)

The Ram-Lak function is defined as

H(ω) =

{
| ω | if −ωmax < ω < ωmax

0 otherwise.
(2.43)
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Figure 2.12: Filter functions a) Ideal Filter(| ω |), b) Ram-Lak Filter

The implementation of the filtering process works by first taking the one-

dimensional Fourier Transform of each projection at θ and multiplying each strip

by the filter function. The inverse Fourier Transform is then taken of the result.

We then apply the backprojection.

Backprojection is depicted in Fig. 2.13. We orient the projection at θ. Then

for each pixel we ’draw’ a perpendicular line to the point on this projection. The

value found on the projection is then added to the pixel, using linear interpolation

as needed. Other interpolation methods such as nearest neighbour or splines can

also be used.

Backprojection is the process of smearing a projection back over the image. In

a sense, it is the opposite of projection, where a two-dimensional image is projected

onto a one-dimensional function. Instead, a one-dimensional function is “spread”

(like a knife spreads butter) over the image, leaving its one-dimensonal distribution

as it goes. Figure 2.14 shows a “spread” at θ = 0.

It should be noted that this method assumes that the projections are gener-

ated from a parallel-beam X-ray device. The assumption is implicit in the Radon

Transform and its inverse.
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Figure 2.13: Backprojection, the value is copied on to all pixels perpendicular to r
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Figure 2.14: Backprojection at an angle θ = 0
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Chapter 3

Methods and Experiments

In this chapter we propose an algorithm that is used to obtain the reconstruction

of an image without consideration for the geometry of the scanner. Our algorithm

works if the scanner has rectangular, circular or even incoherent geometry. In a

later section we explain in more detail how our data is obtained. This chapter

focuses on the algorithm itself.

Our research into various methods of CT-reconstruction brought us to the con-

clusion that the Filtered Backprojection algorithm, which is well established and

studied, should be incorporated. This will help in the implementation process and

provides mathematical rigor to our algorithm. Fanbeam projections [27], which

are the closest geometry to what our simulation generates, also use a resampling

method to obtain data needed to apply the parallel beam based Filtered Backpro-

jection algorithm. However, before applying the Filtered Backprojection algorithm

the input data has to be normalized such that implementing the Filtered Backpro-

jection would be seamless.

3.1 General Geometry CT Reconstruction

Figure 3.1 shows the data obtained from our simulation and the same data obtained

using standard parallel beam projection. As shown in Fig. 3.1(a) the data obtained
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Figure 3.1: Projection data obtained from the Shepp-Logan phantom a) Sample

data obtained from our simulation, b) Same data as reconstructed using Matlab’s

parallel beam simulation.

from our simulation has emitters and detectors as its horizontal and vertical axes

respectively. However, the parallel beam data is represented by r and θ, therefore

to use the Filtered Backprojection algorithm we must first resample our data into

the rθ domain.

From our simulation we obtain the coordinates of the emitters and detectors.

Figure 3.1 a) also gives us emitter/detector pairings. That is we know which de-

tectors are in a particular emitters field of view. These emitter/detector pairings

give us the ray sum.

Using this data we are able to resample our simulated data and obtain the values

of r, the perpendicular distance from the center of the imaging space to a photon

beam (straight line connecting an emitter to a detector), and θ, the angle this line

makes with the x-axis. We then take the r and θ values and use them to put the

ray sum values on a grid.

For reconstruction (using the Fast Fourier Transform) the data in the rθ plane
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Figure 3.2: The angle each ray makes with r axis and the perpendicular distance r

is obtained. r is the perpendicular distance from the center of the imaged space to

a photon beam.
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Figure 3.3: Data obtained from simulation, projection of the human pelvis.

has to be on a grid. Therefore some of the r and θ values were rounded off. This

inevitably causes several X-ray beams to pass along the same path. Therefore we

are faced with a choice of replacing already populated regions on the grid based on

some criteria, or use the average of the values. We chose the latter option because it

makes use of all the data gathered. However, there are more sophisticated methods

to populate the grid.

Figure 3.3 is the projection of the pelvis obtained from our simulation. Fig-

ure 3.4 shows the resampled simulated data and compares it against the data that

would be obtained from a parallel beam scan. As is obvious there is not much

difference between the two giving us a promising indication that our resampling

method will be able to generate good results.

We now use the Filtered Backprojection algorithm to reconstruct our image.
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Figure 3.4: a) Resampled pelvis projection from our simulator, b) projection ob-

tained from a parallel beam scanner.

3.2 Experiments

In this section we will first describe how our data was obtained. In a later section

we will investigate the robustness of our reconstruction method with respect to ge-

ometrical perturbations. For example, in our simulation we have perfect knowledge

of the position of emitters and detectors. However, in real-life measurements there

will always be an error in these readings. We therefore ask the question: how will

these errors affect our reconstruction?

We use the Shepp-Logan phantom and a CT slice through the pelvis [31], to

test our algorithm. The Shepp-Logan phantom is a standard image used to test

the performance of image processing algorithms. The phantom, shown in Fig. 3.5,

is composed of ellipses of differing intensitites.. Therefore most of our test cases

will be based on the phantom. However, we have also included the pelvis slice

as a further test of its efficiency. It should be noted that even under a perfect

circular geometry and perfect knowledge of emitter-detector positions, degradation

in the form of blurring will occur. This is the result of the fundamental loss of

information through the resampling needed to simulate the Radon Transform and
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Figure 3.5: The Shepp-Logan phantom.

then the reconstruction.

3.2.1 Data Simulation

In the introduction, we explained that although X-ray images have been obtained

from the CNTs, there is still the problem of creating powerful enough photon beams

that can penetrate to a significant depth. Therefore, we had to rely on creating

simulations of a CNT device to obtain input data. Fortunately the well established

Radon Transform allows us to easily simulate a CT projection. Figure 3.6(b) shows

a photon beam passing through space along a path described by rθ. The Radon

Transform of an image is simply the collection of line integrals for all rays.

Therefore with the knowledge of the position of an emitter and its corresponding

detector we can use simple ray casting to approximate the line integral for each

ray. We simply sample the image along the line at regular intervals. Thus to

approximate the line integral

P (i, j) =

∫ a

b

fθ(rij, `)d`, (3.1)

we use

P (i, j) =
N∑

n=0

fθ(rij, `n)∆`. (3.2)
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Figure 3.6: a) Field of view of emitter, b) The line represents a photon beam, d` is

a length along the line over which the line integral will be taken.

Now we have to choose positions for our emitters and detectors. As shown

in Fig. 3.7 we use a baseline circular geometry with emitters and detectors being

placed in alternate positions. A total of 360 emitters and the same number of

detectors are positioned at equally spaced intervals.

Each emitter has a direction that indicates the path along which an X-ray beam

will pass, and creates an X-ray beam that is fan shaped. Our simulation assumes

that each emitter will have a field of view of 45◦. Therefore for each emitter we first

find which detectors will fall in its field of view and then calculate the line integrals

for each pair. The line integrals for a single emitter are stored as one row, as shown

in Fig. 3.8.

Generating these line integrals using ray tracing takes O( `
∆`

αNM) operations,

where N ×N is the size of the image, α is the field of view of an emitter, M is the

number of emitters and s is the distance from emitter i to a detector in its field of

view.

3.2.2 Irregularity of Geometry

The aim of our experiments is to investigate the performance of our reconstruction

method in the presence of irregular geometries. That is we perturb the emitters and

detectors from the circular configuration shown in Fig. 3.7(a). We see two general

categories of geometrical irregularities: incoherent and coherent. Our experiments
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Figure 3.7: a) Emitter detector positions in a circular geometry b) Emitter sending

two photon beams to detectors. The blob in the center represents a slice of the

object being imaged

Figure 3.8: Emitter-detector pairs making up the line integrals
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will test the performance of our reconstruction method for both types of geometric

irregularities.

Additionally, there are two distinct ways in which the irregularity of the geom-

etry affects our reconstruction. In the first case we know the exact positions of the

emitters and detectors as they are configured in the irregular geometry. Thus we

are able to test our method’s ability to correctly use the line integrals to reconstruct

a consistent image. The second case uses inaccurate data for the emitter-detector

positions, thereby introducing errors that will likely appear in practice. In our

experiments we take the known emitters and detector positions and then perturb

them to produce these inaccuracies. Reconstruction using these induced errors

tests our method’s robustness to imperfections in the measurements of emitter and

detector positions.

Our experiemnts consist of combinations of these two variables: we call them

coherence and accuracy.

Incoherent Irregular Geometry

Thus far our simulation utilizes a circular geometry like that of any CT-scanner.

However, the CNTs will be able to be inserted on any sort of flexible material.

Thus the geometry will change according to how the material is bent. To simulate

some of the different possible aberrations we may expect from a flexible material,

we add deformity into the geometry by using Gaussian noise. Matlab provides a

function randn that generates random variables whose mean is 0 and has a standard

deviation, σ = 1. This function can be easily manipulated to obtain random

variables whose mean and standard deviation is user defined. With this function

we are then able to easily create an irregular geometry. The process begins by first

setting the positions of the emitters and detectors in a circle as shown in Fig. 3.7(a).

Then we add Gaussian noise to each of the x and y coordinates of the emitters and

detectors positions. Figure 3.9 shows the result of adding Gaussian noise where the

standard deviation is 0.5.
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Figure 3.9: Emitter/detector positions in an incoherent geometry, σ = 0.5

Coherent Irregular Geometry

In the incoherent irregular geometry there can be some significant warping of the

emitter and detector positions as shown in Fig. 3.9. In this case we have emitters

and detectors whose positions are so warped that it appears as if they are floating

in free space and not actually attached to anything. However, if attached to some

fabric then this kind of radical aberration will not form. As in the previous section,

we first position the emitters and detectors in a circle. We then displace the emitter

and detectors by pertubring the x and y coordinates with a trigonometric function.

The amplitude gives the degree of irregularity of the geometry. Higher amplitude

results in a greater pertubation from the circular geometry, and hence a more

irregular geometry. However, unlike the case of the incoherent irregularity we do

not allow the emitters to move randomly and thereby interchange positions. All

emitters and detectors in a neighbourhood move in the same general direction while

at the same time being perturbed to different degrees. Figure 3.10 shows the resutls

of warping the positions of emitters and detectors by an amplitude of 0.5.
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Figure 3.10: Emitter/detector positions in a coherent geometry, amplitude = 0.5

3.2.3 Errors in Emitter and Detector Positions

In many of our experiments, we assume that the positions of the emitters and detec-

tors are known. However, in the real world such precision is difficult to obtain. We

therefore decided to include errors in the values of the emitter and detector posi-

tions which would in turn create incorrect data for the pre-processing step. That is,

there will be errors in the emitter-detector pairings that translate into errors in the

calculated rθ coordinates. Like the case of irregularity of geometry, there are two

ways by which we include inaccuracies. The first method uses a Gaussian distribu-

tion to create incoherent positional errors. The second method uses trigonometric

functions to create a more coherent positional error. These two types of inaccu-

racies provide a very good test for the robustness of our reconstruction algorithm.

Brief descriptions of how these errors are implemented are given below.
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Incoherent Errors

We use Gaussian noise to create inaccuracies in our knowledge of the emitter and

detector positions. As in the case of the irregular geometry this noise creates a ’ran-

dom’ error in the data. To obtain these inaccuracies, we first use our simulation to

create data and store the line integral values and the positions of the emitters and

detectors. The irregular geometry can be of either type. Taking the coordinates of

each emitter and detector we apply Gaussian noise to perturb the positions. The

magnitude of the inaccuracy depends on the standard deviation of the Gaussian.

With errors introduced, the emitter-detector pairs and rθ values have to be re-

calculated. This is because the pairs obtained in the original simulation will be

invalid after the introduction of the inaccuracies. The data set containing the new

emitter-detector pairs and the original line integrals are then used to reconstruct

the image. Chapter 4 gives the results of the reconstructions.

Coherent Errors

The second type of inaccuracy introduced is one that takes a more coherent shape.

Unlike those errors produced by using Gaussian noise, the emitters and detectors

positions are changed such that they agree with their neighbors. As in the case of

a coherently irregular geometry, we use a trigonometric function. The amplitude

of the function gives the degree of error. Similar to the creation of incoherent

errors we first use our simulation to generate the line integral values, and collect the

emitter and detector positions. Each emitter and detector position is then rendered

’inaccurate’ using the trigonometric function. New emitter-detector pairs and rθ

values are computed. Together with the line integrals we can then reconstruct our

image. Chapter 4 gives the results of the reconstructions.
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Chapter 4

Results and Discussion

In this chapter we show the results of our reconstruction algorithm. We predomi-

nantly use the Shepp-Logan phantom, as it is the standard, to test our reconstruc-

tions. The Normalized Root Mean Square Error (normalized RMSE) is used to

provide a quality measure of our reconstruction algorithm, and is given by,

E2 =

∑
| g(x, y)− f(x, y) |2∑

| f(x, y) |2
, (4.1)

where g(x, y) is the reconstructed image and f(x, y) is the phantom test image. The

result, E2, is the normalized mean-square error and E is therefore the normalized

root-mean-square error [32]. This error metric will be used throughout to check our

reconstruction. Furthermore the Ram-Lak filter is used throughout in the filtered

backprojection algorithm. However, it is not enough to say that our reconstruction

has an RMSE of some value. Such a result is all too vague and we must therefore

compare it against a standard. The standard we have taken is Matlab’s ifanbeam

function. The fanbeam geometry is the closest geometry to that defined by our sim-

ulation, since each emitter has a fan shape beam. We therefore calculate the RMSE

of the ifanbeam function on the phantom and use that as our basis. The function

is applied to a perfectly circular geometry and a phantom projection obtained by

Matlab’s fanbeam projection.
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4.1 Irregularity of Geometry

We first test how our algorithm performs with irregular geometry.

4.1.1 Incoherent Irregularity

Standard Deviation σ Normalized RMSE Normalized RMSE

(Ram-Lak Filter) (Hamming Filter)

ifanbeam 0.4000 0.3516

0.0 0.4904 0.4724

0.1 0.4889 0.4721

0.3 0.4902 0.4721

0.5 0.4907 0.4735

0.7 0.4957 0.4728

1.0 0.5084 0.4744

Table 4.1: The Root-mean-squared errors of the reconstructed Shepp-Logan phan-

tom in an incoherent irregular geometry scanner.

In Table 4.1 we compare the quality of the reconstructed image using the Ram-

Lak filter and the Hamming filter. The Ram-Lak filter, described earlier, is a high

pass filter and therefore is sensitive to noise. However, the Hamming filter is formed

by multiplying the Ram-Lak filter by a window. This results in deemphasizing high

frequencies [27]. Hence we are not limited by the filter and investigation into custom

filters may improve the quality even more.

Note that with perfectly circular geometry (σ = 0), our error is nonzero. This is

the baseline reconstruction error for this resolution. All other reconstruction errors

should be interpreted relative to this baseline error.

Figure 4.1 shows the reconstruction, under the Ram-Lak filter, at different de-

grees of perturbations. As seen from Table 4.1 and confirmed by Fig. 4.1, the

quality of the image deteriorates slightly with high perturbation. However, even in
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our highest degree of irregularity, the major features of the phantom are still dis-

cernable. To put this into perspective, irregularity of σ = 1.0 is akin to wrapping

a material around an object and then taking part of the material and twisting it.

Such perturbations will maker some of the emitters and detectors redundant, while

possibly undersampling along some ray lines (leading to an undersampled region in

the rθ plane). However, we are still able to discern features with ease.

4.1.2 Coherent Irregularity

Amplitude of error α Normalized RMSE Normalized RMSE

Pelvis (Ram-Lak Filter) Phantom (Ram-Lak Filter)

ifanbeam 0.4000

0.0 0.1972 0.4904

0.1 0.1978 0.4908

0.3 0.1996 0.4906

0.5 0.1991 0.4923

0.7 0.2102 0.4944

0.9 0.2179 0.4987

1.0 0.2223 0.5024

Table 4.2: The Root-mean-squared errors of the reconstructed Pelvis in an Coherent

irregular geometry scanner.

Table 4.2 shows the RMSEs obtained using a projection of the pelvis and the

phantom. The error in the pelvis is much lower because its material generally has a

more consistent absorption coefficients than those assigned to the phantom. There-

fore the interpolations carried out in the reconstruction and resampling processes

will be more consistent. While in the phantom the more varied coefficients will

result in larger errors accumulated through reconstruction. Figures 4.2 and 4.3

show the reconstructions of the phantom and pelvis respectively.

As expected a coherently irregular geometry will perform better than its in-
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Figure 4.1: Reconstruction of Shepp-Logan Phantom with an incoherency in the

irregularity of the geometry, σ. a) σ = 0.0, b) σ = 0.5, c) σ = 0.7, d) σ = 1.0
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coherent counterpart. From Tables 4.1 and 4.2 we see that in the case of the

incoherent irregularity the RMSE value dips and then rapidly increases, while that

of the coherent irregularity increases gradually. It is observed that for a few cases

the RMSE value of the incoherent irregularity is actually a little smaller than that

of coherent. However, this difference is quite negligible and in such situations we

compare the reconstructed images to obtain a better conclusion.

Figure 4.4 gives us an idea of what effect the type of irregularity in geometry

contributes. As is seen in the Fig. 4.4 a) there are many more oscilation artifacts

than in b), supporting our conclusion that the coherently irregular geometry will

give a better reconstruction, as they are fewer obvious artifacts.

4.2 Errors in Positions of Emitters and Detectors

In this section we look at the results of our reconstruction when the positions of the

emitters and detectors contain some degree of error. We test our reconstruction

method by introducing emitter/detector position errors to a variety of different

geometrical scenarios: regular (circular) geometry, incoherent irregular geometry

and coherent irregular geometry. We limit the number of tests, but at the same time

we want to test on a sufficiently irregular geometry. We decided to use irregularities

of standard degree or amplitude (depending on the type of irregularity) of 0.5. We

believe a higher degree of irregularity would not be very practical in real situations.

It is quite likely that many cases would actually have lower degrees if irregularity.

4.2.1 Incoherent Errors

Table 4.3 shows the RMSE obtained by the pelvis and phantom reconstructions

with a coherent irregularity and various degrees of incoherent poistional errors. The

inaccuracy in the positions of emitters and detectors is obtained using Gaussian

noise, as described in the previous chapter. Figure 4.5 shows the reconstruction

under varied degrees of inaccuracy.
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Figure 4.2: Reconstruction of Phantom with a coherency in the irregularity of the

geometry, α. a) Original Phantom, b) α = 0.1, c) α = 0.5, d) α = 0.9
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Figure 4.3: Reconstruction of Pelvis with a coherency in the irregularity of the

geometry. a) Original Pelvis slice, b) α = 0.1, c) α = 0.5, d) α = 0.9
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Figure 4.4: a) The difference image between the phantom and reconstruction under

an incoherent irregular geometry of σ = 0.7, b) the difference image between the

phantom and reconstruction under a coherent irregular geometry of α = 0.7.
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Standard Deviation σ Normalized RMSE

(Ram-Lak Filter)

ifanbeam 0.4000

0.0 0.4904

0.1 0.4901

0.3 0.4902

0.5 0.4906

0.7 0.4950

1.0 0.4983

Table 4.3: The Root-mean-squared errors of the reconstructed Shepp-Logan phan-

tom with Gaussian induced positional inaccuracies of emitters and detectors.

Amplitude α Normalized RMSE

(Ram-Lak Filter)

ifanbeam 0.4000

0.0 0.4904

0.1 0.4903

0.3 0.4904

0.5 0.4912

0.7 0.4919

1.0 0.4948

Table 4.4: The Root-mean-squared errors of the reconstructed Shepp-Logan phan-

tom with a coherently induced positional inaccuracies of emitters and detectors.

From the tables we see that even with large inaccuracies in emitter/detectors

positions the quality of the reconstructed image does not deteriorate as severly as in

the case of irregular geometry. However, as the magnitude of the error increases the

quality of the reconstruction falls. But Figs. 4.5 and 4.6 we are able to easily pick

out the different objects, though there is a discernable increase in artifacts. Given
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the results and those obtained from irregular geometries we see that the induced

inaccuracies do not affect our reconstruction on the same magnitude as geometric

irregularity.

Standard Deviation σ Normalized RMSE Normalized RMSE

(Pelvis Coherent (Shepp-Logan Phantom)

Geometry (0.5)) Coherent Geometry(0.5)

0.1 0.1994 0.4907

0.2 0.2019 0.4918

0.3 0.2075 0.4945

0.5 0.2146 0.4960

0.7 0.2224 0.4963

1.0 0.2311 0.5020

Table 4.5: The RMSE of the reconstructed Pelvis slice and Shepp-Logan phantom,

where we use a coherent irregular geometry of amplitude 0.5.

Table 4.5 shows the RMSE obtained by the pelvis and phantom reconstructions

with a coherent irregularity and various degrees of incoherent poistional errors.

Figure 4.7 shows the reconstruction under varied degrees of inaccuracy.

Table 4.6 gives the RMSEs under the introduction of the Gaussian based inaccu-

racies on incoherent geometry. As is expected the RMSE observed in the coherent

cases are smaller than in the incoherent. This is primarily due to the fact that in

the case of inaccuracy of 0, the incoherent geometry has a larger RMSE. This prop-

agates as we add inaccuracies in the positions of emitters and detectors. Figures 4.8

and 4.9 show the reconstruction of the phantom and pelvis respectively. We see

there are more artifacts observed in the case of incoherent geometry. In the incoher-

ent geometry we already have a chaotic distribution of the emitters and detectors.

Adding more Gaussian noise will make the distribution even more chaotic resulting

in the artifacts. These artifacts are the result of undersampling of the data. A less

evenly distributed configuration will result in many regions where undersampling

occurs.
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Figure 4.5: Reconstruction of Shepp-Logan Phantom with an incoherent error in

recorded emitter detector positions. A regular geometry is used. a) σ = 0.1, b) σ

= 0.5, c) σ = 0.7, d) σ = 1.0

55



Figure 4.6: Reconstruction of Shepp-Logan Phantom with a coherent error in

recorded emitter detector positions. A regular geometry is used. a) σ = 0.1, b) σ

= 0.5, c) σ = 0.7, d) σ = 1.0
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Figure 4.7: Reconstruction of Shepp-Logan Phantom with an incoherent error in

recorded emitter detector positions. Coherency in the irregularity of the geometry

is α = 0.5. a) σ = 0.1, b) σ = 0.5, c) σ = 0.7, d) σ = 1.0
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Figure 4.8: Reconstruction of Shepp-Logan Phantom with an incoherent error in

recorded emitter detector positions. Incoherency in the irregularity of the geometry

is 0.5. a) σ = 0.1, b) σ = 0.5, c) σ = 0.7, d) σ = 1.0
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Figure 4.9: Reconstruction of Pelvis with an incoherent error in recorded emitter

detector positions. Incoherency in the irregularity of the geometry is 0.5. a) σ =

0.1, b) σ = 0.5, c) σ = 0.7, d) σ = 1.0
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Standard Deviation σ Normalized RMSE Normalized RMSE

(Pelvis Incoherent (Shepp-Logan Phantom)

Geometry (0.5)) Incoherent Geometry(0.5)

0.1 0.2187 0.4920

0.2 0.2209 0.4907

0.3 0.2232 0.4954

0.5 0.2277 0.4973

0.7 0.2320 0.4939

1.0 0.2471 0.5044

Table 4.6: The RMSE of the reconstructed Pelvis slice and Shepp-Logan phantom,

where we use a incoherent irregular geometry of standard deviation 0.5. The errors

are created using Gaussian noise with different standard deviations.

4.2.2 Coherent Errors

Amplitude of error Normalized RMSE Normalized RMSE

α (Shepp-Logan Phantom) (Shepp-Logan Phantom)

Coherent Geometry (0.5)) Incoherent Geometry(0.5)

0.1 0.4729 0.4701

0.2 0.4729 0.4691

0.3 0.4730 0.4696

0.5 0.4728 0.4696

0.7 0.4728 0.4696

1.0 0.4728 0.4714

2.0 0.5104 0.4906

Table 4.7: The RMSE of the reconstruction (Shepp-Logan phantom) with coherent

errors in the emitter-detector positions. We use both a coherent irrgular geometry

and an incoherent one. In both case the irregularity is given by α or σ = 0.5
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Table 4.7 shows the RMSEs obtained using a trigonometric function to obtain

inaccuracies. As explained in the previous chapter, using a trigonometric function

will result in a more coherent distribution of data. The RMSE values in Table 4.7

are much smaller than those produced by the Gaussian inaccuracy (shown in Ta-

bles 4.5 and 4.6). This is because the trigonometric function does not cause the

device to move around chaotically and this more consistent movement results in

better reconstructions. Figures 4.10 and 4.11 show the reconstructions of coherent

inaccuracy in both coherent and incoherent geometries respectively. We see that

there are fewer artifacts than in the case of the incoherent inaccuracies. The recon-

struction also produces better contrast. As in the case of the geometries we believe

that these characteristics are a result of better sampling.

Table 4.7, however, shows a lower RMSE for the incoherent geometry than the

coherent one. But Fig. 4.10 shows better reconstruction for the coherent geom-

etry. This contradiction is not clearly understood, but the better results shown

in Fig. 4.10 are expected. In Table 4.7 we see that the RMSE for the coherent

irregularity changes slowly. Visually examining the reconstructions, 0.5 and 1.0 in

Fig. 4.10, shows that there are more oscillation artifacts. To be sure, Table 4.7

shows that in the case of an error of amplitude 2.0 a much larger RMSE results.
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Figure 4.10: Reconstruction of phantom with a coherent error in recorded emitter

detector positions. Coherency in the irregularity of the geometry is 0.5. a) α = 0.1

, b) α = 0.5, c) α = 0.7, d) α = 1.0
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Figure 4.11: Reconstruction of phantom with a coherent error in recorded emitter

detector positions. Incoherency in the irregularity of the geometry is 0.5. a) α =

0.1 , b) α = 0.5, c) α = 0.7, d) α = 1.0
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Chapter 5

Conclusions and Future Work

5.1 Conclusions

The General Geometry CT Reconstruction algorithm generally yields very good

reconstructions. Many of the artifacts found in the reconstructions are believed

to be the result of inconsistent sampling (undersampling, or contradictory redun-

dant samples) of ray sums that are tangent to high-contrast edges in the image.

Increasing the number of emitters and detectors should improve the quality. It is

interesting to observe that reconstruction under coherent irregular geometry results

in a better image than that derived from an incoherent geometry. Although there

are a few cases where RMSE is smaller for the incoherent geometry, the recon-

structed images suggest a different result. For example in the reconstructions of a

coherent geometry (Fig. 4.2) and incoherent (Fig. 4.1) we see sharper images in the

case of a coherent geometry. The line artifacts observed in the ’incoherent’ results

are more pronounced. Furthermore as the irregularity of the geometry increases we

observe that the RMSEs of the incoherent geometry increases more rapidly than

its coherent counterpart.

In the case of the incoherent geometry, where emitters and detectors are dis-

placed independently, there is the likelihood that they may bunch up. In such an

event there will be regions of rθ space that will be undersampled. With portions
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of the region unsampled the resampling will result in errors. These errors will

then propagate across the reconstruction. The ’bunching up’ effect is the major

difference between the incoherent and coherent geometries. However, it should be

noted that in a real device, emitters and detectors are attached to the same mate-

rial. Therfore it is not very likely for high levels of incoherency to occur. Though

the fact that our algorithm is able to perform well under even such improbably

geometrie does provide us with evidence of its robusteness.

We have also included a slice of the pelvis to be reconstructed under a coherently

irregular geometry (see Fig. 4.3). The reconstructions have been satisfactory,

however, a large number of artifacts interweave the surface. This result does not

occur in the phantom, and further work should be conducted to research this result.

We have also included errors in the recorded positions of our emitters and de-

tectors. This allows us to see how robust our algorithm is in ’real world’ situations.

There are many devices that can retrieve positions in space. However, none has

shown itself to be completely accurate. Even with this constraint, our algorithm

deals with very large ’inacccuracies’ satisfactorily and therefore the inherent lack

of precision of such devices will be more of a nuisance than a major issue.

5.2 Future Work

Our algorithm only deals with a slice of an object. However, in most practical cases

we will want volume imaging. Again we look at work that has been done before.

The fan beam scanner provides a good geometric similarity for a three-dimensional

case. The filtered backprojection algorithm can again be used in this case, and

resampling of the data will also be necessary [27]. We believe that our method can

be generalized easily to volume imaging.

We see that the filter function used in the reconstruction affects the quality

of the image produced. In the majority of our reconstructions we have used the

Ram-Lak filter. However, the Ram-Lak filter is a high pass filter and therefore

sensitive to noise. Other filters such as the Shepp-Logan or Hamming filters, such
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as the Shepp-Logan or Hamming filters, should be investigated [27]. Work can also

be done on creating a specific filter to match our needs.

The simulation of the input data did not take into consideration the effects of

scattering of X-ray photons within the body. Therefore for future work we will

incorporate the effects of scattering into the simulation and test our reconstruction

algorithm on this new data.

The detectors have nonlinearities, such that they have differential sensitivities as

a function of angle of incidence and curvature. These factors should be incorporated

into our simulation.

Our errors were created in a rather ad-hoc fashion. However, it is likely that

different forms or patterns of positional errors will produce different results. We

have shown that incoherent inaccuracies and a particular form of coherent inaccu-

racy give different artifacts. How these artifacts change with varying accuracy and

with the overall geometry still needs to be investigated in more depth. Therefore

further work into devices that record positions in three-dimensional space, and how

the errors in measurements are propagated, should prove useful.

Our resampling method uses a simple averaging technique to populate the rθ

space. However, more complex resampling methods, like Delaunay triangulation,

should be investigated. Matlab uses the Delaunay triangulation in its griddata

method. It can be used to reconstruct an image from an irregularily sampled data

set. It may therefore offer more accurate resampling than our averaging technique.

Initial test have been performed for non-circular based irregular geometries. We

have obtained good results from these tests. But further work on other geometries,

such as elliptical or rectangular, should also be done.
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